
Introducing
Microsoft® ASP.NET 2.0

Dino Esposito

M

A01T620245.fm Page 1 Thursday, June 10, 2004 2:51 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2005 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Esposito, Dino, 1965-

Introducing Microsoft ASP.NET 2.0 / Dino Esposito.
p. cm.

Includes index.
ISBN 0-7356-2024-5
1. Active server pages. 2. Web sites--Design. 3. Microsoft .NET. I. Title.

TK5105.8885.A26E875 2004
005.2'76--dc22 2004044898

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 9 8 7 6 5 4

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/learning/. Send comments
to mspinput@microsoft.com.

Active Directory, ActiveX, FrontPage, IntelliSense, Microsoft, Microsoft Press, MSDN, MSN, the .NET logo,
Outlook, Verdana, Visual Basic, Visual Studio, the Visual Studio logo, Webdings, Win32, Windows, Windows NT,
and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editors: Danielle Bird Voeller and Ben Ryan
Project Editor: Kathleen Atkins
Copy Editor: Ina Chang
Indexer: Lynn Armstrong

Body Part No. X10-46133

©Microsoft Press Introducing Microsoft® ASP.NET 2.0
A02L620245.p65 PP1 dwl LOCCORP

To Silvia, Francesco, and Michela

“I never let schooling interfere with my education.”

—Mark Twain

A03D620245.fm Page xi Wednesday, June 2, 2004 2:34 PM

A03D620245.fm Page xii Wednesday, June 2, 2004 2:34 PM

v

Table of Contents
Acknowledgments xi

Introduction xiii

Part I ASP.NET Essentials
1 Creating an ASP.NET 2.0 Application 3

Getting Started with Visual Studio 2005 4
Drawbacks of Visual Studio .NET 2003 4
Highlights of Visual Studio 2005 5

Creating a Sample Web Site 8
Designing Web Forms 10
Adding Code to Web Forms 11
The Local Web Server 12
Special Folders in ASP.NET 2.0 Applications 13

The Code-Beside Model 14
Evolving from Code-Behind 14
Compile-on-Demand for All Resources 15
Sharing Source Components 17

The Page Object Model 19
What’s New in the Page Class 20
Programming the Page 27
The Page Scripting Object Model 31

Overview of Server Controls 35
New Control Features 36
New Core Controls 38

Summary 43

2 Working with Master Pages 45
The Rationale Behind Master Pages 45

User Controls in ASP.NET 1.x 46
Include Files in Classic ASP 47
Outline of a Better Approach 48

A04T620245.fm Page v Thursday, June 10, 2004 12:04 PM

vi Table of Contents

What Are Master Pages? 50
Writing a Master Page 51
Writing a Content Page 55

Underpinnings of Master Pages 58
Merging Master and Content Pages 58
Nested Masters 60
Event Handling 64

A Realistic Example 66
Master Pages and Visual Inheritance 66
Layout of the Pages 68
Contents of the Pages 70
Programming the Master 72

Summary 75

3 Working with Web Parts 77
Building Pages with Web Parts 77

What Are Web Parts, Anyway? 78
Introducing the Web Parts Framework 79
A Sample Web Part Component 85

Editing and Listing Web Parts 94
Creating an Editor Zone 94
Adding Web Parts Dynamically 96

Connecting to Other Web Parts 99
The Connection Model 99
Building a Master/Detail Schema 101

Summary 106

4 Personalization: User Profiles and Themes 107
Managing User Profiles 108

Creating the User Profile 108
Personalization Providers 112
Interacting with the Page 116

Using Themes 122
What Are Themes? 122
Working with Themes 124

Summary 127

A04T620245.fm Page vi Thursday, June 10, 2004 12:04 PM

Table of Contents vii

Part II Data Access
5 What’s New in Data Access 131

Data-Binding Syntax Enhancements 132
The DataBinder Class 132
The XPathBinder Class 135

.NET Data Provider Enhancements 136
Connection String Storage 136
The Provider Factory Model 140
Batch Operations 144

SQL Server Provider Enhancements 145
Asynchronous Commands 146
Bulk Copy Operations 149
SQL Server 2005–Specific Enhancements 153

ADO.NET Class Enhancements 157
DataTable and DataSet Readers 157
Serializing a DataTable to XML 159
Managing Views of Data 162

Summary 164

6 The Data Source Object Model 165
The Rationale Behind Data Source Components 166

Codeless Data Binding 166
A Consistent Model for Heterogeneous Data Sources 170
A Richer Design-Time Experience 172

Data Source Control Internals 172
The IDataSource Interface 173
Tabular Data Source Controls 175
Hierarchical Data Source Controls 182

Using the SqlDataSource Control 187
Connecting to Data Source Controls 187
Data Source Parameters 188
Caching Behavior 191

Summary 193

A04T620245.fm Page vii Thursday, June 10, 2004 12:04 PM

viii Table of Contents

7 Data-Bound Controls 195
Hierarchy of Data-Bound Controls 195

The DataBoundControl Base Class 198
Simple Data-Bound Controls 199
Composite Data-Bound Controls 202
Hierarchical Data-Bound Controls 205

The GridView Control 207
The GridView Object Model 208
The GridView Control in Action 214
Displaying Data 216
Editing Data 225

The DetailsView Control 230
The DetailsView Object Model 230
The DetailsView Control in Action 235
Creating Master/Detail Views 239

The FormView Control 241
The FormView Object Model 242
The FormView in Action 243

Summary 248

Part III Application Services
8 Rich Controls and Services 251

Creating Web Wizards 251
An Overview of the Wizard Control 252
Adding Steps to a Wizard 258
Navigating Through the Wizard 261

Generating Dynamic Images 264
The DynamicImage Control 265
Displaying Images in ASP.NET Pages 268

Advanced Site Functionality 273
Site Structure and Navigation 273
Site Counters 279

Summary 284

A04T620245.fm Page viii Thursday, June 10, 2004 12:04 PM

Table of Contents ix

9 State Management 287
The Control State 288

Control State vs. View State 288
Programming the Control State 289

Extending the Session State Mechanism 291
The Default Session State Module 292
Customizing the Session State Module 294
Writing a Custom Session State Module 299

The ASP.NET Cache Object 300
The Cache Dependency Functionality 301
Designing a Custom Dependency 303
A Web Service–Based Cache Dependency 305
SQL Server Cache Dependency 309

Summary 313

10 ASP.NET Security 315
Using Forms Authentication 316

Forms Authentication Control Flow 317
Cookie-Based Forms Authentication in ASP.NET 1.x 317
A Cookieless Approach in ASP.NET 2.0 318
Configuring Forms Authentication 318
The FormsAuthentication Class 320

Managing Membership and Roles 326
The Membership Class 326
The Membership Provider 331
Managing Roles 336

Security-Related Controls 341
The Login Control 341
The LoginName Control 345
The LoginStatus Control 346
The LoginView Control 348
The PasswordRecovery Control 350
The ChangePassword Control 351
The CreateUserWizard Control 352

Summary 353

A04T620245.fm Page ix Thursday, June 10, 2004 12:04 PM

x Table of Contents

Part IV Advanced Topics
11 The ASP.NET Runtime Environment 357

Installing ASP.NET 2.0 358
Side-By-Side Backward Compatibility 358
Remapping Applications to ASP.NET 1.1 358

The ASP.NET Underpinnings 359
The IIS 5.x Process Model 360
The IIS 6.0 Process Model 361
The WebHost Application Management System 362
ASP.NET Runtime Components 366
Page Output Caching 373

The Structure of ASP.NET 2.0 Pages 377
A Sample Page 377
A Quick Look at the HTML Source Code 378

The Compilation Model 379
Dynamic Compilation 379
Site Precompilation 382

Summary 385

12 ASP.NET Configuration and Instrumentation 387
Changes to the Configuration API 388

Section-Specific Classes 388
Reading Configuration Settings 390
Writing Configuration Settings 391
The ASP.NET Administrative Tool 391

Changes to the Configuration Schema 392
Changed Configuration Sections 392
New Configuration Sections 393

The Health Monitoring API 394
Customizable Event-Level Analysis 395
Automated Notification of Problems 396

Summary 396

Index 399

A04T620245.fm Page x Thursday, June 10, 2004 12:04 PM

xi

Acknowledgments

Introducing ASP.NET 2.0 was actually written twice. I started it in the summer
of 2003 and worked hard on it around the PDC 2003 timeframe, finishing up a
few hours before New Year’s Eve. But then it became clear that the public beta
program would not begin until summer 2004, so I had to rework it. The result
is a book written over four seasons. I hope you enjoy it as much as I enjoy four-
seasons pizza. (If you don’t have four-seasons pizza in your country, come to
Italy and try it!)

A fine ensemble of people at Microsoft Press helped make this book happen:
Danielle Bird Voeller, Ben Ryan, and Kathleen Atkins. You will also see the results
of Ina Chang’s excellent copy editing of my pretty messy drafts. Christoph Wille,
who reviewed the contents from a technical perspective, was one of the most
attentive and insightful reviewers I have ever had (and I have written quite a few
books).

Writing an introductory book on a new technology is a challenge, and I
made it through by taking advantage of all the available tools—decompilers,
e-mails, conference slides, sample code, and all sorts of papers that crossed my
path. All in all, I’m proud of the result and want to thank everyone who shared

ideas (or, more often, hunches) with
me on how “the darned thing” would
work eventually. The list (not in any
specific order) includes Stephen
Toub, Jeff Prosise, Bill Vaughn, Gert
Drapers, Fernando Guerrero, Juwal
Lowy, and Jason Clark. Rob Howard,
Brad Millington, Joe Croney, and
Shanku Niyogi from the Microsoft
ASP.NET team also provided signifi-
cant assistance and helped transform
my own conjectures into accurate
statements.

Thanks to you all,
Dino Esposito

P.S. I wrote this book while continu-
ing many other activities, such as

A05A620245.fm Page xi Thursday, June 3, 2004 4:58 PM

writing, speaking, training, consulting, traveling, swimming, and watching soc-
cer games. However, I managed to have lunch at home almost every day (when
I was in Rome), to sleep at least six hours every night (when I was at home),
and to eat enough vegetables and fruits (to be a good example to my kids). I
also took the kids to school every day at 8:30 (except when I was traveling in
the States). Does this mean that I’ll be voted MVP? (And I don’t mean that nice
award that Microsoft grants to valuable professionals—I’m interested in another
kind of award—for Most Valuable Parent.) Kids, please vote for your dad!

A05A620245.fm Page xii Thursday, June 3, 2004 4:58 PM

xiii

Introduction

What’s a Web application? Basically, it’s a set of publicly accessible pages
bound to a well-known URL. No matter which direction Web-related technolo-
gies take in the future, this basic fact will never change. The reason is the
underlying transport protocol, HTTP. If we were to change the underlying pro-
tocol, we would end up with a different type of application. Period.

For all practical purposes, Web development began 10 years ago. Since then,
we’ve seen numerous technologies emerge, from short-lived ones such as
Microsoft ActiveX documents to watershed technologies such as Microsoft Active
Server Pages (ASP). The arrival of ASP in 1997 made it clear that real-world Web
development would be possible only through a rich and powerful server-side pro-
gramming model.

Much as Microsoft Visual Basic did for Windows development, ASP pro-
vided a set of server tools for building dynamic Web applications quickly and
effectively. More important, it pointed the way ahead. ASP wasn’t perfect (or,
more accurately, not yet perfected), so vendors improved the model by adding
object orientation and dynamic code compilation. Java Server Pages (JSP) intro-
duced key concepts such as compilation, components, tag customization, and a
first-class programming language. (This was a different company, different plat-
form, different programming paradigm, and different underlying technology—
but the underlying idea was the same.)

ASP.NET took five years to materialize—an entire geological era in Web
development terms—finally arriving in 2002. It was the next step in the evolu-
tionary process that started with ASP and found an excellent next version in JSP.
ASP.NET 2.0 is a major upgrade from there.

ASP.NET 2.0 features a new set of controls that simplify Web-based data
access and includes functionality that facilitates user interaction, code reuse,
and design-time development and even improves the aesthetic experience.

What This Book Covers
This book is based on Beta 1 of ASP.NET 2.0 and covers the vast majority of the
features you’ll find in the final release (expected in the first half of 2005). While
it is not meant to be a full programmer’s reference, it introduces key aspects of

A06I620245.fm Page xiii Wednesday, June 9, 2004 4:54 PM

xiv Introduction

the new Web platform by using more than 70 fully functional examples. You’ll
also find concise explanations of important concepts and features.

Articulated in four parts, the book covers page essentials, data access,
application services, and more advanced stuff like configuration and compila-
tion models. Master pages, Web parts, personalization, themes, rich controls,
and data source objects are explained and demonstrated through numerous
examples. In the first part (“ASP.NET Essentials”), you’ll learn about the
Microsoft Visual Studio 2005 environment, the Page class, master pages and
Web Parts. A look at personalization and themes completes the part. Next, the
book moves on to tackle data access and present changes in ADO.NET 2.0, data
binding, and the newest data source components and related server controls.
Part III is about Application Services, including rich controls (wizard, dynamic
images, site counters), state management, and security. Finally, Part IV covers
the ASP.NET HTTP runtime environment, the compilation model, and the con-
figuration API.

System Requirements
This book is designed to be used with the following software:

■ One of the following Microsoft Windows versions with Microsoft
Internet Information Services (IIS) installed:

❑ Windows 2000

❑ Windows XP Professional

❑ Windows Server 2003

■ Visual Studio 2005 (Beta 1 or the March Community Tech Preview
[build 2.0.40301])

■ Microsoft SQL Server 2000

The book doesn’t specifically require a beta version of SQL Server 2005
(code-named Yukon).

Notice that most examples that use SQL Server assume a blank sa pass-
word, although the use of a blank password is strongly discouraged in any seri-
ous development environment. If you don’t use a blank sa password in your
SQL Server installation, you must add your own password to the connection
strings or add the ASP.NET user to the login of the Northwind database. In the
latter case, you can use TRUSTED_CONNECTION=true in the connection strings
in place of the sa user and the blank password.

A06I620245.fm Page xiv Wednesday, June 9, 2004 4:54 PM

Introduction xv

Code Samples
This book doesn’t have a companion CD; all of the code samples are available
on the Web at http://www.microsoft.com/learning/books/products/6962. Click
the Companion Content link in the More Information box on the right side of
the page.

The language used in the book is C#, and sample code is available only in
C#. All of the examples are wrapped up in a single Visual Studio 2005 applica-
tion and can be easily run from a central console, as shown here:

FIDR01

Support
Every effort has been made to ensure the accuracy of this book and the com-
panion content. Microsoft Press provides corrections for books through the
World Wide Web at the following address:

http://www.microsoft.com/learning/support/

A06I620245.fm Page xv Wednesday, June 9, 2004 4:54 PM

xvi Introduction

Contact Information
Feel free to send questions about the book directly to the author at either of
these addresses:

■ dinoes@wintellect.com

■ desposito@vb2themax.com

For additional information and resources, check out the following Web
sites: Wintellect (http://www.wintellect.com) and the newest addition to the
2-The-Max family of Web sites, .NET-2-the-Max (http://www.dotnet2themax.com).

A06I620245.fm Page xvi Wednesday, June 9, 2004 4:54 PM

Part I

ASP.NET Essentials

C01620245.fm Page 1 Wednesday, June 9, 2004 5:22 PM

C01620245.fm Page 2 Wednesday, June 9, 2004 5:22 PM

3

Creating an ASP.NET 2.0
Application

No matter how you design and implement a Web application, at the end of the
day it always consists of a number of pages bound to a public URL. The inex-
orable progress of Web-related technologies has not changed this basic fact, for
the simple reason that it is the natural outcome of the simplicity of the HTTP
protocol. As long as HTTP remains the underlying transportation protocol, a
Web application can’t be anything radically different from a number of publicly
accessible pages. So what’s the role of Microsoft ASP.NET?

ASP.NET provides an abstraction layer on top of HTTP with which devel-
opers build Web sites. Thanks to ASP.NET, developers use high-level entities
such as classes and components within the object-oriented paradigm. Develop-
ment tools assist developers during the work and make programming with the
ASP.NET framework as seamless and quick as possible. Development tools are
ultimately responsible for the application being created and deployed to users.
They offer a programming paradigm and force developers to play by the rules
of that paradigm.

The key development tool for building ASP.NET 2.0 applications is
Microsoft Visual Studio 2005—the successor to Visual Studio .NET 2003. It has a
lot of new features and goodies expressly designed for Web developers to over-
come some of the limitations that surfaced from using Visual Studio .NET 2003.

In this chapter, we’ll cover the three basic elements of an ASP.NET appli-
cation—the IDE you use to build it, the page, and the core controls that make
it run. We’ll start with Visual Studio 2005.

C01620245.fm Page 3 Wednesday, June 9, 2004 5:22 PM

4 Part I ASP.NET Essentials

Getting Started with Visual Studio 2005
Visual Studio 2005 is a container environment that integrates the functionality of
multiple visual designers. You have a designer for building Windows Forms
applications, one for building ASP.NET sites, one for building Web services, and
so on. Visual Studio .NET 2003 has a single model for designing applications: the
project-based approach. Real-world experience has shown that this is not the best
approach—at least as far as ASP.NET and Web applications are concerned.

Drawbacks of Visual Studio .NET 2003
Visual Studio .NET 2003 designs applications around the concept of the project,
which is the logical entity that originates any application—be it Windows
Forms, Web, console, or Web service. Developers build an application by cre-
ating a new project, configuring it, and then adding pages, Web services,
classes, and controls. In terms of implementation, the project is an XML file that
links together some other files and directories. As far as Web applications are
concerned, a Visual Studio .NET project requires a Microsoft Internet Informa-
tion Services (IIS) virtual directory and also has a few other key drawbacks.
Although developers do successfully use Visual Studio .NET for real-world
applications, the tool isn’t ideal for simpler projects.

Note Microsoft also offers Web Matrix, a community-supported, free
tool designed for ASP.NET applications. Web Matrix provides most of
the features of cutting-edge code editors, such as syntax coloring,
WYSIWYG designers, and different views of the code. Unlike Visual
Studio .NET, Web Matrix is designed around the standalone ASP.NET
page. It supports only pages with inline code and lets you develop
applications as a set of standalone pages and resources.

For one thing, Visual Studio .NET requires Microsoft FrontPage Server
Extensions (FPSE) and doesn’t support FTP, local file system, or direct IIS
access. In addition, it is dependent on IIS, which must be installed on the devel-
opment machine or on a development server. These limitations have much
greater impact on the development process than one might think at first.
Debugging configurations and scenarios is quite difficult, developers need
administrative privileges to create new projects, and effective corporate security
policies for developer machines should be defined.

C01620245.fm Page 4 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 5

In Visual Studio .NET 2003, the project file is the single point of manage-
ment for the constituent elements of the application. As a result, to make a file
part of the project, you must explicitly add it into the project file and configure
it—you can’t just point at an existing virtual directory and go. The information
coded in the project file counts more than the actual contents of the directory,
and useless files are often forgotten and left around the site. Synchronizing hun-
dreds of files in large applications is not easy; deploying projects onto other
machines can be even more annoying. In addition, Visual Studio .NET has no
interaction with IIS and doesn’t let you browse and edit virtual roots.

However, the number-one issue with Visual Studio .NET–driven Web
development is the inability to open a single page outside of a project. You can
open and edit a page, but IntelliSense won’t work; the same happens with
other key features, such as running and debugging the page. Frankly, in this
type of scenario, Visual Studio .NET offers only one advantage over Notepad—
HTML syntax coloring.

Highlights of Visual Studio 2005
Visual Studio 2005 provides a simpler and friendlier way to create Web Forms
applications. The key improvements address all the shortcomings detailed ear-
lier. Let’s review these features briefly.

Visual Studio 2005 supports multiple ways to open Web sites. In addition
to using FrontPage Server Extensions, you can access your source files using
FTP or a direct file system path. You can also directly access the local installa-
tion of IIS, browse the existing hierarchy of virtual directories, and access exist-
ing virtual roots or create new ones. IIS is not a strict requirement for the
development tool to work. Like Web Matrix, Visual Studio 2005 ships with a
local Web server that makes IIS optional, at least for testing and debugging
purposes. Figure 1-1 shows the user interface of the embedded Web server.

F01DR01Figure 1-1 The local Web server in action in Visual Studio 2005

C01620245.fm Page 5 Wednesday, June 9, 2004 5:22 PM

6 Part I ASP.NET Essentials

The local Web server is a revised version of Cassini, the free mini–Web
server that originally shipped with Web Matrix. The local Web server is the
default option unless you explicitly open the project from an existing IIS virtual
directory. As Figure 1-2 demonstrates, you can open your Web site using a file
system path or an IIS virtual directory. In the former case, the local Web server
is used to test the site.

F01DR02Figure 1-2 The ASP.NET application is controlled by the local Web
server if the Web site is opened from a file system path.

The interaction with IIS is greatly simplified, as Figure 1-3 shows. When
you try to open a Web site, you are given a few options to choose from. You
can locate a project by using a file system path, using the IIS hierarchy of virtual
directories (only the local IIS), using FTP, or by just typing the URL of the site
configured with FrontPage Server Extensions. The IIS tab also contains buttons
to create new virtual roots and applications.

Visual Studio 2005 does not compile everything in the site into an assem-
bly, as Visual Studio .NET 2003 does. Instead, it uses the ASP.NET dynamic
compilation engine. In this way, not only are changes to .aspx files immediately
caught, but so are those made to .cs or .vb files. This results in a sort of dynamic
compilation for code-behind classes.

Another long-awaited feature worth mentioning is the Copy Web site fea-
ture. Basically, by selecting a menu item you can copy your current Web site to
another local or remote location. Figure 1-4 shows a glimpse of the feature.

C01620245.fm Page 6 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 7

F01DR03Figure 1-3 Navigating the IIS hierarchy to locate the existing virtual
directory to open

F01DR04Figure 1-4 The Copy Web Site feature in action

Last but not least, if you double-click an.aspx file in Windows Explorer,
Visual Studio 2005 starts up and lets you edit the source code. As it does not in
Visual Studio .NET 2003, IntelliSense works great and the page can be viewed
in the embedded browser through the local Web server. IntelliSense works
everywhere, including within data binding expressions and page directives.

C01620245.fm Page 7 Wednesday, June 9, 2004 5:22 PM

8 Part I ASP.NET Essentials

Creating a Sample Web Site
Let’s create a sample Web site using Visual Studio 2005. You first create a new
Web site by choosing File | New and choosing Web Site. The dialog box that
appears prompts you for the type of site you want to create. You’ll notice a cou-
ple of similar-looking options—ASP.NET Web site and ASP.NET Internet site, as
shown in Figure 1-5.

F01DR05Figure 1-5 The options available to create a new Web site
with Visual Studio 2005

If you select the Web Site option, Visual Studio generates the minimum
number of files for a Web site to build. Basically, it creates a default.aspx page
and an empty Data directory. If you opt for an Internet site, an ASP.NET starter
kit is used to give you a functional Web site with several standard features built
in. Let’s go for a Web site.

Important Visual Studio 2005 creates a project file but doesn’t use it
to track all the files that form an application. The root directory of the
site implicitly defines a Web project. To add a new file to the project,
you just copy or create that file to the directory, and it is in the project.
If it isn’t, right-click in Solution Explorer and click Refresh Folder.

To edit a Web page, you can choose from three views—Design, Source,
and Server Code. The Design view displays the HTML layout, lets you select
and edit controls and static elements, and provides a graphical preview of the

C01620245.fm Page 8 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 9

page. The Source view shows the HTML markup along with the inline code.
The markup is syntax-colored and enriched by features such as IntelliSense,
tips, and autocompletion. The Server Code view shows only the inline code, if
any. The good news is that Visual Studio also applies syntax coloring to the
inline code.

You choose the template of the item to add to the site from the menu
shown in Figure 1-6.

F01DR06Figure 1-6 Item templates supported by Visual Studio 2005

Note the two check boxes that appear at the bottom of the window. You
can choose to keep the code of the page in a separate file (similar to the code-
behind model of Visual Studio .NET 2003), and you can associate the current
page with a master page. (Master pages are a cool new feature of ASP.NET 2.0
that we’ll discuss thoroughly in the next chapter.) The code-behind schema
touted by Visual Studio .NET 2003 has been revised and restructured. As a
result, pages built with Visual Studio 2005 are not forced to use code separation
(page separated into .aspx and .cs files). Code separation is fully supported but
is now optional.

Let’s add some HTML markup to make it a Hello, World page. At a mini-
mum, we need a text box to take the message and a button to send it to the
world. The following HTML code renders the page shown in Figure 1-7:

<% @Page language="C#” %>
<script runat="server">
void Send_Click(object sender, EventArgs e)
{

MsgSent.Text = Msg.Text;
}
</script>

C01620245.fm Page 9 Wednesday, June 9, 2004 5:22 PM

10 Part I ASP.NET Essentials

<html>
<head runat="server">

<title>Hello, World</title>
</head>
<body>

<form runat="server” id="MainForm">
<h1>Send a message to the world</h1>
<asp:textbox runat="server” id="Msg” text="Hello, ASP.NET 2.0” />
<asp:button runat="server” id="Send” text="Send”

onclick="Send_Click” />
<hr />
Last message sent:
<asp:label runat="server” id="MsgSent” Font-Italic="True” />
<hr />

</form>
</body>
</html>

F01DR07Figure 1-7 The sample page used to take and display
a welcome message

Note As mentioned, you can open existing Web sites using the FTP
protocol and then create and edit files. You must have access to the
FTP server and read and write permissions for a particular FTP direc-
tory. The directory must already exist because Visual Studio 2005
cannot create a new Web site via FTP.

Designing Web Forms
Filling a Web Forms page is easy, too. You drag and drop controls from the
toolbox onto the form, move elements around, and configure their properties.
If you need to, you can switch to the Source view and manually type the HTML
markup the way you want it to be. A pleasant surprise for many developers is
that you can drag and drop controls from the toolbox directly into the Source

C01620245.fm Page 10 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 11

code view; instead of viewing the control graphically rendered, you see the cor-
responding HTML. Similarly, you can edit the properties of a server control by
selecting it the design view or highlighting the related HTML in the Source code
view.

One of the first things you’ll notice is that Visual Studio 2005 preserves the
formatting of your HTML edits as you switch between views. Any edits in the
design view affect only the changed elements. The Visual Studio .NET 2003
autoformatting features that kick in on view switching are now turned off.

Visual Studio 2005 enhances the HTML validation mechanism found in
earlier tools. The HTML validation ensures that the HTML you are writing is suit-
able for the current target browser. The current target is visible at the bottom of
the edit window and is set to Microsoft Internet Explorer 6.0 by default. When
you type an invalid or malformed tag, the IDE detects the incompatibility and
warns you about it. The tool leaves you free to enter the bad text anyway.

The number of client targets is significantly larger in ASP.NET 2.0 and
ranges from Internet Explorer 6.0 to HTML 3.2 (covering Internet Explorer 3.x
and Netscape Navigator 3.x). Other validation targets are mobile schemas
(Compact HTML 1.0 and mobile HTML 3.2), Netscape 4.0, and the XHTML 1.0
Transitional schema. The latter schema covers browsers such as Netscape 7.0
and Opera 7.0.

Adding Code to Web Forms
How do you attach server code to the various HTML elements in an .aspx page?
To try it out, place a button on a form and double-click. Visual Studio switches
to the Server Code view and creates an empty event handler for the control’s
default event. For a button control, it is the Click event.

void Send_Click(object sender, EventArgs e)
{

§
}

The HTML markup is automatically modified to contain an additional
onclick attribute:

<asp:button runat="server” id="Send”
text="Send”
onclick="Send_Click” />

Notice that in a difference from Visual Studio .NET 2003, the new version
doesn’t inject code in the page for automatic event wireup. Event binding is

C01620245.fm Page 11 Wednesday, June 9, 2004 5:22 PM

12 Part I ASP.NET Essentials

always done declaratively in the .aspx page. Recall that in Visual Studio .NET
2003, double-clicking a button adds the following code to the code-behind class:

// VS.NET injects this code in the code-behind class of a page
// when you double-click a button to handle its default event
Send.Click += new EventHandler(this.Send_Click);

The first time the page is compiled for use, ASP.NET performs the dynamic
binding and the onclick attribute is expanded to the code shown above. Note
that the onclick attribute is also used when you work with a page with code
separation—the old code-behind schema. The only difference is that in this
case, the event handler is defined in the code-behind class instead of being
placed inline.

We now have the page layout and some significant code to play with.
Testing the page is as easy as pressing F5. Visual Studio 2005 might complain
about a missing web.config file, which is necessary if you want to debug the
code. If you want to run the page without debugging it, click Run. Otherwise,
you can let Visual Studio generate a proper web.config file for you. If you cre-
ate your own web.config file, make sure it contains the following string:

<compilation debug="true” />

Once this is done, you can commence your debugging session.

The Local Web Server
The embedded Web server is a small executable; it can’t replace all of the fea-
tures of a full-blown Web server such as IIS, of course. It works only with indi-
vidual pages and doesn’t include any of the extra features of IIS such as the
metabase or the ability to work as a Simple Mail Transfer Protocol (SMTP) mail
server. As a result, an application that has to send e-mail messages should be
tested under IIS because the local Web server can’t handle e-mail messages.
However, if you install the SMTP service, the embedded Web server can send e-
mails, too.

Another point to consider about the embedded Web server concerns the
security context. When run under IIS 5.0, an ASP.NET application ends up being
served by a worker process—a separate Win32 executable whose name and
features depend on the process model in use for ASP.NET applications on that
server machine. No matter what the internal implementation, both
aspnet_wp.exe (the worker process of the ASP.NET classic process model) and
w3wp.exe (the worker process when the IIS 6.0 process model is used) run
under a highly restricted account. In the former case, the account is ASPNET; in
the latter case, the account is named NETWORK SERVICE.

C01620245.fm Page 12 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 13

In contrast, the embedded Web server takes the security token of the cur-
rently logged on user—that is, you. This means that if the developer is currently
logged as an administrator—a much more common scenario than it should
be—the application receives administrative privileges. The problem here is not
a risk of being attacked; the real problem is that you are actually testing the
application in a scenario significantly different from the real one. Things that
work great under the local Web server might fail miserably under IIS.

For simple applications that only read and run ASP.NET pages, this prob-
lem is not that relevant. However, the results of your testing under the local
server will become less reliable if you access files other than Web pages, files
located on other machines, the Windows registry, or a local or remote database.
In all these cases, you must make sure that the real ASP.NET account has suffi-
cient permissions to work with those resources.

The bottom line is that even though you can use the local Web server to
test pages, it sometimes doesn’t offer a realistic test scenario.

Special Folders in ASP.NET 2.0 Applications
In Visual Studio 2005, any files found in the subtree of the application are
implicitly part of the site. Any file that is copied to one of the existing directo-
ries, and any directory that is created, is reflected in Solution Explorer. But
some of the folders have a special meaning to ASP.NET 2.0; others are named
only by convention in a certain way. Table 1-1 details some of the special fold-
ers in the structure of an ASP.NET 2.0 application.

The folder names are case insensitive. Folders such as Images and Data
are also frequently used, but unlike the other two they have no role in the
ASP.NET runtime architecture. They are simply named by convention to store
images and local data files (e.g., Access databases, XML files), respectively.

Table 1-1 Special Folders in ASP.NET Applications

Folder Description

Bin Contains all precompiled assemblies the application needs.

Code Contains source class files (.vb or .cs) that the ASP.NET runtime engine
dynamically compiles to assemblies.

Resources Contains resource files (.jpg, .resx, .xsd) that the ASP.NET run-time engine
dynamically compiles to resource assemblies.

Themes Contains the definition of the themes supported by the application. The
contents of this folder are compiled to a dynamic assembly. (More on
ASP.NET themes in Chapter 4.)

C01620245.fm Page 13 Wednesday, June 9, 2004 5:22 PM

14 Part I ASP.NET Essentials

As in ASP.NET 1.x, the Bin folder is where custom precompiled assemblies
should be stored. Another key folder in the structure of an ASP.NET 2.0 appli-
cation is Code. It is designed to contain reusable components that are automat-
ically compiled and linked to the page code. Visual Studio 2005 constantly
monitors the Code directory, and when new class files are added, it compiles
them. The components in the Code subdirectory are compiled by default into a
single assembly. The assembly is then referenced in the project and made avail-
able to all pages in the site. (More on this in a moment.)

The Code-Beside Model
Inline code is not exactly a best practice, though I’ll be the first to say that in
some situations it can be more practical than other techniques. Inline code
doesn’t make the page run slower, nor does it affect critical parameters of a site
such as throughput and scalability. Nothing bad can happen to your application
if you use inline code. The only one who might suffer from the use of inline
code is you, the programmer. Real-world pages need a good amount of server
code, and appending all that code to the <script> tag of the .aspx file makes the
file significantly hard to read, edit, and maintain.

In ASP.NET 1.x, the alternative to inline code is code-behind classes.
Code-behind and inline code are two functionally equivalent ways of attaching
code to pages for the ASP.NET runtime engine, but not for Visual Studio .NET
2003.

Evolving from Code-Behind
Visual Studio .NET 2003 doesn’t support inline code; if you try to use it anyway,
things can get tricky. For one thing, you no longer get IntelliSense support and
a fair number of other useful features. For real-world projects, in Visual Studio
.NET 2003 you simply have to play by the rules and resort to pages with code-
behind classes.

Code-behind is based on the idea that each Web Forms page is bound to
a separate class file. This class ends up being the basis of the dynamically gen-
erated page class that the ASP.NET runtime creates for each requested .aspx
resource. All the server code you need to associate with the .aspx resource
flows into the code-behind class. This is neat and elegant in theory, but it’s not
very practical in the Visual Studio .NET 2003 implementation. A Visual Studio
project always compiles down to an assembly in which all the constituent

C01620245.fm Page 14 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 15

classes, including code-behind classes, are packed together. This approach
comes with at least three drawbacks, as you have probably experienced:

■ It requires an explicit compile step to deploy or run. The code-
behind classes are automatically compiled by ASP.NET only if they
are referenced in the pages through the Src attribute. For some rea-
son, another attribute is used in Visual Studio .NET 2003 projects—
CodeBehind—which is unknown to the ASP.NET runtime.

■ The AppDomain that hosts the application is restarted on every
change. To apply changes to the production machine, you must
copy the new assembly to the Bin directory. The timestamp of the
directory is modified, and when this happens, the ASP.NET runtime
restarts the application.

■ If you have large Web projects, the compile step is quite expensive.
Even more expensive for users is the dynamic compilation step that
ASP.NET needs to perform on all pages as required.

ASP.NET 2.0 has a new and improved compilation model that extends the
compile-on-demand feature to class files and eliminates the need for Visual Stu-
dio .NET to require IDE compilation for Web application projects.

Compile-on-Demand for All Resources
ASP.NET 1.x supports the dynamic compilation of a few file types: ASP.NET
pages (.aspx), Web services (.asmx), user controls (.ascx), HTTP handlers
(.ashx), and global.asax. These files are automatically compiled on demand
when first required by a Web application. The compiled copy is invalidated as
soon as a change to the dependent source file is detected. This system enables
programmers to quickly develop applications with a minimum of process over-
head—you just hit Save and go.

In ASP.NET 2.0, the compile-on-demand feature is extended to various file
types, typically class files (.vb and .cs), resource files (.resx), Web service dis-
covery files (.wsdl), and typed DataSet schema files (.xsd). Once the ASP.NET
runtime ensures that all changes to certain file types are promptly detected,
there’s no need for a development tool to force a compile step. The changes to
the ASP.NET runtime make it possible to refine the whole code-behind mecha-
nism. The ASP.NET 2.0 build system is also backward-compatible with the
code-behind schema of older ASP.NET applications.

C01620245.fm Page 15 Wednesday, June 9, 2004 5:22 PM

16 Part I ASP.NET Essentials

Note That ASP.NET 2.0 compiles class files (.cs and .vb) on
demand is a fact. That ASP.NET 1.x doesn’t do the same is debatable.
ASP.NET 1.x does have the ability to compile on demand class files
that are explicitly bound to .aspx pages through the Src attribute of the
@Page directive. Unfortunately, this code model is not supported by
Visual Studio .NET 2002 and 2003, and therefore it often passes
unnoticed.

Code-Beside vs. Code-Behind
There’s nothing wrong with the code-behind model. It promotes object-orien-
tation, leads to modular code, and supports code and layout separation. The
only problem with code-behind is in the implementation provided by Visual
Studio .NET 2003. The newest version of Visual Studio comes with a revised
model for page/class association. The new code model, code-beside, looks like
the code-behind model, but each uses a different set of keywords and behav-
iors. The following code shows the header of ASP.NET 1.x code-behind pages
created with and without Visual Studio:

<%@ Page Language="C#” Inherits="Company.MyClass”
Codebehind="MyPage.aspx.cs” %>

<%@ Page Language="C#” Src="MyPage.aspx.cs” %>

The following code shows the page/class binding as it can be coded in
ASP.NET 2.0 using code-beside. Note the use of the new keyword CompileWith.

<%@ Page Language="C#” CompileWith="MyPage.aspx.cs”
ClassName="Company.MyClass” %>

By default, Visual Studio 2005 creates pages that store their code inline. To
design your site using code separation, you choose the appropriate template by
choosing Add New Item from the Website menu. When you edit a page with
code separation, Visual Studio stores any code in the class file specified through
the CompileWith attribute. Pages and projects do not have to be built to run.
Instead, ASP.NET compiles the page when it is first requested.

Partial Classes
The compilation models of ASP.NET 1.x and ASP.NET 2.0 differ significantly
because they are built on completely different underpinnings. Pages that use
code separation take advantage of a feature known as partial classes. When the
page runs, the compiler uses the CompileWith attribute in the @Page directive
to find the file containing the code. It then dynamically merges the .aspx page

C01620245.fm Page 16 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 17

and code page into a single class that inherits the base Page class. The class is
then compiled into an assembly for execution.

Once you add a Web form with code separation, the top @Page directive
in the page looks like this:

<%@ page language="C#” compilewith="HelloBeside.aspx.cs”
classname="ASP.HelloBeside_aspx” %>

When the page runs, ASP.NET 2.0 dynamically creates and instantiates a
class representing the page. The CompileWith attribute identifies the code file
for this page. The ClassName attribute defines the name for the class that will
be created. By default, Visual Studio 2005 uses the page name as the basis for
the class name.

By default, the code in the code-beside file is rooted in the ASP
namespace and contains only a class definition. The class definition is incom-
plete (partial) and contains only a portion of the complete class that will make
up the run-time page. Specifically, the partial class defined in the code file con-
tains the event handlers and other custom code that you write. The ASP.NET 2.0
runtime parses the .aspx layout file and combines this information with the con-
tents of the partial code-beside class. The resulting class inherits from Page and
is compiled and used to serve the request. The following code shows the sam-
ple code for the code-beside version of the aforementioned Hello, World exam-
ple.

using System;

namespace ASP
{

public partial class HelloBeside_aspx
{

void Send_Click(object sender, EventArgs e)
{

MsgSent.Text = Msg.Text;
}

}
}

We’ll discuss the ASP.NET 2.0 compilation model in more detail in Chapter 11.

Sharing Source Components
The code-beside model extends the compile-on-demand feature to the classes
bound to a Web page. What about other class files (i.e., helper components and
business objects) that your application might be using and reusing? Should they
always be precompiled and deployed to the Bin folder? Well, not exactly.

C01620245.fm Page 17 Wednesday, June 9, 2004 5:22 PM

18 Part I ASP.NET Essentials

The Code Subdirectory
You can keep your helper classes and business objects in the Code subdirec-
tory. As mentioned, Visual Studio 2005 monitors the directory and compiles
any new class file that is added or edited. The resulting assembly is automat-
ically referenced in the application and shared between all pages participating
in the site.

You should put only components into the Code subdirectory. Do not put
pages, Web user controls, or other noncode files containing noncode elements
into it. All the files in the Code subdirectory are dynamically compiled to a sin-
gle assembly, named code.dll. The assembly has application scope and is cre-
ated in the Temporary ASP.NET Files folder—well outside the Web application
space.

Building a Sample Shared Class
To experience the advantages of reusable source components, let’s design a
page that uses a fairly complex and large component that would be annoying
to insert inline in each page that needs it.

Many products and services available over the Web require a strong pass-
word. The definition of a “strong password” is specific to the service, but nor-
mally it is at least eight characters long and has at least one character from each
of the following groups: uppercase, lowercase, digits, and special characters.
We’ll use that definition here. The sample page you will build asks the user for
the desired length of the password and suggests one built according to the pre-
ceding rules. You create a new file named StrongPassword.cs and place it in the
newly created Code subdirectory. The class outline is shown here:

public class StrongPassword
{

public StrongPassword()
{...}
public StrongPassword(string password)
{...}

public bool Validate()
{...}
public bool Validate(string password)
{...}

public string Generate()
{...}
public string Generate(int passwordLength)
{...}

}

C01620245.fm Page 18 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 19

The class features two methods—one to check the robustness of a given
password and one to generate a new strong password. Of course, the defini-
tion of a “strong password” is arbitrary. Once placed in the Code directory,
this class is compiled on demand and made available to all pages. In the
sample page, the code to generate and validate a password becomes simpler
and more readable.

void buttonGenerate_Click(Object sender, EventArgs e) {
StrongPassword pswd = new StrongPassword();
// Use the minimum length
labelPassword.Text = pswd.Generate();

}

void buttonValidate_Click(Object sender, EventArgs e) {
StrongPassword pswd = new StrongPassword(TestPassword.Text);
labelResult.Text = pswd.Validate().ToString();

}

Figure 1-8 shows the page in action. The same functionality can also be
achieved placing the code inline. However, a savvy use of the Code directory
enhances the readability and the modularity—in other words, the quality—of
the code you write.

F01DR08Figure 1-8 Although it doesn’t show up in the overall user interface, the
page has a more logical and maintainable internal design.

The Page Object Model
In the .NET Framework, the Page class represents an .aspx file—a Web page—
and provides the basic behavior for all pages. The contents of the .aspx file are
parsed at run time and a class is dynamically created (in C# or Visual Basic
.NET, according to the page’s language setting). This dynamically created class
inherits from the base class Page. Unlike in ASP.NET 1.x, in ASP.NET 2.0 the
page’s base class doesn’t change if code separation is used. (In ASP.NET 1.x,

C01620245.fm Page 19 Wednesday, June 9, 2004 5:22 PM

20 Part I ASP.NET Essentials

when you use code-behind, the code-behind class becomes the parent of the
dynamically generated page class.)

The Page class is a built-in HTTP handler that the ASP.NET runtime
invokes through the methods of the IHttpHandler interface to finalize the
request processing. Furthermore, the class represents a special type of control
because it inherits from TemplateControl. In ASP.NET 2.0, the Page class also
implements the IPaginationContainer interface, which allows the page (and
any container control) to be paginated by the new Pager control. (More on this
later.)

public class Page : TemplateControl, IHttpHandler, IPaginationContainer

The behavior of each page can be declaratively controlled through the
attributes of the @Page directive. To get the most out of the Page class, though,
you must become familiar with properties, methods, and events of the Page
class and have a clear idea of the page life cycle in the ASP.NET runtime. Over-
all, the structure of the page has not been revolutionized in the transition from
ASP.NET 1.x to ASP.NET 2.0. However, quite a few new features have been
added. Some are related to the page as an object; some are inherited from the
surrounding runtime environment.

What’s New in the Page Class
In ASP.NET 2.0, a page supports some new features such as personalization,
master pages, theming, and site counting. You can control, enable, and disable
these features through new methods, properties, and directive attributes. Let’s
start our exploration from the very beginning of a page—that is, from the
@Page directive. In this section, we’ll mostly focus on changes and improve-
ments in the programming interface of the Page class. All the members the class
features in ASP.NET 1.x are supported in version 2.0. For a detailed explanation
of ASP.NET 1.x members, please refer to my book Programming Microsoft
ASP.NET (Microsoft Press, 2003). Infrastructure features such as theming and
site counters will be covered in detail in Chapter 4 and Chapter 8, respectively.

The @Page Directive
ASP.NET 2.0 adds some new attributes to the @Page directive to give developers
control over new framework features such the aforementioned personalization
and theming. Table 1-2 lists the new attributes of the directive.

C01620245.fm Page 20 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 21

You met the CompileWith attribute earlier in this chapter, and I will cover
master pages in depth in Chapter 2. Personalization and theming are the subject
of Chapter 4. Personalization concerns the automatic use of the profile informa-
tion associated with the page. Theming has to do with the page’s ability to
change the visual appearance (skin) while maintaining all of its functions.

Note The use of the Boolean Async directive (false by default) forces
the ASP.NET runtime to generate code that serves the page request in
an asynchronous way. In ASP.NET 1.x, you can build asynchronous
applications but you must be very familiar with the concepts involved
and you have to write a fair amount of code. The model has been inte-
grated with the ASP.NET 2.0 runtime and can be enabled using the
Async page directive.

The page executes its custom code asynchronously while the
runtime progresses on the page life cycle. A single unwind point on
the page is set between the PreRender and PreRenderComplete
events to synchronize the request threads and generate the output for
the browser.

Table 1-2 New Attributes in the @Page Directive

Attribute Description

Async If set to true, the generated page class from derives from
IHttpAsyncHandler rather than IHttpHandler and adds
some built-in asynchronous capabilities to the page.

CompileWith Specifies the name of the referenced code-beside file to use
for the page.

EnablePersonalization Indicates whether any profile information should be used
to build the page.

MasterPageFile Specifies the path of the master to use for building the cur-
rent page.

PersonalizationProvider Specifies a valid provider defined in the application’s con-
figuration file.

Theme Specifies the name of the theme to use for the page.

C01620245.fm Page 21 Wednesday, June 9, 2004 5:22 PM

22 Part I ASP.NET Essentials

Properties of the Page Class
The properties of the Page object fall into two distinct groups: intrinsic objects
and page-specific properties. Intrinsic objects include references to environ-
mental standalone objects such as Cache, User, and Trace, plus all the classic
intrinsic object that form the HTTP context—Session, Application, Request,
and the like. Page-specific properties are all the properties that affect or
describe the state of the page—for example, IsPostBack, EnableViewState, and
SmartNavigation.

The new properties of the Page class can also be categorized into either of
the preceding groups. Table 1-3 lists the new intrinsic objects of ASP.NET 2.0.

The ClientScript property returns the manager object of all methods that
inject JavaScript code in the page. The object returned by the ClientScript prop-
erty acts as a centralized console to invoke script-related methods such as Reg-
isterHiddenField and RegisterStartupScript. Note that the script-related methods
of the class are now marked as obsolete and are implemented through a call to
the corresponding methods of the ClientScript object. The following code snip-
pet shows an example:

[Obsolete(“...", false)]
public void RegisterHiddenField(string fieldName, string field value)
{

this.ClientScript.RegisterHiddenField(fieldName, fieldValue);
}

The false value in the [Obsolete] attribute indicates that the use of the obso-
lete element isn’t considered an error.

Table 1-3 New Intrinsic Objects in the Page Class

Property Description

ClientScript Instance of the ClientScriptManager class that represents a separate
object that groups all the methods that work with client-side scripts.

Header Instance of the HtmlHead class that represents the contents of the
page’s <head> block if this is marked as runat=server.

Master Gets the master page that determines the overall look of the page.

Pager Instance of the Pager control (if any) that paginates the contents of the
current page.

SiteCounters Instance of the SiteCounters class that represents the built-in service to
track page usage within the application. You’ll learn more about site
counters in Chapter 8.

C01620245.fm Page 22 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 23

Table 1-4 lists the other new properties of the Page class.

A couple of these properties—IsCrossPagePostBack and PreviousPage—
deserve a few more words. In ASP.NET 2.0, pages are no longer forced to
always post to themselves. Pages can automatically post the contents of their
unique HTML form to other pages. How can the target page distinguish
between a page and a cross-page postback? By simply using the IsPostBack and
IsCrossPagePostBack properties. In the case of a cross-page postback, the target
knows about the posting page and can retrieve the values of the original con-
trols because a reference to the posting page is returned by the PreviousPage
property. In the upcoming section “Programming the Page,” you’ll see an exam-
ple of this feature.

Methods of the Page Class
The Page class features a handful of new methods, most of which are simply
inherited from the base Control class. Table 1-5 lists them all.

Table 1-4 Other New Properties of the Page Class

Property Description

EnablePersonalization Gets and sets whether any profile information should be used
to build the page.

EnableTheming Lets you configure the page to ignore themes. This is useful
when the page has a predefined look that you do not want
an external theme to override.

IsAsync Indicates whether the page is processed asynchronously.

IsCrossPagePostBack Indicates whether the page is being loaded in response to a
client postback requested by a different page.

IsPagePersonalized Indicates whether the page contains profile information and
whether this information is currently used.

MasterPageFile Gets or sets the filename of the master page for the current
page.

MaximumWeight Gets and sets the maximum size of each page of content
when a Pager control is used to paginate this .aspx page. The
default is 4000 bytes. (More on this in a moment.)

PersonalizationMode Specifies the personalization mode by using a value taken
from the PersonalizationMode enumeration.

PreviousPage Returns an object that represents the previously visited Page
object when a cross-page posting is done.

Title Gets and sets the string that represents the title of the page.

C01620245.fm Page 23 Wednesday, June 9, 2004 5:22 PM

24 Part I ASP.NET Essentials

The methods listed in the table address some interesting new types of
functionality, such as the control state (as opposed to the control view state),
validation groups, and an enhanced script object model.

Events of the Page Class
The life cycle of a page in the ASP.NET runtime is marked by a series of events.
By wiring their code up to these events, developers can dynamically modify the
page output and the state of constituent controls. In ASP.NET 1.x, a page fires
events such as Init, Load, PreRender, and Unload that punctuate the key
moments in the life of the page. ASP.NET 2.0 adds quite a few new events to
allow you to follow the request processing more closely and precisely. The new
events are listed in Table 1-6. The order is alphabetical; we’ll discuss the order
in which they are fired in just a moment.

Table 1-5 New Methods of the Page Class

Method Description

EnsureID Inherited from Control and not especially useful for a
page, this method ensures that the current object gets a
unique ID.

Focus Inherited from Control and not especially useful for a
page, this method ensures that the page gets the input
focus.

GetCallbackEventReference Returns the prototype of a client-side JavaScript function
that posts back to the server using a callback function to
implement a form of remote scripting.

GetValidators Returns the collection of all validator controls that
belong to the specified group.

GetWebResourceUrl Returns a valid URL that serves up a file (i.e., a GIF file)
that was embedded in the page as a named resource.

RegisterRequiresControlState Registers the specified control as one that requires con-
trol state management. (More on control state later.)

SetFocus Sets the input focus to a particular control contained in
the page.

TestDeviceFilter Checks whether the current browser is of the specified
type.

C01620245.fm Page 24 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 25

Let’s review the full life cycle of an ASP.NET 2.0 page.

The Page Life Cycle
An ASP.NET page springs to life when the ASP.NET runtime invokes the IHt-
tpHandler::ProcessRequest method on the dynamic class created to wrap the
source code of the requested .aspx resource. The method sets the intrinsics for
the page, such as the HTTP context and the Request and Response objects. Next
it builds the tree of controls that were declared in the .aspx source and deter-
mines whether the page is being run in postback mode, callback mode, or
cross-page postback. (I’ll say more about callback mode later.) The first chance
that developers have to get into the game is when the PreInit event occurs.

■ Page preinitialization When the PreInit event handler returns,
the page loads any personalization data and initializes any themes.
This is the right time to intervene if you want to programmatically set
the page theme.

■ Page initialization Each control in the page is recursively given a
chance to initialize and configure its state. Child controls have their
Init event fired before the Init event on the container page.

■ End of page initialization The InitComplete event occurs at the
end of the loop that initializes all child controls. In between Init and
InitComplete, only one thing happens—the view state of controls is
set up for tracking. Each control has its TrackViewState method
called. By default, this method sets a flag that instructs the control to
track its view state for changes.

Table 1-6 New Events of the Page Class

Event Description

InitComplete Occurs when the page initialization step is completed.

LoadComplete Occurs at the end of the load stage of the page’s life cycle.

PreInit Fires before the page begins its initialization step. This is the first
event in the life of an ASP.NET 2.0 page.

PreLoad Fires just before the page begins loading the state information,
immediately after initialization.

PreRenderComplete Occurs when the prerendering phase is completed and all child
controls have been created. After this event, the personalization
data and the view state are saved and the page renders to HTML.

C01620245.fm Page 25 Wednesday, June 9, 2004 5:22 PM

26 Part I ASP.NET Essentials

■ Loading the control state and the view state In ASP.NET 2.0, the
control state is a sort of private view state that each control is respon-
sible for maintaining. Unlike the view state, the control state can’t be
modified programmatically outside the control and can’t be turned
off. The control state is loaded before the view state. Both steps fire
no events but can be customized, overriding a couple of protected
methods.

■ Loading postback data The posted values are processed and their
ID matched against the ID of all declared controls. If a match is
found, the posted value updates the state of the control. (How this
happens for a specific control depends on the control’s implementa-
tion of the IPostBackDataHandler interface.)

■ Page preloading The PreLoad event occurs when the page is fin-
ished processing any posted values. You handle this event if you
need to perform any operation before the page loading phase
begins.

■ Page loading The Load event is fired recursively for all constituent
controls and then for the page. Before the loading stage ends, a
number of interesting actions take place. The page makes a second
attempt to find a match between posted values and page controls.
This attempt is designed to load any available state into dynamic
controls created or restored in the Load event. If the page has a call-
back event handler, the event is raised at this time. Finally, if the
posted values modify the properties of some child controls that
require notification of changes, the related postback change notifica-
tion events are fired. For example, if the posted values modify the
Text property of a TextBox control, the TextChanged server event is
fired.

■ Postback events The page executes the server-side code associ-
ated with the client-side event (i.e., a click) that caused the page to
post back. This step is the core of the ASP.NET event model.

■ End of page loading The LoadComplete occurs to mark the end of
the preliminaries. From now on, the page enters its rendering phase.

■ Prerendering Before the page fires the PreRender event, it
ensures that all needed child controls have been created. The Pre-
Render event is first fired for the page and then recursively for all
children. At the end of the loop, the page fires the PreRenderCom-
plete event and saves personalization data, control, and view state.

C01620245.fm Page 26 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 27

■ Rendering Generates the markup to be rendered to the client. The
default implementation can be customized, overriding the Render
method. No user event is associated with this phase.

■ Page unload Performs any final cleanup before the page object is
released. The event you need to hook up from your code is Unload.
Child controls are unloaded before the page is unloaded. The
Unload event is followed by the Dispose event, which indicates that
the page object is being destroyed.

Important Notice that the xxxComplete events are fired only for the
page. Contained controls never receive it. The xxxComplete events
signal that a certain operation is complete. For this reason, they make
sense only at the page level.

Programming the Page
Compared to its implementation in ASP.NET 1.x, the Page class in ASP.NET 2.0
provides a few new capabilities, such cross-page posting, content pagination,
and personalization. In this section, we’ll take a closer look at cross-page post-
ing and pagination, saving personalization for Chapter 4. Cross-page posting is
a feature that the community of ASP.NET developers loudly demanded. Pagina-
tion is the offspring of the tight level of integration achieved between ASP.NET
and Mobile ASP.NET. We’ll start this quick overview of new page functions with
another feature that was widely requested—the ability to program the <head>
tag of a Web page.

The HtmlHead Control
The HtmlHead control belongs to the System.Web.UI.HtmlControls namespace.
An instance of this control is automatically created if the page contains a
<head> tag marked with the runat=server attribute. Note that this setting is the
default when you add a new page to a Visual Studio 2005 Web project, as
shown in the following snippet:

<head runat="server">
<title>Untitled Page</title>

</head>

The header of the page is returned through the new Header property of
the Page class. The property returns null if the <head> tag is missing or if it is
present but lacks the runat attribute.

C01620245.fm Page 27 Wednesday, June 9, 2004 5:22 PM

28 Part I ASP.NET Essentials

The control implements the IPageHeader interface, which consists of
three collection properties—Metadata, LinkedStylesheet, Stylesheet, and a string
property—Title. The Metadata property is a dictionary that collects all the
desired child <meta> tags of the header:

Header.Metadata.Add(“CODE-LANGUAGE", “C#”);

The code results in the following markup:

<meta name="CODE-LANGUAGE” content="C#” />

To express other common metadata such as Http-Equiv, you can resort to
adding literal controls to the Controls collection of the header. Notice that you
must explicitly cast the Header object to Control because the Header property
is declared of type IPageHeader, which has no Controls property defined.

LiteralControl equiv;
equiv = new LiteralControl (“<meta http-equiv=‘refresh’ content=‘3’ />“)
((Control) Header).Controls.Add(equiv);

To link a stylesheet file, you use the following code:

Header.LinkedStyleSheets.Add(“MyStyles.css”);

Finally, the HtmlHead control features the Title property, through which
you can retrieve and set the title of the page.

Header.Title = “This is the title";

Note that this property returns the correct page title only if the <title> tag
is correctly placed within the <head> tag. Some browsers are quite forgiving on
this point and allow developers to define the title outside the header.

Cross-Page Postbacks
Implementing cross-page postbacks requires only a couple of steps. First you
set the PostBackUrl property on buttons and server controls that can cause post-
back. When the PostBackUrl property is set, the ASP.NET runtime binds the cor-
responding HTML element to a new JavaScript function. Instead of our old
acquaintance __doPostback, it uses the new WebForm_DoPostBackWithOptions
function:

<form runat="server">
<asp:textbox runat="server” id="Data” />
<asp:button runat="server” id="buttonPost"

Text="Click”
PostBackUrl="~/target.aspx” />

</form>

C01620245.fm Page 28 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 29

The button declaration renders the following markup:

<input type="submit” name="buttonPost” id="buttonPost”
value="Click"
onclick="javascript:WebForm_DoPostBackWithOptions(

new WebForm_PostBackOptions("buttonPost",
"",
false,
"",
"target.aspx",
false,
false))” />

As a result, when the user clicks the button, the current form posts its con-
tent to the specified target page. What about the view state? When the page
contains a control that does cross-page posting, a new hidden field is created—
__PREVIOUSPAGE. The field contains the view state information to be used to
serve the request. This view state information is transparently used in lieu of the
original view state of the page being posted to.

You use the PreviousPage property to reference the posting page and all
of its controls. Here’s a sample page that can access the content of the text box
defined in the server form presented a moment ago:

<%@ page language="C#” %>
<script runat="server">

void Page_Load(object sender, EventArgs e)
{

if (PreviousPage == null)
{

Response.Write(“Invoke me only through cross-page posting.”);
Response.End();
return;

}

// Retrieves the data textbox
TextBox txt = (TextBox) PreviousPage.FindControl(“Data”);
Response.Write(“You passed: “ + txt.Text);

}
</script>
<html>
<head runat="server">

<title>Target page</title>
</head>
<body>
</body>
</html>

C01620245.fm Page 29 Wednesday, June 9, 2004 5:22 PM

30 Part I ASP.NET Essentials

Paging the Page
If you have ever played with ASP.NET mobile controls, you should know about
pagination. Pagination is a mobile page’s ability to automatically display the
contents of a form in pages according to the characteristics of the target device.
The individual page to display is composed by dividing the overall markup into
blocks of approximately the same size.

ASP.NET 2.0 comes with a new control named Pager that adds similar
functionality to all server controls, including mobile controls. The pager is capa-
ble of paginating container controls based on their weight or the number of
items to display per page. The Pager control also displays its own user interface
to let you move around the pages. Figure 1-9 shows a page with 50 text boxes
that a pager displays a few at a time.

F01DR09Figure 1-9 Several controls are contained in a panel and are paginated
by means of a Pager control.

The source code of the page is shown here:

<%@ Page Language="C#” %>

<html>
<script runat="server">

void Page_Load (Object sender, EventArgs e)
{

for (int i=0; i<50; i++) {
TextBox txt = new TextBox ();
txt.Text = i.ToString();
panelSample.Controls.Add (txt);
panelSample.Controls.Add (new LiteralControl(“
“));

}
}

</script>
<body>
<form runat="server">
<h1>Pager in action</h1>
<asp:contentpager runat="server” id="pagerPanel”

C01620245.fm Page 30 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 31

Mode="NextPreviousFirstLast”
ControlToPaginate="panelSample”
ItemsPerPage="9” />

<asp:panel runat="server” id="panelSample” borderwidth="1” />
</form>
</body>
</html>

The ContentPager control paginates the contents of a container control
based on one of two algorithms—weight-based or item-based. The algorithm
used depends on the ItemsPerPage property. If the property is set, the item-
based algorithm is used; otherwise, the weight-based algorithm is used. The
two algorithms work in a similar manner, but the weight-based algorithm allows
finer control over the elements that go in each page. Basically, the item-based
algorithm attempts to place in each page exactly the number of controls indi-
cated by ItemsPerPage. The weight-based algorithm assigns each container a
maximum weight that can’t be exceeded when paginating. For example, the
Page class has a maximum weight of 4000. Each control is also given a default
weight (100). As you can see, in the default case the two algorithms are nearly
identical, but the weight of each control can be overridden, thus allowing for a
customized form of pagination.

The Page Scripting Object Model
The great news about the scripting object model in ASP.NET 2.0 is that it allows
calls to server events from client code without causing the page to post back
and refresh. This sort of remote scripting engine is implemented through a call-
back mechanism that offers a clear advantage to developers. When you use
script callbacks, the results of the execution of a server-side method are passed
directly to a JavaScript function that can then update the user interface via
Dynamic HTML. A roundtrip still occurs, but the page is not fully refreshed.

Script callbacks are not the only good news. The overall scripting model
has been enhanced. As a result, setting the input focus to a particular control is
now as easy as calling the SetFocus method.

Script Callbacks
Script callbacks allow you to execute out-of-band calls back to the server. These
calls are special postbacks, so a roundtrip always occurs; however, unlike clas-
sic postbacks, script callbacks don’t redraw the whole page and give users the
illusion that everything is taking place on the client. You can use callbacks to
update individual elements of a page, such as a chart or a panel, provide differ-
ent views of the same data, download additional information on demand, or

C01620245.fm Page 31 Wednesday, June 9, 2004 5:22 PM

32 Part I ASP.NET Essentials

autofilling one or more fields. In particular, the ASP.NET 2.0 TreeView control
uses script callbacks extensively to implement its expand/collapse features and
the GridView control (see Chapter 7) uses callbacks to page and sort without
explicit postbacks.

A script callback begins with a client-side event (typically a click) that trig-
gers a built-in JavaScript function named WebForm_DoCallback. If you use a
push button to trigger the function, avoid using the <asp:button> tag. This tag
renders through a submit button that would refresh the whole page anyway. Use
a link button or a client-side button such as the HTML 4.0 <button> tag. The
WebForm_DoCallback script function requires a few arguments, as shown here:

WebForm_DoCallback(
pageID, // ID of the page that makes the call
argument, // string argument to pass to the server-side code
returnCallback, // JavaScript code invoked when the callback returns
context, // value the caller needs to pass to return callback
errorCallback); // JavaScript code invoked in case of errors

The first argument represents the ID of the page and can’t be omitted.
When the server-side code returns, the ASP.NET 2.0 infrastructure invokes the
specified returnCallback function and passes the return value (always a string)
obtained from the server-side code plus any context information. The return-
Callback function is responsible for processing the return value, thus updating
the user interface via Dynamic HTML.

Let’s consider an example. A page that wants to support out-of-band calls
must implement the ICallbackEventHandler interface. This requires the use of
the @Implements directive:

<%@ Implements Interface="System.Web.UI.ICallbackEventHandler” %>

The ICallbackEventHandler interface has only one method, RaiseCall-
backEvent:

public virtual string RaiseCallbackEvent(string eventArgument)
{

// eventArgument indicates the parameter(s) passed
// TO DO: retrieve the server-side values based on the
// parameter(s) and pack everything into a return string

}

The following page provides a full demonstration of script callbacks. The
page shows a drop-down list populated with employee names taken from the
Northwind database. The More Info button triggers a piece of JavaScript code
that retrieves the currently selected employee and passes that ID to the server-
side code.

