

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As an experiment,
we’re releasing this copy well before we normally would. That way
you’ll be able to get this content a couple of months before it’s avail-
able in finished form, and we’ll get feedback to make the book even
better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-
tain errors. It has not been copyedited, so it will be full of typos.
And there’s been no effort spent doing layout, so you’ll find bad page
breaks, over-long lines, incorrect hyphenations, and all the other ugly
things that you wouldn’t expect to see in a finished book. We can’t
be held liable if you use this book to try to create a spiffy application
and you somehow end up with a strangely shaped farm implement
instead. Despite all this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs
from http://books.pragprog.com/titles/ajax/reorder.
When the book is finally ready, you’ll get the final version (and
subsequent updates) from the same address. In the meantime,
we’d appreciate you sending us your feedback on this book at
http://books.pragprog.com/titles/ajax/errata.

Thank you for taking part in this experiment.

Dave Thomas

http://books.pragprog.com/titles/ajax/reorder
http://books.pragprog.com/titles/ajax/errata

Pragmatic Ajax
A Web 2.0 Primer

Justin Gehtland

Ben Galbraith

Dion Almaer

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2005 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-8-5

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, October 2005

Version: 2005-10-26

http://www.pragmaticprogrammer.com

Contents
1 Building Rich Internet Applications with Ajax 1

1.1 A Tale in Three Acts . 2
1.2 Google Maps: The Missing Spark 4
1.3 What is Ajax? . 5
1.4 Whither Now? . 8

2 Ajax In Action 9
2.1 Ajaxifying a Web Application 9
2.2 Ajax to the Rescue . 10
2.3 The Grubby Details . 17
2.4 Wrapping Up . 20

3 Ajax Explained 21
3.1 A Review of Client-side JavaScript 22
3.2 Manipulating the Web Page 29
3.3 Retrieving Data . 34
3.4 Summary . 36

4 Creating Google Maps 38
4.1 Rocket Scientists? . 38
4.2 Your Own Google Maps 39
4.3 Creating Ajaxian Maps 45
4.4 Conclusion . 73

5 Ajax Frameworks 74
5.1 Frameworks, Toolkits, and Libraries 74
5.2 Remoting with the Dojo Toolkit 79
5.3 Remoting with the Prototype library 86
5.4 Wrapping Up . 88

CONTENTS vi

6 Ajax UI, Part I 89
6.1 Ajax and JavaScript for the UI 89
6.2 Conclusion . 114

7 Ajax UI, Part II 115
7.1 Some Standard Usages 115
7.2 It Isn’t All Just Wine and Roses... 129
7.3 Conclusion . 138

8 Server-side Framework Integration 140
8.1 Different Strategies for Integration 141

9 Ajax with PHP 143
9.1 The PHP Frameworks . 143
9.2 Working with Sajax . 144
9.3 XOAD . 151
9.4 Wrapping Up . 156

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=vi

Chapter 1

Building Rich Internet
Applications with Ajax

This is a book about developing effective web applications. We’re not
going to dance around this issue. Underneath everything else, this
book is about XHTML, JavaScript, CSS, and standards that have been
around for almost a decade now. Not only do we admit this truth,
we embrace it. Just because these standards have been around for a
while doesn’t mean that we can’t build something new and exciting out
of them. Technology, like Jello, takes a while to solidify into something
tasty and satisfying.

Ajax (and Web 2.0) represents the maturation of Internet standards
into a viable application development platform. The combination of sta-
ble standards, better understanding and a unifying vision amount to a
whole that is greater, by far, than the sum of its parts. With Ajax, you’ll
be able to achieve the double Holy Grail: feature-filled user interfaces
and a no-hassle, no-install deployment story.

It wasn’t long ago that Jesse James Garrett coined the term Ajax. When
he first released the term onto the public consciousness, it stood for
Asynchronous JavaScript And XML. It has since, like SOAP before it,
lost its acronym status and is just a word. However, it is an enormously
powerful word. With this single word, Jesse James was able to harness
an industry-wide trend towards richer, install-free web applications and
give it focus.

Naming a thing is powerful. In this case, not quite powerful enough to
become a movement, though. There was still a spark that was lacking.

A TALE IN THREE ACTS 2

It was to be provided by an entirely unlikely entity. What follows is the
story of one development team, that spark, and how it changed the way
we approach web software.

1.1 A Tale in Three Acts

Hector is a project manager for a web application development shop.
With a long history of Perl CGI, ASP, Servlet, and JSP development
under his belt, Hector has been around the block. For the last year
his team has been building a CRM application for a large Fortune 500
company with offices all over the world. The application used to be a
green-screen mainframe application; the company wants to take advan-
tage of the great reach of the Internet to deploy the application to every
office.

Hector and his team focus a lot of their energy on the server side of the
application. They have been using one of the modern MVC frameworks
from the Java community to implement the business logic; a high-
performance persistence framework to access the database; messaging-
based infrastructure to connect to other existing systems.

Yesterday

On the client side, Hector and his team have become masters of CSS.
The look of the pages bends to their will; when the customer wants
rounded corners, they get rounded corners. Rollover colors? That’s
easy. Multiple color schemes? No problem. In fact, Hector and his
team had long ago reached a point where they weren’t really worried
about the user interface. See, the web operates one way: it essentially
distributes static documents. When users want more data, they incur
a complete interface refresh. It isn’t optimal from an efficiency perspec-
tive, but it’s how the web works and users have just learned to live with
it.

Then, sometime a couple of weeks ago, Hector’s customer came to a
meeting. The customer was usually a polite, accomodating fellow. He
understood the web, understood the restrictions he had to live with to
get the reach of the Internet. In fact, Hector had never seen him get
really angry. Until this meeting.

As soon as he walked in, the team knew something was up. He had his
laptop with him, and he never carried it. As he stormed into the room,
the team glanced around the table: what have we done? The customer

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=2

A TALE IN THREE ACTS 3

sat down at the table, fired up the laptop, and hammered away at the
keyboard for a minute. While he pounded the keys, he told the team
“Last night, my wife and I were invited to a party at the CEO’s house.”
“Uh oh,” thought the team, “this can’t be good.”

“Well, I certainly jumped at the chance,” he continued. “I’ve never been
before. This project got me on his radar.” (“Double uh oh,” thought
Hector). “When I couldn’t figure out how to get there with my city map,
I went to the Internet. I found THIS!” He hissed the last word with
venom and scorn. He flipped the laptop around so the table could see
it. There, quietly couched in his browser window, was Google Maps.
“Why,” he said, through clenched teeth, “can’t I have this?”

Today

Since that meeting, Hector and his team have been on fire to rethink the
user interface. Hector went out to learn what was going on here, how
Google could have completely ignored conventional wisdom and gener-
ated such a thing. He came across an article by Jesse James Garrett
describing this thing called Ajax. He’s been digging since then, learning
everything he can about this new way of making Internet applications.

The team has begun re-implementing the UI. They’re using JavaScript
and DHTML techniques to provide a more dynamic experience. Most
of all, they’ve begun taking advantage of a useful object available in
modern browsers called XMLHttpRequest (XHR for short). This handy
little guy lets Hector and his team request and receive fresh data from
the server without reloading everything in the page.

In other words, Hector has spearheaded a move from Web 1.0 to Web 2.0.
And his customer is happy again.

Tomorrow

So what comes next for Hector? His team is learning a bunch about
JavaScript, and XHTML, and even more about CSS than it ever knew
before. The team is really excited about the results: the user experience
is just like any other application, now, except the team doesn’t have to
manage an installer as well as the application itself. But they’ve realized
that there’s a downside to all this.

Now, they are writing a ton of code in JavaScript. It turns out that all
this page manipulation and XHR access requires a lot of real, honest-
to-goodness code. And even though JavaScript LOOKS a lot like Java,

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=3

GOOGLE MAPS: THE MISSING SPARK 4

they’ve discovered that it really is a different beast. And now they have
two codebases to manage, and test, and maintain.

So Hector is off to find out how to solve these problems. And what
he will see is that most web application development frameworks are
rapidly incorporating Ajax tools into their own suites. Soon, Hector
and his team will be able to leverage Tapestry components, Spring
tag libraries, ASP.NET widgets, Rails helpers and PHP libraries to take
advantage of Ajax without having to incorporate a second way of work-
ing. The (near) future of Ajax development is total, invisible integration.
Which is exactly what Hector needs.

1.2 Google Maps: The Missing Spark

Google Maps (http://maps.google.com) really ignited the Ajax fire.
And Google was just about the most unlikely candidate to do it. Think
about what made Google an overnight sensation in the first place: bet-
ter search results, and the world’s most minimal UI. It was a white
page, with a text box and a button in the middle of it. It doesn’t get any
more minimal than that. If Google had had a soundtrack, it would have
been written by Philip Glass.

When it became obvious that Google was going to enter the online map-
ping space, we all expected something similar. A more straightforward,
less intrusive approach to viewing maps. Which is what we got; we just
didn’t get it the way we expected. Google, through the clever use of
XHR callbacks, provided the first in-page scrollable map. If you wanted
to look at the next grid of map panels, Google went off and retrieved
them and just slid the old ones out of the way. No messy page refresh;
no reloading of a bunch of unchanged text. Particularly, no waiting
around for a bunch of ads to refresh. Just a map, the way a map ought
to work.

Then we clicked on a push pin and got the info bubble. With live text in
it. And a drop shadow. And that was the end of an era. We’ve been told
the same story that you just lived through with Hector again and again.
Somebody’s boss or customer or colleague sees Google Maps and says
“Why not me?”

As programmers, too, there’s another reaction: “I wish I could work on
that kind of application.” There’s an impression out there that Google
Maps, and applications like it, are rocket science, that it takes a special
kind of team, and a special kind of developer, to make it happen. This

Report erratum

http://maps.google.com
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=4

WHAT IS AJAX? 5

book, if nothing else, will lay to rest that idea. As we’ll demonstrate
in Chapter 4, Creating Google Maps, on page 38 making web pages
sing and dance isn’t all that challenging once you know what tools
are available. It becomes even more impressive once you discover that
Google Maps isn’t really proper Ajax; it doesn’t take advantage of any
of the modern asynchronous callback technology, and is really just
dynamic HTML trickery.

1.3 What is Ajax?

Ajax is a hard beast to distill into a one-liner. The reason it is so hard
is because it has two sides to it:

1. Ajax can be viewed as a set of technologies
2. Ajax can be viewed as an architecture

Ajax: Asynchronous JavaScript and XML

The name ’Ajax’ came from the bundling of its common enabling tech-
nologies: JavaScript, XML, and an asynchronous communication chan-
nel between the browser and server. When it was defined, it was envi-
sioned as:

1. standards-based presentation using XHTML and CSS

2. dynamic display and interaction using the Document Object Model

3. data interchange and manipulation using XML and XSLT

4. asynchronous data retrieval using XMLHttpRequest or XMLHTTP
(from Microsoft)

5. JavaScript binding everything together

Although it is common to develop using these enabling technologies, it
can quickly become more trouble than reward. As we go through the
book we will show you how you can:

1. Incorporate Ajaxian techniques that do not use formal XML for
data transport

2. Bypass the DOM APIs themselves for manipulating the in-memory
page model

3. Use synchronous calls to the server, which can be powerful but is
also dangerous

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=5

WHAT IS AJAX? 6

4. Abstract away the complexity of XMLHttpRequest

It is for these reasons that the more important definition for Ajax is...

Ajax: The Architecture

The exciting evolution that is Ajax is in how you architect web applica-
tions. Let’s look first at the conventional web architecture:

1. Define a page for every event in the application: view items, pur-
chase items, checkout, and so on.

2. Each event, or action, returns a full page back to the browser.

3. That page is rendered to the user.

This seems natural to us now. It made sense at the beginning of the
web, as the web wasn’t really about applications. The web started off
as more of a document repository; a world in which you can simply link
between documents in an ad-hoc way. It was about document and data
sharing, not interactivity in any meaningful sense.

Picture a rich desktop application for a moment. Imagine what you
would think if, on every click, all of the components on the application
screen re-drew from scratch. Seems a little nuts, doesn’t it? On the
web, that was the world we inhabited until Ajax came along.

Ajax enables a new architecture. The important parts of this architec-
ture are:

1. Small Server Side Events: Now components in a web application
can make small requests back to a server, get some infomation,
and tweak the page that is viewed by changing the DOM. No full
page refresh.

2. Asynchronous: Requests posted back to the server don’t cause the
browser to block. The user can continue to use other parts of the
application, and the UI can be updated to alert the user that a
request is taking place.

3. onAnything: We can talk back to a server based on almost any-
thing the user does. Modern browsers trap most of the same user
events that the operating system allows: mouse clicks, mouse
overs, keypresses, etc. Any user event can trigger an asynchronous
request.

Figure 1.1 demonstrates the new lifecycle of an Ajax page:

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=6

WHAT IS AJAX? 7

SPAN SPAN

HTML

HEAD

TITLE

BODY

LINK DIV DIV

SPAN SPANDIV6

3

Rendered in Browser Running on Server

scripts/
servlets/
pages

1

2

4

5

Figure 1.1: Ajax Page Lifecycle

1. User makes initial request against a given URL

2. Server returns original HTML page

3. Browser renders page as in-memory DOM tree

4. User activity causes subsequent request against another URL asyn-
chronously, leaving existing DOM tree untouched

5. Browser returns data to a callback function inside the existing
page

6. Browser parses result and updates in-memory DOM with the new
data, which is then reflected on screen to the user (the page is
redrawn, but not "refreshed")

This all sounds great doesn’t it? With this change we have to be careful
though. One of the greatest things about the web is that anybody can
use it. Having simple semantics helps that happen. If we go overboard,
we might begin surprising the users with new UI abstractions. This is
a common complaint with Flash UIs, where users are confronted with
new symbols, metaphors and required actions to achieve useful results.
Usability is an important topic that we will delve into in Chapter 7, Ajax
UI, Part II , on page 115.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=7

WHITHER NOW? 8

1.4 Whither Now?

The rest of this book will introduce you to the breadth of the Ajax move-
ment. We’ll walk through the conversion of an application to this new
style, and take a deep look at the enabling technologies behind Ajax.
We’ll introduce you to commonly available toolsets and frameworks that
make seemingly advanced effects as simple as a single line of code.
You’ll get to see what your favorite development platforms are doing to
take advantage of, and integrate with, this new style of development.

Most importantly, we’re going to talk a lot about how to use Ajax effec-
tively; pragmatically, even. Because the only thing worse than being
left behind when the train leaves the station is getting on the wrong
train. We intend this book to be a guide through a new and rapidly
evolving landscape. We want to help you find out how, and even if, Ajax
can help your projects. We’re not trying to sell you anything (except
this book). But we believe that Ajax represents a major event, and we
want to be there to help you make the best of it.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=8

Chapter 2

Ajax In Action
In the last chapter, Hector and his team went on a voyage of discovery
about the possibilities for web applications. They learned that Ajaxian
techniques can transform conventional web pages into dynamic web
interfaces. This chapter is about lifting the veil and showing you how
Ajax really works. To do this, we’ll transform a traditional web page
into an Ajax application right before your eyes.

2.1 Ajaxifying a Web Application

Let’s consider the case of our friend Hector, the erstwhile project man-
ager from our previous chapter. Hector released the first version of
the application a few months ago. As he reviewed the user feedback,
he found that some users expressed frustration with a customer data
entry screen.

Figure 2.1, on the next page is a screenshot of the current version of
the page.

So what’s the problem with this screen? It turns out that the users
of Hector’s application are used to the behavior of the “green-screen”
application it replaced. In the old application, all the users had to
do was enter the customer’s zip code and the “City” and “State” fields
would auto-populate with the correct values; the users of Hector’s new
web application are frustrated that they now have to enter this data
manually.

AJAX TO THE RESCUE 10

Figure 2.1: Hector’s Problem Entry Screen

Grok HTML?

You know, its a bit of a tragedy that more than ten years after
the web was invented, so many of us are still creating HTML by
hand. Yet, here we are. A knowledge of how HTML works is
essential to understanding Ajax. We’re assuming a solid under-
standing of HTML, rather than focusing on it in this book.

2.2 Ajax to the Rescue

With Ajaxian techniques, it is possible for Hector to faithfully recreate
the auto-population of data that the old green-screen application pro-
vided. Let’s take a look at how this feature can be added to Hector’s
application.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=10

AJAX TO THE RESCUE 11

Ajaxifying the CRM Screen

To start, let’s take a look at the source code for the CRM screen.

File 1 <html>

<head>
<title>Customer Data Screen</title>

</head>
<body>

<h1>Corporate CRM System</h1>
<h2>Enter Customer Data</h2>
<table>

<tr>
<th>Customer Name:</th>
<td><input type="text" name="name"/></td>

</tr>
<tr>

<th>Address:</th>
<td><input type="text" name="address"/></td>

</tr>
<tr>

<th>City:</th>
<td><input type="text" name="city"/></td>

</tr>
<tr>

<th>State:</th>
<td><input type="text" name="state"/></td>

</tr>
<tr>

<th>Zip:</th>
<td><input type="text" name="zip"/></td>

</tr>
<tr>

<th></th>
<td><input type="Submit" value="Add Customer"/></td>

</tr>
</table>

</body>
</html>

We want to add behavior so that when the user enters a value in the Zip
field, we’ll send the ZIP code to the server, receive a response containing
the city and state that correspond to the ZIP, and populate the City and
State fields with those values.

Preparing the HTML

The first step towards this end will be to add an event handler to the event handler

Zip <input> tag. Chances are, if you’ve done any HTML development
before, you’ve dealt with event handlers; they allow you to execute
script code in the web page when certain user interactivity or browser
tasks occur. Secondly, we’ll have to add id= attributes to the City and
State <input> elements. You may not have had experience with id
attributes; we’ll talk more about those in a bit.

Report erratum

http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=11

AJAX TO THE RESCUE 12

Our revised <input> elements look like this (with the surrounding table
rows shown for context):

File 2 <tr>

<th>Zip:</th>
<td><input onblur="getZipData(this.value)"

type="text" name="zip"/></td>
</tr>
<tr>

<th>City:</th>
<td><input id="city" type="text" name="city"/></td>

</tr>
<tr>

<th>State:</th>
<td><input id="state" type="text" name="state"/></td>

</tr>

The event handler is registered via the onblur= attribute, which in this
case specifies that the script function named getZipData() will be invoked
when the focus leaves this element. The parameter passed to this func-
tion, this.value, specifies that the value property of the <input> element
will be passed; the this is a reference to the element on which the event
handler has been registered.

We’ve also changed the ordering of the table rows; now the Zip input
comes first. While this new layout is atypical for American addresses, it
reflects a more natural flow for the ajaxified version of the screen, since
entering the ZIP code will auto-populate the other two fields beneath it.

Communicating with the Server

We’re now done with the first half of our task: wiring the HTML to a
script that will perform our Ajax behavior. Now we need to tackle the
slightly trickier second bit: writing the script.

The key to Ajax is a JavaScript object called XMLHttpRequest, the engine
that can send HTTP requests, receive responses, and parse them as
XML. Let’s create our getZipData() function, which will create an instance
of XMLHttpRequest and use it to send the ZIP code to the server. Remem-
ber, this function will be invoked whenever the Zip input loses focus;
that is, whenever the user enters the field and then leaves it, either with
the mouse, the tab key, or some other mechanism. Here’s what it looks
like so far:
Line 1 <script type="text/JavaScript">

- var xhr;
- function getZipData(zipCode) {
- xhr = new XMLHttpRequest();
5 xhr.open("GET",
- "/getCityStateFromZip.request?" + zipCode);

Report erratum

http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen_ajax_1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=12

AJAX TO THE RESCUE 13

The Backend

We demonstrated how to request city/state data from the
server, but we never showed you how the server processed the
request and generated the response. Unfortunately, this can
be somewhat tricky to do; what programming language should
we use to demonstrate the server process? Later in the book,
starting with ??, on page ??, we talk fairly extensively about dif-
ferent programming language frameworks for creating server
processes that can interact with Ajax web pages; for now, just
take it on faith that there’s a server providing data to the page.

XMLHttpRequest

The syntax we have used so far to create an instance of XML-
HttpRequest is browser-specific. Microsoft’s Internet Explorer, the
first browser to offer this feature, uses an ActiveX component
to accomplish the same tasks. Creating one requires a differ-
ent syntax, which we will cover later in the book. There is talk
right now that the next major release of IE (as of this writing, IE is
on version 6 with Service Pack 1) will use the syntax described
above, thus (hopefully, eventually) eliminating the confusion.

- xhr.send(null);
- }
- </script>

So far, pretty simple, right? On line 4, we create our XMLHttpRequest

instance. On the next line, we configure it using the open() function;
the first parameter indicates the HTTP method to use for the request,
and the second indicates the URL we’ll be requesting. Finally, we invoke
the send() function, which predictably enough sends the request.

Parsing the Response

Now that we’ve demonstrated how to send a request to the server, we
need to add some code that will process the response that the server
sends back. We’ll do that by creating a function processZipData():

Line 1 function processZipData() {

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=13

AJAX TO THE RESCUE 14

- var data = xhr.responseText;
- var cityState = data.split(',');
- document.getElementById("city").value = cityState[0];
5 document.getElementById("state").value = cityState[1];
- }

The first few lines of this function are fairly intuitive; we retrieve the
data sent back from the server—the city and state, formatted as “City,State”—
and split the string into a two-element string array, so that we can
access the city and state values separately.

Lines 4 and 5 demonstrate why we gave id attributes to the City and
State input elements earlier. Web browsers model every web page they
display as an XML document (regardless of how ugly the page’s HTML
markup is). In JavaScript code, we can access this XML document
using the document variable. document has a handy getElementById()
function that can return a reference to any XML element based on the id
attribute. Once we have a reference to the element, we can manipulate
it. In this case, we set the value attribute of the elements to the city and
state values returned by the server.

Tying It All Together

We’ve created two JavaScript functions: getZipData(), which sends a
request to the server, and processZipData(), which processes the response.
However, we haven’t yet connected them. As our code currently stands,
processZipData will never be invoked.

You might think that we should invoke processZipData() as we do on line
6 of the following example.

Line 1 function getZipData(zipCode) {
- xhr = new XMLHttpRequest();
- xhr.open("GET",
- "/getCityStateFromZip.request?" + zipCode);
5 xhr.send(null);
- processZipData();
- }

Unfortunately, this just doesn’t work. The “A” in Ajax stands for asyn-
chronous, and asynchronous behavior is exactly what we’re seeing here. asynchronous

It turns out that when we invoke the send function on line 5, the invoca-
tion returns immediately and the XMLHttpRequest will make the request
and receive the response on a separate thread. Thus, if we were to
try to process the response from the server on the following line, we
couldn’t—we would not yet have received the response.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=14

AJAX TO THE RESCUE 15

The solution is to register a callback handler—a function that will be callback handler

invoked when the XMLHttpRequest has received the response from the
server. Line 3 in the following example demonstrates how to register
processZipData as a callback handler:

Line 1 function getZipData(zipCode) {
- xhr = new XMLHttpRequest();
- xhr.onreadystatechange=processZipData;
- xhr.open("GET",
5 "/getCityStateFromZip.request?" + zipCode);
- xhr.send(null);
- }

By simply passing the name of the function to the onreadystatechange()
method, we are almost ready. Why is the method named onreadystat-

echange() and not, say, onresponsereceived()? It turns out that XML-

HttpRequest calls back into the function we registered multiple times as
it sends the request and receives the response, each time indicating
that it has made progress. We’re only interested in parsing the data
once the entire process has finished, so we need to check the current
status of the XMLHttpRequest before we attempt to get the response data
in processZipData():

Line 1 function processZipData() {
- if (xhr.readyState == 4) {
- var data = xhr.responseText;
- var cityState = data.split(',');
5 document.getElementById("city").value = cityState[0];
- document.getElementById("state").value = cityState[1];
- }
- }

XMLHttpRequest provides a readyState property that indicates its current
status; a state of “4” indicates that the response has been received.

The Big Picture

That’s it, we’re done. Let’s take a look at the entire web page source
code to see how all these pieces fit together:

File 2 <html>

<head>
<title>Customer Data Screen</title>
<script type="text/javascript">

var xhr;
function getZipData(zipCode) {

xhr = new XMLHttpRequest(); //<label id="code.xhr"/>
xhr.onreadystatechange=processZipData;
xhr.open("GET",

"/getCityStateFromZip.request?" + zipCode);
xhr.send(null);

}

Report erratum

http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen_ajax_1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=15

AJAX TO THE RESCUE 16

readyState

The readyState property has five possible values:

0: (Uninitialized) the send() method has not yet been invoked.

1: (Loading) the send() method has been invoked, request in
progress.

2: (Loaded) the send() method has completed, entire response
received.

3: (Interactive) the response is being parsed.

4: (Completed) the response has been parsed, is ready for har-
vesting.

function processZipData() {
if (xhr.readyState == 4) {

var data = xhr.responseText;
var cityState = data.split(',');
document.getElementById("city").value = cityState[0];
document.getElementById("state").value = cityState[1];

}
}

</script>
</head>
<body>

<h1>Corporate CRM System</h1>
<h2>Enter Customer Data</h2>
<table>

<tr>
<th>Customer Name:</th>
<td><input type="text" name="name"/></td>

</tr>
<tr>

<th>Address:</th>
<td><input type="text" name="address"/></td>

</tr>
<tr>

<th>Zip:</th>
<td><input onblur="getZipData(this.value)"

type="text" name="zip"/></td>
</tr>
<tr>

<th>City:</th>
<td><input id="city" type="text" name="city"/></td>

</tr>
<tr>

<th>State:</th>
<td><input id="state" type="text" name="state"/></td>

</tr>
<tr>

<th></th>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=16

THE GRUBBY DETAILS 17

<td><input type="Submit" value="Add Customer"/></td>
</tr>

</table>
</body>

</html>

Of course, Ajax is all about interactivity; seeing a code listing doesn’t
quite capture the drama of having the fields auto-populate. If you visit
http://www.ajaxian.com/book/ajaxInActionDemo1.html you’ll find
an online version of this code.

2.3 The Grubby Details

Ajax doesn’t seem that hard, does it? If you have much experience
with HTML and JavaScript, you probably already knew how to do 90%
of what we just explained. Despite what some industry figures have
claimed, Ajax really isn’t rocket science. However, it isn’t quite as sim-
ple as we’ve just demonstrated, either. Before we move on, we really
should stop and explain a few more things.

Cross-Browser Issues

The ajaxified web page we just looked at has at least one rather severe
cross-browser limitation. The way it initializes the XMLHttpRequest object
will only function on Mozilla 1.0+ and Safari 1.2+; it does not function
on Internet Explorer. On IE 5.0+, the way to create it is:

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

On earlier versions of Internet Explorer, the library had a different
name, and the code should read:

var xhr = new ActiveXObject("MSXML2.XMLHTTP");

A common idiom for supporting all major browsers fairly easily is to use
a JavaScript try/catch block to attempt to create the object in different
ways:

File 3 function createXHR() {

var xhr;
try {

xhr = new ActiveXObject("Msxml2.XMLHTTP");
} catch (e) {

try {
xhr = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {
xhr = false;

}
}

if (!xhr && typeof XMLHttpRequest != 'undefined') {

Report erratum

http://www.ajaxian.com/book/ajaxInActionDemo1.html
http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen_ajax_2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=17

THE GRUBBY DETAILS 18

xhr = new XMLHttpRequest();
}
return xhr;

}

Fortunately, these days there are a multitude of libraries that encapsu-
late all of this complexity into a simple, single line of code. We’ll discuss
some of these libraries in ??, on page ??.

So, for all you Internet Explorer 5.0+ users, visit http://www.ajaxian.com/book/ajaxInActio
for a version that’s compatible with your browser.

Handling Errors

Recall the processZipData() function:

File 2 function processZipData() {

if (xhr.readyState == 4) {
var data = xhr.responseText;
var cityState = data.split(',');
document.getElementById("city").value = cityState[0];
document.getElementById("state").value = cityState[1];

}
}

This implementation works fairly well—until the server responds with
an error. Because XMLHttpRequest uses the familiar HTTP transport to
make its requests, it uses the same scheme of status codes that web
developers have learned over the ages. For example, a status code of
200 indicates that the request was successfully processed, 404 indi-
cates that the resource could not be found, and so forth.

To make our function a bit more robust, we ought to do something like
this:

File 3 function processZipData() {

if (xhr.readyState == 4) {
if (xhr.status == 200) {

var data = xhr.responseText;
var cityState = data.split(',');
document.getElementById("city").value = cityState[0];
document.getElementById("state").value = cityState[1];
document.getElementById("zipError").innerHTML = "";

} else {
document.getElementById("zipError").innerHTML = "Error";

}
}

}

Note the addition of a new element to the page: zipError. This is an
element with an id= attribute set to zipError. When our XMLHttpRequest

fails, the element will display the zen-like message “Error”.

Report erratum

http://www.ajaxian.com/book/ajaxInActionDemo2.html
http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen_ajax_1.html
http://media.pragprog.com/titles/ajax/code/AjaxInAction/figure_ed_screen_ajax_2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=18

THE GRUBBY DETAILS 19

Synchronous Ajax?

We’ve misled you a little bit. It turns out that you don’t have to use XML-

HttpRequest asynchronously. When you call the open function, if you
pass a third argument of falseXMLHttpRequest will make its request with-
out spawning a background thread—thus allowing you to work with it
in a synchronous fashion, such as:

xhr.open("GET", "/myURL", false);
xhr.send(null);
processZipData();

This seems so much simpler than all of that asynchronous callback
mumbo-jumbo; why not use XMLHttpRequest this way?

It turns out that when you use XMLHttpRequest in this fashion, the
browser’s user interface becomes non-responsive for the duration of
the request. If the request takes a few milliseconds, as some do, that’s
really not a big deal. However, when it comes to networks, one should
never make assumptions about latency; if the request takes a second
or two, the user is sure to notice. If it takes five or ten seconds, the
user is sure to become rather annoyed and will perhaps even terminate
the browser.

In short, you should probably never do synchronous Ajax (err, Synjax).

Network Latency

When utilizing the synchronous version of XMLHttpRequest.open one of
the biggest worries you have is latency. You have to be concerned with latency

the length of time it takes the response to arrive from the server, since
the browser will be blocked and the user sitting idle while they wait.

Less obvious, but just as important, is the effect latency can have
on asynchronous requests. Take, for example, an asynchronous Ajax
request which should result in several form fields being auto-populated.
If the background request takes too long to return, the user might
begin populating the fields by hand, expecting that some kind of error
has occurred. When the results arrive from the server, what should
the page do? Overwrite the user provided values, or drop the server-
returned values? If it has to drop the server values, should it do so
silently or with a warning?

It really doesn’t matter what style of network call you utilize in your
application. Network speed is always an issue on the UI, and it benefits
your users when the code takes possible delays into account.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=19

WRAPPING UP 20

2.4 Wrapping Up

And so, armed with his new Ajax version of the customer screen, Hector
is ready to satisfy his users by giving them the rich interaction they
demanded. There are some ridiculously fancy Ajax websites out there,
to be sure, but what you’ve seen in this chapter forms the foundation
of all Ajaxian techniques: Asynchronous JavaScript requesting data
dynamically from the server, and doing DOM manipulation of the page
to dynamically update it with the new data.

As this book progresses, we’ll build on this foundation to show you
how to create much more advanced effects and functionality, and to
do it more simply with JavaScript helper libraries and sophisticated
toolkits in various programming languages.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=20

Chapter 3

Ajax Explained
As we’ve discussed in previous chapters, Ajax refers to the technique
of using JavaScript (specifically, the XMLHttpRequest object) to request
data asynchronously, then dynamically updating a web page with the
requested data. We demonstrated this technique in the last chapter by
revamping Hector’s CRM application to retrieve the city/state values for
a ZIP code.

In this chapter, we provide a crash course in the basic techniques you’ll
need to master in order to implement Ajax effects of all shapes and sizes
in your own applications. Though we cover the foundational technolo-
gies in this chapter, you will likely leverage frameworks with higher level
abstractions. In future chapters, we discuss how third-party frame-
works can give you complex effects.

In the following sections, we’ll help you build a foundation of JavaScript
understanding which will help you understand the technical portions
of the remainder of this book. Our approach is to assume some pro-
gramming experience on your part. In fact, we’re betting that you’re
already a capable programmer in your language(s) of choice.

Our agenda for the chapter is:

• A Review of Client-side JavaScript

• Manipulating the Web Page
• Sending and Retrieving Data

• Debugging Techniques

A REVIEW OF CLIENT-SIDE JAVASCRIPT 22

3.1 A Review of Client-side JavaScript

Do you hate programming JavaScript? Do you consider JavaScript
code inherently ugly? Do you find any non-trivial JavaScript codebase
to be a maintenance nightmare? You’re certainly not alone. JavaScript
is widely hated and feared by many web developers, especially those
with backgrounds in statically typed languages such as Java and C#.

Why do so many have it in for JavaScript? We believe that JavaScript’s
poor general reputation is not at all due to the syntax or capabilities
of JavaScript itself. In fact, the truth of the matter is that modern
JavaScript is actually a very advanced programming language. It sup-
ports continuations, closures, aspect-oriented programming, on-the-fly
type modification and a host of other features found in languages like
Python, Ruby, and Lisp. We think that its poor reputation stems more
from its historical misuse in early web applications for cramming busi-
ness logic into the view. This chapter, and this book, is about using
JavaScript for its natural purpose: creating a rich user interface.

The Basics of JavaScript

Depending on your background, you may find variables in JavaScript
surprising. Specifically, you don’t need to declare them or define their
type. Instead, you simply reference them, as in:

myVariable = "What am I? Who made me?"

In this example, the variable myVariable is automatically conjured into
existence for us on the spot. This flexible manner of creating variables
is neat, but also a bit confusing. Consider this next example:

Line 1 myVariable = 10
- myOtherVariable = 20
- mySumTotal = myVariable + myOtherVariable
- myVariable = 5
5 myOtherVarable = 10
- mySumTotal = myVariable + myOtherVariable

What do you suppose the value of mySumTotal is at the end of the exam-
ple? If you guessed 15, you’re wrong; it’s actually 25. You see, on line
5, myOtherVariable was misspelled. In a language such as Java or C#,
this would produce some kind of error. In JavaScript, it’s not an error
at all—we’ve simply created a new variable on the fly named myOther-

Varable. Fortunately, JavaScript does consider it an error if you refer-
ence an undefined variable in an expression. If the typo had occured

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=22

A REVIEW OF CLIENT-SIDE JAVASCRIPT 23

JavaScript, booleans, and You

Speaking of booleans, JavaScript can evaluate numbers and
strings as booleans, too; any non-empty string and any non-
zero number evaluate to true.

in line 3 or 6, as in mySumTotal = myVariable + myOtherVarable, an error
would be thrown.

For this reason, we consider it good style to use the optional var keyword
when declaring variables; this makes it explicit whether a variable was
intended to be declared or whether a declaration is a probable typo.
With var, the example looks as follows:

Line 1 var myVariable = 10
- var myOtherVariable = 20
- var mySumTotal = myVariable + myOtherVariable
- myVariable = 5
5 myOtherVarable = 10
- mySumTotal = myVariable + myOtherVariable

JavaScript supports four basic types of values: object, number, string,
and boolean (there are some others, but they aren’t important just
now). Unlike most other languages, JavaScript variable declarations
do not declare the type of data they store. Rather, the type is deter-
mined automatically based both on what has been assigned to the vari-
able and the type of expression in which the variable is used. What’s
more, JavaScript variables change their type automatically as neces-
sary. Consider the following examples:

myVariable = "What am I? Who made me?" // a string
myVariable = 42 // now a number
myVariable = 42 + "The answer" // a string ("42The answer")
myVariable = true // a boolean

Functions

On the surface, functions in JavaScript work much as they do in any
other language. They are declared with the keyword function(), they can
take zero or more parameters, and they can return values:

function addNumbers(one, two) {
return one + two;

}

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=23

A REVIEW OF CLIENT-SIDE JAVASCRIPT 24

Undefined

The undefined value is a first-class type in JavaScript. Most com-
monly, it is the value provided by JavaScript for a variable that
has been declared, but whose value has never been assigned.
Some JavaScript implementations also use it for the value of
variables that have never been declared, though this is less
common, since most JavaScript interpreters allow for in-line
variable declaration.

It is important to note that it isn’t merely a value. Though it has
a string representation ("undefined"), it is actually a first-class
type. This means that the typeof() operator, when applied to a
variable with this value, will return Undefined.

Java/C# developers may find it odd that no return type need be declared;
if a function returns a value, it simply uses the return() keyword at some
point. It is perfectly legal to create functions that branch and return a
value in one path but don’t in another. Variables that are assigned the
result of a non-returning function contain the special JavaScript value
undefined.

Consider this next example snippet:

Line 1 function myFunction(a) {
- return "Hello";
- }
-
5 function myFunction() { // <label="code.js4.function"/>
- return "World";
- }
-
- var myResult = myFunction("aValue"); // <label="code.js4.return"/>

What do you suppose the value of myResult on line is? If you are used
to a language that supports method overloading, you’d probably expect
the value to be Hello. In fact, it’s not. JavaScript does not support
overloading; that is, it doesn’t match function invocations to function
definitions based on both the name and parameters of the function;
just the name.

Therefore, there can only be one function with a given name at run-
time. If two or more functions are defined with the same name, the
version that was last processed by JavaScript is invoked. In our exam-
ple, that turns out to be the one defined on line .

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=24

A REVIEW OF CLIENT-SIDE JAVASCRIPT 25

Because a function’s parameters play no role in defining it, their pre-
sense is entirely optional. In fact, there’s even a way to reference an
invocation’s parameters without declaring them—but we’ll come back
to that in just a bit.

The Function Type

Earlier, we talked about the four types of values in JavaScript (object,
number, string, and boolean) and hinted that more existed. Functions
are in fact a type in JavaScript. In fact, once you define a function using
the traditional syntax we saw earlier, a variable exists that references
the function; the variable takes on the same name as the function name
itself.

Consider this next example:

function myFunction() {
// imagine that this function does something useful

}

alert(typeof myFunction)

If you execute this code in your browser, JavaScript’s built-in alert
function will cause a dialog to appear that displays the type of the
myFunction variable; the contents of the dialog will be "function".

This particular property of JavaScript—having functions as a type—
leads to some pretty interesting behaviors. Consider the following:

function myFunction() { // we've created a variable myFunction
return "Hello"; // of the type "function"

}

var myFunction = 10; // we've now reassigned myFunction to be a number

var myResult = myFunction(); // an error -- we can't invoke a number

Yikes! In many languages, code like this would work just fine; variables
and functions are entirely different entities and their names don’t col-
lide. In JavaScript, because functions are variables, code like this is
nonsense.

In addition to the conventional syntax for defining functions that we’ve
used up to now, there’s another way to define a function:

var a = 10;
var b = 12;

var myFunction = function() {
return a + b;

}

var result = myFunction(); // result is 22;

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=25

A REVIEW OF CLIENT-SIDE JAVASCRIPT 26

In this example, we’ve created a new function named myFunction(). The
cool bit is that the function is able to access the state of its enclosing
block. We can reference the a and b variables from within the function.
This feature is often referred to as a closure, and it’s a very powerful
feature. Normally, values in the enclosing scope are lost when the scope
terminates. A closure retains access to the state of the enclosing block;
when used later, that state is still available to the closure.

JavaScript Events: Binding to the Web Page

Up to now, nothing of what we’ve considered about JavaScript is spe-
cific to web browsers. In fact, many people actually use JavaScript
outside of web browsers. From here on out, however, we will start
to consider properties unique to the JavaScript environment hosted in
modern web browsers.

The first consideration is how web pages interact with JavaScript. If
you’ve ever written JavaScript before, you probably know that most
JavaScript in the web page must be included inside a <script> tag. By
convention, this is typically included in the web page’s <head> section,
as in:
<html>

<head>
<script type="text/javascript">

/* javascript code here */
</script>

</head>
<body>

// the web page contents here
</body>

</html>

Actually, you can include <script> elements anywhere in the web page;
their contents will be executed in top-to-bottom order. It is generally
considered bad form to include them anywhere but in the <head>,
however.

Defining Events

The most common way to launch JavaScript code from a web page is to
use HTML events. These events provide hooks for web pages to execute HTML events

arbitrary JavaScript code when the user interacts in certain ways with
the web page. For example, in the last chapter, you saw an example of
the onblur event registered on an <input> tag:

<input onblur="getZipData(this.value)" type="text" name="zip"/>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=26

A REVIEW OF CLIENT-SIDE JAVASCRIPT 27

JavaScript in a Web Page

We said that "most" JavaScript in a page should be included
in a <script> tag. The exception is that JavaScript can be
embedded in-line as the value of attributes on a tag. Specifi-
cally, instead of referencing JavaScript functions in event han-
dler attributes, you can embed JavaScript directly. There is no
functional difference between:
<div id="myDiv" onclick="clickIt();"/>
<script type="text/javascript">

function clickIt() {
alert("You clicked me!");
alert("Jerk!");

}
</script>

and this:
<div id="myDiv"

onclick="alert('You clicked me!'); alert('Jerk!');"/>

As we explained back then, the onblur event is fired (that is, its con-
tents are executed) when the user moves the cursor from the input
component to some other place on the web page. In this example, the
contents of the event attribute is a function invocation. As we’ve shown,
you can place any arbitrary JavaScript code you like here, but it is a
good idea to limit yourself to function invocations to keep your code a
bit easier to maintain.

There are a large number of events available in a web page. These range
from the so-called classic events defined many years ago in the offi-
cial HTML 4 specification to some additional de facto events that have
emerged in various browsers in more recent years. There are numer-
ous resources over the web for discovering the various different types
of events possible in browsers; our favorite website is QuirksMode.org1.
QuirksMode offers a very detailed discussion of events and browsers
and offers fairly recent compatibility tables for different browser types.

For your convenience, we’ve included a selection of important events
starting on on page ??; it is by no means an exhaustive reference. As
you explore the rest of this book, you’ll see some additional examples.

1http://www.quirksmode.org

Report erratum

http://www.quirksmode.org
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=27

A REVIEW OF CLIENT-SIDE JAVASCRIPT 28

Defining Events Outside of HTML

We have so far shown that JavaScript event handler functions
can be wired up to node events through HTML attributes. This
is fairly common practice, though there is a class of program-
mer (we’ll call them “purists”) who frown upon this usage. Even
though JavaScript is embedded within the web page itself,
many developers like to consider the JavaScript and the HTML
as separate artifacts. Specifically, web designers will want to
work on the HTML and styles, while programmers will want to
focus on the scripting. Directly embedding the JavaScript into
the HTML is too much coupling.

The main alternative is to use JavaScript object properties.
Once you have retrieved a reference to a node of an HTML
document, it exposes its events as a series of properties. Func-
tions can be directly attached to those properties. The follow-
ing

<div id="mydiv" onclick="myfunc()"/>

is functionally equivalent to

<div id="mydiv"/>
<script type="text/javascript">

document.getElementById('mydiv').onclick = myfunc;
</script>

The value to this technique is that the designer can worry
about HTML, and only HTML. Programmers can hook events
transparently. However, the downside is that the scripts that
references those events must be parsed after the HTML they
reference. Otherwise, the element can not be found by
getElementById(), and the result is that no event is actually
handled. There is a relatively new library out called Behav-
ior (http://bennolan.com/behaviour/) that helps program-
mers by allowing you to assign behaviors to CSS classes, adding
an extra layer of indirection.

Modern browsers support a new kind of binding. The new
attachEventListener() function takes the name of the event to
handle (minus the “on” part), the function pointer, and a
boolean value called capture mode. The beauty of the new
attachEventListener() method is that it can wire up multiple han-
dlers to the same event, creating a chain of handlers. Using
the direct property access, any subsequent assignments to
a property just override the last assignment. Before using
attachEventListener(), make sure your browser is supported. At
last look, IE5+ for Windows, Firefox 1.0+ and Safari 1.2+ were all
supported, but not IE for the Mac.

Report erratum

http://bennolan.com/behaviour/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=28

MANIPULATING THE WEB PAGE 29

3.2 Manipulating the Web Page

So far, we’ve covered the basics of JavaScript and discussed how to
get a web page to call JavaScript functions in response to user events.
This covers a third of what you need to know to create an Ajax applica-
tion. The next major piece is knowing how to actually change web page
content from JavaScript.

XML Under the Covers

Modern browsers store a copy of every web page you visit in memory
as an XML document, regardless of whether you’re visiting a modern
XHTML site or an old crufty HTML 2.0-era site. (When a web page
isn’t well-formed XML, the browser follows an internal algorithm for
promoting the HTML to XML.) This in-memory XML representation of
the web page can be accessed by JavaScript code to programatically
determine all kinds of information about the page.

More importantly, the XML document can be modified, and such modi-
fications are instantly reflected by the browser’s rendering of that page.
Thus, to achieve animation, dynamic modification, and other effects,
all one has to do is modify the web page’s underlying XML document.
We’ll now consider how to go about making such modifications.

Modifying the XML: The DOM API

The major browsers all implement the same API for exposing the XML
document to JavaScript code; it’s known as the DOM API. Short for
Document Object Model, DOM represents XML elements, attributes,
and other components as objects in memory. The DOM API models an
XML document in memory as a Document object.

You can obtain a reference to the Document object that represents the
current web page by simply referencing a variable named document.
From this instance, you can retrieve references to individual XML ele-
ments in the web page, which are modeled as Element objects. You can
also modify the attributes of an XML element via an Element object.

It’s time for an example. This next code excerpt contains a simple web
page that will modify itself when its button is clicked:

<html>
<head>

<script type="text/javascript">
function modifyPage() {

var htmlElement = document.documentElement

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=29

MANIPULATING THE WEB PAGE 30

var children = htmlElement.childNodes
var bodyElement
for (i = 0; i < children.length; i++) {

if (children[i].nodeName == "BODY") {
bodyElement = children[i]
break;

}
}
children = bodyElement.childNodes
var divElement
for (i = 0; i < children.length; i++) {

if (children[i].nodeName == "DIV") {
divElement = children[i]
break;

}
}
divElement.replaceChild(document.createTextNode("Goodbye, world!"),

divElement.childNodes[0])
}

</script>
</head>
<body>

<div>Hello, world.</div>
<button onclick="modifyPage()">Click Me</button>

</body>
</html>

As you can see, the DOM API is a straight-forward pleasure to use.
Actually, no, it’s not. The DOM API is actually quite obtuse. If you’ve
never used the DOM API before, you might expect something that mod-
els XML in an intuitive and easy fashion. For example, you might expect
to be able to, say, get a reference to the root element in your web page,
the <html> element, and from there say something like:

htmlElement.getElement("BODY");

No such luck, my friend. You see, the DOM API models all of the dif-
ferent types of content in an XML file (elements, attributes, text, com-
ments, and processing instructions) as nodes, and inexplicably, the API
doesn’t provide a way for you to retrieve just the element children from
a parent element. This means navigating through the web page as XML
is excruciating, as you can see for yourself.

Further, matters get a touch worse. Earlier we explained that browsers
canonicalize all web pages—that is, convert all HTML to XML in a stan-
dard way. As part of this process, certain elements are added. For
example, consider the case of an HTML table:

<table>
<tr>

<td>A table</td>
</tr>

</table>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=30

MANIPULATING THE WEB PAGE 31

When the browser converts this HTML to XML, it automatically adds a
<tbody> element as a child of the <table> element. Unexpected things
happen to your HTML when the browser parses it; for this reason, you
should steer clear of literally walking your page using the DOM, as
things may not be where you expect them.

DOM Shortcuts

Fortunately, the DOM API includes a few shortcuts. Document objects
have a method getElementsByTagName() that could have come in handy
in our example. Consider this alternate JavaScript function:

function modifyPage() {
var divElements = document.getElementsByTagName("DIV");
var divElement = divElements[0];
divElement.replaceChild(document.createTextNode("Goodbye, world!"),

divElement.childNodes[0])
}

That’s much more palatable. Sure, but we still have the brittle ordering
problem. We’re assuming that the <div> element that we’re interested
in will always occur in the same location relative to other <div> ele-
ments. In our trivial example, this is a safe assumption, but in the real
world, this won’t work at all.

What we really need is a way to easily reference a specific element in the
web page. Fortunately, there is just such an easy and convenient mech-
anism. If you give an element an id= attribute, you can then retrieve
that element using a special function on the Document object called
getElementById(). Consider this further revised version of the earlier
example:

Line 1 <html>
- <head>
- <script type="text/javascript">
- function modifyPage() {
5 var divElement = document.getElementById("toReplace")
- divElement.replaceChild(document.createTextNode("Goodbye, world!"),
- divElement.childNodes[0])
- }
- </script>

10 </head>
- <body>
- <div id="toReplace">Hello, world.</div>
- <button onclick="modifyPage()">Click Me</button>
- </body>

15 </html>

Hey, that’s not looking too bad. Line 5 seems a fairly clean way to get
the <div> we’re looking for. Now, if only we could clean up the next two
lines; they still seems a bit complex. And actually, we can.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=31

MANIPULATING THE WEB PAGE 32

The official DOM API requires that developers manually manipulate all
of an element’s child nodes, and add new ones, in order to change their
contents. Some time ago, Internet Explorer introduced an alternative
mechanism for changing the contents of an element—one that is dra-
matically easier to use. In recent years, Mozilla and Safari have both
implemented support for this feature. Take a look at the revised modi-

fyPage() function:

function modifyPage() {
var divElement = document.getElementById("toReplace")
divElement.innerHTML = "Goodbye, world!"

}

Ahh, finally—something’s that easy to write! The de facto standard
innerHTML property allows you to change the contents of an element by
passing it a string that it will parse as XML and use to replace the
current contents of the element. Nice and easy.

While the prose of these last few sections has been biased against the
more traditional DOM API methods, you can choose for yourself which
mechanism seems most natural to you. Some folks prefer dealing with
nodes directly and actually enjoy writing code like some of the previous
iterations of our example you saw. In our experience, however, most
people prefer these shortcut mechanisms for retrieving elements and
modifying their contents.

Attributes

So far we’ve talked about dealing with XML elements using JavaScript.
What about attributes? Just as with elements, changes to attributes
take effect immediately in the browser’s view of a web page, so manip-
ulating them can be pretty handy.

The DOM API presents a generic mechanism for manipulating attributes.
Once you have a reference to an element, you can use the getAttribute()
and setAttribute() functions to access and change attribute values, such
as in this example:

var div = document.getElementById("someDiv")
div.setAttribute("style", "background: red") // make the div red

Surprisingly, this is fairly easy stuff. After dealing with how the DOM
API treats elements, you might have expected to have to navigate through
some obtuse list of attributes in order to change them. In fact, changing
attribute values can be even easier than this.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=32

MANIPULATING THE WEB PAGE 33

Inner and Outer

The innerHTML() property that we’ve just demonstrated is very
useful, but it has a rather storied history. It was introduced as
a proprietary addition to Internet Explorer; other browsers have
decided to support it as it has proved fairly useful, for obvious
reasons. There are, though, two related properties: innerText(),
and outerHTML().

innerText() accomplishes almost the same thing as innerHTML().
The internal representation of the referenced node is replaced
with the text passed into the method. However, unlike inner-
HTML(), the new text is not parsed as XML. It is, rather, rendered
directly as a textual child node of the containing node. This
is actually a lot more performant than parsing the text as XML,
and is preferable for just adding data rather than new elements
to the tree.

outerHTML() is a different beast. innerHTML() detaches any and
all existing child nodes of the target node, parses the new text,
and adds the new nodes as children of the target (essentially,
replacing everything between the opening and closing tags of
the target node). outerHTML(), on the other hand, replaces the
target node itself. All children of the existing node are lost as a
byproduct of destroying the target node. The node is replaced
with whatever new nodes are created by parsing the input to
the method.

This latter approach is actually much more useful when writing
web pages that are dumb shells that aggregate components.
The server-side code which renders the component can return
the full entity (top-level node and its children) which can be
placed anywhere on the page. Using innerHTML(), the contain-
ing page has to have full control over the layout of the com-
ponents, with specifically designed container nodes to use as
targets. The server endpoints that render the components only
output the contents of a node; if the containing page puts
them in the wrong kind of node, or at the root of the docu-
ment, the rendering will most likely be wrong.

Using outerHTML(), however, the server target renders the con-
taining node AND its contents, thus ensuring that no matter
where the containing page puts the results, it will be fully con-
tained as designed. A real component, not just component
contents. This sounds like an excellent thing, and it is. Except it
is still a proprietary IE addition, and Firefox, for example, has not
yet adopted it, and has no public plans to do so.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=33

RETRIEVING DATA 34

Cast your mind back to the CRM application we enhanced for Hector
in the last chapter. Specifically, let’s review a particular JavaScript
excerpt that powered that application:

Line 1 function processZipData() {
- if (xhr.readyState == 4) {
- var data = xhr.responseText;
- var cityState = data.split(',');
5 document.getElementById("city").value = cityState[0];
- document.getElementById("state").value = cityState[1];
- }
- }

Take a look at lines 5 and 6. What’s that .value bit? What that’s actually
doing is changing the value attribute for the city input element. Given
what we just talked about a few paragraphs ago, we ought to accom-
plish that using the setAttribute() function, as in setAttribute("value", "city").
What’s that value property all about?

It turns out that the DOM API also defines a standard for mapping
specific attributes from the HTML grammar directly into the a special
extended version of the DOM API that browsers supply. Using these
special extensions, you can set an attribute’s new value by modifying a
property of the element itself. Thus, when getElementByID("city") returns
an input element, we can change its value attribute just by setting the
value property on the object. Nifty!

3.3 Retrieving Data

We’ve talked about JavaScript, we’ve talked about how to manipulate
the web page with the DOM API, so we’re just missing one key ele-
ment to explain Ajax: retrieving data. The heart of data retrieval is
the XMLHttpRequest object (XHR for short) that we introduced in the last
chapter. In this section, we’ll discuss more details about XHR.

XMLHttpRequest

In the previous chapter, we saw the basics on how to create an instance
of an XHR and use it to retrieve data. Let’s review that again here,
briefly, in the context of a different example. The following code listing
shows how a simple web page can retrieve a message from a server and
display it.

Line 1 <html>
- <head>
- <script type="text/javascript">
- var xhr;

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=34

RETRIEVING DATA 35

5
- function modifyPage() {
- try {
- xhr = new ActiveXObject("Msxml2.XMLHTTP");
- } catch (e) {

10 try {
- xhr = new ActiveXObject("Microsoft.XMLHTTP");
- } catch (E) {
- xhr = false;
- }

15 }
-
- if (!xhr && typeof XMLHttpRequest != 'undefined') {
- xhr = new XMLHttpRequest();
- }

20
- xhr.open("GET", "/message");
- xhr.onreadystatechange=function() {
- if (xhr.readyState != 4) return;
-

25 document.getElementById("message").innerHTML = xhr.responseText;
- }
- xhr.send(null);
- }
- </script>

30 </head>
- <body>
- <div id="message"></div>
- <button onclick="modifyPage()">Click Me</button>
- </body>

35 </html>

This HTML will render a very simple web page that presents a button to
the user. Once clicked, the page will display the results of a query to the
server in the page above the button. Line 21 shows the requested URL
as "/message"; you could implement this URL using any web-enabled
language. A Java Servlet implementation would look something like
this:
import javax.servlet.http.*;
import javax.servlet.ServletException;
import java.io.IOException;
import java.util.Date;

public class MessageServlet extends HttpServlet {
protected void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.getWriter().println("Hello world; the current time is " + new Date());
}

}

But really, you could also implement the message URL as a flat file
containing plain text or an HTML snippet; it really doesn’t matter. XHR
requests the URL just like the browser would, and returns the results
just as though you entered the URL in the browser URL field.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=35

SUMMARY 36

XHR in Detail

Let’s talk about some of the other features of XHR that we haven’t cov-
ered thus far.

States

The onreadystatechange property is a key feature of XHR. It lets you
register an asynchronous callback handler that will be invoked as the
state of XHR changes during a request/response communication with
a server. In the last chapter, we looked at the five possible states of the
readyState property. Generally speaking, the important state is 4 (Com-
pleted). The other four states are all different shades of "incomplete".

Headers

In addition to exposing somewhat granular information about its cur-
rent state, XHR also lets you modify or add HTTP headers in the request
and view headers in the response. This is accomplished using the setRe-

questHeader(), getResponseHeader(), and getAllResponseHeaders() func-
tions. In this example, we spoof the browser used to send the XHR:

xhr.setRequestHeader("User-Agent", "My Custom Browser");

Response Data

In the examples, we’ve used the responseText() property to retrieve the
response body from the server. There’s another property, responseXML(),
that returns the response from the server as a DOM instance. This can
be useful if you want to send structured data back to the web page from
the server; you can use the DOM API to navigate through the data as
XML and update the web page as appropriate based on that data.

3.4 Summary

This chapter dives into the underpinnings of Ajax. You’ve seen the
JavaScript language and DOM model up close and personal. Though
it is certainly possible to write applications using only the constructs
you’ve seen here, programmers generally tend to appreciate tools that
give them more leverage. After we tackle implementing Google Maps,
the next several chapters will look at the frameworks that have sprouted

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=36

SUMMARY 37

lately to make the gory details of DOM manipulation, event binding and
node traversal disappear.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=37

Chapter 4

Creating Google Maps
For many of us, Google Maps (http://maps.google.com) ignited the
Ajax revolution. While ajaxian techniques had been creeping into main-
stream websites long before Google Maps, nothing in recent memory
presented commodity browsers with such a visually impressive experi-
ence. Google Maps showed the world that a wide world of potential lay
hidden in the technologies we thought we understood so well.

The purpose of this chapter is to lay bare the techniques that Google
used to wow us all with Google Maps. What we’ll discover here is fas-
cinating and important; it also might be more than you want to bite off
right now. If so, don’t worry about skipping ahead to the rest of the
book and coming back here later; we won’t mind.

4.1 Rocket Scientists?

Shortly after Google Maps launched, entrenched commercial interests
who relied upon the staidness of standard HTML-based web interfaces
to make money were quick to claim that mainstream HTML developers
need not attempt to create web interfaces like Google Maps. The CEO
of Macromedia, maker of the popular Flash browser plug-in, stated
in at least one interview that such non-Flash web interfaces required
the skills of “rocket scientists.” (Ironically, when Macromedia finally
produced a clone of Google Maps in Flash four or five months later, it
failed to function on the two Mac laptops we used to try it out—actually
locking up the browser. Google Maps works just fine on both machines.
We’re actually not anti-Flash; we just found it ironic, that’s all.)

Such statements have added to the general impression many develop-
ers have that creating something like Google Maps is just, well, hard.

http://maps.google.com

YOUR OWN GOOGLE MAPS 39

In fact, some developers have even felt a little fear and intimidation—
fear that someday soon, they’ll be asked to create something like Google
Maps!

Certainly many of us who have been writing HTML for years might like
to believe that it took a team of rocket scientists to produce a litany of
innovations supporting the technologies behind the Google Maps inter-
face, if nothing else to provide an excuse as to why we haven’t been
writing apps like that all this time. However, we believe all this busi-
ness about rocket science and intimidation is a bit exaggerated.

In fact, after spending ten minutes examining Google Maps a bit deeper,
we realized that, far from being the product of rocket scientists, the
Google Maps interface is actually fairly straight-forward to implement.
Perhaps, some might say, easy. Not “same-amount-of-effort-as-a-PHP-
web-form” easy, but we were able to implement something a great deal
like it in about two hours. Not just any two hours mind you; two hours
of sitting in a crowded convention center during a technical conference
whilst being interrupted by our friends every few minutes.

So while there’s no doubt Google has recently hired some of the most
visible computer scientists—perhaps the closest examples of “rocket
scientist”-like brainpower in our industry, like Adam Bosworth (famed
Microsoft innovator), Joshua Bloch (famed Java innovator at Sun Micro-
systems), and Vint Cerf (famed Internet innovator)—we’re pretty sure
they weren’t involved in the creation of the Google Maps interface. The
reality is if we can create an interface like Google Maps in a couple of
hours, imagine what a few capable web developers could do in a few
weeks or a month.