C01620245.fm Page 32 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 33

<%@ page language="C#” %>
<%@ import namespace="System.Data” %>
<%@ implements interface="System.Web.UI.ICallbackEventHandler” %>

<script language="javascript">
function UpdateEmployeeViewHandler(result, context) {

// The result is presented as a comma-separated string
var obj = result.split(“,”);
e_ID.innerHTML = obj[0];
e_FName.innerHTML = obj[1];
e_LName.innerHTML = obj[2];
e_Title.innerHTML = obj[3];
e_Country.innerHTML = obj[4];
e_Notes.innerHTML = obj[5];

}
</script>

<script runat="server">
public virtual string RaiseCallbackEvent(string eventArgument) {

// Get more info about the specified employee
int empID = Convert.ToInt32 (eventArgument);
EmployeesManager empMan = new EmployeesManager();
EmployeeInfo emp = empMan.GetEmployeeDetails(empID);

// Pack the data into a string
string[] buf = new string[6];
buf[0] = emp.ID.ToString ();
buf[1] = emp.FirstName;
buf[2] = emp.LastName;
buf[3] = emp.Title;
buf[4] = emp.Country;
buf[5] = emp.Notes;
return String.Join(“,", buf);

}

void Page_Load (Object sender, EventArgs e) {
// Populate the drop-down list
EmployeesManager empMan = new EmployeesManager();
DataTable dt = empMan.GetListOfNames();
cboEmployees.DataSource = dt;
cboEmployees.DataTextField = “lastname";
cboEmployees.DataValueField = “employeeid";
cboEmployees.DataBind();

// Prepare the Javascript function to call
string callbackRef = GetCallbackEventReference(this,

 “document.all[‘cboEmployees’].value",
 “UpdateEmployeeViewHandler", “null", “null”);

// Bind the callback to a client button
buttonTrigger.Attributes["onclick"] =

C01620245.fm Page 33 Wednesday, June 9, 2004 5:22 PM

34 Part I ASP.NET Essentials

String.Format(“javascript:{0}", callbackRef);
}

</script>
<html>
<body>

<form runat="server">
<asp:dropdownlist id="cboEmployees” runat="server” />
<button runat="server” id="buttonTrigger">More Info</button>

<table>
<tr><td>ID</td><td></td></tr>
<tr><td>Name</td><td></td></tr>
<tr><td>Last Name</td><td></td></tr>
<tr><td>Title</td><td></td></tr>
<tr><td>Country</td><td></td></tr>
<tr><td>Notes</td><td><i></i></td></tr>
</table>

</form>
</body>
</html>

The page posts back to the server and gets initialized as usual. The Init
and Load events are fired, and the IsCallback property is set to true. RaiseCall-
backEvent is invoked when the load phase is completed. After that, the request
ends without entering the rendering phase. A client-side system component—
the Callback Manager—controls the interaction between the page and the
server. The Callback Manager is a script library sent to the client by ASP.NET. It
is responsible for creating a request to the server, and will fire the appropriate
server-side event. It also parses the response and passes the appropriate data to
the specified JavaScript return callback.

Note Should you write the call to WebForm_DoCallback yourself?
Should you know about its details? Not necessarily. The GetCallback-
EventReference method on the Page class returns the script string that
starts the callback. You prefix this string with javascript: and attach it to
the onclick attribute of a client button. Alternatively, you can wrap the
string in another JavaScript function and inject it into the page. The
whole process of generating the client script code for starting the call-
back is a bit more complicated if you have parameters to pass. In this
case, it’s easier if you use WebForm_DoCallback directly. However, a
runtime error occurs if no call to GetCallbackEventReference is made.
To ensure that all required references are inserted, you insert a fake
call to the method for initialization purposes.

GetCallbackEventReference(this, “arg", “callback", “null", “null”);

C01620245.fm Page 34 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 35

Setting the Focus
A useful feature that ASP.NET 1.x lacks is the ability to assign the input focus to
a particular control when the page is displayed. In ASP.NET 2.0, the Page class
is purposely endowed with the SetFocus method. The following code shows
how to set the focus to a TextBox control named txtLastName:

void Page_Load(object sender, EventArgs e) {
if (!IsPostBack)

SetFocus(“txtLastName”);
}

The SetFocus method caches the ID of the control and forces the Page
class to generate ad hoc script code when the page is rendered. The following
code shows an alternative approach to setting the input focus:

<form runat="server” defaultfocus="txtLastName">
§

</form>

You can set the DefaultFocus property on a form to denote which control
should receive the focus. This is equivalent to calling SetFocus. The difference
is that if one control at a time requests the focus through SetFocus, the default
focus is ignored.

Overview of Server Controls
ASP.NET 1.x has two distinct but similar-looking families of controls—standard
ASP.NET controls and mobile controls. A key goal of ASP.NET 2.0 is to let devel-
opers build Web applications for a range of devices without knowing the spe-
cific device semantics. ASP.NET 2.0 defines a common architecture for Web
controls and adapters and unifies functionality expressed in Mobile ASP.NET
with the desktop model expressed in ASP.NET 1.x.

The unified model for controls is not the silver bullet that lets you build
applications that successfully respond to every device in any situation. In sim-
ple scenarios, this might be the case, but in more realistic situations you must
write extra code to adapt the application to a particular family of devices. The
amount of extra code can range from simple customization to account for a dif-
ferent set of capabilities to a supplementary application to deal with a signifi-
cantly different interaction and usability model. But in this case, the unified
programming model still guarantees that there’s no new programming tech-
nique or API to learn.

The adaptive rendering of ASP.NET mobile controls is extended to
ASP.NET controls, blurring any difference between mobile and Web applica-

C01620245.fm Page 35 Wednesday, June 9, 2004 5:22 PM

36 Part I ASP.NET Essentials

tions, at least at the API level. It is worth noting, though, that mobile and Web
applications remain quite different in terms of the required semantics and the
usability model.

New Control Features
ASP.NET 2.0 controls provide 100 percent backward compatibility with ASP.NET
1.x controls, with the same or better performance. The controls also reflect
some of the new features found in the platform, such as personalization, them-
ing, the data binding model, and control state. All controls have the same
<asp:> prefix, whereas in ASP.NET 1.x mobile controls have a custom
<mobile:> prefix by default.

Adaptive Rendering
Adaptive rendering is the process of creating different markup and layout for
various devices. Adaptive rendering applies first and foremost to controls, but it
is also extended to container elements such as forms and pages. Although such
a flexible rendering engine reduces the code needed to write multidevice appli-
cations, it is conceptually different from the somewhat seductive “write once,
render everywhere” paradigm.

The write-once option is based on the idea of a least-common denomina-
tor used to generate the markup. This is not the case in ASP.NET 2.0, where
controls always try to render in the best possible way for each device. Adaptive
rendering is better described using another slogan: design once, render every-
where. The functionality is designed once and can be rendered on virtually any
device, but the physical code adaptation might require some additional code.
The extra code adapts the output of a control to the device so that no functions
get lost in the transition.

Adapters are components that override life-cycle stages of controls to
allow for device-specific handling. ASP.NET 2.0 maps a single adapter to a con-
trol for each served request. Of course, the selected adapter depends on the
current device. A control holds a reference to the mapped adapter instance
through the Adapter (protected) property. Each control has an associated
adapter unless it is a composite control that defers to its children for rendering.
Custom controls might not have a direct adapter mapping; in this case, ASP.NET
2.0 walks the inheritance tree of the control to find an adapter.

Adaptive rendering is thus a part of the internal process of generating a
Web page. There are two ways to extend adaptive rendering—custom adapters
and device filtering. You can construct your own adapters to extend the built-
in adapter classes to modify the appearance of controls on a given device.

C01620245.fm Page 36 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 37

Alternatively, you can use device-filtering expressions to declaratively or pro-
grammatically override specific properties, as shown here:

<asp:label runat="server”
text="This book is the best in its genre."
IsWml:text="Great book” />

For example, you can specify that the Text property of a control display a
short string for a mobile phone but a longer string for a device that supports a
larger viewing area.

Control State
Some ASP.NET controls require that some state be kept across requests. Exam-
ples of this type of state information include the current page of a paged control
and the current sort order of a sortable data control. In ASP.NET 1.x, there is
only one container in which this data can be stored—the view state. However,
the view state is mainly designed to maintain settings set by the application, and
more important, it can be turned off. What would happen to control-specific
state in this case? So ASP.NET 2.0 introduces the notion of the control state and
keeps it separate from the view state to make clear that control state is a vital
piece of the control infrastructure.

Control state is a collection of critical view state data that controls need to
function. Because of its critical role, control state data is contained in a separate
collection from normal view state and is not affected when view state is dis-
abled. Unlike view state, control state requires extra implementation steps to
use. A control that needs this private state signals it to the page by calling the
RegisterRequiresControlState method of the Page class:

// This code is part of the control’s implementation
protected override void OnInit(EventArgs e)
{
Page.RegisterRequiresControlState(this);

base.OnInit(e);
}

The storage medium for control state is any object you want. In general,
simple arrays or collections are a good choice. Each control persists and loads
its control state using a pair of overridable methods, as shown here:

protected override object SaveControlState()
protected override void LoadControlState(object state)

Control state works similarly to view state and is saved and loaded at the
same stage of the pipeline that view state is processed. Controls should make
limited use of control state except for critical, private state information.

C01620245.fm Page 37 Wednesday, June 9, 2004 5:22 PM

38 Part I ASP.NET Essentials

Note As a control developer, you’re responsible for serializing and
deserializing the control state. You can do that only through the pair of
aforementioned methods—SaveControlState and LoadControlState.
It’s important to consider that all objects that form the control state
must be of serializable types.

New Core Controls
Although ASP.NET 2.0 is 100 percent backward compatible with ASP.NET 1.x,
only a handful of components have not significantly changed. The new and
revised controls can be grouped into six main categories—container, button,
text, image, list, and data controls. Chapter 7 covers new data and view controls
in detail.

Let’s get familiar with some of the new controls, starting with an existing
control—the Panel control—which in ASP.NET 2.0 provides an interesting new
capability.

The Panel Control
The Panel control groups controls in a <div> tag. It allows developers to add
and remove controls and supports style information. In ASP.NET 2.0, panels
support horizontal and vertical scrollbars implemented through the overflow
CSS style. Here’s an example that demonstrates two nested panels, the outer-
most of which is vertically scrollable:

<asp:panel runat="server” scrollbars="Vertical” height="105px”
style="border:solid 1px;">
0
1
2
3
4
5
6

</asp:panel>

The Figure 1-10 shows the page in action.

F01DR10Figure 1-10 A page that uses a scrollable panel

C01620245.fm Page 38 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 39

The MultiView Control
The MultiView control defines a group of views in which only one can be
defined as active and be rendered to the client. The active view is a View object.

<asp:MultiView runat="server” id="Tables">
<asp:View runat="server” id="Employees">

§
</asp:View>
<asp:View runat="server” id="Products">

§
</asp:View>
<asp:View runat="server” id="Customers">

§
</asp:View>

</asp:MultiView>

You change the active view through postback events when the user clicks
button or links embedded in the current view. To indicate the new view, you
can either set the ActiveViewIndex property or pass the view object to the Set-
ActiveView method.

The Figure 1-11 shows a sample page in action. You select the page from
the Views drop-down list and then refresh the view.

void Page_Load(object sender, EventArgs e)
{

// Views is a drop-down list
Tables.ActiveViewIndex = Views.SelectedIndex;

}

F01DR11Figure 1-11 A multi-view control in action

The Wizard Control
Similar to the MultiView control but more specialized is the Wizard control. It is
a composite control that uses the MultiView control internally to display and hide
the panels that form the steps of the wizard. Here’s an example of the wizard:

<asp:wizard runat="server” id="BookWizard"
style="border:solid 1px” width="300” height="100"
onfinishbuttonclick="Finished">

<WizardSteps>

C01620245.fm Page 39 Wednesday, June 9, 2004 5:22 PM

40 Part I ASP.NET Essentials

<asp:WizardStep steptype="Start">
<h3>Thanks for choosing this book.
Please, proceed with payment!</h3>

</asp:WizardStep>
<asp:WizardStep steptype="Step">

<h3>Enter your credit card number:</h3>
<asp:textbox runat="server” id="CreditCard” text="“ />

</asp:WizardStep>
<asp:WizardStep steptype="Finish">

<h3>You’re all set. Click and your credit card
will be charged. Thank you!</h3>

</asp:WizardStep>
<asp:WizardStep steptype="Complete">

<asp:label runat="server” id="FinalMsg” />
</asp:WizardStep>

</WizardSteps>
</asp:wizard>

The control provides navigation buttons and fires server-side events
whenever the user clicks to change the page. The navigation can be both linear
and nonlinear—you can jump from one page to the next as well as randomly to
any listed page. When the Finish button is clicked, you typically collect all the
data and proceed with the final step. Since all the controls are part of the page,
you can access them codewise using their ID. Figure 1-12 shows the steps of a
sample wizard to make a payment.

F01DR12Figure 1-12 The ASP.NET 2.0 Wizard control in action

The following code represents the final step of the wizard that finalizes the
whole operation.

21

Thanks for choosing this
book. Please, proceed
with payment!

Enter your credit card number

Wizard Wizard

3 4Wizard Wizard

You're all set. Click and your
credit card will be charged.
Thanks you!

Credit card [12345678] has
been successfully charged

C01620245.fm Page 40 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 41

void Finished(object sender, EventArgs e)
{

// Perform the operation
§

// Give feedback
string msg = “Credit card [{0}] has been successfully charged.";
FinalMsg.Text = String.Format(msg, CreditCard.Text);

}

We’ll learn more about this cutting edge control in Chapter 8.

The BulletedList Control
I craved a BulletedList control in ASP.NET 1.x, so I built one myself. Surpris-
ingly, it wasn’t so hard, but I welcome this control in ASP.NET 2.0 with extreme
pleasure. The control is a programming interface built around the and
 HTML tags, with some extra features such as the bullet style, data binding,
and support for custom images. The following example uses a custom bullet
object:

<asp:bulletedlist runat="server” bulletstyle="Square">
<asp:listitem>One</asp:listitem>
<asp:listitem>Two</asp:listitem>
<asp:listitem>Three</asp:listitem>

</asp:bulletedlist>

The bullet style lets you choose the style of the element that precedes the
item. You can use numbers, squares, circles, and uppercase and lowercase let-
ters. The child items can be rendered as plain text, hyperlinks, or buttons.

The DynamicImage Control
The DynamicImage class is much more than just a wrapper around the
tag. It isn’t limited to just displaying images. The control has the ability to adapt
images based on the capabilities of the requesting browser. You can set a few
properties to define the behavior of the DynamicImage class when you render
images to browsers with limited graphics capabilities. Here’s an example of the
control:

<asp:dynamicimage runat="server"
ImageFile="image.gif">

</asp:dynamicimage>

Interestingly, the source image can be expressed in a variety of ways,
including an array of bytes from an external source such as a database, a file, or

C01620245.fm Page 41 Wednesday, June 9, 2004 5:22 PM

42 Part I ASP.NET Essentials

an image generation service. You can pass the bytes of the image by using the
ImageBytes property; you use the ImageFile property if you’re passing a file
instead. As you’ll see in Chapter 8, ASP.NET 2.0 comes with a special type of
HTTP handler that’s capable of generating dynamic images using the GDI+
drawing objects. If you intend to display an image obtained in this way, set the
ImageGeneratorUrl property to the URL of the service. If you need to pass
parameters, use the <asp:parameter> control. Image generators have the .asix
extension.

<asp:dynamicimage runat="server"
ImageType="gif"
ImageGeneratorUrlImageFile="textimage.asix">
<parameters>

<asp:parameter Name="Text” DefaultValue="ASP.NET 2.0” />
</parameters>

</asp:dynamicimage>

We’ll discuss the DynamicImage control in more depth in Chapter 8.

The FileUpload Control
In ASP.NET 1.x, file uploads are possible through the HtmlInputFile server con-
trol. This control is a simple wrapper built around the <input type=file> HTML
element. The new FileUpload control in ASP.NET 2.0 is nearly identical in func-
tionality but provides a more abstract interface. Both controls display a text field
and a browse button that allow users to select a file on the client computer and
upload it to the Web server.

The FileUpload control does not automatically save a file to the server
after the user selects the file. Typically, you provide a button that the user clicks
to cause the postback and the subsequent file upload. As the following code
shows, using the FileUpload control is pretty straightforward.

<asp:fileupload runat="server” id="uploader” />

The control does its job when the page posts back. The uploaded file can
be accessed by name using the FileName property or by stream using the File-
Content property. To access more specific information about the posted file,
you can use the object returned by the PostedFile property. Finally, SaveAs is
the method that makes a copy of posted file to a server-side file. Note that the
final folder must exist—otherwise, an exception is thrown.

void UploadButton_Click(object sender, EventArgs e)
{

// Specify the path on the server to save the uploaded file to
string savePath = @"c:\temp\uploads\";

C01620245.fm Page 42 Wednesday, June 9, 2004 5:22 PM

Chapter 1 Creating an ASP.NET 2.0 Application 43

if (FileUpload1.HasFile)
{

string fileName = FileUpload1.FileName;
savePath += fileName;

FileUpload1.SaveAs(savePath);

UploadStatusLabel.Text = “File saved as: <i>“ + savePath + “</i>";
}
else
{

// Notify the user that a file was not uploaded
UploadStatusLabel.Text = “You did not specify a file to upload.";

}
}

F01DR13Figure 1-13 The typical user interface of the upload control

Summary

In this chapter, we covered the three entities that form the foundation of Web
applications written with ASP.NET—the development environment, the page
object, and the controls. In ASP.NET 2.0, an updated and more powerful
designer makes developing Web applications easier than ever, and even pleas-
ant. The ASP.NET designer of Visual Studio 2005 solves all the issues of today’s
Web development tools and delivers a high-quality IDE that is easier to use and
more productive.

The Page class is the basis of all the Web forms dynamically created from
.aspx resources. The class has been enhanced to support personalization,
themes, and a more powerful scripting object model that finds its best expres-
sion in cross-page postbacks and script callbacks.

C01620245.fm Page 43 Wednesday, June 9, 2004 5:22 PM

44 Part I ASP.NET Essentials

New core controls populate the pages; these include Web wizards, the
MultiView control, and bulleted lists. Perhaps the most remarkable aspect of
ASP.NET 2.0 controls is the unified model that ties together desktop controls
and mobile controls. As a result, pagination and control state make their debut
in the world of ASP.NET, and a family of more powerful controls can be used to
create mobile applications. The adaptive rendering simplifies the design of Web
applications, making the optimization for multiple devices a small supplemen-
tary application when not simply a form of customization.

In the next chapter, we’ll begin exploring the programming world of
ASP.NET 2.0. We’ll start with the most requested new feature in ASP.NET 2.0:
master pages.

C01620245.fm Page 44 Wednesday, June 9, 2004 5:22 PM

45

Working with Master Pages
It took developers little time to realize that something was missing in the
ASP.NET approach to creating Web pages and Web sites. Certainly ASP.NET
greatly simplified the process. However, after a few months of real-world expe-
rience, many developers recognized that they needed more effective and pow-
erful tools to build useful Web applications with the same ease that they could
build simple sites.

Almost all Web sites use a similar graphical layout for all their pages. This
doesn’t happen by chance—it grows out of accepted guidelines for design and
usability. A consistent layout is characteristic of all cutting-edge Web sites, no
matter how complex. For some Web sites, the layout consists of the header,
body, and footer; for others, it is a more sophisticated aggregation of menus,
buttons, and panels that contain and render the actual content.

The question is, how can you effectively build such Web sites? I wouldn’t
be giving you the best advice if I told you to manually duplicate your code and
HTML elements. Making your code automatically reusable represents a better
approach, but how do you implement it, in practice?

Both classic ASP and ASP.NET 1.x provide good workarounds for this type
of issue, but neither tackles such a scenario openly and provides a definitive,
optimal solution. ASP.NET 2.0 faces up to the task through a new technology—
master pages—and basically exploits the ASP.NET Framework’s ability to merge
a “supertemplate” with user-defined content replacements.

The Rationale Behind Master Pages
With ASP.NET 1.x, you can apply a common layout to all the pages of a Web
site by wrapping all the common user interface widgets in user controls and

C02620245.fm Page 45 Wednesday, June 9, 2004 5:24 PM

46 Part I ASP.NET Essentials

reuse them in all the pages. With classic ASP, include files offer the best
approach. As you’ll see in a moment, though, neither of these approaches
(either of which you could also use with ASP.NET 2.0) really hits the target.

A better way to build and reuse pages must fulfill three requirements.
First, the pages have to be easy to modify. Second, changes shouldn’t require
deep recompilation and diffuse retouch of the source code. Third, any change
must have minimal impact on the overall performance of the application.

Before we look at how ASP.NET 2.0 master pages address these require-
ments, let’s briefly examine what is good and bad about the ASP.NET 1.x and
classic ASP approaches so you’ll understand how the final architecture of mas-
ter pages came to be.

User Controls in ASP.NET 1.x
In ASP.NET 1.x, the best approach to authoring pages with a common layout is
to employ user controls. User controls are aggregates of ASP.NET server con-
trols, literal text, and procedural code. The ASP.NET runtime exposes user con-
trols to the outside world as programmable components. The idea is that you
employ user controls to tailor your own user interface components and share
them among the pages of the Web site. For example, all the pages that need a
navigational menu can reference and configure the user control that provides
that feature.

What’s Good About User Controls
User controls are like embeddable pages. Turning an existing ASP.NET page
into a user control requires only a few minor changes. User controls can be eas-
ily linked to any page that needs their services. Furthermore, changes to a user
control’s implementation do not affect the referencing page and only require
you (or the runtime) to recompile the user control into an assembly.

However, the best feature of user controls turns out to be the main draw-
back as well.

What’s Bad About User Controls
If you change the internal implementation of the user control, no referencing
page will be affected. However, if you alter any aspect of the control’s public
interface (such as the class name, properties, methods, or events), all the pages
that reference the control must be updated. This means you must manually
retouch all the pages in the application that use the control. Then you must
recompile these pages and deploy the assemblies. In addition, the next time a
user views each page, the ASP.NET runtime will take a while to respond
because the dynamic assembly for the page must be re-created.

C02620245.fm Page 46 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 47

Architecturally speaking, the solution based on user controls works just
fine. In practice, though, it is not a very manageable model for large-scale appli-
cations—its effectiveness decreases as the complexity of the application (the
number of pages involved) increases. If your site contains hundreds of pages,
handling common elements through user controls can quickly become ineffi-
cient and unmanageable.

This model forces you to introduce duplicate code in content pages. In
fact, all pages must reference user controls and all of them must be updated
(and recompiled) whenever you change something in the design of the pages
or in the programming interface of the user controls. Touching hundreds of files
is simply out of the question.

Another, subtler problem arises when you use user controls to build a
pagewide user interface. User controls are individual components and as such
should be self-contained and designed as embeddable pages. When individual
components are used to build a pagewide user interface, you are likely to end
up splitting HTML elements between different user controls. For example, a
<table> element might begin in one user control and end in another one.
Although this is not strictly a syntax error, it clearly indicates a less-than-optimal
design.

Include Files in Classic ASP
Classic ASP offers a smaller set of tools than ASP.NET 1.x, but the best practice
that emerged after years of real-world experience with classic ASP is philosoph-
ically closer to ASP.NET 2.0 master pages than user controls. With classic ASP,
developers reuse common user interface widgets (such as a header, a footer, or
menus) by wrapping them in external include files. When the ASP runtime
builds the response for the browser, the content stored in include files is
merged with the main template of the ASP page.

What’s Good About Include Files
A typical include file contains the HTML markup for the portion of the page it
represents. An include file can contain either static or dynamic content.
Changes to any include files are reflected in the final page but don’t affect how
the final page is built. No performance hit stems from changes to included files;
this is due to the different runtime architecture of classic ASP compared to
ASP.NET.

The page served to the browser is constructed by importing external con-
tent into the main template of the page. However, each page of the application
remains an independent object and is considered the root of a small tree whose
leaves are the include files. In other words, there are no points of contact

C02620245.fm Page 47 Wednesday, June 9, 2004 5:24 PM

48 Part I ASP.NET Essentials

between the various pages that share a common layout. ASP.NET 2.0 master
pages—supertemplates common to all pages sharing a given layout—are sim-
ply an enhancement to this approach.

What’s Bad About Include Files
Include files are plain containers of relatively static text, and they are merely a
cache of HTML markup that is used throughout the application. The markup is
integrated with the existing skeleton of the page; it is typically placed in table
cells and rows.

This approach has two main drawbacks. First, there’s no object orienta-
tion, so integrating this approach with the ASP.NET programming model is
hard. Second, include files tags opened in one file are frequently closed in
another file (either the .asp page or another include file). This situation makes
WYSIWYG designer support virtually impossible.

Outline of a Better Approach
The following aspects of master pages make page layout easy to share, simple
to maintain, and functional to the application:

■ Definition of a supertemplate—the master page—that individual
content pages refer to explicitly

■ Attachment of a master at various levels in the application scheme—
all pages in the Web space, all pages in a directory, and each indi-
vidual page

■ Support for multiple master pages per Web application

■ WYSIWYG support for both master pages and content pages

The master page is a single file that defines the template for a set of pages.
Similar to an ordinary .aspx page, the master contains replaceable sections that
are each marked with a unique ID. Pages in an application that will inherit the
structure defined in the master will reference the master page in their @Page
directive or programmatically. A page based on a master is called a content
page. One master page can be bound to any number of content pages.

Master pages are completely transparent to end users. When working with
an application, a user sees and invokes only the URL of content pages. If a con-
tent page is requested, the ASP.NET runtime applies a different compilation
algorithm and builds the dynamic class as the merge of the master and the con-
tent page. Figure 2-1 illustrates the overall scheme.

C02620245.fm Page 48 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 49

F02DR01Figure 2-1 The master page includes one or more content placeholders
that define regions where replaceable content will appear.

Master pages are among the hottest new features of ASP.NET 2.0 and
address one of the hottest threads in many ASP.NET 1.x newsgroups. By using
master pages, a developer can create a Web site in which various physical
pages share a common layout. You code the shared user interface and function-
ality in the master page. The master also contains named placeholders for con-
tent that the derived page will provide. The shared information is stored in a
single place—the master page—instead of being replicated in each page. Since
the master page is a Web page, any pagewide construct begins and ends within
the same context. Each content page references the master and fleshes out the
placeholders with the actual content. The presence of a master page is not
revealed on the client side, and no master file is ever downloaded.

The master page is to some extent similar to ASP.NET templated controls,
in which the templates are content pages and the outer markup of the control
is the master.

<%@ Master %>
<html><body>
<form runat=server>

<table>
<tr><td>
<asp:contentplaceholder id=Header />
</td></tr><tr><td>
<asp:contentplaceholder id=Body />
</td></tr>
</table>
</form>
</body>
</html> Base.master

<%@ Page Master=Base.master %>

<asp: content
 contentplaceholderid=Header>
I'm the header
</asp: content>

<asp:content
 contentplaceholderid=Body>
I'm the body
</asp:content>

Page.aspx

<html>
<body>
<form runat=server>

<table><tr><td>
I'm the header
</td></tr><tr><td>
I'm the body
</td></tr></table>

</form>
</body>
</html>
HTML markup HTML markup

C02620245.fm Page 49 Wednesday, June 9, 2004 5:24 PM

50 Part I ASP.NET Essentials

Note Master pages in ASP.NET 2.0 offer one way of building Web
pages—not the only way or even the preferred way. You should use
master pages only if you’re using user controls extensively to duplicate
portions of your user interface or if your application lends itself to
being (re)designed in terms of master and content pages.

What Are Master Pages?
To build Web pages based on a master, you start by creating the master. A mas-
ter page is a file with a .master extension. The syntax of a master page is not
much different from that of a regular .aspx page. A master page has two key
characteristics:

■ A new @Master directive replacing the @Page directive

■ One or more ContentPlaceHolder child controls

Each embedded ContentPlaceHolder control identifies a region of markup
text whose real content is provided at run time by content pages. The body of
a master page can contain any combination of server controls, literal text,
images, HTML elements, and managed code. All this, plus the content bound to
placeholders, originates the virtual .aspx source from which the dynamic page
class for the user is generated. (See Figure 2-1.)

Master pages work in conjunction with content pages. In fact, neither mas-
ter pages nor content pages are of any use if used independently. If you attempt
to request a .master resource, you’ll see an error message because .master rep-
resents a forbidden type of resource in ASP.NET. (See Figure 2-2.)

F02DR02Figure 2-2 Requests for .master resources are received and rejected
by the ASP.NET runtime.

C02620245.fm Page 50 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 51

Likewise, you see an error message if you request an .aspx resource that’s
built as a content page but isn’t bound to an existing master page. (You’ll learn
more about content pages in a moment.)

We’ll write a sample master/content pair of pages to see how the whole
mechanism works and what syntactical elements are involved. Then we’ll con-
sider more advanced issues and build a more realistic example of templated
pages.

Writing a Master Page
As mentioned, a master page is similar to an ordinary .aspx page except for the
top @Master directive and the presence of one or more ContentPlaceHolder
server controls. A master page without content placeholders is technically cor-
rect and will be processed correctly by the ASP.NET runtime. However, a place-
holderless master fails in its primary goal—to be the supertemplate of multiple
pages that look alike. A master page devoid of placeholders works like an ordi-
nary Web page but with the extra burden required to process master pages.

Here’s a simple master page named booksample.master:

<%@ Master %>
<html>
<head>

<link rel="Stylesheet” href="styles.css” />
</head>
<form runat="server">

<table border="0” width="100%” bgcolor="beige”
style="BORDER-BOTTOM:silver 5px solid">

<tr>
<td><h2>Introducing ASP.NET 2.0</h2></td>

</tr>
</table>

<asp:contentplaceholder runat="server” id="PageBody” />
</form>
</body>
</html>

As you can see, the master page looks like a standard ASP.NET page.
Aside from the identifying @Master directive, the only key difference is the Con-
tentPlaceHolder control. A page bound to this master automatically inherits all
the contents of the master and has a chance to attach custom markup and
server controls to each defined placeholder.

C02620245.fm Page 51 Wednesday, June 9, 2004 5:24 PM

52 Part I ASP.NET Essentials

The content placeholder element is fully identified by its ID property and
normally doesn’t require other attributes.

The @Master Directive
The @Master directive distinguishes master pages from content pages and
allows the ASP.NET runtime to properly handle each. The @Master directive
supports quite a few attributes, including Language, Debug, Inherits, and Class-
Name. These attributes play the same role that they do for ordinary .aspx pages.
The Language attribute specifies the language used in the master. Inherits
specifies the base class for the current master, and ClassName specifies the
name of the actual master class. Finally, Debug ensures that debug symbols are
added to the compiled page, and it causes the ASP.NET runtime to persist any
temporary files (including the source code of the dynamic page class) created
during the processing of the page request.

The attributes supported by a @Master directive are also the same as those
defined on the @Control directive for user controls. This is not coincidental. A
master page file is compiled to a class that derives from the MasterPage class.
The MasterPage class, in turn, inherits UserControl. So, at the end of the day, a
master page is treated as a special kind of ASP.NET user control.

Note You can also create master pages programmatically. You build
your own class and make it inherit MasterPage. Then you create .mas-
ter files in which the Inherits attribute points to the fully qualified name
of your class. Rapid application development (RAD) designers such as
the one embedded in Visual Studio 2005 use this approach to create
master pages.

Table 2-1 details the attributes of the @Master directive.

Table 2-1 Attributes of the @Master Directive

Attribute Description

AutoEventWireup Specifies whether the master page’s events are bound to meth-
ods with a particular name. The default is true.

ClassName Specifies the name for the class that will be created to render
the master page. This value can be any valid class name but
should not include a namespace.

C02620245.fm Page 52 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 53

Note that the @Master directive doesn’t override attributes set at the @Page
directive level. For example, you can have the master set the language to Visual
Basic .NET, and one of the content pages can use C#. The language set at the
master page level never influences the choice of the language at the content
page level.

CompilerOptions Specifies a sequence of compiler command-line switches used
to compile the master class. The target compiler depends on the
language of choice.

Debug Specifies whether the master page will be compiled with debug
symbols. If true, the source code of the master will not be
deleted and can be retrieved under the Temporary ASP.NET
Files folder.

Description Provides a text description of the master page.

EnableViewState Specifies whether view state for the controls in the master page
is maintained across page requests. The default is true.

EnableTheming Specifies whether themes for the controls in the master page are
enabled. The default is true.

Explicit Specifies whether the master page will be compiled using the
Visual Basic Option Explicit mode. This attribute is ignored by
languages other than Visual Basic .NET. It is false by default.

Inherits Specifies a code-behind class for the master page to inherit. This
can be any class derived from MasterPage.

Language Specifies the language used throughout the master page.

MasterPageFile Specifies the name of the master page file that this master refers
to. A master can refer to another master through the same
mechanisms a page uses to attach to a master. If this attribute is
set, you will have nested masters.

Strict Specifies whether the master page will be compiled using the
Visual Basic Option Strict mode. This attribute is ignored by lan-
guages other than Visual Basic .NET. It is false by default.

Src Specifies the source filename of the code-behind class to
dynamically compile when the master page is requested.

WarningLevel Specifies the compiler warning level at which the compiler will
abort compilation of the master page.

Table 2-1 Attributes of the @Master Directive

Attribute Description

C02620245.fm Page 53 Wednesday, June 9, 2004 5:24 PM

54 Part I ASP.NET Essentials

Note You can use other ASP.NET directives in a master page—for
example, @Import. However, the scope of these directives is limited to
the master file and does not extend to child pages generated from the
master. For example, if you import the System.Data namespace into a
master page, you can call the DataSet class within the master. But to
call the DataSet class from within a content page, you must also
import the namespace into the content page.

The ContentPlaceHolder Container Control
The ContentPlaceHolder control inherits from the Template class and is defined
in the System.Web.UI.WebControls namespace. It acts as a container placed in a
master page. It marks places in the master where related pages can insert cus-
tom content. A content placeholder is uniquely identified by an ID. Here’s an
example:

<asp:contentplaceholder runat="server” ID="PageBody” />

A content page is an .aspx page that contains only <asp:Content> server
tags. This element corresponds to an instance of the Content class that provides
the actual content for a particular placeholder in the master. The link between
placeholders and content is established through the ID of the placeholder. The
content of a particular instance of the Content server control is written to the
placeholder whose ID matches the value of the ContentPlaceHolderID prop-
erty, as shown here:

<asp:Content runat="server” contentplaceholderID="PageBody">
§

</asp:Content>

In a master page, you define as many content placeholders as there are
customizable regions in the page. A content page doesn’t have to fill all the
placeholders defined in the bound master. However, a content page can’t do
more than just fill placeholders defined in the master.

Note A placeholder can’t be bound to more than one content region
in a single content page. If you have multiple <asp:Content> server
tags in a content page, each must point to a distinct placeholder in the
master.

C02620245.fm Page 54 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 55

Specifying Default Content
A content placeholder can be assigned default content that will show up if the
content page fails to provide a replacement. Each ContentPlaceHolder control
in the master page can contain default content. If a content page does not ref-
erence a given placeholder in the master, the default content will be used. The
following code snippet shows how to define default content:

<asp:contentplaceholder runat="server” ID="PageBody">
<!-- Use the following markup if no custom

content is provided by the content page -->
§

</asp:contentplaceholder>

The default content is completely ignored if the content page populates
the placeholder. The default content is never merged with the custom markup
provided by the content page.

Note A ContentPlaceHolder control can be used only in a master
page or a (templated) user control. Content placeholders are not valid
on .aspx pages. If such a control is found in an ordinary Web page, a
parser error occurs.

Writing a Content Page
The master page defines the skeleton of the resulting page. If you need to share
layout or a navigational menu among all the pages, placing it in a master page
will greatly simplify management of the pages in the application. You create the
master and then think of your pages in terms of a delta from the master. The
master defines the common parts of a certain group of pages and leaves place-
holders for customizable regions. Each content page, in turn, defines what the
content of each region has to be for a particular .aspx page.

The Content Control
The key part of a content page is the Content control. The class is defined in the
System.Web.UI.WebControls namespace and inherits Control. A Content control
is a container for other controls placed in a content page. The control is used
only in conjunction with a corresponding ContentPlaceHolder and is not a
standalone control.

The master file that we considered earlier defines a single placeholder
named PageBody. This placeholder represents the body of the page and is

C02620245.fm Page 55 Wednesday, June 9, 2004 5:24 PM

56 Part I ASP.NET Essentials

placed right below an HTML table that provides the page’s header. The follow-
ing listing shows a sample content page bound to the booksample.master file:

<%@ Page Language="C#” masterpagefile="booksample.master” %>

<script runat="server">
void OnButtonClick(object sender, EventArgs e)
{

msg.Text = “Hello, Master Pages";
}

</script>

<asp:content runat="server” contentplaceholderID="PageBody">
<div>

<h1>This is the body of the page</h1>
<asp:button runat="server” text="Click Me” onclick="OnButtonClick” />
<asp:label runat="server” id="msg” />

</div>
</asp:content>

The content page is the resource that users invoke through the browser.
Let’s call it withmaster.aspx. When the user points her browser to this page, the
output in Figure 2-3 is shown.

F02DR03Figure 2-3 The page named withmaster.aspx is obtained by merging
the master and the content page.

The replaceable part of the master is filled with the corresponding content
section defined in the derived pages. In the previous example, the <asp:Con-
tent> section for the PageBody placeholder contains a button and a label. The
server-side code associated to the button is defined in the content page. You
should notice that the Language attribute points to a different language in the
@Master directive than it does in the @Page directive. In spite of this, the page
is created and displayed correctly.

C02620245.fm Page 56 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 57

Attaching Pages to a Master
In the previous example, the content page is bound to the master using the new
MasterPageFile attribute in the @Page directive. The attribute points to a string
representing the path to the master page. Page-level binding is just one possi-
bility—the most common one.

You can also set the binding between the master and the content at the
application or folder level. Application-level binding means that you link all the
pages of an application to the same master. You configure this behavior by set-
ting the Master attribute in the <pages> element of the principal web.config file:

<configuration>
<system.web>

<pages masterpagefile="WwwContosoCom.master” />
</system.web>

</configuration>

If the same setting is expressed in a child web.config file—a web.config
file stored in a site subdirectory—all ASP.NET pages in the folder are bound to
a specified master page.

Note that if you use this approach, all the Web pages in the application
must have Content controls mapped to one or more placeholders in the master
page. Application-level binding prevents you from having (or later adding) a
page to the site that is not configured as a content page. Any page that contains
server controls will throw an exception. A page that is bound to a master is not
permitted to host server controls outside of an <asp:Content> tag.

Device-Specific Masters
Like all ASP.NET pages and controls, master pages can detect the capabilities of
the underlying browser and adapt their output to the specific device in use. The
great news about ASP.NET 2.0 is that it makes choosing a device-specific master
easier than ever. If you want to control how certain pages of your site appear
on a particular browser, you can build them from a common master and design
the master to address the specific features of the browser. In other words, you
can create multiple versions of the same master, each targeting a different type
of browser.

How do you associate a particular version of the master and a particular
browser? In the content page, you define multiple bindings using the same Mas-
terPageFile attribute, but prefixed with the identifier of the device. For example,
suppose you want to provide ad hoc support for Microsoft Internet Explorer
and Netscape browsers and use a generic master for any other browsers that
users employ to visit the site. You use the following syntax:

<%@ Page ie:masterpagefile="ieBase.master”
netscape:masterpagefile="nsBase.master"
masterpagefile="Base.master” %>

C02620245.fm Page 57 Wednesday, June 9, 2004 5:24 PM

58 Part I ASP.NET Essentials

The ieBase.master file will be used for Internet Explorer; the nsBase.mas-
ter will be used in contrast if the browser belongs to the Netscape family. In any
other case, a device-independent master (Base.master) will be used. When the
page runs, the ASP.NET runtime automatically determines what browser or
device the user is using and selects the corresponding master page.

The prefixes you can use to indicate a particular type of browser are those
defined in the <browserCaps> section of the machine.config file. It goes without
saying that you can distinguish not just between uplevel and downlevel brows-
ers but also between browsers and other devices such as cellular phones and
personal digital assistants (PDAs). If you use device-specific masters, you must
also indicate a device-independent master.

Underpinnings of Master Pages
The use of master pages slightly changes how pages are processed and com-
piled. For one thing, a page based on a master has a double dependency—on
the .aspx source file (the content page) and on the .master file (the master
page). If either of these pages changes, the dynamic page assembly will be re-
created. Although the URL that users need is the URL of the content page, the
page served to the browser results from the master page fleshed out with any
replacement provided by the content page. Let’s see in a bit more detail how a
content page merges with the master page.

Merging Master and Content Pages
When the user requests an .aspx resource mapped to a content page—that is,
a page that references a master—the ASP.NET runtime begins its job by tracking
the dependency between the source .aspx file and its master. This information
is persisted in a local file created in the ASP.NET temporary files folder. Next,
the runtime parses the master page source code and creates a Visual Basic .NET
or C# class, depending on the language set in the master page. In the previous
example, the booksample.master master page is parsed to a Visual Basic .NET
class. (If the Language attribute is not specified, Visual Basic .NET is assumed.)
The class inherits MasterPage and is then compiled to an assembly.

The MasterPage Class
The MasterPage class is pretty simple—just a small wrapper built around the
UserControl class:

public class MasterPage : UserControl
{
}

C02620245.fm Page 58 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 59

The dynamic class that the ASP.NET runtime builds from the master page
source code extends MasterPage by adding any public members defined in line.
For example, it adds new properties, methods, and events. In addition, a few
protected and private members are added by the framework. In particular, a
protected member is added for each ContentPlaceHolder server tag found in
the .master source. The name of the property matches the ID of the server tag
in the source file. Based on the aforementioned simple.master file, the pro-
tected property looks like the following snippet:

Protected PageBody As System.Web.UI.WebControls.ContentPlaceHolder

In addition, a template member is added to represent the content dynami-
cally bound to the placeholder. The property is of type ITemplate and is set
with actual content provided by the content page for that placeholder.

The overall structure of the source code extracted out of a master page is
not much different from that of a classic ASP.NET page. In ASP.NET pages, for
each control marked with a runat attribute, the runtime generates the code to
instantiate and configure the corresponding class. The same occurs with the
ContentPlaceHolder class; it is instantiated, named, and bound to the matching
property on the master page class—the PageBody property set above. The final
step in this procedure is the instantiation of the template within the placeholder
control:

// __ctrl is the placeholder control
// Template_PageBody is the internal template member
// representing the dynamically set content of the placeholder
Template_PageBody.InstantiateIn(__ctrl);

The templated property is defined but not assigned any value in the mas-
ter page class. The template is populated while the content page is processed.

Note If multiple .master files are found in the same directory, they
are all processed at the same time. Thus a dynamic assembly is gen-
erated for any master files found, even if only one of them is used by
the ASP.NET page whose request triggered the compilation process.
Therefore, don’t leave unused master files in your Web space—they
will be compiled anyway. Also note that the compilation tax is paid only
the first time a content page is accessed within the application. When
a user accesses another page that requires the second master, the
response is faster because the master is precompiled.

C02620245.fm Page 59 Wednesday, June 9, 2004 5:24 PM

60 Part I ASP.NET Essentials

Importing Compiled Templates
Any ASP.NET page bound to a master page must have a certain structure—no
server controls or literal text are allowed outside the <asp:Content> tag. As a
result, the layout of the page looks like a plain collection of content elements,
each bound to a particular placeholder in the master. The connection is estab-
lished through the ID property.

The <asp:Content> element works like a control container, much like the
Panel control of ASP.NET or the HTML <div> tag. All the markup text is com-
piled to a template and associated with the corresponding placeholder property
on the master class.

The master page is a special kind of user control. In fact, the ASP.NET
Framework calls the InitializeAsUserControl method—an internal method on
the UserControl class—which completes the initialization phase of user con-
trols. The method wires automatic event handlers (such as Page_Load,
Page_Unload) to the control.

The construction of the final page continues with the addition of the filled
master page to the control tree of the current instance of the page. No other
controls are present in the final page except those brought in by the master. Fig-
ure 2-4 shows the skeleton of the final page served to the user.

F02DR04Figure 2-4 The structure of the final page in which the master page and
the content page are merged

Nested Masters
So far we’ve seen a pretty simple relationship between a master and a collection
of content pages. However, the topology of the relationship can be made as
complex and sophisticated as needed. A master can, in fact, be associated with
another master and form a hierarchical, nested structure. Figure 2-5 shows an
example.

ASP.simple_master (Master)

Placeholder 1

Placeholder n

§

ASP.test_aspx (Content page)

<asp:Content>
for the placeholder

compiled as an
ITemplate object

<asp:Content>
for the placeholder

compiled as an
ITemplate object

C02620245.fm Page 60 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 61

F02DR05Figure 2-5 Complex sites (such as portals) require the use of interre-
lated master pages that end up forming a hierarchical structure.

Designing Nested Masters
When nested masters are used, any child master is seen and implemented as a
plain content page in which extra ContentPlaceHolder controls are defined for
an extra level of content pages. Put another way, a child master is a content
page that contains a combination of <asp:Content> and <asp:ContentPlace-
Holder> elements. Like any other content page, a child master points to a mas-
ter page and provides content blocks for its parent’s placeholders. At the same
time, it makes available new placeholders for its child pages.

There’s no architectural limitation in the number of nesting levels you can
implement in your Web sites. Performance-wise, the depth of the nesting has a
negligible impact on the overall functionality and scalability of the solution. The
final page served to the user is always compiled on demand and never modi-
fied as long as dependent files are not touched.

Let’s extend the previous example so it encompasses a nested structure of
master pages.

Building an Example
Many Web sites—most of them portals—have such a complex structure that they
can’t be rendered using a flat master/content relationship. Suppose you need to
have a global menu on top of the page and then a second-level menu whose
options vary quite a bit depending on which logical group the page belongs to.
In addition, suppose that the second-level menu is not the only visual element to
be displayed—a search box or a login text box is also required.

Parent.master

ParentPlaceHolder

Child.master

ChildPlaceHolder1

ChildPlaceHolder2

Content of
ParentPlaceHolder

ContentPage.aspx

Content of
ChildPlaceHolder1

Content of
ChildPlaceHolder2

C02620245.fm Page 61 Wednesday, June 9, 2004 5:24 PM

62 Part I ASP.NET Essentials

Even from this simple description, it’s clear that the portal contains two
distinct sets of widgets. Hence, two distinct but interrelated masters are needed
to render it in code.

The parent master (BookSample.master) defines the overall layout of the
pages—header, body, and footer. The child master (Body.master) expands the
body for a certain group of pages, meaning that the Web site will be made of
pages belonging to different groups, each with a differently laid out structure.
We define a child master in which a toolbar is expected. The content page is
responsible for providing the buttons for the toolbar. We’ll use a slightly modi-
fied version of the BookSample.master page we considered earlier as the parent
master in this example. Here’s the code:

<%@ Master Language="C#” %>
<html>
<head>

<link rel="Stylesheet” href="/intro20/styles.css” />
<title>Master Page</title>

</head>
<body style="margin:0;font-family:verdana;">
<form runat="server">
<table width="100%” bgcolor="beige” style="BORDER-BOTTOM:silver 5px solid">
<tr>

<td><h1>Introducing ASP.NET 2.0</h1></td>
</tr>
</table>

<table width="100%” style="border:solid 1px black;">
<tr><td>

<asp:contentplaceholder runat="server” id="Toolbar” /></td></tr>
<tr><td>

<asp:contentplaceholder runat="server” id="PageBody” /></td></tr>
<tr><td align="center” style="background-color:lightcyan;">

All rights reserved.</td></tr>
</table>
</form>
</body>
</html>

The following code shows the source of the child master—a file named
Body.master:

<%@ Master Language="VB” MasterPageFile="BookSample.master” %>
<asp:content runat="server” contentplaceholderID="Toolbar">
<table width="100%">

<tr bgcolor="lightcyan">
<td width="100%"><h3>Great choice!</h3></td>

C02620245.fm Page 62 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 63

</tr>
<tr>

<td width="100%” style="text-align:center">
<asp:contentplaceholder runat="server” id="Menu” />

</td>
</tr>

</table>
</asp:content>

<asp:content runat="server” contentplaceholderID="PageBody">
<table>

<tr>
<td></td>
<td>

<h1>Introducing ASP.NET 2.0</h1>
<h2>Dino Esposito</h2>
<h2>Microsoft Press, 2004</h2>
<h2>

Click to learn more</h2>
</td>
</tr>

</table>
</asp:content>

The @Master directive contains a new attribute, MasterPageFile, that speci-
fies the master page this page is related to. The child master is two things at
once. It is a content page with respect to the parent master (and, in fact, it con-
tains a collection of <asp:Content> regions). At the same time, it is a master with
respect to other content pages in that it features one or more content placehold-
ers—for example, Menu.

The following code illustrates a sample content page that originates from
the two nested masters. Figure 2-6 shows the final page in the browser.

<%@ Page language="C#” masterpagefile="Body.master” %>
<script runat="server">

void OnBuy(object sender, EventArgs e)
{…}
void OnReview(object sender, EventArgs e)
{…}
void OnView(object sender, EventArgs e)
{…}

</script>

<asp:content runat="server” contentplaceholderID="Menu">
<div>

<asp:button runat="server” text="View TOC”

C02620245.fm Page 63 Wednesday, June 9, 2004 5:24 PM

64 Part I ASP.NET Essentials

onclick="OnView” width="90px” />

<asp:button runat="server” text="Buy”

onclick="OnBuy” width="90px” />
<asp:button runat="server” text="Review”

onclick="OnReview” width="90px” />
</div>
</asp:content>

F02DR06Figure 2-6 The page shown in the browser was created using two inter-
related masters—one for the main structure (header, footer, toolbar, and
body) and one for the details (subtitle and menu) of the toolbar.

Event Handling
As mentioned earlier, you can configure master pages and content pages to use
different languages. In the previous example, in fact, parent and child masters
use different languages. But what are languages for? As in ordinary ASP.NET
pages, the Language attribute specifies the language used to write any proce-
dural code bound to the page. The code can be defined in line or placed in an
external file. It typically contains event handlers or public and private methods.

Both master pages and content pages can contain event handlers for
embedded controls. Events fired by controls defined in the content page can’t
be handled at the master-page level. Likewise, controls defined in a master
page appear inaccessible to a content page and related events can’t be handled.

C02620245.fm Page 64 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 65

Page-level events, on the other hand, can be hooked in both the master and the
content page. If the same page-level event is handled by both master and con-
tent page, handlers are invoked in order, according to the rules set by the page/
user control relationship. Once the replaceable regions of a master page are
filled, the generated page is hosted within the final page as a user control.
(That’s why the MasterPage class inherits UserControl.)

For example, let’s consider the order in which the Page_Init and
Page_Load events are captured. Bear in mind that default events are automati-
cally wired up for master pages. If handlers exist in the master and the content
page, the order in which they fire will depend on the particular event and will
be the same order you’d expect with user controls. As Figure 2-7 shows, the Init
event reaches the master page before the content page does; for the Load
event, the order is reversed and the content page is hit first.

F02DR07Figure 2-7 Event handlers can be defined in the master page as well as
in the content page.

C02620245.fm Page 65 Wednesday, June 9, 2004 5:24 PM

66 Part I ASP.NET Essentials

A Realistic Example
Master pages are an incredibly powerful technology that fulfill an important
requirement of ASP.NET developers—building similar-looking and similar-
working pages quickly and effectively. Former users of the .NET Framework 1.x
know about Windows Forms visual inheritance. In brief, it is a Visual Studio
.NET feature that allows developers to build new forms from existing ones.
There’s no magic behind this feature—only pure class inheritance. So why is
this feature unavailable to ASP.NET programmers?

I admit that my first guess was laziness or time constraints on the part of
the ASP.NET team. The truth is a bit more complex. Master pages are the closest
you can get in ASP.NET to visual inheritance à la Windows Forms. You’ll soon
see, though, that they are an equivalent solution.

Master Pages and Visual Inheritance
Let’s say it up front. True visual inheritance à la Windows Forms is not a goal
of ASP.NET 2.0 master pages. Period. The contents of a master page are merged
into the content page and dynamically produce a new page class served to the
user upon request. The merge process takes place at compile time and only
once. In no way do the contents of the master serve as a base class for the con-
tent page.

In Windows Forms applications, you can take an existing form—a class
derived from Form—and use it as the basis for all the new forms you’re build-
ing. As a result, your new forms inherit any control and any logic built into the
base forms. With master and content pages, the final result is pretty much the
same, but the underlying mechanism is more complex. In both cases, though,
you take a base entity—an existing form or a master page—and build a new
entity with the same aspect and capabilities. So why did the ASP.NET team go
for master pages instead of true inheritance?

Only a member of the team can provide a definitive answer. However, we
can make a few guesses. The team clearly wanted to provide a form of inheritance
for Web developers. They also wanted designers (such as the one in Visual Stu-
dio 2005) to be able to use such a powerful feature easily. Ideally, a designer
would show the master layout when editing a content page and would also
restrict users from editing outside the content placeholders. Keeping master and
content clearly separate helps to achieve this. Figure 2-8 shows how to edit
master pages in Visual Studio.

C02620245.fm Page 66 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 67

F02DR08Figure 2-8 A sample master page as displayed by the Visual Studio
2005 designer

Figure 2-9 shows the look and feel of a content page in Visual Studio.

F02DR09Figure 2-9 A sample content page as displayed by the Visual Studio
2005 designer

C02620245.fm Page 67 Wednesday, June 9, 2004 5:24 PM

68 Part I ASP.NET Essentials

The compilation mechanism behind Web pages is too complex to enable
a pure inheritance-based approach. A Web form is formed by two indissoluble
elements—markup and procedural code. In theory, you could build Web pages
using only C# or Visual Basic .NET code. In this case, simply inheriting your
Web form from that class instead of Page would do the trick—just like in Win-
dows Forms. However, in practice that would force many ASP.NET developers
into an unnatural way of working and, more important, would make Web Form
editing quite hard. Visual Studio .NET is built to parse markup code; nonempty
base pages (those different from Page) would either need the ability to convert
controls back to markup or a totally different WYSIWYG editor.

In Windows Forms, this works for the simple reason that no markup is
involved. A button is a button with a fixed location and attributes. The Visual
Studio .NET editor simply renders each control at its own position, using the
persisted attributes. New controls are added (or removed) in the same direct
way. Simply put, the markup-based nature of server pages (inherited from clas-
sic ASP) prevents true visual inheritance in ASP.NET.

Master pages provide the same function—forms inheritance—but by using
a totally different set of tools.

Note Visual Studio 2005 doesn’t support visual editing of pages with
nested masters. If you have two or more nested master pages, neither
the child masters nor the content pages can be visually edited. You get
an error message that suggests switching to the source view and
entering changes codewise.

Layout of the Pages
Figure 2-10 shows a sample Web page based on a master. The master defines
five insertion points—that is, content placeholders for developers to add cus-
tom code and markup. The figure includes indicators that identify the replace-
able regions of the page.

Each content page based on this master would fill one or more regions
with custom markup code and any procedural code that is needed to achieve
the desired result. The following code shows the master on which the page in
Figure 2-10 is based.

C02620245.fm Page 68 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 69

F02DR10Figure 2-10 A sample Web page based on a master

<%@ Master Language="C#” %>
<html>

<head runat="server">
<title>Homepage</title>
<link rel="Stylesheet” href="websitestyles.css” />

</head>

<body runat="server” style="margin:0">
<form id="Main” runat="server">

<table cellspacing="0” cellpadding="0” border="0” width="100%">
<tr>

<td valign="Top” rowspan="2” style="width:1px;">
</td>

<td align="Right” valign="Top">
</td>

<td align="Right” class="topMenu">
<asp:ContentPlaceHolder runat="server” ID="TopMenu” /></td></tr>

<tr>
<td align="Right” valign="Top” colspan="3">
<asp:ContentPlaceHolder runat="server” ID="TopBox” /></td></tr>

</table>

<table cellspacing="2” cellpadding="2” border="0” class="headerStrip">
<tr>

<td align="Left">
<asp:ContentPlaceHolder runat="server” ID="HeaderLeft” /></td>

TopMenu

TopBox

HeaderRight

Body

HeaderLeft

C02620245.fm Page 69 Wednesday, June 9, 2004 5:24 PM

70 Part I ASP.NET Essentials

<td align="Right">
Title

</td>
</tr>

</table>

<div style="margin:2;border:solid 1px black;">
<asp:ContentPlaceHolder runat="server” ID="Body” />

</div>

</form>
</body>
</html>

The master defines the body as well as the single form element of each
ASP.NET page. Note that if both the master and the content page define a
server-side <form> tag, an exception is raised because the final page would end
up having multiple forms. The structure of the page is based on a couple of
tables—one representing the topmost bar with the menu and one representing
the header strip divided in two parts—left (replaceable through a placeholder)
and right (modifiable through a property). The topmost table presents two
replaceable regions. One is the menu with shortcuts to frequently visited sites;
the other is content in the bottom-right corner. This latter area is filled with a
bitmap in the sample page shown in Figure 2-10.

Contents of the Pages
The default.aspx page shown earlier in Figure 2-10 replaces the TopMenu
placeholder with a list of hyperlinks; the TopBox placeholder is filled with a bit-
map. The header contains two HTML strings with different text alignments. The
body of the page can be anything that is appropriate for the application. The
following listing shows the source code of the default.aspx content page:

<%@ Page Language="C#” MasterPageFile="main.master” %>

<asp:Content runat="server” contentplaceholderID="TopMenu">
www.Foo.com

 |
ACME Corp

 |
My Company

</asp:Content>

<asp:Content runat="server” contentplaceholderID="TopBox">

</asp:Content>

C02620245.fm Page 70 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 71

<asp:Content runat="server” contentplaceholderID="HeaderStripLeft">
<img src="images/jerry.gif”

alt="Our beloved VP”
align="absmiddle” width="20” height="25” />

Copyright (c) Contoso.com 2002-2004.
<u>All rights have been reserved for a better use.</u>

</asp:Content>

<asp:Content runat="server” contentplaceholderID="Body">
<asp:panel runat="server” height="300px” backcolor="lightcyan">

Click here to see another page.
</asp:panel>

</asp:Content>

Here’s the code for a different page designed using the same schema,
another.aspx:

<%@ Page Language="C#” MasterPageFile="main.master” %>

<asp:Content runat="server” contentplaceholderID="TopMenu">

Microsoft Press

</asp:Content>

<asp:Content runat="server” contentplaceholderID="TopBox">
Search:
<asp:textbox runat="server” class="textbox” ID="searchBox” />
<asp:button runat="server” class="button” Text="Go” />

</asp:Content>

<asp:Content runat="server” contentplaceholderID="HeaderLeft">
<img src="images/jerry.gif”

alt="Our beloved VP”
align="absmiddle” width="20” height="25” />

Copyright (c) Contoso.com 2002-2004.
<u>All rights have been reserved for a better use.</u>

</asp:Content>

<asp:Content runat="server” contentplaceholderID="Body">
<asp:panel runat="server” Height="300px” BackColor="lightcyan">

Click here for the home page.
</asp:panel>

</asp:Content>

The new page (shown in Figure 2-11) has a shorter list of hyperlinked
Web sites and a different panel below the menu. It also has a search box instead
of a bitmap.

C02620245.fm Page 71 Wednesday, June 9, 2004 5:24 PM

72 Part I ASP.NET Essentials

F02DR11Figure 2-11 Another page based on the same master

Pages built on the same master will differ from each other based on what
you add in the content sections. The amount of code (and markup) you need
to write is comparable to that needed to set up a derived class in a truly object-
oriented application.

Programming the Master
You can use code in content pages to reference properties, methods, and con-
trols in the master page, with some restrictions. The rule for properties and
methods is that you can reference them if they are declared as public members
of the master page. This includes public page-scope variables, public proper-
ties, and public methods. Let’s consider a simple scenario—setting the title of
the final page.

The Header property on the Page class exposes the content of the <head>
tag as programmable entities. To set the title of a content page or to add a
stylesheet on a per-page basis, you just add some code to the Page_Load event:

<script runat="server">
void Page_Load(object sender, EventArgs e)
{

Header.Title = “This is another page";
}
</script>

For this code to run, though, the <head> tag must be marked with the runat
attribute. Note that the <head> tag can be defined in either the master or the con-
tent page. If you define it in the master, you can modify it programmatically in
any content page at the price of adding an additional server control—the Html-
Head control.

C02620245.fm Page 72 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 73

Exposing Master Properties
To give an identity to a control in the master, you simply set the runat attribute
and give the control an ID. Can you then access the control from within a con-
tent page? Not directly. The only way to access the master page object model is
through the Master property. If a TextBox control named Search exists in the
master, the following code will throw an exception:

Master.Search.Text = “ASP.NET 2.0";

As you saw earlier, the Master property defined on the Page class refer-
ences the master page object for the content page. This means that only public
properties and methods defined on the master page class are accessible.

The page shown in Figure 2-10 has a string of text in the rightmost part of
the header set to “Title” by default. In the context of the master and related
pages, that string indicates the subtitle of the page. So how can you expose, for
example, the subtitle of the final page as a programmable property? Two steps
are needed. First you render that string through a server-side control; then you
create a public wrapper property to make the control (or one of its properties)
accessible from the outside. The following code enhances the main.master file
and shows how to define a public SubTitle property that wraps the InnerText
property of the __titleBar control:

<%@ Master ClassName="MyMaster” Language="C#” %>

<script runat="server">
public string SubTitle
{

get {return __titleBar.InnerText;}
set {__titleBar.InnerText = value;}

}
</script>

<html>
§
<table cellspacing="2” cellpadding="2” border="0” class="headerStrip">

<tr>
<td align="Left">

<asp:ContentPlaceHolder runat="server” ID="HeaderLeft” /></td>
<td align="Right">

Title
</td>

</tr>
</table>
§
<html>

C02620245.fm Page 73 Wednesday, June 9, 2004 5:24 PM

74 Part I ASP.NET Essentials

Just as in ASP.NET 1.x, the element marked runat=server is
mapped to an HtmlGenericControl object and its text content is exposed
through the InnerText property. This property is then wrapped by a new public
property—SubTitle. Reading and writing the SubTitle property gets and sets the
value of the InnerText property on the tag.

Invoking Properties on the Master
When you write a content page, you access any public properties defined on
the bound master page through the Master property. However, the Master
property is defined as type MasterPage and doesn’t contain any property or
method definition specific of the master you’re creating. The following code
won’t compile because there’s no SubTitle property defined on the MasterPage
class:

<script runat="server">
void Page_Load(object sender, EventArgs e)
{

Master.SubTitle = “Welcome!";
}
</script>

What’s the real type behind the Master property? The Master property rep-
resents the master page object as compiled by the ASP.NET runtime engine.
This class follows the same naming convention as regular pages—
ASP.XXX_master, where XXX is the name of the master file. The ClassName
attribute on the @Master directive lets you assign a user-defined name to the
master page class. To be able to call custom properties or methods, you must
first cast the object returned by the Master property to the actual type:

((MyMaster)Master).SubTitle = “Welcome!";

Using the above code in the content page does the trick.

Changing the Master Page
The Page class defines the MasterPageFile property that can be used to get and
set the master page associated with the current page. The MasterPageFile prop-
erty is a string that points to the name of the master page file. Note that the Mas-
ter property, which represents the current instance of the master page object, is
a read-only property and can’t be set programmatically. The Master property is
set by the runtime after it loads the content of the file referenced by either the
MasterPageFile attribute or MasterPageFile property. If both are set, an excep-
tion is thrown.