4.2 Your Own Google Maps

In fact, we’ll spare you from putting your imagination to the test. Let
us show you first-hand how you can create your own version of Google
Maps. In the next few pages, we’ll walk you through the creation of
“Ajaxian Maps,” our own derivative of the big GM. We’ll start out by
explaining how the Google Maps user interface works.

Google Maps Deconstructed

We’re going to break down the elements of Google Maps one by one.
Let’s start out with the most dramatic feature: the big scrolling map,
the heart of the application.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=39

YOUR OWN GOOGLE MAPS 40

The Real Rocket Science

Okay, okay we admit—it isn’t easy to create something like
Google Maps. The geocoding features behind the scenes that
map addresses to locations on a map, that normalize a maps
features against satellite imagery to such an amazing degree
that they can be overlaid on top of each other and look rela-
tively accurate, and the plotting of routes from Point A to Point
B is all incredibly non-trivial.

However, we maintain that it’s not the geocoding features
of Google Maps that is particularly innovative or impressive.
MapQuest and other software packages have been doing this
kind of work for years. No, what’s impressive about Google
Maps is the web interface on top of the geocoding engine.
And it’s that interface that we find easy, not the geocoding
under the covers.

As our good friend Glenn Vanderburg says, though: "Techni-
cally it’s easy, but the conception Fof this kind of interface is
the really amazing part, just having the idea and then realizing
that it could be done. So many things are simple once you’ve
seen that they’re possible." The take home lesson is that Google
Maps shows that once you have conceived of your next great
UI idea, you can take comfort in knowing that the technical
solution to implementing it might not be so daunting.

The Map

As you know, the map works by allowing you to interactively move the
map by dragging the map itself using the mouse. We’ve seen mouse
dragging in browsers for years, but the impressive bit is that the scrolling
map is massive in size, can have the zoom level and so forth. How do
they do that?

Of course, the browser could never fit such a large map in memory
at once. For example, a street-level map of the entire world would
probably be about a million pixels square. How much memory would
it take to display that map? For the sake of conversation, let’s assume
that the map is displayed with just 256 colors, meaning each pixel
would consume just one byte of memory per pixel. Such a map would
require 1,000,000,000,000 bytes of memory, or roughly one thousand
gigabytes of RAM. So, simply displaying an element just isn’t

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=40

YOUR OWN GOOGLE MAPS 41

Figure 4.1: Google Maps

going to work.

What the Googlers do to work around the paltry amount of memory our
desktop PCs have is split up the map into various tiles. These tiles are
laid out contigously to form one cohesive image. An example of these
tiles is shown in Figure 4.2, on the next page. While the size of these
tiles has changed, the current size is 250 pixels square.

The tiles themselves are all laid out within a single HTML div element,
and this div element is contained within another div; we’ll call these
two divs the inner and outer divs, respectively.

We mentioned just a moment ago that the browser couldn’t fit the entire
map image in memory. Of course, dividing a single map into an arbi-
trary number of tiles and then displaying all those tiles at once would
consume an equal amount of memory as the entire image. To compen-
sate for memory limitations, Google Maps virtualizes the grid of tiles

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=41

YOUR OWN GOOGLE MAPS 42

More Than A Million Pixels

We say in "The Map" section that a street-level map of the world
would be about a million square pixels. Actually, that number’s
a wild underestimate. At Google’s highest level of magnifica-
tion, a square mile consumes about 7,700,000 pixels. The Earth
is estimated to contain 200,000,000 square miles, but only 30%
of that is land, so let’s reduce the number to 60,000,000 square
miles.

Multiplying the number of pixels by the number of square miles
in the Earth produces the mind boggling number of 462 million
million pixels, which at 16.7 million colors (the color depth of
any modern home computer) would consume at least three
times that amount of memory in bytes. Of course, most image
viewing programs have some sort of paged memory subsystem
that views a portion of the image at any one time, but you get
the idea...

Figure 4.2: Google Maps Tiles

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=42

YOUR OWN GOOGLE MAPS 43

in memory and only displays the set of tiles that the user can see, in
addition to a few additional tiles outside of the viewing area to keep the
scrolling smooth.

If this whole grid virtualization mish-mash sounds a little complex,
don’t worry, it’s fairly straight-forward, though it is the most compli-
cated bit of the UI.

Zoom Level

Another key feature of Google Maps is the ability to zoom in and out,
enlarging or reducing the size of the map, letting you get a view of the
entire world at one moment, and a view of your street the next. This is
actually the simplest of the features to implement. Changing the zoom
level just changes the size of the tile grid in memory as well as the URLs
of the tile images that are requested.

For example, the URL to one of the tiles in the screen shot is http://mt.google.com/mt?v=w2.
By changing the value of the last parameter, "zoom=3", to another
value, such as "zoom=1", you can retrieve a tile at a different zoom
level. In practice, it’s not quite that simple because the grid coordi-
nates change rather a great deal with each zoom level and they often
become invalid.

How do they get the zoom level to constantly hover over the map in
a constant position? The zoom level widget is an image embedded in
the outer div, and makes use of transparency to blend in with the map
image.

Push Pins and Dialogs

Another neat-o feature are the push pins and dialogs that appear after
a search. Figure 4.3, on the following page shows a screenshot with
these elements present. These are especially cool because they both
include these rounded edges and shadows that make them blend in
with the background map in a sophisticated fashion.

We said the zoom level was the easiest feature, and frankly, we were
probably wrong. This is ridiculously easy. The push pins and dialogs
are simply a PNG image. The PNG image format is supported by the
major browsers and supports a nice feature called alpha transparency. alpha transparency

Alpha transparency allows for more than just the simple transparency
that GIF images support; it allows a pixel to be one of 254 different

Report erratum

http://mt.google.com/mt?v=w2.5&n=404&x=4825&y=6150&zoom=3
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=43

YOUR OWN GOOGLE MAPS 44

Figure 4.3: The Google Maps Push Pin and Dialog

values in-between fully transparent and fully opaque, and its this gra-
dient transparency support that allows the push pins and dialog to use
a shadow that blends in with the map.

Showing these features is simply a matter of positioning images in the
inner div at an absolute position.

Feature Review

There are other features, of course. But we’ll stick to the set of features
we’ve enumerated; we think these represent the vast majority of the
“ooh, ahh” factor. In review, they were:

• The scrolling map. This is implemented as an outer div containing
an inner div. Mouse listeners allow the inner div to be moved
within the confines of the outer div. Tiles are displayed as img
elements inside the inner div, but only those tiles necessary to
display the viewing area and a buffer area around it are present
in the inner div.

• The zoom level. This is an image embedded in the outer div.
When clicked, it changes size of the grid representing the tiles,

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=44

CREATING AJAXIAN MAPS 45

and changes the URL used to request the tiles.

• The push pins and dialogs. These are PNG images with alpha
transparency that are placed in absolute positions within the inner
div.

Now that we’ve deconstructed Google Maps a bit, let’s set about imple-
menting it.

4.3 Creating Ajaxian Maps

Because Ajaxian Maps won’t bother with all of that geocoding mumbo
jumbo, all of our heavy lifting will be in JavaScript. However, we will
use Java to provide some server features and a few image manipu-
lation tasks. While all of the code for Ajaxian Maps will be included
in this chapter, you can also download the code from our website at
http://www.ajaxian.com/pragajax/ajaxianmaps/.

IE 6, Firefox 1.x, and Safari 2.x Only

We’ve tested this version of Ajaxian Maps in the three major browsers,
but haven’t bothered with older versions and more obscure browsers
(sorry, Opera users). It should work on older platforms, but without
testing, we can’t be sure we’ve caught everything.

Step 1: Create a Map

The first step in displaying a map is, err, creating it. While we could
simply steal the wonderful map that Google Maps uses, Google might
not appreciate that. So, we’ll go ahead and use a map that is explic-
itly open source. The Batik project (http://xml.apache.org/batik),
an open-source Java-based SVG renderer, comes with an SVG map of
Spain. We’ll go ahead and use that.

Because most browsers don’t provide native support for SVG, we’ll need
to convert the map to a bitmap-based format. Fortunately, Batik can
do that for us. One of the nice things about SVG is that it can scale
to arbitrary sizes, so we could conceivably create a huge image for our
map. However, creating truly huge images is a little tricky, because due
to memory limitations, we’d have to render portions of the SVG image
and generate our tiles over the portions and have some sort of scheme
for unifying everything together. To keep this chapter simple, we’ll just
go ahead and limit our map to 2,000 pixels in width and 1,400 pixels

Report erratum

http://xml.apache.org/batik
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=45

CREATING AJAXIAN MAPS 46

in height. In order to implement zooming, we’ll also generate a smaller
image that represents a view of map in a zoomed out mode.

The following code excerpt shows how to use Batik to convert the map
of Spain into both a 2000x1400 pixel JPG file and a 1500x1050 pixel
JPG file:

File 25 package com.ajaxian.amaps;

import org.apache.batik.apps.rasterizer.DestinationType;
import org.apache.batik.apps.rasterizer.SVGConverter;

import java.io.File;

public class SVGSlicer {
private static final String BASE_DIR = "resources/";

public static void main(String[] args) throws Exception {
SVGConverter converter = new SVGConverter();

// width in pixels; height auto-calculated
converter.setWidth(2000);
converter.setSources(new String[] { BASE_DIR + "svg/mapSpain.svg" });
converter.setDst(new File(BASE_DIR + "tiles/mapSpain.jpg"));
converter.setDestinationType(DestinationType.JPEG);
converter.execute();

converter.setWidth(1500);
converter.setDst(new File(BASE_DIR + "tiles/mapSpain-smaller.jpg"));
converter.execute();

}
}

To compile the code, you’ll need to put the Batik JARs in your class-
path, and place the source code in the following directory hiearchy:
com/ajaxian/amaps. Figure 4.4, on the next page shows what either
map JPG file should look like. You can also replace the value of the
BASE_DIR variable with whatever is most convenient for you.

Step 2: Create the Tiles

Now that we have a map at two different zoom levels, we need to slice
it up into tiles. This is pretty easy with the nice image manipulation
libraries available in many programming languages. We’ll demonstrate
how to do that with Java here:

File 24 package com.ajaxian.amaps;

import org.apache.batik.apps.rasterizer.DestinationType;
import org.apache.batik.apps.rasterizer.SVGConverter;

import javax.imageio.ImageIO;
import java.io.File;
import java.awt.*;
import java.awt.image.BufferedImage;

public class ImageTiler {
private static final String BASE_DIR = "resources/";
private static final int TILE_WIDTH = 100;
private static final int TILE_HEIGHT = 100;

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/src/com/ajaxian/amaps/SVGSlicer.java
http://media.pragprog.com/titles/ajax/code/GoogleMaps/src/com/ajaxian/amaps/ImageTiler.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=46

CREATING AJAXIAN MAPS 47

Figure 4.4: Batik’s SVG Spain Map

public static void main(String[] args) throws Exception {
// create the tiles
String[][] sources = { { "tiles/mapSpain.jpg", "0" },

{"tiles/mapSpain-smaller.jpg", "1"} };
for (int i = 0; i < sources.length; i++) {

String[] source = sources[i];
BufferedImage bi = ImageIO.read(new File(BASE_DIR + source[0]));
int columns = bi.getWidth() / TILE_WIDTH;
int rows = bi.getHeight() / TILE_HEIGHT;
for (int x = 0; x < columns; x++) {

for (int y = 0; y < rows; y++) {
BufferedImage img = new BufferedImage(TILE_WIDTH, TILE_HEIGHT,

bi.getType());
Graphics2D newGraphics = (Graphics2D) img.getGraphics();
newGraphics.drawImage(bi, 0, 0, TILE_WIDTH, TILE_HEIGHT,

TILE_WIDTH * x, TILE_HEIGHT * y,
TILE_WIDTH * x + TILE_WIDTH,
TILE_HEIGHT * y + TILE_HEIGHT,
null);

ImageIO.write(img, "JPG", new File(BASE_DIR + "tiles/" +
"x" + x + "y" + y + "z" + source[1] + ".jpg"));

}
}

}
}

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=47

CREATING AJAXIAN MAPS 48

}

Note that to make things interesting, we made our tile size a bit smaller
than Google maps: 100 pixels square. We chose x0y0z0.jpg as the nam-
ing convention for the tiles, where the zeros are replaced with the x
and y grid coordinates (0-based) and the zoom level (0 or 1; 0 is for the
bigger of the two maps).

Step 3: Creating the Inner and Outer Divs

Now that we have the image tiles, we can start building our map UI.
We’ll start out with a simple web page, shown here:

File 26 <html>

<head>
<title>Ajaxian Maps</title>
<style type="text/css">

h1 {
font: 20pt sans-serif;

}
#outerDiv {

height: 600px;
width: 800px;
border: 1px solid black;
position: relative;
overflow: hidden;

}
</style>

</head>
<body>

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv"> <!-- <label id="step3.1.outer.div"/> -->
</div>

</body>
</html>

A screenshot of this page is shown in Figure 4.5, on the following page.
Pretty simple so far. Let’s get to the good stuff. The div on will become
what we’ve called the outer div. Let’s start out by giving it an inner div
with some simple content.

File 27 <html>

<head>
<title>Ajaxian Maps</title>
<style type="text/css">

h1 {
font: 20pt sans-serif;

}
#outerDiv {

height: 600px;
width: 800px;
border: 1px solid black;
position: relative;

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step3unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step3unhbox voidb@x kern z@ char `discretionary {-}{}{}2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=48

CREATING AJAXIAN MAPS 49

Figure 4.5: Humble Beginnings

overflow: hidden;
}

#innerDiv {
position: relative;
left: 0px;
top: 0px;

}
</style>

</head>
<body>

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div id="innerDiv">
The rain in Spain falls mainly in the plains.

</div>
</div>

</body>
</html>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=49

CREATING AJAXIAN MAPS 50

Now we need to make the inner div large enough to contain all of the
image tiles. We could just size a style on the inner div to make it some
arbitrary size, as in <div style="width: 2000px; height: 1400px">, but
we’ll do this via JavaScript. Why? Well, because we’ll implement the
ability to change zoom levels a little later, we know we’ll have to change
the size of the inner div dynamically anyway, we might as well start out
that way. We’ll use an onload JavaScript handler to initialize the size of
the inner div once we load the page. Check out the code:

File 28 <html>

<head>
<title>Ajaxian Maps</title>
<style type="text/css">

h1 {
font: 20pt sans-serif;

}
#outerDiv {

height: 600px;
width: 800px;
border: 1px solid black;
position: relative;
overflow: hidden;

}

#innerDiv {
position: relative;
left: 0px;
top: 0px;

}
</style>
<script type="text/javascript">

function init() {
setInnerDivSize('2000px', '1400px')

}

function setInnerDivSize(width, height) {
var innerDiv = document.getElementById("innerDiv")
innerDiv.style.width = width
innerDiv.style.height = height

}
</script>

</head>
<body onload="init()">

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div id="innerDiv">
The rain in Spain falls mainly in the plains.

</div>
</div>

</body>
</html>

Okay, now we’ve got an inner div big enough to display the tiles for the
largest of our two maps. Now we need to add the dragging functionality.

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step3unhbox voidb@x kern z@ char `discretionary {-}{}{}3.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=50

CREATING AJAXIAN MAPS 51

Step 4: Dragging the Map

We’ll implement dragging as a series of three different mouse event lis-
teners. When the user presses the mouse button down in the map area,
we’ll use a listener to indicate that a drag operation has started. Now,
if the user moves the mouse, we’ll use a listener to move the inner div
along with the user’s mouse movements to create the dragging effect.
Finally, we’ll use a listener to turn off the dragging operation when the
mouse button is released. The following code demonstrates how we
implemented the listeners:

File 29 // used to control moving the map div

var dragging = false;
var top;
var left;
var dragStartTop;
var dragStartLeft;

function init() {
// make inner div big enough to display the map
setInnerDivSize('2000px', '1400px');
// wire up the mouse listeners to do dragging
var outerDiv = document.getElementById("outerDiv");
outerDiv.onmousedown = startMove;
outerDiv.onmousemove = processMove;
outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE
outerDiv.ondragstart = function() { return false; }

}

function startMove(event) {
// necessary for IE
if (!event) event = window.event;

dragStartLeft = event.clientX;
dragStartTop = event.clientY;
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);
left = stripPx(innerDiv.style.left);

dragging = true;
return false;

}

function processMove(event) {
if (!event) event = window.event; // for IE
var innerDiv = document.getElementById("innerDiv");
if (dragging) {

innerDiv.style.top = parseFloat(top) + (event.clientY - dragStartTop);
innerDiv.style.left = parseFloat(left) + (event.clientX - dragStartLeft);

}
}

function stopMove() {
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.cursor = "";
dragging = false;

}

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step4.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=51

CREATING AJAXIAN MAPS 52

function stripPx(value) {
if (value == "") return 0;
return parseFloat(value.substring(0, value.length - 2));

}

If you run the code at this point you’ll now be able to drag that inner
<div> around.

Step 5: Displaying the Map Tiles

The next step requires us to populate our inner div with the map tiles.
Our approach to this will be fairly simple. The scrolling map effect
is achieved by moving an inner div inside of an outer div; therefore,
the tiles we need to display are calculated by determining the current
position of the inner div relative to the outer div and then working out
which tiles are visible in the portion of the inner div that are visible.
We’ll then add those tiles to the inner div.

It turns out implementing this behavior is not terribly difficult. We’ll
create a function checkTiles() to do all this, and call it from within the
processMove() function. processMove() is called when the user drags
the map, so by calling it from within, we’ll be able to load our tiles as
the map moves around. The following code excerpt shows how we’ve
added these elements to our JavaScript code; for now, checkTiles() is
just stubbed out with comments:

File 33 function processMove(event) {

if (!event) event = window.event; // for IE
var innerDiv = document.getElementById("innerDiv");
if (dragging) {

innerDiv.style.top = parseFloat(top) + (event.clientY - dragStartTop);
innerDiv.style.left = parseFloat(left) + (event.clientX - dragStartLeft);

}

checkTiles();
}

function checkTiles() {
// check which tiles should be visible in the inner div

// add each tile to the inner div, checking first to see
// if it has already been added

}

Now, let’s implement our stubbed-out checkTiles() function.

Calculating the Visible Tiles

Calculating the set of tiles that the user can see in the inner <div> is
fairly straightforward. To understand how this works, it will help to

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=52

CREATING AJAXIAN MAPS 53

Figure 4.6: The Tile Grid

visualize the inner div as a grid where each grid cell is a placeholder of
the tiles that we’ll load. Figure 4.6 illustrates this concept.

Because we can’t load all the tiles in the grid up-front, we’ll need to
calculate which of these grid cells are visible and load the tiles needed
to fit into these cells. As Figure 4.6 shows, this is accomplished by
calculating which grid cells are visible within the viewport created by
the size of the outer div. In the figure, we see that nine cells are visible
across three rows. Note that those cells that are only partially visible
still count as being visible.

Let’s see how to implement all this behavior we just described. To make
things simple, we’ll encapsulate all of the code to figure out which tiles
are visible in a particular method, which we’ll call getVisibleTiles()(). The

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=53

CREATING AJAXIAN MAPS 54

first thing we need to figure out in getVisibleTiles()() is the position of the
inner div relative to the outer div. This is fairly easy:

function getVisibleTiles() {
var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);
var mapY = stripPx(innerDiv.style.top);

}

The stripPx() function, shown earlier, converts the string value returned
by innerDiv.style.left (such as "100px") to a numeric value (say, 100). Now,
we can divide these positions by the size of the tiles to work out the
starting row and column of the tiles. This is just two lines of code:

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;
var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

Note that we haven’t yet defined the tileSize variable; we’ll do that glob-
ally (at the top of our JavaScript code) and you’ll see it when we show
the entire page in just a few paragraphs. (Or, you can see it now by vis-
iting http://www.ajaxian.com/pragajax/code/amaps/XXX.html).
The call to Math.floor() will round the quotient to an integer, discard-
ing the remainder (so 1.4 will be rounded down to 1). This will cause
partial tiles to be displayed. Math.abs() converts negative values to
a positive number, which in our case is necessary as the inner div
position will nearly always be negative to the outer div, whereas our
tile columns/rows are always positive numbers. Finally, we substract
one from the result to make our map load the tiles a touch early for
smoother effect.

The final bit of calculation is to determine the number of rows and
columns that are visible in the viewport:

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;
var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

As with tileSize(), we’ll declare both viewportWidth and viewportHeight as
global variables and show that in just a bit. We use Math.ceil(), the
opposite of Math.floor() (so it rounds the quotient up regardless of size
of remainder), to ensure that if any portion of a column or row is visible,
we’ll display it. And, just as we substracted one from the index of the
tiles in the previous lines, we’ll add one to the number of columns and
rows to make the scroll effect smooth.

We now have all the data we need to calculate all of the visible tiles
in the viewport, plus as we’ve discussed, a few around the edges that
aren’t immediately visible but will be shortly. Now we’ll build an array

Report erratum

http://www.ajaxian.com/pragajax/code/amaps/XXX.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=54

CREATING AJAXIAN MAPS 55

that contains all of the tiles that need to be loaded. To build this array,
we’ll write two for loops, one nested inside the other, that each perform
an iteration for each column and row that is currently visible. Inside
each loop iteration, we’ll add the column and row number of each tile
to display:

var visibleTileArray = [];
var counter = 0;
for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {
visibleTileArray[counter++] = [x, y];

}
}
return visibleTileArray;

Note that we’re actually creating a two dimensional array; the value of
each item in our array is another array. We did this because we need
to pass back two values: the column and row index. And now, we’re
done calculating the tiles that are visible in the inner div, and we can
move on and work on the code to actually display them. But first, let’s
review all of the code we’ve written so far:

File 30 function checkTiles() {

// check which tiles should be visible in the inner div
var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see
// if it has already been added

}

function getVisibleTiles() {
var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);
var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;
var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;
var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];
var counter = 0;
for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {
visibleTileArray[counter++] = [x, y];

}
}
return visibleTileArray;

}

Displaying the Visible Tiles

We’ve now coded half of the checkTiles() function, which as you may
recall is the function responsible for both calculating the visible tiles

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}2.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=55

CREATING AJAXIAN MAPS 56

and displaying them. Now, let’s implement the other half of that func-
tion: displaying the tiles.

All we need to do here is iterate through each element of the array of
visible tiles we returned from the getVisibleTiles() function, and for each
array element, add a tile image to the inner div. Here’s the new code for
our checkTiles() function:

File 31 Line 1 function checkTiles() {

- // check which tiles should be visible in the inner div
- var visibleTiles = getVisibleTiles();
-
5 // add each tile to the inner div, checking first to see
- // if it has already been added
- var innerDiv = document.getElementById("innerDiv");
- var visibleTilesMap = {};
- for (i = 0; i < visibleTiles.length; i++) {

10 var tileArray = visibleTiles[i];
- var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";
- visibleTilesMap[tileName] = true;
- var img = document.getElementById(tileName);
- if (!img) {

15 img = document.createElement("img");
- img.src = "resources/tiles/" + tileName + ".jpg";
- img.style.position = "absolute";
- img.style.left = (tileArray[0] * tileSize) + "px";
- img.style.top = (tileArray[1] * tileSize) + "px";

20 img.setAttribute("id", tileName);
- innerDiv.appendChild(img);
- }
- }
- }

We start out on line 8 by creating a empty map (map in the JavaScript
sense; a hash that contains key to value mappings). We’re going to
add an entry to this map for each visible image; we’ll discuss why we’re
doing this a little later.

On line 9, we start looping through each element in the array we sent
back from getVisibleTiles(). For each element, we build the name of the
image file that will be loaded in. (If you recall, the file naming conven-
tion we choose in Step 2 was x0y0z0, where the numbers are replaced
with the index of the tile in the tile grid.) We also use this name as the
key in the visibleTilesMap variable, and on lines 13 and 20 you can see
that we also use it as the id attribute for each img element that we add
to the inner div. This is so on lines 13 and 14, we can check to see if
we’ve already added a given tile to the inner div, and if we have, avoid
adding it again.

Finally, in line 15 through line 21, we create the element and
add it to the inner div. Note that on line 16 we have to specify the URL

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}3.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=56

CREATING AJAXIAN MAPS 57

of the image tile. If you have Java installed and executed the code from
Steps 1 and 2 to create your own image tiles, great! Reference them on
line 16, setting the URI to wherever you put them. If not, you can refer-
ence our tiles on-line at http://www.ajaxian.com/pragajax/code/amaps/tiles/x0y0z0.jp
where x0y0z0 should be replaced with the tile you want to load.

You can now view this webpage in your browser, and enjoy a scrolling
map of Spain! We’ve placed a copy on-line at http://www.ajaxian.com/pragajax/code/amaps
Here’s all the code we’ve written so far:

File 31 <html>

<head>
<title>Ajaxian Maps</title>
<style type="text/css">

h1 {
font: 20pt sans-serif;

}
#outerDiv {

height: 600px;
width: 800px;
border: 1px solid black;
position: relative;
overflow: hidden;

}

#innerDiv {
position: relative;
left: 0px;
top: 0px;

}
</style>
<script type="text/javascript">

// constants
var viewportWidth = 800;
var viewportHeight = 600;
var tileSize = 100;

// used to control moving the map div
var dragging = false;
var top;
var left;
var dragStartTop;
var dragStartLeft;

function init() {
// make inner div big enough to display the map
setInnerDivSize('2000px', '1400px');
// wire up the mouse listeners to do dragging
var outerDiv = document.getElementById("outerDiv");
outerDiv.onmousedown = startMove;
outerDiv.onmousemove = processMove;
outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE
outerDiv.ondragstart = function() { return false; }

checkTiles();
}

function startMove(event) {
// necessary for IE

Report erratum

http://www.ajaxian.com/pragajax/code/amaps/tiles/x0y0z0.jpg
http://www.ajaxian.com/pragajax/code/amaps/XXX.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}3.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=57

CREATING AJAXIAN MAPS 58

if (!event) event = window.event;

dragStartLeft = event.clientX;
dragStartTop = event.clientY;
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);
left = stripPx(innerDiv.style.left);

dragging = true;
return false;

}

function processMove(event) {
if (!event) event = window.event; // for IE
var innerDiv = document.getElementById("innerDiv");
if (dragging) {

innerDiv.style.top = parseFloat(top) + (event.clientY - dragStartTop);
innerDiv.style.left = parseFloat(left) + (event.clientX - dragStartLeft);

}

checkTiles();
}
function checkTiles() {

// check which tiles should be visible in the inner div
var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see
// if it has already been added
var innerDiv = document.getElementById("innerDiv");
var visibleTilesMap = {};
for (i = 0; i < visibleTiles.length; i++) {

var tileArray = visibleTiles[i];
var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";
visibleTilesMap[tileName] = true;
var img = document.getElementById(tileName);
if (!img) {

img = document.createElement("img");
img.src = "resources/tiles/" + tileName + ".jpg";
img.style.position = "absolute";
img.style.left = (tileArray[0] * tileSize) + "px";
img.style.top = (tileArray[1] * tileSize) + "px";
img.setAttribute("id", tileName);
innerDiv.appendChild(img);

}
}

}

function getVisibleTiles() {
var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);
var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;
var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;
var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];
var counter = 0;
for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {
visibleTileArray[counter++] = [x, y];

}

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=58

CREATING AJAXIAN MAPS 59

}
return visibleTileArray;

}

function stopMove() {
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.cursor = "";
dragging = false;

}

function stripPx(value) {
if (value == "") return 0;
return parseFloat(value.substring(0, value.length - 2));

}

function setInnerDivSize(width, height) {
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.width = width;
innerDiv.style.height = height;

}
</script>

</head>
<body onload="init()">

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div id="innerDiv">
The rain in Spain falls mainly in the plains.

</div>
</div>

</body>
</html>

Cleaning Up Unused Tiles

We’ve got some neat scrolling, but there’s one glaring inefficiency. We
add tiles to the inner div on demand, but we never remove the tiles that
are no longer visible. Fortunately, we’ve already done some of the work
to accomodate this feature. If you recall, we created a JavaScript map
named visibleTilesMap in the checkTiles() function but never did anything
with it. Now, we’re going to.

After we add the image tiles to the inner div, we’ll select all of the img
elements that are present in the inner div, and for each img element,
we’ll check to see if its id attribute is present in the visibleTilesMap
variable. If so, we know that its a currently visible tile and should be
left in the inner div. If not, the img is no longer visible and can be
removed. Here’s the additional code in checkTiles() to implement this
functionality:

File 32 function checkTiles() {

// check which tiles should be visible in the inner div
var visibleTiles = getVisibleTiles();

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}4.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=59

CREATING AJAXIAN MAPS 60

// add each tile to the inner div, checking first to see
// if it has already been added
var innerDiv = document.getElementById("innerDiv");
var visibleTilesMap = {};
for (i = 0; i < visibleTiles.length; i++) {

var tileArray = visibleTiles[i];
var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";
visibleTilesMap[tileName] = true;
var img = document.getElementById(tileName);
if (!img) {

img = document.createElement("img");
img.src = "resources/tiles/" + tileName + ".jpg";
img.style.position = "absolute";
img.style.left = (tileArray[0] * tileSize) + "px";
img.style.top = (tileArray[1] * tileSize) + "px";
img.setAttribute("id", tileName);
innerDiv.appendChild(img);

}
}

var imgs = innerDiv.getElementsByTagName("img");
for (i = 0; i < imgs.length; i++) {

var id = imgs[i].getAttribute("id");
if (!visibleTilesMap[id]) {

innerDiv.removeChild(imgs[i]);
i--; // compensate for live nodelist

}
}

}

Ah, much better. Figure 4.7, on the next page shows what this should
look like.

Step 6: Zooming

Zooming is wicked easy; in fact, the hardest bit is just getting a zoom
widget to appear floating above the map. First, we need to create some
kind of image that the user can click on to allow the user to zoom. In
Google Maps, it’s a slider; for us, we’ll just create a simple image that
toggles between our two zoom levels. You can use any image you like;
we’ve created a simple one that’s available at http://www.ajaxian.com/pragajax/code/amap

To float the image above the map, we have to properly set the z-index

of our inner div. Browsers support layering elements on top of each
other; the z-index CSS property is used to determine how the layering
occurs. The lower the value, the lower in the layer the element will
appear. Because we want to put our zoom widget above the tile images,
we’ll need to set the z-index of the inner div to 0.

Now, let’s add the zoom widget. We’ll enclose it in a div and place it
inside the outer div, as a peer of the inner div, and set the z-index
properties appropriately:

Report erratum

http://www.ajaxian.com/pragajax/code/amaps/images/zoom.png
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=60

CREATING AJAXIAN MAPS 61

Figure 4.7: Ajaxian Maps!

File 34 <body onload="init()">

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div style="position: absolute; top: 10px; left: 10px; z-index: 1">
<img src="resources/images/zoom.png"
onclick="toggleZoom()"/>
<!-- <label id="step6.toggle.zoom"/> -->

</div>
<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.
</div>

</div>
</body>

That will give us our floating zoom widget; now we need to create the
toggleZoom() function that we referenced on line . This will require a

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=61

CREATING AJAXIAN MAPS 62

Figure 4.8: The Google Maps Zoom Widget

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=62

CREATING AJAXIAN MAPS 63

few minor changes to our code. First, we need to create some sort of
global state that tracks the current zoom level of our map. Second, we
need to reference this state in the various relevant places in our code
(just one, actually).

Let’s start with the global state. We’ll create a variable zoom to track
the current zoom level, and while we’re at it, add a constant (in the
form of a two-dimensional array) for declaring the two different sizes of
the inner div:

File 34 var zoom = 0;

var zoomSizes = [["2000px", "1400px"], ["1500px", "1050px"]];

Now, in the name of cleanliness, we’ll change the first line of our init
method from this:

File 32 setInnerDivSize('2000px', '1400px');

to this:

File 34 setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

There’s just one other place we need to wire in the zoom support: our
checkTiles() function, which creates the img elements for the tiles and
gives them their URL. We need to change this hard-coded zoom level
code:

File 32 var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z0";

to this:

File 34 var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z" + zoom;

All that remains is implementing the toggleZoom() function, which we’ve
done here:

File 34 function toggleZoom() {

zoom = (zoom == 0) ? 1 : 0;

var innerDiv = document.getElementById("innerDiv");
var imgs = innerDiv.getElementsByTagName("img");
while (imgs.length > 0) innerDiv.removeChild(imgs[0]);

setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

checkTiles();
}

Nothing too tricky; we swap the value of the zoom variable between 0
and 1, delete all the elements from the inner div, change the
size of the inner div based on the zoom level, and finally, we invoke
checkTiles() to rebuild the map with the new zoom level’s tiles.

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}4.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step5unhbox voidb@x kern z@ char `discretionary {-}{}{}4.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step6.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=63

CREATING AJAXIAN MAPS 64

Figure 4.9: Ajaxian Maps Zoomed Out

And now, we have zooming in our map application! Cool. Figure 4.9
shows the zoom feature in action, with our map zoomed to the smaller
size.

Step 7: Push Pins and Dialogs

The final feature: adding push pins with alpha transparency that when
clicked show a dialog that also has alpha transparency. The hardest
part here is actually creating the images. We’ve created two images to
serve these purposes, and they’re available at http://www.ajaxian.com/pragajax/code/amap
and http://www.ajaxian.com/pragajax/code/amaps/images/dialog.png,
respectively.

We’re not going to implement a server back-end that does searching,
etc., so just as with zooming we implemented a toggle, we’ll implement

Report erratum

http://www.ajaxian.com/pragajax/code/amaps/images/pushpin.png
http://www.ajaxian.com/pragajax/code/amaps/images/dialog.png
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=64

CREATING AJAXIAN MAPS 65

a toggle for our push pin. The graphic for the toggle is available at
http://www.ajaxian.com/pragajax/code/amaps/images/pushpintoggle.png.

We’ll place the push pin toggle in right next to the zoom toggle by adding
a new div for it:

File 36 <body onload="init()">

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div style="position: absolute; top: 10px; left: 10px; z-index: 1">

</div>
<div style="position: absolute; top: 10px; left: 87px; z-index: 1">

</div>
<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.
</div>

</div>
</body>

Now we need to implement togglePushPin(), which, frankly, is a piece of
cake. We’ll just add an absolutely positioned image with a z-index of 1
to the inner div, add an onclick handler to it, and wire that handler to
display the dialog at an absolute position just above the push pin: Missing: what code

should this refer-
ence?File 36 function togglePushPin() {

var pinImage = document.getElementById("pushPin");
if (pinImage) {

pinImage.parentNode.removeChild(pinImage);
var dialog = document.getElementById("pinDialog");
dialog.parentNode.removeChild(dialog);
return;

}

var innerDiv = document.getElementById("innerDiv");
pinImage = document.createElement("img");
pinImage.src = "resources/images/pin.png";
pinImage.style.position = "absolute";
pinImage.style.left = (zoom == 0) ? "850px" : "630px";
pinImage.style.top = (zoom == 0) ? "570px" : "420px";
pinImage.style.zIndex = 1;
pinImage.setAttribute("id", "pushPin");
innerDiv.appendChild(pinImage);

var dialog = document.createElement("div");
dialog.style.position = "absolute";
dialog.style.left = (stripPx(pinImage.style.left) - 90) + "px";
dialog.style.top = (stripPx(pinImage.style.top) - 210) + "px";
dialog.style.width = "309px";
dialog.style.height = "229px";
dialog.style.backgroundImage = "url(resources/images/dialog.png)";
dialog.style.zIndex = 2;
dialog.setAttribute("id", "pinDialog");
dialog.innerHTML = "<table height='80%' width='100%'>" +

"<tr><td align='center'>The capital of Spain</td></tr></table>";

Report erratum

http://www.ajaxian.com/pragajax/code/amaps/images/pushpintoggle.png
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=65

CREATING AJAXIAN MAPS 66

innerDiv.appendChild(dialog);
}

There’s just one little problem with this new behavior. Do you remem-
ber the image remover code in checkTiles()? It removes any img element
child of the inner div that has been explicitly added in that function. Of
course, it will clobber our push pin as well, since it is an img child of
the inner div, so we need to modify the function to ignore the push pin:

File 36 var imgs = innerDiv.getElementsByTagName("img");

for (i = 0; i < imgs.length; i++) {
var id = imgs[i].getAttribute("id");
if (!visibleTilesMap[id]) {

if (id != "pushPin") {
innerDiv.removeChild(imgs[i]);
i--; // compensate for live nodelist

}
}

}

We’re done! We’ve implemented all of the features we discussed in the
introduction of this chapter. Let’s wrap up by... err, wait a second.
While Firefox, Safari, and other browsers provide native support for
PNGs with alpha transparency, IE 6 does not. If you’ve been using that
browser to try this sample code, the zoom and push pin buttons as well
as the push pin and dialog itself have looked really awful.

Fortunately, there’s an easy (but annoying) fix. Despite not supporting
PNGs out of the box, IE can use some (IE-specific) JavaScript magic
to parse out the alpha channel from a PNG at run-time and display
it correctly. There are a number of websites which document this
workaround; in order to avoid sidetracking our Google Maps story,
we’ll just use a JavaScript library provided by one of these websites,
www.alistapart.com,1 to solve our problem.

First, we need to include these new JavaScripts in our webpage, which
we’ll do at the top:

File 35 <script language="javascript"

src="resources/js/browserdetect_lite.js"
type="text/javascript">

</script>
<script language="javascript"

src="resources/js/opacity.js"
type="text/javascript">

</script>

1http://www.alistapart.com/articles/pngopacity

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://www.alistapart.com/articles/pngopacity
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=66

CREATING AJAXIAN MAPS 67

Then, because this library requires that the PNGs it fixes be back-
ground images in a div, we need to change our push pin from an img
element to a div, as well as our two toggle buttons, and then finally use
this library to fix all of these divs. We’ll change the toggle button images
to div background images first:

File 35 <body onload="init()">

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div id="toggleZoomDiv" onclick="toggleZoom()">
</div>
<div id="togglePushPinDiv" onclick="togglePushPin()">
</div>
<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.
</div>

</div>
</body>

As part of this change, we moved the style attribute settings on the tog-
gle divs into the style sheet we defined at the top of the file (something
we probably should have done anyway):

File 35 #toggleZoomDiv {

position: absolute;
top: 10px;
left: 10px;
z-index: 1;
width: 72px;
height: 30px;

}
#togglePushPinDiv {

position: absolute;
top: 10px;
left: 87px;
z-index: 1;
width: 72px;
height: 30px;

}

We now need to add two lines to our init() method to use our new IE
transparency library with the toggle divs:

File 35 // fix the toggle divs to be transparent in IE

new OpacityObject('toggleZoomDiv','resources/images/zoom').setBackground();
new OpacityObject('togglePushPinDiv','resources/images/pushpin').setBackground();

And finally, we need to reformat the togglePushPin() function to use this
new technique:

File 35 function togglePushPin() {

var pinImage = document.getElementById("pushPin");
if (pinImage) {

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=67

CREATING AJAXIAN MAPS 68

pinImage.parentNode.removeChild(pinImage);
var dialog = document.getElementById("pinDialog");
dialog.parentNode.removeChild(dialog);
return;

}

var innerDiv = document.getElementById("innerDiv");
pinImage = document.createElement("div");
pinImage.style.position = "absolute";
pinImage.style.left = (zoom == 0) ? "850px" : "630px";
pinImage.style.top = (zoom == 0) ? "570px" : "420px";
pinImage.style.width = "37px";
pinImage.style.height = "34px";
pinImage.style.zIndex = 1;
pinImage.setAttribute("id", "pushPin");
innerDiv.appendChild(pinImage);
new OpacityObject('pushPin','resources/images/pin').setBackground();
var dialog = document.createElement("div");
dialog.style.position = "absolute";
dialog.style.left = (stripPx(pinImage.style.left) - 90) + "px";
dialog.style.top = (stripPx(pinImage.style.top) - 210) + "px";
dialog.style.width = "309px";
dialog.style.height = "229px";
dialog.style.zIndex = 2;
dialog.setAttribute("id", "pinDialog");
dialog.innerHTML = "<table height='80%' width='100%'>" +

"<tr><td align='center'>The capital of Spain</td></tr></table>";
innerDiv.appendChild(dialog);
new OpacityObject('pinDialog','resources/images/dialog').setBackground();

}

And now, finally, we are done. Up until the image transparency bit,
our code was really quite clean and had very little in the way of "cross-
browser" hacks. Now, unfortunately, it’s had to undergo a bit of an IE
makeover, but the consolation prize is that IE 7 natively supports PNG
so all of this may someday be unnecessary.

For review, let’s take a look at our entire page:

File 35 <html>

<head>
<title>Ajaxian Maps</title>
<style type="text/css">

h1 {
font: 20pt sans-serif;

}
#outerDiv {

height: 600px;
width: 800px;
border: 1px solid black;
position: relative;
overflow: hidden;

}
#innerDiv {

position: relative;
left: 0px;
top: 0px;

Report erratum

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7unhbox voidb@x kern z@ char `discretionary {-}{}{}1.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=68

CREATING AJAXIAN MAPS 69

Figure 4.10: Ajaxian Maps Push Pin and Dialog on IE 6

}
#toggleZoomDiv {

position: absolute;
top: 10px;
left: 10px;
z-index: 1;
width: 72px;
height: 30px;

}
#togglePushPinDiv {

position: absolute;
top: 10px;
left: 87px;
z-index: 1;
width: 72px;
height: 30px;

}
</style>
<script language="javascript"

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=69

CREATING AJAXIAN MAPS 70

src="resources/js/browserdetect_lite.js"
type="text/javascript">

</script>
<script language="javascript"

src="resources/js/opacity.js"
type="text/javascript">

</script>
<script type="text/javascript">

// constants
var viewportWidth = 800;
var viewportHeight = 600;
var tileSize = 100;
var zoom = 0;
var zoomSizes = [["2000px", "1400px"], ["1500px", "1050px"]];

// used to control moving the map div
var dragging = false;
var top;
var left;
var dragStartTop;
var dragStartLeft;

function init() {
// make inner div big enough to display the map
setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

// wire up the mouse listeners to do dragging
var outerDiv = document.getElementById("outerDiv");
outerDiv.onmousedown = startMove;
outerDiv.onmousemove = processMove;
outerDiv.onmouseup = stopMove;

// necessary to enable dragging on IE
outerDiv.ondragstart = function() { return false; }

// fix the toggle divs to be transparent in IE
new OpacityObject('toggleZoomDiv','resources/images/zoom').setBackground();
new OpacityObject('togglePushPinDiv','resources/images/pushpin').setBackground();
checkTiles();

}

function startMove(event) {
// necessary for IE
if (!event) event = window.event;

dragStartLeft = event.clientX;
dragStartTop = event.clientY;
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.cursor = "-moz-grab";

top = stripPx(innerDiv.style.top);
left = stripPx(innerDiv.style.left);

dragging = true;
return false;

}

function processMove(event) {
if (!event) event = window.event; // for IE
var innerDiv = document.getElementById("innerDiv");
if (dragging) {

innerDiv.style.top = parseFloat(top) + (event.clientY - dragStartTop);
innerDiv.style.left = parseFloat(left) + (event.clientX - dragStartLeft);

}

checkTiles();
}

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=70

CREATING AJAXIAN MAPS 71

function checkTiles() {
// check which tiles should be visible in the inner div
var visibleTiles = getVisibleTiles();

// add each tile to the inner div, checking first to see
// if it has already been added
var innerDiv = document.getElementById("innerDiv");
var visibleTilesMap = {};
for (i = 0; i < visibleTiles.length; i++) {

var tileArray = visibleTiles[i];
var tileName = "x" + tileArray[0] + "y" + tileArray[1] + "z" + zoom;
visibleTilesMap[tileName] = true;
var img = document.getElementById(tileName);
if (!img) {

img = document.createElement("img");
img.src = "resources/tiles/" + tileName + ".jpg";
img.style.position = "absolute";
img.style.left = (tileArray[0] * tileSize) + "px";
img.style.top = (tileArray[1] * tileSize) + "px";
img.style.zIndex = 0;
img.setAttribute("id", tileName);
innerDiv.appendChild(img);

}
}

var imgs = innerDiv.getElementsByTagName("img");
for (i = 0; i < imgs.length; i++) {

var id = imgs[i].getAttribute("id");
if (!visibleTilesMap[id]) {

innerDiv.removeChild(imgs[i]);
i--; // compensate for live nodelist

}
}

}

function getVisibleTiles() {
var innerDiv = document.getElementById("innerDiv");

var mapX = stripPx(innerDiv.style.left);
var mapY = stripPx(innerDiv.style.top);

var startX = Math.abs(Math.floor(mapX / tileSize)) - 1;
var startY = Math.abs(Math.floor(mapY / tileSize)) - 1;

var tilesX = Math.ceil(viewportWidth / tileSize) + 1;
var tilesY = Math.ceil(viewportHeight / tileSize) + 1;

var visibleTileArray = [];
var counter = 0;
for (x = startX; x < (tilesX + startX); x++) {

for (y = startY; y < (tilesY + startY); y++) {
visibleTileArray[counter++] = [x, y];

}
}
return visibleTileArray;

}

function stopMove() {
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.cursor = "";
dragging = false;

}

function stripPx(value) {
if (value == "") return 0;

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=71

CREATING AJAXIAN MAPS 72

return parseFloat(value.substring(0, value.length - 2));
}

function setInnerDivSize(width, height) {
var innerDiv = document.getElementById("innerDiv");
innerDiv.style.width = width;
innerDiv.style.height = height;

}

function toggleZoom() {
zoom = (zoom == 0) ? 1 : 0;

var innerDiv = document.getElementById("innerDiv");
var imgs = innerDiv.getElementsByTagName("img");
while (imgs.length > 0) innerDiv.removeChild(imgs[0]);

setInnerDivSize(zoomSizes[zoom][0], zoomSizes[zoom][1]);

if (document.getElementById("pushPin")) togglePushPin();

checkTiles();
}

function togglePushPin() {
var pinImage = document.getElementById("pushPin");
if (pinImage) {

pinImage.parentNode.removeChild(pinImage);
var dialog = document.getElementById("pinDialog");
dialog.parentNode.removeChild(dialog);
return;

}

var innerDiv = document.getElementById("innerDiv");
pinImage = document.createElement("div");
pinImage.style.position = "absolute";
pinImage.style.left = (zoom == 0) ? "850px" : "630px";
pinImage.style.top = (zoom == 0) ? "570px" : "420px";
pinImage.style.width = "37px";
pinImage.style.height = "34px";
pinImage.style.zIndex = 1;
pinImage.setAttribute("id", "pushPin");
innerDiv.appendChild(pinImage);
new OpacityObject('pushPin','resources/images/pin').setBackground();
var dialog = document.createElement("div");
dialog.style.position = "absolute";
dialog.style.left = (stripPx(pinImage.style.left) - 90) + "px";
dialog.style.top = (stripPx(pinImage.style.top) - 210) + "px";
dialog.style.width = "309px";
dialog.style.height = "229px";
dialog.style.zIndex = 2;
dialog.setAttribute("id", "pinDialog");
dialog.innerHTML = "<table height='80%' width='100%'>" +

"<tr><td align='center'>The capital of Spain</td></tr></table>";
innerDiv.appendChild(dialog);
new OpacityObject('pinDialog','resources/images/dialog').setBackground();

}
</script>

</head>
<body onload="init()">

<p>
<h1>Ajaxian Maps</h1>

</p>
<div id="outerDiv">

<div id="toggleZoomDiv" onclick="toggleZoom()">
</div>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=72

CONCLUSION 73

<div id="togglePushPinDiv" onclick="togglePushPin()">
</div>
<div id="innerDiv" style="z-index: 0">

The rain in Spain falls mainly in the plains.
</div>

</div>
</body>

</html>

4.4 Conclusion

The Ajaxian Maps code we showed you in this chapter is little changed
from our initial, seat-of-the-pants version coded in two hours. We spent
another two hours polishing things up, fixing a few bugs, and introduc-
ing compatibility for Internet Explorer 6.0 (which required two minor
changes that we commented in the source code as well as the trans-
parency issues we just finished discussing).

Imagine how far you could take this code if you had two or three full-
time developers working on it for a few months! Certainly, all of the
remaining interface features in Google Maps would be easily accomo-
dated in that time period.

Feel free to use the code from this chapter to implement your own
Google Maps interface for your own projects, which can ultimately be
generalized to a solution for any time you need to display a larger image
that you could possibly fit into memory, and enable annotations to
appear on top of that image.

And the next time someone tells you Ajax is hard? Tell them you know
better.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=73

Chapter 5

Ajax Frameworks
Up until now, we’ve looked at Ajax either at an abstract architectural
level, or from down in the tunnels underneath the structure. The DOM
API and JavaScript’s sometimes tortured interactions with it form the
basis of all other Ajaxian techniques. Though it is vital to understand
these things for when you run into trouble, it is also likely that you’ve
been left scratching your head from time to time. Maybe you won-
dered who decided to use magic numbers for all the readyState() values.
Or why the industry standard way to create an XHR instance is in a
try/catch block that will encounter an exception ~70% of the time. In
fact, if you are anything like us, it probably occurred to you that you
could write a fairly simple wrapper around this stuff to make it more
usable in production code. These wrappers are fairly common; the
internet is littered with their corpses.

A few library wrappers have survived and flourished to become full-
fledged toolkits. They provide us with much better leverage for using
these Ajaxian techniques to make real applications. In this chapter, we
will take a look at several of these frameworks at our disposal, and will
rewrite Hector’s CRM application using the most mature and popular
versions.

5.1 Frameworks, Toolkits, and Libraries

As Ajax has taken off, we have been inundated with projects claiming
to have Ajax support. Since the term itself has such a broad meaning
in the popular consciousness, though, it is often hard to know exactly
what this means. Does the site perform asynchronous callbacks to the

FRAMEWORKS, TOOLKITS, AND LIBRARIES 75

Figure 5.1: Layers of Ajax Frameworks

server? Does it re-render fresh data in-page? Or does it just manipulate
the properties of existing DOM nodes?

Figure 5.1 clarifies the distinct layers of Ajax proper.

Remoting Toolkit

The lowest level of Ajax helpers is a remoting toolkit. If you were to
create your own toolkit, this would probably be where you started out:
wrapping XMLHttpRequest with your own API to make life easier. A really
good remoting toolkit should be able to do much more than simply hide
our ugly try/catch XHR instantiation code. What should happen if your
Ajaxian page is loaded by a browser that does not support XMLHttpRe-

quest? It ought to find a way, if possible, to provide all (or at least
some) of its functionality by other means. For example, some remoting
toolkits will use a hidden iframe to provide fake XHR support to the
page.

Figure 5.1 lists a handful of such frameworks, and shows what each
attempts to provide to developers. The Dojo Toolkit, JSON-RPC, and
Prototype are all pure JavaScript frameworks that are agnostic about
the world of the server side (although Prototype was built with Ruby on
Rails in mind).

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=75

FRAMEWORKS, TOOLKITS, AND LIBRARIES 76

iframes

Prior to the broad adoption of the XMLHttpRequest object, many
web applications were using a hidden iframe to accomplish
in-page round trips back to the server. An iframe is just like a
normal HTML frame (a container that can be targeted at a URL
and render the results) except that it is embedded in another
page. These applications simply created an iframe of 0px by
0px, then caused it to refresh against a given URL in order to
pull more data back from the server.

While the technique is valid, and worked for many, there were
two inherent problems. The first is, if you wanted multiple asyn-
chronous requests, you had to have multiple iframes. This
became a game of guessing how many you would need and
embedding that many in the page, which is not a tremendous
burden, just somewhat ungainly.

More important is the question of coding intentionally: the
use of iframe is a quintessential kludge. By that, we mean
it’s the repurposing of a technology to do something it wasn’t
quite meant to do. Though it works, it always feels a little like
cheating. XMLHttpRequest, however poorly named, is an object
specifically designed for initiating, monitoring, and harvesting
the results of in-page postbacks. Programming against it feels
natural, and lends itself to more readable (and therefore main-
tainable) code.

A third issue, that mainly affects IE, is that the iframe issues audio
feedback to the user whenever it makes a request. This comes
in the form of a "click" sound, which can be jarring for the user
since they usually have no other indication of ongoing asyn-
chronous behavior.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=76

FRAMEWORKS, TOOLKITS, AND LIBRARIES 77

Toolkit Resources

• Dojo: http://dojotoolkit.com

• Prototype: http://prototype.conio.net/

• Script.aculo.us: http://script.aculo.us

• DWR: https://dwr.dev.java.net/

• Backbase: http://www.backbase.com

• SmartClient: http://www.isomorphic.com

• Ajax.NET: http://ajax.schwarz-interactive.de/

• SAJAX: http://www.modernmethod.com/sajax/

• JSON-RPC: http://json-rpc.org/

Others, such as DWR (Direct Web Remoting), couple a JavaScript client
library with a server-side listener piece written for the Java platform.
JSON-RPC itself has various bindings for many back-end languages.

DWR, JSON-RPC, Ajax.NET, and SAJAX are all examples of ORB-based
Ajax frameworks. They allow you to map JavaScript methods to back
end services, treating the client-side JavaScript as though it could
directly access your server-side objects.

UI Toolkit

Above, or potentially alongside, remoting toolkits we find JavaScript
UI libraries. These give us the ability to use rich UI components and
effects out of the box, but differ in many ways.

Richer UI Components

Toolkits such as Dojo give us rich widgets like trees, tabbed panes or
menus. These are self-contained, instantiable UI components that can
be used to compose a rich, though still very “web-ish” application. The
result is still unmistakably an HTML UI.

Report erratum

http://dojotoolkit.com
http://prototype.conio.net/
http://script.aculo.us
https://dwr.dev.java.net/
http://www.backbase.com
http://www.isomorphic.com
http://ajax.schwarz-interactive.de/
http://www.modernmethod.com/sajax/
http://json-rpc.org/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=77

FRAMEWORKS, TOOLKITS, AND LIBRARIES 78

Web Application Toolkit

Toolkits such as SmartClient aim to give you widgets that build a UI
that looks and feels the same as a native application on Windows or Mac
OSX. These are useful if you are building an application that happens
to be on the web, versus a website that uses a couple of UI effects and
components. SmartClient, for example, features widgets that make the
page look and feel exactly like a Windows NT application.

Markup Based

Backbase allows you to add rich components through a markup pro-
gramming API. Your traditional HTML becomes something like:

File 4 <xmp b:backbase="true" style="display:none;" xmlns:nav="http://www.backbase.com/site/nav">

<s:event b:on="construct" b:action="show"/>

<!-- everything that is never shown - in here -->
<div style="display:none;">

<s:include b:url="/chrome/bb3/skin.xml"/>
<s:include b:url="/data/navigation.xml"/>
<s:include b:url="/data/forms.xml"/>

<!-- listeners for links to non-BDOC documents... -->
<div id="forum">

<s:event b:on="nav:show-page" b:action="select" b:target="id('forumBuffe
</div>
<div id="/shop/">

<s:event b:on="nav:show-page" b:action="select" b:target="id('shop_main_
</div>

<!-- Contains references to protected buffers -->
<!-- Trigger 'command' event to issue bufferdirty on them all -->
<div id="clear_protected_trigger">

<s:event b:on="command">
<s:task b:action="trigger" b:event="command" b:target="*" b:test

</s:event>
</div>

</div>

<!-- Include shop -->
<s:include b:url="/shop/shopIndex.html?cmd=index" />
<!-- ... -->

</xmp>

Such a system could potentially enable a new generation of visual
development tools. Part of the problem with such tools is the con-
flict between markup and code. Traditional JavaScript-based pages
have caused problems for such tools because it is difficult to provide
visual representations of code resources. An all-markup framework, on
the other hand, would provide the right abstractions for these kinds of
development environments. See, for example, the markup-based com-
ponents in ASP.NET, Tapestry and Java Server Faces.

Report erratum

http://media.pragprog.com/titles/ajax/code/AjaxJavaScriptLibraries/backbaseunhbox voidb@x kern z@ char `discretionary {-}{}{}example.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=78

REMOTING WITH THE DOJO TOOLKIT 79

Simple JavaScript Driven Effects

In Chapter 6, Ajax UI, Part I , on page 89 and Chapter 7, Ajax UI, Part II ,
on page 115, we’ll look at several frameworks that use pure JavaScript
and HTML to create extremely complex UI effects. These kinds of frame-
works provide high-level abstractions on top of some meaty JavaScript,
making the effects simple to implement in your application. The results
are often completely cross-browser compatible, and fail gracefully to
static HTML in legacy browsers.

Ajaxian Web Frameworks

At the top of the tower are the web frameworks that are aware of Ajax.
This is a growing group, and covers all of the platforms. All the major
players are represented: Java, .NET, Ruby, PHP, Python, Perl, etc.

Once again, the various frameworks offer different models for how you
can work with them in an Ajaxian world.

Code Generation

The Ruby on Rails community jumped on Ajax like nobody else. They
offer high-level Ruby helper functions which generate Prototype-based
JavaScript code. WebWork2 is doing the same thing on the Java plat-
form, utilizing the Dojo Toolkit as the base JavaScript framework. Many
other frameworks are following suit, from Spring to CherryPy to PHP.

Component-based

ASP.NET had Ajaxian components before there was Ajax. Other frame-
works such as JavaServer Faces and Tapestry on the Java platform join
ASP.NET by letting you use components that may happen to use Ajax-
ian techniques. In this world, you drag your DataTableComponent onto
your designer view and start tweaking the property sheet for that com-
ponent. Here you may see a checkbox for auto-update. Simply checking
that box will put this component in Ajax mode and the rest is history.

5.2 Remoting with the Dojo Toolkit

Now that we’ve examined the landscape of available helper toolkits, we’ll
port Hector’s CRM application to several of them to see how they work.
Hector’s CRM system is working OK with our low-level XMLHttpRequest

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=79

REMOTING WITH THE DOJO TOOLKIT 80

example from the previous chapter, but we want to move up the stack
and utilize a remoting toolkit to abstract away browser compatibility
issues and give us more options for controlling the remoting calls.

We will first port our application to use the Dojo Toolkit,1 explain-
ing choices that you have along the way, and finally discussing more
advanced features.

What is the Dojo Toolkit?

Dojo is a browser toolkit. It is an open source project, that (to quote its
marketing text) aims to “allow you to easily build dynamic capabilities
into web pages and any other environment that supports JavaScript.
Dojo provides components that let you make your sites more useable,
responsive, and functional. With Dojo you can build degradeable user
interfaces more easily, prototype interactive widgets quickly, animate
transitions, and build Ajax-based requests simply.”

It is a full featured toolkit that has many packages including:

• dojo.io: The core package that we will look at in this chapter, that
makes Ajax requests easy.

• dojo.event: Browser compatible event system.

• dojo.lang: Support for mixins, and object extension.

• dojo.graphics: Support for nifty HTML effects (e.g. fadeIn/Out,
slideTo/By, explode/implode, etc).

• dojo.dnd: Drag and Drop support.

• dojo.animation: Create animation effects.

• dojo.hostenv: Support for JavaScript packages (think imports/includes
instead of having to create script src="...")

Porting CRM to dojo.io.bind()

This chapter is all about the remoting layer, and in Dojo that means
the dojo.io package. We are going to go from where we left off with the
CRM application, and replace the raw XMLHttpRequest object with a call
to dojo.io.bind()

1http://dojotoolkit.org

Report erratum

http://dojotoolkit.org
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=80

REMOTING WITH THE DOJO TOOLKIT 81

autocomplete="off"

As part of cleanup, we added the HTML attribute autocom-
plete="off" on the city and state input values. This stops your
browser from trying to do its own completion, which gets in the
way when the value is being set by a return from Ajax.

Cleaning up the JavaScript

Before we even get into Dojo, we should clean up the JavaScript a little
and encapsulate the acts of assigning the city and state in the form, and
announcing errors. Until now these acts were hidden in the callback
function used by XMLHttpRequest.