C02620245.fm Page 74 Wednesday, June 9, 2004 5:24 PM

Chapter 2 Working with Master Pages 75

You can use a dynamically changing master page in ASP.NET 2.0—for
example, for applications that can present themselves to users through different
skins. You should follow two simple rules when you define a dynamic master
page:

■ Do not set the MasterPageFile attribute in the @Page directive.

■ Make the page’s MasterPageFile property point to the URL of the
desired master page in the Page_PreInit event.

The content of the @Page directive is processed before the runtime begins
working on the request. The PreInit event is fired right before the page handler
begins working on the page, and this is your last chance to modify parameters
at the page level. If you try to set the MasterPageFile property in the Page_Init
or Page_Load events, an exception is raised.

Summary

Many Web sites consist of similar-looking pages that use the same header,
footer, and perhaps some navigational menus or search forms. What’s the rec-
ommended approach for reusing code across pages? One possibility is wrap-
ping these user interface elements in user controls and referencing them in
each page. Although the model is extremely powerful and produces highly
modular code, when you have hundreds of pages to work with, it soon
becomes unmanageable.

ASP.NET 2.0 introduces master pages for this purpose. A master page is a
distinct file referenced at the application level as well as the page level that con-
tains the static layout of the page. Regions that each derived page can custom-
ize are referenced in the master page with a special placeholder control. A
derived page is simply a collection of blocks that the runtime uses to fill the
holes in the master.

ASP.NET 2.0 is not the first environment to support template formats.
Microsoft FrontPage and Macromedia products support templates, too. How-
ever, master pages are different, and compatibility with other template systems
is not a goal. Likewise, true visual inheritance similar to that of Windows Forms
is not a goal. Master pages promote reusability, but through a totally different

C02620245.fm Page 75 Wednesday, June 9, 2004 5:24 PM

76 Part I ASP.NET Essentials

mechanism that is not based on class inheritance. Finally, the binding between
master and content pages is defined statically and cannot be changed or
set programmatically.

ASP.NET 2.0 comes with another mechanism that helps you build a certain
type of page quickly and effectively reuse components—Web parts. As you’ll
see in the next chapter, Web parts provide the infrastructure needed to create
Web applications that are modular, content rich, and customizable.

C02620245.fm Page 76 Wednesday, June 9, 2004 5:24 PM

77

Working with Web Parts
Most Web sites, and portals in particular, make a point of showing large
amounts of content. This can be a feast for users, but in the long run it can also
be a source of confusion. Recent studies on Web usability have concluded that
personalization is a key factor in successful Web sites. Giving users the tools to
build a personalized view of the content can mean the difference between an
average and a superior Web site. You could say that cutting-edge Web sites are
rich in content, have a consistent and modular design, and allow users to per-
sonalize the content.

How do you build such a Web site? Admittedly, rich content is not a pro-
grammatic issue, but being able to handle a wide range of content is a crucial
design issue. As a page developer, you are responsible for building a modular
site and making it personalizable. Web Parts and the Personalization API are the
tools in Microsoft ASP.NET 2.0 that make building modular and customizable
Web sites easier, and even pleasant.

In this chapter, we’ll take a tour of the ASP.NET 2.0 Web Parts framework
and build a small but highly personalizable Web site. We’ll cover the Personal-
ization API in Chapter 4.

Building Pages with Web Parts
ASP.NET Web Parts provide an infrastructure for creating Web applications that
can handle rich content as well as large amounts of content. You can use Web
parts to build sites that enable users to select and receive only the content they
want. Web parts are container components that aggregate different types of
content. As such, they are particularly useful for creating portal pages.

C03620245.fm Page 77 Wednesday, June 9, 2004 5:25 PM

78 Part I ASP.NET Essentials

What Are Web Parts, Anyway?
Figure 3-1 is taken from the My MSN Web site. The page is an aggregation of
different blocks, each presenting a particular type of information.

F03DR01Figure 3-1 The My MSN page of a registered user is composed of all
the blocks of information the user selected.

No block displayed in the page is there by chance. By using the Add Con-
tent and Change Details links, the user can select which blocks to display and
their graphical layout. Each block in the page can be obtained with a Web part
in an ASP.NET 2.0 application. Each Web part corresponds to an instance of the
WebPart control.

Content of a Web Part
You can think of a Web part as a window of information available within the
page. Users can close, minimize, or restore that window. The WebPart control
is essentially a container filled with the usual HTML stuff—static text, link,
images, and other controls, including user controls and custom controls. By
combining Web Parts and the Personalization API, page developers can easily
create pages and controls tailored to the individual user’s needs.

The content of a Web part can be any information that is useful to all
users, a subset of users, or one user in particular. Most commonly, the content
of a Web part is provided by external Web sites—for example, financial,
weather, and sports news. The content of a Web part can range from a list of
favorite links to a gallery of photos to the results of a search.

C03620245.fm Page 78 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 79

Layout of a Web Part
From the developer’s perspective, a Web Part component is a sort of smart
Panel control. Like a panel, a Web part can contain any valid ASP.NET content.
The WebPart class is actually derived from the Panel class.

What makes the Web part more powerful than a simple panel is the sup-
port it gets from the Web Part manager (represented by the aptly named Web-
PartManager control) and the extra visual elements it renders. The layout of a
Web part mimics that of a desktop window. It has a caption bar with a title, as
well as links to common verbs such as minimize, close, and restore.

Although the Web part can act as a container for information from external
sites and pages, it is quite different from a frame. A frame points to a URL, and
the browser is responsible for filling the area with the content downloaded from
the URL. A Web part, on the other hand, is a server-side control that is served to
the browser as plain HTML. You can still populate a Web part with the content
grabbed from external sites, but you are responsible for retrieving that content,
either using HTML scraping or, better yet (when available), Web services.

Introducing the Web Parts Framework
The WebPart control is the central element in the Web Parts infrastructure, but
it is not the only one. A page employing Web parts uses several components
from the Web Parts framework, each performing a particular function. Table 3-1
details these components.

Table 3-1 Components of the Web Parts Framework

Component Description

WebPartManager The component that manages all Web parts on a page. It has no
user interface and is invisible at run time.

WebPart Contains the actual content presented to the user. Note that Web-
Part is an abstract class; you have to create your own WebPart con-
trols either through inheritance or via user controls.

WebPartZone Wraps one or more WebPart controls and provides the overall lay-
out for the WebPart controls it contains. A page can contain one or
more zones.

CatalogPart The base class for catalog WebPart controls that present a list of
available Web parts to users. Derived classes are ImportCatalog-
Part, DeclarativeCatalogPart, and PageCatalogPart.

CatalogZone A container for CatalogPart controls.

ConnectionsZone A container for the connections defined between any pair of Web
parts found in the page.

C03620245.fm Page 79 Wednesday, June 9, 2004 5:25 PM

80 Part I ASP.NET Essentials

Aside from the WebPartManager class, the Web Parts infrastructure is
made up of three types of components, known as parts: Web parts, catalog
parts, and editor parts.

A Web part defines the content to show; an editor part lets users edit the
structure and the settings of a particular Web part. For example, suppose you
have a weather Web part that shows weather information for a few selected cities.
An editor part for this Web part would provide a friendly user interface for users
to add or remove cities and decide whether to see the temperature in Celsius or
Fahrenheit. Based on the weather applet in the My MSN Web site, you enter in
edit mode either by clicking the Select Your Cities button of the page or the Edit
button in the caption bar. The specific properties you edit differ in each case, but
you end up editing the contents of the Web part, as you can see in Figure 3-2.

F03DR02Figure 3-2 Editing the weather content block of the My MSN Web site

The Web Parts infrastructure enables users to choose a personalized set of
parts to display on a page and specify their position. The list of available parts
is provided by a catalog part control. In this way, users can add parts dynami-
cally. The catalog also acts as a store for the parts that the user has removed

EditorPart The base class for all editing controls that allow modifications to
Web parts. An editor part presents its own user interface to let
users set properties.

EditorZone A container for EditorPart controls.

Table 3-1 Components of the Web Parts Framework

Component Description

C03620245.fm Page 80 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 81

from the page by executing the Close verb represented by the Delete menu item
in Figure 3-1. Removed parts can be restored if a catalog is specified for the
page. We’ll cover catalog and editor parts in greater depth later in the chapter.

Web Part Zones
The zone object provides a container for parts and provides additional user
interface elements and functionality for all part controls it contains. A Web page
can contain multiple zones, and a zone can contain one or more parts. Zones
are responsible for rendering common user interface elements around the parts
it contains, such as titles, borders, and verb buttons, as well as a header and
footer for the zone itself.

Each type of part requires its own zone object. The WebPartZone is the
container for WebPart controls. It hosts all the Web part content through a col-
lection property named WebParts. In addition, it provides free drag-and-drop
functionality when the Web parts are switched to design mode. The design
mode is one of the display modes supported by the Web part manager and
applies to all Web parts in the page. When you’re in design mode, you can
modify the layout of the page by moving Web parts around. The drag-and-drop
facility is provided by the zone component. The WebPartZone control allows
you to define a few style properties, such as PartStyle (style of the contents),
PartVerbStyle (style of the action verbs, such as Minimize and Close), and Part-
TitleStyle (style of the caption bar).

The two other zone types are more specialized. The EditorZone is used to
contain editor controls to configure existing WebPart controls. The CatalogZone
is used to display the catalog of available WebPart controls the user can choose
from.

You probably can’t wait to see some markup code to illustrate all of this.
Here’s a quick example:

<%@ register tagprefix="x” tagname="News” src="News.ascx” %>
<%@ register tagprefix="x” tagname="Favorites” src="Favorites.ascx” %>

<%@ page language="C#"%>

<html>
<head runat="server">

<title>WebParts--Headstart</title>
</head>
<body>

<form runat="server">
<h1>Demonstrating WebParts zones</h1>
<div>

<asp:WebPartManager ID="WebMan” runat="server” />
<asp:WebPartZone ID="WebPartZone1” runat="server” width="600px"

C03620245.fm Page 81 Wednesday, June 9, 2004 5:25 PM

82 Part I ASP.NET Essentials

HeaderText="This is Zone #1”
PartChromeType="TitleAndBorder">

<PartTitleStyle Font-Size="10pt” Font-Bold="True”
BackColor="#E0E0E0” Font-Names="verdana” />

<PartStyle BackColor="#FFFFC0” />
<PartVerbStyle Font-Size="X-Small” Font-Names="verdana” />
<CloseVerb Enabled="False” />
<ZoneTemplate>

<x:News runat="server” id="News” />
<x:Favorites runat="server” id="Favs” />

</ZoneTemplate>
</asp:WebPartZone>

</div>
</form>

</body>
</html>

The form contains a WebPartManager control that governs the execution
and rendering of all child parts. The form also contains one Web zone that con-
tains a couple of parts. The Web part zone is configured to show a title and a
border around its content. The <ZoneTemplate> tag includes all the Web parts
defined in the zone.

The simplest way to incorporate a Web part control is through a user con-
trol—an ASCX file. Figure 3-3 shows the page in action.

F03DR03Figure 3-3 A simple WebPart component listing the latest news and
useful links

If you click the Minimize button, the page posts back and only the title bar
displays on return, as shown in Figure 3-4.

F03DR04Figure 3-4 When a Web part is minimized, a Restore button comes up
to let you restore the original panel later.

C03620245.fm Page 82 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 83

If you click the Close button (which is programmatically disabled in the
previous example), the Web part is hidden from view. It is not destroyed,
though. If the page includes a catalog Web part, all closed Web parts are listed
in the catalog and users can restore them later.

The WebPartManager Class
The WebPartManager is a nonvisual control that manages all zones and part
controls on a Web page. In particular, the manager maintains a collection of
zones and parts and tracks which parts are contained in each zone. Only one
WebPartManager can be contained in a Web form. In the simplest cases, your
interaction with the manager control is limited to adding it to a page:

<asp:WebPartManager runat="server” id="MyWebMan” />

However, the Web part manager is responsible for more advanced func-
tions that require a bit of coding. For example, it tracks the display mode of the
page and notifies zones and parts of any change in the display mode. Depend-
ing on the display mode, parts and zones render differently. The default display
mode is Normal, which means that catalog and editor zones are hidden and
only Web parts are displayed with their own titles and borders. You can access
the list of zones via the Zones collection.

Finally, the WebPartManager is responsible for initiating communication
between two part controls. Two part controls within the same page can com-
municate and exchange information using a special channel represented by a
Connection object. You can define a Connection object for a Web part manager
using declarative syntax, as in the following example:

<asp:webpartmanager runat="server">
<StaticConnections>

<asp:connection runat="server” ID="MyConnection"
ConsumerID="MyConsumerPart” ProviderID="MyProviderPart” />

</StaticConnections>
</asp:webpartmanager>

Communication between parts is made possible through the use of cus-
tom interfaces. A Web part that is intended to provide some information to oth-
ers would implement the provider’s set of interfaces. In this way, a consumer
Web part can access properties and methods in a consistent fashion.

We’ll look at how connection objects connect to Web parts later in this
chapter.

The WebPart Class
WebPart is an abstract class that is used only for referencing an existing Web
part object. You define the contents of your pages using either a user control or

C03620245.fm Page 83 Wednesday, June 9, 2004 5:25 PM

84 Part I ASP.NET Essentials

a custom control derived from WebPart. Note that if you use a user control, the
ASP.NET runtime wraps it into an instance of the GenericWebPart control,
which provides basic Web Parts capabilities. You can’t use the GenericWebPart
component alone. GenericWebPart wraps only one server control. To generate
a user interface that aggregates multiple controls, you have two options:

■ Create a user control

■ Create a new control that inherits WebPart

If you use a user control, you can’t specify WebPart-specific properties
such as Title. A possible workaround is to implement the IWebPart interface in
your user control.

Table 3-2 lists the main properties of the WebPart class and gives you an
idea of the programming power of the Web part controls. The class indirectly
inherits WebControl and Panel, so it also features quite a few extra visual prop-
erties, such as BackColor and BackImageUrl (not listed in the table).

Table 3-2 Properties of the WebPart Class

Property Description

AllowClose Indicates whether a Web part can be removed from the
page.

AllowEdit Indicates whether a Web part allows you to edit its proper-
ties.

AllowHide Indicates whether a Web part can be hidden on a Web
page.

AllowMinimize Indicates whether a Web part can be minimized.

AllowZoneChange Indicates whether a Web part can be moved within its
zone only or between zones.

Caption Indicates the caption of the Web part.

ChromeState Indicates the state of the Web part: normal or minimized.

ChromeType Indicates the type of the frame for the Web part: border,
title, title and border, or none.

Description The Web part description used in the catalog and as a
ToolTip in the title bar.

Direction Indicates the direction of the text: left-to-right or right-to-
left.

HelpMode Indicates which kind of Help user interface is displayed for
a control.

HelpUrl The URL to a topic in the Web part’s help.

C03620245.fm Page 84 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 85

The programming interface of the WebPart class is all in the properties
listed in the table. The class has no methods and events, aside from those inher-
ited from base server controls.

A Sample Web Part Component
Let’s build a sample Web part and experiment with its properties. As men-
tioned, a Web part is a pseudo-window nested in the Web page that contains
some sort of information. Like a window, it can be moved around and its con-
tent can be configured to some extent. The Web Parts infrastructure provides
drag-and-drop facilities for moving the control around and changing the page
layout. The programmer is responsible for building any logic and user interface
elements for editing and cataloging the content.

The primary goal of a Web part control is delivering information to users.
The information can be retrieved in a variety of ways, according to the charac-
teristics of both the Web part and the hosting application. In a portal scenario,
the Web part shows through the user’s personalized page some content
grabbed over the Web and possibly provided by external Web sites.

Hidden Indicates whether the Web part is displayed on a Web
page.

IsShared Indicates whether multiple users share the Web part.

ProviderConnectionPoints Gets the collection of ConnectionPoint objects that are
associated with the Web part. The ConnectionPoint class
defines a possible connection in which the Web part is
either the provider or the consumer.

Title Indicates the string used as the first string in the title of a
Web part. (See the description of the Caption property.)

TitleStyle A style object used to render the title bar of the Web part.

TitleUrl Indicates the URL where you can access additional infor-
mation about the Web part control. If specified, the URL
appears in the title bar of the part.

Verbs The set of verbs associated with the Web part.

Zone The zone that currently contains the Web part.

ZoneID ID of the zone that currently contains the Web part.

ZoneIndex The index of the Web part in the zone it lives in.

Table 3-2 Properties of the WebPart Class

Property Description

C03620245.fm Page 85 Wednesday, June 9, 2004 5:25 PM

86 Part I ASP.NET Essentials

The BookFinder Web Part
The sample Web part we’ll build grabs information about books and authors
using a given search engine. You can use the Google or the Amazon API, or
you can write your own engine that searches a local or remote database. In this
example, I simply want to get information about books written by a certain
author. All I need is the author’s name. A call to the search engine consists of
the following code:

private string _dataSource;
_dataSource = SearchEngine.DownloadData(author);

The SearchEngine class can internally use any search technology you like,
as long as it returns an XML string. It goes without saying that the XML schema
is totally arbitrary. In the next example, the XML string is transformed in a
DataSet object and used to populate a Repeater control.

The Web Parts component is wrapped into a user control. The body of the
user control looks like the following:

<div style="overflow:auto;height:280px;margin:3;">
<asp:TextBox runat="server” id="AuthorName” Text="Dino Esposito” />
<asp:button runat="server” id="btnGo” Text="Go” onclick="OnSearch” />

<asp:repeater runat="server” id="Presenter">
<headertemplate>

<table style="font-family:Verdana;font-size:8pt;">
</headertemplate>
<itemtemplate>

<tr>
<td><img src=‘<%# Eval(“ImageUrlSmall”) %>‘ /> </td>
<td><a href=‘<%# Eval(“Url”) %>‘><%# Eval(“ProductName”) %>

<i><%# Eval(“Manufacturer”) %></i>

<%# Eval(“ReleaseDate”) %>
</td>

</tr>
</itemtemplate>
<footertemplate>

</table>
</footertemplate>

</asp:repeater>
</div>

The data-bound expressions used in the code use the new Eval key-
word—a more compact replacement for the DataBinder.Eval method used in
ASP.NET 1.x. We’ll cover Eval in detail in Chapter 5.

C03620245.fm Page 86 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 87

The Repeater is bound to a DataTable object created from the XML string
retrieved by the search engine. The field names used in the previous example
are assumed to correspond to columns in the DataTable object. The following
code snippet shows how to bind data to the Repeater control:

void BindData() {
StringReader reader = new StringReader(_dataSource);
DataSet ds = new DataSet();
ds.ReadXml(reader);

// Assume the DataSet contains a table named “Details”
// (This is the case if you use the Amazon API)
Presenter.DataSource = ds.Tables["Details"];
Presenter.DataBind();

}

The Web part is inserted in a Web part zone using the following code:

<asp:WebPartZone ID="WebPartZone1” runat="server” width="600px"
HeaderText="This is Zone #1”
PartChromeType="TitleAndBorder” Height="286px” >

<zonetemplate>
<x:bookfinder runat="server” id="Books” />

</zonetemplate>
</asp:WebPartZone>

Figure 3-5 shows the BookFinder Web part in action.

F03DR05Figure 3-5 The BookFinder Web part retrieves all the books written by
Dino Esposito.

C03620245.fm Page 87 Wednesday, June 9, 2004 5:25 PM

88 Part I ASP.NET Essentials

Note To implement a real-world book-finder Web part, you must rely
on a good search engine. Two of the most popular engines, Amazon
and Google, were created with different goals but both expose their
services through Web services. If you’re interested in the Amazon
Web Services API, have a look at the http://www.amazon.com/gp/aws
/landing.html URL and follow the steps described. Basically, you must
download your free developer’s kit, get your personal token to issue
calls to the methods, and write your application. A similar procedure is
required if you want to leverage the services of the Google engine. In
this case, you get started at http://api.google.com.

Styling the Web Zone
The Web part can embellish its output through styles and visual properties.
Note that the actual style of the Web part might depend on the settings of the
Web part zone. For example, fonts, colors, and borders are inherited from the
zone and apply to all parts in the zone. However, each Web part can override
those settings.

The Web zone supports quite a few style properties for customizing the
look and feel of the zone and its constituent parts. Table 3-3 lists the supported
zone styles.

Table 3-3 Style Properties of the Web Zone

Style Description

EmptyZoneTextStyle Defines the style of an empty zone during the change-layout
phase.

FooterStyle Defines the style of the zone’s footer.

HeaderStyle Defines the style of the zone’s header.

MenuLabelStyle Defines the style of the zone’s menu.

PartChromeStyle Defines the style of the Web part’s main frame (title, border).

PartStyle Defines the overall style of the Web part.

PartTitleStyle Defines the style of the title bar of the Web part.

PartVerbStyle Defines the style of the verbs in the zone’s title bar.

C03620245.fm Page 88 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 89

The following code snippet shows the styles that make up the Web part
shown earlier in Figure 3-5. You can also use CSS classes defined in a separate
stylesheet file.

<EmptyZoneTextStyle BackColor="lightyellow” Font-Size="8pt”
Font-Names="verdana” />

<PartTitleStyle Font-Size="10pt” Font-Bold="True”
BackColor="#E0E0E0” Font-Names="verdana” />

<PartStyle BackColor="#FFFFC0” />
<PartVerbStyle Font-Size="X-Small” Font-Names="verdana” />

You can customize the verbs in the title bar of Web parts. Verbs identify
actions users can take on the Web part as a whole—for example, minimizing,
restoring, editing, or closing the component. Verbs are enabled using the vari-
ous AllowXXX properties on the Web part. Their style is controlled through
XxxVerb tags. For example, you can disable the Close button by using the fol-
lowing code:

<CloseVerb Enabled="False” />

One of the style properties you can set is the text displayed. You can use
little bitmaps, too, as shown here:

<closeverb imageurl="images/CloseVerb.gif”
text="Close” description="Closes the WebPart” />

<restoreverb imageurl="images/RestoreVerb.gif"
text="Restore” description="Restores the WebPart” />

<minimizeverb imageurl="images/MinimizeVerb.gif"
text="Minimize” description="Minimizes the WebPart” />

Note that verb properties belong to the zone, not to the individual Web
part. This means that all Web parts in a given zone share the same verb settings.
This isn’t true of other title attributes, such as the background and colors.

A verb is represented by a WebPartVerb object and features a few proper-
ties, including Description (the tooltip displayed), Text (the text or alternative
text if an image is used), and ImageUrl (the image to render). In addition, you
can define click handlers for both the client (ClientClickHandler) and the server
(ServerClickHandler).

Changing the Zones Layout
Let’s now consider a sample page that includes more zones and Web parts.
We’ll define two zones—the Information zone and the Miscellaneous zone. The
zones occupy two cells in the same row of a table that spans the whole page.

C03620245.fm Page 89 Wednesday, June 9, 2004 5:25 PM

90 Part I ASP.NET Essentials

By default, the Information zone contains the BookFinder Web part, and the
Miscellaneous zone contains two other sample Web parts—MyFavorites (men-
tioned earlier) and MsNbcWeather.

The MyFavorites Web part reads a list of favorite links out of a server-
side XML file and displays them through its user interface. The DataSetData-
Source class (see Chapter 6) is used to load the XML data and bind it to the
user interface.

<%@ control language="C#” classname="MyFavorites"%>
<asp:datasetdatasource runat="server” id="Source” readonly="False"

datafile="Favorites.xml” />
<asp:datalist id="DataList1” runat="server” datasourceid="Source">

<headertemplate>
My Current Favorite List<hr size="1">

</headertemplate>
<itemtemplate>

<table>
<tr>

<td valign="top” style="WIDTH: 80%">
<a runat="server” id="TitleLabel” href=‘<%# Eval(“Url”) %>‘>
<%# Eval(“Title”) %>

</td></tr>
<tr>

<td colspan="2">
<asp:label id="DescriptionLabel” runat="server”

font-names="verdana” font-size="8pt"
text=‘<%# Eval(“Description”) %>‘></asp:label>

</td></tr>
</table>

</itemtemplate>
</asp:datalist>

The MsNbcWeather Web part gets weather information about a U.S. city
(identified by a ZIP Code) and displays that in the page. Weather information is
provided by the MSNBC Web site. In this case, the information is not retrieved
through a Web service call. A ready-to-use page on the http://www.msnbc.com
site returns a JavaScript object filled with weather information. The Web part
invokes this URL and then processes the JavaScript code in the client-side
onload event of the window.

The sample portal page we’re building using these three Web parts is
shown in Figure 3-6.

C03620245.fm Page 90 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 91

F03DR06Figure 3-6 The sample portal home page

Note that the two zones have different settings for verbs. In particular, the
rightmost zone uses bitmaps for the minimize and close verbs. Two other things
in the user interface of the page are worth noting: the login name and the per-
sonalization link at the top of the page.

The login name has no meaning other than to serve as a reminder that a
portal page is user-specific by design. The sample page uses the new Login-
Name security control to display the name of the current user. (See Chapter 10
for more details about ASP.NET 2.0 security controls.)

When you build portal pages, you should figure out a way to store per-
sonalized settings on a per-user basis. The Personalize This Page link button
starts a procedure that lets you change the layout of the zones. You attach the
personalization link button through the WebPartPageMenu control.

<asp:WebPartPageMenu ID="WebPartPageMenu1” Runat="server”
Font-Names="Verdana” Font-Size="8pt”
Text="Personalize this page">
<MenuStyle BorderColor="Blue” BorderStyle="Solid”

Font-Names="Verdana” Font-Size="8pt” BorderWidth="1px” />
</asp:WebPartPageMenu>

The control represents a pagewide menu and can be placed anywhere in
the page. The page menu does not depend on zones or WebPart controls.
When clicked, the link button displays a list of options, as shown in Figure 3-7.

C03620245.fm Page 91 Wednesday, June 9, 2004 5:25 PM

92 Part I ASP.NET Essentials

F03DR07Figure 3-7 The pagewide WebPart menu in its default configuration

The menu items, as well as their state and text, can be modified program-
matically. Each menu item represents a verb enabled on the defined Web
parts—browse, catalog, design, edit properties, and connect to other Web parts.
Each verb is characterized by a property through which you can enable, hide,
or label the menu items. The verb properties are BrowseModeVerb, Catalog-
ModeVerb, DesignModeVerb, EditModeVerb, and ConnectModeVerb. The default
mode is Browse.

When you’re in design mode (as you can see in Figure 3-8), drag-and-
drop facilities let you move Web parts from one zone to another. Once dropped
onto a new zone, the Web part inherits the currently active graphical settings,
including the title bar and verb settings.

F03DR08Figure 3-8 In design mode, users can move Web parts around zones
using drag-and-drop.

C03620245.fm Page 92 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 93

In design mode, each zone sports a border and displays its title text so
users can easily spot what Web parts are available for moving. When users fin-
ish moving Web parts around, they can click the Browse verb to persist the
changes.

Persisting Layout Changes
As mentioned, a typical portal page is inherently user-specific. So if the user
changes the layout of the zones, the new layout must be stored and used when-
ever that page is visited. In ASP.NET 2.0, this doesn’t require much coding work
on your part. All you have to do is configure the application so that it supports
personalization. We’ll delve into personalization in the next chapter.

In addition to enabling personalization, you must supply (or better yet,
declare) a data store. The data store is a Microsoft SQL Server or Microsoft
Access database that contains user-specific settings related to personalization.
To make the layout changes persistent across application invocations, you run
the ASP.NET Configuration applet from the Website menu of Visual Studio 2005.
Once in the applet, you click on the Security tab and start the Security Setup
Wizard to choose and configure the personalization data store.

When a Web part–driven application finishes the personalization step,
modified zone indexes are automatically stored and used to draw the page
upon next access, as you can see in Figure 3-9.

F03DR09Figure 3-9 The weather Web part has been moved to the Miscella-
neous zone and inherits the title and verb local attributes.

C03620245.fm Page 93 Wednesday, June 9, 2004 5:25 PM

94 Part I ASP.NET Essentials

Editing and Listing Web Parts
In addition to allowing users to move Web parts from one zone to another, you
can allow users to edit various characteristics of the Web parts, including their
appearance, layout, and basic behavior. You can also provide users with a list
of all available parts and have them choose which ones to activate.

The Web Parts framework provides basic editing and listing functionality
for all Web parts. You enable in-place editing by placing one or more editor
parts in the page. Listing is enabled by means of a catalog part component. As
mentioned, both editing and listing are controlled and activated through the
Web part page menu.

Creating an Editor Zone
The first step in enabling dynamic editing on your Web part–driven page is
defining an editor zone. The tag to use is <asp:editorzone>. You need one edi-
tor zone per page. ASP.NET 2.0 supports quite a few types of editors, each
designed to edit a particular aspect of Web parts. There are editors to change
the values of public and Web browsable properties, the overall behavior of the
part, and its layout and appearance.

The Edit Mode
To define an editor zone in a page, you use the following code:

<asp:EditorZone runat="server” HeaderText="Enter Your Changes">
<InstructionTextStyle Font-Names="Verdana” Font-Italic="True” />
<HeaderStyle BackColor="Blue” ForeColor="White” />
<ZoneTemplate>

<asp:AppearanceEditorPart runat="server” />
<asp:LayoutEditorPart runat="server” />
<asp:PropertyGridEditorPart runat="server” />

</ZoneTemplate>
</asp:EditorZone>

In addition to specifying some optional style information, you have to cre-
ate an <asp:editorzone> tag and place a <zonetemplate> in it. The zone tem-
plate lists the editors you want to use. The editor zone shows up only in edit
mode and appears at the exact position where you defined it in the page. For
this reason, you should choose an appropriate placement that doesn’t obstruct
the editing process.

The Web Parts framework provides a default layout and visual settings for
the editor zones. You can change the default settings, though—including the
title and the style of the buttons on the footer.

C03620245.fm Page 94 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 95

You enter in edit mode, selecting the Modify The Web Parts Settings
option on the page menu. When this happens, all Web parts in the page show
a little bitmap that represents the edit menu. You click on the menu to make the
editors appear, as shown in Figure 3-10.

F03DR10Figure 3-10 Click on the Edit menu to display all referenced
Web Parts editors.

Figure 3-11 shows what happens when the Weather Web part is switched
to edit mode.

F03DR11Figure 3-11 When the editors are running, users can change some
visual settings for the selected Web part.

The Editor Part Components
Table 3-4 details the editor parts. You can select more than one editor in the
same zone. Editors are displayed in the specified order within the editor zone.

C03620245.fm Page 95 Wednesday, June 9, 2004 5:25 PM

96 Part I ASP.NET Essentials

The footer of the editor zone has a standard toolbar with buttons for sav-
ing and exiting (the OK button), saving and continuing (the Apply button), and
exiting without saving (the Cancel button). Any change applied during the edit
phase is stored in the personalization data store. This feature is provided by the
ASP.NET 2.0 framework and requires no additional coding.

Important For the property grid editor to show up, the Web part
must have publicly browsable and personalizable properties. The
properties must be exposed by the Web part control, not any of its
constituent controls. Even though user controls can be employed as
Web parts, they have no browsable properties. Adding a browsable
property to, say, the .ascx won’t work because the property must be
exposed by a WebPart-derived class. You have to create your own
Web part class to be able to edit custom properties through the prop-
erty grid editor. We’ll look at a custom Web part class later in the
chapter.

Adding Web Parts Dynamically
A Web part can show a variety of verbs in its title bar, including Close. If you
click that button, the Web part is closed and hidden from view, and there’s not
much you can do to view the Web part again. But is the Web part gone forever?
Of course not. Or, more exactly, not if you have designed the Web part page
appropriately.

Table 3-4 Editor Parts

Editor Description

AppearanceEditorPart Lets you edit visual settings such as width, title, direction of
the text, and border type.

BehaviorEditorPart Lets you modify some behavioral settings, such as whether
the Web part supports personalization, editing, and minimi-
zation. The editor part also lets you edit help and title links.

LayoutEditorPart Lets you edit the frame style (normal or minimized) and the
zone the part belongs to. You can also modify the index of
the part within the selected zone.

PropertyGridEditorPart Lets you edit the custom properties of the Web part compo-
nent. A custom property is a public property defined on a
WebPart-derived class marked with the Personalizable and
WebBrowsable attributes.

C03620245.fm Page 96 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 97

The Catalog Zone
The catalog zone is a Web part component that allows users to add Web parts
to the page at run time. A Web parts catalog contains the list of Web parts you
want to offer to users. At a minimum, though, the catalog acts as a store for Web
parts that the user has removed from the page. The catalog guarantees that no
inadvertently closed Web part is lost. You bring up the catalog of a page by
choosing the Add Web Parts To This Page menu item.

The following code demonstrates a simple but effective catalog:

<asp:CatalogZone runat="server” headertext="Catalog Zone">
<HeaderVerbStyle Font-Size="8pt” />
<InstructionTextStyle Font-Italic="True” Font-Size="8pt” />
<FooterStyle cssclass="EditorZoneFooter” /

>
<CatalogItemStyle Font-Size="8pt” />
<PartLinkStyle Font-Names="verdana” Font-Size="8pt” />
<VerbStyle cssclass="EditorZoneVerb” />
<HeaderStyle Font-Bold="True” BackColor="Blue” ForeColor="White” />
<ZoneTemplate>

<asp:PageCatalogPart runat="server” Title="Available Parts” />
</ZoneTemplate>

</asp:CatalogZone>

Aside from the visual styles that adorn the HTML output of the catalog
zone, the only piece of code that really matters is the <asp:PageCatalogPart>
element. It is the container that will list the available Web parts at run time.

The catalog lists the Web parts that have been closed and gives users a
chance to check and add them to one of the existing zones, as you can see in
Figure 3-12.

F03DR12Figure 3-12 The page catalog in action in the sample page

C03620245.fm Page 97 Wednesday, June 9, 2004 5:25 PM

98 Part I ASP.NET Essentials

Note The Web Parts framework provides a lot of functionality and a
variety of built-in Web dialog boxes. The page catalog and the various
editor parts are a few examples. Note that in their native format, these
dialog boxes have no visual style set. You are responsible for setting
borders, fonts, and colors to give them a professional look.

The Catalog Part Components
The catalog zone can contain two types of catalog parts: a PageCatalogPart con-
trol and a DeclarativeCatalogPart control. As mentioned, the former is a sort of
placeholder for the Web parts that the user removes from the page. The Declar-
ativeCatalogPart control contains the list of Web parts that users can add to their
page. The Web parts managed by the page catalog are those statically declared in
the .aspx source file. The Web parts managed by the DeclarativeCatalogPart are
not instantiated and managed until they are explicitly added to the page.

The following code defines new externally available Web parts:

<ZoneTemplate>
<asp:declarativecatalogpart runat="server”

title="Other Parts">
<webpartstemplate>

<x:Sample1 Runat="server” id="sample1” />
<x:Sample2 Runat="server” id="sample2” />

</webpartstemplate>
</asp:declarativecatalogpart>

</ZoneTemplate>

These Web parts are listed in the catalog side by side with the Web parts
declared in the page. You are provided with links to switch between groups of
parts. Figure 3-13 shows the appearance of the catalog part.

Important You can also set and control the display mode program-
matically. The Web part page menu is helpful if you need to create a
fully customizable page, but it forces you to play by its rules and, more
importantly, requires advanced browser support. In fact, the menu is
displayed through client-side script code based on Dynamic HTML fea-
tures. You can place simple link buttons in the page and attach some
server-side code like the following:

MyWebPartManager.DisplayMode = WebPartManager.CatalogDisplayMode;

The code sets the display mode of the Web parts to catalog.

C03620245.fm Page 98 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 99

F03DR13Figure 3-13 The catalog zone lists groups of Web parts that are
available to the Web page.

Connecting to Other Web Parts
Web part controls can communicate with other Web parts on the same Web
page and exchange data. For this feature to work, each Web part must imple-
ment the appropriate interfaces. The communication is one-way and relies on
the services of a connection object. The Web part connection object establishes
a channel between a Web part control that acts as a provider and a Web part
that acts as a consumer.

Two connected Web parts operate in a publisher/subscriber fashion. Any
change in the values exposed by the provider are immediately reflected by the
consumer. As you can imagine, this model lends itself well to representing mas-
ter/detail models of data.

The Connection Model
The Web part connection model consists of two interoperating entities—a con-
nection and a connection point. A connection connects two points, one from
the provider control and one from the consumer. The connections available in
the page are managed by the Web part manager. Web part controls can com-
municate with more than one other part.

C03620245.fm Page 99 Wednesday, June 9, 2004 5:25 PM

100 Part I ASP.NET Essentials

Enabling Web Parts Connectivity
The following code illustrates the key step in a connection-enabled Web page
that supports Web parts:

<asp:WebPartManager runat="server” id="MyWebPartManager">
<StaticConnections>

<asp:connection
ProviderID="emp"
ProviderConnectionPointIDname="EmployeeIDProvider"
ConsumerID="ord”
ConsumerConnectionPointID="EmployeeIDConsumer” />

</StaticConnections>
</asp:WebPartManager>

All the necessary connection objects are declaratively listed in the body of
the Web part manager. A connection is identified by a provider and a consumer
object. For both objects, you specify an ID and the name of the corresponding
connection point. The ProviderID and ConsumerID properties must match the
ID of existing Web parts. The ConsumerConnectionPointID and ProviderCon-
nectionPointID properties must match the name of a connection point defined
within the Web parts.

Note The Web Parts framework supports static and dynamic con-
nections. Static connections are defined within the body of the Web-
PartManager object and are available to users as soon as they open
the page. Dynamic connections enable users to connect and discon-
nect two Web parts using code.

Connection Points and Interfaces
A connection point defines a possible connection for a WebPart control. A con-
nection point doesn’t guarantee communication—it simply provides a way for
the WebPartManager object to establish a communication channel between
two parts. A connection point can act as a provider or as a consumer. In the
former case, the Web part exposes information through the connection channel
that other registered Web parts consume. A consumer connection point, on the
other hand, receives incoming data exposed by a provider.

C03620245.fm Page 100 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 101

The communication between providers and consumers is defined by a
communication contract. The contract set between a provider and a consumer
consists of an interface implemented in the provider that the consumer needs to
know. This interface can contain properties, events, or methods that the con-
sumer can use once the communication is established. The consumer doesn’t
need to implement any interface, but it must be aware of the interfaces that its
provider supports.

Building a Master/Detail Schema
Let’s apply the Web part connection model to a couple of custom Web part con-
trols that inherit from the WebPart base class. The provider Web part is named
EmployeesWebPart; it exposes the value of employee ID. In addition, the con-
trol displays some information about the specified employee.

The consumer component is the OrdersWebPart control; it displays all the
orders issued by a particular employee. The ID of the employee can be set
directly through the programming interface of the component, or it can be auto-
matically detected when the provider Web part signals a change in its state. This
link creates a master/detail relationship between the two Web parts.

Provider Web Part Components
When you create a provider Web part, the first thing you define is the commu-
nication contract for the connection points. The contract is defined as an inter-
face. The Web part component is a custom ASP.NET control derived from
WebPart that implements the contract interface.

interface IEmployeeInfo
{

int EmployeeID { get; set; }
}
public class EmployeesWebPart : WebPart, IEmployeeInfo
{

private int _empID;
public int EmployeeID
{

get { return _empID; }
set { _empID = value; }

}
§

}

C03620245.fm Page 101 Wednesday, June 9, 2004 5:25 PM

102 Part I ASP.NET Essentials

To make EmployeeID show up in the property grid editor, you mark it as
browsable and personalizable.

[Personalizable(true), WebBrowsable(true)]
public int EmployeeID
{

get { return _empID; }
set { _empID = value; }

}

To give the Web part a user interface, you can override the RenderCon-
tents method. Aside from the few features described so far, writing a custom
Web part is not much different from writing a custom control.

The next step is creating a provider connection point. You define a func-
tion that returns an instance of the current class, and you mark it with the [Con-
nectionProvider] attribute. This function creates the connection point for the
data based on the IEmployeeInfo interface:

[ConnectionProvider(“EmployeeIDProvider", “EmployeeIDProvider”)]
private IEmployeeInfo ProvideEmployeeInfo()
{

return this;
}

Notice that the name of the connection point must match the Provider-
Name or the ConsumerName property of the <asp:connection> tag, depending
on whether the connection point is for a provider or a consumer.

Note When the WebPart provider control implements just one pro-
vider interface, as in this case, there’s no need to explicitly mention the
interface in the connection provider attribute. When multiple interfaces
are supported, you must add a third parameter to the [ConnectionPro-
vider] attribute to indicate the contract on which the connection is
based.

[ConnectionProvider["Prov", “Prov", typeof(IMyInterface)]

The sample EmployeesWebPart control retrieves and displays some infor-
mation about the specified employee in SQL Server’s Northwind database. Fig-
ure 3-14 shows its user interface.

C03620245.fm Page 102 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 103

F03DR14Figure 3-14 The EmployeesWebPart control in action

Consumer Web Part Components
A Web part that acts as a consumer is even simpler to write than a provider.
Besides generating its own user interface, the Web part has only one duty—cre-
ating a consumer connection point for the specified interface.

[ConnectionConsumer(“EmployeeIDConsumer", “EmployeeIDConsumer”)]
private void GetEmployeeInfo(IEmployeeInfo empInfo)
{

if (empInfo != null)
{

_empID = empInfo.EmployeeID;
FindEmployeeInfo();

}
else

throw new Exception(“No connection data found.”);
}

The ASP.NET runtime creates a consumer connection point that corre-
sponds to a method marked with the [ConnectionConsumer] attribute. The
method marked with the attribute is taken as the callback to invoke when any-
thing on the specified interface changes.

The user interface is composed using a DataGrid control. The grid is filled
with the results of a query run against the Orders table in the Northwind data-
base.

C03620245.fm Page 103 Wednesday, June 9, 2004 5:25 PM

104 Part I ASP.NET Essentials

Putting It All Together
The two custom Web parts that support connection points must be added to the
page using a custom prefix, just like any other custom control. First you com-
pile the two files to an assembly, and then you link it to the page using the
@Register directive:

<%@ Register tagprefix="x” Namespace="Samples” Assembly="MyWebParts” %>

If, for some reason, the two classes belong to different namespaces, you
use two different prefixes. The code that inserts the Web parts looks like the fol-
lowing:

<x:EmployeesWebPart runat="server” id="emp”
Title="Employee Info” />

<x:OrdersWebPart runat="server” id="ord”
Scrollbars="Auto” Height="200px"
Title="Orders 1997” />

Let’s briefly review the markup code that defines a Web part connection
object within the page.

<StaticConnections>
<asp:connection

ProviderID="emp” ProviderConnectionPointID="EmployeeIDProvider"
ConsumerID="ord” ConsumerConnectionPointID="EmployeeIDConsumer” />

</StaticConnections>

This declaration can be read as a connection set between a Web part with
an ID of emp and a Web part named ord. The former acts as the provider
through a connection point name EmployeeIDProvider. The latter plays the role
of the consumer through a connection point named EmployeeIDConsumer.

As a result, any change in any of the properties exposed by the provider
results in an internal field-changed event that is resolved, invoking the con-
sumer’s callback. The consumer retrieves and displays the orders for the speci-
fied employee. The two Web parts work perfectly in sync, as Figure 3-15 shows.

The provider Web part also defines a public and browsable EmployeeID
property. If you set the EmployeeID property on the EmployeesWebPart control
(the provider), the change is immediately reflected by the consumer, as you can
see in Figure 3-16.

Note that, by design, the connection model is a one-way model—to keep
the controls completely in sync, you need a second connection in which the
provider and consumer roles are swapped. For example, suppose you add a
public, browsable EmployeeID property to the Orders Web part. To reflect any
property changes to the Employees Web part, you must create a second pair of
connection points that are completely independent from the first pair.

C03620245.fm Page 104 Wednesday, June 9, 2004 5:25 PM

Chapter 3 Working with Web Parts 105

F03DR15Figure 3-15 A master/detail relationship set using two independent but
communicating Web parts

F03DR16Figure 3-16 Changes to public properties tied to a connection point
make the consumer refresh its user interface.

C03620245.fm Page 105 Wednesday, June 9, 2004 5:25 PM

106 Part I ASP.NET Essentials

Summary

The Web Parts framework provides a simple and familiar way for ASP.NET
developers to create modular Web applications that support end-user personal-
ization. A Web part is a panel-like server control that displays some user inter-
face elements. Like any other server control, it is configurable through
properties, methods, and events.

Web parts are integrated into a framework aimed at composing pages with
components that are smarter and richer than traditional controls. The surround-
ing Web Parts framework provides all the magic (or hard infrastructure code, if
you will). In particular, you can partition the surface of your Web page into
zones and bind one or more parts to each zone. Each Web part is automatically
given a frame, a title bar, and some verbs (such as minimize, edit, and close).
Overall, a Web part looks like a traditional window of a desktop application.

The Web Parts framework supports a variety of working modes, including
design, edit, and catalog. In design mode, users can use drag-and-drop and
move parts around, changing the layout of the page. In edit mode, users can
also change visual and behavioral properties. The user interface of the editors
is provided, free of programming charge, by the Web Parts framework. Finally,
in catalog mode the framework lists all available Web parts, including those that
the user might have previously closed.

When a user reconfigures the Web parts on a page, the user’s settings are
automatically persisted. The next time the user visits the page, the last Web
parts configuration is restored. Web parts settings are persisted using page per-
sonalization. The only requirement is that page personalization be enabled for
the page. No code is required to store the user settings, but the page personal-
ization engine must be configured offline. You’ll see a lot about page personal-
ization in the next chapter.

C03620245.fm Page 106 Wednesday, June 9, 2004 5:25 PM

107

Personalization: User
Profiles and Themes

ASP.NET applications do not necessarily require a rich set of personalization
features. However, if you can build an effective personalization layer into your
Web application, the application will be friendlier, more functional, and more
appealing to use. For some applications (such as portals and shopping centers),
though, personalization is crucial. For others, it’s mostly a way to improve the
visual appearance.

In ASP.NET 2.0, personalization comes in two complementary forms: user
profiles and themes. The user profile is designed for persistent storage of struc-
tured data using a friendly and type-safe API. The application defines its own
model of personalized data, and the ASP.NET runtime does the rest by parsing
and compiling that model into a class. Each member of the personalized class
data corresponds to a piece of information specific to the current user. Loading
and saving personalized data is completely transparent to end users and doesn’t
even require the page author to know much about the internal plumbing.

The second form of personalization is using themes. Much like Microsoft
Windows XP themes, ASP.NET themes assign a set of styles and visual attributes
to elements of the site that can be customized. These elements include control
properties, page style sheets, images, and templates on the page. A theme is the
union of all visual styles for all customizable elements in the pages—a sort of
super–CSS file. A theme is identified by name and consists of CSS files, images,
and control skins. A control skin is a text file that contains default control dec-
larations in which visual properties are set for the control. With this feature
enabled, if the developer adds a DataGrid control to a page, the control is ren-
dered with the default appearance defined in the theme.

C04620245.fm Page 107 Thursday, June 3, 2004 4:51 PM

108 Part I ASP.NET Essentials

With personalization, you can store user-specific information and prefer-
ences without the burden of having to write the infrastructural code. With
themes, you can easily give the whole site a consistent (and, you hope, appeal-
ing) user interface and easily export that look from one application to the next.

Managing User Profiles
At the highest level of abstraction, a user profile is a collection of properties that
the ASP.NET 2.0 runtime groups into a dynamically generated class. Any per-
sonalization data is persisted on a per-user basis and is permanently stored until
someone with administrative privileges deletes it. The layout of the user profile
is defined in the configuration file and consists of a list of properties that can
take any of the .NET common language runtime (CLR) types.

The data storage is hidden from the user and, to some extent, from the
programmers. The user doesn’t need to know how and where the data is
stored; the programmer simply needs to indicate what type of personalization
provider he wants to use. The personalization provider determines the database
to use—typically, a Microsoft Access or Microsoft SQL Server database—but
custom providers and custom data storage models can also be used.

Creating the User Profile
To use the ASP.NET 2.0 personalization API, you first decide on the structure of the
data model you want to use. Then you attach the data model to the page through
the configuration file. When the application runs, ASP.NET dynamically creates a
profile object that contains, properly typed, the properties you have defined in the
data model. The object is then added to the current HttpContext object and is avail-
able to pages through the Profile property. Let’s see how to define a data model.

Using Scalar Properties
The simplest way to add properties to the personalization storage medium is
through name/value pairs. You define each pair by adding a new property tag
to the <properties> section of the configuration file. The <properties> section is
itself part of the larger <profile> section, which also includes provider informa-
tion. The <profile> section is located under <system.web>. Here’s an example of
a user profile section:

<profile>
<properties>

<add name="BackColor” type="string” />
<add name="ForeColor” type="string” />
<add name="Height” type="int” />
<add name="Width” type="int” />

</properties>
</profile>

C04620245.fm Page 108 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 109

All the properties defined through an <add> tag become members of a
dynamically created class that is exposed as part of the HTTP context of each
page. The type attribute indicates the type of the property. If no type information
is set, the type defaults to System.String. Any valid CLR type is acceptable. Table
4-1 lists the valid attributes for the <add> element. Only name is mandatory.

The User Profile Class Representation
As a programmer, you don’t need to know how data is stored or retrieved from the
personalization store. However, you must create and configure the store. We
skirted this step, but we’ll discuss it in detail shortly. The following code snippet
gives you an idea of the class being generated to represent the profile’s data model:

namespace ASP
{

public class HttpProfile : HttpProfileBase
{

public virtual string BackColor
{

get {(string) GetPropertyValue(“BackColor”);}
set {SetPropertyValue(“BackColor", value);}

}
public virtual string ForeColor
{

get {(string) GetPropertyValue(“ForeColor”);}
set {SetPropertyValue(“ForeColor", value);}

}
public virtual HttpProfile GetProfile(string username)
{

object o = HttpProfileBase.Create(username);
return (HttpProfile) o;

}
§

}
}

Table 4-1 Attributes of the <property> Element

Attribute Description

allowAnonymous Allows storing values for anonymous users. False by default.

defaultValue Indicates the default value of the property.

name Name of the property.

provider Name of the provider to use to read and write the property.

readOnly Specifies whether the property value is read-only. False by default.

serializeAs Indicates how to serialize the value of the property. Possible val-
ues are Xml, Binary, String, and ProviderSpecific.

type The type of property. It is a string object by default.

C04620245.fm Page 109 Thursday, June 3, 2004 4:51 PM

110 Part I ASP.NET Essentials

As you can guess from the code, there’s a tight relationship between user
accounts and profile information. We’ll investigate this in a moment—for now,
you need to notice this because anonymous users are supported as well.

Using Collection Types
In the previous example, we worked with single, scalar values. However, the
personalization engine fully supports more advanced scenarios such as using
collections or custom types. Let’s tackle collections first. The following code
demonstrates a property Links that is an array of strings:

<properties>
<add name="Links”

type="System.Collections.Specialized.StringCollection”
serializeAs="Xml” />

</properties>

Nonscalar values such as collections and arrays must be serialized to fit in
a data storage medium. The serializeAs attribute simply specifies how. As men-
tioned, acceptable values are String, Xml, Binary, and ProviderSpecific. If the
serializeAs attribute is not present on the <property> definition, the String type
is assumed. A collection is normally serialized as XML or in a binary format.

Let’s consider the following page-level code that stores values into the
Links property:

Profile.Links.Clear();
Profile.Links.Add(“http://www.contoso.com”);
Profile.Links.Add(“http://www.northwind.com”);

If you choose the XML format, the previously shown page-level code
places an XML string into the storage medium:

<?xml version="1.0” encoding="utf-16”?>
<ArrayOfString

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<string>http://www.contoso.com</string>
<string>http://www.northwind.com</string>

</ArrayOfString>

However, as mentioned before, the programmer is not required to know
about the storage format and medium. Details of personalization are completely
transparent to developers and end users.

C04620245.fm Page 110 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 111

Important The XML serialization required by the value of the serial-
izeAs attribute shown previously is performed by the XmlSerializer
class. This means that some of the limitations of the class affect its
use with ASP.NET 2.0 personalization. In particular, you can’t use
hash tables, dictionaries, or classes with circular references. Likewise,
before you use a list collection type, you should first make sure it over-
loads the Add method with a single parameter. If you set the Serial-
izeAs attribute to Binary, the binary .NET formatter is used and all the
problems just described disappear instantly.

Using Custom Types
You can use a custom type with the ASP.NET personalization layer as long as
you mark it as a serializable type. You simply author a class and compile it
down to an assembly. The name of the assembly is added to the type informa-
tion for the personalization property:

<profile>
<property name="ShoppingCart”

type="My.Namespace.DataContainer, MyAssem”
serializeAs="Binary” />

</profile>

The assembly that contains the custom type must be available to the
ASP.NET application. You obtain this custom type by placing the assembly in
the application’s Bin directory or by registering it within the global assembly
cache (GAC).

Grouping Properties
Like <property>, the <profile> section can also accept the <group> element. The
<group> element allows you to group a few related properties as if they are
properties of an intermediate object. The following code snippet shows an
example of grouping:

<profile>
<properties>

§
<group name="Font">

<add name="Name” type="string” defaultValue="verdana” />
<add name="SizeInPoints” type="int” defaultValue="8” />

</group>
</properties>

</profile>

C04620245.fm Page 111 Thursday, June 3, 2004 4:51 PM

112 Part I ASP.NET Essentials

The font properties have been declared children of the Font group. This
means that from now on, any access to Name or SizeInPoints passes through
the Font name, as shown here:

MyCtl.Style["font-name"] = Profile.Font.Name;
MyCtl.Style["font-size"] = String.Format(“{0}pt",

Profile.Font.SizeInPoints);

Note Default values are not saved to the persistence layer. Proper-
ties declared with a default value make their debut in the storage
medium only when the application assigns them a value different from
the default one.

Personalization Providers
In ASP.NET 2.0, the personalization API is composed of two distinct elements—
the access layer and the storage layer. The access layer provides a strongly
typed model to get and set property values and also manages user identities. As
you’ll see in the next section, personalization data is associated with identities
even though anonymous users can still connect and exploit the feature. The
access layer guarantees that the data is retrieved and stored on behalf of the
currently logged on user.

Note In general, an ASP.NET 2.0 provider is defined as a pluggable
component that extends or replaces system functionality. The person-
alization provider is just one implementation of the new ASP.NET 2.0
provider model. Other examples of providers are the membership pro-
vider and role manager provider, both of which we’ll discuss in Chap-
ter 10. At its core, the provider infrastructure allows customers to
extend some of the out-of-the-box system functionality and change the
underlying implementation while keeping the top-level interface intact.
Providers are relatively simple components with as few methods and
properties as possible. Only one instance of the provider should exist
per application domain.

C04620245.fm Page 112 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 113

The second element of the personalization system is the underlying data
storage. The system uses ad hoc providers to perform any tasks involved with the
storage and retrieval of values. ASP.NET 2.0 comes with two personalization pro-
viders, each of which uses a different data engine. The default provider uses an
Access database; the other provider is for SQL Server. You can also write custom
providers. The provider writes data into the database of choice and is responsible
for the final schema of the data. A personalization provider must be able to either
serialize the type (by using XML serialization and binary object serialization, for
example) or know how to extract significant information from it.

Configuring Personalization Providers
All features, such as personalization, that have providers should have a default
provider. Normally, the default provider is indicated via a defaultProvider
attribute in the section of the configuration file that describes the specific fea-
ture. By default, if a preferred provider is not specified, the first item in the col-
lection is considered the default.

As for ASP.NET 2.0 personalization, the default provider is based on an
Access database and is named AspNetAccessProvider. If you don’t mind having
your personalization data saved on a per-user basis in an Access database, you
don’t have to do anything. Otherwise, you can select an alternative provider.
ASP.NET 2.0 provides a SQL Server–based provider named AspNetSqlProvider.
Providers are registered in the <providers> section of the configuration file
under the main node <profile>, as shown here:

<profile enabled="true” defaultProvider="AspNetAccessProvider” >
<providers>

<add name="AspNetAccessProvider"
type="System.Web.Profile.AccessProfileProvider"
connectionStringName="AccessFileName"
description="Stores and retrieves personalization data from the

local Microsoft Access database file” />
<add name="AspNetSqlProvider"

type="System.Web.Profile.SqlProfileProvider"
connectionStringName="LocalSqlServer"
description="Stores and retrieves personalization data from the

local Microsoft SQL Server database” />
</providers>
§

</profile>

The <add> nodes within the <providers> section list all the currently reg-
istered providers. The previous code is an excerpt from the machine.config file.
Attributes such as name and type are common to all types of providers. Other
properties are part of the provider’s specific configuration mechanism. Tightly

C04620245.fm Page 113 Thursday, June 3, 2004 4:51 PM

114 Part I ASP.NET Essentials

connected with this custom interface is the set of extra properties—in this case,
connectionStringName and description. The description attribute is simply text
that describes what the provider does. The connectionStringName attribute
defines the information needed to set up a connection with the underlying
database engine of choice. However, instead of being a plain connection string,
the attribute contains the name of a previously registered connection string. For
example, LocalSqlServer is certainly not the connection string to use for a local
or remote connection to an instance of SQL Server. Instead, it is the name of an
entry in the new <connectionStrings> section of the configuration file. That
entry contains any concrete information needed to connect to the database.

The Access Personalization Provider
By default, personalization uses a local Access database. The database is cre-
ated in the Data subdirectory of the application’s virtual folder. As you’ll see in
the section titled “Interacting with the Page,” page developers are responsible
for creating any personalization databases.

As a developer, you don’t need to know about the layout of the table and
the logic that governs it; instead, you’re responsible for ensuring that any
needed infrastructure is created. To do so, you use the Website menu in Visual
Studio 2005 to start the ASP.NET administrative tool. (More on this later.)

When you use the Access personalization provider, a database named
ASPNetDB.mdb is created in the Data subdirectory. A view of the tables in the
database is shown in Figure 4-1.

F04DR01Figure 4-1 The list of tables found in the ASPNetDB Access database
and the content of one record in the aspnet_Profile table

C04620245.fm Page 114 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 115

Note that the ASPNetDB database isn’t specific to the personalization
infrastructure. As you can see in the figure, it groups all provider-related tables,
including those for membership, site counters, roles, and users. The internal
structure of each database is specific to the mission of the underlying provider.
The connection string for the Access personalization provider is shown here
(located in machine.config):

<connectionStrings>
<add name="AccessFileName” connectionString="~\DATA\ASPNetDB.mdb” />

</connectionStrings>

The Access personalization provider is the recommended provider for
small applications in Internet scenarios or if you simply want to experiment
with the functionality.

The SQL Server Personalization Provider
The Access and SQL Server providers rely on the same schema of data. The data
design for default ASP.NET personalization providers shares some tables with
the membership and role manager providers. (See Chapter 10.) The tables are
aspnet_Users and aspnet_Roles. When the personalization provider is first
invoked, any shared table is used if it exists and is created if it doesn’t already
exist.

The connection string for the SQL server database is shown here:

<connectionStrings>
<add name="LocalSqlServer”

connectionString="SERVER=127.0.0.1;INTEGRATED SECURITY=SSPI” />
</connectionStrings>

The connection string defaults to the local machine and uses integrated
security. The structure of the main table that contains personalization data is
visible in Figure 4-1. It contains a primary key field named UserId, which is the
ID of the user because the user is registered in the companion aspnet_Users
table. Additional fields are PropertyNames and PropertyValuesString. The
former stores string names for the personalization properties for a specific
UserId. The latter stores the corresponding values, conveniently serialized. The
last field you find in the database is LastUpdatedDate, which obviously contains
the date of the last update.

Custom Personalization Providers
The Access and SQL Server personalization providers are good at building new
applications and are good for personalization data that is inherently tabular. In
many cases, though, you won’t start an ASP.NET 2.0 application from scratch
but will instead migrate an existing ASP or ASP.NET application. You often

C04620245.fm Page 115 Thursday, June 3, 2004 4:51 PM

116 Part I ASP.NET Essentials

already have data to integrate with the ASP.NET personalization layer. If this
data doesn’t get along with the relational model, or if it is already stored in a
storage medium other than Access or SQL Server, you can write a custom per-
sonalization provider.

Personalization providers push the idea that existing data stores can be
integrated with the personalization engine using a thin layer of code. This layer
of code abstracts the physical characteristics of the data store and exposes its
content through a common set of methods and properties—an interface. A cus-
tom personalization provider is a class that inherits ProfileProvider.

A custom provider can be bound to one or more personalization proper-
ties using the property’s provider attribute:

<properties>
<add name="BackColor” type="string” provider="MyProviderName” />
§

</properties>

It goes without saying that the provider name must correspond to one of
the entries in the <providers> section.

Interacting with the Page
To enable or disable personalization support, you set the enabled attribute of
the <profile> element in the web.config file. If the property is true, personaliza-
tion features are enabled for all pages. If personalization is disabled, the Profile
property isn’t available to pages out of the HttpContext object.

Creating the Personalization Database
As mentioned earlier, personalization works strictly on a per-user basis and is per-
manently stored. Enabling the feature simply turns any functionality on, but it
doesn’t create the needed infrastructure for user membership and data storage.

ASP.NET 2.0 comes with an administrative tool—the ASP.NET Web Applica-
tion Administration—that is fully integrated in Visual Studio 2005. (See Figure 4-2.)
You invoke the tool by choosing ASP.NET Configuration from the Website menu.

The Web Application Administration tool has a wizard-like interface. You
select the Security tab and just walk your way through the steps required to set
up users, roles, and access permissions for your site. The tool also lets you con-
figure the data store where membership information will be stored. Inciden-
tally, this data storage is partially shared with the personalization engine.
Depending on how users will access your site—either from the Internet or a
local area network (LAN)—the tool automatically creates an Access or SQL
Server database.

C04620245.fm Page 116 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 117

F04DR02Figure 4-2 The ASP.NET Web Application Administration tool in action

Note that the Web Application Administration tool is just one option—not
the only one—for setting up the personalization infrastructure. For example, if
you’re using a custom provider, the setup of your application is responsible for
preparing any required storage infrastructure.

The use of a membership database with users and roles is important
because personalization is designed to be user-specific and because a user ID—
either a local Windows account or an application-specific logon—is necessary
to index data. In our example, which uses the default provider, running a wiz-
ard from the Web Application Administration tool creates the Access ASPNetDB
database in the Data subdirectory of the virtual root.

Anonymous Personalization
Although personalization is designed primarily for authenticated users, anony-
mous users can also store personalization data. In this case, though, a few extra
requirements must be fulfilled. In particular, you have to turn on the anony-
mousIdentification feature, which is disabled by default.

<anonymousIdentification enabled="true” />

As you’ll see in much greater detail in Chapter 10, anonymous identifica-
tion is another new feature of ASP.NET 2.0. The purpose of anonymous user
identification is to assign a unique identity to users who are not authenticated.
This identity, common to all users, can be used to track the user (and handle

C04620245.fm Page 117 Thursday, June 3, 2004 4:51 PM

118 Part I ASP.NET Essentials

the user’s personalization data) in much the same way that developers do using
the session state.

Note Anonymous identification in no way affects the identity of the
account that is processing the request. Nor does it affect any other
aspects of security and user authentication. Anonymous identification
is simply a way to give a “regular” ID to unauthenticated users so they
can be tracked as authenticated, “regular” users.

In addition, to support anonymous personalization you must mark prop-
erties in the <profile> section with the special Boolean attribute allowAnony-
mous. The following code demonstrates how to set up the web.config file to
allow for anonymous personalization:

<anonymousIdentification enabled="true” />
<profile enabled="true">

<properties>
<add name="BackColor”

type="System.Drawing.Color”
allowAnonymous="true” />

<add name="Links”
type="System.Collections.Specialized.StringCollection”

allowAnonymous="true"
serializeAs="Xml” />

</properties>
</profile>

Personalization data has no predefined duration and is permanently
stored. It is up to the Web site administrator to delete the information when
convenient.