First, we create a function that assigns the city and state:

File 11 function assignCityAndState(data) {

var cityState = data.split(',');
document.getElementById("city").value = cityState[0];
document.getElementById("state").value = cityState[1];
document.getElementById("zipError").innerHTML = "";

}

Then we have a simple error assignment procedure:

File 11 function assignError(error) {

document.getElementById("zipError").innerHTML = "Error: " + error;
}

With this simple abstraction, we will be able to use any remoting solu-
tion and reuse these functions.

Migrating to dojo.io.bind()

Now we get to the Dojo IO package, and in particular, a dojo.io.bind()
function that encapsulates remoting. Everything you need to do with
remoting can be done with this simple function. dojo.io.bind() takes a
hash as input, using the values to initialize the underlying XHR object
and register callbacks to other JavaScript functions.

First, we have to include Dojo by including the correct JavaScript in
our HTML head element:

<script language="JavaScript" type="text/javascript" src="../scripts/dojo/dojo.js"/>

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=81

REMOTING WITH THE DOJO TOOLKIT 82

Let’s take a look at the code that now does the Ajax request for the zip
data:

File 11 function getZipData(zipCode) {

dojo.io.bind({
url: url + "?zip=" + zipCode,
load: function(type, data, evt){ assignCityAndState(data); },
error: function(type, error){ assignError(error); },
mimetype: "text/plain"

});
}

The must-have element in the dojo.io.bind() parameter is the url key. In
our example it will become /ajaxian-book-crm/zipService?zip=53711 if you
are looking up a Wisconsin city.

The load key takes a function object as a callback. After the Ajax
request has loaded a response, this function will be called (think of
this as being the callback when the status from a XMLHttpRequest is the
magic 4). In your callback you get access to:

• type, which tells you whether the response returned normally
(load) or from an error condition (error)

• data, the actual response (harvested from XHR.responseText). This
is the payload of the request.

• evt, a DOM event

The error key handles errors, whereas load handles requests that went
through nicely. The function callback gets access to the error message
itself in its second function parameter.

The mimetype key is important. We have discussed how there are var-
ious styles of remoting, and how you can choose to return HTML,
JavaScript, or your own text. Here, we decided to use text/plain, get
back the city/state information as the string Madison,WI, and split up
for our usage.

Changing dojo.io.bind() to Use a Return Type of JavaScript

Now we have our Ajax request encapsulated in one simple dojo.io.bind()
function call. This is a lot more elegant than using the raw XMLHttpRe-

quest API, and we will soon see how we have access to features above
and beyond the simple requesting and retrieving of data.

What if we wanted to talk to a service that responded directly with
JavaScript for us to evaluate, instead of a proprietary String that we

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojo.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=82

REMOTING WITH THE DOJO TOOLKIT 83

Generic Handle

Rather than separating the load and error handlers, in theory
you can use one handler named handle. This is when you would
use the parameter, and would probably check against it to
see how you were called. We could have written the same
example as:

handle: function(type, data, evt){
if (type == "load") {

assignCityAndState(data);
} else if (type == "error") {

assignError(error);
} else {

// could potentially handle other types!
}

},

needed to parse? For example, instead of returning "Madison,WI", the
service could return:
document.getElementById('city').value = 'Boulder';
document.getElementById('state').value = 'CO';

Making this change is quite trivial with Dojo, and it will simplify our
code even more. We can get rid of the assignCityState() call itself, and
there is no need for a load() function, as that is taken care of due to
the fact that Dojo will automatically load a JavaScript result from the
server if we tell it via the mimetype text/javascript:

File 10 function getZipData(zipCode) {

dojo.io.bind({
url: url + "?zip=" + zipCode + "&type=eval",
error: function(type, error){ assignError(error); },
mimetype: "text/javascript"

});
}

Notice that we added &type=eval to the URL, to make sure that the
server sent us back JavaScript this time.

Advanced Features of dojo.io.bind()

Hopefully at this point you have seen that it makes little sense to use
the low level API when you have a nice, clean, simple interface that Dojo
gives you. It turns out that dojo.io.bind() can do a lot more for you. For
one, it is able to do browser detection, and makes sure that it finds the

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_dojounhbox voidb@x kern z@ char `discretionary {-}{}{}evalscript.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=83

REMOTING WITH THE DOJO TOOLKIT 84

Transport Enforcement

Sometimes, we don’t want graceful, transparent failover. If,
for some reason, we must mandate that only certainly kinds of
post-back transport mechanisms be used, we can pass in our
rule on the dojo.io.bind() call. If we want to enforce one trans-
port only, we can do so by setting

transport: 'XMLHTTPTransport'

in the hash that we pass in.

right XMLHttpRequest object for your browser. If it can’t find one, it can
drop back to iframes to do the deed. All of this happens transparently
to the developer.

Submitting Forms

Dojo can to submit a form asynchronously for you as well as accessing
a given URL. All you need to do to submit your form is tell Dojo about
the form element in your HTML via:

dojo.io.bind({
url: "http://your.formsub.url",
load: function(type, obj) { /* use the response */ },
formNode: document.getElementById('yourForm')

})

C’est toute.

Support for Browser back/forward Buttons

This feature is a gem. One of the issues with using XMLHttpRequest

vs. an iframe is that iframe events are placed in the browser history,
while XHR events are not. This can cause an issue if a user clicks on
something that causes an Ajax request which changes the page, and
then they hit the back button assuming that it will take them to the
state they were in before that request. Instead, they are taken to the
page before the Ajax code (which could be away from your website!).

Dojo allows you to tie into the browser buttons, passing in the work
that you want to do when a user clicks on back or forward. In our
CRM example, you could save the current city and state information

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=84

REMOTING WITH THE DOJO TOOLKIT 85

and clean it out in the form when the user clicks "back". Then, if the
user clicks "forward" you could reset it into the form without having to
go back to the server.

backButton: function() {
saveCityState();
cleanCityState();

},

forwardButton: function() {
setupCityState();

},

How does Dojo do this? Is there a nice API that Firefox and IE give you
to hook in? No. The actual implementation differs depending on the
browser, but at a high level Dojo creates a hidden iframe, makes it go
forward two requests, and then one back. Now, it is setup ready to do
your bidding. If you click on back the onload event will call into your
backButton callback. Ditto for the forward button.

Bookmark-ability

Another UI issue with Ajax applications is making sure that the book-
mark paradigm still works. We have all seen Ajax applications that are
just one page, and hence you can’t bookmark anything (Google’s Gmail
is sometimes bad like this).

Dojo gives you a simple hook to change the URL, and hence potentially
allow for bookmarking events that happen within an Ajax world.

To turn on this feature you have to set the changeURL parameter in your
calls to dojo.io.bind(). You can set it to either:

• true: changes the URL to the form http://yoursite.com/yoururl.html#12345678,
where the content after the hash mark is a timestamp.

dojo.io.bind({
url: "http://your.sub.url",
load: function(type, obj) { /* use the response */ },
changeURL: true

})

• yourownvalue: The given string will be added to the url. If you set

dojo.io.bind({
url: "http://your.sub.url",
load: function(type, obj) { /* use the response */ },
changeURL: "ajaxian"

})

the URL will be changed to be http://yoursite.com/yoururl.html#ajaxian

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=85

REMOTING WITH THE PROTOTYPE LIBRARY 86

Miscellaneous Options: method, content, postContent, sync, and
cache

You can pass other (rarely mentioned) options to dojo.io.bind().

• method: You can set the HTTP method to use for the request ("get"

or "post", for example)

• content and postContent: You can think of this option as the request
parameters that you wish to post up to the server in a hash form.

"content: { key1: 'value1', key2: 'value2' }"

postContent is only sent if the method is POST, allowing you to
selectively push certain values on post requests only.

• sync: By default your requests are asynchronous (which is good),
but you can set

sync: true

to change that.

• useCache: Dojo can use a cache that you can dip into to bypass
server access. To turn this on you must set

"useCache: true"

5.3 Remoting with the Prototype library

Prototype jumped onto the scene with the rise of the popular Ruby on
Rails web framework. The Prototype library is another open source
JavaScript toolkit which provides a straightforward wrapper around
XHR and some foundational UI effects. We’ll port Hector’s app to use
the Prototype remoting capabilities in order to contrast it with Dojo.

Porting to Prototype

Since you have already seen the port to a remoting framework, this will
probably look similar. First, we need to point our browser to pickup the
Prototype library:

<script language="JavaScript" type="text/javascript"
src="../scripts/prototype/prototype-1.3.1.js"/>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=86

REMOTING WITH THE PROTOTYPE LIBRARY 87

Ajax.Request()

The dojo.io.bind() equivalent in Prototype is Ajax.Request(). It works in a
similar way to dojo, in that you pass in most of the information as an
object with callbacks. The CRM example is:

File 14 function getZipData(zipCode) {

new Ajax.Request(url, {
asynchronous: true,
method: "get",
parameters: "zip=" + zipCode,
onSuccess: function(request) {

assignCityAndState(request.responseText);
},
onFailure: function(request) {

assignError(request.responseText);
}

});
}

The differences are subtle. First, you pass the url as the first parameter
to Ajax.Request() rather than in the object hash itself. You will also see
that you can choose between a synchronous or asynchronous request.
99.99% of the time you will want to use asynchronous, because you
don’t want to freeze the browser while the request happens. You also get
to choose the HTTP method (GET, POST, and so on) and the parameters
that we want to add to the URL itself. Finally, the callback functions
get the XMLHttpRequest object itself, so you can grab the responseText,
responseXML, or anything else that you need from that object.

Evaluating the Return as JavaScript

If you wish to use the model of having the server return JavaScript
for you to run, you can implement this by doing eval() yourself in the
onSuccess callback function.

File 12 function getZipData(zipCode) {

new Ajax.Request(url, {
asynchronous: true,
method: "get",
parameters: "zip=" + zipCode + "&type=eval",
onSuccess: function(request) {

eval(request.responseText);
}

});
}

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototype.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}evalscript.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=87

WRAPPING UP 88

Returning HTML to the Client

Ruby on Rails favors the technique of having HTML returned from the
server, and putting that HTML into the DOM via the innerHTML property.
Since Prototype is a good sister to Rails, it makes this very simple on
the JavaScript side.

The trick is that you need to make sure the content that you wish to
change has been given an id= attribute. Then, we can use an Ajax.Updater()
that makes the XHR request, gets the output, and writes it to the ele-
ment with the given id.

In our CRM example this is a two step process. First we tag the city
and state HTML content that we wish to replace:

File 13 <tr id="rewrite">

<th>City:</th>
<td><input id="city" type="text" name="city"/></td>
<th>State:</th>
<td><input id="state" type="text" name="state" size='3' maxlength='2'/></td>

</tr>

Then we associate an uppdater with the element with id="rewrite" by
wiring up the Ajax.Updater().

File 13 function getZipData(zipCode) {

new Ajax.Updater("rewrite", url, {
asynchronous: true,
method: "get",
parameters: "zip=" + zipCode + "&type=html",
onFailure: function(request) {

assignError(request.responseText);
}

});
}

5.4 Wrapping Up

We took the raw XMLHttpRequest version of the CRM application, and
showed you how quality JavaScript libraries such as Dojo and Proto-
type can lift up your level of abstraction. There are no more magic state
numbers, odd try/catch blocks, or the like. Dojo even offers advanced
features like back/forward button support, which have largely been
unavailable to JavaScript programmers until now.

Next, we’ll look at the frameworks that provide support for UI manipu-
lation, and see how they combine with these techniques to give us real
power over the user experience.

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=88

Chapter 6

Ajax UI, Part I
In the last several chapters, we gave you an earful about what Ajax is,
what it isn’t, and where it came from. By now, you’ve seen the “asyn-
chronous” and “xml” parts. Over the next two chapters, we’re going
to introduce you to the “JavaScript” and flashy UI parts of the frame-
work. You’ll get to see the CRM application grow into a full-fledged rich
client application and learn some of the emerging standard patterns for
Ajaxifying the UI. Perhaps most importantly, we’ll walk you through a
cautionary tale about going too far, and knowing when to say when.

6.1 Ajax and JavaScript for the UI

Dynamic HTML. The words roll around your brain and make you think
of Nirvana, Lewinski and Razorfish. DHTML was so ’97. Most readers
may now be wondering “what’s Ajax got that DHTML didn’t have?” The
answer, it turns out, is fairly complex. But it starts with maturity.

When we were doing DHTML apps back in the ’90s, browsers were still
duking it out over the best way to render tables. Heck, we didn’t even
have <div> tags until the late ’90s. Cascading stylesheets were just
coming out, and the language hadn’t settled yet. There were browser-
specific extensions to the DOM and the CSS language, and browsers
couldn’t even be trusted to render their own extensions properly on a
consistent basis.

Fast forward to 2005. Browsers are still disagreeing about the best
way to render certain tags, and there are still browser-specifc exten-
sions to worry about. But the amount of commonality between mod-
ern browsers has grown immensely in the intervening years, leaving a

AJAX AND JAVASCRIPT FOR THE UI 90

much greater common ground. Gone are the days when you had to
have browser-specific rendering of simple CSS styles. We have a much
broader scope of acceptable UI techniques that will work anywhere now.
This kind of common ground, which eliminates the need for vast tracts
of browser-specific JavaScript and CSS, makes the development of rich
client apps much more straightforward and accessible.

Further, when we were developing DHTML applications back then, we
didn’t have the benefit of universal XMLHTTPRequest support. Sure, IE4
had it built in as an ActiveX component, but that can hardly be con-
sidered universal. Justin remembers teaching die-hard Windows web
developers about it in ’99 and getting a lot of odd stares in response,
so even for those developers to whom it was available, it wasn’t widely
used. And without an asynchronous, embedded channel back to the
server, DHTML applications were just about pop and flash. They added
only marginal usability improvements in and of themselves, and if we
wanted to make them talk back to the server, we ended up jumping
through major hoops.

Think of that most ubiquitous of DHTML widgets, the tree nav. It was
easy to write DHTML-based trees. It involved a couple of CSS styles,
some onclick handlers and some crossed fingers, but it didn’t amount
to much effort. And, in return, we got collapsible, expandable tree nav-
igation. What we didn’t get, unless we put in endless hours of effort,
was a way to update portions of the tree from the server without reload-
ing the whole thing. So we ended up putting the tree in a frame, all by
its lonesome self, and refreshing it en toto whenever the app demanded.
This made for tortured JavaScript and a less than ideal user experience.

We even went so far as to invent the iframe to allow us to execute
background threads of operation. As we saw previously, the iframe
was a convenient, if nonstandard, way to cause a secondary request
to be sent to the server. JavaScript can modify the src= attribute to
cause a new request to be spawned. This seems, at first glance, to
provide everything XHR provides. Dig down, though, and you’ll see
some problems. iframes provide no graceful method for checking on
the state of a request; once fired, either the iframe renders its results
or it doesn’t. Secondly, the iframe automatically renders the response
sent back from the server. If the response isn’t HTML, the iframe must
be navigated, DOM-style, to retrieve the results. All this is effective, but
hardly efficient, and certainly not elegant.

The ability to exert fine-grained control over pieces of the UI only truly

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=90

AJAX AND JAVASCRIPT FOR THE UI 91

becomes profound when we also exert similar fine-grained control over
the data we are retrieving from the server. Being able to flash the back-
ground color of a <div> tag as the user mouses over it is pretty; being
able to auto-update a text search box as the user types into it is an
actual usability improvement. The code to control the UI of the latter
is not appreciably harder than for the former; it is the access to an
asynchronous trip to the server to fetch more information that makes
it special.

Ajax Encourages OO Over DOM

The biggest change from DHTML to Ajax has to do with the way we think
about JavaScript code in the browser. In good old DHTML, we wrote
JavaScript to manipulate the DOM; we treated the DOM as a giant
repository of dumb entities, each with a collection of styles appended
to it. We walked the DOM using nightmarish

element.parent.parent.sibling.child

style code, and when we got there, we set text properties to be inter-
preted as style changes in the rendering engine. We wrote our common
code as a series of functions, devoid of organizing classes or conven-
tions. None of this looked like the server side code we were writing; it
certainly didn’t feel modern in any way. JavaScript was an adjunct to
our “real work,” and it showed.

Ajax strives to treat JavaScript in the browser as the first-class pro-
gramming environment it can be. Instead of writing procedural pro-
grams, we write class libraries to encapsulate our behavior. Instead
of treating the DOM as a collection of dumb elements, we treat it as a
hierarchy of types. Instead of thinking of styles as strings to be con-
structed and parsed, we think of them as properties of objects, to be
modified individually. We write modern OO code, complete with error
handling, instance methods, static methods and type hierarchies.

Even better, though, we write this modern OO code using a language
more expressive than the statically typed languages we use on the
server. With JavaScript, we can extend types without modifying the
base code. If we want to add functionality to the document object, we
can declare a new function name and supply it with an anonymous def-
inition. This new function has full access to the instance data of docu-
ment, and can be called by any other type contained in our JavaScript.
Functions can be sent around like data objects, invoked without know-

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=91

AJAX AND JAVASCRIPT FOR THE UI 92

ing the originating instance. In other words, metaprogramming without
extraneous reflection syntax.

We say that Ajax encourages this style of programming. There is noth-
ing inherent about Ajax that mandates this, however. You can hap-
pily write the same old style of procedural, DOM-oriented JavaScript
code and achieve Ajax effects. The frameworks that have sprouted
up around Ajax, though, all eagerly pursue the more modern, object-
oriented style of programming. They supply common APIs and types
through which to modify the look and behavior of elements in the DOM.
They provide better ways to navigate the DOM for specific items, as well.
Typically, these frameworks accomplish these goals through object-
oriented libraries and metaprogramming. For example, the Scriptac-
ulous library adds a new method, getElementsByClass(), to the document
object at the root of the DOM model. By injecting this method into
the existing class, we get a more convenient method for navigating our
DOM tree, through OO methods.

Common UI Frameworks

With the creation of the Ajax moniker, there has been a concomitant
explosion of JavaScript libraries to help users take better advantage
of the technology shift. Instead of making users find their own paths
through the desert to the OOasis, these libraries drastically shorten
the learning and adoption curves for Ajax. We’ve already talked about
them at some length in the previous chapter; there, we focused on
the libraries’ efforts to encapsulate the remoting features of JavaScript.
Here, we’ll discover what they do for our UI code.

The first area is DOM navigation. The DOM model is a beast to get
around in; as much as it seems like navigating an XML infoset should
be a highly standard operation, there can be interesting differences
between navigation commands and their results as you move from
browser to browser and version to version. Even if there weren’t, though,
navigating the DOM requires too much intimacy with the overall hierar-
chy of the current page. Puttering around the DOM tree, using .parent

references and .children collections often leads to finding the wrong ele-
ment, or finding no element at all.

The major UI frameworks find ways to help you around this problem.
In addition to the standard getElementByID() method, these frameworks
allow you to discover elements by class, by style, by tag, and a vari-
ety of other options. They give you ways to treat elements and their

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=92

AJAX AND JAVASCRIPT FOR THE UI 93

names interchangeably, so that you can pass either to a function and
get the correct result. Mostly, they provide handy shortcuts to tedious
navigation commands, usually with more predictable results.

Affecting the look and style of DOM nodes is a painful exercise in string-
based CSS styles, element property modulation, and general mucking
about trying to get the element to look or act the way you want. Do you
use the visible or hidden property? How do you increase the size: in
pixels or percent? What’s the best way to move an element around the
page? The answers are usually an ungainly mix of techniques which
seem to feel more like guesswork than solid programming.

Good Ajax libraries take the guesswork and pain out of manipulating
element styles. Instead of having to guess what mix of properties you
have to modify to get the desired behavior, certain typical and canonical
effects are canned and supplied to you through a single method call.
Users can modify the default behavior of the effects, or combine them
in unique ways to achieve tailored results.

In this chapter, we’re going to examine three major frameworks in heavy
use today: Prototype, by Sam Stephenson, Script.aculo.us, by Thomas
Fuchs, and Dojo, by the Dojo Foundation. There are other libraries out
there worth keeping on eye on as well, such as Rico (http://openrico.org/rico/home.page),
which grew out of the development for Sabre Airline Solutions. We’re
sure that, between now and when you read this, more frameworks will
have popped up, so keep on the lookout.

Remember the figure back in the ??, on page ??? That chapter looked
at the frameworks that live at the lowest level, the remoting toolkits.
This chapter moves up one layer on the chart, to examine the toolkits
that deal directly with UI issues. It turns out, there’s plenty of overlap.

Prototype

The Prototype library is the grandaddy of them all. Other JavaScript
libraries (notably, Scriptaculous) are built on top of the basic func-
tionality provided here. Prototype is a relatively simple JavaScript file;
clocking in at 1041 lines of code as of version 1.4.0_pre2, it manages
to pack an enormous punch for dealing with UI issues in the browser.
We’ve already covered what Prototype does for remoting in earlier chap-
ters. Now we’ll examine how it replaces the standard DOM and CSS
idioms for manipulating UI elements.

Report erratum

http://openrico.org/rico/home.page
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=93

AJAX AND JAVASCRIPT FOR THE UI 94

Extensions to Common Types

Prototype adds a series of helpful utility methods to our lexicon, either
by providing globally accessible functions or, in some cases, extending
existing types in JavaScript or the DOM. Since JavaScript types can
be extended at runtime without modifying the original source (the very
definition of a dynamic language), this is relatively straightforward to
do. The result is that Prototype can provide extremely useful shortcuts
to common functionality, but present it in the most natural way pos-
sible: as properties and methods of the types where we would expect
such features to appear.

Prior to the Ajax libraries, the two most common lines of JavaScript
found in DHTML applications were:

var myElem = document.getElementById('some_element');
var myValue = document.getElementById('some_other_element').value;

Though this code is not particularly glaring, it is difficult to read, and
can make even the simplest of functions difficult to scan and under-
stand. Bear in mind, also, that bandwidth is (even today) an expensive
resource. For evidence, I present the current crop of JavaScript com-
pressors with which you can eliminate all the whitespace from your
scripts to provide for quicker downloading. Given that the above code
is ubiquitous and oft-repeated, it would make sense to find a way to
minimize the surface area of these statements. Prototype replaces them
with the following lines:

var myElem = $('some_element');
var myValue = $F('some_other_element');

Even better, $() can take an arbitrary number of IDs and return an
Array of elements to match them.

var elems = $('element_one', 'element_two', 'element_three');
for(var i=0;i<elems.length;i++) {

elems[i].value = "changed";
}

There is a major caveat to this technique, though. Prototype doesn’t
bother to check if the ID you passed is valid within the document.
In the case above, if there’s no element with id element_two, the call
still returns an array of length 3. The second element, however, is
null instead of a reference to a DOM node. Also bear in mind that $F()
only works for input elements. If you are looking for the text contained
within an arbitrary DOM node, $F() is useless.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=94

AJAX AND JAVASCRIPT FOR THE UI 95

innerHTML Limitations

According to the documentation for IE, the innerHTML property
is read-only for the following list of enclosing tags: COL, COL-
GROUP, FRAMESET, HTML, STYLE, TABLE, TBODY, TFOOT, THEAD,
TITLE, TR. Which means, in IE, that you cannot use the innerHTML
property to set the contents of a table row. This works fine in all
other browsers, but can be a serious limitation to cross-browser
effects.

Prototype also extends the document object to include the new getEle-

mentsByClassName() method. You pass in the string name of a CSS class
and the function will collect all the elements in the DOM who contain
that class in their class list. It doesn’t matter if the class name is the
first or only entry in the element’s list, Prototype will still find it.

<div id="one" class="class1"/>
<div id="two" class="class2"/>
<div id="three" class="class1"/>
<div id="four" class="class2, class1"/>

<script type="text/javascript">
var classOnes = document.getElementsByClassName('class1').length; // 3
var classTwos = document.getElementsByClassName('class2').length; // 2
var classThrees = document.getElementsByClassName('class3').length; // 0

</script>

This method only takes a single class name, though. It is up to you to
make any sort of union if you are looking for elements implementing
one of a list of classes.

Once you can successfully retrieve nodes from the DOM, the next step
is manipulating them. Among the most common things to do is to sim-
ply change the content of a node by resetting the value of its innerHTML

property. innerHTML is just a string representation of the contents of the
node. If you fill it in with properly formatted HTML, the browser will
render it as such. When you retrieve it, the HTML tags will be embed-
ded in the returned value. Sometimes, you will want to maintain the
tag structure in its original format. Other times, you’ll want to actually
display the tags as strings rather than have them rendered as HTML.
Prototype extends the JavaScript String class with some new methods.
escapeHTML() returns the innerHTML, but with any HTML tags escaped so
they can be displayed as text. unescapeHTML() does the exact opposite.
This is very useful for displaying HTML source within an HTML page.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=95

AJAX AND JAVASCRIPT FOR THE UI 96

A final case is when you want to eliminate the tags altogether. Imag-
ine a div that contains a bibliography entry, rendered so that the title
of the book is underlined and the author’s name is boldfaced. You
want to retrieve that value as data; any embedded style notation (or,
Heaven help us, tags) are extraneous. String now has the strip-

Tags() method which eliminates any angle brackets (and what’s inside
them) from the output. Whitespace is otherwise maintained, allowing
you to treat HTML as raw data.

Element

Prototype introduces a new class, Element, that controls some basic
styling properties of a DOM node. Element is a static class, in that you
need not create an instance of it to access its functionality. Its various
methods all take an element ID or an element itself as a parameter and
perform some action on them.

We spend a lot of time hiding and showing nodes of a DOM tree. Error
messages are invisible unless validation fails, for example, or trees con-
tain collapsible nodes. Most of the dynamic nature of a web page is
wrapped up in the mysterious appearance and disappearance of blocks
of data. The standard JavaScript strategy for accomplishing that uses
the .style.display property.

<div id="hideOrShow">
You can turn me on and off.

</div>
<input type="button" value="Toggle" onclick="toggle('hideOrShow');"/>
<script type="text/javascript">

function toggle(elemName) {
var elem = document.getElementById(elemName);
if(elem.style.display=='none') elem.style.display = '';
else elem.style.display = 'none';

}
</script>

Element provides the .toggle command which accomplishes the exact
same thing, but with the added benefit of being able to pass in as many
element names (or elements) as you like to a single call. Toggle will
iterate over all the arguments, toggling the state of each in turn. This
provides a convenient way to swap visibility of elements.

<div id="up">
Up

</div>
<div id="down" style="display:none;">

Down
</div>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=96

AJAX AND JAVASCRIPT FOR THE UI 97

<input type="button" value="Toggle"
onclick="Element.toggle('up', 'down');"/>

To be sure, we don’t always want to toggle. Element also exposes show()
and hide(), which each take a variable number of elements as argu-
ments, and ensures that each has its display property set correctly.
Sometimes, though, toggling isn’t enough. Setting an element’s display
property to "none" renders the rest of the page layout as though the ele-
ment did not exist in the DOM at all. However, the mere existence of
the element might have other effects. If the hidden element contained
form elements, for example, they would be submitted to the action as
though they were visible. The same is true for scripts that traverse the
DOM elements or manipulate page layout.

Instead of merely setting the div’s display property to "none", we can
remove the <div> from the DOM tree entirely. Normally, this would
mean navigating to the <div>’s parent node and removing the div from
the parent’s children. The DOM specifies a removeChild() method specif-
ically for this purpose. The node is removed from the tree, and the
entire tree re-rendered to keep that block from influencing the flow.
Furthermore, containing elements no longer have any knowledge of the
node, and scripts will not be able to discover it. This is nonreversible,
unless you have cached a copy of the node in another variable and add
it back manually later. Prototype exposes the removeChild() feature as
a function called Element.remove().

Inserting Data

Showing and hiding data is nice, but it implies that we have a nice
container dedicated for displaying that piece of data. Showing an error
message, for example, usually means that we have a hidden div or span
standing by to take that data, then display it to the user. Quite often,
though, what we want to do is add more data to an existing, visible
element. Most commonly, we want to add items to an already-visible
list of items. The standard DHTML way to do this is to recreate a new
version of the list items which include the additions, then replace the
contents of the list with the new version. With Ajax, this would mean
having a server-side method which you call that sends the list back
with any new items appended. While effective, this might be extremely
inefficient. The code that generates the content of the list might be
long-running, and, if it involved a database, mandates at least a round
trip to the datastore to re-fill the list.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=97

AJAX AND JAVASCRIPT FOR THE UI 98

Prototype introduces the Insertion class. Insertion allows us to add infor-
mation to an existing container without replacing what currently exists
in the list. Insertion.Top() enters the new data at the beginning of the con-
tainer’s body, while Insertion.Bottom() enters it at the end. This means
that you can easily append single lines to a list without re-rendering
the whole list.
<ul id="mylist">

one
two
three

<input type="text" id="newval"/>
<input type="button"

value="Add Item"
onclick="new Insertion.Bottom('mylist',

''+$F('newval')+'');"/>

Keep in mind that you have to provide the full value you want rendered.
In the example above, we’re appending the text value of the input field
to the bottom of the list. We have to wrap it in the tags in order to
get it to render as a list item; without those tags, the new value is just
pasted as text inside the list, which is rendered without the bullet, and
as inline text.

Prototype actually goes a little farther, and lets you append text around
the container as well. In all, Insertion offers four placements for your
new data: Before(), Top(), Bottom(), and After(). Figure 6.1, on the follow-
ing page demonstrates where each lives.

This is fairly powerful, since you can modify a section of the page for
which you do not have an ID (or there may be no ID at all).

Forms

Working with forms has historically been a bit of a drag. Forms are use-
ful for only one purpose: collecting data from a user. The input fields
that exist on a form, though varied in style, are essentially identical in
nature. They represent an item that a user can use to tell us some-
thing. Before Ajax and the re-thinking of the DOM that it brought with
it, we had to treat forms and inputs just like any other HTML elements,
navigating the DOM to find them, modifying their style properties to
affect their behavior.

Prototype gives us tools to think about forms differently. Instead of rep-
resenting a chunk of HTML that happens to have input boxes embedded
in it, Prototype encourages us to think of forms as collections of data

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=98

AJAX AND JAVASCRIPT FOR THE UI 99

In-line elements

Block elements

Open tag Internal Data Close tag

Open tag Internal Data Close tag

Before Top Bottom After

Before

Top Bottom

After

line break

line break

Figure 6.1: Insertion placement possibilities

fields. Using the library, we can manipulate the properties of all the
fields on a form simultaneously when that suits our needs, and navi-
gate them as an array of fields, not as scattered children in a subtree
of the DOM.

The vehicles for this change are the new classes Form and Field. Field
provides three major UI-related methods:

• select(): selects the current value of the field

• focus(): moves the focus to the field

• activate(): a combination of select() and focus()

For example, you could create a form with certain form fields visible at
all times, but a second set of more advanced options only visible when
the user requests them. For convenience, you would want the user to
begin typing into the topmost field immediately upon making it visible,
which you could accomplish with activate.

<form action="postback.jsp" method="post">
First Name: <input type="text" name="firstname"/>

Last Name: <input type="text" name="lastname"/>

Advanced Options

<div id="advanced_options" style="display:none;">
Pet's name: <input type="text" name="petsname"/>

Favorite color: <input type="text" name="favoritecolor"/>

</div>

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=99

AJAX AND JAVASCRIPT FOR THE UI 100

Beware Before and After

Don’t get too carried away with Before() and After(). While
each will happily let you insert plain text or renderable markup
into the document at the appropriate point, you cannot use
them to create new containers around an existing item. To do
so, you would have to execute two separate statements: an
Insertion.Before() for the opening tag, and an Insertion.After() for
the closing tag. Modern DOM rendering engines will not allow
you to add malformed XML to the document. Therefore, the
first call, containing just the opening tag, will have a matching
closing tag inserted at the end of the value you passed in. The
second call will have the closing tag simply stripped from the
input.

Imagine you have an element containing a new header tag
that you want to surround with a new <div> tag. Your code
would look like this:
<ul id="mylist">

one
two
three

<input type="text" id="newval"/>
<input type="button" value="Add Item"

onclick="wrapList('mylist');"/>
<script type="text/javascript">

function wrapList(listname) {
new Insertion.Before(listname,

'<div><h2>New Title</h2>');
new Insertion.After(listname, '</div>');

}
</script>

When you execute this, the resulting rendered DOM tree, if you
could see it using view source, would look like this:

<div><h2>New Title</h2></div>
<ul id="mylist">

one
two
three

<input type="text" id="newval"/>
<input type="button" value="Add Item"

onclick="wrapList('mylist');"/>
. . .

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=100

AJAX AND JAVASCRIPT FOR THE UI 101

</form>

Form offers three more UI relative methods:

• disable(): disables every input field in the form (sets the back-
ground to gray and disallows changes)

• enable(): enables every input field in the form

• focusFirstElement(): sets the focus to the topmost field in the form

These methods allow you to work with the entire form as a single entity.
For example, it is a common pattern to display information to the user
that they may wish to edit. Web developers have to decide between
showing them the data as plain HTML, then switching to a form view
when the user chooses to edit, or just showing it to them in the form
view from the get go. With Form.enable and Form.disable, the decision
is easier. You can display the data in a disabled form; when the user
clicks the "Edit" button, simply enable the entire form.

Position

Prototype contains several methods for understanding the current posi-
tion of elements on a rendered page. Specifically, they allow you to dis-
cover the relative position on an element on a scrollable page, includ-
ing whether or not the element is on the currently visible portion of the
page. If not, you can retrieve the scroll offsets (horizontal or vertical) to
the element from the visible section. Most developers won’t use these
features directly, but instead use frameworks that build on top of them
to provide higher-level features (like Scriptaculous, for example).

Script.aculo.us

Thomas Fuchs has built on top of the base Prototype library to dramat-
ically increase the number and kinds of effects that can be created with
JavaScript. Script.aculo.us is the result of his efforts. Where Prototype
is focused on extending the baseline capabilities of JavaScript and the
DOM, Script.aculo.us allows web developers to make HTML look and
act just like any other "rich client" platform. The kinds of effects range
from simple hiding and showing tricks all the way up to drag-n-drop
and sortability.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=101

AJAX AND JAVASCRIPT FOR THE UI 102

Effects

The library is divided between the five core effects and a series of com-
bination effects built on top of them. The core effects are: Opacity,
Highlight, MoveBy, Scale, and Parallel. Every effect represents a transition
between two states that occurs over time. The effects all have default
values for start and end points, as well as duration. These defaults can
be overridden for a fully customized effect. The various effects each
have different required parameters (for instance, MoveBy() requires x
and y deltas), and each can accept any of the standard options as well.
The general syntax for launching an Effect is:

new Effect.EffectName(element, required-params, {options});

The effects are all asynchronous which means that if you launch sev-
eral effects simultaneously they will render simultaneously. This is true
whether the effects target different elements, or all target the same ele-
ment. Quick-fingered users won’t be surprised by browser lockups as
your <div>s turn yellow and balloon to twice their size, and you can
fade out as many deleted items from your list as you desire at the same
time.

This section will examine all the possible ways to utilize the core effects
from the library. In Chapter 7, Ajax UI, Part II , on page 115, we’ll look
at how to use them effectively to increase the usability of the user inter-
face. For all their cool factor, these kinds of effects can be overused and
become just another <blink> tag, so knowing why you would employ
them is just as useful as knowing how.

The standard options you can pass to the effects are:

• duration: the number of seconds the transition will take (default
1.0)

• fps: target frames per second rate (default 25)

• transition: an algorithm for determining how to move from the start-
ing point to the ending point. These are represented as a series of,
essentially, enumerated constants. Can be one of:

– sinoidal: start slow, peak in the middle, slow down on the way
out

– linear: constant speed from start to end

– reverse: constant speed, but from end to start

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=102

AJAX AND JAVASCRIPT FOR THE UI 103

– wobble: reverse direction several times during transition

– flicker: jump to random values during transition

– pulse: progress from start to end, back to start, back to end,
repeat 5 times

• from: starting point for transition, between 0.0 and 1.0 (default
0.0). See the explanation that follows.

• to: ending point for transition, between 0.0 and 1.0 (default 1.0)

• sync: whether new frames should be rendered automatically (default
true)

Think of from and to as percentages. If you are using the MoveBy() effect
to move an element 50px to the right and 50px down, then the starting
point (0.0) represents the original positions, and the ending point (1.0)
represents the original position +50px in both directions. However, if
you launch the effect using the following options:

new Effect.MoveBy('movable_element', 50, 50, {from: 0.0, to: 0.5});

then the actual endpoint would be the original position plus 25px in
both directions, since your to: option requires the transition to end
halfway through. The transition option just determines what algorithm
to use to progress from the from: option value to the to: option value.
Flicker, for example, uses the following algorithm:

return ((-Math.cos(pos*Math.PI)/4) + 0.75) + Math.random(0.25);

Effects also allow you to bind callbacks to various stages in the tran-
sition cycle. The callbacks are also asynchronous. The only caveat to
this is that, in some browsers, popping up a dialog box through alert or
confirm will allow the effect to progress, but its effects will be invisible
until the user closes the dialog. That means that whatever state the
transition is in when the dialog is closed will suddenly appear. If the
transition’s duration has already passed by the time the user closes the
window, the effect will have finished and the user will never have been
treated to your Ajaxy goodness.

Opacity

The Opacity() effect is straightforward. You can transition between an
opacity of 100% to 0%. There are no specific parameters for the per-
centage opacity, you simply use the from and to options, using 1.0 as
100% opaque and 0.0 as 0%. If you get the element to 0% opaque

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=103

AJAX AND JAVASCRIPT FOR THE UI 104

(also known as 100% transparent) you have not hidden the element
in the sense that we explained before with Element.hide()—it is simply
invisible. Using the Prototype Element.show() method will not make the
element reappear; to do that, you would need to readjust the opacity to
something above 0%. Likewise, a 0% opaque element is still taking up
space in the DOM layout.

To make an element fade quietly from sight over two seconds, you could
use:
new Effect.Opacity('some_element',

{ duration: 2.0, from: 1.0, to: 0.0 });

If you wanted the element to go out like a lightbulb (flickering on and
off until finally going out), you would use:

new Effect.Opacity('some_element',
{ duration: 2.0,

from: 1.0, to: 0.0,
transition: Effect.Transitions.flicker});

To simply flash the element a few times to draw attention to it, you can
fade it in and out:
new Effect.Opacity('some_element',

{ duration: 1.0,
from: 1.0, to: 0.0,
transition: Effect.Transitions.pulse});

Movement

Effect.MoveBy() provides easy control over repositioning elements. The
beauty of Effect.MoveBy() is that it doesn’t require the element to have
any particular placement styles already associated with it. Regardless
of whether it is an inline or block element, or whether it is positioned
absolutely or relatively, it can be moved around with the same call to
Effect.MoveBy(). You can even run the element right off the right or bot-
tom edge of the document, causing the page itself to sprout scrollbars
to allow for the new position. Repositioning it off the top or left borders,
of course, removes it from sight without affecting the overall position or
size of the page.

Effect.MoveBy() has two mandatory parameters that must be specified in
addition to the element name and options. They are the X and Y offsets
to calculate the new position. The offsets follow a simple geometry:
positive X means movement to the right, negative X means movement
to the left. Positive Y means down, negative Y is up. Therefore, to raise

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=104

AJAX AND JAVASCRIPT FOR THE UI 105

an element 100 pixels while moving it to the right by 20, you eould use
the following:

new Effect.MoveBy('some_element', -100, 20);

To shake the element in place to draw attention to it, but have it end
up back at its starting point:

new Effect.MoveBy('some_element',
0, -100,

{ duration: 2.0,
transition: Effect.Transitions.pulse});

One thing to watch out for: in the documentation at Script.aculo.us’
website, as of version 1.0, the API for the call is misrepresented. The
function itself takes the offsets in the order Y, X, but the documentation
lists them as X, Y.

Size and Scale

The Effect.Scale() method allows you to affect the overall size of an ele-
ment. Sizing can be tricky; when the element is a container for other
elements, you have to know if you want the contents to scale as well
as the container. If the object is going to grow, should the new size
be anchored to the upper left corner of the element, or to its center?
What if the element has parts that are only visible if you scroll to them?
There are six Scale-specific options you can use in the {options} part of
the call, if necessary.

• scaleX: whether or not the element should scale horizontally (default
true)

• scaleY: whether or not the element should scale vertically (default
true)

• scaleContent: determines if the content of the element should scale
along with the container itself (default true)

• scaleFromCenter: keeps the center of the object stationary while
expanding the four corners (default false)

• scaleMode: a value of ’box’ means only scale those parts of the ele-
ment that are current visible on the page without scrolling, while
’content’ means scale everything (default ’box’)

• scaleFrom: a starting percentage of actual size to scale from (default
100%)

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=105

AJAX AND JAVASCRIPT FOR THE UI 106

Figure 6.2: Elements before scaling

Scaling a container element is tricky if you also want everything con-
tained inside to scale along with it. Graphical subelements scale auto-
matically with the container except tags. tags must be
scaled independently by applying a Scale effect directly to the tag. For
textual contents, the font size in the HTML page must bespecified in em
units in order for scaling to work. Unfortunately, em isn’t the default
sizing unit for text in most browsers, so unless you explicitly apply a
style to your text that sets it to em units, Effect.Scale() will ignore the
text and scale the rest of the container around it.

Figure 6.2 shows a <div> with a contained <div> and some text in its
original state.

<div id="window" style="border: solid 1px black;">
<div id="windowbar" style="background-color: red; color: white;">

Window title
</div>
Content body.

</div>

If you run a simple scale against this element, the container elements
will scale but not the text. This call doubles the size of the elements, as
shown in Figure 6.3, on the next page.

new Effect.Scale('window', 200);

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=106

AJAX AND JAVASCRIPT FOR THE UI 107

Figure 6.3: Elements after simple scaling

In order to get the text to scale along with the graphics, we’d need
to apply a style to the original elements to set the text to em units.
Unfortunately, em units are not the standard in any browser. If you
don’t size your text specifically using styles based on em units, scaled
elements will look horrible by default.

<div id="window" style="border: solid 1px black; font-size: 1.0em;">
<div id="windowbar" style="background-color: red; color: white;">

Window title
</div>
Content body.

</div>

Applying the same scaling as before, we’d now get the result shown in
Figure 6.4, on the following page.

Highlight

Popularized by the venerable Yellow Fade Technique (or YFT, as it is
more popularly known), this effect simply transitions the background
color of an element from a start color to an end color by moving through
the spectrum between them. The original YFT resets the background
color to a buttery yellow and fades back to white. The effect brings the
eye to an element where a change has occurred, but then leaves the

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=107

AJAX AND JAVASCRIPT FOR THE UI 108

Figure 6.4: Scaling text

page in a pristine state after the transitions has completed. To enable
this, Effect.Highlight() has three effect-specific options you can use:

• startcolor: instantly changes background color of element to this
value at the start of the effect

• endcolor: target end color to transition to

• restorecolor: sets the background color to this after transition has
completed

The animation transitions between startcolor: and endcolor:, and then
the element is set to restorecolor:. The three color options only accept
hexadecimal color values as strings. The hex values can optionally
start with ’#’. You can not use standardized color descriptors such as
"red" and "khaki" nor shortform hex values such as "f00". Here are two
examples.

// simple Yellow Fade Technique
new Effect.Highlight('some_element');˚
// fade from red to blue, back to white
new Effect.Highlight('other_element',

{ startcolor: '#ff0000',
endcolor: '#0000ff',
restorecolor: '#ffffff'});

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=108

AJAX AND JAVASCRIPT FOR THE UI 109

Parallel Effects

These four core effects are all very powerful by themselves. Since they
are asynchronous, though, you can apply multiple effects simultane-
ously to get combined effects. Instead of having to wire up the combined
effects yourself, Script.aculo.us supplies the Parallel() effect that takes
care of it for you. Instead of supplying an element to Effect.Parallel(),
you provide an array of other Effects. They don’t necessarily have to all
target the same element. Effect.Parallel() will kick all the child effects off
simultaneously. You could, for example, use Effect.Parallel, to combine
the Yellow Fade Technique and a pulsating Scale effect to really draw
attention to something.

new Effect.Parallel(
[new Effect.Highlight('window', { sync: true }),

new Effect.Scale('window', 200,
{sync: true,
transition: Effect.Transitions.pulse}),

],
{ duration: 2.0});

Combination Effects

Luckily, Script.aculo.us already provides a wide variety of combina-
tion effects using Effect.Parallel and the four core effects. Once again
proving that you can build great complexity from a few simple building
blocks, the range of available effects is impressive. Using the effects is
no more complicated than using the core effects, either. The following
is the list of combination affects available as of version 1.0.

• Effect.Appear(): sets the opacity of the element to 0, fades it up to
100, and ensures that it is visible if it was hidden

• Effect.Fade(): sets the opacity of the element to 100, fades it to 0,
then hides it at the end

• Effect.Puff(): combines Scale and Opacity, growing the element to
200% while fading it out, hiding it at the end

• Effect.BlindUp(): scales the image vertically to 0, without scaling the
contents. Hides it at the end.

• Effect.BlindDown(): scales the image vertically to full size, without
scaling the contents. Ensures it is visible.

• Effect.SwitchOff(): turns the element off like an old TV. Uses Opacity
with Transitions.flicker to go from 100% to 0%, while simultane-

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=109

AJAX AND JAVASCRIPT FOR THE UI 110

ously scaling the image down to 0 with scaleFromCenter set to
true.

• Effect.DropOut(): combines MoveBy and Opacity, moving the ele-
ment down while fading it out.

• Effect.SlideDown(): uses MoveBy to animate sliding the contents of
a <div> into view. Requires your <div> to be contained by an
outer <div>.

• Effect.SlideUp() : opposite of SlideDown. Hides the element after the
transition.

• Effect.Squish(): uses Scale to go from full size to 0, ensures the
element is hidden at the end.

• Effect.Grow(): sets the size of the element to zero, uses Scale to
grow the element to full size with scaleFromCenter: set to true.

• Effect.Shrink(): like Squish, but with scaleFromContent: set to true.

• Effect.Pulsate(): uses consecutive Fades and Appears to blink the
item smoothly.

• Effect.Shake(): uses consecutive MoveBy effects to move the item
left and right.

• Effect.Fold(): combines BlindUp and Shrink to give the appearance
that the item is folding up. First, shrinks the element vertically,
then horizontally, down to 0.

Advanced Techniques

Script.aculo.us also provides a series of more avanced techniques, such
as Drag And Drop and sorting capapbilities. We’ll examine these in
detail in the next chapter.

Dojo

Dojo is a different kind of animal than Prototype and Script.aculo.us.
Whereas of those libraries are smaller, and more focused on UI good-
ness coupled with good XHR support, Dojo is essentially an entire plat-
form for building client applications. In addition to its XHR and effects
modules, Dojo includes a JavaScript collections library, widgets and
widget authoring utilities, a logging module, a math module, and lots
more. As we demonstrated in the previous chapter, the beating heart

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=110

AJAX AND JAVASCRIPT FOR THE UI 111

of Dojo is the IO libraries and the eventing system. We won’t cover that
ground again here. Instead, we’ll introduce you to the idea of Anima-
tions in Dojo, and take a look at how they are used to create effects like
we saw in Script.aculo.us.

Animations

A Dojo animation is an object that defines the parameters of a transition
between two states. The states can be anything: opacity levels, position,
color, shape. The animation itself isn’t concerned with the states, only
the properties of the transition itself. When you create an animation,
you supply four parameters:

• curve: a representation of an algorithm for returning values between
0 and 1. Like in Script.aculo.us, this value will be used as a mul-
tiplier against the current state of the element, for creating steps
or frames of the animation.

• duration: number of milliseconds the animation will take.

• acceleration: whether the animation is accelerating or decelerating
(not implemented at time of writing)

• repeatCount: number of times to repeat the animation (-1 means
loop forever)

A curve is just an object that exposes a method, getValue(n), where n is
a number between 0 and 1. The return value is an array of numbers
that can be used to calculate current state. For example, you could
create a linear curve to move from [0,0] to [100,100], thereby tracing
a line through a Cartesian plane that creates a 45 degree angle in the
upper right quadrant. Or, you could create an arc curve to move from
[255,0,0] to [0,0,255], thereby providing a transition from red to blue.
The wiki for Dojo offers the following example of a curve implementa-
tion, representing a linear transition value set.

function Line(start, end) {
this.start = start;
this.end = end;
this.dimensions = start.length;

//simple function to find point on an n-dimensional, straight line
this.getValue = function(n) {

var retVal = new Array(this.dimensions);
for(var i=0;i<this.dimensions;i++)

retVal[i] = ((this.end[i] - this.start[i]) * n) + this.start[i];
return retVal;

}

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=111

AJAX AND JAVASCRIPT FOR THE UI 112

return this;
}

Dojo provides multiple pre-implemented curves in the dojo.math.curves

module. They range from the simple Line curve, as shown above, to
Bezier curves, circles, arcs, and more. The API is simple enough to
add your own implementations. Just make sure you remember your
9th grade geometry. You simply provide an array of numbers, and the
curve will be implemented upon each element in the array, with the
return value being an array of the modified values.

To make the animation cause an element to transition, you have to
wire up the events of the animation to the properties of the element you
want to animate. Dojo’s eventing library provides us this ability. To
create our own FadeOut animation, we could use the following code:

function fadeOut(nodename) {
var node = document.getElementById(nodename);

var animation = new dojo.animation.Animation (
new dojo.math.curves.Lin([100],[0]), // linear progression from 100% to 0%
2000, // 2 seconds
0 // not implemented, but must provide

);

dojo.event.connect(animation, "onAnimate", function(e) {
node.style.opacity = e.x;

});

animation.play();
}

We must start the animation ourselves after it has been created. Then,
as the animation progresses through the curve, retrieving values, those
values are sent to the event listener. In this case, onAnimate is called
for every frame in the animation, and it takes a special event argument
that provides information about the status of the animation, including
current values, percentage complete, designated end time, etc. Inside
our anonymous listener for onAnimate, we retrieve the current value
of our linear progression from 100 to 0, and use it as the value for
the node’s style.opacity property. This causes the element to fade out
over two seconds, as per our duration parameter when we created the
animation.

Effects

Dojo uses this animation system to build its library of effects. Creat-
ing an effect is an exercise in calling the appropriate method from the
dojo.graphics.htmlEffects module. Each effect method returns a reference

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=112

AJAX AND JAVASCRIPT FOR THE UI 113

to the Animation object itself, so you can append your own listeners or
modify the properties of the animation to suit your specific needs. To
create a fadeOut animation, for example, you could use:

var node = document.getElementById('some_element');
var fader = dojo.graphics.htmlEffects.fadeOut(node, 2000);
fader.play();

If you wanted the element to be removed from the page after fading all
the way out, you can utilize the optional third parameter to include a
callback function for the onEnd event.
var fader = dojo.graphics.htmlEffects.fadeOut(

node,
2000,
function(e) {node.style.display = 'none';})

The effects currently provided by Dojo are:

• fadeOut(): fades the opacity of the element from 100 to 0

• fadeIn(): fades the opacity of the element from 0 to 100

• fadeHide(): fadeOut, but sets the .display property of the element
to ’none’ at the end

• fadeShow(): fadeIn, but first guarantees that the item is being dis-
played

• slideTo(): moves an element to a given position on the screen

• slideBy(): moves an element a certain distance on the screen

• colorFadeIn(): uses a provided color as the starting point, fades to
the original background color of the element. This effect is also
called highlight (is officially aliased that way)

• colorFadeOut(): fades from the original background color of the
element to a provided color

• wipeIn(): sets the height of the element to 0, then grows it to its
original size

• wipeOut(): sets the height of the element to its original size, then
shrinks it to 0

• explode(): takes a from node and a to node, expands the size of
the from node until it matches the to node

• explodeFromBox(): takes a set of four starting coordinates and an
end node, grows the node from the starting coordinates to the end
node position

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=113

CONCLUSION 114

• implode(): takes a from node and a to node, shrinks the from node
to fill the to node

• implodeToBox(): takes a from node and a set of target coordinates,
shrinks the from node to the shape specified by the coordinates

6.2 Conclusion

In this chapter, we’ve exposed you to the basic UI elements of three
different Ajax libraries. While Script.aculo.us and Dojo seem to provide
a lot of overlapping effects, as you can see, the style of use is drastically
different between the two libraries. Which you end up choosing for your
own projects is a matter of both taste and need; Dojo provides a lot
more in terms of functionality than Script.aculo.us, and if you require
those features, then it makes sense to work with Dojo’s effects as well.
However, if you are less interested in those advanced features and just
want the effects, Script.aculo.us is a much lighter weight alternative. It
has lower overhead from a bandwidth and a learning perspective.

In the next chapter, we’ll use these libraries to re-implement our CRM
application with whizzy UI features. We’ll show server-side validation,
notification techniques, progress indicators, and more. Additionally,
we’ll talk about what NOT to do with Ajax. There are some big anti-
patterns waiting for you out there; we’ll give you the heads up on how
to keep your app clean.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=114

Chapter 7

Ajax UI, Part II
In the last chapter, we started to look at using some of the available Ajax
JavaScript libraries to drive the user interface in a browser. Under-
standing how these libraries help you more efficiently control the UI is
Step 1. Step 2 is understanding what you should do with your new-
found tools.

This chapter will present some of the standard techniques for utilizing
Ajax on the UI. We’ll talk through validation, notification and data man-
agement strategies that have proven themselves to increase the utility
AND usability of web applications. Later, we’ll talk about some anti-
patterns, too, the things you should avoid and the tests you should
apply when Ajaxifying your application. This chapter isn’t an exhaus-
tive treatise. Our intent is to give you a set of foundational tools for
deciding how to (and when not to) proceed.

7.1 Some Standard Usages

Let’s look at several common applications of Ajax using the libraries we
talked about in the previous chapter: Prototype, Script.aculo.us and
Dojo.

Server-side Validation

Web applications are faced with a variety of standard problems. Vali-
dation is one that has spawned an infinite array of potential solutions.
We have learned over time that there is one universal delineation to
be taken into account: server-side vs. client-side. Or so we thought.
Client-side validation is handy for our users because they get “instant”
feedback about the correctness of their data entry without having to

SOME STANDARD USAGES 116

wait for the whole page to refresh. Client-side validation is largely use-
less to the application developer, however, since it is trivial for a user to
circumvent client-side JavaScript. Heck, users can ignore our rendered
HTML entirely and craft requests to our system using Telnet. Therefore,
server-side validation is always mandatory. Client-side validation is a
usability enhancement for our users.

Ajax allows us to combine the two techniques for greater usability. The
problem with client-side techniques is that the validation rule itself has
to be portable to the browser. This means you can execute regular
expression matches, required field checking, and even small-scale data
comparisons (for example, is the state abbreviation one of the standard
50 two-letter abbreviations). You can’t, however, validate the inputs
against your database, or against any server-side resident data or rules.
With Ajax, we get the benefits of client-side validation (“instant” feed-
back without a page refresh) but the power of server-side validation
(comparison against server-resident data or rules).

This means that we can create web applications with full validation
the way we have historically been able to do only in fat client applica-
tions. We can use a full-fledged rules engine, for example, for validating
individual data fields. But keep in mind that we are still required to re-
validate the data on the final submission, because users can bypass
an Ajaxified web application just as easily as a standard one, which
means the final POST must be checked from top to bottom. So, this
pattern gives us more powerful client-side usability, but does not solve
the underlying security problem at all.

We’re going to modify the CRM application from the earlier chapters
with our new Ajax patterns. For this validation example, we have to
start by preparing the UI itself. Here is the original HTML for rendering
the Customer Name and Address fields for input:

File 13 Line 1 <tr>

- <th>Customer Name:</th>
- <td><input type="text" name="name"/></td>
- </tr>
5 <tr>
- <th>Address:</th>
- <td><input type="text" name="address"/></td>
- </tr>

It includes a label and an input field for each data value. It doesn’t
have any reasonable place to put an error message when validation
fails. Error messages should be conveniently colocated with the input
fields they describe, so we’ll add a new element directly beside

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=116

SOME STANDARD USAGES 117

Validation Error Messages

In addition to displaying error messages next to the fields they
are associated with, it is also common (and, dare we say,
appropriate) to include a general message area that provides
a summary of all error messages. Adding one is left as an exer-
cise to the reader.

the input fields. The s will be marked with a specific CSS class
so that we can control their look (in this case, we’ll just style the text
red). Plus, we’ll update the input fields to each have a unique ID, which
we can use to extract the values at runtime, and the new s also
have IDs so we can fill them in with new innerHTML after validation.

Secondly, we’ll need to hook our validation code up to an event on the
input fields. The standard event to hook for this purpose is the onblur
event. This event fires whenever the user changes focus away from the
field, whether by clicking elsewhere or tabbing away from it. We’ll call a
JavaScript method from the onblur event that will perform the valida-
tion. The method is called validateField(), and we’ll examine it more in a
minute. For now, know that the function takes four parameters:

• field id: the id of the input field being validated

• required: whether or not this field is a required field

• validation: the validation rule to execute on the data

• update: the id of the field used to display the error message

The new version of the UI elements looks like this:

File 8 Line 1 <tr>

- <th>Customer Name:</th>
- <td>
- <input type="text" id="name" name="name"
5 onblur="validateField('name', 'required', 'name', 'nameError')"/>
- </td>
- <td colspan="2">
- <span style="border-bottom: solid 1px red;
- color: red;" id="nameError">

10
- </td>
- </tr>
- <tr>
- <th>Address:</th>

15 <td>
- <input type="text" id="address" name="address"

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_validation.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=117

SOME STANDARD USAGES 118

- onblur="validateField('address', 'required', 'address', 'addressError')"/>
- </td>
- <td colspan="2">

20 <span style="border-bottom: solid 1px red;
- color: red;" id="addressError">
-
- </td>
- </tr>

Thirdly, we need to write the method that calls the validation on the
server. Its job is to launch an asynchronous request, passing in enough
information to validate the field, and then update a named display ele-
ment with the error message, if any. Our validateField() method first
constructs a parameter list to append to the validation URL using the
input parameters to the method. It then uses the Prototype library’s
Ajax.Updater to fire the request and fill in the display field with any
error message generated.

File 8 Line 1 function validateField(fieldname, required, validation, update) {

- var params = "type=" + validation +
- "&required=" + required +
- "&value=" + $F(fieldname);
5
- new Ajax.Updater(update, validationUrl, {
- asynchronous: true,
- method: "get",
- parameters: params

10 });
- }

Finally, we need to create a server-based validation engine. You could
invoke any standard platform validation engine you desire: Struts vali-
dation, dyna-validation, Spring’s Validator, the ASP.NET validation rules,
a rules engine, whatever. Here, we’ve written a custom Servlet that
takes a field’s value and the rules to invoke (required or not, plus spe-
cific rule) and either returns an empty String (meaning it succeeded) or
an error message (for failure). Clearly, we’d add things such as i18n
and SQL-injection protection if this were to be released to the public.
Here is that servlet, in its entirety:

File 6 Line 1 package ajaxian.book.crm.servlet;
-
- import javax.servlet.http.HttpServlet;
- import javax.servlet.http.HttpServletRequest;
5 import javax.servlet.http.HttpServletResponse;
- import javax.servlet.ServletConfig;
- import java.io.PrintWriter;
- import java.io.IOException;
-

10 public class ValidationServlet extends HttpServlet {
- public void doGet(HttpServletRequest request,
- HttpServletResponse response)
- throws IOException {

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_validation.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/java/ajaxian/book/crm/servlet/ValidationServlet.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=118

SOME STANDARD USAGES 119

Figure 7.1: Form waiting for input

-
15 response.setContentType("text/html");

- PrintWriter out = response.getWriter();
- System.out.println(request);
- String required = request.getParameter("required");
- String type = request.getParameter("type");

20 String value = request.getParameter("value");
- String message = "";
- if(required.equals("required")) message += validateRequired(value);
- out.println(message);
- }

25
- private String validateRequired(String input) {
- if (null==input || 0==input.length()) return "Field required";
- return "";
- }

30 }

When the user first sees the page, as shown in Figure 7.1 , it looks like
any standard HTML form, waiting for input.