Accessing Personalization Properties
If you want to access personalization data on a page, you can do so through the
Profile property on the HttpContext object. Before the request begins its pro-
cessing cycle, the Profile property is set with an instance of a dynamically cre-
ated class that was created after the user profile defined in the web.config file.

When the page first loads, the profile properties are set with their default
values (if any) or are empty objects. They are never null. When custom or col-
lection types are used to define properties, assigning default values might be
hard. In our example, we defined a string collection object—the property
Links—but giving that a default value expressed as a string is virtually impossi-
ble. At run time, though, the Links property won’t be null—it will equal an
empty collection. So how can you manage default values for these properties?

C04620245.fm Page 118 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 119

Properties that don’t have a default value can be initialized in the Page_Load
event when the page is not posting back. Here’s how you can do that:

if (!IsPostBack)
{

// Store a default value for the Links property
if (Profile.Links.Count == 0) {

Profile.Links.Add(“http://www.contoso.com”);
Profile.Links.Add(“http://www.northwind.com”);

}
}

At the end of the request, the contents of the profile object are flushed into
the personalization storage medium and are easily retrieved the next time the
page is invoked. The following code demonstrates a Web page that loads and
saves personalized settings for the anonymous user:

<%@Page language="C#” %>
<%@Import namespace="System.Drawing” %>

<script runat="server">
void Page_Load(object sender, EventArgs e) {

if (!IsPostBack) {
// Store a default value for the Links property
if (Profile.Links.Count == 0) {

Profile.Links.Add(“http://www.contoso.com”);
Profile.Links.Add(“http://www.northwind.com”);

}
}
ApplyPersonalization();

}

void ApplyPersonalization() {
// Use the BackColor property to paint the body of the page
theBody.Attributes["bgcolor"] = Profile.BackColor;

// Use the Links property to create a right-aligned top menu
Favorites.Controls.Clear();
foreach (object o in Profile.Links) {

HyperLink h = new HyperLink();
h.Text = o.ToString();
h.NavigateUrl = o.ToString();
Favorites.Controls.Add(h);
Favorites.Controls.Add(new LiteralControl(“ ”));

}
}

void OnSetColor (object sender, EventArgs e) {
// Change the BackColor property and apply changes to the page
// The new value is provided by a textbox in the page

C04620245.fm Page 119 Thursday, June 3, 2004 4:51 PM

120 Part I ASP.NET Essentials

Profile.BackColor = NewColor.Text;
ApplyPersonalization();

}

void OnAddLink (object sender, EventArgs e) {
// Add a link to the Links collection and apply changes
Profile.Links.Add(NewLink.Text);
ApplyPersonalization();

}
</script>

<html>
<head runat="server">

<title>Personalization</title>
</head>
<body runat="server” id="theBody” style="margin:0px">

<form runat="server">
<asp:PlaceHolder Runat="server” ID="Favorites” />
<hr />
<table><tr>

<td><asp:textbox runat="server” id="NewColor” /></td>
<td><asp:button runat="server” text="Save Back Color”

onclick="OnSetColor” /></td>
</tr><tr>

<td><asp:textbox runat="server” id="NewLink” /></td>
<td><asp:button runat="server” text="Save Link”

onclick="OnAddLink” /></td>
</tr></table>

</form>
</body>
</html>

The page contains a couple of text boxes you can use to enter the color as
a string (yellow, for example) and the URL of a new favorite link, as shown in
Figure 4-3. By clicking the buttons next to either text box, you can modify the
profile and apply the changes to the current instance of the page.

F04DR03Figure 4-3 If you enter a new URL and click to save it, the menu of the
page is permanently modified.

C04620245.fm Page 120 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 121

Pages that make intensive use of personalization should also provide a
user interface (or a separate editor, much as Web Parts do) to let users modify
settings and personalize the visual appearance of the page.

Note The personalization data of a page is all set when the
Page_Init event fires. ASP.NET 2.0 also defines a Page_PreInit event.
When this event arrives, no operation has been accomplished yet on
the page, not even the loading of personalization data.

Personalization Events
The personalization data is added to the HTTP context of a request before the
request begins its processing route. Once bound to the HTTP context object,
the personalization data is available through the Profile property. But which
system component is in charge of loading personalization data? ASP.NET 2.0
employs a new HTTP module for this purpose named ProfileModule.

The module attaches itself to a couple of HTTP events and gets involved
after a request has been authorized and when the request is about to end. If the
personalization feature is off, the module returns immediately. Otherwise, it
fires the Personalize event to the application and loads personalization data
from the current user profile. When the Personalize event fires, the personaliza-
tion data hasn’t been loaded yet.

Next the module deals with anonymous users. As mentioned, anonymous
users can store and retrieve settings that are persisted using an anonymous
unique ID. However, if at a certain point a hitherto anonymous user decides to
create an account with the Web site, you might need to migrate to its account
all the settings that she made as an anonymous user. This migration doesn’t
occur automatically. The personalization module fires an event—MigrateAnon-
ymous—that, properly handled, allows you to import anonymous settings into
the profile of a logged on user. The following pseudocode demonstrates how to
handle the migration of an anonymous profile:

void Personalization_MigrateAnonymous(object sender,
AnonymousIdentificationEventArgs e)

{
// Get the profile of the anonymous user
HttpProfile anonProfile;
anonProfile = Profile.GetProfile(e.AnonymousId);

// Migrate the properties to the new profile
Profile.BackColor = anonProfile.BackColor;
§

}

C04620245.fm Page 121 Thursday, June 3, 2004 4:51 PM

122 Part I ASP.NET Essentials

You get the profile for the anonymous user and extract the value of any
property you want to import. Next you copy the value to the profile of the cur-
rently logged on user.

Using Themes
Managing profiles is just one aspect of customizing a Web site. Another impor-
tant aspect is the visual appearance of individual controls. A golden rule of Web
usability is that the look and feel of the pages must be consistent. The use of
cascading style sheets (CSS) styles and CSS classes helps a lot in achieving this.
You can get the same kind of flexibility that CSS classes provide for visual styles
when you work with the properties of ASP.NET controls—by using ASP.NET
themes.

ASP.NET themes are closely related to Windows XP themes. Setting a
theme is as simple as setting a property, and all the settings the theme contains
are applied in a single shot. Themes can be applied to individual controls and
also to a page or an entire Web site.

What Are Themes?
ASP.NET offers some predefined themes that you can apply to any ASP.NET
Web application. For example, ASP.NET includes a theme called SmokeAnd-
Glass that defines a common style for most server controls. Figure 4-4 shows
the new look and feel of our sample page after we apply the SmokeAndGlass
theme.

F04DR04Figure 4-4 The sample page modified using the standard
SmokeAndGlass theme

In particular, the theme sets fonts and borders for buttons and text boxes
and makes hyperlinks sensitive to the mouse movements. The beauty of
ASP.NET themes is that you define how your controls should look and the set-
tings are automatically applied to all the controls you ever create in your page
or Web site.

C04620245.fm Page 122 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 123

Structure of a Theme
A theme is composed of a collection of CSS files, images, and skin files. Built-
in themes are saved in a special location under the installation path of the .NET
Framework 2.0:

%SystemRoot%\Microsoft.NET\Framework\vX.X.XXXX\ASP.NETClientFiles\Themes\

The actual name of the subdirectory labeled vX.X.XXXX changes accord-
ing to the build of ASP.NET 2.0 you’re considering. Themes defined in this path
are visible to all applications running on the machine. Application-specific
themes can be defined, too, but they are stored elsewhere. (More on this in a
moment.) Under the folder named Themes, you find child paths, each identify-
ing a distinct theme. The theme’s main directory contains .css and .skin files and
optionally an Images subdirectory if your theme needs to include images, too.
The name of the directory is the name of the theme.

Typically, the CSS file of a theme defines the style of the page body,
anchors, headings, input fields. A skin file can be seen as a sort of server-side,
ASP.NET-specific style sheet. Basically, by using a skin file you define the style
of an ASP.NET control. You don’t use CSS style attributes—you assign default
values to the visual properties of server controls. For example, you can give
default values to fonts, borders, and colors; configure style properties of rich
controls such as the DataGrid, the Calendar, or the GridView; and define once
and for all the appearance of Web parts.

Once you define a skin, you don’t need to set or reference the proper-
ties—you just take the default values. The skin just overrides the original default
values for skinned properties.

Images are an optional element of a theme. However, since some controls
(such as TreeView, DataGrid, and Wizard) might use images to enhance their
user interface, skins support images, too. Any images stored in the Images sub-
directory of a theme can be used to preconfigure any of the properties of the
skinned controls.

Creating Themes
You can create your own themes to apply to your site or individual pages. A
page theme is defined in a special Themes folder under the root of a Web appli-
cation. In the page theme, you define control skins—settings for individual con-
trols such as Button, TextBox, and DataGrid controls. You typically define a
control skin for each type of control that you want to use in your application,
setting the control’s properties so that all the controls have a similar look. The
page theme can also include style sheets and graphics.

Note that a theme should configure only visual properties of a control—
not properties that influence the runtime behavior of the control.

C04620245.fm Page 123 Thursday, June 3, 2004 4:51 PM

124 Part I ASP.NET Essentials

Working with Themes
A theme includes skins defined for a variety of server controls. When you work
with themes, you actually work with control skins. This is also the case when
you create custom themes. Skins are a layer of user interface properties placed
on top of specified controls. Skins are normally set at design time, but in some
cases they can also be modified programmatically.

The SmokeAndGlass Built-In Theme
A skin file is a text file that contains a series of markup declarations, much like
the layout part of an .aspx page. The built-in SmokeAndGlass theme contains
the following definitions for Textbox and Button controls:

<asp:TextBox runat="server”
BackColor="#FFFFFF” BorderStyle="Solid”
Font-Size="0.9em” Font-Names="Verdana”
ForeColor="#585880” BorderColor="#585880”
BorderWidth="1pt” CssClass="theme_textbox” />

<asp:Button runat="server”
BorderColor="#585880” Font-Bold="true”
BorderWidth="1pt” ForeColor="#585880”
BackColor="#F8F7F4” />

Those settings are the new default values for the controls. Note that if you
redefine, say, the BackColor property in the markup of the .aspx file, that set-
ting is ignored. The reason is that the theme settings are applied to controls
immediately after instantiation. This means, for example, that each TextBox
control is created with the background color you set in the .aspx markup, but
one second later it receives the background color set in the skin.

Note You cannot declaratively override the value of property set in a
skin file. If you want to override the skin value of control property, you
have to place some code in the Page_Init or Page_Load event:

void Page_Init (object sender, EventArgs e) {
// Override the default settings of the skin
NewColor.BackColor = Color.Cyan;

}

Theming Your Pages and Controls
Associating a theme with a page is easy. You assign the name of your theme of
choice to the Theme attribute on the @Page directive, and you’re all set:

C04620245.fm Page 124 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 125

<%@Page Language="C#” Theme="SmokeAndGlass” %>

Bear in mind that the name of the theme must match the name of a sub-
directory under the Themes path, as mentioned earlier. You can automatically
give the same theme to all the pages in the site. To do so, you modify the
web.config file in the root of the application so that it includes the following
block:

<configuration>
<system.web>

<pages theme="SmokeAndGlass” />
</system.web>

</configuration>

Finally, to ensure that a certain control is rendered according to the look
and feel of a particular theme, you set the control’s SkinID property:

<asp:Calendar runat="server” ID="MyCalendar” SkinID="SmokeAndGlass” />

The SkinID property refers to a particular skin within the page’s theme.
Using this trick, you can have different controls of the same type using different
skins. If the page theme doesn’t include a skin that matches the SkinID prop-
erty, the default skin for that control type is used. The following code shows
how to create two named skins for a button within the same theme:

<!-- Place these two definitions in the same .skin file -->
<asp:button id="skinClassic” BackColor="gray” />
<asp:button id="skinTrendy” BackColor="lightcyan” />

A named skin is simply a skin that has an ID. Skins without an ID are said
to be the default skins for a control.

By default, any property on any control on a page can be overridden by
a skin. You can thus use themes to easily customize a page that has no knowl-
edge of skins, including existing pages written for ASP.NET 1.x. However, the
ASP.NET 2.0 theming infrastructure provides the EnableTheming property to
disable skins for a control and all its children. Note that the EnableTheming
property can be overridden in a derived class so that theming can be disabled
by default. Also, you can block any overriding of the theming capabilities of a
control by applying the EnableTheming attribute to the control declaration.
(This holds true for custom controls only.)

[EnableTheming(false)]
public MyControl : Control {...}

With the above setting, MyControl and any derived controls don’t support
theming. In ASP.NET 2.0, the HtmlForm and the HtmlHead controls can’t be
themed. You can also enable and disable theming on individual properties, by

C04620245.fm Page 125 Thursday, June 3, 2004 4:51 PM

126 Part I ASP.NET Essentials

applying the EnableTheming attribute to the control’s property of choice. By
default, all properties can be themed.

Note Themes are similar to CSS style sheets in that both apply a set
of common attributes to any page where they are declared. Themes
differ from style sheets in several ways, however. Themes can work on
a variety of control properties—not just a specific set of style proper-
ties. Using themes, you can specify the bitmaps for a TreeView control
or the template layout of a GridView control, thus including auxiliary
files. Themes property values always override local property values
and do not cascade, as is the case with CSS style sheets. Finally,
themes can include style sheet references. The style sheet definitions
are applied along with other property values defined in the theme.

Loading Themes Dynamically
You can apply themes dynamically, but this requires a bit of care. The ASP.NET
runtime loads theme information immediately after the PreInit event fires and
immediately after the personalization data has been processed. When the
PreInit event fires, the name of any theme referenced in the @Page directive
has already been cached and will be used unless it is overridden during the
event. So if you want to enable your users to change theme on the fly, start by
creating a Page_PreInit event handler:

void Page_PreInit (object sender, EventArgs e)
{

string theme = “";
if (Page.Request.Form.Count >0)

theme = Page.Request["ThemeList"].ToString ();
if (theme == “None”)

theme = “";

this.Theme = theme;
}

The code assumes that the page has a drop-down list named ThemeList
that contains the names of the available themes. “None” is the name used to
indicate that no theme is to be used. What the code does is pretty simple but
has a wrinkle. Basically, the event handler retrieves the name of the theme to
use and binds it to the Theme property of the page object.

C04620245.fm Page 126 Thursday, June 3, 2004 4:51 PM

Chapter 4 Personalization: User Profiles and Themes 127

Why did we resort to Page.Request instead of accessing the drop-down list
control directly with a piece of code like the following?

string theme = ThemeList.SelectedValue;

When the PreInit event fires, the drop-down control is initialized, but its
view state hasn’t been restored yet, nor have posted values been processed. So
at this point the ThemeList control is not updated with the latest selection. On
the other hand, since the page successfully posted back, the posted values are
safe and sound in the Forms collection of the Request object, awaiting process-
ing. Figure 4-5 shows the sample page enhanced to support the dynamic selec-
tion of the theme.

F04DR05Figure 4-5 The page allows you to select the theme for the user interface.

Summary

In this chapter, we covered two related but significantly different sets of fea-
tures—site personalization and themes. Both can be, and often are, used to
enhance and customize the user interface of a set of pages. However, themes
are mostly about visual appearance, whereas personalization encompasses
much more than just changes to the appearance of a site.

Personalization is user-specific, but it can also be used for anonymous
users. The key to this apparently contradictory behavior is the anonymous ID—
another feature specific to ASP.NET 2.0. We’ll look at the security aspects in
Chapter 10.

C04620245.fm Page 127 Thursday, June 3, 2004 4:51 PM

128 Part I ASP.NET Essentials

Site personalization allows you to write pages that persist user preferences
and parametric data off a permanent medium in a totally automated way. As a
programmer, you’re in charge of setting up the personalization infrastructure,
but you need not know anything about the internal details of storage. All you
do is call a provider component using the methods of a well-known interface.

Conceptually, ASP.NET 2.0 themes are nearly identical to Windows XP and
Windows 2003 Server themes. They provide a skin for a variety of controls. No
functionality is altered, and no features are added—only the appearance of the
controls changes. For this purpose, you can use any valid element of an
ASP.NET theme, including CSS definitions, auxiliary CSS files, templates, and
images.

Themes can be registered as global elements of a Web server machine or
as application-specific elements. In both cases, the whole application or indi-
vidual pages can be bound to a theme—you can even control it on a control-
by-control level. You could say that themes are the next big thing in styling after
CSS files. However, a subtle difference exists between CSS and themes—themes
don’t cascade their settings, as CSS styles do. Themes can be authored and flex-
ibly applied to a variety of applications. In addition, themes can be manipulated
programmatically, making the name of the current theme just another parame-
ter to permanently store as personalization data.

This chapter ends Part I of the book. Part II is devoted to adding data to
the application’s core engine. We’ll start in Chapter 5 with what’s new in the
ASP.NET data binding model and ADO.NET.

C04620245.fm Page 128 Thursday, June 3, 2004 4:51 PM

Part II

Data Access

C05620245.fm Page 129 Tuesday, June 8, 2004 6:39 PM

C05620245.fm Page 130 Tuesday, June 8, 2004 6:39 PM

131

What’s New in Data Access
To write effective ASP.NET 1.x data-driven applications, you need a deep
understanding of ADO.NET objects. You have to be familiar with connections,
commands, transactions, and parameters. In Visual Studio 2005, ADO.NET 2.0 is
the back-end engine for other, more programmer-friendly objects. Does this
mean that ADO.NET objects have become unnecessary? Will ASP.NET 2.0 mag-
ically let you write data applications without your having to really know about
databases?

ADO.NET objects are still essential pieces of the .NET Framework, but
they have been pushed into the back-end infrastructure of most common data-
binding operations. In ASP.NET 2.0, you use ADO.NET objects directly much
less frequently. And ASP.NET 2.0 does perform a kind of magic—it offers data
access code that hides many essential steps from view and buries them in the
framework’s code. Basically, what many ASP.NET 1.x developers called “that
boring ADO.NET boilerplate code” is now packed into a bunch of data source
controls (which we’ll cover in detail in the next chapter).

All you need to cook up some good data access code is the connection
string and the commands to execute. In relatively simple cases, you need very
little database know-how to build a data access layer in a Web Forms page.

As mentioned, Chapter 6 is devoted to the new data source model under-
lying this simplified data binding model. This chapter sets the stage by covering
the enhanced data-binding syntax, storage of database connection strings, and
enhancements to the ADO.NET object model.

C05620245.fm Page 131 Tuesday, June 8, 2004 6:39 PM

132 Part II Data Access

Data-Binding Syntax Enhancements
The biggest change by far in ASP.NET data binding is the introduction of a new
data source model. The ASP.NET 2.0 data binding mechanism—the process of
connecting a Web control to a data source element—is nearly identical in func-
tionality to the previous version, but the syntax is simpler.

ASP.NET 1.x uses the static method DataBinder.Eval for late binding data-
store fields to object properties. The method is designed to access information
on arbitrary objects, but it is often used in just one scenario. The result is that
most pages are filled with similar looking <%# … %> expressions that are both
verbose and redundant. ASP.NET 2.0 comes to the rescue by suggesting an
equivalent, but much more compact, syntax for the DataBinder class.

The DataBinder Class
The DataBinder class supports generating and parsing data-binding expres-
sions. Of particular importance is its overloaded static method Eval. The
method uses reflection to parse and evaluate an expression against a runtime
object. Clients of the Eval method include RAD tools such as Microsoft Visual
Studio designers and Web controls that declaratively place calls to the method
to feed properties’ dynamically changing values.

The Eval Method
The syntax of DataBinder.Eval typically looks like this:

<%# DataBinder.Eval(Container.DataItem, expression) %>

A third, optional parameter is omitted in the preceding snippet. This
parameter is a string that contains formatting options for the bound value. The
Container.DataItem expression references the object on which the expression
is evaluated. The expression is typically a string with the name of the field to
access on the data item object. It can be an expression that includes indexes
and property names. The DataItem property represents the object within the
current container context. Typically, a container is the current instance of the
item object—for example, a DataGridItem object—that is about to be rendered.

The code shown earlier is commonly repeated, always in the same form.
Only the expression and the format string change from page to page.

A More Compact Eval
The original syntax of the DataBinder.Eval can be simplified, as the Eval
method shows here. (The format string argument is optional and is not used in
this example.)

C05620245.fm Page 132 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 133

<script runat="server” language="C#">
void Page_Load (object sender, EventArgs e)
{

if (!IsPostBack)
{

// NOTE:
// All this code can be replaced with a declarative data
// control that just takes connection string and command text. The
// data source is also declaratively bound to controls using an ID.
// (See Chapter 6)
SqlDataAdapter adapter;
adapter = new SqlDataAdapter(

 “SELECT * FROM employees",
 “SERVER=localhost;DATABASE=northwind;UID=sa;”);

DataSet ds = new DataSet();
adapter.Fill(ds, “Data”);
Repeater1.DataSource = ds;
Repeater1.DataBind();

}
}
</script>

<html>
<body>

<form runat="server">
<asp:repeater runat="server” id="Repeater1">

<itemtemplate>
<p><%# Eval(“lastname”) %></p>

</itemtemplate>
</asp:repeater>

</form>
</body>
</html>

Any piece of code that appears within the <%# … %> delimiters enjoys
special treatment from the ASP.NET runtime. Let’s briefly look at what happens
with this code. When the page is compiled for use, the Eval call is inserted in
the source code of the page as a standalone call. The following code gives an
idea of what happens:

object o = Eval(“lastname”);
string result = Convert.ToString(o);

The result of the call is converted to a string and is assigned to a data-
bound literal control—an instance of the DataBoundLiteralControl class. Then
the data-bound literal is inserted in the page’s control tree. There’s one more
point to clarify about the code: What’s Eval, and where is it defined?

C05620245.fm Page 133 Tuesday, June 8, 2004 6:39 PM

134 Part II Data Access

The Page class is actually enriched with a new protected (but not virtual)
method named Eval. The method is defined as follows:

protected object Eval(string expression)
{

return DataBinder.Eval(this.GetDataItem(), expression);
}

Eval is a simple wrapper built around the DataBinder.Eval method. The
base method is invoked using a default container’s data item.

Getting the Default Data Item
The pseudocode that illustrates the behavior of the page’s Eval method shows
a rather weird GetDataItem method off the Page class. What is it? As mentioned,
the simplified syntax assumes a default Container.DataItem context object. Get-
DataItem is simply the function that returns that object. More precisely, Get-
DataItem is the endpoint of a stack-based mechanism that traces the current
binding context for the page. Each control in the control tree is pushed onto
this stack at the time the respective DataBind method is called. When the Data-
Bind method returns, the control is popped from the stack.

Two-Way Data Binding
As you’ll see in Chapter 7, ASP.NET 2.0 supports two-way data binding—
the ability to bind data to controls and submit changes back to the data-
base. The Eval method is representative of a one-way data binding that
automates data reading but not data writing. The new Bind keyword can
be used whenever Eval is accepted, and through the same syntax.

<asp:TextBox Runat="server” ID="TheNotes”
Text=‘<%# Bind(“notes”) %>‘ />

The big difference is that Bind works in both directions—reading
and writing. For example, when the Text property is set, Bind behaves
exactly like Eval. In addition, when the Text property is read, Bind stores
the value into a collection. Enabled data-bound controls (for example, the
new FormView control and other templated controls) retrieve these values
and use them to compose the parameter list of the insert or edit command
to run against the data source. The argument passed to Bind must match
the name of a parameter in the command. For example, the text box
above provides the value for the @notes parameter.

C05620245.fm Page 134 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 135

The XPathBinder Class
Along with the DataBinder class, ASP.NET 2.0 provides a class that can bind to
the result of XPath expressions that are executed against an object that imple-
ments the IXPathNavigable interface. This class is XPathBinder; it plays the
same role as DataBinder, except it works on XML data.

The XPathBinder.Eval Method
In ASP.NET 2.0, data-bound controls can be associated with raw XML data. You
can bind XML data in version 1.x, but you have to first fit XML data into a rela-
tional structure such as a DataSet. When a templated control such as DataList or
Repeater is bound to an XML data source (such as the new XmlDataSource con-
trol we’ll cover in Chapter 6), individual XML fragments can be bound inside
the template using the XPathBinder object.

The XPathBinder.Eval method accepts an XmlNode object along with an
XPath expression, and it evaluates and returns the result. The output string can
be formatted if a proper format string is specified. XPathBinder.Eval casts the
container object to IXPathNavigable. This is a prerequisite to applying the
XPath expression. If the object doesn’t implement the interface, an exception is
thrown. The IXPathNavigable interface is necessary because in the .NET Frame-
work the whole XPath API is built for, and works only with, objects that provide
a navigator class. The goal of the interface is creating an XPath navigator object
for the query to run.

Like DataBinder, the XPathBinder class supports a simplified syntax for
its Eval method. The syntax assumes a default container context that is the same
object that is tracked for the data binder. The following example demonstrates
using the simplified XPath data binding syntax:

<%# XPath(“Orders/Order/Customer/LastName”) %>

The output value is the object returned by XPathBinder.Eval converted to
a string. Internally, XPathBinder.Eval gets a navigator object from the data
source and evaluates the expression. The managed XPath API is used.

Enumerating the Node Set
The XPathBinder class also features a Select method. The method executes an
XPath query and retrieves a nodeset—an enumerable collection of XML nodes.
This collection can be assigned as a late-bound value to data-bound controls
(such as the Repeater control). An equivalent simplified syntax exists for this
scenario, too:

<asp:Repeater runat="server"
DataSource=‘<%# XPathSelect(“orders/order/summary”) %>‘>

§
</asp:Repeater>

C05620245.fm Page 135 Tuesday, June 8, 2004 6:39 PM

136 Part II Data Access

XPathSelect is the keyword you use in data-binding expressions to indi-
cate the results of an XPath query run on the container object. If the container
object does not implement IXPathNavigable, an exception is thrown. Like Eval
and XPath, XPathSelect assumes a default data item context object.

.NET Data Provider Enhancements
The .NET data binding model is general enough to accommodate a variety of
data and data sources. The most common type of data source is a SQL data
source—for example, a SQL-based DBMS such as SQL Server or Oracle. To get
SQL data, you use ADO.NET; ADO.NET, in turn, is based on the services of a
particular category of objects—the .NET data providers. The common program-
ming model of .NET data providers has been enhanced in Whidbey to support
factories and batch operations. The first aspect we’ll consider, though, is a core
piece of any database operation—the connection string.

Connection String Storage
When we talk about data access objects and strategies, connection strings are
perhaps a low-level detail, but they are essential. One of the most frequently
asked questions, at least early on in the ASP.NET and Windows Forms adven-
ture, has been “Where should I store my connection strings?” Configuration files
(such as the web.config file) support a section named <appSettings>, which is
used to store name/value pairs. All these values populate the AppSettings col-
lection and can be easily retrieved programmatically, as shown here:

string connString = ConfigurationSettings.AppSettings["NorthwindConn"];

You can use a similar approach to add flexibility to your code because you
can keep the connection string out of the compiled code. This way of storing
the connection string also makes the information global to the application and
easily callable from any modules. You can store any data in the <appSettings>
section that can be rendered with a flat name/value pair.

However, this approach is far from perfect. Connection strings are a criti-
cal parameter for the application and typically contain sensitive data, so at a
minimum they need transparent encryption. Although connection parameters
can be rendered as semicolon-separated strings, a connection string is more
than a plain string and deserves special treatment from the framework.

C05620245.fm Page 136 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 137

The <connectionStrings> Section
Whidbey configuration files define a new section that was created to contain
connection strings (such as SQL connection strings). The section is named
<connectionStrings>. Its structure is shown here:

<connectionStrings>
<add name="CustomersDB”

connectionString="SERVER=…;DATABASE=…;UID=…;PWD=…;” />
<add name="CustAccessDB”

connectionString="~\DATA\CustDB.mdb” />
</connectionStrings>

You can manipulate the contents of the section by using <add>,
<remove>, and <clear> nodes. You use an <add> node to add a new connec-
tion string, <remove> to remove a previously defined connection, and <clear>
to reset all connections and create a new collection. By placing a web.config
file in each of the application’s directories, you can customize the collection of
connection strings that are visible to the pages in the directory.

Note that each stored connection is identified with a name. This name ref-
erences the actual connection parameters throughout the application. Connec-
tion names are also used within the configuration file to link a connection string
to other sections, such as the <providers> section of <membership> and <per-
sonalization>. The <connectionStrings> section is a global and centralized
repository of connection information.

Retrieving Connection Strings Programmatically
All the connection strings defined in the web.config file are loaded into the new
ConfigurationSettings.ConnectionStrings collection. If you are programmati-
cally setting the connection string of an ADO.NET object, this feature makes
your code flexible and easy to maintain. For example, consider the following
web.config file:

<configuration>
<connectionStrings>

<add name="NWind”
connectionString="SERVER=…;DATABASE=northwind;UID=…;PWD=…” />

</connectionStrings>
</configuration>

It registers a connection that points to the Northwind database on a given
server, and with certain credentials. To physically open that connection, the fol-
lowing code is acceptable:

string cnStr;
cnStr = ConfigurationSettings.ConnectionStrings["NWind"].ConnectionString;
SqlConnection cnObj = new SqlConnection(cnStr);

C05620245.fm Page 137 Tuesday, June 8, 2004 6:39 PM

138 Part II Data Access

Changes to the connection string parameters do not affect the page or the
business object directly.

Declarative Binding of Connection Strings
Can you reference stored connection strings declaratively? At this point in our
discussion, this might seem like a nonsense question. How can you manage
connections declaratively? As you’ll see in the next chapter, ASP.NET 2.0 sup-
ports quite a few data source objects. A data source object manages all aspects
of data source interaction, including connections and commands. The SQL data
source object looks like the following:

<asp:SqlDataSource id="MySource” runat="server”
ProviderName="System.Data.SqlClient"
ConnectionString=‘<%#

ConfigurationSettings.ConnectionStrings["NWind"].ConnectionString %>‘
SelectCommand="SELECT * FROM employees">

The object runs the given query against the data source referenced by the
connection string. The data provider is specified by the ProviderName attribute
and is the SQL Server .NET data provider. Later in this chapter, we’ll return to
this sort of late-bound provider selection, which is a new feature of .NET data
providers.

If you use any <%# ... %> data-bound expressions, be aware that they exe-
cute only at data-binding time—that is, within the context of a DataBind
method call. So unless the container to the SqlDataSource object has a data-
binding operation in progress, the expression isn’t evaluated. To work around
this, you just place a call to Page.DataBind in the Page_Load event. However,
this short-term trick can cause you trouble if, for some reason, you need to con-
trol data binding on individual controls.

Data-bound expressions are not really dynamic expressions because they
are evaluated only within the context of a data-binding call. ASP.NET 2.0 pro-
vides a made-to-measure infrastructure for dynamic expressions—the expres-
sion builder object. Those expressions have a syntax that is similar to that of
data binding, <%$ …%>, and they are evaluated when the page compiles. The
content of the expression is extracted, transformed into code, and injected into
the C# or Visual Basic .NET code created for the page. Let’s look at how to
rewrite the previous code to declaratively bind connection strings:

<asp:sqldatasource id="MySource” runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:NWind %>“
SelectCommand="SELECT * FROM employees">

<asp:repeater runat="server” id="Repeater1” DataSourceId="MySource">
<itemtemplate>

<p><%# Eval(“lastname”) %></p>
</itemtemplate>

</asp:repeater>

C05620245.fm Page 138 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 139

The expression has two parts, prefix and value, and an underlying object,
the expression builder. The expression builder decides on the prefix and how
to parse and expand the value. The connection string builder accepts a Connec-
tionString as the prefix and the name of a configuration entry as the value. The
expression expands to the following:

string conn;
conn = ConfigurationSettings.ConnectionStrings["NWind"].ConnectionString;
MySource.ConnectionString = conn;

Protecting Configuration Data
ASP.NET 2.0 introduces a system for protecting sensitive data stored in the con-
figuration system. It uses industry-standard XML encryption to encrypt specific
sections of configuration files that might contain sensitive data. XML encryption
(see http://www.w3.org/TR/xmlenc-core) is a way to encrypt data and represent
the result in XML. Prior to version 2.0, only a few specific ASP.NET sections that
contain sensitive data support protection of this data using a machine-specific
encryption in a registry key. This approach requires developers to come up
with a utility to protect their own secrets—typically connection strings, creden-
tials, and encryption keys.

Encryption is optional, and you can enable it for any configuration sec-
tions by referencing the name of the section in the <protectedData> section of
the web.config file, as shown here:

<protectedData defaultProvider="RSAProtectedConfigurationProvider">
<providers>

<add name="RSAProtectedConfigurationProvider”
type="…”
keyName="RSA Key”
keyContainerName="NetFrameworkConfigurationKey”
cspProviderName="“
useMachineContainer="true” />

<add name="DataProtectionConfigurationProvider”
type="…"
keyName="Net Framework DPAPI Key”
keyEntropy="“
useMachineProtection="true” />

</providers>
<protectedDataSections>

§
</protectedDataSections>

</protectedData>

You can specify the type of encryption you want by selecting the appro-
priate provider from the list of available encryption providers. The list of avail-
able protection providers can be found in the <providers> section, along with
their default configuration.

C05620245.fm Page 139 Tuesday, June 8, 2004 6:39 PM

140 Part II Data Access

How can you place encrypted content (say, a connection string) into the
web.config file? You can use the newest version of a popular system tool—
aspnet_regiis.exe—or write your own tool using the ASP.NET 2.0 configuration
API. (We’ll take a look at this in Chapter 12.) Here’s a simple way to use
aspnet_regiis to encrypt connection strings for the Intro20 application:

aspnet_regiis.exe –pe connectionStrings –app /Intro20

Note that the section names are case sensitive. That connection strings are
stored in a protected area is completely transparent to applications, which con-
tinue working as before. If you open the web.config file after encryption, you
see something like the following:

<configuration>
<protectedData>

<protectedDataSections>
<add name="connectionStrings”

provider="RSAProtectedConfigurationProvider” />
</protectedDataSections>

</protectedData>
<connectionStrings>

<EncryptedData …>
§
<CipherData>

<CipherValue>cQyofWFQ… =</CipherValue>
</CipherData>

</EncryptedData>
</connectionStrings>

</configuration>

To restore the web.config to its original clear state, you use the –pd switch
in lieu of –pe in the aforementioned command line.

Most configuration sections that are processed by the managed configura-
tion system are eligible for protection. However, the <protectedData> section
itself can’t be protected. In this case, clear text is necessary to describe the
behavior of the system. Similarly, sections consumed by the CLR from Win32
code or from ad hoc managed XML parsers can’t be protected by this system
because they don’t employ section handlers to consume their configuration.
This includes at least the following sections: <processModel>, <runtime>,
<mscorlib>, <startup>, and <system.runtime.remoting>.

The Provider Factory Model
The ADO.NET programming model makes obsolete the universal data access
strategy at the root of OLE DB. A universal data access strategy requires pro-

C05620245.fm Page 140 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 141

gramming tools that always perform the same operations, no matter what fea-
tures are supported by the physical data provider. Consider an SQL data source
such as a DBMS. SQL Server, Oracle, and DB2 do the same job, but they work
in radically different ways. Normalizing their internal and optimized set of fea-
tures to the abstract functionality exposed by a suite of universal interfaces
results in a loss of performance. It also imposes programming overhead
because an extra, more abstract layer of code must be used. ADO provides this
common programming interface for a variety of DBMSs.

ADO.NET comes at things from a different angle. It takes into account the
particularity of each DBMS and provides a programming model tailor-made for
each one. All .NET data providers share a limited set of common features, but
each has unique capabilities. The communication between the user code and
the DBMS takes place more directly using ADO.NET. This model works better
and faster and is probably clearer to the majority of programmers.

But ADO.NET has one snag. Developers must know in advance the data
source they’re going to access. Generic programming—that is, programming in
which the same code targets different data sources at different times—is hard
(but not impossible) to do. You can create a generic command object and a
generic data reader, but not a generic data adapter and certainly not a generic
connection. However, through the IDbConnection interface, you can work with
a connection object without knowing the underlying data source. But you can
never create a connection object in a weakly typed manner—that is, without
the help of the new operator.

Instantiating Providers Programmatically
ADO.NET 2.0 modifies the provider architecture and introduces the factory
class. Each .NET data provider encompasses a factory class derived from the
base class DbProviderFactory. A factory class represents a common entry point
for a variety of services specific to the provider. Table 5-1 lists the main meth-
ods of a factory class.

Table 5-1 Principal Methods of a Factory Class

Method Description

CreateCommand Returns a provider-specific command object

CreateCommandBuilder Returns a provider-specific command builder object

CreateConnection Returns a provider-specific connection object

CreateDataAdapter Returns a provider a provider-specific data adapter object

CreateParameter Returns a provider a provider-specific parameter object

C05620245.fm Page 141 Tuesday, June 8, 2004 6:39 PM

142 Part II Data Access

How do you get the factory of a particular provider? By using a new class,
DbProviderFactories, that has a few static methods. The following code demon-
strates how to obtain a factory object for the SQL Server provider:

DbProviderFactory fact;
fact = DbProviderFactories.GetFactory(“System.Data.SqlClient”);

The GetFactory method takes a string that represents the invariant name of
the provider. This name is hardcoded for each provider in the configuration file
where it is registered. The naming convention suggested is that the provider
name equal its unique namespace.

GetFactory enumerates all the registered providers and gets assembly and
class name information for the matching invariant name. The factory class is not
instantiated directly. Instead, the method uses reflection to retrieve the value of
the static Instance property on the factory class. The property returns the
instance of the factory class to use. Once you hold a factory object, you can call
any of the methods listed earlier in Table 5-1.

The following pseudocode gives an idea of the internal implementation of
the CreateConnection method for the SqlClientFactory class—the factory class
for the SQL Server .NET data provider:

public DbConnection CreateConnection()
{

return new SqlConnection();
}

Enumerating Installed Data Providers
In the .NET Framework 2.0, you can use all .NET data providers registered in
the configuration file. The following is an excerpt from the machine.config file:

<system.data>
<DbProviderFactories>

<add name="Odbc Data Provider”
invariant="System.Data.Odbc”
description=“.Net Framework Data Provider for Odbc”
type="System.Data.Odbc.OdbcFactory, System.Data “/>

<add name="OleDb Data Provider”
invariant="System.Data.OleDb”
description=“.Net Framework Data Provider for OleDb”
type="System.Data.OleDb.OleDbFactory, System.Data “/>

<add name="OracleClient Data Provider"
invariant="System.Data.OracleClient”
description=“.Net Framework Data Provider for Oracle”
type="System.Data.OracleClient.OracleFactory,

System.Data.OracleClient” />
<add name="SqlClient Data Provider”

invariant="System.Data.SqlClient”
description=“.Net Framework Data Provider for SqlServer”

C05620245.fm Page 142 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 143

type="System.Data.SqlClient.SqlClientFactory, System.Data “/>
§

</DbProviderFactories>
</system.data>

As you can see, each provider is characterized by an invariant name, a
description, and a type that contains assembly and class information. The Get-
FactoryClasses method on the DbProviderFactories class returns this informa-
tion packed in an easy-to-use DataTable object. The following sample page
demonstrates how to get a quick list of the installed providers:

<%@ page language="C#” theme="smokeandglass” %>
<%@ import namespace="System.Data” %>
<%@ import namespace="System.Data.Common” %>
<%@ import namespace="System.Data.SqlClient” %>

<script runat="server">
void Page_Load (object sender, EventArgs e) {

DataTable providers = DbProviderFactories.GetFactoryClasses();
provList.DataSource = providers;
provList.DataBind();

}
</script>

<html>
<head runat="server"><title>Enum Providers</title></head>
<body>

<form runat="server">
<asp:datagrid runat="server” id="provList” />

</form>
</body>
</html>

The final page is shown in Figure 5-1. The page is themed, which allows
you to display a rich DataGrid control by using just one line of code. Note that
a server-side <head> tag is necessary for the theme to work.

F05DR01Figure 5-1 The list of the installed .NET data providers

C05620245.fm Page 143 Tuesday, June 8, 2004 6:39 PM

144 Part II Data Access

Batch Operations
Using batch processing, you can improve application performance by reducing
the number of roundtrips to SQL Server when you apply updates from a
DataSet object. The batch update feature was introduced with ADO 1.x and
enhanced in ADO.NET 2.x. The biggest limitation of the ADO.NET 1.x batch
update is that records are always submitted one at a time. For example, if 100
rows have been updated, inserted, or deleted, 100 roundtrips are made to SQL
Server to complete the operation.

ADO.NET 2.0 introduces a new property on the data adapter object that
lets you control the number of records grouped together and sent to the DBMS
in a single shot. The UpdateBatchSize property is coded in the DbDataAdapter
class and, as such, is inherited by all data adapter objects.

The UpdateBatchSize Property
The UpdateBatchSize property lets you exercise some control over the number
of records packed in a single batch statement. The default value of the property
is 1, which causes the batch update feature to work as it does in version 1.x. By
setting the UpdateBatchSize to a value greater than 1, you can force the data
adapter to create a statement according to the following pattern:

-- size is the value of UpdateBatchSize
exec sp_executesql N’

BEGIN
BEGIN statement N END
BEGIN statement N+1 END
§
BEGIN statement N+size END

END
‘, N’list of params’

If you give UpdateBatchSize a value higher than the number of modified
rows, all rows are sent in a single batch. If you set UpdateBatchSize to 0, a sin-
gle roundtrip occurs, regardless of the number of modified rows. However, too
large a size can clog the network and result in a loss of performance. You
should set a benchmark before you determine what size will work in your pro-
duction environment.

Profiling Batch Calls
You can use the SQL Server Profiler tool to verify what really happens when
changes are submitted in controlled batches. Figure 5-2 shows the profiler in
action on a page that uses batch update to submit a couple of changes.

C05620245.fm Page 144 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 145

F05DR02Figure 5-2 The result of a batch update operation with
UpdateBatchSize set to 0

Batch Update–Related Events and Errors
Data adapter classes have two update-related events: RowUpdating and RowUp-
dated. In previous versions of ADO.NET, and in version 2.0 when batch pro-
cessing is turned off, each of these events is generated once for each row
processed. RowUpdating is generated before the update occurs; RowUpdated is
generated after the database update is completed. When batch processing is
enabled, the behavior of these events changes.

When batch processing is enabled, several rows are processed before an
update is actually performed. Therefore, several RowUpdating events are gen-
erated before a RowUpdated event occurs. Only one RowUpdated event is gen-
erated for each batch processed. This does not apply to RowUpdating, which is
still generated once for each row processed.

In ADO.NET 1.x, the row being updated can be accessed using the Row
property of the corresponding event argument class—RowUpdatedEventArgs.
However, when a single event is fired for multiple updated rows, the Row prop-
erty is null, and equivalent information is available using the new CopyToRows
method. The method fills an array of DataRow objects. You can determine the
right size of the array by looking at the new RowCount property on the RowUp-
datedEventArgs class, which returns the number of rows processed in the
batch.

SQL Server Provider Enhancements
Features such as factories and batch operations are not specific to a particular
provider—they are changes that apply to the .NET provider model as a whole.
Only the SQL Server provider currently implements them, but you can expect to

C05620245.fm Page 145 Tuesday, June 8, 2004 6:39 PM

146 Part II Data Access

see them fully supported by OLE DB and other .NET providers. Other cool fea-
tures are available in ADO.NET 2.0 that exploit specific features of SQL Server
and, in some cases, the next version of SQL Server (named SQL Server 2005).

New features include asynchronous commands, bulk copy, and (for SQL
Server 2005 servers only) notifications, multiple active resultsets, and support
for user-defined CLR types.

Asynchronous Commands
A database operation is normally a synchronous operation—the caller regains
control of the application only after the interaction with the database is com-
pleted. This approach can lead to performance and scalability issues in lengthy
operations—a pretty common scenario when you interact with DBMSs. The
.NET Framework 1.x supports asynchronous operations, but the model is
implemented around user-level code. In other words, you can implement your
own procedures asynchronously and connect to databases and run commands
as part of the code, but connection management and command execution
remain atomic operations that execute synchronously.

ADO.NET 2.0 provides true asynchronous support for executing com-
mands. This offers a clear performance advantage because you perform other
actions until the command completes. However, this is not the only benefit. The
user interface of the client application isn’t blocked while the command runs.

The .NET Asynchronous Pattern
The .NET providers’ asynchronous pattern is consistent with the .NET Frame-
work pattern for asynchronous operations. Let’s briefly review the basics. The
.NET Framework allows you to call any method of any class asynchronously.
You first define a delegate with the same signature as the method to call, and
the CLR defines a pair of methods—BeginInvoke and EndInvoke—for this dele-
gate. For example, suppose you have a class method named ReverseString,
which takes a string and returns a string with characters reordered from right to
left. The delegate for this method looks like the following:

public delegate string ReverseStringDelegate(string data);

You initiate the asynchronous call by creating a new instance of the dele-
gate and calling BeginInvoke:

MyStringHelper str = new MyStringHelper();
ReverseStringDelegate dlgt;
dlgt = new ReverseStringDelegate(str.ReverseString);
IAsyncResult ar = dlgt.BeginInvoke(“Text", null, null);

C05620245.fm Page 146 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 147

BeginInvoke takes the same parameters as the original method, plus two.
The extra two parameters are the delegate to call back when the asynchronous
operation is complete and state information is passed to the delegate. BeginIn-
voke returns an IAsyncResult needed to obtain the return values from the
method call later.

BeginInvoke starts the asynchronous operation and returns. At some point
in the code, however, you must synchronize your primary thread and the sec-
ondary thread on which the asynchronous request is working. You can do this
in a few ways. For example, you can block the primary thread waiting for the
other to terminate:

// Returns only when the asynchronous call completes
ar.AsyncWaitHandle.WaitOne();

Using a WaitHandle object is a common thread synchronization tech-
nique. It lets you perform additional processing after the asynchronous call
completes but before you retrieve the results by calling EndInvoke. The signa-
ture of EndInvoke includes all output parameters plus an object of type IAsync-
Result as the last parameter. It returns the original return type from the original
method signature and throws all exceptions that have happened in the mean-
time on the delegate:

string ret = dlgt.EndInvoke(ar);

You can detect the end of the operation by polling or using callback
functions.

Executing a Command Asynchronously
The support for asynchronous operations is built into the SqlCommand class
and is limited to executing nonquery commands and getting a reader or an XML
reader. Let’s see how it works with the ExecuteReader method of SqlCommand.

You can use three approaches to build commands that work asynchro-
nously: nonblocking, polling, and callback. Nonblocking is the simplest. Users
start the operation and then do something unrelated; then they come back to
get the results. Alternatively, the client can check the status of a running asyn-
chronous operation and poll for completion. Finally, they can start the database
operation and continue with the application without waiting. Later, when the
operation is done, they can receive a callback.

Whatever the model, the first step is calling a BeginExecuteXXX function.
For example, if you want to execute a reading command, you call BeginExe-
cuteReader.

C05620245.fm Page 147 Tuesday, June 8, 2004 6:39 PM

148 Part II Data Access

// Start a nonblocking execution
IAsyncResult iar = cmd.BeginExecuteReader();

// Do something else in the meantime
§

// Block the execution until done
SqlDataReader reader = cmd.EndExecuteReader(iar);

// Process data here ...
Repeater1.DataSource = reader;
Repeater1.DataBind();

The BeginExecuteReader function returns an IAsyncResult object that you
use later to complete the call. Note that EndExecuteReader is called to finish up
the operation; it blocks execution until the ongoing command terminates. Note
that to enable asynchronous operations, you must set the new Async attribute
to true in the connection string.

The EndExecuteReader function syncs up the command with the rest of the
application, blocking the code whenever the results of the command are not
ready. You can avoid this blocking schema by periodically polling for comple-
tion. The following code illustrates the polling option with a nonquery statement.

// Executes a nonquery statement
IAsyncResult ar = cmd.BeginExecuteNonQuery();

// Do some work in the meantime
do {

§

// Poll from time to time
while(!ar.IsCompleted) {

done = true;
} while (!done)

// Sync up
cmd.EndExecuteNonQuery(ar);

}

Note that if ar.IsCompleted returns true, the EndExecuteNonQuery will not
block the application.

You can also pass a callback function to a BeginExecuteXXX method and
any information that constitutes the state of the particular call. The state is any
information you want to pass to the callback function. In this case, we just pass
a reference to the command object:

C05620245.fm Page 148 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 149

// Begin executing the command
IAsyncResult ar = cmd.BeginExecuteReader(

new AsyncCallback(PopulateRepeaterCallback), cmd);

After initiating the asynchronous operation, you can forget about it and do
any other work. If there’s a place in your code that you can’t move away from
without the results of the query, place a synchronizer there so your code will
automatically stop until the other thread terminates and invokes the callback:

// Optionally wait to sync
ar.AsyncWaitHandle.WaitOne();

The specified callback function is invoked at the end of the operation. The
callback must have the following layout:

public void PopulateRepeaterCallback(IAsyncResult ar)
{

// Retrieve the context of the call
SqlCommand cmd = (SqlCommand) ar.AsyncState;

// Finalize the async operation
SqlDataReader reader = cmd.EndExecuteReader(ar);
§

}

The context of the call you specified as the second argument to BeginEx-
ecuteReader is packed in the AsyncState property of the IAsyncResult object.

Important The primary thread doesn’t execute the callback code.
The callback code runs under the control of the secondary thread
spawned to accomplish the asynchronous operation. This poses a
problem with the user interface of applications, especially Windows
Forms applications. It’s up to you to ensure that the UI is refreshed in
the right thread.

Bulk Copy Operations
Bulk copy functionality provides a much faster way to transfer large amounts of
data into a SQL Server table. You typically get much better performance using
a specialized operation such as a bulk copy than using an INSERT statement. In
SQL Server 7.0 and later, the BULK INSERT statement copies into a SQL Server
table formatted data stored in an ASCII file. You can use this statement from

C05620245.fm Page 149 Tuesday, June 8, 2004 6:39 PM

150 Part II Data Access

within any .NET Framework 1.1 application that uses an appropriate SqlCom-
mand object.

Note that this technique is completely unrelated to the bulk copy function-
ality provided by the SQL Server .NET data provider in ADO.NET 2.0. In other
words, the SqlBulkCopy class of ADO.NET 2.0 is not exactly a bare wrapper
around the T-SQL BULK INSERT statement. As you’ll see in a moment, it is even
more efficient than a plain call to the BULK INSERT statement.

The SqlBulkCopy Class
The SqlBulkCopy class represents a bulk copy operation to execute against a
SQL Server database. Unlike the equivalent T-SQL statement, though, no for-
matted disk file is managed, either implicitly by the framework or explicitly by
the programmer. Interestingly enough, you copy data to SQL Server from an
ADO.NET data reader or a DataTable object.

The programming interface of the SqlBulkCopy class consists of the prop-
erties listed in Table 5-2.

The ColumnMappings collection is empty by default. You must fill this
column only if a mapping between source and target columns is required. In
addition, the class features a couple of methods—Close and WriteToServer. The
former releases any held resources, and the latter copies the specified informa-
tion to the destination table. The WriteToServer method comes with the over-
loads listed in Table 5-3.

Table 5-2 Properties of the SqlBulkCopy Class

Property Description

BatchSize Specifies the number of rows in each batch of a bulk copy
operation. The default is 0, which means that the copy occurs
in a single step.

BulkCopyTimeout Specifies the amount of time, in seconds, before a bulk copy
operation times out. The default is 30 seconds.

ColumnMappings A collection object that defines the mapping between the data
source and the destination table.

DestinationTableName Specifies the name of the destination SQL Server table.

NotifyAfter Specifies the number of rows to process before the Sql-
RowsCopied notification event is generated. The default is 0,
which means that just one event is raised.

C05620245.fm Page 150 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 151

Copying Data from Table to Table
Let’s look at how to use the services of the SqlBulkCopy class to copy a sample
table from one database to another. Suppose you want to make a Test database
in one instance of SQL Server a perfect copy of the default Northwind database.
The following code shows how to duplicate the [Order Details] table using a
data reader:

SqlConnection connSrc = new SqlConnection(connStringSrc);
SqlCommand cmd = new SqlCommand(cmdText, connSrc);
connSrc.Open();
SqlDataReader reader = cmd.ExecuteReader();

The first step is opening the source data reader. You connect to the source
instance of SQL Server, execute a command, and get a SqlDataReader object.
Next you instantiate the SqlBulkCopy class, set the destination table, and option-
ally set the BatchSize and NotifyAfter properties:

SqlConnection connTgt= new SqlConnection(connStringTgt);
connTgt.Open();
SqlBulkCopy bulk = new SqlBulkCopy(connTgt);
bulk.DestinationTableName = “[Order Details]";

At this point, you’re ready to initiate the bulk copy. You simply add a call
to one of the WriteToServer overloads and release the connections.

bulk.WriteToServer(reader);
connTgt.Close();
reader.Close();
connSrc.Close();
bulk.Close();

Table 5-3 Overloads of the WriteToServer Method

Parameter Description

IDataReader Copies all of the rows from the specified data reader

DataRow[] Copies all of the rows from the specified array of DataRow
objects

DataTable Copies all of the rows from the specified DataTable

DataTable, DataRowState Copies all of the rows from the specified DataTable that
are in the specified state (such as deleted or added)

C05620245.fm Page 151 Tuesday, June 8, 2004 6:39 PM

152 Part II Data Access

If the source table and the target table have slightly different schema (dif-
ferent column names), you can make adjustments by using the ColumnMap-
pings collection of mappings:

// Map source columns to target columns
bulk.ColumnMappings.Add(“orderid", “order_id”);

If an error occurs during a bulk copy, the operation is aborted and a SqlEx-
ception is generated. It provides details about the server error that occurred. If the
BatchSize property was set to a value greater than 1, any blocks of rows already
committed remain committed. Changes to uncommitted rows are lost.

Note that the destination table and database must exist. Also, the SqlBulk-
Copy class just appends rows to the table, regardless of any primary key con-
straints you may have. You should be careful not to duplicate rows
inadvertently. If a unique constraint is defined, an exception is thrown; other-
wise, duplicates are created.

Important The SqlBulkCopy class doesn’t use the BULK INSERT T-
SQL statement internally. Instead, it uses an undocumented, low-level
SQL Server feature—a variation of the INSERT statement—to open a
bulk channel. Records flow into this channel and hit the SQL Server
engine as the lines of an ASCII file do when the BULK INSERT is
used. Basically, both the SqlBulkCopy class and the BULK INSERT
statement use the same underlying engine with different input data—
ADO.NET objects and the contents of a disk file, respectively.

Bulk Copy and the bcp Utility
The SqlBulkCopy class works with SQL Server 7.0 and SQL Server 2000. It is also
supported in Yukon. The bcp command-line utility in SQL Server is a tool that
is frequently used to perform bulk operations. The SqlBulkCopy class has no
relationship to this utility. As mentioned, the class doesn’t support input files,
nor does it supply the export functionality of the utility (the out keyword) that
allows you to create text files from the contents of a SQL Server table.

Tracking a Bulk Copy Operation
The NotifyAfter property is designed for user interface clients that track the
progress of the bulk operation. If you want your Windows Forms application to
display a progress bar that tracks the operation, you can set NotifyAfter to a
value greater than 1—for example, 1/10 of the estimated number of rows to pro-

C05620245.fm Page 152 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 153

cess. The application receives the SqlRowsCopied event, which notifies it that a
block of rows has been processed.

You should note a couple of points. First, BatchSize and NotifyAfter are
totally unrelated properties. Second, receipt of a SqlRowsCopied event doesn’t
necessarily imply that rows have been committed.

If you close the bulk operation in the event handler using the Close
method, an exception is thrown. If you want to abort the ongoing operation, set
the Abort property of the SqlRowsCopiedEventArgs instead. You receive an
instance of the class as the argument of the SqlRowsCopied event. Abort is a
Boolean property; set it to true to abort the bulk copy.

Each step of the bulk copy (the number of steps depends on the Batch-
Size property) runs in its own transaction that is automatically committed or
rolled back as the batch terminates. If you choose to abort a bulk copy, nothing
happens to the rows that have been processed in earlier batches—they have
already been committed. If you’re running the bulk copy as a part of your own
transaction, you are totally responsible for the commit or rollback of the entire
operation. No automatic rollback or commit occurs on your transaction.

SQL Server 2005–Specific Enhancements
The .NET data provider for SQL Server also has new features that are tied to the
enhancements in SQL Server 2005 and its MDAC 9.0 libraries. To test the fea-
tures briefly described in this section, you must have at least the Beta 1 of SQL
Server 2005.

SQL Server 2005 introduces significant enhancements in various areas,
including data type support, query dependency and notification, and multiple
active resultsets.

A Unified Model for Large Data Types
In SQL Server, large values are stored using data types such as text, ntext, and
image. SQL Server 2005 also lets you store large values in varchar, nvarchar,
and varbinary columns. In fact, these data types can contain up to 2^31-1 bytes.
This allows for a unified programming model for regular and large values.

In ADO.NET 1.x and 2.0, you can use the GetChars and GetBytes methods
on the SqlDataReader class to improve application performance (but only if
you create the reader using the SequentialAccess command behavior). When
you work sequentially, the data reader doesn’t cache the currently selected
record, but it lets you freely move the cursor. This lets you optimize your code
when you’re using large objects. However, you can’t, for example, move back
to the second field after you access the fourth field. This limitation doesn’t exist
in the default scenario because the entire record is cached.

C05620245.fm Page 153 Tuesday, June 8, 2004 6:39 PM

154 Part II Data Access

Support for CLR Types
The great news in SQL Server 2005 is that it supports any CLR types. In addition
to default types, you can store into and retrieve from SQL Server tables any
object that is a valid .NET type. This includes both system types—such as a
Point—and user-defined classes. This extended set of capabilities is reflected in
the ADO.NET 2.0 provider for SQL Server.

CLR types appear as objects to the data reader, and parameters to com-
mands can be instances of CLR types. The following code snippet demonstrates
how to retrieve a value from the MyCustomers table that corresponds to an
instance of user-defined MyCustomer class:

string cmdText = “SELECT CustomerData FROM MyCustomers";
SqlConnection conn = new SqlConnection(connStr);
SqlCommand cmd = new SqlCommand(cmdText, conn);
cmd.Connection.Open();
SqlDataReader reader = cmd.ExecuteReader();
while(reader.Read())
{

MyCustomer cust = (MyCustomer) reader[0];
// Do some work

}
cmd.Connection.Close();

A SQL Server 2005 user-defined type is stored as a binary stream of bytes.
The get accessor of the data reader gets the bytes and deserializes them to a
valid instance of the original class. The reverse process (serialization) takes
place when a user-defined object is placed in a SQL Server column.

Support for XML as a Native Type
SQL Server 2005 natively supports the XML data type, which means you can
store XML data in columns. At first glance, this feature seems to be nothing new
because XML data is plain text and to store XML data in a column you only
need the column to accept text. However, native XML support in SQL Server
2005 means something different—you can declare the type of a given column
as native XML, not plain text adapted to mean markup text.

In ADO.NET 1.x, the ExecuteXmlReader method allows you to process the
results of a query as an XML stream. The ExecuteXmlReader method of SqlCom-
mand builds an XmlTextReader object on top of the data coming from SQL
Server. Therefore, for the method to work, the entire resultset must be XML.
Scenarios in which this method is useful include when the FOR XML clause is
appended or when you query for a scalar value that happens to be XML text.

In ADO.NET 2.0, when SQL Server 2005 is up and running, you can obtain
an XmlTextReader object for each table cell (row, column) whose type is XML.
The following code snippet provides a useful example:

C05620245.fm Page 154 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 155

string cmdText = “ SELECT * FROM MyCustomers";
SqlCommand cmd = new SqlCommand(cmdText, conn);
SqlDataReader reader = cmd.ExecuteReader();
while(reader.Read())
{

// Assume that field #3 contains XML data

// Get a XmlTextReader out of the column data
SqlXmlReader sqlxml = reader.GetSqlXmlReader(3);
XmlTextReader reader = sqlxml.Value;

// Process XML data using the XmlTextReader object
}

The SqlXmlReader class is a wrapper built around the XmlTextReader
class. The Value property of the SqlXmlReader class exposes the XML reader to
use to process data.

SQL Notifications and Dependencies
Applications that display volatile data or maintain a cache would benefit from
friendly server notification whenever their data changes. SQL Server 2005 offers
this feature—it notifies client applications about dynamic changes in the result-
set generated by a given query. Suppose your application manages the results
of a query such as SELECT * FROM authors. If you register for a notification,
your application is informed if something happens at the SQL Server level that
modifies the resultset generated by that query. This means that if a record orig-
inally selected by your query is updated or deleted, or if a new record is added
that meets the criteria of the query, you’re notified.

But where does ADO.NET 2.0 fit in? The SQL Server provider in ADO.NET
2.0 provides two ways to use this notification feature and two related classes—
SqlNotificationRequest and SqlDependency. SqlNotificationRequest is a lower-
level class that exposes server-side functionality, allowing you to execute a
command with a notification request. The following code snippet executes a
command with a notification request:

SqlCommand cmd = new SqlCommand(“SELECT * FROM Authors", conn);
SqlNotificationRequest req = new SqlNotificationRequest();
req.Id = “MyAppRequest";
req.Service = “MyAppQueue";
cmd.Notification = req;
cmd.ExecuteReader();

When a T-SQL statement is executed in SQL Server 2005, it keeps track of
the query, and if it detects a change that might cause the resultset to change, it
sends a message to the queue that you set in the Service property. A queue is
a new database object that you create and manage with a new set of T-SQL

C05620245.fm Page 155 Tuesday, June 8, 2004 6:39 PM

156 Part II Data Access

statements. You can place messages only in the specified queue, but how the
queue is polled and how the message is interpreted is strictly application-spe-
cific. This is where the SqlDependency class gets in the game.

The SqlDependency class provides a high-level abstraction of the notifica-
tion mechanism and allows you to set an application-level dependency on the
query so changes in the server can be immediately communicated to the client
application. The following code binds a command to a SQL dependency:

SqlCommand cmd = new SqlCommand(“SELECT * FROM Authors", conn);
SqlDependency dep = new SqlDependency(cmd);
dep.OnChanged += new OnChangedEventHandler(OnDependencyChanged);
cmd.ExecuteReader();

The OnChanged event on the SqlDependency class fires whenever the
class detects a change that affects the resultset of the command. Here’s a typical
handler:

void OnDependencyChanged(object sender, SqlNotificationsEventArgs e) {
// Do some work like
// - invalidate the cache
// - repeat the query
// - echo the notification to the user

}

The SqlDependency class creates an internal notification object and polls
the queue. When a change is detected, it fires the event to the application. Easy
and effective.

Multiple Active Resultsets
Version 1.x of the SQL Server managed provider, along with the SQL Server
ODBC driver, supports only one active resultset per connection. The (unman-
aged) OLE DB provider and the outermost ADO library appear to support mul-
tiple active resultsets, but this is an illusion. In OLE DB, the effect is obtained by
opening additional and nonpooled connections.

In SQL Server 2005, the Multiple Active Result Set (MARS) feature is
natively implemented and allows an application to have more than one SqlDa-
taReader open on a connection, each started from a separate command. Having
more than one data reader open on a single connection offers a potential per-
formance boost because multiple readers are much less expensive than multi-
ple connections. Note that you must create each instance of the data reader
from a distinct SqlCommand object, as shown in the following code:

SqlCommand cmd1 = new SqlCommand(cmdText1, conn);
SqlCommand cmd2 = new SqlCommand(cmdText2, conn);
SqlDataReader reader1 = cmd1.ExecuteReader();
SqlDataReader reader2 = cmd2.ExecuteReader();
// Do some work using both readers on the same connection

C05620245.fm Page 156 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 157

In ADO.NET 2.0, the MARS feature is enabled by default when SQL Server
2005 is the database server. To disable MARS, you set the MultipleActiveResult-
Sets attribute to false in the connection string.

Note MARS-like behavior is available in the .NET Framework 2.0
versions of the OLE DB and Oracle managed providers. The Oracle
provider doesn’t support the MARS attribute on the connection string,
but it enables the feature automatically. The OLE DB provider doesn’t
support the connection string attribute either—it simulates multiple
resultsets when you connect to earlier versions of SQL Server or when
the MDAC 9.0 library is not available. When you operate through OLE
DB on a version of SQL Server 2005 equipped with MDAC 9.0, multi-
ple resultsets are active and are natively implemented.

ADO.NET Class Enhancements
Let’s wrap up the chapter by reviewing changes to some of the classes in the
System.Data namespace—the ADO.NET classes that are not directly involved
with managed providers and data storing and retrieval. This group includes
central ADO.NET classes such as DataSet, DataView, and DataTable. Com-
pared to the rich set of new features we’ve examined for managed providers,
the list of changes in the ADO.NET data container classes appears minimal. All
of the classes have been refined and enhanced, but no extraordinary new fea-
tures have been added.

The DataSet class is nearly identical to its ADO.NET 1.x counterpart, while
the DataTable is now a first-class citizen in the ADO.NET world and enjoys
some of the features reserved for DataSets only in version 1.x. Key enhance-
ments to DataTable objects are the support for readers and full XML serializa-
tion obtained both through read/write embedded methods and the XML
serializer. However, the biggest change for both classes is the introduction of a
more compact serialization format when the two objects are sent over a .NET
Remoting channel.

DataTable and DataSet Readers
In ADO.NET 2.0, the contents of an in-memory table can be read in two ways:
by using the classic relational programming interface made up of row and col-
umn collections, and by using a new approach based on readers. Just as readers

C05620245.fm Page 157 Tuesday, June 8, 2004 6:39 PM

158 Part II Data Access

are used to read database rows, XML nodes, and bytes from a file, they are used
to return table rows from ADO.NET container objects such as DataTable and
DataSet. The new class that provides this service is DataTableReader.

The DataTableReader Class
DataTableReader is a reader class that retrieves the contents of a DataTable or
a DataSet object in the form of one or more read-only, forward-only resultsets.
It provides a fast, cursor-like way of scrolling and reading the contents of in-
memory objects. You obtain an instance of this reader class using the GetDa-
taReader method on a DataTable or a DataSet object.

On the DataSet class, the GetDataReader method has the following proto-
type. It takes an array of DataTable objects and builds a reader for all of them.
The resulting reader object includes the specified tables as multiple resultsets.

public DataTableReader GetDataReader(DataTable[] dataTables);

The prototype is only slightly different if the method is called on the
DataTable class:

public DataTableReader GetDataReader();

In this case, no parameter is necessary, and the returned reader object will
work on the current table object. Note that the reader object here has nothing
to do with a DBMS-specific data reader. The DataTableReader is merely a class
that behaves like an in-memory reader.

The Read method of the reader moves initially to the first record on the
first table. The NextResult method moves the internal pointer to the next result-
set, if any. When you create a reader from a DataTable, the resulting object
contains one resultset with the same data as the table from which it was cre-
ated, except for any rows that have been marked as deleted. The columns
appear in the same order as in the original table. When the reader originates
from a DataSet, the resultsets are in the same order as the tables in the DataSet.

Note Which programming interface should you use to access the
contents of a DataSet or a DataTable? Using the DataTableReader is
the fastest way to scroll through the rows of a table, but it’s a read-only
interface and doesn’t provide for random movements over rows. The
Rows and Columns collections allow full access.

C05620245.fm Page 158 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 159

Filling a Table Using a Data Reader
Both the DataTable and DataSet boast a new Load method, which you can use
to populate those objects with the contents of a data reader object. The proto-
type for the DataSet class is shown here. The method has two overloads.

public void Load(IDataReader, LoadOption, DataTable[])
public void Load(IDataReader, LoadOption, String[])

Both overloads take a data reader object and a flag that indicates how to
load rows. In the first case, the third argument is the array of the DataTable
object where resultsets will be stored. In the second case, the array of strings
contains the names of the tables to populate with the contents of the reader.
The acceptable values for the LoadOption enumeration are shown in Table 5-4.

When the Load method is called on a DataTable, it fills the current object
with incoming values. If the DataTable already contains rows, the data from the
source is merged with the existing rows. The prototypes are shown here:

public void Load(IDataReader)
public void Load(IDataReader, LoadOption)

Serializing a DataTable to XML
In ADO.NET 1.x, the DataTable class supports runtime object serialization
through the .NET formatter classes, but not any form of XML serialization. The
DataSet object, for example, has ReadXml and WriteXml methods that allow
you to save to and restore from an XML stream. Serializing the DataTable to
XML is not hard—you just create a temporary DataSet, copy the DataTable to it,
and serialize the DataSet. The same functionality is now natively exposed from
the same DataTable class.

Table 5-4 The LoadOption Enumerated Type

Constant Description

OverwriteRow Incoming values are written as the current and original values
for each column in the row.

PreserveCurrentValues Incoming values are written as the original values of the row.
Current values are not touched.

UpdateCurrentValues Incoming values are written as the current values of the row.
Original values are not touched.

C05620245.fm Page 159 Tuesday, June 8, 2004 6:39 PM

160 Part II Data Access

The WriteXml Method
The WriteXml method comes with a long list of overloads. You can write the
contents of a DataTable to a stream, file, XML writer, or text writer. Using the
WriteXml method, you can write data only or both data and schema to an XML
document. You can control the output format by setting the XmlWriteMode
parameter:

public void WriteXml(String)
public void WriteXml(String, XmlWriteMode)

Acceptable values for the XmlWriteMode parameter are WriteSchema,
IgnoreSchema (the default), and DiffGram. The first two options serialize the
DataTable with or without schema. The last one uses the DiffGram XML for-
mat. When the default XML format is used, WriteXml generates the following
markup:

<DocumentElement>
<TableName>

<Column1>...</Column1>
<Column2>...</Column2>
<Column3>...</Column3>

</TableName>
<TableName>

<Column1>...</Column1>
<Column2>...</Column2>
<Column3>...</Column3>

</TableName>
§

</DocumentElement>

The markup is nearly identical to that of a DataSet except for the root
node, which defaults to DocumentElement. If you want to include a schema,
you pass WriteXml the appropriate write mode parameter. If you want to out-
put only the schema of the table, you’re better off using the WriteXmlSchema
method.

The ReadXml Method
The ReadXml method reads XML schema and data into a DataTable object by
using the specified stream, file, or reader. The method always take one param-
eter and returns a value excerpted from the XmlReadMode enumeration. The
return value denotes the mode used to read the data. The modes are listed in
Table 5-5.

C05620245.fm Page 160 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 161

If the XML document contains an inline schema, the inline schema is used
to extend the existing structure. The operation takes place before the data is
loaded. If conflicts occur (if, for example, the same column in the same table is
defined with different types), an exception is raised. If no inline schema exists,
the current structure is extended according to the structure of the XML docu-
ment. A new schema is inferred from the XML document and applied to the
table. If the schema cannot be inferred or applied, an exception is raised.

The XML Serializer
XML serialization is the process of converting an object’s public properties and
fields to an XML format for storage or transport. Some objects, such as the
DataSet and in ADO.NET 2.0 the DataTable, provide their own methods to save
contents to XML. The XmlSerializer class is a generic XML serializer that saves
a fair number of .NET types to XML. The XmlSerializer class works with classes
that have no circular references and those that implement the IXmlSerializable
interface—which is not fully documented, even though used, in the .NET
Framework 1.x. In version 1.x, the DataSet does implement it; the DataTable
does not.

Why is support for XML serialization important? The key reason is that
ASP.NET uses the XmlSerializer class to encode XML Web service messages.
Subsequently, classes that have circular references and don’t implement
IXmlSerializable can’t be used as parameters of a .NET XML Web service
method. This is exactly what happens to DataTable objects in the .NET Frame-
work 1.x.

Table 5-5 Modes for Reading a Relational Schema into a DataTable

Mode Description

DiffGram Creates the table based on the content of a DiffGram file.

Fragment Reads XML documents, such as those generated by executing FOR
XML queries, against SQL Server.

IgnoreSchema Ignores any inline schema and reads data into the current table
schema.

InferSchema Ignores any inline schema and infers schema from the data.

InferTypedSchema Ignores any inline schema and infers the schema and data type
from the data. If the type cannot be inferred from the data, it is
interpreted as string data.

ReadSchema Reads any inline schema and loads the data.

C05620245.fm Page 161 Tuesday, June 8, 2004 6:39 PM

162 Part II Data Access

In the .NET Framework 2.0 this situation ceases; the DataTable class
implements the interface and can be used with the XmlSerializer class and
with Web service methods. The following code is correct with the .NET
Framework 1.x, except that it throws an exception. It works just fine in the
.NET Framework 2.0.

XmlSerializer ser = new XmlSerializer(typeof(DataTable));
StreamWriter writer = new StreamWriter(@"c:\datatable.xml”);
ser.Serialize(writer, dt);

The .NET Remoting Format
In the .NET Framework 1.x, the DataSet and DataTable objects suffer from a
serialization problem—they always serialize themselves as XML. This means
that when you store an instance of these classes in an out-of-process session or
move it through .NET Remoting, a large chunk of data is moved.

To get around this limitation, the .NET Framework 2.0 endows the Data-
Table and the DataSet objects with a new property—RemotingFormat. The
property accepts values from the SerializationFormat enumerated type—
Binary or Xml (the default). The property influences how the content of the
object is serialized.

table.RemotingFormat = SerializationFormat.Binary;

Set RemotingFormat to Binary, and you’ll get more compact serialization
output to improve the performance of remoted DataSet and DataTable objects.

Managing Views of Data
The DataView class represents a data-bindable, customized view of a Data-
Table and is used for sorting, filtering, and searching rows. Properly configured,
the DataView also allows for editing. The DataView and DataTable classes are
closely related. More view objects can be associated with the same table at the
same time, but no view object holds more than references to the underlying
table rows. The DataTable also has a DefaultView property that returns the
default view for the table. By setting the RowFilter and Sort properties of the
DataView, you can create filtered and sorted views.

We’ve looked at the general role of the classes, but not as they relate to
ADO.NET 2.0. So what’s new in Visual Studio 2005 for the DataView class?

Creating a Table from a View
As mentioned, a DataView is simply a mask on top of a DataTable object.
When you set a filter or sort the rows, you actually force the DataView to
import an array of indexes from the table. Each index points to a particular row

C05620245.fm Page 162 Tuesday, June 8, 2004 6:39 PM

Chapter 5 What’s New in Data Access 163

in the bound table that meets the criteria of the view. When you enumerate the
rows in the view, the internal set of indexes is scrolled and the real DataTable
row is returned for reading or editing. A filtered view of a table is therefore just
a software illusion—it’s not a real subtable.

ADO.NET 1.x offers no direct way to create a subtable with only the rows
that match a certain filter string or sort expression. If you want to do that, you
have to do it on your own. The ADO.NET 2.0 DataView class provides the
ToTable method for creating a new DataTable object from the current view:

// Get a DataTable object
SqlDataAdapter adapter = new SqlDataAdapter(cmdText, connStr);
DataTable dt = new DataTable(“MyTable”);
adapter.Fill (dt);

// Create a view of the rows sorted by lastname
DataView sortedView = new DataView(dt);
SortedView.Sort = “lastname";

// Save the view to a new DataTable object
DataTable sortedTable = sortedView.ToTable();

The new DataTable is a new object with the same schema and duplicated
rows. Once you have the content of the view as a distinct DataTable, you can
proceed with XML serialization by using the DataTable object’s WriteXml
method.

Selecting Distinct Rows
The ToTable method has four possible prototypes:

public DataTable ToTable()
public DataTable ToTable(string name)
public DataTable ToTable(bool distinct, string[] colNames)
public DataTable ToTable(string name, bool distinct, string[] colNames)

The first two simply flush the content viewed through the DataView object
into a newly created, and optionally named, DataTable object. The latter two
overloads take a Boolean parameter that lets you indicate whether you want
distinct rows or all the rows. To get distinct rows, you must set the parameter to
true; otherwise you get all the rows. (This feature resembles the DISTINCT T-
SQL keyword.) Two rows are considered equal (that is, not distinct) when all
column values are identical.

The array of strings parameter determines which columns in the view
should be included in the new table. Each column is identified by name. If the
array is empty, all columns are copied.

C05620245.fm Page 163 Tuesday, June 8, 2004 6:39 PM

164 Part II Data Access

Summary

ADO.NET 2.0 comes with a full bag of new goodies for developers. Most of
these new features revolve around the SQL Server .NET data provider and
exploits new functionality in SQL Server 2005, the upcoming new version of
SQL Server. SQL notifications and asynchronous commands are the most com-
pelling of these features.

Another bunch of enhancements involve the SQL Server provider but not
specifically the SQL Server 2005 database engine or the newest network librar-
ies (MDAC 9.0). They include batch processing and the bulk copy object. These
are optimizations of operations that can be performed less comfortably and
efficiently in ADO.NET 1.x. In particular, batch update can be configured as a
real batch process in which multiple rows are sent to the server for update. The
bulk copy operation no longer has to be performed using the classic T-SQL
BULK INSERT statement and disk files. Instead, you use a new object that
exploits a powerful low-level communication channel with the TDS parser. As
a result, using the new bulk copy object is even more powerful than the BULK
INSERT itself.

Finally, we have the classes in System.Data—the core of ADO.NET.
DataSet and DataTable objects can be read in a read-only and forward-only
way using readers, and they can be filled using a data reader object. The Data-
Table fully supports XML serialization, and the DataView can flush the range of
selected rows to dynamically created DataTable objects.

However, looking at data access from an ASP.NET perspective, the biggest
change is the introduction of the data source object, which allows for declara-
tive and virtually codeless data binding. You’ll learn more about this in the next
chapter.

C05620245.fm Page 164 Tuesday, June 8, 2004 6:39 PM

165

The Data Source
Object Model

Most Web applications follow a relatively simple pattern. They fetch data from
data sources, manipulate it to fit into a nice-looking HTML layout, and then
send the resulting markup to the browser. Consequently, developers commonly
use ASP.NET (and other server-side programming environments) to display a
data-driven user interface.

ASP.NET 1.x has an extremely flexible and generic data binding architec-
ture that is optimized for performance and can give developers full control of
the page life cycle. Developers can link data-bound controls such as the Data-
Grid and the DropDownList to any collection of data that implements the IEnu-
merable interface (such as the DataView) or any objects that support the
members of the IListSource interface (such as DataSet and DataTable). While
this approach represents a quantum leap from classic ASP, it still requires page
developers to learn a lot of architectural details to create even relatively simple
read-only pages. A Web developer who knows only ASP, HTML, JavaScript, and
a little ADO and SQL (or equivalent tools) will get into trouble if she is left
alone to decide how (or whether) to design a distributed query, a scalable
update strategy, or a master/detail view. And experienced developers have to
continually reimplement the same pattern to access data sources, get data, and
make the data consistent with the programming interface of data controls.

The key issue with ASP.NET data binding is a lack of a higher-level and
possibly declarative model for data fetching and manipulation (edit, insert, and
delete). As a result, an ASP.NET 1.x data access layer is boring to write and
requires hundreds of lines of code even for relatively simple scenarios.

C06620245.fm Page 165 Tuesday, June 8, 2004 6:05 PM

166 Part II Data Access

The ASP.NET 2.0 data source model addresses this problem. To simplify
the data binding mechanism, the architecture of data-bound controls now sup-
ports a new family of data components—the data source components—which
in turn support a declarative model of binding. The data source control repre-
sents a source of data that returns and accepts data over a well-known stream—
such as SQL, XML, DataSet, and, why not, custom formats such as the Microsoft
Excel worksheets. At least for relatively common, fetch-display-edit scenarios,
data source objects offer a very approachable schema for any Web developer
and a time-saving resource for more seasoned programmers.

The Rationale of Data Source Components
To understand the importance of data sources before we delve into their
plumbing and implementation, let’s look at a few data binding scenarios that
show the inherent simplicity of a declarative approach. It goes without saying
that “declarative” here is not a magic word and that a declarative approach is far
from the perfect solution for all software troubles. But it helps—a lot—in a sig-
nificant number of real-world scenarios.

The data binding model of ASP.NET 2.0 provides two ways of connect-
ing—programmatically (as in ASP.NET 1.x) and declaratively (using data source
components). ASP.NET 2.0 also continues to provide hooks so developers can
gain full control over the data binding mechanism; at the same time, it makes
this need far less frequent.

Codeless Data Binding
Codeless data binding is a feature that a few other server-side programming
environments supply, and it has been crucial to the rapid adoption of those
environments for developing relatively simple data-driven Web sites. ASP.NET
1.x is great for professional sites because it provides a rich set of events and a
detailed object model, but it ends up requiring large blocks of code no matter
what you really want to obtain.

In ASP.NET 2.0 developers can set up sophisticated Web sites without
knowing a lot of SQL or the page life cycle. Codeless data binding, and the data
source model in particular, also lets developers work together, each contribut-
ing the best of his skills. For example, one developer can create the skeleton of
the page and the other can provide the SQL statements or stored procedures
needed to perform the basic I/O operations.

The big difference over ASP.NET 1.x is that less-experienced developers can
now do most of the work and rely on others only for SQL statements. All the glue
code is automatically provided by the data source control and buried in the

C06620245.fm Page 166 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 167

ASP.NET framework. ASP.NET 2.0 data binding enables page developers to
implement data binding scenarios, including displaying, editing, paging, and sort-
ing data, with no code. In other common scenarios where some code is still
required, the new model makes development as simple and intuitive as possible.

An Inspiring Best Practice
Although codeless data binding is generalized and integrated in the ASP.NET
2.0 data source model, it has many points in common with the <cfquery> state-
ment of Macromedia ColdFusion. Have a look at the following code, which rep-
resents a query—and the resulting data—with a named markup element:

<CFQUERY name="EmployeesList” datasource="Northwind_DSN">
SELECT * FROM Employees ORDER BY lastname

</CFQUERY>

ColdFusion developers don’t need to know how to set up the connection
to the desired database. Nor do they need to know about the most effective
way to execute the specified statement—be it a SELECT, as in the example
above, or UPDATE, INSERT, or DELETE. All they need to know are the name of
the data source and the statement to execute. As you can guess, these pieces of
information can be easily provided by a more expert fellow programmer. No
deep knowledge of connections, transactions, or OLE DB is required.

The data source is identified by name, but the name has to be more than
just a unique string. It must reference a connection string and can be anything
that gives the underlying infrastructure enough information to establish a link
with the database. In ColdFusion, the data source is by default the name of an
ODBC Data Source Name (DSN). If other database drivers are used, the data
source name changes accordingly to allow a successful connection.

Even though it was inspired by the ColdFusion approach, the newest
ASP.NET data source model differs from it in a number of key ways. For exam-
ple, the ColdFusion <cfquery> statement supports only SQL statements, while
the ASP.NET data source model extends the same data binding mechanism to a
variety of data sources, including XML and DataSet objects. It even allows you
to bind to Excel worksheets.

Note The ColdFusion API provides more than just tags for executing
queries. Tags for updatable statements are defined, too. They are
<cfupdate>, <cfinsert>, and <cfdelete>. The ASP.NET data source
model provides the same capabilities, but through a different set of
tags and attributes. You’ll see more on this later in the chapter.

C06620245.fm Page 167 Tuesday, June 8, 2004 6:05 PM

168 Part II Data Access

The Equivalent ASP.NET 1.x Code
The declarative code you just saw as an example of ColdFusion’s <cfquery> tag
hides a lot of code—the code to set up the connection, handle possible param-
eters, execute the statement, and cache the final resultset. Of course, you can
emulate the behavior of the <cfquery> tag in ASP.NET 1.x, but it will take some
lines of code, as shown here:

<script runat="server">
void Page_Load(object sender, EventArgs e)
{

if (! Page.IsPostBack) {
// Can use a simple string pointing to the actual
// connection string in the web.config file
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(“SELECT * FROM Employees", conn);

// Execute the statement
conn.Open();
SqlDataReader reader = cmd.ExecuteReader();

// Display the output and close the connection
§
conn.Close();

}
}
</script>

This code gives you an idea of what’s needed but is too simple for any
realistic application. For a real application, you’d have to figure out the connec-
tion string, consider caching fetched data, and arrange for display, paging, sort-
ing, and updates. The code would be significantly more complex and, even
worse, its underlying pattern would be reimplemented in any segment of the
application that required data access. The data source model incorporates a lot
of boilerplate code and provides a declarative and codeless data binding
model—which can be valuable, at least in commonplace scenarios.

Integration with the Existing ASP.NET Framework
The ASP.NET 2.0 data source model not only offers much more than the Cold-
Fusion API, but everything is tightly integrated with the existing framework of
server controls.

ColdFusion developers use the <cfoutput> tag (or one of its variations) to
merge the results of a query with the rest of the page. The tag represents a
placeholder for the rows fetched. Data is inserted using a custom syntax—
#field_name#—whose functionality is comparable to that of Eval. (See Chapter

C06620245.fm Page 168 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 169

5.) Each <cfoutput> tag references the bound records through the name of the
query tag:

<cfoutput query="EmployeesList">
#LastName#, #FirstName#

</cfoutput>

In ASP.NET, data-bound server controls are the preferred way to display
data coming from queries. In version 1.x, you normally link controls to a data
source programmatically. The closest you can get to declarative data binding is
the approach in the following code snippet:

<asp:datagrid runat="server” ID="grid"
datasource="<%# GetDataTable() %>“ />

The DataGrid control has its DataSource property declaratively set, with
the object returned by a page method that the developer must write.

ASP.NET 2.0 adds a new property to all data-bound controls so that any
control can be successfully bound to a new data source control. The new prop-
erty, DataSourceId, matches the name of a data source control defined in the
same page. The following code snippet shows how to list the employees in the
Northwind Employees database. The data-bound control used for the output is
the Repeater.

<asp:SqlDataSource runat="server” ID="MySource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;”
DataSourceMode="DataSet”
SelectCommand="SELECT firstname, lastname FROM employees” />

<asp:Repeater runat="server” ID="data” DataSourceId="MySource” >
<ItemTemplate>

<%# Eval(“ProductName”) %>
<%# Eval(“Price”) %>

</ItemTempate>
</asp:Repeater>

We’ll discuss the programming interface of the SqlDataSource control in a
moment. In the meantime, note how the code uses a more compact syntax—
only Eval—for binding data to the Repeater control’s templates. (We discussed
the new form of simple binding in Chapter 5.)

The next listing shows how to use a grid control instead. Note that both
the standard DataGrid control and the new GridView control can be bound to
a data source. You can pass data to a data-bound control using either the classic
DataSource property or the new DataSourceId property. Note that the two
properties are mutually exclusive; if you set both, an exception will be thrown.

C06620245.fm Page 169 Tuesday, June 8, 2004 6:05 PM

170 Part II Data Access

<html>
<body>
<form runat="server">

<asp:GridView runat="server” ID="grid”
DataSourceId="MySource”
AutoGenerateColumns="true">

</asp:GridView>

<asp:SqlDataSource runat="server” ID="MySource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;”
DataSourceMode="DataSet”
SelectCommand="SELECT firstname, lastname FROM employees” />

</form>
</body>
</html>

The output of the page is shown in Figure 6-1. Note that no code is needed
to set up and populate the grid. As you’ll see later on, many other features that
require code in ASP.NET 1.x (such as sorting, paging, editing, and master/detail)
can be added to data sources without needing a single line of code.

F06DR01Figure 6-1 A grid of data generated using a SQL data source control
bound to an instance of the new GridView control

A Consistent Model for Heterogeneous Data Sources
Not only are data source components designed to connect to data providers in
a codeless way, but they also support a variety of sources using a single model.

C06620245.fm Page 170 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 171

Supported data source types include relational databases, XML documents, and
custom business objects. ASP.NET 2.0 data-bound controls work with any of
these data sources. Microsoft provides a few built-in data sources, but you can
define others.

Defining a Standard Set of Data Operations
A data source component is a data control that can implement some or all of a
standard set of data operations. Whether a control implements the entire stan-
dard set of operations or only a subset depends on the class. For example, you
can have a SQL data source control (a data source control that manages rela-
tional data) that supports selection and updates and another data source control
that provides only selection capabilities.

The standard set of data operations includes the four basic I/O operations:
select, delete, insert, and update. The data source component is also expected
to return the fetched data as an object. The type of the returned object depends
on the particular implementation. The selection should be smart enough to sup-
port optional filtering and sorting.

The data source component exposes these operations to page developers
through a number of intuitive method calls on the data source control. The
methods are grouped in a new interface that characterizes the data source com-
ponents.

Binding Data Source Components to Controls
The data source object model is not a new API alternative to ADO.NET or OLE
DB. Data source components form a layer of code that works between data-
bound controls (and data-driven classes) and the low-level API used to retrieve
data. This low-level API can be ADO.NET, System.Xml, or perhaps Microsoft
Indexing Service or Excel’s COM object model, depending on the data being
exposed. A data source component implements a number of tailor-made inter-
faces to communicate with clients—mostly data-bound controls.

In ASP.NET 2.0, data-bound controls have been extended to support a
new set of interfaces so they can take their data out of data source components
no matter what the real underlying data source is. The binding model was pri-
marily based on the IEnumerable interface in ASP.NET 1.x; it is also based on
other, richer interfaces in ASP.NET 2.0 that are representative of data source
controls.

One difference between data source components and ASP.NET 1.x bind-
able classes is that the new data source object model allows you to select,
insert, delete, and update data stored in a bound source—be it a relational data-
base, an XML file, or an Excel document.

C06620245.fm Page 171 Tuesday, June 8, 2004 6:05 PM

172 Part II Data Access

A Richer Design-Time Experience
Data source components were introduced in ASP.NET 2.0 for two main reasons.
The first was to simplify the programming model with a set of advanced con-
trols (sort of programmatic wizards) that could perform I/O operations on
generic blocks of data. In this respect, I consider data source components as the
evolution of the ADO.NET 1.x data access application block—a set of time-sav-
ing classes that can speed up development.

As for the second reason, consider that in ASP.NET 1.x, knowledge of
page life cycle events is required for building data access layers. Similarly,
familiarity with ADO.NET objects and best practices is highly recommended. In
ASP.NET 2.0, all common data access scenarios (i.e., stateless scenarios) can be
implemented with zero lines of code. The availability of such powerful controls
also makes design-time page composition simpler and more effective. Design-
ers can work with realistic (if not real) data at design time. In addition, the
schema of the data is known, so a data-bound control can give its user interface
a reasonable appearance. This helps developers to more quickly customize the
appearance and layout of the data that will be shown in the control. As a result,
the design-time user experience is richer and more pleasant.

Data Source Control Internals
A data source control is a .NET Framework class that facilitates the binding of
data between data stores and data-bound controls—both existing controls such
as the DataGrid and new data-bound controls such as GridView, TreeView, and
DetailsView. Let’s have a look at the plumbing that makes data source controls
work as expected.

A data source control represents one or more named views of data. Each
view provides an enumeration of data objects (such as collections, DataSet, or
business objects). The contents of the data source are managed through SQL-
like statements such as SELECT, INSERT, DELETE, and UPDATE. Data source
controls inherit the base class Control and come in two flavors—tabular and
hierarchical. The DataSourceControl abstract class serves as the base class for
all data source controls and defines the interface between data-bound controls
and the underlying data. Although the data source control has no visual render-
ing, it is implemented as a control to allow for “declarative persistence” (auto-
matic instantiation during the request processing) as a native part of the .aspx
source code and to gain access to the page view state.

A data source control exposes the contents of its underlying data source
through a set of properties and methods. Some of these members are specific to

C06620245.fm Page 172 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 173

the control; others are common to all source controls and are defined as part of
the IDataSource interface.

The IDataSource Interface
All data source controls implement the IDataSource interface. Therefore, this
interface is the only prerequisite to creating your own custom ASP.NET data
source control. A data source control uses the interface’s properties and meth-
ods to expose the bound content as a set of named views. The IDataSource
interface provides the basic set of capabilities to retrieve views of data out of a
data source.

Members of the Interface
The IDataSource interface is quite simple and features one event and a cou-
ple of methods. The event, DataSourceChanged, requires delegates with the
default prototype—the EventHandler class. The event is raised whenever
something happens around the control and the underlying data source to alter
the currently bound data source. A typical action that causes this event to fire
is a change in the connection string. Table 6-1 lists the two methods of the
interface.

The DataSourceControl base class doesn’t add any extra properties or
methods to those automatically inherited from the Control class. So any other
members available on the programming interface of actual data source controls
are defined by the specific type and don’t represent items of a contract shared
by multiple controls.

Data Source Views
As mentioned, the internal architecture of a data source control looks like a col-
lection of named views. A named view is represented by a data source view
object—an instance of the DataSourceView class—similar to the DataView class
in the ADO.NET object model. Like the DataView class in ADO.NET, the Data-
SourceView class represents a customized view of data in which special settings

Table 6-1 Methods of the IDataSource Interface

Method Description

GetView Takes the name of the data source view to retrieve and returns it as
a DataSourceView object

GetViewNames Returns a collection of names representing the list of view objects
associated with the current instance of the data source control

C06620245.fm Page 173 Tuesday, June 8, 2004 6:05 PM

174 Part II Data Access

for sorting, filtering, and other data operations have been defined. At its core,
all that a data source control does is manage views of data loaded from the
underlying data source.

The DataSourceView class is the base class for all views associated with a
data source control. The number of views in a data source control depends on
the connection string, the characteristics, and the actual contents of the under-
lying data source. The data source control uses the GetViewNames method to
enumerate all the current views and uses the GetView method to retrieve a spe-
cific view.

Table 6-2 lists the properties of the DataSourceView class.

In general, the CanXXX properties, such as CanDelete, indicate not only
whether the data source control is capable of performing the specified opera-
tion but also whether that operation is appropriate given the current status of
the data. The latter is a general guideline that each data source control can take
or leave. For example, the view class associated with the SqlDataSource control
(more on this in a moment) blocks data operations (insert, delete, update) only
if no corresponding statement has been specified. The sort operation, on the
other hand, is enabled only if the data of the view are cached in a DataSet.
(This means that SQL Server is never involved with the sort operation.)

Table 6-3 lists all the methods supported by the class.

Table 6-2 Properties of the DataSourceView Class

Property Description

CanDelete Indicates whether deletions are allowed on the underly-
ing data source. The deletion is performed by invoking
the Delete method.

CanInsert Indicates whether insertions are allowed on the underly-
ing data source. The insertion is performed by invoking
the Insert method.

CanPage Indicates whether the data in the view can be paged.

CanSort Indicates whether the data in the view can be sorted.

CanRetrieveTotalRowCount Indicates whether information about the total row count
is available.

CanUpdate Indicates whether updates are allowed on the underly-
ing data source. The update is performed by invoking
the Update method.

Name Returns the name of the current view.

C06620245.fm Page 174 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 175

All data source view objects support data retrieval through the Select
method. The method returns an object that implements the IEnumerable inter-
face. The real type of the object depends on the data source control and the
attributes set on it. As long as the data source control is the SqlDataSource class,
the Select method returns either a data reader or a DataView object.

In addition, data source views can optionally perform basic operations
such as insert, update, delete, and sort. Data-bound controls discover the capa-
bilities of a data source control by retrieving an associated data source view and
querying using the CanXXX properties.

Tabular Data Source Controls
Figure 6-2 shows a diagram of the classes that form the data source object
model. By the time ASP.NET 2.0 ships, other classes might be added to the tree.
Good candidates are data source classes to expose the contents of Excel work-
sheets, full-text searches conducted by Microsoft Indexing Service, and the
Microsoft Outlook Inbox.

F06DR02Figure 6-2 The data source controls class hierarchy.

Table 6-3 Methods of the DataSourceView Class

Method Description

Delete Performs a delete operation on the data associated with the view

Insert Performs an insert operation on the data associated with the view

Select Returns an enumerable object filled with the data contained in the underly-
ing data storage

Update Performs an update operation on the data associated with the view

DataSourceControl

AccessDataSource

DataSetDataSource ObjectDataSource SqlDataSource SiteMapSource XMLDataSource

Control

HierarchicalDataSourceControl

C06620245.fm Page 175 Tuesday, June 8, 2004 6:05 PM

176 Part II Data Access

Four data source controls that return tabular data are currently supported.
Tabular data is any data that can be expressed as a table of rows and columns.
Tabular data source controls are AccessDataSource, DataSetDataSource, Object-
DataSource, and SqlDataSource. Each refers to a particular type of data, as
described in Table 6-4.

Let’s have a closer look at the architecture and the implementation of the
various tabular data source classes, starting with the one that you’ll likely use
most often.

Table 6-4 Tabular Data Source Controls

Class Description

AccessDataSource Represents a connection to an Access database. Inherits from the
SqlDataSource control but throws an exception if you attempt to
set the ConnectionString and ProviderName properties. Use the
DataFile property to point to the actual MDB file. The control
uses the Jet 4.0 OLE DB provider to connect to the database.

DataSetDataSource Works with the XML representation of a DataSet object. The XML
data can be specified as a string or through a filename. You can’t
bind this control to a DataSet object—not even programmatically.
The class features methods to retrieve the corresponding DataSet
object and set schema information. Although XML-based, the
control supports only the tabular interface and can be bound
only to list controls. Mainly used to display XML data in read-only
scenarios, the control also supports editing of the underlying
XML data.

ObjectDataSource Allows binding to a custom .NET business object that returns
data. The class is specified by name through the TypeName prop-
erty. The control allows developers to structure applications
using a three-tier architecture and still take advantage of the
ASP.NET 2.0 declarative data binding model. The class is
expected to follow a specific design pattern and include, for
example, a parameterless constructor and methods with a well-
known behavior.

SqlDataSource Represents a connection to an ADO.NET data provider that
returns SQL data, including data sources accessible through OLE
DB and ODBC. The name of the provider and the connection
string are specified through properties. Do not use this class to
connect to an Access database.

C06620245.fm Page 176 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 177

The SqlDataSource Class
The SqlDataSource control is a data source control that represents a connection
to a relational data store such as SQL Server or Oracle or any data source acces-
sible through OLE DB and ODBC bridges. As you’ll see in a moment, a separate
control is available to connect to Access databases, although you can still use
the SqlDataSource control to work with an .mdb database via OLE DB.

You set up the connection to the data store using two main properties,
ConnectionString and ProviderName. The former represents the connection
string and contains enough information to open a session with the underlying
engine. The latter specifies the namespace of the ADO.NET managed provider
to use for the operation. The ProviderName property defaults to Sys-
tem.Data.SqlClient, which means that the default data store is SQL Server. To
target an OLE DB provider, use the System.Data.OleDb string instead.

The DataSourceMode property controls how the Select command retrieves
data. Data can be fetched using a data adapter or a command object (SqlCom-
mand). Depending on your choice, fetched data can be packed in a DataSet
object or a data reader. The DataSourceMode property accepts values defined
by the SqlDataSourceMode enumeration—DataSet and DataReader. In the
former case, the selection takes place through a data adapter. The results of the
query are then cached in a DataSet object and stored in memory on the server.
When working in DataSet mode, the data source control supports advanced
scenarios in which sorting and filtering are enabled. When the DataSourceMode
property is set to DataReader, a SQL command is run and a data reader is used
to read the rows one at a time in a read-only, forward-only way. The value of
the DataSourceMode property has no effect on other operations, such as insert,
update, or delete.

The following code snippet shows the minimal code necessary to activate
a SQL data source control bound to the Northwind database of SQL Server:

<asp:SqlDataSource runat="server” ID="MySqlSource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;”
SelectCommand="SELECT * FROM employees” />

The data operations supported by the associated view class are provided
by the pairs of properties listed in Table 6-5.

C06620245.fm Page 177 Tuesday, June 8, 2004 6:05 PM

178 Part II Data Access

Each XXXCommand property is a string that contains the SQL text to be
used. The command can optionally contain parameters listed in the associated
parameter collection. The way the commands are executed depends on the
selected managed provider. The managed provider and its underlying relational
engine determine the exact syntax of the SQL to use and the syntax of the
embedded parameters. For example, if the data source control points to SQL
Server, command parameter names must be prefixed with the @ symbol. If the
target data source is an OLE DB provider, parameters are unnamed, identified
with a ? placeholder symbol, and located by position. The following code snip-
pet shows a more complex data source control in which parametric delete and
update commands have been enabled:

<asp:SqlDataSource runat="server” ID="MySqlSource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;”
SelectCommand="SELECT * FROM employees”
UpdateCommand="UPDATE employees SET lastname=@lname"
DeleteCommand="DELETE FROM employees WHERE employeeid=@TheEmp">
<!-- parameters go here -->

</asp:SqlDataSource>

Another important pair of properties are also supported by the SqlData-
Source control: FilterExpression and FilterParameters. A filter expression is a
string that creates a filter on top of the data retrieved using the Select method.
The syntax used for the FilterExpression property is the same as the syntax used
for the RowFilter property of the DataView class and is similar to that used with
the SQL WHERE clause. The FilterExpression property can also contain param-

Table 6-5 Properties for Configuring Data Operations

Property Pair Description

DeleteCommand, DeleteParameters Gets or sets the SQL statement (and related
parameters) used to delete rows in the under-
lying data store

InsertCommand, InsertParameters Gets or sets the SQL statement (and related
parameters) used to insert new rows in the
underlying data store

SelectCommand, SelectParameters Gets or sets the SQL statement (and related
parameters) used to retrieve data from the
underlying data store

SelectCountCommand Gets or sets the SQL statement used to retrieve
a row count from the underlying data store

UpdateCommand, UpdateParameters Gets or sets the SQL statement (and related
parameters) used to update rows in the under-
lying data store

C06620245.fm Page 178 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 179

eters. Filter parameters are prefixed with the @ character and enclosed in single
quotation marks. The FilterParameters represents the collection of parameters
that are evaluated for the placeholders found in the filter expression.

We’ll examine all these properties more in detail in a practical scenario
later in the chapter, in the “Using the SqlDataSource Control” section.

The AccessDataSource Class
The AccessDataSource control is a data source control that represents a connec-
tion to an Access database. It is based on the SqlDataSource control and pro-
vides a simpler, made-to-measure programming interface. In particular, the
AccessDataSource control replaces properties such as ConnectionString and
ProviderName with a more direct DataFile property. You set this property to
the .mdb database file of choice. The data source control resolves the file path
at run time and uses the Microsoft Jet 4 OLE DB provider to connect to the data-
base.

The following code shows how to use the AccessDataSource control to
open an .mdb file and bind its content to a drop-down list control. Note that the
control opens Access database files in read-only mode by default.

<asp:AccessDataSource runat="server” ID="MyAccessSource"
DataFile="nwind.mdb"
SelectCommand="SELECT * FROM Customers” />

Select a Customer:
<asp:DropDownList runat="server” DataSourceId="MyAccessSource” />

Several features of the AccessDataSource control are inherited from the
base class, SqlDataSource. In fact, the Access data source control is basically a
SQL data source control optimized to work with Access databases. Like its par-
ent control, the AccessDataSource control supports two distinct data source
modes—DataSet and DataReader, depending on the ADO.NET classes used to
retrieve data. Sorting and filtering can be applied to the selected data only if the
fetch operation returns a DataSet. In this case, data is cached in memory and
can be sorted and filtered.

The AccessDataSource can also be used to perform insert, update, or
delete operations against the associated database. This is done using ADO.NET
commands and parameter collections. Updates are problematic for Access
databases when performed from within an ASP.NET application because an
Access database is a plain file and the default account of the ASP.NET process
(ASPNET or NetworkService, depending on the host operating system) might
not have sufficient permission to write to the database file. For the data source
updates to work, you should grant write permission to the ASP.NET account
on the database file. Alternatively, you can use a different account with ade-
quate permission.

C06620245.fm Page 179 Tuesday, June 8, 2004 6:05 PM

180 Part II Data Access

Note Most Internet service providers normally give you one direc-
tory in which ASPNET and NetworkService accounts have been
granted write permission. In this case, you just place your Access file
in this directory, and you can read and write seamlessly. In general,
though, Access databases are plain files and as such are subject to
the security rules of ASP.NET.

The ShareMode property controls how the Access data source opens the
database and determines what data operations can be performed. The default
value is Read, which means that only the Select operation can be accomplished.
In read mode, the CanDelete, CanInsert, and CanUpdate properties all return
false, thus blocking the corresponding data operations. To enable read/write
operations, set ShareMode to ReadWrite.

The DataSetDataSource Class
The DataSetDataSource class takes an XML file or static data (such as an XML
string) as input and exposes the DataSet representation of this data to data-
bound controls. If the XML content is provided through a file, you set the Data-
File property with the path to the file; otherwise, you set the Data property with
a string containing the XML data. The XML content provided is parsed to obtain
a DataSet. The DataSetDataSource class instantiates a DataSet object and uses
the DataSet object’s ReadXml method to parse the XML input. Ideally, the sup-
plied XML data is a DiffGram script or any XML file created by the DataSet’s
WriteXml method.

If the XML data does not also contain schema information, you can specify
it as a separate file (by setting the SchemaFile property) or as a string (by setting
the Schema property). The GetDataSet method returns the DataSet object cre-
ated based on the supplied XML data. The following listing shows the class in
action:

<asp:GridView runat="server” ID="grid”
DataSourceId="MyDataSetSource”
AutoGenerateColumns="true">

</asp:GridView>

<asp:DataSetDataSource runat="server” ID="MyDataSetSource”
DataFile="data.xml” />

The data source class doesn’t have properties to influence select or insert
operations. Any data operations take place based on the programming interface

C06620245.fm Page 180 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 181

of the DataSet class. For example, the Select method of the corresponding data
source view class returns the DataView object for the internal DataTable whose
name matches the name of the data source view. Similarly, the Insert method
creates a new row on the DataTable matching the name of the data source
view.

It’s also worth mentioning the Boolean AutoSave property. When it is set
to true (the default), the data source control calls its Save method to persist
changes back to the original file every time a data operation is performed. If
AutoSave is false, the data source does not call Save automatically, but changes
are temporarily held in memory. This provides a form of batch update to the
original file. However, user code can call the Save method manually at any time.

The ObjectDataSource Class
The ObjectDataSource class enables business components to associate their
contents to data-bound controls. The class supports declarative parameters that
allow developers to pass page-level variables to the object’s methods.

The ObjectDataSource class makes some assumptions about the objects it
wraps. As a consequence, an arbitrary class can’t be used with this data source
class. In particular, bindable objects are expected to have a default constructor,
be stateless, and have methods that easily map to select, update, insert, and
delete semantics. Also, the object must perform updates one item at a time;
objects that update their state using batch operations are not supported. The
bottom line is that managed objects that work well with ObjectDataSource were
designed with this data source class in mind.

The following listing illustrates a class that can be used with an object data
source. The class has a default parameterless constructor and does not maintain
any state. The class also features a method—GetEmployees—that can be easily
mapped to a Select statement, with or without filter parameters.

using System.Collections;
using System.Data;
using System.Data.SqlClient;
using System.ComponentModel;

namespace Intro20
{

public class MyBusinessObject
{

public MyBusinessObject()
{}

public IEnumerable GetEmployees()
{

C06620245.fm Page 181 Tuesday, June 8, 2004 6:05 PM

182 Part II Data Access

return GetEmployees(0);
}

public IEnumerable GetEmployees(int minID)
{

SqlDataAdapter adapter = new SqlDataAdapter(
 “SELECT employeeid, firstname, lastname FROM employees

WHERE employeeid >“ + minID.ToString(),
 “SERVER=…;DATABASE=northwind;UID=…;”);

DataSet ds = new DataSet(“MyData”);
adapter.Fill(ds, “Employees”);

// Return the content of the selected DataTable
// as an IEnumerable object
return ((ds.Tables["Employees"]) as IListSource).GetList();

}
}

}

This class must be accessible from within the .aspx page and can be
bound to the ObjectDataSource control, as shown here:

<asp:ObjectDataSource runat="server” ID="MyObjectSource”
TypeName="Intro20.MyBusinessObject”
SelectMethod="GetEmployees” />

Similar methods should be defined on the business object to perform
update and insert operations using a single call with a few parameters.

The ObjectDataSource control is designed to simplify and encourage a
common practice among page developers—encapsulating data retrieval and
business logic into an additional layer between the presentation page and
data provider. This extra layer consists of an object that, designed with the
data source model in mind, can provide for free codeless and automatic data
binding.

Hierarchical Data Source Controls
Data source controls that represent hierarchical data derive from the abstract
HierarchicalDataSourceControl class, which is the base implementation of the
IHierarchicalDataSource interface. The interface defines a single method—
GetHierarchicalView—that retrieves a hierarchical data source view. The
method takes the path of the view to retrieve and returns an object of type Hier-
archicalDataSourceView that represents a single view of the data at the hierar-
chical level identified by the parameter.

HierarchicalDataSourceView GetHierarchicalView(string viewPath);

C06620245.fm Page 182 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 183

Unlike tabular data source controls, which typically have only one named
view, hierarchical data source controls support a view for each level of data that
the data source control represents. The viewPath parameter indicates the path
in the hierarchy to navigate to find the requested data.

Hierarchical and tabular data source controls share the same conceptual
specification of a consistent and common programming interface for data-
bound controls. The only difference is the nature of the data they work with—
hierarchical vs. flat and tabular.

ASP.NET 2.0 comes with a couple of hierarchical data source controls—
SiteMapDataSource and XmlDataSource.

The SiteMapDataSource Class
Site maps are a common feature of cutting-edge Web sites. A site map is a graph
that represents all the pages and directories found in a Web site. Site map infor-
mation is used to show users the logical coordinates of the page they are visit-
ing, allow them to access site locations dynamically, and render all the
navigation information in a graphical fashion (as shown in Figure 6-3). ASP.NET
2.0 contains a rich navigation infrastructure that allows developers to specify
the site structure. We’ll cover the site map navigation control in detail in Chapter
8. For now, suffice it to say that the site map is a hierarchical piece of informa-
tion that can be used as input for a hierarchical data source control. This control
is the SiteMapDataSource class. The site map information can appear in many
ways, the simplest of which is an XML file named web.sitemap located in the
root of the application.

F06DR03Figure 6-3 The graphical layout that the MSDN Magazine Web site
uses to represent the location of a page in the site hierarchy

C06620245.fm Page 183 Tuesday, June 8, 2004 6:05 PM

184 Part II Data Access

To give you the essence of site maps and site map data sources, let’s
briefly review a few usage scenarios. Suppose you’re writing a Web site and
your client asks for a sequence of hyperlinks that indicate the location of the
page in the site map. In ASP.NET 1.x, you have to create your own infrastruc-
ture to hold site map information and render the page location. (Typically, you
use a configuration file and a user control.) ASP.NET 2.0 provides richer support
for site maps. You start by creating a configuration file named app.sitemap in
the root of the Web application. The file describes the relationship between
pages on the site. Your next step will depend on the expected output.

If the common representation shown in Figure 6-3 (a sequence of hyper-
links with a separator) is what you need, add a NavigationPath control to the
page. This control (described in more detail in Chapter 8) retrieves the site map
and produces the necessary HTML markup. In this simple case, there is no need
to resort to a site map data source control. If you need to build a more complex,
hierarchical layout—for example, a tree-based representation—you need the
SiteMapDataSource control.

The SiteMapDataSource control pumps site map information to a hierar-
chical data-bound control (the new TreeView control) so it can display the site’s
structure. Here’s an example:

<%@ Page Language="C#” %>
<html>
<body>

<form runat="server">
<asp:SiteMapDataSource runat="server” ID="MySiteMapSource” />
<asp:TreeView runat="server” DataSourceId="MySiteMapSource” />

</form>
</body>
</html>

Figure 6-4 shows the final output as it appears to the end user.

F06DR04Figure 6-4 The site map information rendered through a TreeView control

C06620245.fm Page 184 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 185

Note As mentioned, ASP.NET 2.0 introduces a new type of data-
bound control that was completely unsupported in previous versions—
the hierarchical data-bound control. A new base class is defined to
provide the minimum set of capabilities: HierarchicalDataBoundCon-
trol. The TreeView and Menu controls fall in this category.

The SiteMapDataSource class features a couple of properties that relate
to the site map provider: SiteMapProvider and SiteMapViewType. The former
specifies the name of the site map provider to use. By default, the XML site
map provider is used, which means you have to store site information using
a given XML schema. (More on this in Chapter 8.) The SiteMapViewType prop-
erty describes the type of view of the site map data that’s generated by the
data source control. Feasible view types include a path and a tree-based rep-
resentation.

Three other properties relate to determining the starting node of the rep-
resentation: StartingNodeType, StartingNodeUrl, and StartingDepth. They iden-
tify the starting node by type, URL, and depth, respectively. If you set more than
one property, the order of precedence is StartingNodeUrl, StartingDepth, and
StartingNodeType.

The XmlDataSource Class
The XmlDataSource control is a special type of data source control that sup-
ports both tabular and hierarchical views of data. The tabular view of XML data
is just a list of nodes at a given level of hierarchy, whereas the hierarchical view
shows the complete hierarchy. An XML node is an instance of the XmlNode
class; the complete hierarchy is an instance of the XmlDocument class. The
XML data source supports both read-only and read-write scenarios.

The XmlDataSource control can accept XML input data as a relative or
absolute filename assigned to the DataFile property or as a string containing
the XML content assigned to the Data property. If schema information is not
included in the source files, it can be passed in as a separate SchemaFile or
Schema string. (This model is nearly identical to that of DataSetDataSource.)
Once the input data for the XML data source is supplied, the control exposes
that data through the IDataSource or the IHierarchicalDataSource interface. In
general, the XmlDataSource control is commonly bound to a hierarchical con-
trol, such as the TreeView.

To understand how the XML data source works, consider the following
small XML file, named data.xml:

C06620245.fm Page 185 Tuesday, June 8, 2004 6:05 PM

186 Part II Data Access

<warehouse>
<department name="dairy” deptid="111">

<category name="yogurt” categoryid="2222">
<product name="horizon” sku="3333-3333"/>

</category>
</department>

</warehouse>

Next you bind this file to an instance of the XmlDataSource control and
the data source to a tree view:

<asp:XmlDataSource runat="server” ID="MyXmlSource” DataFile="data.xml” />
<asp:TreeView runat="server” DataSourceId="MyXmlSource">

<DataBindings>
<asp:TreeNodeBinding Depth="0” DataMember="Department”

TextField="Name” ValueField="DeptId” />
<asp:TreeNodeBinding Depth="1” DataMember="Category”

TextField="Name” ValueField="CategoryId” />
<asp:TreeNodeBinding Depth="2” DataMember="Product”

TextField="Name” ValueField="SKU” />
</DataBindings>

</asp:TreeView>

The final result is shown in Figure 6-5.

F06DR05Figure 6-5 The contents of the bound XML file displayed using
a TreeView control

The <DataBindings> section of the TreeView control (more on hierarchi-
cal controls in Chapter 7) lets you control the layout and the contents of the tree
nodes. The <TreeNodeBinding> node indicates the depth (attribute Depth) of
the specified XML node (attribute DataMember) as well as which attributes
determine the text displayed for the node in the tree view and value associated
with the node.

C06620245.fm Page 186 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 187

The XmlDataSource class can also transform its data using Extensible
Stylesheet Language Transformations (XSLT). You set the transform file by using
the TransformFile property or by assigning the XSLT content to the string prop-
erty named Transform. Using the TransformArgumentList property, you can
also pass arguments to the style sheet to be used during the XSL transformation.
An XSL transformation is often used when the structure of an XML document
does not match the structure needed to process the XML data. Note that once
the data is transformed, the XmlDataSource becomes read-only and the data
cannot be modified or saved back to the original source document.

Using the SqlDataSource Control
Let’s look more closely at the SqlDataSource control and how to configure it in
real-world situations. As mentioned, the SqlDataSource control represents a
connection to an ADO.NET managed data provider, such as SQL Server, OLE
DB, ODBC, Oracle, or a third-party provider. The control class takes advantage
of the ADO.NET common data model, which provides a set of interfaces that all
managed data providers implement.

The data source model enables the page author to indicate commands to
perform common data operations—query and any sort of update. The text
assigned to properties such as InsertCommand and SelectCommand is parsed
to verify that it is a valid SQL command that is compliant with the expected syn-
tax of the corresponding statement (Insert and Select, in this case). If the syntax
doesn’t match, the command text is taken as the name of a stored procedure.

Connecting to Data Source Controls
A data source control is the bridge between the physical data provider and the
user code. In many cases, the user code is a data-bound server control and the
binding takes place declaratively and in a rather codeless way. However, a data
source control can also be invoked programmatically, like any other managed
class. The following code snippet shows how to accomplish this:

<script runat="server">
void Page_Load(object sender, EventArgs e)
{

SqlDataSource ds = new SqlDataSource();
ds.ConnectionString = “SERVER=…;DATABASE=northwind;UID=…;";
ds.DataSourceMode = SqlDataSourceMode.DataSet;
ds.SelectCommand = “SELECT customerid, companyname FROM customers “ +

 “WHERE country=@TheCountry";
ds.SelectParameters.Add(“TheCountry", “USA”);

C06620245.fm Page 187 Tuesday, June 8, 2004 6:05 PM

188 Part II Data Access

grid.DataSource = ds;
grid.DataBind();

}
</script>
<asp:GridView runat="server” ID="grid” AutoGenerateColumns="true” />

In short, the data source control is a helper class that sets up data access
code with a few lines of code—or in a completely codeless manner if a declar-
ative approach is used.

Note The SqlDataSource supports events before and after each
operation is performed. The Selecting, Inserting, Deleting, and Updat-
ing events are fired before the associated operation, and the event
arguments contain a reference to the provider-specific command
object. A developer can set custom properties on the command before
an operation’s command is executed. The Selected, Inserted, Deleted,
and Updated events are fired after the associated operation com-
pletes.

A data source control tends to incorporate a good number of functions
and features. Does this make a data source too rigid and hard to customize?
That’s definitely not a far-fetched idea. In fact, parameters are an important
aspect of data source controls. Both stored procedures and SQL commands can
accept parameters.

Data Source Parameters
As mentioned, in the programming interface of the SqlDataSource control each
command property has its own collection of parameters. A parameter collection
is a collection class named ParameterCollection. It stores objects whose base
class is Parameter. The Parameter class represents a parameter in a parameter-
ized query, filter expression, or command executed by a data source control.
The following code snippet shows how to use parameters to filter the result set
generated by a query:

<asp:SqlDataSource runat="server” ID="MySource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;"
DataSourceMode="DataSet”
SelectCommand="SELECT firstname, lastname FROM employees

WHERE employeeid > @MinID">

C06620245.fm Page 188 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 189

<SelectParameters>
<asp:ControlParameter Name="MinID” ControlId="EmpID”

PropertyName="Text” />
</SelectParameters>

</asp:SqlDataSource>

The query contains a placeholder named @MinID. The data source control
automatically populates the placeholder with the information returned by the
ControlParameter object—one of the supported parameter types in ASP.NET
2.0. The value of the parameter is determined by the value of a given property
on a given control. The name of the property is specified by the PropertyName
attribute. The ID of the control is in the ControlId attribute. For the previous
code to work, page developers must guarantee that the page contains a control
with a given ID and property. The value of this property is used as the value for
the matching parameter.

Parameter Types
The data source control can get the information to set parameters in several
ways. How a parameter is bound to a value depends on the type of the param-
eter. ASP.NET 2.0 supports quite a few parameter types, which are listed in
Table 6-6.

Each parameter class has a Name property and a set of properties specific
to its role and implementation. The following code snippet shows the typical
way of binding all parameter types:

Table 6-6 Parameter Types in ASP.NET 2.0

Parameter Description

ControlParameter Gets the parameter value from any public property of a
server control

CookieParameter Sets the parameter value based on the content of the speci-
fied HTTP cookie

FormParameter Gets the parameter value from the specified input field in the
HTTP request form

ProfileParameter Gets the parameter value from the specified property name in
the profile object created from the application’s personaliza-
tion scheme

QueryStringParameter Gets the parameter value from the specified variable in the
request query string

SessionParameter Sets the parameter value based on the content of the speci-
fied Session slot

C06620245.fm Page 189 Tuesday, June 8, 2004 6:05 PM

190 Part II Data Access

<SelectParameters>
<asp:ControlParameter Name="TheEmpID”

ControlId="EmpID” PropertyName="Text” />
<asp:CookieParameter Name="TheCountry”

CookieName="Country” />
<asp:SessionParameter Name="TheOrderID”

SessionField="OrderID” />
<asp:QueryStringParameter Name="TheLastName”

QueryStringField="LastName” />
<asp:FormParameter Name="TheTitle”

FormField="Title” />
</SelectParameters>

Binding Formal Parameters and Actual Values
The Evaluate method of the Parameter class updates and returns the value of
the parameter object. Different parameter classes override this method and
make it return an appropriate value. For example, the ControlParameter returns
the value of the control that it is bound to, while the QueryStringParameter
retrieves the current name/value pair from the HTTP request. All parameters
support a DefaultValue property, for use when the value that the parameter is
bound to is unavailable. The following code snippet shows the use of the
DefaultValue property:

<asp:SqlDataSource runat="server” ID="MySource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;"
SelectCommand="SELECT customerid, companyname FROM customers

WHERE @TheCountry=‘‘ OR country=@TheCountry">
<SelectParameters>

<asp:QueryStringParameter Name="TheCountry”
QueryStringField="Country” DefaultValue="UK” />

</SelectParameters>
</asp:SqlDataSource>

Figure 6-6 shows a page based on this code in action.

F06DR06Figure 6-6 The value of the query string country parameter is passed to
the data source control.

C06620245.fm Page 190 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 191

The binding between formal parameters (the placeholders in the com-
mand text) and actual values depends on how the underlying managed pro-
vider handles and recognizes parameters. If the provider type supports named
parameters—as is the case with SQL Server and Oracle—the binding involves
matching the names of placeholders with the names of the parameters. Other-
wise, the matching is based on the position. Hence, the first placeholder is
bound to the first parameter, and so on. This is what happens if OLE DB is used
to access the data.

Caching Behavior
Data caching is crucial to any realistic Web application and an important feature
to optimize to make the application run faster. Caching is also an important
aspect of data source controls. A data source control retrieves data that will be
made available to other components within the application. When multiple
pages need to access this information, an up-to-date cache provides for a sig-
nificantly faster response. The Cache object of ASP.NET is the preferred place to
store in-memory data.

You can instruct the SqlDataSource control to cache the results of a query
for a certain amount of time—but only if the data source mode is DataSet. (You
cannot do this if you manage to use a data reader to retrieve the rows.) The Sql-
DataSource control provides automatic caching using a time-based cache expi-
ration policy. It can also support an expiration policy based on the new
SqlCacheDependency component. (We’ll cover state management and the
Cache object in Chapter 9.)

Note A unique cache key is created for each combination of caching
parameters, connection string, and the values of SelectParameters
and SelectCommand. The cache key is hashed to protect the source
data used to generate it.

Enabling Automatic Caching
To enable caching on the data source—caching is disabled by default—you set
the EnableCaching property to true. You should also give the CacheDuration
property a nonzero value. The CacheDuration property specifies the number of
seconds before the contents of the data source are discarded, to be reloaded on
the next request. The following code snippet shows a SqlDataSource control
that caches ODBC data to expire every hour:

C06620245.fm Page 191 Tuesday, June 8, 2004 6:05 PM

192 Part II Data Access

<asp:SqlDataSource runat="server”
ConnectionString="DSN=MyData"
ProviderName="System.Data.Odbc"
SelectCommand="SELECT * FROM products"
EnableCaching="true"
CacheDuration="3600” />

An absolute expiration policy is used by default, but the page developer
can configure the policy by using the CacheExpirationPolicy property. The
property gets and sets the cache expiration behavior that, combined with the
duration, fully describes the behavior of the cache that the data source control
uses. In the previous example, absolute expiration means that the data source
contents expire exactly one hour after their creation. An alternative to absolute
expiration is sliding expiration, which means that the duration is reset each time
the cache entry is accessed for reading.

Note If the data source gets its data out of a file (such as an Access
database or an XML file), an early expiration is forced as soon as the
timestamp of the file changes. This occurs no matter what the natural
expiration time would be.

SQL Server Cache Dependency
As you’ll see in more detail in Chapter 9, in ASP.NET 2.0 the contents of some
items in the cache can be bound to the timestamp of a SQL Server table. The
class that makes this possible is SqlCacheDependency. The SqlDataSource con-
trol also supports a form of cache expiration based on a dependency between
its contents and a table in a SQL Server database.

The dependency is specified as a string property. The syntax has the
form “database:table”. The database part of the string must refer to a data-
base listed under the <sqlCacheDependency> section of the web.config file,
and the table part must be the name of a table in that database. You can
specify multiple table dependencies by separating them with semicolons, as
in the following example:

<asp:SqlDataSource runat="server”
ConnectionString="SERVER=…;DATABASE=pubs;UID=…;"
SelectCommand="sp_getdata"
EnableCaching="true"
CacheDuration="3600”
SqlCacheDependency="pubs:Authors;pubs:TitleAuthor”

/>

C06620245.fm Page 192 Tuesday, June 8, 2004 6:05 PM

Chapter 6 The Data Source Object Model 193

You can use this feature so that a change in the database can invalidate
related values in the cache. This is particularly helpful in Web farm scenarios
when an update on a machine can automatically force a refresh on the data of
all others.

Summary

The new data binding model defined in ASP.NET 2.0 makes possible a codeless
way to incorporate data into a Web application. This is made possible by data
source controls that enable declaration and automatic instantiation of data com-
ponents in a page. Two new interfaces—IDataSource and IHierarchicalData-
Source allow data sources and data-bound controls to work together silently
and automatically. These interfaces offer a consistent model of data representa-
tion for both run-time and design-time operations.

Does this mean that ASP.NET 2.0 offers a brand-new, exclusive data object
model? Not exactly. A key goal of ASP.NET 2.0 architects was to preserve the
explicit data binding model of ASP.NET 1.x. This model enables developers to
control exactly when and how data access is performed. The new architecture
is more automatic in nature, but it works side by side with the old model.

Finally, many ASP.NET 1.x developers complained that only the main
ADO.NET objects—DataSet, DataTable, and DataView—could easily be bound
to data controls. XML documents and collections of objects needed extra work
to be bound to high-end controls such as DataGrid.

The introduction of data source controls in ASP.NET 2.0 also enables a
consistent model across a variety of data sources. The page developer can use
the same data binding model regardless of whether the data source is a SQL
table, an XML document, a business object, a site map, or even an Excel work-
sheet.

In the next chapter, we’ll look at the new family of data-bound controls
that were designed to take advantage of codeless data binding.

C06620245.fm Page 193 Tuesday, June 8, 2004 6:05 PM

C06620245.fm Page 194 Tuesday, June 8, 2004 6:05 PM

195

Data-Bound Controls
Data binding was one of the most pleasant surprises in ASP.NET 1.x. It was far
simpler and more effective than the support for data access in Microsoft Active
Server Pages (ASP). But it turned out to have some shortcomings—not in terms
of overall functionality but because you had to write a lot of custom code to
handle necessary operations such as paging, sorting, editing, and deleting data.
As you saw in Chapter 6, the new data source model in ASP.NET 2.0 largely
removes these difficulties. The new data source model works with ASP.NET
2.0–specific controls and also enhances the existing data-bound controls with
extra features such as codeless data binding.

The DataGrid is the principal control of most data-driven ASP.NET 1.x
applications. It generates a tabular representation of data and offers advanced
functionality such as paging, sorting, and in-place editing. Like all ASP.NET 1.x
controls, the DataGrid is fully supported in ASP.NET 2.0 but is partnered with
a newer control that is meant to replace it in the long run. The new grid control,
GridView, is complemented by other view controls, such as DetailsView and
FormView.