As the user tabs through the fields, leaving data that breaks the rules,

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=119

SOME STANDARD USAGES 120

Figure 7.2: Form displaying validation errors

the page updates without a refresh, giving the user instant feedback,
as shown in Figure 7.2 .

Request Notification

The asynchronous server-side validation we just created works well.
The user gets a pretty big benefit without too much of a cost. We do
have one problem, though. The user is firing server-side events via a
non-standard mechanism. Rarely does a web application user expect
the TAB key to establish a connection back to the server. Without that
expectation, they might be very surprised to find that bandwidth is
consumed at this point, and even more surprised when, a half second
later, the UI suddenly pops up a block of red text next to the field they
just left. If you take into account the expected occurrence of network
latency, and suddenly you have the scenario of a user getting all the
way to the bottom of a form before error messages start filling in at the
top. How bad would it be if the error messages popped up in an area of

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=120

SOME STANDARD USAGES 121

the screen the user has already scrolled past? Fairly inconvenient, at
the least.

The answer is to include a feedback mechanism that alerts the user that
a request is in progress. Browsers typically accomplish this through
a spinning/jumping/waving graphic in upper right corner that only
animates while a request is being processed. Ajax techniques can’t
take advantage of this UI convention, though, for two reasons: it is
difficult-to-impossible to control the browser’s request icon, and it can
only alert you to the status of a single request at a time. With Ajax, and
a technique like the validation described above, there can be multiple
concurrent requests being processed.

The standard solution is to show an animated graphic that indicates
a request in process, but show it inline, wherever the results of the
request will be displayed. If the graphic pops up immediately, the user
knows right away that something is happening and where to look for the
results. Multiple graphics can be shown simultaneously by embedding
them in multiple containers in the DOM. The current standard is to
use an animated GIF image, which is quick to load and implies activity
without having to actually poll the current status of the request, as
shown in Figure 7.3, on the next page.

First, we’re going to add some s to the page to hold our progress
indicators. In this case, the image as an animated GIF called progress.gif,
which is just a spinning wheel. We’ll add them between the input fields
and the associated error message containers; this will place the notifi-
cation GIF approximately where the error message will appear, so the
eye is drawn to the appropriate place. We’ll go ahead and make a hard
link to the image, rather than loading it dynamically with JavaScript,
though either would be acceptable. The browser will natively attempt to
cache the image for the first container, and all subsequent containers
will use the cached GIF, preventing needless roundtrips to the server
for the same file. We’ll simply place the image in a whose dis-

play: style is set to none. When we want to notify the user, we toggle the
. When the request is complete, we toggle it again.

File 7 Line 1 <tr>

- <th>Customer Name:</th>
- <td>
- <input type="text" id="name" name="name"
5 onblur="validateField('name', 'required', 'name', 'nameError')"/>
- <span id="nameProgress"
- style="display:none;">
- </td>

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_val_with_progress.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=121

SOME STANDARD USAGES 122

Figure 7.3: Form processing validation request

- <td colspan="2">
10 <span style="border-bottom: solid 1px red; color: red;"

- id="nameError">
-
- </td>
- </tr>

15 <tr>
- <th>Address:</th>
- <td>
- <input type="text" id="address" name="address"
- onblur="validateField('address', 'required', 'address', 'addressError')"/>

20 <span id="addressProgress"
- style="display:none;">
-
- </td>
- <td colspan="2">

25
-
- </td>
- </tr>

Secondly, we have to update our request generating code. In the last
example, we use the Prototype library’s Ajax.Updater object to perform
our round trip. We’ll extend that example here. The options collec-

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=122

SOME STANDARD USAGES 123

tion contains four event hooks: onLoading, onLoaded, onInteractive and
onComplete, each corresponding to one of the four readystate values.
Prototype simply implements the onreadystatechange hook, then pub-
lishes the specific events as those values arrive. We’ll trap the onLoading

and onComplete events, to allow us to show the image when the request
begins and hide it once a response has been received. The values for
the two events need to be function calls. Instead of simply calling Ele-

ment.show() and Element.hide() directly, we’ll wrap them in anonymous
functions. If you don’t do this, the onLoading call never completes, the
validation result is never received, onComplete is never called and the
little spinning wheel becomes the only interesting thing about the page.

File 7 function validateField(fieldname, required, validation, update) {

var params = "type=" + validation +
"&required=" + required +
"&value=" + $F(fieldname);

new Ajax.Updater(update, validationUrl, {
asynchronous: true,
method: "get",
parameters: params,
onLoading: function(request) {Element.show(fieldname + 'Progress');},
onComplete: function(request) {Element.hide(fieldname + 'Progress');}

});
}

Update Notification

Web surfers are largely trained to believe that something loaded on a
page is static. They understand that, in order to update the contents
of a page, the page must be reloaded. The only cognitive exception to
this rule is animations. The web surfing population understands that
certain graphics are not static, but in fact loops of animation. These are
expected to repeat the same set of information over time, though, and
are not actually “dynamic” in any data-centric meaning of the term.

Ajax is all about breaking this particular expectation. That is, in fact,
the core idea of Ajax: break free from the bonds of static information.
But it literally goes against the foundation of most users’ understanding
of how the web works. Which means that we have to take special pains
to ensure that when we do break this convention, users don’t miss it.

The primogenitor of this pattern is the famous Yellow Fade Technique,
or YFT. Apparently created (or at least named) by the crew at 37sig-
nals, the YFT is a simple trick. Simply choose a color (canonically and
eponymously yellow), reset the background color of an element to this
new color, then slowly transition it back to the original. The effect is

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_val_with_progress.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=123

SOME STANDARD USAGES 124

to highlight an area of the page as though with a Highlighter so as to
draw the user’s attention, but to have that intrusive effect disappear so
as not to detract from the overall look and feel of the page.

To do this, you might write some code that manipulates the background-

color style of an element. You might want to capture the original background-

color so as to return the element to its original state at the end of the
effect. You would be forced to deal with the fact that most browsers
internally store colors in the form rgb(nnn, nnn, nnn). If you would pre-
fer to work in hex notation (#ffffff) then you would have to convert them
yourself. Likewise, you would have to come up with some strategy for
moving from the original value to the target value for each color (red,
green and blue) simultaneously to get a smooth transition.

Luckily, somebody else has already done that work for you. Previ-
ously, we’ve used the Prototype library to do server-side validation
and progress notification. We’re now going to layer the Script.aculo.us
library on top of that to get the Highlight effect.1 We’ll modify the sam-
ple application to use the YFT to alert you when the content of the City
and State fields has been updated.

First, we don’t have to change the HTML at all. We already have a
container element with a unique ID that we can use for the highlight
effect. It’s the <tr> that holds the City and State fields. Its ID is rewrite.

File 9 Line 1 <tr id="rewrite">

- <th>City:</th>
- <td>
- <input id="city" type="text" name="city"/>
5 </td>
- <th>State:</th>
- <td>
- <input id="state" type="text" name="state"
- size='3' maxlength='2'/>

10 </td>
- </tr>

The second part is to update the getZipData() function to trigger the
effect when the data has been loaded. Remember, XHR features the
onreadystatechange event to alert your code when the status of the
request has changed. In this case, though, Prototype offers us another
option. As we saw in chapter XXX, the Prototype library provides two
new events, onSuccess and onFailure, so that we can write error-aware
asynchronous methods. Our current version of getZipData() already
makes use of onFailure to alert the user if the request failed:

1http://script.aculo.us/

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/AjaxUI/figure_ed_screen_yft.html
http://script.aculo.us/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=124

SOME STANDARD USAGES 125

File 13 Line 1 function getZipData(zipCode) {

- new Ajax.Updater("rewrite", url, {
- asynchronous: true,
- method: "get",
5 parameters: "zip=" + zipCode + "&type=html",
- onFailure: function(request) {
- assignError(request.responseText);
- }
- });

10 }

When the request fails, the assignError() function is called to display the
message. We’re now going to add a handler to the onSuccess method
to perform the YFT. We use onSuccess instead of onComplete because
onComplete will fire regardless of what’s in the response. This would
lead us to highlight city and state even if their data doesn’t update.
Instead, we use onSuccess, which only fires if the request returned data
that ends up in the display fields.

File 23 Line 1 function getZipData(zipCode) {

- new Ajax.Updater("rewrite", url, {
- asynchronous: true,
- method: "get",
5 parameters: "zip=" + zipCode + "&type=html",
- onSuccess: function(request) {
- new Effect.Highlight('rewrite');
- },
- onFailure: function(request) {

10 assignError(request.responseText);
- }
- });
- }

The effect of this new handler is that the row containing City and State
will go yellow whenever the request succeeds, then fade back to white
over a one second period. Bear in mind, as we learned in the previous
chapter, you can affect the behavior of the transition by submitting
options to the call. For example, you can change the transition to go
from cornflower blue to white over three seconds with a linear transition
by changing the call to:

Line 1 new Effect.Highlight('rewrite',
- { startcolor: '#92A4E2',
- duration: 3.0,
- transition: Effect.Transitions.linear });

You can also choose the end transition color (endcolor) and the final
color to use after the fade (restorecolor) if you need to.

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxlibs/figure_ed_screen_prototypeunhbox voidb@x kern z@ char `discretionary {-}{}{}updater.html
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxui/figure_ed_screen_yft.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=125

SOME STANDARD USAGES 126

Auto Update

One of those things that often sets traditional thick clients apart from
thin clients is the ability to quickly react to what the user is doing. For
example, there are lots of locally installed applications that can react
to what a user is typing, and make intelligent guesses about how to
complete the word(s) for the user. Google (once again) showed that the
same thing could be accomplished on the web with Google Suggest.
This feature has come to be known as autocomplete.

Scriptaculous provides an amazingly simple-to-use version called the
AutoCompleter. It watches an input field and sends a post parameter
of the same name to a registered server endpoint. The results are ren-
dered in another container node, allowing the user to choose from the
results. The whole affect can be achieved with the addition of one con-
tainer, one line of JavaScript and a little simple CSS.

Let’s add this feature to the sample CRM application. We’ll prompt
the user with potential zip code matches based on what they are typ-
ing in the zip field. As they type into the zip field, we’ll compare that
against the list of available zip codes, and return those that are poten-
tial matches (the ones that start with the characters entered so far).

Let’s start with a servlet that implements the auto completion feature.
Any reasonable production-quality version would use a database of
zip codes, and the SQL "SELECT x WHERE zip LIKE ’y%’" notation to
retrieve values. To keep it simple for the book, the servlet will instead
just keep an array of zips as strings to compare against. Here’s the
servlet:

File 5 package ajaxian.book.crm.servlet;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletConfig;
import java.io.PrintWriter;
import java.io.IOException;
import java.util.Iterator;
import java.util.ArrayList;

public class AutoCompleteServlet extends HttpServlet {
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws IOException {

System.out.println(request);
String[] zips = new String[] {

"10010", "11035", "27707", "31000", "32230", "34434",
"45555", "46666", "46785", "46699", "49999", "53711", "53703" };

ArrayList results = new ArrayList();

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/java/ajaxian/book/crm/servlet/AutoCompleteServlet.java
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=126

SOME STANDARD USAGES 127

String val = request.getParameter("zip");
for(int i=0;i<zips.length;i++) {

if(zips[i].startsWith(val)) results.add(zips[i]);
}

String message = "";
Iterator iter = results.iterator();
while(iter.hasNext()) {

message += "" + (String)iter.next() + "";
}
message += "";

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println(message);
}

}

Next, we’ll have to add the Ajax.AutoCompleter and a container <div> to
hold the responses we get from the server. The entire update to the UI
is shown here:

File 22 <tr>

<th>Zip:</th>
<td><input autocomplete="off" onblur="getZipData(this.value)" type="text" name="zip" id="zip
<div class="auto_complete" id="zip_values"></div></td>
<script type="text/javascript">new Ajax.Autocompleter('zip', 'zip_values',

'/ajaxian-book-crm/autoComplete', {})</script>
<td id="zipError" style="color: red"></td>

</tr>

First, we had to make a minor change to the zip input field itself.
We added the autocomplete="off" attribute, which prevents the browser
from attempting to fill in the value itself. This would pre-empt our
JavaScript version, and nullify the whole exercise, so we’ll disable it.
Next, we have to add a container to hold the results; that’s the <div>

named "zip_values". Finally, we add a <script> block to invoke the
Ajax.AutoCompleter. The first parameter is the id of the input field to
be auto-completed, the second is the id of the container to display the
results, the third is the server endpoint to send the request to, and the
final parameter is a collection of options.

In our case, we’re not using any of the optional parameters since the
defaults work just fine for this purpose. However, the options you have
to customize the behavior of the AutoCompleter are:

• paramName: a name to use for the value sent to the server (defaults
to the name of the target input field)

• frequency: how often to check for changes to the input field and
send the request (defaults to 0.4 seconds)

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxui/figure_ed_screen_autocomplete.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=127

SOME STANDARD USAGES 128

• minChars: how many characters the user has to enter before the
first request is sent (defaults to 1)

• afterUpdateElement: a callback hook for after the values are returned
and set into the target container

Scriptaculous also provides another object, AutoCompleter.Local which
uses a locally cached list of values instead of making roundtrips to the
server. This would increase speed at the expense of stale data.

To finish the example, we just have to make the results look pretty.
Without any style help, the results will be displayed in a transparent
<div> as a series of bulleted list items, without keyboard navigation.
Clicking on one with the mouse would be the only way to select and
entry from the list. We are using the styles provided by Scriptaculous
to make our list entries navigable and pretty, as shown below:

File 22 <style>

div.auto_complete {
width: 350px;
background: #fff;

}
div.auto_complete ul {
border:1px solid #888;
margin:0;
padding:0;
width:100%;
list-style-type:none;

}
div.auto_complete ul li {
margin:0;
padding:3px;

}
div.auto_complete ul li.selected {
background-color: #ffb;

}
div.auto_complete ul strong.highlight {
color: #800;
margin:0;
padding:0;

}
</style>

The final result is shown in Figure 7.4, on the following page. Notice
how the effect is like a drop-down box. The <div> has a narrow black
border, the individual items are displayed without list bullets, and as
you key up and down the list, the items highlight with (in this case) a
pale yellow. Pressing enter while an item is highlighted, or clicking one
with the mouse, causes that value to be set into the input field.

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxui/figure_ed_screen_autocomplete.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=128

IT ISN’T ALL JUST WINE AND ROSES... 129

Figure 7.4: Auto-complete in action

7.2 It Isn’t All Just Wine and Roses...

Ajax is fantastic. It opens the web to a whole new way of developing and
delivering applications to your users. Largely, it changes the experience
of using a web app from reading to using. As long-time instructors and
trainers, we know first-hand the value of interaction in keeping stu-
dents engaged and happy. The same phenomenon applies to applica-
tions, as well. If your application is passive, and makes your users
passive consumers, then the application will not capture your users’
attention. An interactive version, however, has the power to excite.

Even though Ajax has this power to change the web so radically, it
behooves us all as developers to remember why the web enjoys such
broad acceptance. It is based around certain standards (technical and
visual) that have allowed users of all stripes to take advantage of ser-

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=129

IT ISN’T ALL JUST WINE AND ROSES... 130

vices provided there. Those standards, some written and some sim-
ply understood, are vital to the success of all applications on the web,
whether or not they use Ajax.

The key to a successful Ajaxification is to not ignore important conven-
tions. There are certain laws of the land that made the web so popular
and accessible, in ways that other applications and technologies never
were. As you add this new technology into your application, think both
tactically and strategically. Ask yourself the following questions:

• “Is what I’m adding increasing the usability of my application, or
the length of my resume?”

• “Does it break an ingrained habit of my users?”

• “Is the value worth the cognitive dissonance such a break will
cause for my users?”

Tactically, the change might increase the usability of this single page,
but strategically, reduce the usability of the application as a whole.

We’ll walk through some of the biggest anti-patterns to watch out for.
This list is not exhaustive. When in doubt about something you are
working on, check it against our smell-test questions above. And keep
in mind that the key is usability and fun: if it increases both, then do
it!

Watch That Back Button!

Two things set the World Wide Web apart from everything that came
before it: the back button, and the bookmark. Applications histori-
cally were guided tours. Users were encouraged to follow certain paths
through the information provided. At best, users might be able to
search for a specific item or screen and navigate directly to it. If they
moved on, the only way to get back was to run the search again.
And even this was a rare enough feature for an application. Consider
Quicken circa 1998, or those multimedia encyclopedias we all bought
back in ’96. You had tables of contents, and search capabilities, but no
notion of the history of your actions.

The back button isn’t just a button; its a symbol of freedom. It means
that you are free from the shackles of the guided tour. You forge your
own path through the information at your fingertips, and can retrace
your steps at your leisure. You become the master of the applica-
tion, instead of the other way around. Don’t believe me? Go into your

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=130

IT ISN’T ALL JUST WINE AND ROSES... 131

browser and turn off the navigation bar and see how long you go before
having to turn it back on again.

Bearing this in mind, now picture how the back button actually works.
The default behavior for a browser is to cache pages as they are down-
loaded. Clearly, this feature can be overridden at either the browser or
server level, but the default is to create a local cache. Only the orig-
inal state of a page as downloaded from the server is cached. If the
DOM is modified in any way by client-side JavaScript, those changes
are not reflected in the cache at all. Conversely, if the page was NOT
cached, then the back button merely sends a new request to the server
to request the page, which will return the page in its original state any-
way. The practical upshot of all this is that all your Ajax goodness is
lost when the user navigates away from your page and back again.

Its even worse than it looks at first glance, as well. If the page has
elements whose value is determined at parse-time, then those values
will be cached along with the rest of the page. Clicking the back button
will normally result in a load from cache where possible; if the page
was cached, the elements will contain possibly outdated values since
the server-side parse never takes place a second time. At that point,
only if the user manually refreshes the page will the new values appear.

It becomes incumbent on the designer of the application to distinguish
between information retrieval and navigation. When a user wants to
proceed to a new topic area, they generally want a history of where
they were previously. The back button is the instant access to that his-
tory; navigating to a new subject area via an Ajaxian in-page replace-
ment nullifies the ability of the back button to perform its appointed
duties. Take, for example, the very common practice of online newspa-
pers splitting its articles up over multiple pages. In standard HTML, the
current page ends with a link to Next Page>>. Clicking that reloads the
browser and shows page 2 of the article. At the bottom are now links
to <<Previous Page and Next Page>>. Users can use either the link or the
back button to navigate backwards. Since the pages are part of a uni-
fied whole, and the user is already trained to use the Next Page>> link
for forward navigation, it wouldn’t bee too much of a stretch to do an
Ajax version where the pages are loaded into a <div> on the fly. Users
would use the built-in navigation as before; clicking the back button
would take them away from the article entirely, back to the table of
contents. This seems fairly natural.

Alternatively, imagine the same online newspaper site, but with a table

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=131

IT ISN’T ALL JUST WINE AND ROSES... 132

of contents whose links to articles operate in Ajax fashion. Clicking on
the title of an article replaces the table of contents with the text of the
article. Navigating forward and back in the article happens via Ajax as
well. When the user clicks the provided Next and Previous buttons, new
pages are loaded into the same <div>. What happens if the user clicks
the back button now? They don’t end up back at the table of contents;
instead, they end up at whatever web site they were at before coming
to the newspaper site at all. This is because the table of contents was
forced into the same page context as the articles it listed. By doing so,
you have essentially eliminated the history of a topic transition for your
user (toc → article) that they would normally expect to be maintained
for them.

It is hard to pin down the exact point at which Ajax breaks this rule.
But it is really easy to spot it after you have done it. Just use your
application a few times. Whenever you find yourself annoyed because
you can’t retrace your steps, you have probably found an instance of
this anti-pattern.

Bookmarking Makes the Web

Bookmarking is the kissing cousin of the back button. It is a user-
controlled meta-history of their browsing exploits. Bookmarking the
index page (the welcome mat) is less useful now than it was in the past.
With Google as our shared bookmarks, most people don’t bother book-
marking the index page anymore. Its just as easy to run to Google, type
in the page name, and click the resulting link (or even the I’m feeling
lucky button, which we almost never are). Instead, we use bookmarks
for deep linking. This means capturing the state of the application or
site at some point after you have begun interacting with it. Perhaps the
results of a search at Amazon, or the report of your current holdings
at your financial institution, or some particular article at the New York
Times.

Deep linking means that users have the complete ability to pause and
return to your application. If state is maintained (cookies, long term
sessions, backend storage, whatever) and users can specify where in
the application flow to resume their work, then they are not chained to
your timetable. We often find ourselves in the middle of something on
an application but forced to take a call, or run to a meeting. We want
to know that we can pick up right where we left off at some later time.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=132

IT ISN’T ALL JUST WINE AND ROSES... 133

So we bookmark the page. If we come back, open the bookmark, and
end up back at the index page instead, we’re displeased.

When a user arrives at an Ajaxified page, the URL that appears in the
address bar is whatever they typed in or clicked on to get there. When a
bookmark is added to a browser, it makes a copy of the current address
in the address bar. If the page has allowed the user to progress through
tens or hundreds of interactions, the URL in the address bar is exactly
the same as it was for the initial request. A user who navigates to the
bookmark will always end up at the original state of the page; Ajax-
based changes will be long forgotten.

Once again, we are faced with the distinction between a major topic
area of the application vs. a minor shift in focus. Users will accept cer-
tain limitations on their bookmarking ability; for example, most people
don’t expect to be able to bookmark a page halfway through the check-
out wizard at an ecommerce site. Clearly, users have come to learn the
difference between static pages and stateful processes which can’t be
snapshotted. Developers now have to come to the same realization:
what transitions can I encapsulate in a non-bookmarkable process,
and what requires page transitions in order to allow pause-and-resume
behavior?

GET is for Getting, POST is for Doing

In the world of HTTP, browsers communicate with servers using (typi-
cally) either GET or POST requests. A GET request is generated when-
ever you click on a hyperlink; the idea is that it gets the next page. A
POST request is sent when you hit the submit button on an HTML form.
It posts the data from that form back to the application for processing.

In May of 2005, the team that created Basecamp (and Ruby on Rails)
learned this really valuable lesson: GET is for getting things, POST is
for doing things. The HTTP specification is pretty specific on this topic.
GETs are for retrieving data. POSTs are for interacting with the server
in a way that might change server state. When you avoid the recom-
mendations of a specification, bad things can—and often do—happen.
Their public tussle with this issue serves as a cautionary tale for the
rest of us: if these kinds of issues can affect the best and brightest,
we need to be extra careful in our own applications to avoid similar
problems.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=133

IT ISN’T ALL JUST WINE AND ROSES... 134

Basecamp’s problem was that, at the time, the default method for cre-
ating links back to the server with Rails was a GET. It didn’t matter
what the link was doing: redirecting to a new page, reading a record,
or deleting a record. Then, Google released the Google Accelerator.
The Google Accelerator installs in your browser and redirects requests
through Google’s servers. If Google has already cached the page, you’ll
be rewarded with the previously cached version, thus speeding up your
access time. If the page has not been cached, then the request is for-
warded on as normal. Google Accelerator then walks all the links off of
the returned page, thus caching it and all of its sub pages.

For an application whose controls are all provided as simple GET-
method links, Google Accelerator becomes the most efficient destructive
force imaginable. Think of it as the Terminator of web apps. It is single-
minded: fire a request to every link on the page. It is efficient. And it
absolutely will not stop until your app is dead.

37signals didn’t realize there was a problem until data started dis-
appearing from the Basecamp database. As users began reporting
that their data was mysteriously missing, the team finally realized that
the common thread was Google Accelerator. Normally, such a thing
wouldn’t be a terrible problem. After all, Google’s indexing worms fol-
low essentially the same path; find a page, navigate to all the link end-
points, cache, continue. But with Google Accelerator, the worm finally
has access to information it has never had before: your username and
password. Navigate to your Basecamp account, for example, and log
in. The Accelerator can now follow all the links on your private page.
It then clicks everything it can, as fast as possible. And some of those
links are labeled Delete This Item.

The solution was to change their framework, Rails, to create POST-
method links for update methods. They did this by creating a second
view helper in addition to link_to() that creates a <form> element to
surround a button. The parameters are embedded as hidden <input>s.
The <form> is set to POST as its method. Now, your update-related
links don’t fall prey to the Accelerator.

When you Ajaxify an application, the temptation to write pages this way
is strong. You present your user with a list of items. You want them to
be able to add new ones or delete existing ones from the page without a
refresh. So you add a link to the bottom, New Record. Embedded in each
item on the list is a link called Delete. You use a simple GET with an
URL like this: http://www.mydomain.com/my/app/delete?recId=545. What

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=134

IT ISN’T ALL JUST WINE AND ROSES... 135

could be easier? Of course, the Accelerator will knock on your door.
“Sarah Connor?” it will ask. And that will be the end of that.

Tell People When Updates are Happening

When browsing a Web 1.0 application, pay careful attention to the feed-
back you get from the application, the browser, and your OS. For exam-
ple, when you click on a link to another page and the data has started
to render (but slowly), what feedback are you getting? The refresh icon
in the upper right corner of your browser begins to sping or jump or
change colors. On the Mac, the cursor turns into the Rainbow Wheel of
Doom and you can’t click on anything in the browser window (though
the browser’s menus are usually still accessible). That’s because the
navigation operation is synchronous: you are forced to wait until it has
completed before you can use the contents of the window. Or when you
choose File→Print from the menu. The dialog box often takes a second or
two to appear as it scans your network for configured printers. While
this is happening, your cursor might turn into an hourglass, and you
won’t be able to click on anything in the browser window OR on the
menus.

Synchronous operations come with their own feedback. If it is related to
requesting new information, the browser tells you via the refresh icon.
You get feedback in the form of not being able to click on resources.
Even your cursor changes to tell you “Quit clicking that.” You know
that the browser is attempting to do work on your behalf. Now, enter
Ajax. The asynchronous part makes everything different. When you
fire an asynchronous request back to the server, there is nothing that
the browser will do for you automatically that provides feedback to the
user that something is going on. It will quietly and invisibly wait for
the response to come back, then put it wherever your JavaScript tell it
to go. Suddenly, as if by magic, the rendered HTML is updated. Voila!
Some previously hidden <div> pops into view, filled with useful but
surprising information! Unfortunately, your user has already scrolled
past that part of the page, and misses all the fun.

It is up to you to provide adequate warning to your user that some
activity is being performed on their behalf. Because they are able to
continue to work with the page and the browser after firing an asyn-
chronous call, you have have to provide visual cues to them to let them
know that something is on the way. Earlier in this chapter, we showed
you a technique for popping up a notification animation. Often, this

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=135

IT ISN’T ALL JUST WINE AND ROSES... 136

technique is enough. But sometimes, you’ll have to do more. Perhaps
change the cursor, perhaps show a full progress bar. Regardless of the
specific technique, you should always provide a mechanism to warn
your users that clicking that link, or pressing that button, or doing
whatever it is, has now fired a request and the browser is waiting for a
response.

Don’t Reinvent the Wheel

We’ve grown accustomed to certain UI conventions. Modern operating
systems and their windowing toolkits all offer us certain abstractions
that have settled in our conciousness. We know what a window is,
for example. Even my parents know that when they see a box on the
screen with an outset border, a header at the top and some buttons in
upper left or right corners, that that thing can be dragged around on the
screen and it can be closed. We know what a button looks like and that
the appropriate thing to do is click on it, once, to press it. We’ve been
trained that text along the top edge of a window are probably menus,
and that if we hover the mouse over them or click on them, they are
likely to spawn little submenus. I’ve actually run this experiment with
my family. They are Microsoft Windows users. If I put them in front of
a Mac, they know how those conventions work even though the actual
graphical look is entirely different. They have no idea what the Dock is
for, but the common abstractions are plain and clear. Likewise, when
they sit at a Gnome or KDE desktop on my Linux box, everything is
fairly straightforward.

The web has taught us some additional standards. Now, we agree that
text along the top or left edges may be a menu, and that hovering the
mouse over a menu is preferable to having to click on it to get the sub-
menu to appear. We know that words, underlined and often blue, are
hyperlinks that will navigate us to a new page. Square gray boxes next
to words are check boxes, which can be checked and unchecked indi-
vidually, while groups of gray circles are radio buttons, and clicking on
one affects the others. And when the cursor turns into a little pointing
hand, that means whatever we’re hovering over is clickable.

These conventions enable a common computing experience. They are
the very thing that allows users not to have to RTFM every time they
encounter a new application. They allow us to surf the web, which
is really just the accumulation of a billion applications designed by a
billion monkeys. Without those conventions, every new web page would

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=136

IT ISN’T ALL JUST WINE AND ROSES... 137

be a new cognitive experience; we’d have to take a day to read the help
before being able to check the Eagle’s score. The web would be useless.

So don’t be tempted to think you are smarter than the collective. As
programmers and designers, we often suffer from a certain hubris that
says “I can be better than the lowest common denominator.” The prob-
lem isn’t believing that belief. The problem is mistaking “common” for
“lowest common.” Just because everybody is doing it doesn’t make it
bad. That kind of logic is just counterintuitive enough to appeal to my
old highschool self, whose fascination with The Cure and Metallica was
fed by the belief that Phil Collins couldn’t possibly be any good because
so darn many people listened to his music.

For example, Ajax enables us to create portal sites the right way. (See
??, on page ?? for further treatment of portals.) Basically, a portal is a
web site that displays multiple disparate content areas on a single page.
There could be local weather, last five email messages, who is currently
logged into the site, RSS feeds, etc. Each content area is self-contained,
they can be added and removed individually, often minimized, closed
entirely, and dragged around and repositioned. That reminds us of
something we were just thinking about...hmmm, what was it...oh, right,
a WINDOW! That’s it! A content area in a portal is just like a window!
And we currently have a convention for drawing a window so that the
user knows what to do with it. Which means that a really good portal
site should look something like Figure 7.5, on the following page.

The individual portlets clearly are closeable and minimizable, and it
shouldn’t surprise us at all to find out that they are draggable. The
temptation can be strong to reinvent all of this—rounded windows with-
out obvious title bars, little dots in the lower left corner to click on to
close the window, etc. While we’re fans of avant-garde design, we don’t
like struggling with an interface to figure out how it works. We like
being surprised by an interface even less. Stick with what works.