In this chapter, we’ll look at the revised architecture of data-bound con-
trols in ASP.NET 2.0 and examine the most important new data-bound con-
trols—GridView, FormView, and DetailsView.

Hierarchy of Data-Bound Controls
A data-bound control is a control that is bound to a data source and generates
its user interface by enumerating the items in the data source. Data-bound con-
trols range from simple list controls (such as DropDownList and ListBox) that

C07620245.fm Page 195 Tuesday, June 8, 2004 6:23 PM

196 Part II Data Access

use the data to flesh out the markup, to more complex controls (such as Data-
List and DataGrid) that use the bound data to create their own hierarchy of
child controls.

In ASP.NET 1.x, the class diagram for data-bound controls is basically
made up of three main branches of controls, as shown in Figure 7-1.

F07DR01Figure 7-1 The class diagram for data-bound controls in ASP.NET 1.x

The Repeater control descends directly from Control; DataGrid and
DataList are both specializations of a base data list, which is a templatized class.
List controls form yet another group of homogeneous components that are
characterized by a list of items.

In ASP.NET 2.0, the class diagram has changed significantly. All controls
descend from the same base class—BaseDataBoundControl—regardless of the
actual implementation or user interface characteristics. BaseDataBoundControl
branches off into two more specific child classes—DataBoundControl and
HierarchicalDataBoundControl. Figure 7-2 shows the hierarchy of data-bound
classes in ASP.NET 2.0.

Control

ListControlBaseDataList

DataList

CheckBoxList

RadioButtonList

DropDownList

ListBox

DataGrid

WebControlRepeater

C07620245.fm Page 196 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 197

F07DR02Figure 7-2 The class diagram for data-bound controls in ASP.NET 2.0

Note For completeness, the ASP.NET 2.0 class diagram in Figure 7-2
had to be merged with the diagram shown in Figure 7-1 to include
BaseDataList classes and the Repeater control. These are all fully
supported in the newer version of the platform. List controls have been
moved one level down in the System.Web hierarchy and now inherit
from DataBoundControl instead of WebControl. The same is true of
the AdRotator control, which inherits WebControl in ASP.NET 1.x and
DataBoundControl in ASP.NET 2.0. (As you’ll see in a moment, this
doesn’t break backward compatibility because DataBoundControl in
turn inherits WebControl.)

BaseDataBoundControl

DataBoundControl HierarchicalDataBoundControl

CompositeDataBoundControlListControlAdRotator

BulletedList

TreeView

Menu

DetailsView

FormView

GridView

CheckBoxList

DropDownList

RadioButtonList

ListBox
Classes

Base classes

C07620245.fm Page 197 Tuesday, June 8, 2004 6:23 PM

198 Part II Data Access

The DataBoundControl Base Class
DataBoundControl is an abstract base class that defines the common character-
istics of flat, nonhierarchical controls that use a data source. The class deter-
mines how a data-bound control binds to a collection of data items or to a data
source object.

Remarkably, in ASP.NET 2.0 all data-bound controls—with the notable
exceptions of DataList, DataGrid, and Repeater—share a common base class.
You can group data-bound controls into three categories: simple, composite,
and hierarchical controls. Before we look at each of these categories in more
detail, let’s briefly review the properties and methods that all data-bound con-
trols share.

Properties of the DataBoundControl Class
The DataBoundControl class inherits from WebControl and can thus have all
the visual and style properties defined on the base class. Examples of visual
properties include BackColor, ForeColor, Font, BorderStyle, and the new
SkinID. The DataBoundControl class also features infrastructural properties
such as Context, Page, and AccessKey. The class declaration is shown here:

public abstract class DataBoundControl : WebControl

The DataBoundControl class declares only a few data-related properties,
which are listed in Table 7-1.

DataMember and DataSource are familiar to ASP.NET 1.x developers. In
ASP.NET 2.0, they play exactly the same role as before. The DataSourceID
property is different, however. It refers to the data source object. (Data source
objects were discussed in Chapter 6.) The property gets and sets the ID of the
bound data source object. Note that DataSource and DataSourceID cannot be
set at the same time. If they are both set, an exception is thrown.

Table 7-1 Data-Related Properties of DataBoundControl

Property Description

DataMember Selects the list of data that the control should bind to when the data
source contains more than one list. For example, it specifies the name
of the DataTable to pick up when the control is bound to a DataSet.

DataSource Indicates the data source to bind to. The data source must be an object
that implements the IEnumerable or IListSource interface.

DataSourceID The ID of the data source object to use to retrieve data.

C07620245.fm Page 198 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 199

Methods of the DataBoundControl Class
The DataBoundControl class declares just one data-related public method—the
well-known DataBind method. Pages and controls call this method when they
need to pump data out of the data source:

public virtual void DataBind()

The method is used in the same way in ASP.NET 2.0, but its internal imple-
mentation has been slightly enhanced. In ASP.NET 1.x, the DataBind method
fires the DataBinding event and then recursively invokes DataBind on child
controls to perform the binding. In ASP.NET 2.0, the behavior of the method is
more sophisticated because it has to take into account both old-fashioned,
IEnumerable-based data sources as well as the new data source controls.

Simple Data-Bound Controls
The term simple data-bound control refers to Web controls that have a list-
based user interface. The data source provides these controls with data items to
populate a list of HTML markup elements. ASP.NET 2.0 has two types of simple
data-bound controls—the AdRotator control and list controls.

The AdRotator Control
Introduced with ASP.NET 1.x, the AdRotator control displays an advertising
banner on a Web page that changes whenever the page refreshes. The control
retrieves ad information from a separate XML file. For each ad, the XML file con-
tains the path to a descriptive image, the URL to go to when the control is
clicked, and the frequency of the ad. In ASP.NET 1.x, the control inherits Web-
Control and is not specifically marked as a data-bound control.

The ASP.NET 2.0, the AdRotator control is extended to support arbitrary
data sources using the default data-binding model. Basically, the ASP.NET 2.0
AdRotator control is the same as the one in version 1.x but with full support for
data binding. The following code shows how to bind an ad rotator to a
Microsoft Access database:

<asp:accessdatasource runat="server” id="MyAccessSource"
DataFile="data/advert.mdb"
SelectCommand="SELECT * FROM AdTable” />

<asp:adrotator id="Adrotator1” runat="server”
ImageUrlField="Image"
NavigateUrlField="Url"
AlternateTextField="AltText"
DataSourceID="MyAccessSource” />

C07620245.fm Page 199 Tuesday, June 8, 2004 6:23 PM

200 Part II Data Access

Note that no matter what the effective data source is, the data passed to
the AdRotator must match the expected schema format—the same XML schema
of version 1.x:

<Advertisements>
<Ad>

<ImageUrl>images/20245.jpg</ImageUrl>
<NavigateUrl>books/20245.aspx</NavigateUrl>
<AlternateText>Get this Book Today!</AlternateText>
<Keyword>Books</Keyword>
<Impressions>50</Impressions>

</Ad>
§

</Advertisements>

The ad records can be loaded from any valid data source as long as they
have the correct schema.

Note The AdRotator control has a couple of notable new features
that aren’t strictly related to data binding. In ASP.NET 2.0, the control
supports the ability to create pop-up and pop-under ads, in addition to
the standard banners. Pop-up and pop-under ads are created in their
own window, above or below the browser’s window for the page that
contains the rotator.

For tracking purposes, the AdRotator control supports counters and
updates them when an ad is clicked. You can associate each ad with its own
counter.

The BulletedList Control
In ASP.NET 2.0, list controls are the same as in version 1.x, but with the notable
addition of the BulletedList control. (Chapter 1 briefly introduced this control.)
Typically, you use the BulletedList control to create a list of items formatted
with bullets. Like all list controls, BulletedList allows you to specify individual
items by defining a ListItem object for each desired entry:

<asp:bulletedlist runat="server"
bulletimageurl="images/bullet.gif”
bulletstyle="CustomImage">
<asp:listitem>One</asp:listitem>
<asp:listitem>Two</asp:listitem>
<asp:listitem>Three</asp:listitem>

</asp:bulletedlist>

C07620245.fm Page 200 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 201

However, you usually don’t statically generate the list items—you fill the
bulleted list via its data binding capabilities. The following code snippet shows
how:

<asp:SqlDataSource runat="server” id="MySource”
ConnectionString="SERVER=…;DATABASE=northwind;UID=…;"
DataSourceMode="DataSet”
SelectCommand="SELECT customerid, companyname FROM customers

WHERE country=‘Italy’ />
<asp:BulletedList runat="server” id="custList"

BulletImageUrl="images/bullet.gif”
BulletStyle="CustomImage”
DisplayMode="LinkButton”
DataSourceID="MySource”
DataTextField="companyname” />

The bulleted list generated by the code is bound to a Microsoft SQL Server
data source and receives the DataTable returned by the specified query. The
DataTextField property selects the column to show, and DisplayMode sets the
display mode—plain text, link buttons, or hyperlinks. In terms of user interface
elements, the link button or hyperlink modes look the same. However, Hyper-
Link mode links the page directly to an external URL and the click is handled
entirely by the browser. In LinkButton mode, the click is handled by the
ASP.NET runtime and originates a server-side event. To handle the click event
on the server, you define a OnClick handler, as follows:

void OnClick(object sender, BulletedListEventArgs e)
{

// Retrieve the item that was clicked
int itemIndex = e.Index;
§

}

The Index property on the BulletedListEventArgs class contains the 0-
based index of the list item that was clicked. You can customize the style of the
bullet by using a personal image or by choosing one of the built-in styles. The
BulletStyle property controls that.

Other List Controls
The ListControl class is an abstract class that provides common basic function-
ality for the BulletedList class and a few other controls. As shown in Figure 7-2,
all the ASP.NET 1.x list controls inherit from ListControl. They are DropDown-
List, ListBox, RadioButtonList, and CheckBoxList.

All items displayed in the list control are stored in the Items collection. You
can programmatically specify or determine the index of the selected item in the

C07620245.fm Page 201 Tuesday, June 8, 2004 6:23 PM

202 Part II Data Access

list control by using the SelectedIndex property. You can access the properties
of the selected item by using the SelectedItem property. If you’re interested only
in the value of the selected item, use the SelectedValue property. The Selected-
IndexChanged server event is fired whenever the user clicks to change the
selection on the control. Note that this event doesn’t automatically cause the
page to post back unless the AutoPostback property is true.

ASP.NET 2.0 list controls work the same way as in version 1.x. The only
significant difference is that version 2.0 controls also support data source
objects through the DataSourceID property.

Composite Data-Bound Controls
Composite controls deserve special attention. A composite control manages a
tree of child controls, and its output is obtained by merging the markup of the
constituent components. In ASP.NET 1.x, the best practice with composite con-
trols was a three-step approach: inherit a base class, build the controls tree, and
make the control a naming container.

In ASP.NET 2.0, the architecture of composite controls has been enhanced,
and two new base classes have been added—CompositeControl and Composite-
DataBoundControl. As a result, the three steps are generally reduced to two—
you derive from the composite base class and build the controls tree.

CompositeControl and CompositeDataBoundControl are separate classes
with no hierarchical relationship, but they have a similar blueprint. The former
addresses the needs of UI-oriented composite controls; the latter defines a com-
mon foundation for all composite data-bound controls.

Basic Behavior of Composite Controls
As mentioned, building a composite control in ASP.NET 1.x typically requires
three steps. First the control inherits from one of the two control base classes—
WebControl or Control. You choose the class according to your user interface
requirements. The key difference between the two base classes is that WebCon-
trol has the extra visual properties. Typically, you inherit Control if you want to
be able to control the rendering and assignment of colors, fonts, and border
styles. This is a good approach if the layout of the control requires multiple
background colors or fonts.

Second, the output of the control shouldn’t be generated by overriding the
Render method. Instead, you should override the CreateChildControls pro-
tected and virtual method. CreateChildControls is invoked just before the con-
trol is rendered. All you have to do is build the control tree by instantiating any
child control and adding it to the Controls collection of the parent. The default

C07620245.fm Page 202 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 203

implementation of Render can then easily iterate through the children and out-
put the markup to the browser.

Last but not least, you should configure the control as a naming container
so that any child control is named after its parent. The autogenerated ID for a
child control is prefixed with the ID of the parent. This apparently minor
change has important repercussions for how the control and its children work.
By implementing the INamingContainer interface, you guarantee that any
event raised by a child control is correctly captured and handled on the server.
The INamingContainer interface is a marker interface with no methods at all,
so to implement it you just add the name of the interface to the class declara-
tion.

The CompositeDataBoundControl Class
The CompositeDataBoundControl class, which inherits from DataBoundCon-
trol, is marked as abstract and declares and implements the Controls property.
The Controls property stores references to child controls. The CompositeDa-
taBoundControl class also exposes the CreateChildControls method:

protected virtual int CreateChildControls(
IEnumerable dataSource,
bool dataBinding)

The behavior of the method depends on the Boolean argument. A value
of true creates the actual control tree and a value of false re-creates the control
hierarchy as the control reinitializes from view state. When the dataBinding
parameter is false, the data source parameter is ignored and the child view state
and the Controls collection are cleared. When the dataBinding parameter is
true, the control creates the tree based on the data source.

In ASP.NET 1.x, CreateChildControls is called to accomplish a series of
tasks, as shown in the following pseudocode:

void CreateChildControls()
{

Controls.Clear();
ClearChildViewState();
TrackViewState();

// TODO:: Create the controls tree

ChildControlsCreated = true;
}

In ASP.NET 2.0, the programming model is simplified. The code just
shown is embedded in a new protected method—PerformDataBinding. This

C07620245.fm Page 203 Tuesday, June 8, 2004 6:23 PM

204 Part II Data Access

method performs all necessary and boilerplate tasks and then calls your imple-
mentation of CreateChildControls. In other words, when you implement
CreateChildControls in ASP.NET 2.0 composite controls, you only have to worry
about building the control tree; the system does the rest.

Examples of Composite Data-Bound Controls
ASP.NET 2.0 defines a few key composite data-bound controls, such as Grid-
View, FormView, and DetailsView. The GridView control can be considered the
successor to the DataGrid, with the added ability to take advantage of data
source controls. As you’ll see in more detail in the section titled “The GridView
Control,” the GridView control supports several new features, including the
built-in ability to sort, edit, page, select, and update data. In short, the GridView
is what most developers wanted the ASP.NET 1.x DataGrid to be.

The DetailsView and FormView controls have no counterpart in ASP.NET
1.x. Both render a single record at a time from the associated data source,
optionally providing paging buttons to navigate between records. The differ-
ence between the two is in the use of templates. The DetailsView control pro-
vides a flexible and customizable user interface but a fixed layout. The
FormView control is fully templatized. As Figure 7-3 shows, a details view is
similar to the Form view of an Access database.

F07DR03Figure 7-3 Comparing the Access Form view and the ASP.NET
details view

The DetailsView and FormView controls are typically employed to update
existing records and insert new ones. They fully benefit from and apply the
new two-way binding model that was briefly mentioned in Chapter 5. Both
controls lend themselves well to building master/detail views of data when
used along with a GridView or a DataGrid.

C07620245.fm Page 204 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 205

Hierarchical Data-Bound Controls
The HierarchicalDataBoundControl class is the foundation of hierarchical data-
bound controls such as TreeView and Menu. The class is marked as abstract and,
unlike its fellow CompositeDataBoundControl class, doesn’t provide significant
built-in services. The class acts as a logical container for controls that consume
hierarchical data. Two of these controls are the TreeView and the Menu.

Building a Tree-Based Data View
The TreeView control can bind to any data source object that supports the
IHierarchicalDataSource interface. In Chapter 6, you saw examples of such
objects, including XmlDataSource and SiteMapDataSource. The TreeView also
exposes a DataSource property of type Object, which can be assigned an Xml-
Document type. You can bind a DataSet with nested relations only if you first
transform it into an XmlDataDocument or into plain XML. In the latter case,
though, you must first set the XML string to the Data property of an XmlData-
Source object and bind using the XML data source control.

By default, the TreeView binds XML nodes to its own nodes in a way that
reflects the name of the node rather than a particular attribute or the inner text.
The result is shown in the left pane of Figure 7-4. As you can see, it doesn’t look
particularly useful.

F07DR04Figure 7-4 A TreeView control bound to XML hierarchical data

You can control the node-to-node association by using a bunch of binding
parameters. In particular, you can bind the properties of a treeview node to a spe-
cific data source field by specifying tree node bindings. A TreeNodeBinding object
defines the relationship between each data item and the node it is binding to.

C07620245.fm Page 205 Tuesday, June 8, 2004 6:23 PM

206 Part II Data Access

<asp:treeview id="MyTree” runat="server” DataSourceId="XmlView">
<DataBindings>

<asp:TreeNodeBinding Depth="2” DataMember="customerid”
TextField="#innertext” />

</DataBindings>
</asp:treeview>

To fully understand this example, consider the XML schema shown earlier
in Figure 7-4. The node binding applies at level 2 and involves all the nodes
named customerid. (The case is important.) By default, the TreeView node dis-
plays the value returned by the ToString method of the data item, which turns
out to be just the node name. The TextField property of the TreeNodeBinding
object changes this default to the specified attribute name or the inner text. As
a result, the customerid node of Figure 7-4 is replaced by the inner text of the
node at level 2, or by any other specified attribute. In addition to customizing
the node text, you can indicate the ToolTip field, the image URL field, and the
URL to navigate to when the node is clicked.

The TreeView control can also support graceful expand/collapse function-
ality, depending on client capabilities, and a customizable look and feel that
includes tree node images, plus/minus indicators, selection check boxes, and
styles. For performance reasons, individual treeview nodes are not rendered
through controls but as plain text.

The Menu Control
Menus are pervasive in today’s Web sites. ASP.NET 2.0 addresses this reality
with a new control—the Menu control—to complete the end-to-end site navi-
gation functionality in the ASP.NET control toolbox. The Menu control can be
bound to any data source and also supports an explicit list of items for the sim-
plest cases. Unlike the TreeView, the Menu control doesn’t support the down-
load-on-demand functionality that brings data down on the browser only when
needed. (The TreeView does this using the script callback mechanism we dis-
cussed in Chapter 1.) This is because the download size of menu controls is
typically small and the costs of such a complex feature wouldn’t pay off.

An ASP.NET menu object consists of menu items (such as those shown in
Figure 7-5) stored in a collection. MenuItem is the class that describes a single
item, and MenuItems is the collection property that returns all the child items of
a given menu. The control supports a few static and dynamic styles for constit-
uent elements such as the selected item, submenus, and the item the mouse is
currently hovering over. Dynamic styles are applied using the Dynamic HTML
object model. An example of a dynamic style is one that is assigned to the menu
item currently under the mouse. Static styles are programmatically set and never
change after user actions.

C07620245.fm Page 206 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 207

F07DR05Figure 7-5 A simple Menu control in action

Here’s a code snippet for the menu shown in the figure:

<asp:Menu ID="Menu1” Runat="server">
<Items>

<asp:MenuItem Text="Intro">
<asp:MenuItem Text="Read about the book” />
<asp:MenuItem Text="Explore the TOC” />
<asp:MenuItem Text="Get sample code” />
<asp:MenuItem Text="Buy the book” />

</asp:MenuItem>
<asp:MenuItem Text="Sample Code” />
<asp:MenuItem Text="Errata” />

</Items>
</asp:Menu>

The GridView Control
The GridView is a major upgrade of the ASP.NET 1.x DataGrid control. It pro-
vides the same set of capabilities, plus a long list of extensions and improve-
ments. The DataGrid—which is still fully supported in ASP.NET 2.0—is an
extremely powerful and versatile control, but it has one big drawback: it
requires you to write a lot of custom code, even to handle relatively simple (but
common) operations such as paging, sorting, editing, or deleting data. The
GridView control was designed from the ground up to work around this limita-
tion and make two-way data binding happen with as little code as possible. The
control is tightly connected to the family of new data source controls and can
handle direct data source updates as long as the underlying data source object
supports these capabilities.

C07620245.fm Page 207 Tuesday, June 8, 2004 6:23 PM

208 Part II Data Access

This virtually codeless two-way data binding is by far the most notable
feature of the new GridView control, but the enhancements are numerous. The
control improves over the DataGrid in many ways, including adding the ability
to define multiple primary key fields, new column types, and style and templat-
ing options. The GridView also has an extended eventing model that allows
you to handle or cancel events.

The GridView Object Model
The GridView control provides a tabular, grid-like view of the contents of a data
source. Each column represents a data source field, and each row represents a
record. The class is declared as follows:

public class GridView : CompositeDataBoundControl,
IPostBackEventHandler,
IPostBackContainer,
ICallbackContainer,
ICallbackEventHandler,
INamingContainer

The base class ensures data binding support. The implementation of the
IPostBackEventHandler and IPostBackContainer interfaces allows the control
to define a centralized console to handle all the server-side events that constit-
uent controls (such as link buttons) might generate. Any users clicking make
the page post back. The postback event is resolved, and control passes to the
RaisePostBackEvent method on the interface. The method examines the com-
mand name carried by the event and decides what to do. Typically, it starts an
update, select, or sort operation on the underlying data source. The ICallback-
Container and ICallbackEventHandler interfaces make possible more effective
paging and sorting, supported through client-side, out-of-band calls using the
new script callback technology. (See Chapter 1.)

Let’s begin our tour of the GridView control by looking at the control’s
programming interface.

Properties of the GridView
The GridView supports a large set of properties that fall into the following
broad categories: behavior, visual settings, style, state, and templates. Table 7-2
details the properties that affect the behavior of the GridView.

The SortDirection and SortExpression properties specify the direction and
the sort expression on the column that currently determines the order of the
rows. Both properties are set by the control’s built-in sorting mechanism when
users click a column’s header. The whole sorting engine is enabled and dis-
abled through the AllowSorting property. The EnablePagingAndSortingCall-

C07620245.fm Page 208 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 209

backs property toggles on and off the control’s ability to use script callbacks to
page and sort without doing roundtrips to the server to change the entire page.

Each row displayed within a GridView control corresponds to special type
of a grid item. The list of predefined types of items is nearly identical to that of
the DataGrid and includes items such as the header, rows and alternating rows,
footer, and pager. These items are static in the sense that they remain in place
for the lifetime of the control in the application. Other types of items are active
for a short period of time—the time needed to accomplish a certain operation.
Dynamic items are the edit and the selected row templates. New types are the
EmptyData item, which identifies the body of the grid when bound to an empty

Table 7-2 Behavior Properties of the GridView Control

Property Description

AllowPaging Indicates whether the control supports paging.

AllowSorting Indicates whether the control supports sorting.

AutoGenerateColumns Indicates whether columns are automatically cre-
ated for each field in the data source. The default
is true.

AutoGenerateDeleteButton Indicates whether the control includes a button
column to let users delete the record that is
mapped to the clicked row.

AutoGenerateEditButton Indicates whether the control includes a button
column to let users edit the record that’s mapped
to the clicked row.

AutoGenerateSelectButton Indicates whether the control includes a button
column to let users select the record that’s
mapped to the clicked row.

EnablePagingAndSortingCallbacks Indicates whether paging and sorting should be
accomplished using script callback functions. Dis-
abled by default.

SortDirection A read-only property that gets the direction of the
column current sort.

SortExpression A read-only property that gets the current sort
expression.

SummaryViewColumn Indicates the name of the data column used to
provide the summary of the record when the
control renders on mobile devices.

UseAccessibleHeader Specifies whether to render <TH> tags for the
column headers instead of default <TD> tags.

C07620245.fm Page 209 Tuesday, June 8, 2004 6:23 PM

210 Part II Data Access

data source, and the items introduced for adaptive rendering on mobile
devices. The SummaryTitle, DetailLink, and DetailTitle items belong to this
group. Each item type has a made-to-measure style property. Table 7-3 details
the style properties available on the GridView control.

Table 7-4 lists most of the properties that affect the appearance of the con-
trol, and Table 7-5 details the templating properties.

Table 7-3 Style Properties of the GridView Control

Style Description

AlternatingRowStyle Defines the style properties for every other row displayed in
the table

DetailLinkStyle Defines the style properties for the links in the details view of
the control when it’s rendered on mobile devices

DetaillTitleStyle Defines the style properties for the title in the details view of
the control when it’s rendered on mobile devices

EditRowStyle Defines the style properties for the row being edited

EmptyDataRowStyle Defines the style properties for the EmptyData row, which is
rendered when the GridView is bound to empty data sources

FooterStyle Defines the style properties for the grid’s footer

HeaderStyle Defines the style properties for the grid’s header

PagerStyle Defines the style properties for the grid’s pager

RowStyle Defines the style properties for the rows displayed in the
table

SelectedRowStyle Defines the style properties for the row currently being
selected

SummaryTitleStyle Defines the style properties for the title in the summary view
of the control when it’s rendered on mobile devices

Table 7-4 Appearance Properties of the GridView Control

Property Description

BackImageUrl Indicates the URL to an image to display in the background

CellPadding Indicates the amount of space (in pixels) between the con-
tents of a cell and the border

CellSpacing Indicates the amount of space (in pixels) between cells

C07620245.fm Page 210 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 211

The PagerSettings object groups together all the visual properties you can
set on the pager—including the Mode, NextPageText, PageButtonCount, and
PreviousPageText properties, which will sound familiar to DataGrid program-
mers. The PagerSettings class also adds some new properties to accommodate
new predefined buttons (first and last pages) and the use of images instead of
text in the links.

The final block of properties—the state properties—is shown in Table 7-6.
State properties return information about the internal state of the control.

DetailNextRowText Indicates the text for the link to the next row in the details
view on mobile devices

DetailPreviousRowText Indicates the text for the link to the previous row in the
details view on mobile devices

DetailSummaryText Indicates the text for the link to the summary view when the
control is rendering on a mobile device

GridLines Indicates the gridline style for the control

HorizontalAlign Indicates the horizontal alignment of the control on the page

EmptyDataText Indicates the text to render in the control when it’s bound to
an empty data source

PagerSettings Gets a reference to the PagerSettings object that lets you set
the properties of the pager buttons

ShowFooter Indicates whether the footer row is displayed

ShowHeader Indicates whether the header row is displayed

Table 7-5 Templating Properties of the GridView Control

Template Description

EmptyDataTemplate Indicates the template content to be rendered when the Grid-
View is bound to an empty source. This property takes prece-
dence over EmptyDataText if both are set. If neither is set, the
grid isn’t rendered if it’s bound to an empty data source.

PagerTemplate Indicates the template content to be rendered for the pager. This
property overrides any settings you might have made through
the PagerSettings property.

Table 7-4 Appearance Properties of the GridView Control

Property Description

C07620245.fm Page 211 Tuesday, June 8, 2004 6:23 PM

212 Part II Data Access

If you’re an experienced DataGrid programmer, you’ll notice many simi-
larities between GridView and DataGrid. The GridView control is designed to
leverage the new data source object model, and it accepts its data through the
DataSourceID property. The control also supports the DataSource property,
but if you bind data in that way, some of the features (such as built-in updates

Table 7-6 State Properties

Property Description

BottomPagerRow Returns a GridViewRow object that represents the bottom pager of
the grid.

Column Gets a collection of objects that represent the columns in the grid.
Note that this collection is always empty if columns are autogener-
ated.

DataKeyNames Gets and sets an array that contains the names of the primary key
fields for the currently displayed items.

DataKeys Gets a collection of DataKey objects that represent the values of
the primary key fields set in DataKeyNames for the currently dis-
played records.

EditIndex Gets and sets the 0-based index that identifies the row currently
rendered in edit mode.

FooterRow Returns a GridViewRow object that represents the footer of the
grid.

HeaderRow Returns a GridViewRow object that represents the header of the
grid.

PageCount Gets the number of pages required to display the records of the
data source.

PageIndex Gets and sets the 0-based index that identifies the currently dis-
played page of data.

PageSize Indicates the number of records to display on a page.

Rows Gets a collection of GridViewRow objects that represent the data
rows currently displayed in the control.

SelectedDataKey Returns the DataKey object for the currently selected record.

SelectedIndex Gets and sets the 0-based index that identifies the row currently
selected.

SelectedRow Returns a GridViewRow object that represents the currently
selected row.

SelectedValue Returns the explicit value of the key as stored in the DataKey
object. Similar to SelectedDataKey.

TopPagerRow Returns a GridViewRow object that represents the top pager of the
grid.

C07620245.fm Page 212 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 213

and paging) become unavailable. Despite the similarities, 100 percent code
compatibility is impossible to achieve. In ASP.NET 2.0 code, you should use the
GridView control.

Events of the GridView Control
The GridView control doesn’t have methods other than the well-known Data-
Bind method. As mentioned, though, in many situations you don’t need to call
methods on the GridView control. The data binding process is started implicitly
when you bind a data source control with a data-bound control such as the
GridView.

In ASP.NET 2.0, many controls, and the Page class itself, feature pairs of
events of the type doing/done. Key operations in the control life cycle are
wrapped by a pair of events—one firing before the operation takes place and
one firing immediately after the operation is completed. The GridView class is
no exception. The list of events is shown in Table 7-7.

Table 7-7 Events Fired by the GridView Control

Event Description

PageIndexChanging,
PageIndexChanged

Both events occur when one of the pager buttons is clicked.
They fire before and after the grid control handles the paging
operation, respectively.

RowCancelingEdit Occurs when the Cancel button of a row in edit mode is
clicked, but before the row exits edit mode.

RowCommand Occurs when a button is clicked.

RowCreated Occurs when a row is created.

RowDataBound Occurs when a data row is bound to data.

RowDeleting,
RowDeleted

Both events occur when a row’s Delete button is clicked.
They fire before and after the grid control deletes the row,
respectively.

RowEditing Occurs when a row’s Edit button is clicked but before the
control enters edit mode.

RowUpdating,
RowUpdated

Both events occur when a row’s Update button is clicked.
They fire before and after the grid control updates the row,
respectively.

SelectedIndexChanging,
SelectedIndexChanged

Both events occur when a row’s Select button is clicked. The
two events occur before and after the grid control handles
the select operation, respectively.

Sorting, Sorted Both events occur when the hyperlink to sort a column is
clicked. They fire before and after the grid control handles
the sort operation, respectively.

C07620245.fm Page 213 Tuesday, June 8, 2004 6:23 PM

214 Part II Data Access

RowCreated and RowDataBound events are the same as the DataGrid
ItemCreated and ItemDataBound events, with new names. They behave
exactly as they do in ASP.NET 1.x. The same is true of the RowCommand event,
which is the same as the DataGrid ItemCommand event.

The availability of events that announce a certain operation significantly
enhances your programming power. By hooking the RowUpdating event, you
can cross-check what is being updated and what the new values are. For exam-
ple, you might want to handle the RowUpdating event to HTML-encode the val-
ues supplied by the client before they are persisted to the underlying data store.
This simple trick helps you to fend off script injections.

The GridView Control in Action
The programming interface of the GridView control was designed to be as close
as possible to that of the DataGrid. This doesn’t mean that the existing code of
the DataGrid is 100 percent compatible with a GridView, however. Several
events and properties have been renamed (for example, ItemCreated has been
renamed RowCreated), and some have been slightly extended (for example, the
DataKeyField string property is now the DataKeyNames array).

In addition, the GridView fully supports the data source object model of
the new ASP.NET data controls. The GridView supports the DataGrid program-
ming model but is better suited to working with data source objects.

Simple Data Binding
The following code demonstrates the simplest way to bind data to a GridView
control. The data source object keeps the page virtually code-free.

<asp:TextBox runat="server” ID="Initial” MaxLength="1” />
<asp:SqlDataSource runat="server” ID="MySource”

ConnectionString="SERVER=…;DATABASE=northwind;UID=…;"
SelectCommand="SELECT companyname, country FROM customers

WHERE companyname LIKE @Initial + ’%’">
<SelectParameters>

<asp:ControlParameter Name="Initial” ControlId="Initial”
PropertyName="Text” />

</SelectParameters>
</asp:SqlDataSource>
<asp:GridView runat="server” id="grid” DataSourceID="MySource” />

Setting the DataSourceID property triggers the binding process, which
runs the data source query and populates the user interface of the grid. You
need not write any code. Note that if you replace the <asp:gridview> tag with
the corresponding DataGrid markup, the final effect—at least in this simple
case—is the same. (See Figure 7-6.)

C07620245.fm Page 214 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 215

F07DR06Figure 7-6 The GridView in action in a simple scenario

Working with an Empty Data Source
If no data source property is set, the GridView control doesn’t render. If an
empty data source object is bound and an EmptyDataTemplate template is
specified, the results shown to the user have a more friendly look:

<asp:gridview runat="server” datasourceid="MySource">
<emptydatatemplate>

<asp:label runat="server">
There’s no data to show in this view.

</asp:label>
</emptydatatemplate>

</asp:gridview>

The EmptyDataTemplate property is ignored if the bound data source is
not empty. Figure 7-7 shows the output generated by the empty template.

F07DR07Figure 7-7 The GridView in action on an empty data source

C07620245.fm Page 215 Tuesday, June 8, 2004 6:23 PM

216 Part II Data Access

Adaptive Rendering
Another important difference between the DataGrid and GridView controls is
that the adaptive rendering engine of Visual Studio 2005 server controls enables
the GridView to adapt its HTML output to the characteristics of the browser
(with special attention paid to mobile devices). Because of their limited screen
size, mobile devices often require that the control reorganize the output to
make it fit. For devices with small screens, the GridView shows only a single
record per page and provides additional links to move between records. The
initial screen displays only a single column of data defined by the Summary-
ViewColumn property. The DetailLink item represents the link to the rest of the
current record.

Displaying Data
The most common use of a grid control is to display the results of a database
query in a read-only grid for reporting purposes. The GridView control makes
this easier than ever. You set up a data source object, providing the connection
string and the query, and assign the DataSourceID property of the GridView to
the ID of the data source control. At run time, the GridView binds to the source
and generates appropriate columns of data. By default, however, all the col-
umns in the query are displayed in the grid.

Like the DataGrid control, the GridView supports custom column fields
through the Columns collection. If you want to display only a subset of the
retrieved data fields or if you simply want to customize their appearance, you
can populate the Columns collection with objects that represent columns of
data. The GridView supports a variety of column types, including hyperlink,
image, and check box columns.

Configuring Columns
When you use a declared set of columns, the AutoGenerateColumns property
of the grid is typically set to false. However, this is not a strict requirement—a
grid can have declared and autogenerated columns. In this case, declared col-
umns appear first. Note also that autogenerated columns are not added to the
Columns collection. As a result, when column autogeneration is used, the Col-
umns collection is empty.

The Columns property is a collection of DataControlField objects. The
DataControlField object logically corresponds to the DataGrid’s DataGridCol-
umn object. It has a more general name because these field objects can be
reused in other data-bound controls that do not necessarily render columns (such
as the DetailsView control). You can define your columns either declaratively or

C07620245.fm Page 216 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 217

programmatically. In the latter case, you just instantiate any needed data field
objects and add them to the Columns collection. Columns of data are displayed
in the order that the column fields appear in the collection.

BoundField field = new BoundField();
field.DataField = “companyname";
field.HeaderText = “Company Name";
grid.ColumnFields.Add(field);

To statically declare your columns in the .aspx source file, you use the
<Columns> tag, as shown here:

<columns>
<asp:boundfield datafield="customerid” headertext="ID” />
<asp:boundfield datafield="companyname” headertext="Company Name” />

</columns>

Table 7-8 lists the column field classes that can be used in a GridView con-
trol. All the classes inherit DataControlField.

Table 7-8 Supported Column Types in GridView Controls

Type Description

BoundField Default column type. Displays the value of a field as plain text.

ButtonField Displays the value of a field as a command button. You can choose
the link or the push button style. When clicked, the page posts
back and fires a RowCommand server event.

CheckBoxField Displays the value of a field as a check box. It is commonly used
to render Boolean values.

CommandField Enhanced version of ButtonField that represents special commands
such as Edit, Delete, and Select.

HyperLinkField Displays the value of a field as a hyperlink. When you use this
type, you normally bind one data field for the hyperlink’s text and
one for the hyperlink’s URL. When the hyperlink is clicked, the
browser navigates to the specified URL. HyperLinkField accepts an
array of data fields to build multiparameter URLs.

ImageField Displays the value of a field as an image. The image can come
from a database or be specified through a URL.

TemplateField Displays user-defined content for each item in the column. You use
this column type when you want to create a custom column field.
The template can contain any number of data fields combined with
literals, images, and other controls.

C07620245.fm Page 217 Tuesday, June 8, 2004 6:23 PM

218 Part II Data Access

All these classes inherit the base class DataControlField. Table 7-9 lists the
main properties shared by all column types.

The properties listed in the table represent a subset of the properties that
each column type actually provides. In particular, each type of column defines
a tailor-made set of properties to define and configure the bound field.

Figure 7-8 shows a few of these columns in action.

F07DR08Figure 7-8 A GridView composed of different types of columns

Table 7-9 Common Properties of GridView Columns

Property Description

FooterStyle Gets the style object for the column’s footer.

FooterText Gets and sets the text for the column’s footer.

HeaderImageUrl Gets and sets the URL of the image to place in the column’s
header.

HeaderStyle Gets the style object for the column’s header.

HeaderText Gets and sets the text for the column’s header.

ItemStyle Gets the style object for the various columns’ cells.

ShowHeader Indicates whether the column’s header is rendered.

SortExpression Gets and sets the expression used to sort the grid contents when
the column’s header is clicked. Typically, this string property is set
to the name of the bound data field.

C07620245.fm Page 218 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 219

The following listing shows the markup code behind the grid in the figure:

<columns>
<asp:boundfield datafield="productname” headertext="Product” />
<asp:checkboxfield datafield="discontinued”

headertext="Discontinued” />
<asp:buttonfield buttontype="Button” text="Buy” />
<asp:hyperlinkfield text="More Info...”

datanavigateurlfields="productid,productname"
datanavigateurlformatstring="/moreinfo.aspx?id={0}&name={1}” />

</columns>

The name of the product is displayed using a BoundField object. The Dis-
continued column clearly renders a Boolean value. The sample button column
allows you to add the product to the shopping cart; the hyperlink can navigate
to a page with more information about the product. In the sample, the button
column shows a fixed text for all data items. You get this by setting the Text
property on the ButtonField class. If you want to bind the button text to a par-
ticular field on the current data item, you set the DataTextField property to the
name of that field.

The same pattern applies to the hyperlink column field in regard to the
caption of displayed hyperlinks. The URL can be set in either of two ways:
through a direct binding to a data source field or by using a hardcoded URL
with a customized query string. The second approach is illustrated in the previ-
ous sample. You choose the direct binding if the URL is stored in one of the
data source fields. In this case, you set the DataNavigateUrlFields property to
the name of the column. In some situations, though, the URL to access is appli-
cation-specific and not stored in the data source. In this case, you can set the
DataNavigateUrlFormatString property with a hardcoded URL and with an
array of parameters in the query string. The actual value of the parameters is
determined by the comma-separated list of field names passed to the DataNavi-
gateUrlFields property. In the example, the product ID and name are used to
select the information to show in the helper moreinfo.aspx page. This behavior
extends that of the DataGrid’s hyperlink column in that it supports multiple
parameters.

Note You can format the text displayed in each column by using the
DataTextFormatString property. The value of the data row is identified
by the {0} placeholder.

C07620245.fm Page 219 Tuesday, June 8, 2004 6:23 PM

220 Part II Data Access

Templated Fields
A TemplateField column gives each row in the grid a personalized user inter-
face that is completely defined by the page developer. You can define tem-
plates for various rendering stages, including the default view, in-place editing,
header, and footer. The supported templates are listed in Table 7-10.

A templated view can contain anything that makes sense to the applica-
tion you’re building—server controls, literals, and data-bound expressions.
Data-bound expressions allow you to insert values contained in the current data
row. You can use as many fields as needed in a template. Notice, though, that
not all templates support data-bound expressions. The header and the footer
template are not data-bound, and any attempt to use expressions will result in
an exception.

The following code shows how to define the item template for a product
column. The column displays on two lines and includes the name of the prod-
uct and some information about the packaging. You use data-bound expres-
sions (see Chapter 5) to refer to data fields.

<asp:templatefield headertext="Product">
<itemtemplate>

<%# Eval(“productname”)%>

available in <%# Eval(“quantityperunit”)%>

</itemtemplate>
</asp:templatefield>

Table 7-10 Supported Templates

Template Description

AlternatingItemTemplate Defines the contents and appearance of alternating rows. If
not specified, the ItemTemplate is used.

EditItemTemplate Defines the contents and appearance of the row currently
being edited. This template should contain input fields and
possibly validators.

FooterTemplate Defines the contents and appearance of the row’s footer.

HeaderTemplate Defines the contents and appearance of the row’s header.

ItemTemplate Defines the default contents and appearance of the rows.

C07620245.fm Page 220 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 221

Note The TemplateField class also features an InsertTemplate prop-
erty. However, this type of template is never used by the GridView con-
trol. The InsertTemplate is used by the FormView control instead. As
mentioned earlier, in ASP.NET 2.0 view controls share some field
classes, such as TemplateField. As a result, TemplateField (and a few
more classes) provide a superset of properties that serve the needs of
multiple view controls.

Sorting Data
The GridView is designed to take advantage of specific capabilities of the
underlying data source control. In this way, the grid control can handle com-
mon operations on data such as sorting, paging, updating, and deleting. In gen-
eral, not all data source components support all possible and feasible data
operations. Data source components expose Boolean properties (such as the
CanSort property) to signal whether they can perform a given operation. The
GridView makes transparent for the page developer the implementation of
commonly required features such as sorting and paging.

To enable sorting on a GridView, the following code would suffice. As
you can see, it is a small fraction of the code required to code the same feature
on a DataGrid. More important, if you don’t need more advanced capabilities
(such as a glyph in the header indicating the direction), setting up sorting
requires no code at all.

<asp:gridview runat="server” id="MyGridView” DataSourceID="MySource”
AllowSorting="true” AutoGenerateColumns="false">
<Columns>

<asp:boundfield datafield="productname” headertext="Product”
sortexpression="productname” />

<asp:boundfield datafield="quantityperunit”
headertext="Packaging” />

</Columns>
</asp:gridview>

When you run this code, each column that has a nonempty SortExpression
property displays its header text as a hyperlink. When a user clicks there, the

C07620245.fm Page 221 Tuesday, June 8, 2004 6:23 PM

222 Part II Data Access

page posts back and returns with the grid’s contents sorted accordingly. Note
that if you click twice on the same column, the order reverts. This is a slick fea-
ture that required quite a bit of coding in ASP.NET 1.x. The GridView’s Sort-
Expression and SortDirection read-only properties return at any time the current
sort expression and direction.

Note When the GridView control fires the Sorting event, the Sort-
Expression and SortDirection properties haven’t been updated yet.
When Sorted fires, the properties are up-to-date. If you click twice on
the same column, the SortDirection property will contain, say, Ascend-
ing in Sorting and Descending in Sorted.

The GridView control doesn’t automatically add any visual element to the
output that indicates the direction of the sorting. This is one of the few cases in
which some coding is needed to complete sorting:

<script runat="server">
void MyGridView_RowCreated (object sender, GridViewRowEventArgs e) {

if (e.Row.RowType == DataControlRowType.Header)
AddGlyph(MyGridView, e.Row);

}

void AddGlyph(GridView grid, GridViewRow item) {
Label glyph = new Label();
glyph.EnableTheming = false;
glyph.Font.Name = “webdings";
glyph.Font.Size = FontUnit.XSmall;
glyph.Text = (grid.SortDirection==SortDirection.Ascending ?” 5” :” 6”);

// Find the column you sorted by
for(int i=0; i<grid.Columns.Count; i++) {

string colExpr = grid.ColumnFields[i].SortExpression;
if (colExpr != ““ && colExpr == grid.SortExpression)

item.Cells[i].Controls.Add (glyph);
}

}
</script>

The idea is that you write a handler for the RowCreated event and look for
the moment when the header is created. Next you create a new Label control
that represents the glyph you want to add. Where should the Label control be
added?

C07620245.fm Page 222 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 223

The newly created Label control has font and text adequately set to gen-
erate a glyph (typically and) that indicates the direction of the sorting.
You must add it alongside the header text of the clicked column. The index of
the column can be stored to the view state during the Sorting event. Alterna-
tively, it can simply be retrieved, comparing the current sort expression—the
grid’s SortExpression property—to the column’s sort expression. Once you
know the index of the column, you retrieve the corresponding table cells and
add the Label:

item.Cells[i].Controls.Add (glyph);

The results are shown in Figure 7-9. If your page is based on a theme, the
font of the Label control—essential for rendering the glyph correctly—might be
overridden. To avoid that, you should disable theming support for the label
control. The EnableTheming property does just that.

F07DR09Figure 7-9 Enhancing the sorting capabilities of the GridView control

One more item worth mentioning about sorting on a GridView control is
that you can cancel the sorting operation if need be. You write a handler for the
Sorting event, get the event argument data (an object of type GridView-
SortEventArgs), and set its Cancel property to true. The following code snippet
shows how to cancel sorting if the grid is in edit mode:

void MyGridView_Sorting(object sender, GridViewSortEventArgs e) {
if (e.EditIndex > -1) {

e.Cancel = true;
}

C07620245.fm Page 223 Tuesday, June 8, 2004 6:23 PM

224 Part II Data Access

Note As you can see, Figure 7-9 contains a check box to enable
callbacks. When that check box is selected, the Boolean EnablePaging-
AndSortingCallbacks property on the GridView is set to true. As a
result, sorting and paging operations take place without refreshing the
whole page. In other words, the page doesn’t post back as a whole,
but issues an out-of-band call to retrieve the new records to display.
When the records are downloaded completely, an internal script call-
back function is invoked to update the user interface through Dynamic
HTML. This feature requires Internet Explorer 5.5 or later.

Paging Data
The ability to scroll a potentially large set of data is an important but challeng-
ing feature for modern, distributed applications. An effective paging mechanism
allows customers to interact with a database without holding resources. Like the
DataGrid, the GridView control provides a built-in mechanism for paging over
the supplied data source. This form of paging requires that the whole data
source be bound to the control. In other words, the GridView gets the whole
result set from the data source object, caches it internally, and then pages
through it.

To enable paging, all you do is enable paging capabilities on the control.
The property to use is AllowPaging. The following code extends the previous
page to support paging:

<asp:gridview runat="server” id="MyGridView” datasourceid="MySource”
autogeneratecolumns="false"
allowpaging="true” allowsorting="true”
onrowcreated="MyGridView_RowCreated” >
<pagersettings firstpagetext="7” lastpagetext="8”

nextpagetext="4” prevpagetext="3” mode="NextPrevFirstLast” />
<pagerstyle font-name="webdings” />
<columnfields>

<asp:boundfield datafield="productname”
headertext="Product” sortexpression="productname” />

<asp:boundfield datafield="quantityperunit”
headertext="Packaging” />

</columnfields>
</asp:gridview>

When the AllowPaging property is set to true, the grid displays a pager
bar. You can control the characteristics of the pager to a large extent through
the <PagerSettings> and <PagerStyle> tags or their equivalent properties. Unlike
the DataGrid, the GridView pager supports first and last page buttons and lets

C07620245.fm Page 224 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 225

you assign an image to each button. (This is also possible in version 1.x, but it
requires a lot of code.) The pager can work in either of two modes—displaying
explicit page numbers or providing a relative navigation system. In the former
case, the pager contains numeric links, one representing a page index. In the
latter case, buttons are present to navigate to the next or previous page and
even to the first or the last. Ad hoc properties—NextPageText and PreviousPage-
Text—let you set the labels for these buttons as desired. Figure 7-10 shows the
page in action.

F07DR10Figure 7-10 A sortable and pageable GridView

Note that the GridView control doesn’t have an equivalent to the DataGrid’s
AllowCustomPaging property nor limits to exploit the paging capabilities of the
underlying data source. Whether page data is queried at every postback or is sim-
ply retrieved from some cache doesn’t depend on the GridView control.

Editing Data
A major strength of the GridView control—which makes up for a major short-
coming of the DataGrid—is the ability to handle updates to the data source.
The DataGrid control provides only an infrastructure for data editing. The
DataGrid provides the necessary user interface elements and fires appropriate
events when the user modifies the value of a certain data field, but it does not
submit those changes back to the data source. Developers are left with the dis-
appointing realization that they have to write a huge amount of boilerplate
code to really persist changes using the DataGrid control.

C07620245.fm Page 225 Tuesday, June 8, 2004 6:23 PM

226 Part II Data Access

With the GridView control, when the bound data source supports updates,
the control can automatically perform this operation, thus providing a truly out-
of-the-box solution. The data source control signals its capability to update
through the CanUpdate Boolean property.

Much like the DataGrid, the GridView can render a column of command
buttons for each row in the grid. These special command columns contain but-
tons to edit or delete the current record. With the DataGrid, you must explicitly
create an edit command column using a special column type—the EditCom-
mandColumn class. The GridView simplifies things quite a bit for update and
delete operations.

In-Place Editing and Updates
In-place editing refers to the grid’s ability to support changes to the currently
displayed records. You enable in-place editing on a grid view by turning on the
AutoGenerateEditButton Boolean property:

<asp:gridview runat="server” id="MyGridView” datasourceid="MySource”
autogeneratecolumns="false” autogenerateeditbutton="true">

§
</asp:gridview>

When the AutoGenerateEditButton property is set to true, the GridView
displays an additional column, like that shown in Figure 7-11.

F07DR11Figure 7-11 A GridView that supports editing

C07620245.fm Page 226 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 227

When you click to update, the GridView searches for an appropriate com-
mand object on the underlying data source. As you saw in Chapter 6, a data
source object can have a number of command object properties (such as Insert-
Command, UpdateCommand, and DeleteCommand), each of which is respon-
sible for the corresponding data operation. When you click to update, the
GridView fires the RowUpdating event and then checks the CanUpdate prop-
erty on the data source. If CanUpdate returns false, an exception is thrown.
Otherwise, the UpdateCommand object is invoked to update data. The code is
surprisingly compact and simple to write. More important, the exposure to the
SQL language is limited to defining the structure of the command; parameters
are handled by the GridView code! To persist changes when the user clicks
Update, you design your code according to the following scheme:

<form runat="server">
<asp:sqldatasource runat="server” id="MySource”

connectionstring="SERVER=…;DATABASE=northwind;UID=…;"
datasourcemode="DataSet”
selectcommand="SELECT employeeid, firstname, lastname

FROM employees"
updatecommand="UPDATE employees SET

firstname=@firstname, lastname=@lastname
WHERE employeeid=@employeeid">

</asp:sqldatasource>

<asp:gridview runat="server” id="MyGridView” datasourceid="MySource”
AutoGenerateColumns="false"
DataKeyNames="employeeid” AutoGenerateEditButton="true">
<columns>

<asp:boundfield datafield="firstname” headertext="First” />
<asp:boundfield datafield="lastname” headertext="Last” />

</columns>
</asp:gridview>

</form>

The UpdateCommand attribute is set to the SQL command to use. When
you write the command, you declare as many parameters as needed. However,
if you stick with a particular naming convention, parameter values are automat-
ically resolved. Parameters that represent fields to update (such as firstname)
must match the name of the DataField property of a grid column. The param-
eter used in the WHERE clause to identify the working record must match the
DataKeyNames property—the key field for the displayed records. Finally, if
UpdateCommand isn’t defined, CanUpdate returns false and an exception is
thrown if you try to submit changes. The successful completion of an update
command is signaled using the RowUpdated event.

C07620245.fm Page 227 Tuesday, June 8, 2004 6:23 PM

228 Part II Data Access

Note The GridView collects values from the input fields and popu-
lates a dictionary of name/value pairs that indicate the new values for
each field of the row. The GridView also exposes a RowUpdating
event that allows the programmer to modify the parameters or values
being passed to the data source object. In addition, the GridView auto-
matically calls Page.IsValid before invoking the Update operation on
the associated data source. If Page.IsValid returns false, the operation
is canceled, which is especially useful if you’re using a custom tem-
plate with validators.

Deleting Displayed Records
From the GridView’s standpoint, deleting records is not much different from
updating. In both cases, the GridView takes advantage of a data source ability
to perform data operations. You enable record deletion by specifying a value of
true for the AutoGenerateDeleteButton property. The GridView renders a col-
umn of buttons that, if clicked, invokes the Delete command for the row on the
data source. The data source method is passed a dictionary of key field name/
value pairs that are used to uniquely identify the row to delete.

<asp:sqldatasource runat="server” id="MySource”
connectionstring="SERVER=…;DATABASE=northwind;UID=…;"
datasourcemode="DataSet”
§
deletecommand="DELETE employees WHERE

employeeid=@employeeid">
</asp:sqldatasource>

<asp:gridview runat="server” id="MyGridView” datasourceid="MySource”
datakeynames="employeeid” autogeneratecolumns="false”
autogenerateeditbutton="true” autogeneratedeletebutton="true">

<columns>
<asp:boundfield datafield="firstname” headertext="First” />
<asp:boundfield datafield="lastname” headertext="Last” />

</columns>
</asp:gridview>

Figure 7-12 shows a grid that supports record deletion.
The GridView doesn’t provide any feedback about the operation that will

take place. Before proceeding, it calls Page.IsValid, which is useful if you have
a custom template with validators. In addition, the RowDeleting event gives you
another chance to programmatically control the legitimacy of the operation.

C07620245.fm Page 228 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 229

F07DR12Figure 7-12 When the user clicks the Delete button, the underlying data
source is invoked to physically delete the corresponding record.

Note The delete operation fails if the record can’t be deleted
because of database-specific constraints. For example, the record
can’t be deleted if child records refer to it through a relationship. In this
case, an exception is thrown.

Inserting New Records
In its current form, the GridView control doesn’t support inserting data against
a data source object. This omission is due to the GridView implementation and
not to the capabilities and characteristics of the underlying data source. In fact,
the data source object provides a CanInsert property and supports an Insert-
Command property.

As you’ll see in a moment, the insertion of new records is a scenario fully
supported by the DetailsView and FormView controls.

Note In ASP.NET 1.x, it is common practice to make DataGrid controls
support record insertions by modifying the footer or the pager to make
room for empty text boxes and buttons. The GridView supports the same
model and makes it slightly simpler through the PagerTemplate property.
This property, in fact, lets you define a custom template for the pager bar
where you can subsequently arrange any combination of controls.

C07620245.fm Page 229 Tuesday, June 8, 2004 6:23 PM

230 Part II Data Access

The DetailsView Control
Many applications need to work on a single record at a time. ASP.NET 1.x has
no built-in support for this scenario. Creating a single record view is possible,
but it requires some coding. You have to fetch the record, bind its fields to a
data-bound form, and optionally provide paging buttons to navigate between
records. Displaying the contents of a single record is a common practice when
you build master/detail views. Typically, the user selects a master record from
a grid, and the application drills down to show all the available fields.

In ASP.NET 2.0, the DetailsView fulfills this role. It is the ideal complement
to the GridView control for building, easily and effectively, hierarchical views of
data.

Like the GridView, the DetailsView control can bind to any data source
control and exploit its set of data operations. It can page, update, insert, and
delete data items in the underlying data source as long as the data source sup-
ports these operations. In most cases, no code is required to set up any of these
operations. You can customize the user interface of the DetailsView control by
choosing the most appropriate combination of data fields and styles, in much
the same way that you do with the GridView. Finally, the DetailsView control
fully supports adaptive rendering and renders successfully on mobile devices.

The DetailsView control deliberately doesn’t support templates. A fully
templatized details view control is the FormView, which we’ll cover shortly.

The DetailsView Object Model
The DetailsView is to a single record what a GridView is to a page of records.
Just as the grid lets you choose which columns to display, the DetailsView
allows you to select a subset of fields to display in read-only or read/write fash-
ion. The rendering of the DetailsView is largely customizable using templates
and styles. The default rendering consists of a vertical list of rows, one for each
field in the bound data item. DetailsView is a composite data-bound control. It
acts as a naming container and generates postback events through the IPost-
BackEventHandler interface. Much like the GridView, the DetailsView control
also supports out-of-band calls for paging.

public class DetailsView : CompositeDataBoundControl,
IPostBackContainer,
IPostBackEventHandler,
ICallbackContainer,
ICallbackEventHandler,
INamingContainer

The typical look and feel of the control was shown earlier in Figure 7-3.

C07620245.fm Page 230 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 231

Properties of the DetailsView
The DetailsView layout supports several properties that fall into the following
categories: behavior, appearance, style, state, and templates. Table 7-11 lists
them.

The DefaultMode property determines the mode that the control reverts to
after an edit or insert operation is performed.

The output generated by the DetailsView control is a table in which each
row corresponds to a record field. Additional rows represent special items such
as the header, footer, pager, and the new command bar. The command bar is a
sort of toolbar where all the commands available on the record are collected.
Autogenerated buttons go to the command bar.

The user interface of the control is governed by a handful of visual prop-
erties, which are listed in Table 7-12.

Table 7-11 DetailsView Behavior Properties

Property Description

AllowPaging Indicates whether the control supports navigation.

AutoGenerateDeleteButton Indicates whether the command bar includes a Delete
button. The default is false.

AutoGenerateEditButton Indicates whether the command bar includes an Edit but-
ton. The default is false.

AutoGenerateInsertButton Indicates whether the command bar includes an Insert
button. The default is false.

AutoGenerateRows Indicates whether the control autogenerates the rows.
The default is true—all the fields of the record are dis-
played.

DefaultMode Indicates the default display mode of the control. It can
be any value from the DetailsViewMode enumeration
(read-only, insert, edit).

EnablePagingCallbacks Indicates whether client-side callback functions are used
for paging operations.

UseAccessibleHeader Determines whether to render <TH> tags for the column
headers instead of default <TD> tags.

C07620245.fm Page 231 Tuesday, June 8, 2004 6:23 PM

232 Part II Data Access

The properties listed in the table apply to the control as a whole. You can
program specific elements of the control’s user interface by using styles. The
supported styles are listed in Table 7-13.

Table 7-12 DetailsView Appearance Properties

Property Description

BackImageUrl Indicates the URL to an image to display in the background

CellPadding Indicates the amount of space (in pixels) between the contents of
a cell and the border

CellSpacing Indicates the amount of space (in pixels) between cells

EmptyDataText Indicates the text to render in the control when it’s bound to an
empty data source

FooterText Indicates the text to render in the control’s footer

GridLines Indicates the gridline style for the control

HeaderText Indicates the text to render in the control’s header

HorizontalAlign Indicates the horizontal alignment of the control on the page

Table 7-13 DetailsView Style Properties

Property Description

AlternatingRowStyle Defines the style properties for the fields that are displayed
every other row (even positions)

CommandRowStyle Defines the style properties for the command bar

EditRowStyle Defines the style properties of individual rows when the con-
trol renders in edit mode

FieldHeaderStyle Defines the style properties for the label of each field value

FooterStyle Defines the style properties for the control’s footer

HeaderColumnStyle Defines the style properties for the header column item

HeaderStyle Defines the style properties for the control’s header

InsertRowStyle Defines the style properties of individual rows when the con-
trol renders in insert mode

EmptyDataRowStyle Defines the style properties for the displayed row when no
data source is available

PagerStyle Defines the style properties for the control’s pager

RowStyle Defines the style properties of the individual rows

C07620245.fm Page 232 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 233

The DetailsView control can be displayed in three modes, depending on
the value of the DetailsViewMode enumeration—ReadOnly, Insert, or Edit. The
read-only mode is the default display mode, in which users see only the con-
tents of the record. To edit or add a new record, users must click the corre-
sponding button (if any) on the command bar. Each mode has an associated
style. The current mode is tracked by the CurrentMode read-only property.
Other state properties are listed in Table 7-14.

Table 7-14 DetailsView State Properties

Property Description

BottomPagerRow Returns a DetailsViewRow object that represents the bottom pager
of the control.

CurrentMode Gets the current mode for the control—any of the values in the
DetailsViewMode enumeration. The property determines how
bound fields and templates are rendered.

DataKey Returns the DataKey object for the currently displayed record. The
DataKey object contains the key values corresponding to the key
fields specified by DataKeyNames.

DataKeyNames An array specifying the primary key fields for the records being
displayed. These keys are used to uniquely identify an item for
update and delete operations.

FooterRow Returns a DetailsViewRow object that represents the footer of the
control.

HeaderRow Returns a DetailsViewRow object that represents the header of the
control.

PageCount Returns the total number of items in the underlying data source
bound to the control.

PageIndex Returns the 0-based index for the currently displayed record in the
control. The index is relative to the total number of records in the
underlying data source.

Rows Returns the collection of DataControlField objects for the control
that was used to generate the Rows collection.

Rows Returns a collection of DetailsViewRow objects representing the
individual rows within the control. Only data rows are taken into
account.

SelectedValue Returns the value of the key for the current record as stored in the
DataKey object.

TopPagerRow Returns a DetailsViewRow object that represents the top pager of
the control.

C07620245.fm Page 233 Tuesday, June 8, 2004 6:23 PM

234 Part II Data Access

If you’re not satisfied with the default control rendering, you can use cer-
tain templates to better adapt the user interface to your preferences. Table 7-15
details the supported templates.

As you can see, the table lists templates related to the layout of the control
and doesn’t include templates that influence the rendering of the current
record. This is by design. For properties such as InsertTemplate or ItemTem-
plate, you should resort to the FormView control, which is just a fully templa-
tized version of the DetailsView control. The DetailsView control has only one
method, ChangeMode. As the name suggests, the ChangeMode method is used
to switch from one display mode to the next.

public void ChangeMode(DetailsViewMode newMode)

This method is used internally to change view when a command button is
clicked.

Events of the DetailsView
The DetailsView control exposes several events that enable the developer to
execute custom code at various times in the life cycle. The event model is sim-
ilar to GridView in terms of supported events and because of the pre/post pair
of events that characterize each significant operation. Table 7-16 details the sup-
ported events.

The ItemCommand event fires only if the original click event is not han-
dled by a predefined method. This typically occurs if you define custom buttons
in one of the templates. You do not need to handle this event to intercept any
clicking on the Edit or Insert buttons.

Table 7-15 DetailsView Template Properties

Property Description

EmptyDataTemplate The template for rendering the control when it is bound to an
empty data source. If set, this property overrides the Empty-
DataText property.

FooterTemplate The template for rendering the footer row of the control.

HeaderTemplate The template for rendering the header of the control.

PagerTemplate The template for rendering the pager of the control. If set, this
property overrides any existing pager settings.

C07620245.fm Page 234 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 235

The PageIndexChanging event allows you to execute custom code before
the PageIndex actually changes (before the control moves to a different
record). As with the GridView events, you can cancel the event by setting the
Cancel property of the event argument class to true.

The DetailsView Control in Action
Building a record viewer with the DetailsView control is easy and quick. You
just drop an instance of the control onto the Web form and add a few settings.
The following listing shows the minimum that’s needed:

<asp:detailsview runat="server” id="det”
datasourceid="MySource”
allowpaging="true"
headertext="Employees">
<pagersettings firstpageimageurl="images/first.gif”

lastpageimageurl="images/last.gif”
nextpageimageurl="images/next.gif”
prevpageimageurl="images/prev.gif”
mode="NextPrevFirstLast” />

</asp:detailsview>

Table 7-16 Events of the DetailsView Control

Event Description

PageIndexChanging,
PageIndexChanged

Both events occur when the control moves to another record.
They fire before and after the display change occurs.

ItemCommand Occurs when any of the clickable elements in the user inter-
face is clicked. This doesn’t include standard buttons (such as
Edit, Delete, and Insert), which are handled internally, but it
does include custom buttons defined in the templates.

ItemCreated Occurs after all the rows are created.

ItemDeleting,
ItemDeleted

Both events occur when the current record is deleted. They
fire before and after the record is deleted.

ItemInserting,
ItemInserted

Both events occur when a new record is inserted. They fire
before and after the insertion.

ItemUpdating,
ItemUpdated

Both events occur when the current record is updated. They
fire before and after the row is updated.

ModeChanging,
ModeChanged

Both events occur when the control switches to a different dis-
play mode. They fire before and after the mode changes.

C07620245.fm Page 235 Tuesday, June 8, 2004 6:23 PM

236 Part II Data Access

When the AllowPaging property is set to true, a pager bar is displayed.
You can use text (including rich-formatted text) for each button or just use a bit-
map, as in the example. Figure 7-13 shows the results.

F07DR13Figure 7-13 A record viewer component set up with a few clicks using a
DetailsView control

The DetailsView paging mechanism is based on the PageIndex property,
which indicates the index of the current record in the bound data source. Click-
ing the pager button updates the property; the control does the data binding
and refreshes the view.

Editing the Current Record
A detail view like that of the DetailsView control is particularly useful if users can
perform basic updates on the displayed data. Basic updates include editing and
deleting the record. The DetailsView command bar gathers all the buttons needed
to start data operations. You tell the control to create those buttons by using such
properties as AutoGenerateEditButton and AutoGenerateDeleteButton.

As with the GridView, edit and delete operations for the DetailsView con-
trol are handled by the bound data source control, as long as the proper com-
mands are defined and a key field is indicated through the DataKeyNames
property:

<asp:sqldatasource runat="server” id="MySource”
connectionstring="server=…;database=northwind;UID=…”
selectcommand="SELECT employeeid, firstname,

lastname, title, hiredate FROM employees"
updatecommand="UPDATE employees SET

C07620245.fm Page 236 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 237

firstname=@firstname, lastname=@lastname,
title=@title, hiredate=@hiredate

WHERE employeeid=@employeeid"
deletecommand="DELETE employees WHERE employeeid=@employeeid” />

<asp:detailsview runat="server” id="det”
datasourceid="MySource”
allowpaging="true"
headertext="Employees"
datakeynames="employeeid"
autogenerateeditbutton="true”
autogeneratedeletebutton="true">
<pagersettings firstpageimageurl="images/first.gif”

lastpageimageurl="images/last.gif”
nextpageimageurl="images/next.gif”
prevpageimageurl="images/prev.gif”
mode="NextPrevFirstLast” />

</asp:detailsview>

Figure 7-14 shows the changed user interface of the DetailsView control
when it works in edit mode. Note that in edit mode, the default set of buttons
in the command is replaced by a pair of update/cancel buttons.

F07DR14Figure 7-14 A DetailsView control working in edit mode

Both the update and the delete operation are handled by a pair of pre- and
post-events such as ItemDeleting/ItemDeleted or ItemUpdating/ItemUpdated.

Inserting a New Record
The process of adding a new record is much like that for editing or deleting.
You add an InsertCommand string in the bound data source and then tell the
DetailsView control to create an insert button, and then you are finished. Here
is a valid insert command:

C07620245.fm Page 237 Tuesday, June 8, 2004 6:23 PM

238 Part II Data Access

<asp:sqldatasource runat="server” id="MySource”
connectionstring="server=…;database=northwind;UID=…”
§
insertcommand="INSERT INTO employees

(firstname, lastname, title, hiredate) VALUES
(@firstname, @lastname, @title, @hiredate)” />

Figure 7-15 shows how it works.

F07DR15Figure 7-15 A DetailsView control working in insert mode

Controlling the Displayed Fields
Just as the GridView and the DataGrid controls can display only a selected
range of columns, the DetailsView control can display only a subset of the avail-
able fields for the current record. To disable the automatic generation of display
fields, you set the AutoGenerateRows column to false. Then you declare as
many fields as needed under the <Fields> node, as shown here:

<asp:detailsview>
§
<fields>

<asp:boundfield datafield="firstname” headertext="First Name” />
<asp:boundfield datafield="lastname” headertext="Last Name” />
<asp:boundfield datafield="title” headertext="Position” />

</fields>
</asp:detailsview>

The HeaderText attribute refers to the label displayed alongside the field
value. In edit or insert mode, the content of the field is displayed using a text
box, which is great for many data types but not all. For example, what if your
users need to edit a date? In this case, the Calendar control is far more appro-
priate. As mentioned, you can’t use templates to modify the default rendering
because the DetailsView control doesn’t support data-bound templates on rows.

C07620245.fm Page 238 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 239

You should use the FormView control if template support is an unavoidable
necessity.

Note How can you change the layout of the DetailsView control, thus
simulating the results you would obtain with templates? You can hook
up the ItemCreated event and modify the layout by adding new con-
trols and/or replacing existing controls.

Creating Master/Detail Views
Combined with another data-bound control such as the GridView, the Details-
View control greatly simplifies the creation of codeless master/detail views of
data. The master control (such as the GridView) selects one particular record in
its own data source, and that record becomes the data source for a DetailsView
control in the same form.

Selecting a Record in the GridView
In addition to supporting Edit and Delete buttons, the GridView control sup-
ports another predefined button, the Select button. You enable this button on a
per-row basis by setting the AutoGenerateSelectButton property to true. When
the users click this button, the current row enters the selected state and its
0-based index is assigned to the SelectedIndex property of the GridView. The
control also fires the SelectedIndexChanged event. Applications can hook up
this event and run custom code.

Typically, the SelectedIndexChanged event serves to drill down into the
contents of the currently selected record; it was often used in ASP.NET 1.x to
create master/detail data schemes. Its declaration is shown here:

private void Grid_SelectedIndexChanged(object sender, EventArgs e)
{

§
}

You can set the currently selected item manually by clicking or program-
matically by setting the SelectedIndex property. A value of –1 denotes no
selected items.

Drill Down into the Selected Record
With ASP.NET 1.x controls, implementing master/detail views is not particularly
hard but certainly not automatic, much less codeless. In ASP.NET 2.0, data

C07620245.fm Page 239 Tuesday, June 8, 2004 6:23 PM

240 Part II Data Access

source, GridView, and DetailsView controls (properly configured) support a no-
code master/detail scenario. Let’s see how.

A master/detail page contains a master control (such as a GridView) and a
detail control (such as a DetailsView), each bound to its own data source. The
trick is in binding the detail control to a data source represented by the cur-
rently selected record. The following code snippet shows the configuration of
the master pair of controls:

<asp:sqldatasource runat="server” id="MySource”
connectionstring="SERVER=…;DATABASE=northwind;UID=…”
selectcommand="SELECT customerid, companyname, country

FROM customers” />
<asp:gridview runat="server” id="Master” datasourceid="MySource"

pagesize="5"
allowpaging="true"
datakeynames="customerid"
autogenerateselectbutton="true"
autogeneratecolumns="false">
<columnfields>

<asp:boundfield datafield="companyname” headertext="Customer” />
<asp:boundfield datafield="country” headertext="Country” />

</columnfields>
</asp:gridview>

The grid shows a Select column, but the page doesn’t need to handle the
corresponding SelectedIndexChanged event. The following code shows the
detail pair of controls for completing the codeless implementation of the mas-
ter/detail scheme:

<asp:sqldatasource runat="server” id="MyDetailSource”
connectionstring="SERVER=…;DATABASE=northwind;UID=…”
selectcommand="SELECT * FROM customers"
filterexpression="customerid=‘@customerid’">
<filterparameters>

<asp:ControlParameter Name="customerid” ControlId="Master”
PropertyName="SelectedValue” />

</filterparameters>
</asp:sqldatasource>

<asp:detailsview runat="server” id="Detail”
datasourceid="MyDetailSource">
<pagersettings firstpageimageurl="images/first.gif”

lastpageimageurl="images/last.gif”
nextpageimageurl="images/next.gif”
prevpageimageurl="images/prev.gif”
mode="NextPrevFirstLast” />

</asp:detailsview>

C07620245.fm Page 240 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 241

The DetailsView control is bound to the results of a filtered query. The Sql-
DataSource control declares the FilterExpression attribute and sets it to an
expression used to filter the results of the Select command. The content of the
FilterExpression property is used to generate the WHERE clause of the query.
The @customerid parameter is bound to the value of a particular property
(SelectedValue) on a particular control (the GridView control named Master).
When a new row is selected on the GridView, the SelectedValue property is
updated to reflect the value of the key fields defined on the grid. (The key field
names are in the DataKeyNames property.)

The key of the selected record is used to select more information from the
containing table and to update the detail view. All of this occurs automatically
and with no code from the developer. Figure 7-16 shows the final results.

F07DR16Figure 7-16 A no-code implementation of a master/detail scheme
based on a combination of GridView and DetailsView controls

The FormView Control
FormView is a new data-bound control that works like the templated version of
the DetailsView control. It renders one record at a time picked from the associ-
ated data source and optionally provides paging buttons to navigate between
records. Unlike the DetailsView control, the FormView control doesn’t use data
control fields and requires the user to define the rendering of each item using
templates. The FormView control can support any basic operation that its data
source provides.

C07620245.fm Page 241 Tuesday, June 8, 2004 6:23 PM

242 Part II Data Access

The FormView Object Model
Designed mostly as a simple update-and-insert interface, the FormView control
cannot validate against data source schemas and doesn’t supply advanced edit-
ing features such as foreign key field drop-downs. However, by using templates
you can easily provide this functionality.

Two functional aspects mark the difference between FormView and
DetailsView. First, the FormView control has ItemTemplate, EditItemTemplate,
and InsertItemTemplate properties that—as you’ve already seen—the Details-
View lacks. Second, the FormView control lacks the command row, which is a
sort of toolbar where available functions are grouped.

Note that the FormView control has no default rendering of its own. At the
same time, its graphical layout is completely customizable using templates.
Therefore, each template includes all command buttons needed by the particu-
lar record. The control’s definition is shown here:

public class FormView : CompositeDataBoundControl,
IPostBackContainer,
IPostBackEventHandler,
ICallbackContainer,
ICallbackEventHandler,
INamingContainer

As you can see, FormView has the same root and implements the same
interfaces as DetailsView.

Members of the FormView Control
The FormView control exposes many of the properties that you’ve already seen
for the DetailsView control. This is no surprise—the two controls are two facets
of the same coin—a record viewer control—with and without templates. The
difference is only in templates and related styles, as you can see in Table 7-17.
See Table 7-11 through Table 7-16 for the complete list of properties and events
supported by the FormView control.

Supported Templates
The output of the FormView control is exclusively based on the templates. This
means you must always specify the item template, at a minimum.

It’s no coincidence that the FormView templates match the three feasible
states of the control—ReadOnly, Edit, and Insert. You use the ItemTemplate to
define the control’s layout when in view mode. You use EditItemTemplate to
edit the contents of the current record, and you use InsertItemTemplate to add
a new record.

C07620245.fm Page 242 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 243

As mentioned, the control doesn’t provide any clue or support for building
the final user interface. As a developer, you are entirely responsible for provid-
ing the user interface from A to Z.

The FormView in Action
Let’s see how to use templates to configure and run a FormView control in a
sample ASP.NET Web page. All templates must contain everything needed to
accomplish tasks—user interface elements and command buttons. The control
itself provides the pager bar and the surrounding table.

Displaying Data
The following code snippet shows the typical code you write to embed a Form-
View in your pages:

<asp:FormView ID="EmpDetails” runat="server”
DataSourceId="MySource” AllowPaging="true">
<ItemTemplate>

:
</ItemTemplate>
<EditItemTemplate>

:
</EditItemTemplate>
< InsertItemTemplate >

:
</InsertItemTemplate>

</asp:FormView>

Figure 7-17 illustrates a page that uses a FormView control.

Table 7-17 Data-Bound Templates of the FormView Control

Template Description

EditItemTemplate Indicates the template to use when an existing record is being
updated

InsertItemTemplate Indicates the template to use when a new record is being cre-
ated

ItemTemplate Indicates the template to use when a record is rendered for
viewing only

C07620245.fm Page 243 Tuesday, June 8, 2004 6:23 PM

244 Part II Data Access

F07DR17Figure 7-17 The FormView control in action

The following code generates the page shown in the figure:

<asp:FormView runat="server” id="EmpDetails”
datakeynames="employeeid"
datasourceid="MySource” allowpaging="true">
<ItemTemplate>

<table style="border:solid 1px black;">
<tr>

<td bgcolor="yellow” width="50px” align="center">
<%# Eval(“employeeid”) %></td>

<td bgcolor="lightyellow” >
<%# Eval(“lastname”) %>,
<%# Eval(“firstname”) %> </td>

</tr>
</table>
<table style="font-family:Verdana;font-size:8pt;">

<tr>
<td>Country</td>
<td><%# Eval(“country”) %></td>

</tr>
<tr>

<td>Hired</td>
<td><%# Eval(“hiredate", “{0:d}”) %></td>

</tr>
<tr>

<td valign="top">Notes</td>
<td><%# Eval(“notes”) %></td>

</tr>
</table>
<asp:Button Runat="server” CommandName="Edit” Text="Edit” />

</ItemTemplate>
</asp:FormView>

C07620245.fm Page 244 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 245

The Edit button is added using a classic <asp:Button> button with the Edit
command name. This causes the FormView to switch from read-only mode to
edit mode and display using the EditItemTemplate, if any is defined.

A command name of New forces the control to change to its insert mode
and render the contents defined for the InsertItemTemplate. Finally, if you add
a button with the Delete command name to the item template, the control will
invoke the Delete command on the data source when the user clicks.

In view mode, you use the Eval function to bind data fields to controls. As
you’ll see in a moment, Eval is useful only in read-only scenarios. For imple-
menting a real two-way data binding, an extension to Eval is required—the
Bind function you saw in Chapter 5.

Editing Data
How do you retrieve values to update or insert a record? To begin with, you
design an edit template using interactive input controls such as text boxes, cal-
endars, and drop-down lists. To provide for two-way binding, you fill each con-
trol that must edit data using the Bind function in lieu of Eval. The following
code snippet shows a sample multiline text box control bound to the notes col-
umn of the Employees table:

<asp:TextBox Runat="server” ID="TheNotes”
Text=‘<%# Bind(“notes”) %>‘ />

Bind stores the value of the bound control property into a collection of
values that the FormView control retrieves and uses to compose the parameter
list of the insert or edit command. The argument passed to Bind must match the
name of a parameter in the command. For example, the text box above pro-
vides the value for a @notes parameter. An exception is raised if such a param-
eter doesn’t exist in the corresponding command of the data source control.

Finally, bear in mind that the edit and insert templates must contain but-
tons to save changes. These are ordinary buttons with specific command
names—Update and Insert to save and Cancel to abort. Buttons trigger update
commands whose details are stored in the associated data source object.

The following code snippet shows a sample edit template:

<asp:FormView runat="server” id="EmpDetails”
§
<EditItemTemplate>

<table style="border:solid 1px black;">
<tr>

<td align="center">
<%# Eval(“employeeid”) %></td>

<td>
<%# Eval(“lastname”) %>,

C07620245.fm Page 245 Tuesday, June 8, 2004 6:23 PM

246 Part II Data Access

<%# Eval(“firstname”) %> </td>
</tr>

</table>
<table style="font-size:8pt;font-family:Verdana;">

<tr>
<td>Country</td>
<td>

<asp:dropdownlist Runat="Server” ID="countries”
SelectedValue=‘<%# Bind(“country”) %>‘>

<asp:ListItem>UK</asp:ListItem>
<asp:ListItem>USA</asp:ListItem>
<asp:ListItem>Italy</asp:ListItem>
<asp:ListItem>Australia</asp:ListItem>

</asp:DropDownList>
</td>

</tr>
<tr>

<td valign="top">Hired</td>
<td>

<asp:Calendar Runat="Server” ID="Hired”
VisibleDate=‘<%# Eval(“hiredate”) %>‘
SelectedDate=‘<%# Bind(“hiredate”) %>‘ />

</td>
</tr>
<tr>

<td valign="top">Notes</td>
<td>

<asp:textbox Runat="Server” TextMoDe="MultiLine"
text=‘<%# Bind(“notes”) %>‘ />

</td>
</tr>

</table>

<asp:Button Runat="server” CommandName="Update” text="Save” />
<asp:Button Runat="server” CommandName="Cancel” text="Cancel” />

</EditItemTemplate>
§

</asp:FormView>

C07620245.fm Page 246 Tuesday, June 8, 2004 6:23 PM

Chapter 7 Data-Bound Controls 247

Figure 7-18 shows the output of this code.

F07DR18Figure 7-18 A FormView control running in edit mode

If you need to do more sophisticated things like pre- or post-processing of
data, you write appropriate event handlers for ItemCommand, ItemInserting,
ModeChanging, and the like.

Important Be sure to add a proper WHERE clause to the UPDATE
and DELETE statements you define—especially when you configure
data source components for use with the DetailsView and FormView
controls. The WHERE clause must check the primary key field—the
field(s) assigned to the DataKeyNames property—against a parameter
with the same name.

UPDATE table SET lastname=@lastname WHERE empID=@empID

C07620245.fm Page 247 Tuesday, June 8, 2004 6:23 PM

248 Part II Data Access

Summary

Data-bound controls are an essential part of most, if not all, Web applications.
To be effective, data-bound controls must be simple and powerful. Ideally, they
provide advanced functionalities in a few clicks and use a limited amount of
code. Do the ASP.NET 2.0 data-bound controls fulfill these requirements? They
do, even though they need a number of changes and improvements.

Data binding in ASP.NET 2.0 can give you a feeling of déjà vu. The Grid-
View looks just like the DataGrid from ASP.NET 1.x, with just a few of the prop-
erties and events renamed. With the exception of the DetailsView and
FormView control, it looks like the same approach to data binding. But a more
thoughtful look will reveal that ASP.NET 2.0 data binding is significantly differ-
ent. The newer object model is simply designed to look like the older one as
much as possible.

The key shortcoming of ASP.NET 1.x data binding is that it requires too
much code for common, relatively boilerplate operations. This has been
addressed with the introduction of data source objects. But data source objects
require richer controls that are capable of working with this new model. This
explains why ASP.NET 2.0 offers a brand-new control—the GridView—rather
than just enhancing the existing DataGrid. The pair DetailsView and FormView
are the perfect complement to the GridView, and they fill another hole in the
ASP.NET 1.x data toolbox. The TreeView and Menu controls are the first attempt
in ASP.NET at providing tools to manage hierarchical data. Not that bad for a
first try!

C07620245.fm Page 248 Tuesday, June 8, 2004 6:23 PM

Part III

Application Services

C08620245.fm Page 249 Tuesday, June 8, 2004 6:50 PM

C08620245.fm Page 250 Tuesday, June 8, 2004 6:50 PM

251

Rich Controls and Services
Starting with version 1.0, ASP.NET has been characterized by a well-balanced
mix of low-level and feature-rich tools. Using low-level tools such as events,
HTTP modules, and HTTP handlers, you can plug into the ASP.NET pipeline to
influence the processing of requests at every stage. But programming ASP.NET
is not only for brave-hearted programmers who can orient themselves in the
intricate forest of properties, methods, and cryptic configuration settings. Over-
all, ASP.NET is a high-level programming tool with a wealth of feature-rich com-
ponents for those who don’t need control over every little step.

The quantity and quality of application services has grown significantly in
ASP.NET 2.0, which was designed with the goal of making things happen with
the least amount of code. In Chapter 5 through Chapter 7, we examined how
the data binding mechanism was extended to make codeless, data-driven appli-
cations possible. In Chapter 1, you saw glimpses of rich new controls (such as
the Wizard control) that provide building blocks for feature-rich Web applica-
tions. These off-the-shelf controls bring you application services such as
dynamic image generation, site navigation, and counters.

These components are exposed to applications as controls, but they are
more than just plain user interface controls. They are feature-rich services that
the runtime makes available to Web pages. In this chapter, we’ll look in more
depth at a few of the components that were introduced in Chapter 1—wizards,
image generators, and (last but not least) site navigation functions and counters.

Creating Web Wizards
Wizards are typically used to break up large forms to collect user input. A wiz-
ard is a sequence of related steps, each associated with an input form and a

C08620245.fm Page 251 Tuesday, June 8, 2004 6:50 PM

252 Part III Application Services

user interface. Users move through the wizard sequentially but are normally
given a chance to skip a step or jump back to modify some of the entered val-
ues. A wizard is conceptually pretty simple, but implementing it over HTTP
connections can be tricky. Lots of developers have taken on that challenge and
built wizards in their own applications. Everybody involved with serious Web
development can now heartily welcome the introduction of a wizard control. In
ASP.NET 2.0, a wizard is a composite control named Wizard and is located in
the System.Web.UI.WebControls namespace.

An Overview of the Wizard Control
The Wizard control supports both linear and nonlinear navigation. It allows
you to move backward to change values and to skip steps that are unnecessary
due to previous settings or because users don’t want to fill those fields. Like
many other ASP.NET 2.0 controls, the wizard supports themes, styles, and tem-
plates. As mentioned, the Wizard is a composite control and automatically gen-
erates some constituent controls such as navigation buttons and panels. As
you’ll see in a moment, the programming interface of the control has multiple
templates that provide for in-depth customization of the overall user interface.
The control also guarantees that state is maintained no matter where you
move—backward, forward, or to a particular page.

All the steps of a wizard must be declared within the boundaries of the
same Wizard control. In other words, the wizard must be self-contained and
not provide page-to-page navigation. As you saw in Chapter 1, though,
ASP.NET 2.0 provides a cross-page posting feature to facilitate page-to-page
navigation. In addition, the URL of the displayed page doesn’t change as the
user navigates through the wizard.

Structure of a Wizard
A wizard has four parts: header, view, navigation bar, and sidebar, as shown in
Figure 8-1.

The header consists of text you can set through the HeaderText property.
You can change the default appearance of the header text by using its style
property; you can also change the structure of the header by using the corre-
sponding header template property. If HeaderText is empty and no custom tem-
plate is specified, no header is shown for the wizard.

The view displays the contents of the currently active step. The wizard
requires you to define each step in an <asp:wizardstep> control. All wizard
steps must be grouped in a single <wizardsteps> tag, as shown here:

C08620245.fm Page 252 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 253

<asp:wizard runat="server” SideBarEnabled="true">
<wizardsteps>

<asp:wizardstep runat="server” steptype="auto” id="step1">
First step

</asp:wizardstep>
<asp:wizardstep runat="server” steptype="auto” id="step2">

Second step
</asp:wizardstep>
<asp:wizardstep runat="server” steptype="auto” id="finish">

Final step
</asp:wizardstep>

</wizardsteps>
</asp:wizard>

F08DR01Figure 8-1 A Wizard control has four parts—header, view,
navigation bar, and an optional sidebar.

The navigation bar consists of autogenerated buttons that provide any
needed functionality—typically, going to the next or previous step or finishing.
You can modify the look and feel of the navigation bar by using styles and tem-
plates.

The optional sidebar is used to display content in the left side of the con-
trol. It provides an overall view of the steps needed to accomplish the wizard’s
task. By default, it displays a description of each step, with the current step dis-
played in bold. You can customize styles and templates. Figure 8-2 shows the
default user interface. Each step is labeled using the ID of the corresponding
<asp:wizardstep> tag.

Sidebar

Step #1
Step #2

.

.
Step #n

Header

View
(Show Wizard Steps)

Navigation Finish

C08620245.fm Page 253 Tuesday, June 8, 2004 6:50 PM

254 Part III Application Services

F08DR02Figure 8-2 A wizard with the default sidebar on the left side

Wizard Styles and Templates
You can style all the various parts and buttons of a wizard control by using the
properties listed in Table 8-1.

The contents of the header, sidebar, and navigation bar can be further cus-
tomized with templates. Table 8-2 lists the available templates.

Table 8-1 The Wizard Control’s Style Properties

Style Description

CancelButtonStyle Sets the style properties for the wizard’s Cancel button

FinishStepButtonStyle Sets the style properties for the wizard’s Finish button

FinishStepPreviousButtonStyle Sets the style properties for the wizard’s Previous but-
ton when at the finish step

HeaderStyle Sets the style properties for the wizard’s header

NavigationButtonStyle Sets the style properties for navigation buttons

NavigationStyle Sets the style properties for the navigation area

NextStepButtonStyle Sets the style properties for the wizard’s Next button

PreviousStepButtonStyle Sets the style properties for the wizard’s Previous but-
ton

SideBarButtonStyle Sets the style properties for the buttons on the sidebar

StartStepNextButtonStyle Sets the style properties for the wizard’s Next button
when at the start step

StepStyle Sets the style properties for the area where steps are
displayed

C08620245.fm Page 254 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 255

In addition to using styles and templates, you can control the program-
ming interface of the Wizard control through a few properties.

The Wizard’s Programming Interface
Table 8-3 lists the properties of the Wizard control (excluding style and tem-
plate properties and properties defined on base classes [such as WebControl]).

Most of these properties—in particular, the xxxText properties—affect the
appearance of the control. ActiveStep, ActiveStepIndex, and WizardSteps indicate

Table 8-2 The Wizard Control’s Template Properties

Style Description

FinishNavigationTemplate Specifies the navigation bar shown before the last page
of the wizard. By default, the navigation bar contains
the Previous and Finish buttons.

HeaderTemplate Specifies the title bar of the wizard.

SideBarTemplate Used to display content in the left side of the wizard
control.

StartNavigationTemplate Specifies the navigation bar for the first view in the wiz-
ard. By default, it contains only the Next button.

StepNavigationTemplate Specifies the navigation bar for steps other than first,
finish, or complete. By default, it contains Previous and
Next buttons.

Table 8-3 Main Properties of the Wizard Control

Property Description

ActiveStep Returns the current wizard step object. The object is an
instance of the WizardStep class.

ActiveStepIndex Gets and sets the 0-based index of the current wizard step.

FinishStepButtonText Gets and sets the text for the Finish button.

HeaderText Gets and sets the title of the wizard.

NextStepButtonText Gets and sets the text for the Next button.

PreviousStepButtonText Gets and sets the text for the Previous button.

SideBarEnabled Toggles the visibility of the sidebar. The default value is
False.

WizardSteps Returns a collection containing all the WizardStep objects
defined in the control.

C08620245.fm Page 255 Tuesday, June 8, 2004 6:50 PM

256 Part III Application Services

the state of the control. A wizard in action is fully represented by its collection of
step views and an index that represents the currently selected view.

The wizard’s methods allow a couple of actions—getting the history of the
wizard and moving through the steps. The first method, GetHistory, is defined
as follows:

public ICollection GetHistory()

GetHistory returns a collection of WizardStep objects. The order of the
items is determined by the order in which the wizard’s pages were accessed by
the user. The first WizardStep object returned—the one with an index of 0—is
the currently selected step. The second object represents the view before the
current one, and so on.

The second method, MoveTo, is used to move to a particular wizard step.
The method’s prototype is described here:

public void MoveTo(WizardStep step)

The method requires you to pass a WizardStep object, which can be prob-
lematic. However, the method is a simple wrapper around the setter of the
ActiveStepIndex property. If you want to jump to a particular step and not hold
an instance of the corresponding WizardStep object, setting ActiveStepIndex is
just as effective.

Table 8-4 lists the key events in the life of a Wizard control in an ASP.NET
2.0 page.

The following listing shows a sample wizard. We’ll use it to add a new
record to the Employees table of the Northwind database.

<asp:wizard runat="server” id="MyWizard”
Font-names="verdana”
BackColor="lightcyan” forecolor="navy"
Style="border:outset 1px black"

Table 8-4 Events of the Wizard Control

Event Description

ActiveViewChanged Raised when the active step changes

FinishButtonClick Raised when the Finish button is clicked

NextButtonClick Raised when the Next button is clicked

PreviousButtonClick Raised when the Previous button is clicked

SideBarButtonClick Raised when a button on the sidebar is clicked

C08620245.fm Page 256 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 257

SideBarEnabled="true”
HeaderText="Add a New Employee">
<sidebarstyle backcolor="snow” borderwidth="1” font-names="Arial” />
<headerstyle horizontalalign="Right” font-size="120%” />
<navigationbuttonstyle width="80px” borderstyle="Solid” />
<stepstyle backcolor="gainsboro” borderwidth="1” />

<sidebartemplate>
<div>

<asp:datalist runat="server” id="SideBarList">

<ItemTemplate>
<asp:linkbutton runat="server” id="SideBarButton” />

</ItemTemplate>
</asp:datalist>

</div>
</sidebartemplate>

<WizardSteps>
§

</WizardSteps>
</asp:wizard>

Figure 8-3 shows the wizard in action. The source code lacks a definition
for the wizard steps. We’ll add those and discuss them in a moment.

F08DR03Figure 8-3 The sample wizard control in action

For better graphical results, you might want to use explicit heights for all
steps and the sidebar as well. Likewise, the push buttons in the navigation bar

C08620245.fm Page 257 Tuesday, June 8, 2004 6:50 PM

258 Part III Application Services

might look better if you make them the same size. You do this by setting the
Width property on the NavigationButtonStyle object.

Note The <SideBarTemplate> tag should contain a DataList with a
well-known ID and internal structure. The DataList must be named
SideBarList, and its ItemTemplate block must contain a button object
named SideBarButton. Any other template set on the DataList might
cause runtime errors.

Adding Steps to a Wizard
A WizardStep object represents one of the child views that the wizard can dis-
play. The WizardStep class derives from View and adds just a couple of public
properties to it—StepType and Title. A View object represents a control that acts
as a container for a group of controls. A view is hosted within a MultiView con-
trol. (See Chapter 1.) To create its output, the wizard makes internal use of a
MultiView control. However, the wizard is not derived from the MultiView class.

You define the views of a wizard through distinct instances of the Wiz-
ardStep class, all grouped under the <WizardSteps> tag. The <WizardSteps>
tag corresponds to the WizardSteps collection property exposed by the wiz-
ard control:

<WizardSteps>
<asp:WizardStep>

§
</asp:WizardStep>
<asp:WizardStep>

§
</asp:WizardStep>

</WizardSteps>

Each wizard step is characterized by a title and a type. The Title property
provides a brief description of the view. This information is not used unless the
sidebar is enabled. If it is, the title of each step is used to create a list of steps,
as in Figure 8-3. If the sidebar is enabled but no title is provided for the various
steps, the ID of the WizardStep objects is used to populate the sidebar.

Types of Wizard Steps
The StepType property indicates how a particular step should be handled and
rendered within a wizard. Acceptable values for the step type come from the
WizardStepType enumeration, as listed in Table 8-5.

C08620245.fm Page 258 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 259

When the wizard is in automatic mode—the default type Auto—it deter-
mines the type of each step based on the order in which the steps appear in
the source code. For example, the first step is considered type Start and the
last is marked as Finish. No Complete step is assumed. If you correctly assign
types to steps, the order in which you declare them in the .aspx source is not
relevant.

Creating an Input Step
The following code shows a sample wizard step used to collect the first and last
name of a new employee. For better graphical results, the content of the step is
encapsulated in a fixed-height <div> tag. If all the steps are configured in this
way, users navigating through the wizard won’t experience sudden changes in
the overall page layout. Similarly, you might want to define a custom navigation
bar where all the buttons are always displayed and those that don’t apply to the
current step are disabled. This ensures that the buttons remain in the same posi-
tion as users move through the pages of the wizard.

<asp:wizardstep runat="server” steptype="auto”
title="Enter Employee Name">
<div style="height:200px">

<table>
<tr><td>First Name</td><td>

<asp:textbox runat="server” id="FirstName” />
<asp:requiredfieldvalidator runat="server”

text="*"
errormessage="Must indicate first name”
setfocusonerror="true”
controltovalidate="FirstName” />

</td></tr>
<tr><td>Last Name</td><td>

Table 8-5 Wizard Step Types

Property Description

Auto The default setting, which forces the wizard to determine how each
contained step should be treated.

Complete The last page that the wizard displays, usually after the wizard has been
completed. The navigation bar and the sidebar aren’t displayed.

Finish The last page used for collecting user data. It lacks the Next button, and
it shows the Previous and Finish buttons.

Start The first screen displayed, with no Previous button.

Step All other intermediate pages, in which the Previous and Next buttons
are displayed.

C08620245.fm Page 259 Tuesday, June 8, 2004 6:50 PM

260 Part III Application Services

<asp:textbox runat="server” id="LastName” />
<asp:requiredfieldvalidator runat="server”

text="*"
errormessage="Must indicate last name”
setfocusonerror="true”
controltovalidate="LastName” />

</td></tr>
<tr><td height="100px"></td></tr>

</table>
<asp:validationsummary runat="server” displaymode="List” />

</div>
</asp:wizardstep>

A wizard is usually created for collecting input data, so validation becomes
a critical issue. You can validate the input data in two nonexclusive ways—
using validators and using transition event handlers.

The first option involves placing validator controls in the wizard step. This
guarantees that invalid input—empty fields or incompatible data types—is
caught quickly and perhaps on the client. Figure 8-4 shows the error messages
you get from the sample wizard of Figure 8-3 if you try to proceed to the next
page without entering a first and a last name.

F08DR04Figure 8-4 The wizard doesn’t let you proceed to the next page
if the fields don’t contain valid entries.

If you need to access server-side resources to validate the input data,
you’re better off using transition event handlers. A transition event is one of the
events the wizard raises when it is about to switch to another view. The events
are detailed in Table 8-4.

C08620245.fm Page 260 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 261

Navigating Through the Wizard
When a button is clicked to move to another step, an event is fired to the host-
ing page. It’s up to you to decide when and how to perform critical validation.
In most cases, you’ll want to perform server-side validation only when the user
clicks the Finish button to complete the wizard. You can be sure that whatever
route the user has taken within the wizard, Finish will complete it. Any code
you bind to the FinishButtonClick event is executed only once, and only when
strictly necessary.

By contrast, any code bound to the Previous or Next button executes
when the user moves back or forward. The page posts back on both events; be
aware that you don’t save any round trips by omitting PreviousButtonClick and
NextButtonClick event handlers.

Filtering Page Navigation with Events
You should perform server-side validation if what the user can do next depends
on the data she entered in the previous step. This means that in most cases you
just need to write a NextButtonClick event handler:

<asp:wizard runat="server” id="MyWizard”
§
OnNextButtonClick="OnNext">
§

</asp:wizard>

If the user moves back to a previously visited page, you can usually ignore
any data entered in the current step. Since she’s moving back, you can safely
assume she’s not going to use any fresh data. Likewise, when a back movement
is requested, you can assume that any preconditions needed to visit that previ-
ous page are verified. This is by design if your users take a sequential route.

If the wizard sidebar is enabled, users can jump from page to page in any
order. If the logic you’re implementing through the wizard requires that precon-
ditions be met before a certain step is reached, you should write a SidebarBut-
tonClick event handler and ensure that the requirements have been met. A
wizard click event requires a WizardNavigationEventHandler delegate.

public delegate void WizardNavigationEventHandler(
object sender,
WizardNavigationEventArgs e);

The WizardNavigationEventArgs structure contains two useful properties
that inform you about the 0-based indexes of the page being left and the page
being displayed. The CurrentStepIndex property returns the index of the last

C08620245.fm Page 261 Tuesday, June 8, 2004 6:50 PM

262 Part III Application Services

page visited; the NextStepIndex returns the index of the next page. Note that
both properties are read-only.

The following code shows a sample handler for the Next button. The han-
dler prepares a summary message to show when the user is going to the Finish
page.

void OnNext(object sender, WizardNavigationEventArgs e)
{

// Collect the input data if going to the last page
// -1 because of 0-based indexing, add -1 if you have a Complete page
// In case of a Complete step, the Finish step is the next to last one
if (e.NextStepIndex == MyWizard.WizardSteps.Count - 2)
{

// Show a summary message
StringBuilder sb = new StringBuilder (““);
sb.Append (“You’re about to add:

“);
sb.AppendFormat (“{0} {1}<hr>", FirstName.Text, LastName.Text);
sb.Append (“
Ready to go?“);
ReadyMsg.Text = sb.ToString();

}
}

Each page displayed by the wizard is a kind of panel (actually, a view)
defined within a parent control—the wizard. This means that all child controls
used in all steps must have a unique ID. It also means that you can access any
of these controls just by name. For example, if one of the pages contains a text
box named FirstName, you can access it from any event handler by using the
FirstName identifier, as in the preceding code snippet.

Canceling Events
The WizardNavigationEventArgs structure also contains a read/write Boolean
property named Cancel. If you set this property to True, you just cancel the
transition to the page being performed. The following code shows how to pre-
vent the display of the next step if the user is on the start page and types in a
last name of Esposito:

void OnNext(object sender, WizardNavigationEventArgs e)
{

if (e.CurrentStepIndex == 0 &&
LastName.Text == “Esposito”)

{
e.Cancel = true;
return;

}
}

C08620245.fm Page 262 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 263

You can cancel events from within any event handler and not just from the
NextButtonClick event handler. This trick is useful to block navigation if the
server-side validation of the input data has failed. In this case, though, you’re
responsible for showing some feedback to the user.

Finalizing the Wizard
All wizards have some code to execute to finalize the task. If you use the
ASP.NET 2.0 Wizard control, you place this code in the FinishButtonClick event
handler. Figure 8-5 shows the final two steps of a wizard that completed suc-
cessfully.

void OnFinish(object sender, WizardNavigationEventArgs e)
{

// Add the employee
if (!AddEmployee())
{

e.Cancel = true;
return;

}

// Show a final message if you don’t have a Completed step
FinalMsg.Text = “The operation completed successfully.";

}

F08DR05Figure 8-5 The final two steps of a wizard that has completed
successfully

If the wizard contains a Complete step, that page is displayed after the Fin-
ish button is clicked and the final task has completed successfully. If something
goes wrong with the update, you should cancel the transition to prevent the
Complete page from appearing, and give the user another chance.

C08620245.fm Page 263 Tuesday, June 8, 2004 6:50 PM

264 Part III Application Services

Generating Dynamic Images
In ASP.NET 1.x, image generation and manipulation are possible, but the imple-
mentation costs are shifted to the programmer. By writing some code, you can
reference dynamically generated images in your ASP.NET pages and display
bytes stored in disk files, database fields, and memory. Whatever the source of
the bytes, you can link an image to a page only through a URL-based
tag. If the image has to be dynamically generated (e.g., fetched from a data-
base), you must reference it through an ad hoc HTTP handler or a page.

The following code snippet shows the typical way of retrieving database
images in ASP.NET 1.x:

<img src=‘<%# “photo.aspx?id=“ + theID.Text %>‘>

The image element is bound to the output of a tailor-made ASP.NET page
that retrieves and returns the bytes of an image. The image is retrieved based
on the input parameters specified on the URL query string. The structure of the
photo.aspx page is a sort of boilerplate code:

<script runat="server">
void Page_Load(object sender, EventArgs e) {

// Prepare the SQL command
// TO DO

// Execute the command and get the image bytes
SqlConnection conn = new SqlConnection(conn_string);
SqlCommand cmd = new SqlCommand(cmdText, conn);
conn.Open();
byte[] img = (byte[]) cmd.ExecuteScalar();
conn.Close();

// Output the image bytes
Response.ContentType = “image/jpeg";
Response.OutputStream.Write(img, 0, img.Length);

}
</script>

The code is nearly identical in classic ASP, with the obvious changes
related to the use of ADO.NET classes. You end up maintaining multiple image
manipulation pages—one per each logical group of images and image data
stores. What’s missing in classic ASP and ASP.NET 1.x is an ad hoc image gen-
eration service and more powerful image controls. ASP.NET 2.0 fills that gap.

C08620245.fm Page 264 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 265

Note In ASP.NET 1.x, using a made-to-measure HTTP handler
instead of a plain ASPX page results in slightly more efficient code
because an HTTP handler with an .ashx extension (or a custom exten-
sion) doesn’t go through the same long pipeline as a regular Web
page. An HTTP handler engages the HTTP runtime less than a regu-
lar page does. As you’ll see in a moment, the same pattern is main-
tained in ASP.NET 2.0.

The DynamicImage Control
ASP.NET 1.x has the Image control, which is little more than a wrapper around
the HTML tag. The Image control provides a thin layer of abstraction
over some of the properties. In the end, it allows you to reference
images only by URL and to set some of the image layout attributes.

In the real world, images can have a variety of origins. An image can be
the content of a file, it can be stored in a database field, or it can be dynamically
generated in memory using a graphic API such as the GDI+ classes. As you can
see, only the first case—when a disk file is used—is well served by the
tag and the ASP.NET 1.x API. In all other cases, programmers must write their
own code.

In spite of the many possible sources for image bytes, the Web page still
handles the same logical entity—an image. Ideally, you should always be able
to reference images in the same way, irrespective of the storage medium. But
the tag and the ASP.NET Image class are patently inadequate for the job.

ASP.NET 2.0 provides one more image-related control that you met back
in Chapter 1: DynamicImage. It derives from DynamicImageBase, which in
turn derives from Image.

Architecture of Dynamic Image Controls
The DynamicImage control acquires the image bytes from a variety of sources
and renders them on all image-capable devices. Each supported source is
bound to a property, as shown in Table 8-6.

C08620245.fm Page 265 Tuesday, June 8, 2004 6:50 PM

266 Part III Application Services

Whatever the source format, the image is internally normalized to a Sys-
tem.Drawing.Image object and cached in the ASP.NET Cache with a randomly
generated key. What kind of markup code is sent to the browser to accommo-
date images stored in the cache? Have a look at Figure 8-6.

F08DR06Figure 8-6 The internal architecture of the DynamicImage class

If you set the image using the Image, ImageBytes, or ImageFile property,
the control generates an tag that points to the URL of an internal image-
generation service named CachedImageService.axd. Consider the following
ASP.NET code:

<asp:dynamicimage runat="server” id="MyFileImage”
ImageFile="images/tools.jpg” />

When the page runs, the following markup is generated for an HTML
browser:

<img id="MyFileImage”
src="CachedImageService.axd?data={guid}”
alt="“
style="border-width:0px;” />

The CachedImageService.axd URL is a built-in HTTP handler. It retrieves the
image from the ASP.NET Cache object and serializes its bytes to the browser using
the proper content type. The data parameter in the handler’s query string is the

Table 8-6 Sources for Dynamic Images

Property Description

Image The image is stored as an instance of a GDI+ image class. The
property is of type System.Drawing.Image. This format is ideal
for dynamically created images.

ImageBytes The image is stored as an array of bytes. It is suitable for images
stored in databases.

ImageFile The image is stored in the specified URL.

ImageGeneratorUrl The image is returned by the specified HTTP handler. ASP.NET
defines a new, image-specific HTTP handler. The extension is
.asix.

<asp:DynamicImage>

Image ImageFile ImageBytes ImageGeneratorUrl

CachedImageService.axd?data=xxx Handler.asix?xxx

C08620245.fm Page 266 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 267

key used to select the image in the ASP.NET Cache. Each cached image is identi-
fied with a dynamically generated GUID. If you need to know the exact URL of
the image being generated, you can use the ImageUrl (read-only) property.

The CachedImageService.axd service converts the size and type (such as
JPEG or GIF) of images based on the display capabilities of the browser. If the
browser cannot render the type of image, the service converts the image to a
type supported on that browser.

The Programming Interface of Dynamic Image Controls
Table 8-7 lists the properties of the DynamicImage class. The list includes the
properties inherited from the DynamicImageBase class, but not those inherited
from WebControl and Image.

Table 8-7 Properties of the DynamicImage Class

Property Description

DesktopScaling A Boolean property that indicates whether the image should be
resized before it’s stored in the cache. This allows you to resize
images for the desktop (create thumbnails).

Height Inherited from DynamicImageBase, this property gets and sets
the height of the image in pixels.

Image An object of type System.Drawing.Image, this property gets and
sets the source of the dynamic image.

ImageBytes Gets and sets a reference to a byte array that contains the
dynamic image.

ImageFile Gets and sets the name of the file that contains the image.

ImageGeneratorUrl Gets and sets the URL of the HTTP handler image-generation
service to use.

ImageType Inherited from DynamicImageBase, this property gets and sets
the preferred image type for the dynamic image.

ImageUrl Inherited from DynamicImageBase, this property gets the URL
used to generate the dynamic image.

More precisely, the property is declared read/write, but if you
try to set it, an exception is thrown because the operation is not
supported. This behavior is by design.

MobileScaling Gets information about how the image will be scaled for use on
mobile devices.

Parameters Gets a collection of parameters to pass to the image-generation
service. This property is used primarily when an HTTP handler
is used to generate the image.

Width Inherited from DynamicImageBase, this property gets and sets
the width of the image in pixels.

C08620245.fm Page 267 Tuesday, June 8, 2004 6:50 PM

268 Part III Application Services

The DesktopScaling and MobileScaling properties are totally independent
and don’t affect each other’s rendering. Desktop scaling concerns image resiz-
ing and caching. When the DesktopScaling property is set to true, the image is
resized or scaled on the server before being stored in the cache. This is an
effective way to resize images and create thumbnails. Note that if only one
dimension (height or width) is specified, the scaled image maintains the same
aspect ratio; otherwise, it is scaled to the specified dimensions or raises an
exception if neither the height nor the width are known. In all cases, you can
output the final size of the image to the browser by setting the width and height
attributes of the tag.

The MobileScaling property is defined as an instance of the ImageScaling
class and refers to sizing (reducing) images for mobile devices only. The Image-
Scaling class contains two properties—PercentScreenCover and ScaleMode. The
former gets or sets the percentage of the requesting browser’s screen that the
image should occupy. The latter, of type ImageScaleMode, indicates whether
and how the image is scaled. Acceptable values include NoScaling, FitBase-
dOnXxx, and ScaleBasedOnXxx, where Xxx can be Width or Height. The dif-
ference between scale and fit mode is that in scale mode you can have one
dimension of an image exceed the device’s screen. Fit mode always ensures
that both dimensions fit the available screen.

Important When you set the width and height for a dynamic image,
you must use pixels. If you try to define width or height using percent-
ages, no compile error is returned but an exception is thrown at run
time.

The ImageUrl property is read-only for dynamic images and is not used to
set a URL. You should use it only to read the actual URL for the image that is
sent to the browser. Use one of the properties in Table 8-6 to select an image.
Note, though, that if more than one of these properties is set, an exception is
thrown.

Displaying Images in ASP.NET Pages
ASP.NET 2.0 offers two image server controls—Image and DynamicImage. You
use the former to reference a static image stored to a server-side file. If you can
reference an image using a URL, by all means use the Image control, which pro-
duces the following, quite familiar, markup:

C08620245.fm Page 268 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 269

Referencing static images via a URL remains the fastest way to have an
image downloaded to a client. No extra code is required, and the browser and
the Web server handle it automatically without involving the ASP.NET runtime.

The DynamicImage control provides a familiar programming interface in
addition to alternative ways to get image bytes. You should use the Dynamic-
Image control when the image you want to return cannot be addressed using a
static and immutable URL. If the image resides in a database or is created on the
fly, using DynamicImage results in much better performance—primarily
because the image-generation service running behind the control implements
caching. Also, the DynamicImage control always uses an optimized HTTP han-
dler to return images to the browser. Performance-wise, this is better than writ-
ing an ASPX page that returns a content type of JPEG or GIF. Let’s look at how
to use the DynamicImage control.

Images from Files
The ImageFile property requires you to indicate a virtual path to a displayable
image. If you specify a physical path such as c:\image.gif, an exception is
thrown. So if image files are involved, where’s the difference between Image
and DynamicImage? First let’s look at the Image control:

<asp:image runat="server” ImageUrl="image.jpg” />

Image generates a direct reference to the image’s URL, and the content of
that file is returned to all browsers that make a request. If the DynamicImage
control is used, no direct link to the image is stored, which results in worse per-
formance compared to Image. However, the referenced image can be adapted
to the effective capabilities of the requesting browser, is automatically cached
on the server, and can have the format changed on the fly.

<asp:dynamicimage runat="server” id="MyFileImage”
ImageFile="image.jpg” />

The image that the ImageFile property references is loaded in memory,
cached as a System.Drawing.Image object, and manipulated to meet the
browser’s capabilities if need be. If you use DynamicImage with virtual file-
names, you pay a price in performance but gain a lot in flexibility with down-
level and mobile browsers.

Images from Databases
The ImageBytes property lets you specify the contents of an image using a byte
array. For example, images stored within the BLOB field of a database are
expressed and returned as an array of bytes. As the following listing shows, the

C08620245.fm Page 269 Tuesday, June 8, 2004 6:50 PM

270 Part III Application Services

ImageBytes property is data-bindable and can be declaratively set using a data-
bound expression:

<asp:dynamicimage runat="server” id="MyDatabaseImage”
ImageBytes=‘<%# GetEmployeePhoto(Int32.Parse(EmpID.Text)) %>‘

/>

The GetEmployeePhoto function returns a byte array obtained from a
BLOB field. The parameter passed to the function is used to select the right pic-
ture. The following code shows a possible implementation of the GetEmploy-
eePhoto function:

private string ConnString = “SERVER=…;DATABASE=northwind;UID=…;";
public byte[] GetEmployeePhoto(int empID)
{

SqlConnection conn = new SqlConnection(ConnString);
SqlCommand cmd = new SqlCommand();
cmd.Connection = conn;
cmd.CommandText = “SELECT photo FROM employees WHERE employeeid=“ +

empID.ToString();
conn.Open();
byte[] img = (byte[]) cmd.ExecuteScalar();

// Must pass through a MemoryStream object because the photo
// field on the Northwind.Employees table has a 78-byte prefix
// to skip. Just return img if this is not the case for your database
MemoryStream ms = new MemoryStream (img, 78, img.Length - 78);
conn.Close();
return ms.ToArray();

}

Note that when you use <%# … %> data-bound expressions, you must
also ensure that a call to Page.DataBind is made to fire the data-binding pro-
cess. Without a pagewide (or control-specific) DataBind call, the ImageBytes
property isn’t bound to data. Note, though, that ImageBytes can be set program-
matically at any time.

Dynamically Generated Images
The DynamicImage control also supports images exposed as instances of a
class derived from System.Drawing.Image—for example, Bitmap. In this case,
you use the Image property. Like ImageBytes, Image is data-bindable and can
be used in data-bound expressions. The following code shows how to display
a dynamically generated image that represents a random number:

<asp:dynamicimage runat="server” id="MyImage”
Image=‘<%# GetRandomNumber(Int32.Parse(MaxNum.Text)) %>‘ />

C08620245.fm Page 270 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 271

The function GetRandomNumber builds and returns a System.Draw-
ing.Image object, as shown here:

public System.Drawing.Image GetRandomNumber(int max)
{

Font f = new Font(“Impact", 20);
Random gen = new Random();

// Get the number
int number = gen.Next(max);

// Generate the image
Bitmap bmp = new Bitmap(100, 60);
Graphics g = Graphics.FromImage(bmp);
g.Clear(Color.LightCyan);
g.DrawString(number.ToString(), f, Brushes.Blue, 10, 10);

f.Dispose();
g.Dispose ();
return bmp;

}

In all these cases, the image is served to the browser through the ASP.NET
internal image-generation service, CachedImageService.axd.

Using a Custom Image-Generation Service
ASP.NET 2.0 reserves a new file extension along with the familiar .aspx, .asmx,
and .ashx extensions. The new extension. .asix, identifies user-defined HTTP
handlers that return images. An .asix file defines a class that inherits ImageGen-
erator—the class that provides base functionality for custom image-generation
services. Image-generation handlers are compiled at run time as ImageGenera-
tor objects and then cached in server memory.

The following listing illustrates an image generator that takes a string and
creates an image that represents it. We’ll call this component textgen.asix.

<%@ Image Class="TextGenerator” Language="C#” %>
using System;
using System.Drawing;
using System.IO;
using System.Web.UI.Imaging;

public class TextGenerator : ImageGenerator
{

protected override void RenderImage(Graphics g)
{

string text = “<No Parameters>";
int fontSize = 20;

C08620245.fm Page 271 Tuesday, June 8, 2004 6:50 PM

272 Part III Application Services

if (Request["Text"] != null)
text = Request["Text"].ToString();

else
if (Parameters["Text"] != null)

text = Parameters["Text"].ToString();
else
{

fontSize = 8;
}

Font f = new Font(“Arial", fontSize);
g.FillRectangle(Brushes.LightCyan, g.ClipBounds);
g.DrawString(text, f, Brushes.Black, g.ClipBounds);

f.Dispose();
}

}

To write a new image generator, at a minimum you inherit ImageGenera-
tor and override the RenderImage protected method. The RenderImage method
receives a Graphics object that represents the logical surface where the image
will be created. You reference the image using the ImageGeneratorUrl property
and make it point to the ASIX handler:

<asp:dynamicimage runat="server” id="MyAsixImage"
ImageGeneratorUrl="textgen.asix” />

An image generator object can receive input in two ways—through the
URL query string and using the DynamicImage’s Parameters collection. In the
former case, the browser ends up referencing the image as follows:

textgen.asix?param1=…¶m2=…

The image generator retrieves query string parameters using the Request
object and the QueryString collection. This approach is viable when you pro-
grammatically bind to the image generator, but it doesn’t lend itself well to
declarative binding. In this case, the Parameters collection is more helpful:

<asp:dynamicimage runat="server” id="MyAsixImage”
ImageGeneratorUrl="textgen.asix">

<parameters>
<asp:parameter Name="Text” DefaultValue="I love ASP.NET 2.0” />

</parameters>
</asp:dynamicimage>

The code defines a single parameter named Text, which is set to a default
value. The ASIX generator should look for this parameter in both the Request
and Parameters collections exposed by its base class. As a final note, consider

C08620245.fm Page 272 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 273

that parameters can also be defined programmatically using the typical interface
of name/value collection classes.

Figure 8-7 shows a page formed by four images, each obtained using one
of the techniques discussed so far.

F08DR07Figure 8-7 Dynamic images created using the techniques
supported by ASP.NET 2.0

Advanced Site Functionality
The more a Web site grows in complexity and functionality, the more the
administrator will appreciate statistics about user activity. The more a Web site
grows in size, incorporating new pages and directories, the more users need
help to orient themselves in the forest of links, URLs, and references. ASP.NET
2.0 addresses both points with a site navigation API and a site counter service.

Site Structure and Navigation
The idea of content navigation is tightly connected to the idea of the Web. In
the beginning, though, the URL of a page, and perhaps its directory informa-
tion, were enough to easily identify the desired resource. The URL itself was the
key to accessing a resource, and the short descriptive text displayed by the
hyperlink was more than helpful. But what was true for the Web of 8 or 10

C08620245.fm Page 273 Tuesday, June 8, 2004 6:50 PM

274 Part III Application Services

years ago is completely inadequate for the Web of today, in which the complex-
ity of many sites makes it virtually impossible to retrieve a resource by URL.

We can safely assume that all sites now require some form of content nav-
igation. ASP.NET 2.0 comes with a built-in navigation infrastructure for config-
uring, storing, and rendering site navigation. This infrastructure has three key
components:

■ Site structure A common programming interface lists the inher-
ently hierarchical structure of a Web site. This programming interface
is exposed via a site map object that site map provider components
fill with information read from a given data store. The default data
store is a root-level XML file tentatively named app.sitemap.

■ Site navigation Each node defined in the site map is associated
with a URL so that page developers can easily retrieve and use at run
time the root URL of a site section. In other words, any element
defined in the site structure must be bound to a URL for run-time
access.

■ Site structure display This component renders the site navigation
user interface in an intelligent fashion and maps user-friendly URLs
to appropriate ASPX file paths.

To understand the importance of built-in tools for site navigation, consider
the following common scenario. In a large Web site that contains thousands of
files, how do you organize a consistent site navigation mechanism? Large Web
sites (such as portals) are usually changing constantly, and many different
groups of developers and designers work on the site. ASP.NET 2.0 makes it pos-
sible to use several files and different data stores to specify a site’s structure.
Each team can freely manage the pages they own, but they are bound to a com-
mon programming interface, which greatly simplifies access to the site naviga-
tion structure from any page.

Defining the Site Map
A site map is the logical container for a hierarchical collection of nodes, each
representing a page in the application. Within a site map, individual pages are
grouped together in folders that might or might not correspond to a physical
folder. In ASP.NET 2.0 the default representation of a site map is usually an XML
file named web.sitemap, like the one shown here:

<siteMap>
<siteMapNode title="Home” url="default.aspx">

<siteMapNode title="Articles” url="articles/articles.aspx">
<siteMapNode title="Article 1” url="articles/demoart1.aspx” />

C08620245.fm Page 274 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 275

<siteMapNode title="Article 2” url="articles/demoart2.aspx” />
</siteMapNode>
<siteMapNode title="Picture Gallery” url="Photo/Albums.aspx">

<siteMapNode title="Meetings” url="Photo/Album.aspx?id=1” />
<siteMapNode title="Activities” url="Photo/Album.aspx?id=2” />
<siteMapNode title="Training” url="Photo/Album.aspx?id=3” />

</siteMapNode>
</siteMapNode>

</siteMap>

The site map file, if any, is parsed and transformed into a SiteMap object.
The SiteMap object is globally accessible through a bunch of static methods.

The XML file shown above is made up of a hierarchy of <siteMapNode>
elements, each containing a title and a url attribute, and an optional description
attribute. The former returns a friendly name for the element; the latter indicates
the URL to jump to when that portion of the site is selected. You can also spec-
ify the contents of a site map node by referencing an external file, as the fol-
lowing code snippet demonstrates:

<siteMap>
<siteMapNode title="Home” url="default.aspx” />
<siteMapNode title="About Us” url="about.aspx” />

</siteMap>

To reference an external site map file, you use the siteMapFile attribute on
the <siteMapNode> element.

<siteMap>
<siteMapNode title="Home” url="default.aspx” />
<siteMapNode siteMapFile="picturegallery.sitemap” />
§

</siteMap>

The child site map file has the same structure as the parent and begins
with a root <siteMap> node.

Accessing Site Map Information
The SiteMap object acts as an interface to site navigation information. This
information is expressed in the form of SiteMapNode objects. The site map
information exposed through the SiteMap object is loaded by a registered site
map provider. The default site map provider is the XmlSiteMapProvider class,
which works with the aforementioned XML configuration file named
web.sitemap. A site map provider is a class that implements the ISiteMapPro-
vider interface. A provider can store its site map information in any way, includ-
ing in databases.

C08620245.fm Page 275 Tuesday, June 8, 2004 6:50 PM

276 Part III Application Services

The SiteMap object doesn’t maintain the relationships between the nodes;
it delegates this responsibility to the site provider. The SiteMap object exposes
the static properties listed in Table 8-8.

The following code shows how to programmatically access any site map
information and build the user interface of the home page. The following page
contains a horizontal bar showing a brief description of the home page and a
vertical menu:

<html>
<head runat="server">

<title>My Site</title>
</head>
<body>

<form runat="server">
<asp:panel runat="Server” backcolor="cyan” width="100%">

<h1><asp:label runat="server” id="Caption” /></h1>
</asp:panel>
<table width="100%"><tr>

<td style="width:200;” bgcolor="lightcyan” valign="top">
<asp:bulletedlist runat="server” id="MyLinks”

displaymode="HyperLink” />
</td>
<td style="width:10;” bgcolor="lightcyan"></td>
<td valign="top">Content of the page</td>

</tr></table>
</form>

</body>
</html>

This structure is populated at run time using the following code, which
uses site map information:

<script runat="server">
void Page_Load (object sender, EventArgs e) {

InitSiteMap();
}

Table 8-8 Static Properties of the SiteMap Object

Property Description

CurrentNode Gets a SiteMapNode that represents the currently requested page

Provider Returns the site provider object for the current site map

Providers Returns a collection of named site provider objects that are available to
the SiteMap object

RootNode Gets a SiteMapNode that represents the top-level page of the site’s navi-
gation structure

C08620245.fm Page 276 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 277

void InitSiteMap () {
Caption.Text = SiteMap.RootNode.Title;
foreach(SiteMapNode node in SiteMap.RootNode.ChildNodes) {

ListItem li = new ListItem();
li.Text = node.Title;
li.Value = node.Url;
MyLinks.Items.Add (li);

}
}

</script>

Based on the web.sitemap file shown earlier, the root node has two child
nodes—About Us and Products. For each of these nodes, an entry into a bul-
leted list control is created. Figure 8-8 shows the final results.

F08DR08Figure 8-8 Building the home page of a Web site using site map
information

Binding Site Map Information to Controls
Site map information is hierarchical data and as such can be automatically han-
dled by hierarchical data-bound controls such as TreeView. As you saw in
Chapter 6, ASP.NET 2.0 provides a site map–specific data source control that
was designed to work with TreeView and Menu hierarchical controls. The fol-
lowing code shows how to declare a site map data source object and bind it to
a tree view and a menu control:

<asp:sitemapdatasource runat="server” id="MySiteMap” />
<asp:treeview runat="server” datasourceid="MySiteMap">

<rootnodestyle font-bold="true” />
<parentnodestyle font-bold="true” />
<nodestyle font-size="0.8em” />
<databindings>

<asp:treenodebinding navigateurlfield="url” textfield="title” />
</databindings>

</asp:treeview>
<asp:Menu runat="server” DataSourceID="MySiteMap” />

C08620245.fm Page 277 Tuesday, June 8, 2004 6:50 PM

278 Part III Application Services

The tree view is bound to the site map data source object through the
DataSourceId property and is instructed to show nodes based on the title and
url attributes in the site map. Figure 8-9 shows the final results.

F08DR09Figure 8-9 Site map information bound and displayed using
TreeView and Menu controls

The SiteMapPath Control
Along with bindable site map information, ASP.NET 2.0 also provides a ready-
to-use control that shows where a given page lives in the site hierarchy. Once
you have configured a site map provider and defined the actual site map, this
is as easy as dropping a SiteMapPath control on the page:

<asp:sitemappath runat="server” />

The SiteMap object is found, and any needed information is extracted and
displayed. There is no need to add a SiteMapDataSource object if all you want
is to display the site path to the current page. Figure 8-10 shows the default out-
put of the site map path control.

F08DR10Figure 8-10 Site map information bound and displayed by a treeview control

C08620245.fm Page 278 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 279

By default, a site map path control returns a string in which all the site
map nodes found along the way to the physical path are concatenated using a
> separator. Each element is rendered as a hyperlink that points to the corre-
sponding page. The appearance of the control can be customized to some
extent using style properties such as CurrentNodeStyle, HoverNodeStyle, Root-
NodeStyle, and NodeStyle. You can customize the path separator, too, using your
preferred colors, font, and style.

Site Counters
Monitoring visitor activity is an important administrative task for improving the
quality and contents of the site. Impressions and click-throughs are two metrics
commonly used to evaluate activity on a Web site. An impression is a viewing
of some specific content, such as a page or an advertisement. A click-through is
a user’s click to see specific content. To measure the effectiveness of an adver-
tisement, both impressions and click-throughs are usually tracked. The ratio of
clicks to impressions—the click-through rate—gives an idea of how site visitors
receive the advertising.

ASP.NET 2.0 provides a few built-in counters to track user activity, partic-
ularly impressions and click-throughs. The site counter API collects counts and
write-related and read-related data to a database via an ad hoc provider. The
underlying API on which these counters are based can also be used by server
control developers to create their own counters.

Applications can collect counter data in two nonexclusive ways: by
enabling built-in counters and by directly using the site counter API to write
counts. Built-in counters include page view counters and counters for clicks on
server controls such as HyperLink and AdRotator. The information collected is
sent to the provider, which stores it to a persistent medium—typically, a SQL
Server or Access database. Site counter information can be collected later both
programmatically and through Web Administration tool reports.

Counting Clicks on Server Controls
Some server controls provide a built-in implementation of the site counter ser-
vice. This results in a handful of new properties added to some ASP.NET but-
ton-like controls. The controls with built-in support for counters are AdRotator,
HyperLink, Button, ImageButton, LinkButton, PhoneLink, and ImageMap. The
site counter service is disabled by default, but it is turned on when the program-
mer sets the CountClicks Boolean property to true. This can be done both pro-
grammatically and declaratively.