Likewise, launching asynchronous calls to the server based on non-
standard interactions with a page will be disconcerting to your users.
Running your mouse over an obvious menu at the top of the screen
and causing a menu to pop up is fine, even if it involves (quick) round
trips. Having menus pop up as you mouse over random words in a
paragraph would be alarming. Causing data to refresh when users
click on buttons is expected. Causing data to refresh when users click
on links might be surprising. And for crying out loud, think very very
carefully before you start shaking, puffing and squishing elements on

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=137

CONCLUSION 138

Figure 7.5: A Well-Designed Portal

screen. Ask yourself if the effect is something the users will understand
in context, or if they will just be surprised by it.

7.3 Conclusion

In this chapter, we’ve talked about some common patterns for making
effective use of Ajax in the UI. For the most part, what we’ve shown is
how to use Ajax to make web pages respond more like the rest of the
user interfaces that our customers have grown accustomed to. Alerting
our user to changes in data, or that background processing is ongoing,
or that they have committed errors in their data entry are all just ways
of increasing the responsiveness of the application while keeping with

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=138

CONCLUSION 139

standard conventions. Techniques like auto-updating text boxes allow
customers to use our applications more efficiently. Sorting data, and
drag and drop capabilities, make the UI more like the standard “thick”
UI components of our desktop systems.

As with anything, though, the trick is knowing when not to do it. The
second half of our chapter was all about keeping ourselves focused on
the most important point: usability. When these techniques make it
easier for our users to accomplish a task, then the technique is suc-
cessful. When they get in the way, when they cause our users to have
to think about what they are doing, then we should reevaluate our deci-
sion. And above all, never surprise the user.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=139

Chapter 8

Server-side Framework
Integration

Over the next four chapters, we’re going to introduce four web applica-
tion development frameworks and examine the server-side integration
techniques they use for incorporating Ajax. This kind of integration
can be very valuable for a development team, allowing the members
of the team to focus their efforts on one logical tier (the server) while
simultaneously generating artifacts for two physical tiers (server and
client).

To explore these frameworks, we’re going to walk Hector’s team through
porting their CRM application to each framework. Along the way, we’ll
talk about the reasons why Hector might consider each port, and the
relative strengths and challenges each choice presents. The four frame-
works we’ll examine are:

• PHP: Sajax is the first Ajax integration toolkit for PHP, and we’ll
examine it plus the newer Najax library.

• Ruby on Rails: Rails integrates very closely with Prototype and
Script.aculo.us. In fact, the authors of those two frameworks are
also Rails committers.

• Spring (Java): We’ll look at the integration of the DWR framework
with Spring for Java web applications.

• ASP.NET: we’ll look at both Ajax.NET, an open source Ajax library,
and the upcoming Atlas toolkit from Microsoft itself.

DIFFERENT STRATEGIES FOR INTEGRATION 141

As we look at these four frameworks, and port Hector’s application to
each, bear in mind that we can’t compare and contrast every aspect of
the frameworks. This isn’t a book about comparative web development;
its a book about Ajax and how to use it to make applications today.
We hope that these server-side chapters give you the introduction you
need to evaluate how your current platforms are approaching Ajax, and
how other frameworks you might not be familiar with are tackling the
same problems with different strategies. If you want to read more about
comparative web application development, we suggest XXX.

8.1 Different Strategies for Integration

There are several strategies that development teams can choose for
integration Ajax with their framework. The choice largely depends on
the philosophy of the framework team: should developers be using
visual tools for assembling the application? Are web applications really
about HTML? Should my server-side code be the primary metaphor for
the entire application? In general, the strategies fall into three major
categories: visual tool support, custom tag libraries (and helpers), and
ORB-like remoting.

Tooling

Some server frameworks are built around the idea of using visual devel-
opment tools for creating the view artifacts. Examples are the ASP.NET
framework with its support in Visual Studio .NET, and the JSF toolkit
for Java with support in several Java IDEs. The aim of such frame-
works are to provide developers with drag-n-drop development. To
be brief, the programmer uses components that are in charge of their
own client-side rendering (like data tables and date pickers). These are
assembled into a unified page. The components themselves are manip-
ulated through a series of declarative properties that affect everything
from their visual style to the component’s lifecycle.

These frameworks are now integrating Ajax support through these declar-
ative properties. In fact, ASP.NET has had such support for some time
now. The programmer merely selects one of the properties (like, auto-
updating for the data table) which enables in-page callbacks to the
server to refresh data. The programmer might not even be aware that
the result is, in fact, Ajax, just that the component now exhibits the
desired behavior.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=141

DIFFERENT STRATEGIES FOR INTEGRATION 142

Later, in ??, on page ??, we’ll take a look at Ajax support in ASP.NET.

Helper Tags

A second approach to Ajax integration is custom tag libraries. Toolk-
its like AjaxAnywhere1, and Ruby on Rails use custom tag libraries
(or similar constructs) as an HTML-embedded stand in for server-side
functionality. These tag libraries, sometimes referred to as helper tags,
are parsed by the template engine of the given framework, which in
turn generates client-side artifacts based on the attributes of the cus-
tom tag.

The result is a page that looks like HTML, but whose actual content is
determined at parse time. The tags provide a layer of abstraction for
integrating our server-side code into client-side templates. This can be
a quite powerful ability, as it allows the developer to focus on a single
artifact (the template) instead of jumping around between template and
alternate code files.

We’ll look at Ruby on Rails’ Ajax integration in ??, on page ??.

ORB-like Remoting

Our last category of Ajax integration with a server framework is to
use ORB-like remoting to connect client-side JavaScript to existing
server-side functionality. Using tools like JSON-RPC, DWR (for Java),
Ajax.NET, or several PHP frameworks, a developer can write JavaScript
code for the browser that can seemingly access the server-side domain
model directly. The effect of these frameworks is that your existing
domain code is now reusable across to the client tier, providing a seam-
less object model for the code on both tiers.

We’ll examine ORB-like remoting in ??, on page ??, as we discuss PHP
and its Ajax integration. First, we’ll look at the grand-daddy of all the
PHP/Ajax integration projects, Sajax. Next, we’ll compare to a newer
player, Najax.

1http://www.ajaxian.com/archives/2005/09/ajaxanywhere_aj.html

Report erratum

http://www.ajaxian.com/archives/2005/09/ajaxanywhere_aj.html
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=142

Chapter 9

Ajax with PHP
PHP is the framework of choice for many web developers. It is free and
open source, which means that it is widely adopted. For those who use
it, they find that it is a pragmatic choice, one with a bustling community
of users and developers. The community is so strong, in fact, that the
library of available additions to the framework is quite large. If you
find yourself wishing for a piece of functionality that isn’t in the PHP
core, make sure you have Googled around a bit before running off and
implementing it yourself. Chances are, someone in the PHP community
has done that work already.

This is true with the marriage of Ajax and PHP. There are several PHP-
based frameworks out there, of various quality and richness of fea-
tures. In fact, the first PHP frameworks were announced within days
of the coinage of the term "Ajax". In this chapter, we will take a look at
the most popular of these frameworks and will again rewrite Hector’s
CRM application. We’ll finally focus on the server side of the appli-
cation. Server-side framework integration means that we can utilize
the same abstractions we have available on the server to implement a
decidedly client-side set of features. The JavaScript frameworks we’ve
talked about already (Dojo, script.aculo.us), etc., will be put on the
back burner for now as we see what the server side can provide us.

9.1 The PHP Frameworks

Back in ??, on page ?? we discussed the fact that Ajax support has
been announced in JavaScript frameworks left, right and center. Those
frameworks were all written to run on the client, which in this case

WORKING WITH SAJAX 144

means within a browser. Server-side development frameworks face the
same pressures for innovation that client-side frameworks do.

We’ve long had support for client-side technologies in our server-side
frameworks. From template-based view rendering technologies like
JSP, ASP and RHTML, to server-side objects with self-rendering capa-
bilities like ASP.NET and JSF components, these frameworks use a wide
variety of methods to influence the client view. Now, they are adding
the ability to generate JavaScript for the client to create Ajax effects
and sometimes to hook up that JavaScript to server entities for data
transfer. There are three major categories of Ajax integration support:
visual tool support, tag libraries, and ORB-like remoting.

9.2 Working with Sajax

Let’s return now to Hector and his CRM application. He’s decided to
move his team to an open source platform, namely PHP. He’s convinced
that his team will be able to get more leverage by using an integrated
Ajax framework. This means the team can add these new effects and
callbacks without leaving the confines of PHP. We’ll first port the appli-
cation to Sajax1.

What is Sajax?

Sajax is one of the earliest Ajaxian web frameworks available, originally
written for PHP. It is an open source project, and allows you to bind
your web UI to server-side functions. It accomplishes this by exporting
client-side JavaScript functions that invoke a Sajax bridge back to the
server-side code that is actually executed, wrapping it all in an XHR
request.

Sajax is an ORB-like remoting layer, which means that we will be able
to first write the server side functions that we need (consisting of talking
to the database, and returning the correct data back) and then bind our
HTML UI directly to these functions. There will be no XMLHttpRequest()
object to be found, and you may even be surprised with some of the
JavaScript method calls that we can run, since we will not see them in
the PHP code itself.

There is some tension in the development community surrounding this
kind of object remoting strategy. Some developers are very keen on

1http://www.modernmethod.com/sajax/

Report erratum

http://www.modernmethod.com/sajax/
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=144

WORKING WITH SAJAX 145

Sajax Language Support

Sajax started with PHP and Coldfusion support, but now also
supports:

• ASP

• Coldfusion

• Perl

• PHP

• Python

• Ruby

If you do not see your favorite language, chances are Sajax will
soon support it.

using Web (XML) Services as the primary channel for communicating
between different application tiers. Depending on who you talk to, this
can mean anything from a REST-ful, loosely coupled XML-over-HTTP
architecture all the way to a WSDL, SOAP and WS-* implementation.
What they have in common is a move away from object (and method)
orientation and to a message transport and service oriented architec-
ture.

Object brokers, on the other hand, are entirely about enabling remote
communications without disrupting the mental model of the object ori-
ented developer. You can tie client-side methods to server-side objects
as though they were physically colocated, thus giving the illusion that
there are no network calls and roundtrips separating the different enti-
ties. While this is a powerful abstraction, it is still just an abstraction.
There are, in fact, network roundtrips involved and, if you look at the
messages that are sent, they look surprisingly just like the messages
sent through service oriented frameworks.

Sajax chooses to expose its functionality through an object broker, thus
placing a higher value on a standard experience for the developer across
the physical application tiers. This might provide more efficiency at
development time, but may come at the expense of efficiency at run-
time. This is because any abstraction that hides the underlying remote
nature of an architecture runs the risk of causing developers to forget

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=145

WORKING WITH SAJAX 146

MySQLi and PEAR DB Interfaces

The service code uses the original mysql PHP library. If you are
running later versions of PHP, you can use libraries such as mysqli
and PEARDB.

• mysqli offers increased functionality such as support for
prepared statements, and other performance related
improvements.

• PEARDB is a DBI/JDBC like database abstraction layer. This
allows you to easily move between various databases.

about the costs of having such a remote system. It is the responsibility
of developers using such a framework to remember the costs associated
with making remote calls and to program accordingly.

Porting CRM to Sajax PHP

In order to port the CRM application to Sajax, we will be changing the
way we think about the application. Back in the chapters on JavaScript
toolkits and frameworks such as Dojo and Prototype, we were very
focused on the front-end HTML and JavaScript code, and little was
mentioned about the back end. Now we will focus behind the scenes,
and will use Sajax to generate the front end as much as possible. This
means that instead of writing all of the JavaScript ourselves, we will
have helper functions that do some magic for us.

Building Back End Functions

Let us create PHP backend functions for the Zip to City/State ser-
vice. We will build the get_city_state() function that will use a MySQL
database to return the city and state for the given zip code. We will
place this functionality in its own PHP file, zipService.sajax.php, and
will include it from our web-facing PHP code.

We’ll start with the small things first. We define some constants to hold
information on the database itself:

File 21 define('DB_HOST', 'localhost');
define('DB_USER', 'crmuser');
define('DB_PASS', 'crmpasswd');
define('DB_NAME', 'crm');

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=146

WORKING WITH SAJAX 147

Then we create the get_city_state() method:

File 21 function get_city_state($zip) {

if (!mysql_connect(DB_HOST, DB_USER, DB_PASS)) {
bail("Could not connect to MySQL");

}

if (!mysql_select_db(DB_NAME)) {
bail("Could not use the " . DB_NAME . " database in MySQL");

}

$q = sprintf("SELECT city,state FROM zips WHERE zip = '%s'",
mysql_real_escape_string($zip));

$r = mysql_query($q);

$row = mysql_fetch_assoc($r);

if ($row['city'] && $row['state']) {
$return_string = $row['city'] . "," . $row['state'];

} else {
$return_string = "Could not find a city or state for this zip code";

}

mysql_free_result($r);

return $return_string;
}

There are quite a few lines of code here, but it is familiar to most PHP
developers. We start off by connecting to MySQL and selecting the CRM
database with mysql_connect(), and mysql_select_db(). We then build the
query making sure to escape the input via mysql_real_escape_string(). We
escape the input string to provide some protection against cross-site
scripting and SQL injection attacks.2 Finally, we fetch a row from the
database via mysql_query(), and mysql_fetch_assoc().

After all of this, we either have a matching city and state to return, or
we pass back an error message. Since we are good developers, we don’t
forget to free up our resources with mysql_free_result() before returning
our results. This ensures that any memory being hogged by our results
is eagerly released. We don’t necessarily need to call this for the script
you see here, as the results are automatically released upon termina-
tion of the script, but for the sake of explicitness, we include the call.

You may have noticed the helper function, bail(), that shouts back
errors to the browser if there are serious system issues (e.g. the database
is down). This is one of the helpful things about integrating Ajax directly
into the server-side implementation framework. When bad things hap-
pen during the server’s execution of an asynchronous callback, it helps
to have built-in channel for expressing the error information back to
the browser.

2For more information about these kinds of attacks, see XXX and XXX.

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=147

WORKING WITH SAJAX 148

File 21 function bail($message) {

header('Content-Type: text/html; charset=utf-8');
echo "<html><head><title>Zip Error</title></head><body><h2>$message</h2>" . mysql_error
die();

}

Migrating to Sajax

Our backend code is written, so now we move to the client browser
view. We’ll create a PHP file that creates the HTML for display, as well
as exports our server functions to the browser as JavaScript methods.
In figure_ed_screen_sajax.php, we include the main Sajax PHP module
("Sajax.php"), as well as the Zip Service code that we created earlier
("ZipService.sajax.php"). In addition, we have to initialize Sajax and
choose the function that we want to be able to call from the client. We
"export" the method via sajax_export("get_city_state")().

File 17

require_once("sajax/php/Sajax.php");
require_once("zipService.sajax.php");

sajax_init();
//$sajax_debug_mode = 1;
sajax_export("get_city_state");
sajax_handle_client_request();

What about the sajax_handle_client_request()()? That is where the magic
happens. If we take a step back and think about what actually happens
at runtime, we realize that for this to work, three things have to be true:

• Something has to generate the client-side Ajax call

• Something has to be listening on the server for callback from the
generated method

• The listener has to be able to invoke the original server-side method
(with parameters) based on the callback from the client, and return
the results

This is the job of sajax_handle_client_request()(). Though this is standard
boilerplate code that doesn’t change, and which you don’t have to write,
it is still important to understand what is happening here. This is
true both for debugging purposes, as well as making appropriate use
of the framework. First, the method harvests the server-side function
name and arguments from specific parameters of the request. It uses
those to dynamically invoke the server-side function. Notice also that
for GET requests, the method makes sure (as much as is possible) to
prevent client-side caching of the results, where as for POST requests,

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.sajax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=148

WORKING WITH SAJAX 149

it doesn’t bother. This is because the HTTP specification notes that
POST responses are not, by default, cacheable, so there is no need to
specify the various no-cache headers as in the GET version. 3

File 18

function sajax_handle_client_request() {
global $sajax_export_list;

$mode = "";

if (! empty($_GET["rs"]))
$mode = "get";

if (!empty($_POST["rs"]))
$mode = "post";

if (empty($mode))
return;

if ($mode == "get") {
// Bust cache in the head
header ("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in the past
header ("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
// always modified
header ("Cache-Control: no-cache, must-revalidate"); // HTTP/1.1
header ("Pragma: no-cache"); // HTTP/1.0
$func_name = $_GET["rs"];
if (! empty($_GET["rsargs"]))

$args = $_GET["rsargs"];
else

$args = array();
}
else {

$func_name = $_POST["rs"];
if (! empty($_POST["rsargs"]))

$args = $_POST["rsargs"];
else

$args = array();
}

if (! in_array($func_name, $sajax_export_list))
echo "-:$func_name not callable";

else {
echo "+:";
$result = call_user_func_array($func_name, $args);
echo $result;

}
exit;

}

With this code in place, the work of the developer is largely complete.
Since so much of the Sajax framework is handled in the bridge code,
your job is largely one of configuration (denoting which methods are to
be exported). However, around 80 or so lines of JavaScript are required
in the browser to wire all this up; one line of PHP code is all that is
required to generate and embed the scripts.

3http://www.intertwingly.net/blog/2005/03/16/AJAX-Considered-Harmful

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/sajax/php/Sajax.php
http://www.intertwingly.net/blog/2005/03/16/AJAX-Considered-Harmful
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=149

WORKING WITH SAJAX 150

Sajax Debug Mode

By setting $sajax_debug_mode = 1;, Sajax will provide you with
helpful tracing information during the execution of code within
the page. The framework delivers the information via alert()()
calls which pop up modal dialog boxes to display the informa-
tion. The type of information you’ll see includes:

• notification of the begin and end of server callback func-
tions

• the name and parameters of the server function to be
called

• the raw result of the callback

Other responses are also possible. Be forewarned that turning
on debug mode will severely hamper a users ability to actually
use the application, so only use it for designated testing pur-
poses.

File 17 <?php sajax_show_javascript(); ?>

You can examine the generated JavaScript code by doing a View Source
on the page. In addition to a bunch of standard code for instantiat-
ing the XHR object and wiring up its state callbacks, you will also see
methods generated specifically by your sajax_export() calls from before.
Each method that was exported gets a client-side helper method whose
name is x_[name of original function](). In our case, the function is called
x_get_city_state(), shown here:

function x_get_city_state() {
sajax_do_call("get_city_state", x_get_city_state.argume

}

What is the x_get_city_state.arguments() all about? To allow for a variable
length parameter list, we are packaging up all the inputs to the method
into a single collection of values. These values mimic the server-side
function definition exactly, with one addition. To enable the full Ajax
lifecycle of a Sajax method, we have to provide an extra parameter,
which is a function to use as a callback when the request returns with-
out an error. This method harvests the results of the server call and
performs the client-side work to display and/or utilize the data. The
function we have been using to this point is assignCityAndState(), which

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=150

XOAD 151

we will just reuse in this context.

File 17 function assignCityAndState(data) {

if (data.indexOf(',') > 0) {
var cityState = data.substring(1).split(',');
document.getElementById("city").value = cityState[0];
document.getElementById("state").value = cityState[1];
document.getElementById("zipError").innerHTML = "";

} else {
document.getElementById("zipError").innerHTML = "Error: " + data;

}
}

Since we are leaving the main part of our HTML identical to the early
Ajax examples, we can wrap these calls with our faithful getZipData():

File 17 function getZipData(zipCode) {

x_get_city_state(zipCode, assignCityAndState);
}

Gaining and Losing

So there you have it. We have shown how you can take the Sajax
framework, and export server-side functions in a very simple manner.
Sajax really is simple to use, but there are some drawbacks. The main
drawback is that you only have the ability to return simple types from
your exported functions. You can’t return a rich object and have it jump
into a JavaScript object (via JSON or anything else). This means that
you may often create wrapper functions around existing server-side
code to wrap their return types with simple String based information
which can be parsed manually on the client.

Similarly, other frameworks (like Dojo) offer transparent failover sup-
port for older browsers. For example, Dojo can switch to use iframes
for remoting when the XHR object is not available. Sajax provides no
such support; it is a no-frills framework designed to make it easy to
take advantage of Ajax features in modern browsers. What you gain is
simplicity: a standard programming model with little to no JavaScript
code to be written.

9.3 XOAD

Sajax isn’t the only PHP Ajaxian framework in town. A newer kid on
the block is XOAD. We are going to port our CRM application from the
Sajax version, and get a good view of the similarities and differences
between the two popular frameworks.

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_sajax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=151

XOAD 152

Sajax Could Work This Way

At this point in time, Sajax could work with this code too. A
simple way to get it to work is to create a wrapper function
that we utilize like this:
function get_city_state($zip) {

return ZipService::get_city_state($zip);
}

Soon we will change the class more though for XOAD, and it will
no longer work with Sajax.

From Procedural to OO

XOAD is similar to Sajax in that it is also uses an ORB-based remoting
model where you bind your JavaScript layer to your server-side code.
You would think that we would be able to use exactly the same Zip
Service that we already created for the Sajax version. This isn’t going to
be the case, due to the fact that XOAD cares about classes and OO. We
will not export just methods, but will give XOAD objects and classes.
This means that we need to change the Zip Service to be a class.

Changing the Back End

We can do this in a slightly cheeky manner. We are going to take the
get_city_state() and bail() functions and make them static methods in a
zip service class. We wrap the code in class ZipService { ... }, and we make
the functions static by adding the static keyword before their definitions
(so we have static function get_city_state($zip) {...}).

The one change we need to make to the back end for XOAD is the addi-
tion of metadata to the class that describes what should be exported.
This metadata gets added via a simple instance method on the zip ser-
vice:

File 19 function najaxGetMeta() {

NAJAX_Client::mapMethods($this, array('get_city_state'));
NAJAX_Client::publicMethods($this, array('get_city_state'));

}

You have some options on what you want to export. In our example,
we give the map of methods that we want to export, and we assign
the access to public methods. You can access private methods via

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.najax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=152

XOAD 153

XOAD_Client::privateMethods(), and variables can be accessed directly via
XOAD_Client::privateVariables() and XOAD_Client::publicVariables(). Any OO
purist will tell you that doing so violates the principles of encapsulation:
namely, private members and data fields should be accessible only by
the defining class or specifically trusted entities. Therefore, be care-
ful when utilizing these methods and ensure that you are getting the
functionality you actually need.

Back to Front

We start in on the client side as we did with Sajax. We load everything
we need, and define the base directory for all things XOAD. In this case,
we are using a subdirectory called ’najax’.

File 15

define('NAJAX_BASE', 'najax');
require_once('najax/najax.php');
require_once('zipService.najax.php');
NAJAX_Server::allowClasses('ZipService');
if (NAJAX_Server::runServer()) {

exit;
}

We will also register the classes we want to be remotable. It it not
technically necessary to do this, but it is considered the polite thing to
do. XOAD keeps two hashes full of classes, one for allowed classes and
one for denied classes. Calling methods on denied classes results in an
error; calls to methods on allowed or unassigned methods will proceed.
However, in keeping with suggested usage, we’ll register the ZipServer

class with XOAD_Server::allowClasses().

XOAD sets up XHR requests to come back to the same PHP server
page. This means that our PHP page is accessed in two modes. One
is to display the main page, and the other is to access the callback
function. The check in XOAD_Server::runServer()() is there to handle the
XHR request; it returns false immediately if the request is not an XHR
callback. Otherwise, this method fires off the bound server methods
according to the request parameters and returns the results.

Once again we are quickly done with the PHP header code, and we
are into the HTML itself. We need to include all of the XOAD helper
JavaScript code, which is done at the top of the HTML head element:

File 15 <?= NAJAX_Utilities::header('najax') ?>

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_najax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_najax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=153

XOAD 154

XOAD Serializer

At this point, XOAD uses a serializer object to be able to con-
vert between the two worlds. We found an issue when running
on PHP 5.1, and had to change the Serializer.class.php file so
that the function function serialize(&$var) became function serial-
ize($var) (i.e. we removed the ampersand). PHP 5 has different
rules for handling pass by reference semantics. The error we
were receiving was:

PHP Fatal error: Only variables can be passed by reference in /path/to/najax/classes/Seria

We mentioned that XOAD is all about classes and objects, not just
functions. To register a class, and have access to it via JavaScript, you
just need another helper function:

File 15 var obj = <?= NAJAX_Client::register(new ZipService()) ?>;

We are registering a named object from the server, but you can also
register anonymous items such as in-line lists. To do that you would
just do something like:

var arr = <?= XOAD_Client::register(array(1, "bob", array("nested"))) ?>;

To handle errors that may occur, you follow a naming convention that
allows you to have handlers for every method that you call. The format
of the handler in question is obj.on[Name of method]Error(), where the
first character of the method name gets uppercased. We handle errors
in our application with:

File 15 obj.onGet_city_stateError = function(error) {

document.getElementById("zipError").innerHTML = "Error: " + error.message;
return true;

}

The final piece of the pie is to wrap the getZipData() once again to tie
into our object:

File 15 function getZipData(zipCode) {

obj.get_city_state(zipCode, assignCityAndState);
}

Returning Rich Types

We mentioned that XOAD is able to deal with richer return types that
Sajax. Let’s change our code to try that out for size. To do this, we will

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_najax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_najax.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_najax.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=154

XOAD 155

change get_city_state() to return an object of type ZipCityState. This is a
structure that has all of the data needed, instead of having a strange
String representation that you then need to parse on the client side.

The ZipCityState structure is a simple type. We just give it some public
variables that can store and retrieve our data. Why even bother with
accessors and mutators when it is this simple? (We can sense the OO
purists out there squirming).

File 20 class ZipCityState {

var $zip;
var $city;
var $state;

function ZipCityState($theZip, $theCity, $theState) {
$this->zip = $theZip;
$this->city = $theCity;
$this->state = $theState;

}
}

Now we have a rich type to pass around between layers. We can create
an object of this type in get_city_state() using the constructor provided
above in the ZipCityState class.

File 20 if ($row['city'] && $row['state']) {

$return_object = new ZipCityState($zip, $row['city'], $row['state']);
} else {

$return_object = NULL;
}

Our back end code has now been updated to return the rich object, so
we need to change our browser code to be able to understand this object
when it comes back. Remember, the original version expects a custom
string representation of the data which it has to parse manually. The
best thing about this example is that we are hardly having to change
anything, and in fact we get to delete the string parsing code. XOAD
is handling the marshaling of the return type for us. It is creating a
ZipCityState JavaScript object that has the same methods as the PHP
version.

This means that the only change we make is to the assignCityAndState()
JavaScript function. XOAD passes the return from the PHP get_city_state()
to assignCityAndState(). It just so happens that it now gets the rich ZipC-

ityState, and we can use this object to get the city and state data by
simply using zip.city and zip.state. It looks like this:

File 16 function assignCityAndState(zcs) {

if (zcs.city) {
document.getElementById("city").value = zcs.city;

Report erratum

http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.najaxobject.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/zipService.najaxobject.php
http://media.pragprog.com/titles/ajax/code/CRMApp/src/main/web/ajaxphp/figure_ed_screen_najax_object.php
http://books.pragprog.com/titles/ajax/errata/add?pdf_page=155

WRAPPING UP 156

document.getElementById("state").value = zcs.state;
document.getElementById("zipError").innerHTML = "";

} else {
document.getElementById("zipError").innerHTML = "Error: " + zcs.zip;

}
}

So there we have it. XOAD successfully managed to take a rich return
type and generate a JSON representation to pass down to the client.
This allowed us to map object return types versus simple strings and
the like. You probably don’t want to get too carried away though. While
it is theoretically possible to create insanely complex return types, with
nested complex structures for data, this can lead down a long road of
debugging, testing, and possibly even modifying the marshaling code
buried inside of XOAD. Besides, even if the marshaling code handled
the data structures without problem, large types still take up a lot of
bandwidth. Keep it simple, and everyone is happy.

There is More to XOAD

This concludes the port over to XOAD, and we have seen how it is
an OO based system versus the function-based structure of Sajax. The
XOAD serializer allows you to return rich objects that will get converted
to JSON objects that the browser JavaScript engine can consume.

There are other interesting sides of the XOAD library that we haven’t
seen in this use case. One of these is XOAD Events which and allows
you to fire events from one computer and catch and process them on
another. This is all done by using an observer pattern, and having
one piece of code firing events, and another listening for them. This
is useful for Ajax applications that need to be very responsive to data
being passed between tier (like a chat client, for example).

9.4 Wrapping Up

We have shown you two of the most popular PHP-based Ajax frame-
works. These frameworks amply demonstrate the power of integrated
Ajax code; the simplicity of the model is evident. You never have to leave
the cozy confines of PHP to achieve dramatic Ajax results. In fact, you
don’t even have to look at the JavaScript if you don’t want to. However,
just because these frameworks can hide the details of JavaScript on the
client, that doesn’t mean that you have to ignore it yourself. There can
be quite a lot of benefit to leveraging a high level abstraction layer like

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=156

WRAPPING UP 157

Sajax or XOAD, but manipulating the DOM directly with JavaScript to
achieve more complex client-side behavior as well.

Report erratum

http://books.pragprog.com/titles/ajax/errata/add?pdf_page=157

	Building Rich Internet Applications with Ajax
	A Tale in Three Acts
	Google Maps: The Missing Spark
	What is Ajax?
	Whither Now?

	Ajax In Action
	Ajaxifying a Web Application
	Ajax to the Rescue
	The Grubby Details
	Wrapping Up

	Ajax Explained
	A Review of Client-side JavaScript
	Manipulating the Web Page
	Retrieving Data
	Summary

	Creating Google Maps
	Rocket Scientists?
	Your Own Google Maps
	Creating Ajaxian Maps
	Conclusion

	Ajax Frameworks
	Frameworks, Toolkits, and Libraries
	Remoting with the Dojo Toolkit
	Remoting with the Prototype library
	Wrapping Up

	Ajax UI, Part I
	Ajax and JavaScript for the UI
	Conclusion

	Ajax UI, Part II
	Some Standard Usages
	It Isn't All Just Wine and Roses...
	Conclusion

	Server-side Framework Integration
	Different Strategies for Integration

	Ajax with PHP
	The PHP Frameworks
	Working with Sajax
	XOAD
	Wrapping Up