To support the site counter service, the preceding controls expose addi-
tional properties, listed in Table 8-9. All the properties are read/write.

C08620245.fm Page 279 Tuesday, June 8, 2004 6:50 PM

280 Part III Application Services

Note that not all controls that support site counters expose all the proper-
ties listed in the table. In particular, CountViews appears only on AdRotator,
whereas TrackNavigateUrl is specific to HyperLink and AdRotator.

For the properties to work, the site counter service must be enabled in the
configuration file. You control the state of the service through the enabled
attribute on the <siteCounters> section. The service is enabled by default. An
ASP.NET application that wants to use site counters must have the site counter
database set up before it starts. You set up the provider and the related database
using the Web Site Administration tool. The default provider, AspNetAccessPro-
vider, uses the same Access aspnetdb.mdb database in which personalization
data is stored. (See Chapter 4.)

Table 8-9 Site Counter Properties

Property Description

CountClicks Gets or sets whether click-through events should be counted
each time the control is clicked. It is set to false by default.

CounterGroup Gets or sets the (optional) group name of the click-through
counter to use. By default, it is set to the class name of the
control.

CounterName Gets or sets the name of the click-through counter to use. By
default, the target URL of the control is used.

CountViews Gets or sets whether displaying a control is an event that
should be counted. It’s set to false by default. (More later.)

RowsPerDay Gets or sets the number of rows of data that should be col-
lected for a given day. For example, if the number is 24, one
row is collected every hour.

SiteCountersProvider Gets or sets the name of the provider to be used by the con-
trol. If this is set to an invalid provider, an exception is
thrown. It is the empty string by default, which means that
the default provider will be used.

TrackApplicationName Indicates whether the application name will be tracked by the
SiteCounters service and stored in the database. It’s set to true
by default.

TrackNavigateUrl Indicates whether the destination URL of the click-through
event is tracked. It’s set to true by default.

TrackPageUrl Indicates whether the URL for the page that contains the con-
trol will be tracked. It’s set to true by default.

C08620245.fm Page 280 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 281

Note TrackApplicationName, TrackNavigateUrl, and TrackPageUrl
are Boolean properties, so you can specify only whether the applica-
tion name, the target, and the page URL are tracked. You cannot indi-
cate the name or the URL to track.

The following code shows a hyperlink control configured to track clicks:

<asp:hyperlink id="Hyperlink1” runat="server"
navigateurl="http://www.contoso.com”
text="Visit us at Contoso.com"
countclicks="true” countername="Contoso.com” />

As Figure 8-11 shows, the hyperlink doesn’t point directly to the specified
URL. This is reasonable; how could the click be tracked otherwise? The desti-
nation URL is counters.axd—a new HTTP handler that registers the event and
then redirects to the original URL. The handler receives information about
counters and the URL in encoded form. Site counter–enabled controls use the
machine key code to scramble the query string. Finally, notice that multiple
clickable controls in the application can be linked to the same counter.

F08DR11Figure 8-11 A hyperlink control with counting enabled doesn’t point to
the original URL. (See the status bar.)

C08620245.fm Page 281 Tuesday, June 8, 2004 6:50 PM

282 Part III Application Services

Tracking Page Views
You can designate a page for counting by tweaking one of the application’s
web.config files. In particular, you must turn on the enabled attribute in the
<pageCounters> section. The page counter is disabled by default. Depending
on the scope of the tweaked web.config file, all pages or a group of pages can
be designated for counting.

<system.web>
<siteCounters>

<pageCounters enabled="true” />
</siteCounters>

</system.web>

Enabling the page view tracking doesn’t significantly affect overall page
performance. The site counter service is implemented as an HTTP module. This
module intercepts the Application_EndRequest event and writes data out to the
site provider. As a result, counter data is written only when the request has
completed and doesn’t affect generation of the markup. The time taken to log
counters is negligible compared to the time needed to render page content to
the client, even for very simple pages.

Accessing Counters Programmatically
In addition to using counters declaratively from pages and server controls, you
can also update counters programmatically. You use the static members of the
SiteCounters class, which represents the public API for reading and writing
counter data. The following code shows how you can write data when a few
controls are clicked on a page:

void OnRate(object sender, BulletedListEventArgs e) {
Rate(e.Index);

}
void Rate (int index) {

string displayRate = Feedback.Items[index].Text;
string rate = Feedback.Items[index].Value;

string baseText = “You rated this book as {0}.
";
Thanks.Text = String.Format (baseText, displayRate);

SiteCounters.Write(“Book Feedback", “IntroAspNet20", rate,
null, true, true);

}

The OnRate event handler is bound to the Click event of a BulletedList
control:

C08620245.fm Page 282 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 283

<h2>How would you rate this book?</h2>
<asp:bulletedlist runat="server” id="Feedback”

displaymode="LinkButton"
onclick="OnRate” >

<asp:listitem value="5">Outstanding</asp:listitem>
<asp:listitem value="4">Excellent</asp:listitem>
<asp:listitem value="3">Great</asp:listitem>
<asp:listitem value="99">More than I can say...</asp:listitem>

</asp:bulletedlist>

The value associated with each list item is written to the counter database
when the corresponding item is clicked.

The Write method of the SiteCounters class has several overloads. The one
we use here requires you to specify the counter group, the counter name, some
text that describes the event, the target URL (if any), and whether you want the
application name and page URL be tracked. In this case, we write some
optional information associated with the event—the feedback. This informa-
tion, known as the counter event data, is coded as a string and can be useful for
grouping data, as you’ll see in moment.

The SiteCounters class has a few methods for extracting data from the pro-
vider’s database. For example, the GetRows methods returns a DataSet object
filled with the whole site counter table. Figure 8-12 shows the actual content of
the DataSet in the sample application (rendered in a GridView).

F08DR12Figure 8-12 The DataSet object that contains the current snapshot of
the site counter database

C08620245.fm Page 283 Tuesday, June 8, 2004 6:50 PM

284 Part III Application Services

You get the data and bind it to a GridView control using the following
code:

DataSet data = SiteCounters.GetRows(DateTime.MinValue,
DateTime.MaxValue, “Book Feedback", “IntroAspNet20”);

Results.DataSource = data;
Results.DataBind();

The GetRows method requires a time interval—all records are selected in
the preceding snippet—plus the counter group and counter name. Once you
hold counter data as a DataSet, you can easily implement custom functions
over the data. For example, you can calculate the average rate by summing the
counter event data and dividing it by the total number of clicks:

int total = 0;
int clicks = 0;
foreach(DataRow row in data.Tables[0].Rows)
{

int eventClicks = (int) row["Total"];
int eventTotal = Int32.Parse((string)row["CounterEvent"]) * eventClicks;
total += eventTotal;
clicks += eventClicks;

}
Avg.Text = String.Format (“{0:f}", ((float)total / (float)clicks));

Site Counter Providers
The site counter service relies on the services of a site provider object to imple-
ment persistent data storage. ASP.NET 2.0 comes with two built-in providers—
one using an Access database and one using a SQL Server table. Script are pro-
vided to create and configure the databases off line. You can accomplish the
same task through the visual interface of the Web Administration Tool inte-
grated into Microsoft Visual Studio.

ADO.NET classes are used to manage writing and reading on these tables.
You can explore the structure of the default site counter table by looking at the
aspnetdb.mdb file in the Data subdirectory of the application. The site counter
table is named aspnet_SiteCounters.

Summary

Several times in this book, you’ve seen the word codeless used in a discussion
of programming to describe features that allow you to create relatively simple
pages with no code at all. Will the day come when programmers become use-

C08620245.fm Page 284 Tuesday, June 8, 2004 6:50 PM

Chapter 8 Rich Controls and Services 285

less? Of course not—or at least not because of incredibly powerful software
tools. Codeless programming will probably remain an unreachable ideal, even
though the ASP.NET 2.0 literature liberally uses the words codeless and pro-
gramming together. Codeless programming is possible in ASP.NET 2.0, but it is
worthwhile in only a small number of real-world situations—specifically, in the
case of application services.

Application services help programmers build more advanced functions
with less code. An application service can be provided by controls as well as
low-level ASP.NET pipeline components such as HTTP modules and handlers.
This chapter discussed a few of the new application services in ASP.NET 2.0. In
particular, we focused on the cutting-edge Wizard control and a couple of ser-
vices that run alongside your code—dynamic image generation and site
counters. As part of the ASP.NET infrastructure, all these features come at a cost.
However, site counters and dynamic images add value to your overall applica-
tion and the extra cost is negligible.

C08620245.fm Page 285 Tuesday, June 8, 2004 6:50 PM

C08620245.fm Page 286 Tuesday, June 8, 2004 6:50 PM

287

State Management
For applications to work on top of a stateless protocol such as HTTP, state main-
tenance is essential. Web pages are destroyed and re-created during each round
trip to the server, so page information cannot exist beyond the life cycle of a sin-
gle page request. State management is the process by which you maintain state
and page information over multiple requests. ASP.NET provides multiple ways to
maintain state between server round trips, which fall into two general categories:
client-side and server-side approaches. The right approach depends on the
application; you must consider the amount and sensitivity of the information,
where you want to store it, your performance goals, and other factors.

In ASP.NET, the client-side options are the view state, hidden fields, and
cookies. Server-side storage media include some intrinsic objects such as Appli-
cation, Session, and Cache. Storing page information on the client means you
don’t use any server resources, but you risk the confidentiality and security of
the information unless you encrypt the data. There is also a practical limit on
how much information you can send to the client for storage. Server-side
options for storing page information are generally preferable because of the
higher security standards. On the downside, valuable Web server resources are
consumed, which can lead to scalability issues if the size of the information
store is large.

To balance data security and performance, ASP.NET 1.x introduced the
Cache object in addition to supporting the familiar ASP Application and Session
objects. The Session object was also redesigned from the ground up. ASP.NET
2.0 introduces even more enhancements:

■ Control state for custom ASP.NET controls

■ Custom session-state management options

■ Mechanism for handling custom cache dependencies, including SQL
Server database dependencies

C09620245.fm Page 287 Wednesday, June 9, 2004 12:01 PM

288 Part III Application Services

From a custom control’s perspective, the new client-side storage medium,
control state, is more reliable than view state. It is not only independent of view
state, but it is also completely customizable in terms of programming interface
and data format. The session state can be persisted in any data storage medium
for which you can get or write a session state provider object. Any information
placed in the ASP.NET cache can be invalidated by user-defined events. An
insightful example of this technique comes as a separate feature, too. In
ASP.NET 2.0, you can cache the results of a SQL Server query and have it inval-
idated when one of the displayed records is updated.

The Control State
An ASP.NET server control can participate in state management by using the
view state object. All controls inherit the ViewState property from the base class
Control and can use it to store state information as name/value pairs. The View-
State property returns an instance of the StateBag class—a sort of specialized
dictionary object. What’s the control state, then, and how does it differ from the
ASP.NET 1.x view state?

At a high level of abstraction, the control state and the view state are sim-
ilar. The key difference is that the control state is completely handled by the
control. No page or application-level setting can affect the structure, storage, or
even availability of the control state. In a certain way, the control state is the
control’s private view state.

Control State vs. View State
It is not uncommon for a server control to persist information across postbacks.
For example, consider what happens to a DataGrid control that supports auto-
reverse sorting. When the user clicks to sort by a column, the control compares
the current sort expression and the new sort expression. If the two coincide, the
sort direction is reversed. How does the DataGrid track the current sort expres-
sion? There’s the rub. It doesn’t.

Drawbacks of the View State
Because you want your pages to show a fully sortable grid, you must find a
workaround. As a smart ASP.NET developer, you decide to derive a new control
from the DataGrid class and add a new property to it—say, SortExpression. You
set the SortExpression property when the grid fires the SortCommand event,
after the user clicks on the header of a sortable column. Unfortunately, if you

C09620245.fm Page 288 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 289

don’t place the SortExpression property in the control’s view state, the sort
expression will be lost as soon as the control renders to the browser.

To work around the issue, you implement a get and set accessor for the
property that reads from and writes to the view state. This is a solution you can
be proud of. But what happens if the control is used in a page that has the view
state disabled? In ASP.NET 1.x, the control feature just stops working. You might
see unexpected behaviors (that cause will you headaches) when you use rich
custom controls—especially if these controls are not well documented.

When to Use Control State
Few built-in server controls make “private” use of the view state, and most often
this is limited to particular features. Private use of the view state occurs when a
control stores the content of nonpublic properties in the view state. In fact, the
application can’t access these properties due to the protection level, and not
even default values can be restored. By storing internal properties to the view
state, the control uses the view state privately. This action is perfectly legal, but
it becomes dangerous when the view state is disabled. The necessity of using
the view state for private or protected members grows with the complexity of
the control. As mentioned, few ASP.NET controls make private use of the view
state. The TextBox control persists its text between posts to the server for the
TextChanged event to work correctly.

In ASP.NET 2.0, the control state replaces the private use of the view state.
It is safer to use the control state than the view state because application and
page-level settings cannot affect it. If your custom control has private or protected
properties stored in the view state, you should move all of them to the control
state in ASP.NET 2.0. Anything you store in the control state remains there until it
is explicitly removed. The more data you pack into it, the more data is moved
back and forth between the browser and the Web server. Unlike with the view
state, though, there’s no way to control the size of the control state. You should
use control state in ASP.NET 2.0, but you should do so carefully.

Programming the Control State
The implementation of the control state is left to the programmer, which is both
good and bad. It’s bad because you have to implement serialization and dese-
rialization for your control’s state. It’s good because you can control exactly
how the control works and tweak its code to achieve optimal performance in
the context in which you’re using it.

The page infrastructure takes care of the actual data encoding and serial-
ization. The control state is processed along with the view state information and

C09620245.fm Page 289 Wednesday, June 9, 2004 12:01 PM

290 Part III Application Services

undergoes the same treatment as for binary serialization and Base64 encoding.
The control state is also persisted within the view state’s hidden field.

Maintaining State for a Control
You store custom data to the control’s view state by adding items to a dictionary
object exposed through the ViewState property. This property is defined on the
Control class and is inherited by all server controls. The ViewState property
returns an object of type StateBag—a dictionary-like type.

There’s no ready-made dictionary object to hold the items that form the
control state. You no longer have to park your objects into a fixed container
such as the ViewState state bag—you can maintain data in plain private or pro-
tected members. Among other things, this means that access to data is faster
because it is more direct and is not mediated by a dictionary object. For exam-
ple, if you need to track the sort direction of a grid, you can do so using the fol-
lowing variable:

private int _sortDirection;

In ASP.NET 1.x, you have to resort to the following:

private int _sortDirection
{

get {return Int32.Parse(ViewState["SortDirection"]);)
set {ViewState["SortDirection"] = value;)

}

In ASP.NET 2.0, you are responsible for the initialization of any private state
property upon loading. The ASP.NET runtime takes care of restoring the view
state when the page posts back and serializing it back to the browser when the
page renders. You must do the same for the control state. Let’s see how.

Persisting the Control State
When a page loads, the ASP.NET 2.0 runtime first restores the view state and
then recursively calls into a new overridable method for all child controls, Load-
ControlState. The following pseudocode shows the control’s typical behavior:

private override void LoadControlState(object savedState)
{

// Make a copy of the saved state.
// You know what type of object this is because
// you saved it in the SaveControlState method.
object[] currentState = (object[]) savedState;
if (currentState == null)

return;

C09620245.fm Page 290 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 291

// Initialize any private/protected member you stored
// in the control state. The values are packed in the same
// order and format you stored them in the SaveControlState method.
_myProperty1 = (int) currentState[0];
_myProperty2 = (string) currentState[1];

§
}

The LoadControlState method receives an object identical to the one you
created in SaveControlState. As a control developer, you know that type very
well and can use this knowledge to extract any information that’s useful for
restoring the control state. For example, you might want to use an array of
objects in which every slot corresponds to a particular property.

The following pseudocode gives an idea of the structure of the SaveCon-
trolState method:

protected override object SaveControlState()
{

// Declare a properly sized array of objects
object[] stateToSave = new Object[…];

// Fill the array with local property values
stateToSave[0] = _myProperty1;
stateToSave[1] = _myProperty2;
§

// Return the array
return stateToSave;

}

You allocate a new data structure (such as an array of objects, a hashtable,
or a custom type) and fill it with the private properties to persist across post-
backs. The method terminates, returning this object to the ASP.NET runtime.
The object is then binary-serialized and encoded to a Base64 stream. The class
that you use to collect the control state properties must be serializable.

Extending the Session State Mechanism
Session state consists of a dictionary-based API that developers use to store
user-specific data for the duration of a session. In ASP.NET 1.x, the session state
mechanism uses an HTTP module to hook a few state-related application
events. When the state is being acquired to serve the incoming request, the
module retrieves the ID of the current session or generates a new session ID if
a new session is being started. A new session ID is also generated if the user
didn’t store any data in the session state in previous requests.

C09620245.fm Page 291 Wednesday, June 9, 2004 12:01 PM

292 Part III Application Services

The session ID is retrieved from an HTTP cookie (the default) or extracted
from the URL (for cookieless sessions). In the case of cookieless sessions, the
module redirects the browser to a fake URL, which has just been modified to
embed the session ID. Once the module knows the ID of the current session, it
attempts to load the state associated with it. Session state is a collection of
name/value pairs that is retrieved from a storage medium and copied into the
HttpSessionState object. This is the object you access through the familiar Ses-
sion property.

In ASP.NET 1.x, the session HTTP module supports three storage modes for
session data: InProc, StateServer, and SqlServer. When the session is configured
to work in InProc mode, the data is stored in the ASP.NET Cache object—that is,
in the ASP.NET worker process memory. StateServer mode stores data in the
memory of a process separate from the ASP.NET worker process. This process is
a Windows NT service called aspnet_state.exe that must be started manually.
Finally, in SqlServer mode, session data is maintained in a SQL Server table.

In ASP.NET 2.0, developers can define custom data stores for session state.
For example, if you need the robustness that a database-oriented solution can
guarantee but you work with Oracle databases, you need not install SQL Server
as well. You can support an Oracle session data store while using the same Ses-
sion semantics and classes.

The extensibility model for session state offers two options: customizing
bits and pieces of the existing ASP.NET session state mechanism (for example,
creating an Oracle session provider or controlling the generation of the ID) and
replacing the standard session state HTTP module with a new one. The former
option is easier to implement but provides a limited set of features you can cus-
tomize. The latter option is more complicated to code but provides the greatest
flexibility. Let’s review the conceptual specification of both these new features.

The Default Session State Module
Before going any further with customization and replacement, let’s briefly
review the behavior of the default session state module so you can fully under-
stand the changes you can implement. The whole session mechanism is con-
trolled by the HTTP session module. This module hooks up three application
events—AcquireRequestState, ReleaseRequestState, and EndRequest. The tasks
accomplished by each event handler are described in Figure 9-1.

If you’re content with the preceding logic, you probably don’t need to
replace the session module altogether. Otherwise, you should use the steps out-
lined next as a basis for building your own module.

C09620245.fm Page 292 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 293

F09DR01Figure 9-1 The overall behavior of the default session state module

Acquiring the State for the Request
When the AcquireRequestState event fires, the session module gets the ID of the
current session. The ID can be read from a cookie or excerpted from the URL.
If a new ID must be generated, the session module calls into another HTTP
module. This module is a class that implements the ISessionIDModule interface.
The name of the session ID generator is stored in the web.config file. By writing
a custom class that behaves like a session ID module, you can completely cus-
tomize the process that generates the ID of the session.

Next, the default session module uses this ID as a selector to load the ses-
sion data from the data store. The data store is identified based on the informa-
tion found in the web.config file. In ASP.NET 1.x, the data store can be the
ASP.NET cache, SQL Server, or a Windows NT service. Using the session data

AcquireRequestState

Get the session ID

Retrieve the session data
from the store

ReleaseRequestState

Detach session data from
the HTTP context

EndRequest

Release state if the request
ended prematurely

Save Session data back to
the data store

Attach session data to
the HTTP context

C09620245.fm Page 293 Wednesday, June 9, 2004 12:01 PM

294 Part III Application Services

obtained in the last step, the module populates a dictionary and adds it to the
current HTTP context object. A valid dictionary for the session state is an object
that implements the IHttpSessionState interface. Finally, if this is a new session,
the module fires the Session_OnStart event.

Releasing the State for the Request
When the ASP.NET runtime is about to release the state for the current request,
the session module detaches the session state dictionary from the HTTP con-
text. If the session has been abandoned, it raises the Session_OnEnd event and
removes the session data from the data store. If the session continues, the ses-
sion module saves data back to the data store.

Note that the default session handler doesn’t create an entry in the data
store if the session state is empty. This causes a new session ID to be generated
on the next request within the session.

Terminating the Request
The default session HTTP module also handles the EndRequest event—the last
event in the life cycle of a HTTP request. This handler is only for clearing pos-
sible errors. Basically, if a request terminates prematurely due to an error, no
ReleaseStateRequest event is raised. So the EndRequest is a sort of sentinel that
ensures that any request state is correctly released anyway.

Customizing the Session State Module
If the logic and the data structures employed by the default session module
don’t completely satisfy you, the first option you have as a developer is to
replace portions of ASP.NET session state functionality without reinventing all
of it. The default session module probably does what you need about 99 per-
cent of the time. If you want to support functionality not covered by the stan-
dard module, you should consider replacing the session state module.

You can customize and adapt four aspects of the session state module: the
data store, the session state item, the data dictionary, and the session ID. For
this purpose, ASP.NET 2.0 introduces a few new attributes and elements to the
<sessionState> section of the web.config file.

Replacing the Session Data Store
The session data store is the layer of code in charge of reading and writing the
session data to a particular storage medium. ASP.NET 1.x supports three
media—the ASP.NET Cache, a well-known separate process, and a well-known
SQL Server table. ASP.NET 2.0 lets you specify a custom data store.

C09620245.fm Page 294 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 295

In its most general form, a session data store is a class that inherits the Ses-
sionStateStoreProviderBase class. The main methods of the interface are listed
in Table 9-1.

Classes that inherit the SessionStateStoreProviderBase class work with the
default ASP.NET session state module and replace only the part of it that han-
dles session state data storage and retrieval. Nothing else in the session func-
tionality changes. The Get and Set methods are responsible for reading and

Table 9-1 Methods of the SessionStateStoreProviderBase Class

Method Description

BeginRequest Called by the default session state module when it
begins to handle the AcquireRequestState event.

CreateNewStoreData Creates a new object to contain all the state information
specific to a session. Returns an object of type Session-
StateStoreData.

Dispose Releases all resources (other than memory) used by the
session data store object.

EndRequest Called by the default session state module when it
begins to handle the EndRequest event.

GetItem Gets the session data from the data store. The method
serves requests from applications that use the read-only
session state. (The EnableSessionState attribute is set to
ReadOnly.)

GetItemExclusive Gets the session data from the data store and locks it.
Used for requests originated by applications in which the
EnableSessionState attribute is set to ReadWrite.

Init Receives an object packed with configuration settings for
a custom session state and initializes the provider class.

ReleaseItemExclusive Unlocks a session state item that was previously locked
by a call to the GetExclusive method.

RemoveItem Removes a session data store item from the session data
store. Called when a session ends or is abandoned.

ResetItemTimeout Resets the expiration time of a session state item based
on the session’s Timeout value. Invoked when the appli-
cation has session support disabled.

SetAndReleaseItemExclusive Writes a session data item to the data store.

SetItemExpireCallback The module calls this method to notify the data store
class that the caller has registered a Session_OnEnd
handler.

C09620245.fm Page 295 Wednesday, June 9, 2004 12:01 PM

296 Part III Application Services

writing the data object that contains all session data. When the session starts,
the CreateNewStoreData method is called to create a new object to store the
contents of the session data. For example, in the default session module, the
session data store is placed in the ASP.NET Cache or is serialized in a row
within the SQL Server session table.

Note that the data store doesn’t handle individual data items such as those
you read or write in your pages through the Session property. At the data store
level, the session data is managed as a single, all-encompassing object named the
session data store. This object is administered using Get, Set, Remove, and the like.

To take advantage of custom session data providers, you must modify the
<sessionState> configuration section as follows:

<sessionState mode="Custom”
customType="Samples.MyDataStore, MyDataStoreLib">
§

</sessionState>

Based on this configuration script, ASP.NET uses the Samples.MyDataStore
class to access the session data. The class is loaded from the MyDataStoreLib
assembly. Of course, the Samples.MyDataStore class inherits the SessionStateSt-
oreProviderBase class.

Replacing the Session State Item
The session data store is the class that combines a dictionary of user-defined
data—the actual slots of data managed through the familiar Session property—
and the static objects available for the current context. Session static objects are
objects that are declared in the global.asax file and scoped to session. Figure 9-
2 provides a graphical overview of the session state architecture.

F09DR02Figure 9-2 How the pieces of the session puzzle fit together

Dictionary
accessible through

Session

ValueKey

Session State Data

Session State DataSession ID

.

.
.
.

Session ID

Session State Data

Session State Data Store

Session ID

Static objects
declared in global.asax
scoped to the session

C09620245.fm Page 296 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 297

In ASP.NET 2.0, the default session state item class is named SessionState-
StoreData. You can inherit from this class to create your own session data store
class.

Replacing the Session Data Dictionary
As shown earlier in Figure 9-2, the SessionStateStoreData class has two main
components—the dictionary of user-defined items and the collection of static
objects. Only the Items and StaticObjects are properties on the SessionState-
StoreData class. A third property is defined on the class—Timeout. As the name
suggests, Timeout indicates how long, in minutes, the session state item is valid.
The default value is 20 minutes.

The Items collection is actually exposed to the page through the Session
property. By default, it is an instance of the HttpSessionState class. You can
replace the default dictionary class with your own. All you have to do is create
a class that implements the ISessionSessionItemCollection interface. The follow-
ing code snippet shows a possible implementation of the CreateNewStoreData
method on the data store. The method returns an instance of the default Ses-
sionStateStoreData class in which the timeout and the internal dictionary have
been modified.

SessionStateStoreData CreateNewStoreData()
{

SessionStateStoreData mySessionData = new SessionStateStoreData();

// Provide an empty session dictionary object
mySessionData.Dictionary = new Samples.MyDictionaryClass();

// Set the timeout to 10 minutes
mySessionItem.Timeout = 10;

// Set the StaticObjects property to the static objects for
// the current context.
mySessionItem.StaticObjects =

SessionStateUtility.GetSessionStaticObjects(
HttpContext.Current);

return mySessionData;
}

Notice the use of the SessionStateUtility helper class. The class contains
optional helper methods that custom session state data storage providers can
use. In particular, the GetSessionStaticObjects used above returns the default
collection of static objects.

C09620245.fm Page 297 Wednesday, June 9, 2004 12:01 PM

298 Part III Application Services

Generating a Custom Session ID
ASP.NET 2.0 uses an HTTP module named SessionIDModule to generate the
session ID. The class implements the ISessionIDModule interface. You can
replace this component with a custom module if your HTTP module imple-
ments the same ISessionIDModule interface. To help you decide whether you
really need a custom session ID generator, let’s review the facts about the
default module.

The SessionIDModule class generates a session ID as a 120-bit random
number. The session is represented as a string of 20 alphanumeric characters.
The session ID can be stored in either an HTTP cookie or a mangled URL,
based on the value of the cookieless attribute in the <sessionState> configuration
section. By default, cookies are used. The default cookie name is
ASP.NET_SessionId, but you can override it by setting the cookieName attribute
in the configuration file.

When cookieless sessions are used, the session ID module is responsible
for adding the ID to the URL and redirecting the browser. In this case, the
browser is redirected to a fake URL like the following:

http://www.contoso.com/test/(session_id)/page.aspx

How can a request for this fake URL be served correctly? In the case of a
cookieless session, the Session ID module depends on a small and simple ISAPI
filter (aspnet_filter.dll, which is also available to ASP.NET 1.x) to dynamically
remove the session ID from the request URL. In this case, the request is served
correctly, but the path on the address bar doesn’t change. The removed session
ID is placed in a request header named AspFilterSessionId.

If the filter is disabled on the Web server machine, a custom Session ID
module is called to replace it. You can do this by using a handler that subscribes
to the HttpApplication.BeginRequest event. Table 9-2 details the methods avail-
able on the ISessionIDModule interface. You should implement all of them if
you want to install your own ID generator.

Table 9-2 Methods of the ISessionIDModule Interface

Method Description

CreateSessionID Creates a unique session identifier for the session

GetSessionID Gets the session ID from the context of the current request

RemoveSessionID Deletes the session ID from the cookie or from the URL

SaveSessionID Saves a newly created session ID to the HTTP response

Validate Confirms that the session ID is valid

C09620245.fm Page 298 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 299

Once you have created a custom session ID module, you register it in the
configuration file. Here’s how to do it:

<httpModules>
<remove name="SessionID” />
<add name="MySessionID” type="Samples.MyIDModule, MyLib” />

</httpModules>

You first remove the default session ID HTTP module and then add your
own.

Writing a Custom Session State Module
A custom session state module is an HTTP module class that intercepts three
key application events—AcquireRequestState, ReleaseRequestState, and
EndRequest. Capturing these events is mandatory not so much because you
would otherwise get error messages or runtime exceptions, but because with-
out them you couldn’t implement a serious session state module.

Initialization of the Module
An HTTP module implements the IHttpModule interface, which consists of two
methods, Init and Dispose. In the Init method, you start by reading any config-
uration information from the web.config file. Based on that, you configure the
state of the module and prepare it for handling the current configuration.

In the Init method, the module also subscribes to the aforementioned
application events and gets a reference to the session ID module to use. A ref-
erence to the currently loaded module that implements the ISessionIDModule
interface can be obtained through the following code:

ISessionIDModule idModule;
HttpApplication app = HttpContext.Current.ApplicationInstance;
idModule = SessionStateUtility.GetSessionIDModule(app);

The GetSessionIDModule method on the SessionStateUtility helper class
just returns the current session ID module, which is then stored in an internal
variable for further use. Next the module instantiates and initializes the session
provider object by calling the Init method on the SessionStateStoreProviderBase
object, which any session provider must inherit.

Acquiring Session State
When the AcquireRequestState event fires, the module retrieves the session ID
for the request by calling the GetSessionID method (listed earlier in Table 9-2).
In implementing this method, you should take into account cookies or imple-
ment alternative schemes for client storage of the session ID. If no session ID is

C09620245.fm Page 299 Wednesday, June 9, 2004 12:01 PM

300 Part III Application Services

found, the module creates a new ID and saves it to the Response object. You
save the newly created session ID to the Response object by calling SaveSes-
sionID on the ISessionIDModule interface. The following pseudocode shows
how to store the session ID using a cookie:

string cookieText = UrlEncode(id);
HttpCookie cookie = new HttpCookie(cookieName, cookieText);
cookie.Path = “/";
context.Response.Cookies.Add(cookie);

After retrieving the session ID, the module connects to the data store and
retrieves the data associated with the given ID. This data is stored in a class
such as the SessionStateStoreData class you saw earlier. Using the session data
obtained in the previous step, you create a session state object—a dictionary
that will be bound to the context of the current request and will be made avail-
able to applications through the Session property. Finally, if this is a new ses-
sion, the Start event should be raised.

Releasing Session State
The ReleaseRequestState event fires when the request is about to terminate. The
module should detach the session state object from the HTTP context and then
save it back to the data store. A new session is created if the session state is
empty; if this is the case, the session module doesn’t write anything to the data
store. If you write a custom session state module, you can customize this
aspect, too.

If you want to support Session_OnStart and Session_OnEnd in your ses-
sion state module, you should use the name Session when you register the cus-
tom module. Use the following script to replace the session module:

<httpModules>
<remove name="Session” />
<add name="Session” type="Samples.MySession, MyLib” />

</httpModules>

When the session state module is replaced, all the settings in <session-
State> are irrelevant unless the custom module uses them.

The ASP.NET Cache Object
ASP.NET 1.x introduced a container object named Cache, which joined the
other two popular containers in classic ASP, Application and Session. Cache is a
hashtable used to store frequently accessed data. As with Application (but not
Session), any data stored in Cache is global to the application and is visible from

C09620245.fm Page 300 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 301

within each currently active session. The structure and API of the three objects
is similar, and all provide access using a familiar name/value notation.

Session and Cache differ in that Session is a block of memory set aside for
each user and Cache manages globally accessible data. The key difference
between Application and Cache is the Cache object’s support of item depen-
dencies. Cache can remove cached items when certain events occur. First and
foremost, it drops the least-used items if the Web server runs low on memory.
You can also define item dependencies so cached items are removed after a
specific duration of time, at a certain time, or when one or more files or cached
items change. This characteristic makes the Cache object an important tool for
building highly scalable, fast Web applications. One instance of the Cache class
is created per application domain, and it shares the lifetime of the domain.

The Cache Dependency Functionality
The cache dependency mechanism is encapsulated in the CacheDependency
class. This class can represent a single file or directory, an array of files or direc-
tories, or an array of cached items logically related to a particular item added to
the cache. To establish a dependency between a cached item and an external
component, you add the item using a specific overload of the Insert method, as
shown here:

CacheDependency dep = new CacheDependency(fileName);
Cache.Insert(key, value, dep);

The added item is removed from the cache when the specified file
changes. Let’s review in more detail the mechanism that the Cache uses to
implement dependencies. You’ll see the limitations in the version 1.x function-
ality and get an introduction to the new features in ASP.NET 2.0.

Tracking Changes in Files and Directories
You can tie the lifetime of a cached item to the timestamp of a file or a direc-
tory. When the file or directory changes (by being modified, deleted, or
moved), the file system change is detected and the cached item is marked as
obsolete and removed from the memory. A file dependency is based on a file
monitor object—an instance of the FileSystemWatcher class. This class is a man-
aged wrapper around a Windows operating system feature—the file notification
change functionality—which is extensively used by various modules within
ASP.NET.

Note that a file dependency can also be established with an array of files
and directories. Also note that you can create dependencies only by using the
Insert method or the Add method.

C09620245.fm Page 301 Wednesday, June 9, 2004 12:01 PM

302 Part III Application Services

// Various approaches to cache items
Cache[key] = value; // set accessor of the Item property
Cache.Insert(key, value, dep);

If you use the set accessor of the Item property to add a new item, the item
will be correctly inserted but no dependency will ever be created.

Tracking Changes in Cached Items
Cached items can also be bound to other cached items. Interestingly, this can
happen in addition to file dependencies, as the following code demonstrates:

// Use string arrays for file(s) and key(s)
CacheDependency dep = new CacheDependency(fileNames, otherKeys);
Cache.Insert(key, value, dep);

The cached item is subordinate to the specified files or folders and the
array of keys. When either of the two changes, the item is invalidated and
removed. To make an item dependent only on a cache item, you set the file-
name parameter to null in the constructor shown above.

The CacheDependency class also supports a few more combinations that
let you create effective dependencies between cached items and other elements
of the application. For example, a cached item can expire at a certain time
(absolute expiration) or after a certain duration of time (sliding expiration). In
addition, you can add a time to each cache dependency to make it start tracking
changes only at a certain moment. Finally, a cache dependency can be subor-
dinate to another cache dependency. This feature is useful in implementing cas-
cading changes to stored items.

What Cache Dependencies Cannot Do in ASP.NET 1.x
In ASP.NET 1.x, a cached item can be subject to four types of dependencies:
time, files, other items, and other dependencies. The ASP.NET 1.x Cache object
addresses many developers’ needs and made building in-memory webs of fre-
quently accessed data much easier and more effective. However, this mecha-
nism is not perfect, nor is it extensible.

Like many other aspects of ASP.NET, the Cache object merely whetted
developers’ appetites. Let’s briefly consider a real-world scenario. What type
of data do you think a distributed data-driven application would place in the
ASP.NET Cache? In many cases, it would simply be the results of a database
query. But unless you code it yourself—which can really be tricky—the
object doesn’t support database dependency. A database dependency would

C09620245.fm Page 302 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 303

invalidate a cached result set when a certain database table changes. Further-
more, in ASP.NET 1.x the CacheDependency class is a sealed class—it is
closed to any form of customization that gives developers a chance to inval-
idate cached items based on user-defined conditions.

As far as the Cache object is concerned, the biggest difference between
ASP.NET 1.x and ASP.NET 2.0 is that version 2.0 supports custom dependencies.
This was achieved by making the CacheDependency class inheritable (instead
of a sealed class) and providing a made-to-measure SqlCacheDependency cache
that provides built-in database dependency limited to SQL Server 7.0 and later.

Designing a Custom Dependency
Let’s say it up front: writing a custom cache dependency object is no picnic.
You should have a very good reason to do so, and you should carefully design
the new functionality before proceeding. As mentioned, in ASP.NET 2.0 the
CacheDependency class is inheritable—you can easily derive your own class
from it. However, the memory footprint of your class will be bigger than it
needs to be because the cache dependency class picks up all of the base class
functionality (including aspects you don’t need, such as constructors that accept
arrays of files or create dependencies on other cached items).

On the other hand, a public constructor on the CacheDependency class
saves you from having to do a lot of work. First, there’s no risk of breaking
existing code and no risk that your class will misbehave with the Cache object.
The base class handles all the wiring of the dependency object to the ASP.NET
cache and all the issues surrounding synchronization and disposal. It also saves
you from implementing a start-time feature from scratch—you inherit that capa-
bility from the base class constructors. (The start-time feature allows you to start
tracking dependencies at a particular time.)

Let’s review the extensions made to the CacheDependency class to allow
for custom dependencies.

Extensions to the CacheDependency Base Class
In ASP.NET 1.x, the CacheDependency class is sealed (not inheritable) and
therefore not meant to be extensible. To fully support derived classes and to
facilitate their integration into the ASP.NET cache, a bunch of new methods
have been added. They are summarized in Table 9-3.

C09620245.fm Page 303 Wednesday, June 9, 2004 12:01 PM

304 Part III Application Services

As mentioned, a custom dependency class relies on its parent for any
interaction with the Cache object. The NotifyDependencyChanged method is
called by classes that inherit CacheDependency to tell the base class that the
dependent item has changed. In response, the base class updates the values of
the HasChanged and UtcLastModified properties. Any cleanup code needed
when the custom cache dependency object is dismissed should go into the
DependencyDispose method.

Getting Change Notifications
As you might have noticed, nothing in the public interface of the base Cache-
Dependency class allows you to insert code to check whether a given condi-
tion—the heart of the dependency—is met. Why is this? The CacheDependency
class was designed to support only a limited set of well-known dependencies—
against file or other item changes.

To detect file changes, the CacheDependency object internally sets up a
file monitor object and receives a call from it whenever the monitored file
changes. The CacheDependency class creates a FileSystemWatcher object and
passes it an event handler. A similar approach is used to establish a program-
matic link between the CacheDependency object and the Cache object and its
items. The Cache object fires a CacheDependency event when one of the mon-
itored items changes. What does this all mean to the developer?

Table 9-3 New Members of the CacheDependency Class

Member Description

DependencyDispose Protected method that releases the resources used by the
class.

GetUniqueId Public method that retrieves a unique string identifier for
the object.

NotifyDependencyChanged Protected method that notifies the base class that the
dependency represented by this object has changed.

SetUtcLastModified Protected method that marks the time when a depen-
dency last changed.

HasChanged Public Boolean read-only property that indicates whether
the dependency has changed. This property also exists in
version 1.x.

UtcLastModified Public read-only property that gets the time when the
dependency was last changed. This property exists also
in version 1.x, but it is not publicly accessible.

C09620245.fm Page 304 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 305

A custom dependency object must be able to receive notifications from
the data source it is monitoring. In most cases, this is really complicated if you
can’t bind to an existing notification mechanism (such as file system monitor or
SQL Server 2005 notifications). We’ll consider a practical example in a moment.

The AggregateCacheDependency Class
In addition to creating a single dependency on an entry in the ASP.NET Cache,
you can also aggregate dependencies. For example, you can make a cache
entry dependent on both a file and a SQL Server table. The following code snip-
pet shows how to create a cache entry, named MyData, that is dependent on
two different files:

// Creates an array of CacheDependency objects
CacheDependency dep1 = new CacheDependency(fileName1);
CacheDependency dep2 = new CacheDependency(fileName2);
CacheDependency deps[] = {dep1, dep2};

// Creates an aggregate object
AggregateCacheDependency aggDep = new AggregateCacheDependency();
aggDep.Add(deps);
Cache.Insert(“MyData", data, aggDep)

Any custom cache dependency object, including SqlCacheDependency,
inherits CacheDependency, so the array of dependencies can contain virtually
any type of dependency.

In ASP.NET 2.0, the AggregateCacheDependency class is built as a custom
cache dependency object and inherits the base CacheDependency class.

A Web Service–Based Cache Dependency
Suppose your application gets some data from a Web service. The Web service
method returns a DataSet that is stored to the Cache. Since you want the cached
data to be invalidated when the source data changes, you create a made-to-
measure cache dependency class. The initialization code of your new class
should configure and start up a hooking mechanism that promptly detects
changes on the monitored resource and communicates any detected changes to
the custom dependency object.

Generally speaking, if the target data source provides you with a built-in
and totally asynchronous notification mechanism (such as the command notifi-
cation mechanism of SQL Server 2005), you just use it. Otherwise, to detect
changes in the monitored data source, you can only poll the resource at a rea-
sonable rate.

C09620245.fm Page 305 Wednesday, June 9, 2004 12:01 PM

306 Part III Application Services

Designing the WeatherCacheDependency Class
To better understand the concept of custom dependencies, think of the follow-
ing example. You need to cache the return value of a Web service method—
say, the currently reported temperature in a particular city. You can define a
custom dependency class that caches the current value upon instantiation and
polls the Web service to detect changes. When a change is detected, the cached
key is invalidated.

A good way to poll a local or remote resource is through a timer callback.
Let’s break the procedure into a few steps:

1. The custom WeatherCacheDependency class gets ready for the over-
all functionality. It initializes some internal properties and caches at
least the polling rate and the current temperature.

2. After initialization, the dependency object sets up a timer callback to
poll the Web service for up-to-date information. Polling the Web ser-
vice means calling a particular Web method at regular intervals.

3. In the callback, the result of the Web method—the current tempera-
ture in the city—is compared to the previously stored temperature. If
the two temperatures differ, the linked cache key is promptly emptied.

There’s no need for the developer to specify details on how the cache
dependency is broken or set up. The CacheDependency class in ASP.NET 2.0
takes care of it entirely.

Implementing the Dependency
The following source code shows the core implementation of the custom
WeatherCacheDependency class:

namespace Intro20
{

public class WeatherCacheDependency : CacheDependency
{

// Internal members
static Timer _timer;
int _pollSecs = 10;
string _zipCode;
int _temperature;

// Ctor
public WeatherCacheDependency(string zipCode, int pollTime)
{

// Set internal members
_zipCode = zipCode;
_pollSecs = pollTime;

C09620245.fm Page 306 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 307

// Get the current temperature
_temperature = GetTemperature();

// Set up the timer
if (_timer == null) {

int ms = _pollSecs * 1000;
TimerCallback cb = new TimerCallback(WeatherCallback);
_timer = new Timer(cb, this, ms, ms);

}
}

// Current temperature
public int Temperature
{

get { return _temperature; }
}

// Event raised every N seconds
public void WeatherCallback(object sender)
{

// Get a reference to THIS dependency object
WeatherCacheDependency dep = (WeatherCacheDependency) sender;

// Check for changes and notify the base class if any is found
int currentTemp = GetTemperature();
if (_temperature != currentTemp)

dep.NotifyDependencyChanged(dep, EventArgs.Empty);
}

// Returns the current temperature accessing the Web service
int GetTemperature()
{

// Uses a custom Web service to get the info
MsNbcWeather service = new MsNbcWeather();
return service.GetTemperature(_zipCode);

}

// Clean up internal resources
protected override void DependencyDispose()
{

// Kill the timer and then as usual
_timer = null;
base.DependencyDispose();

}
}

}

C09620245.fm Page 307 Wednesday, June 9, 2004 12:01 PM

308 Part III Application Services

When the cache dependency is created, the Web service method is
invoked and the value is stored in an internal member. At the same time, a timer
is started to call the same Web service method at regular intervals. The return
value is compared against the value stored in the constructor code. If the two
are different, the NotifyDependencyChanged method is invoked on the base
CacheDependency class to invalidate the linked content in the ASP.NET Cache.

Testing the Web Service Dependency
How can you use this dependency class in a Web application? You simply use
it in any scenario where a CacheDependency object is acceptable. For example,
you create an instance of the class in the Page_Load event and pass it to the
Cache.Insert method:

void Page_Load(object sender, EventArgs e)
{

if (!IsPostBack)
{

WeatherCacheDependency dep;
dep = new WeatherCacheDependency(Zip.Text, 5);
Cache.Insert(“Weather-” + Zip.Text, dep.Temperature, dep);

}

// Consume the data
ShowTemperature();

}

You write the rest of the page as usual, paying attention to accessing the
specified Cache key—because of the dependency, the key could be null. Here’s
an example:

// Read the temperature from the cache
string msg = “[No data available at this time.]";
object o = Cache["Weather-” + Zip.Text];
if (o != null)

msg = o.ToString();

// Display the temperature
TempLabel.Text = msg;

The weather Web service has a GetTemperature method that takes a Zip
code and returns an integer. The Web service, the cache dependency object, and
the preceding sample page work out the following output, shown in Figure 9-3.

C09620245.fm Page 308 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 309

F09DR03Figure 9-3 The custom dependency object in action on a sample page

The page on the top is generated when the content of the ASP.NET Cache
and the Web service return value coincide. The page at the bottom is what you
get when the cached value is invalidated because of a change in the return
value of the monitored Web service method.

SQL Server Cache Dependency
One common scenario that is not addressed by the ASP.NET 1.x Cache is data-
base dependencies. A database dependency is a special case of custom depen-
dency and results in the cached item removal when the contents of a certain
database table change. ASP.NET 2.0 provides an ad hoc class—SqlCacheDepen-
dency—that inherits CacheDependency and supports dependencies on SQL
Server tables. More precisely, the class implements a feature compatible with
MSDE, SQL Server 7.0, and subsequent SQL Server versions, including SQL
Server 2005, in which even more features are supported.

Enabling Databases to Support Notifications
For the SqlCacheDependency class to work correctly, any tables on which you
want to make dependencies must have notifications enabled. This means creat-
ing ad hoc triggers and stored procedures that will handle any incoming
UPDATE, INSERT, or DELETE statements. This task must be accomplished
before the application is published. You can use either the command-line tool

C09620245.fm Page 309 Wednesday, June 9, 2004 12:01 PM

310 Part III Application Services

aspnet_regsqlcache or the methods of SqlCacheDependencyAdmin. The follow-
ing code enables the Northwind database for notifications:

SqlCacheDependencyAdmin.EnableNotifications(“Northwind”);

(Note: The Northwind string in the command is not the actual name of the
database—it’s simply the name of an entry in the application’s web.config file.)

<configuration>
<connectionStrings>

<add name="Local_Northwind”
connectionString="SERVER=…;DATABASE=…;UID=…;” />

</connectionString>
<system.web>

<caching>
<sqlCacheDependency enabled="true” pollTime="60000” >

<databases>
<add name="Northwind” connectionName="Local_Northwind” />

</databases>
</sqlCacheDependency>

</caching>
</system.web>
</configuration>

The database entry is bound to a connection string entry. The preceding
configuration script enables polling on the Northwind database every 60 sec-
onds. The poll component accesses a newly created table in the Northwind
database to see whether one of the other tables has changed. Figure 9-4 shows
how the database table looks in design mode.

F09DR04Figure 9-4 The SqlCacheDependencyAdmin class adds a new table to
the Northwind database to enable notifications for all tables.

C09620245.fm Page 310 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 311

So far, no table in the Northwind database has actually been added to the
list of monitored tables. You can do that programmatically using the following
code:

SqlCacheDependencyAdmin.EnableTableForNotifications(
 “Northwind", “Employees”);

This code defines a trigger on the Employees table that is sensitive to inser-
tions, updates, and deletions. Whenever any of these operations takes place, the
trigger increments the value of the changeId column in the row that corresponds
to the Employees table. (See Figure 9-4.) Figure 9-5 shows the trigger.

F09DR05Figure 9-5 The trigger defined to track changes on the Employees table

So much for the offline configuration. Let’s see now how to create and use
a SqlCacheDependency object.

Creating SQL Server Dependencies
The SqlCacheDependency class has two constructors. The first takes a SqlCom-
mand object (more on this later), and the second accepts two strings—the data-
base name and the table name. The following code creates a SQL Server
dependency and binds it to a cache key.

SqlCacheDependency dep = new SqlCacheDependency(database, table);
Cache.Insert(“SqlSource", data, dep);

The data stored in the cache probably comes from the monitored table,
but you get notification based on changes in the table as a whole. For example,
suppose you’re displaying a data set that results from the following:

SELECT * FROM customers WHERE country=‘USA’

C09620245.fm Page 311 Wednesday, June 9, 2004 12:01 PM

312 Part III Application Services

If a new record is added to the Customers table, you get a notification no
matter what the value in the country column is. SQL Server 2005 offers a finer
level of control over the monitored output and involves the other constructor of
the SqlCacheDependency class. We’ll look at this in a moment.

Overview of the Implementation
It should be clear by now how the SQL Server dependency mechanism really
works. The trigger detects changes to the table and writes data to a helper table.
This table contains at most one row per table. A new row is added only when
a table is enabled for notifications. The tableName column (as shown earlier in
Figure 9-4) is set to the name of the table. The ASP.NET trigger works just like
any other SQL Server trigger and is completely unaware of which module cre-
ated it and why.

This situation means that the SQL Server cache dependency feature offers
no guarantee that a change in the database will be immediately reflected in the
ASP.NET Cache. The change is reflected in the ASP.NET environment only
when an ASP.NET component polls the table.

A key architectural component is the cache dependency manager object,
which periodically accesses the table, reads the changeId field, and informs the
corresponding cache object if a change has occurred to the table. The cache
dependency object is informed about the change in an indirect way. When cre-
ated, each SQL cache dependency object is made dependent on a helper cache
key, whose name depends on the table and the database. Guessed what hap-
pens? The dependency manager object just removes the helper cache entry so
that the original SqlCacheDependency object is invalidated.

Cache Dependencies in SQL Server 2005
As mentioned, the SqlCacheDependency class has two constructors, one of
which takes a SqlCommand object as its sole argument:

// data is a DataTable filled using this same command
SqlCommand cmd = new SqlCommand(

 “SELECT * FROM Customers WHERE country=‘USA’",
conn);

SqlCacheDependency dep = new SqlCacheDependency(cmd);
Cache.Insert(“SqlSource", data, dep);

When called in this way, the SqlCacheDependency class sets up a depen-
dency relationship with SQL Server 2005 known as command notification. (See
Chapter 5.) As a result, whenever something happens to the involved tables that
modifies the output of the command, the notification is sent to the caller. Nicely
enough, the caller this time is just the SqlCacheDependency class. Internally, the
SqlCacheDependency class handles the event and lets the parent know through
NotifyDependencyChanged.

C09620245.fm Page 312 Wednesday, June 9, 2004 12:01 PM

Chapter 9 State Management 313

Summary

In ASP.NET 2.0, state management is much the same as in ASP.NET 1.x. Sure,
you get a few cool new features, but the underlying architecture is nearly iden-
tical. In most cases, the changes are ones that would have fit into version 1.x if
the team had had more time. Overall, the new state management features are in
response to user requirements or are necessary enhancements. For example,
control state was introduced to avoid common errors and pitfalls in control
development.

The new session and cache features clearly resulted from repeated user
requests, particularly the database cache dependency (which is available only
for SQL Server 7.0 and later). You cannot use the SqlCacheDependency class to
control changes to an Oracle or a Microsoft Access database. However, the
cache dependency mechanism has been abstracted enough that smart develop-
ers can write custom invalidation mechanisms.

C09620245.fm Page 313 Wednesday, June 9, 2004 12:01 PM

C09620245.fm Page 314 Wednesday, June 9, 2004 12:01 PM

315

ASP.NET Security
To restrict access to a Web site to registered users, an ASP.NET developer can
choose between three authentication types—Windows (the default), Passport,
and Forms authentication. The type of authentication is declared in the applica-
tion’s configuration file and can’t be changed dynamically. When you use Win-
dows authentication, information about users and groups is often stored in the
Security Accounts Manager (SAM) database, but you can also place that infor-
mation in the care of the Active Directory services. With Passport authentica-
tion, user information is stored in the internal Passport database. And with
Forms authentication, you can specify where to store user and role data. Typi-
cally, it goes in a custom database.

Windows authentication is commonly used in intranet scenarios. Like
Passport authentication, it provides the user interface and back-end code
needed to collect and verify user credentials. The developer doesn’t have to
know about the structure of the data storage or how users and roles are
checked. The identity of the application’s logged-in user is any authenticated
identity passed in from Microsoft Internet Information Services (IIS). For Inter-
net applications, this model is often inadequate; Passport and Forms authenti-
cation are better choices.

The Passport authentication mechanism is a Microsoft centralized
authentication service. Passport provides a way to authenticate users coming
across all the sites that participate in the initiative. Users do a single login,
and if they are successfully authenticated they can move freely through all
the member sites. In addition to the single login service, Passport also offers
core profile services for member sites. The Passport authentication service is
used throughout the industry.

Neither Windows authentication nor Passport authentication is practical
for real-world Web sites. In ASP, you typically place some relatively boilerplate

C10620245.fm Page 315 Thursday, June 10, 2004 12:29 PM

316 Part III Application Services

code on top of each nonpublic page and redirect the user to a login page. On
the login page, the user is prompted for credentials, and the credentials are ver-
ified against a list of authorized users. If all goes fine, the user is redirected to
the originally requested page. None of this code is rocket science, but you have
to write it yourself and use it over and over.

ASP.NET 1.x introduced Forms-based authentication, a built-in infrastruc-
ture with an easy-to-use API that greatly simplifies the setting up of this login
pattern. Forms-based authentication is probably the only viable approach to
restricting access to real-world Web sites. In ASP.NET 2.0, the custom Forms
authentication engine is even easier and quicker to use.

Using Forms Authentication
You set up an ASP.NET application for Forms authentication by tweaking its
root web.config file. You enter the following script:

<configuration>
<system.web>

<authentication mode="Forms">
<forms loginUrl="login.aspx” />

</authentication>
</system.web>

</configuration>

Note that this code doesn’t make your application ask users to log in. The
login form is displayed only to users who have explicitly been denied access.
The following code snippet uses the <authorization> section in the web.config
file to block the anonymous user (identified with the ? symbol):

<authorization>
<deny users=“?” />

</authorization>

All blocked users are redirected to the login page, where they are asked to
enter their credentials.

Note The Forms authentication mechanism protects any ASP.NET
resource located in a folder for which Forms authentication and autho-
rization is specified. Note that only resource types explicitly handled
by ASP.NET are protected. The list includes .aspx, .asmx, and .ashx
files, but not plain HTML pages or ASP pages.

C10620245.fm Page 316 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 317

Forms Authentication Control Flow
Accessing a protected page involves a four-step process. The first step is the
request for the protected page—say, default.aspx. An HTTP module imple-
menting the Forms authentication service intercepts the request and looks for
an authentication ticket. If it finds no such a ticket, the browser is redirected to
the specified login page. Information about the originating page is placed in the
query string by using the ReturnUrl key. For security reasons, you might want
to use a Secure Sockets Layer (SSL) channel to keep the user’s credentials from
being sent in clear text.

The login page is then displayed. The programmer creates this page,
which, at a minimum, contains text boxes for the username and the password
and a button for submitting credentials. The handler for the button click event
validates the credentials using an application-specific algorithm and data stor-
age media. If the credentials are authenticated, the user code redirects the
browser to the original URL (which is in the request’s query string). Authenti-
cating a user means that an authentication ticket is issued as a cookie. The
cookie is attached to the request and is retrieved by the HTTP module when the
request for the original page is processed.

Cookie-Based Forms Authentication in ASP.NET 1.x
In ASP.NET 1.x, Forms authentication is based on cookies. The cookie is named
after the value of the name attribute in the <forms> section of the web.config
file. The cookie contains any information that helps to identify the user making
the request. This information is known as the authentication ticket.

In the <forms> section of the configuration file, you can declaratively set
some properties of the cookie, including the duration and the protection level.
By default, an authentication cookie lasts 30 minutes and is protected using
both data validation and encryption. Data validation ensures that the contents
of the cookie has not been tampered with along the way. Encryption uses the
Triple-DES (3DES) algorithm to scramble the content.

Note If you are running multiple Web applications on a single
server machine and each application requires a unique authentica-
tion cookie (that is, each application requires a different authentica-
tion back end), you must configure the cookie name in each
application’s web.config file.

C10620245.fm Page 317 Thursday, June 10, 2004 12:29 PM

318 Part III Application Services

A Cookieless Approach in ASP.NET 2.0
Using cookies requires some support from the client browser. In ASP.NET 1.x,
cookies are mandatory if you want to take advantage of the built-in authentica-
tion framework. In ASP.NET 2.0, the core API also supports cookieless seman-
tics. More precisely, the whole API has been reworked to make it expose a
nearly identical programming interface but also support dual semantics—cook-
ied and cookieless.

You can implement cookieless authentication in several ways. For exam-
ple, you can append the ticket to the query string or store it as extra path infor-
mation and retrieve it from the PATH_INFO server variable. But ASP.NET 2.0
takes a different approach, which is consistent with the implementation of
cookieless sessions. The authentication ticket is packed into the URL, as shown
here:

/SampleApp/(XYZ1234)/default.aspx

This solution requires an ISAPI filter to intercept a request, extract the
ticket, and rewrite the correct path to the application. The filter also exposes the
authentication ticket as another request header. You’ll see how to set up cookie
semantics and review the changes in the next section.

Configuring Forms Authentication
Forms authentication is driven by the contents of the <forms> section within
the <authentication> section. The overall syntax of the section is shown here:

<forms name="cookie”
loginUrl="url”
protection="All|None|Encryption|Validation"
timeout="30”
requireSSL="true|false"
slidingExpiration="true|false">
path="/”
cookieless="UseCookies|UseUri|AutoDetect|UseDeviceProfile"
defaultUrl="url"
domain="string">

<credentials passwordFormat="Clear|SHA1|MD5]">
<user name="…” password="…” />

</credentials>
</forms>

The attributes shown in italic are new in ASP.NET 2.0. The rest of the dec-
laration is identical to ASP.NET 1.x.

Table 10-1 describes the role of each attribute defined in ASP.NET 1.x.
Note how slight the difference is between ASP.NET 1.0 and ASP.NET 1.1.

C10620245.fm Page 318 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 319

The Cookieless Attribute
The new cookieless attribute specifies whether cookies are used to store the
authentication ticket and their overall behavior. It can take any of the values
listed in Table 10-2.

The default value for the cookieless attribute is UseDeviceProfile, which
ensures compatibility with ASP.NET 1.1 and guarantees support for mobile sce-
narios.

Table 10-1 Attributes for Forms Authentication in ASP.NET 1.x

Attribute Description

loginUrl Specifies the URL to which the request is redirected for login if no
valid authentication cookie is found.

name Specifies the name of the HTTP cookie to use for authentication.
The default name is .ASPXAUTH.

path Specifies the path for the authentication cookies issued by the
application. The default value is a slash (/).

protection Indicates how the application intends to protect the authentica-
tion cookie.

requireSSL Indicates whether a secure (SSL) connection is required to trans-
mit the authentication cookie. The value is false by default. This
attribute is not supported in ASP.NET 1.0.

slidingExpiration Indicates whether sliding expiration is enabled. This attribute is
not supported in ASP.NET 1.0.

timeout Specifies the amount of time, in minutes, after which the cookie
will expire. The default value is 30.

Table 10-2 Values for the cookieless Attribute

Value Description

AutoDetect Uses cookies if the browser has cookie support currently enabled.
It uses the cookieless mechanism otherwise.

UseCookie Always uses cookies, regardless of the browser capabilities.

UseDeviceProfile Uses cookies if the browser supports them and uses the cookieless
mechanism otherwise. When this option is used, no attempt is
made to check whether cookie support is really enabled for the
requesting device.

UseUri Never uses cookies, regardless of the browser capabilities.

C10620245.fm Page 319 Thursday, June 10, 2004 12:29 PM

320 Part III Application Services

Setting the Default Return URL
The new defaultUrl attribute lets you set the default name of the page to return
after a request has been successfully authenticated. This URL is hardcoded to
default.aspx in ASP.NET 1.x but is configurable in ASP.NET 2.0. For backward
compatibility, the default value is just default.aspx.

The value of the defaultUrl attribute is used only if no ReturnUrl variable
is found in the URL to the login page. If a user is redirected to the login page
by the authentication module, the ReturnUrl variable is always correctly set.
However, if your page contains a link to the login page or if it needs to transfer
programmatically to the login page (for example, after the current user has
logged off), you must specify the ReturnUrl variable, and the defaultUrl
attribute can help.

Setting the Cookie’s Domain
The domain attribute specifies an optional domain that is assigned to the
domain property of the HttpCookie class for outgoing authentication cookies.
This attribute has no default value and is ignored if it isn’t explicitly set. It is use-
ful because it allows you to share authentication cookies between two
machines located in the same domain.

For example, suppose you run two Web sites named www.contoso.com
and weblogs.contoso.com. If you choose contoso.com as the authentication
domain, the two applications will recognize each other’s cookies. Setting the
domain attribute doesn’t cause anything to be emitted into the ticket; it simply
forces all form authentication methods to properly set the domain property on
each issued or renewed ticket. The attribute is ignored if cookieless authentica-
tion is used.

Note that this setting takes precedence over the domain field used in the
<httpCookies> section.

The FormsAuthentication Class
The helper methods exposed by the FormsAuthentication class are quite useful
for quickly adding authentication to an ASP.NET application. The class supplies
some static methods that you can use to manipulate authentication tickets. You
typically use the RedirectFromLoginPage method to redirect an authenticated
user back to the originally requested URL; likewise, you call SignOut to remove
the authentication ticket for the current user. Other methods and properties are
for manipulating and renewing the ticket and the associated cookie.

C10620245.fm Page 320 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 321

Properties of the FormsAuthentication Class
Table 10-3 lists the properties of the FormsAuthentication class. As you can see,
many of them deal with cookie naming and usage and expose the content of
configuration attributes.

The properties are initialized with the values read from the application’s
configuration file when the application starts up.

Methods of the FormsAuthentication Class
Table 10-4 details the methods supported by the FormsAuthentication class.

Table 10-3 Properties of the FormAuthentication Class

Property Description

CookieDomain Returns the domain set for the authentication ticket. This
property equals the value of the domain attribute in the
<forms> section.

CookieMode Returns one of the four FormsCookieMode enumeration val-
ues (listed earlier in Table 10-2).

CookiesSupported Returns true if the current request supports cookies. If the
AutoDetect mode is configured, it also checks for the
browser’s cookie capability and verifies that cookies haven’t
been disabled on the client.

DefaultUrl Returns the configured or default URL for the page to return
after a request has been successfully authenticated. Matches
the defaultUrl configuration attribute.

EnableCrossAppRedirects Indicates whether redirects can span over different Web
applications.

FormsCookieName Returns the configured cookie name used for the current
application. The default name is .ASPXAUTH.

FormsCookiePath Returns the configured cookie path used for the current
application. The default is the root path /.

LoginUrl Returns the configured or default URL for the login page.
Matches the loginUrl configuration attribute.

RequireSSL Gets a value indicating whether a cookie must be transmit-
ted using only HTTPS.

SlidingExpiration Gets a value indicating whether sliding expiration is
enabled.

C10620245.fm Page 321 Thursday, June 10, 2004 12:29 PM

322 Part III Application Services

The Initialize method is called only once in the application’s lifetime and
initializes the properties in Table 10-3 by reading the configuration file. The
method also gets the cookie values and encryption keys to be used for the
application.

RedirectToLoginPage is a new entry in the list of class methods and fills a
hole in the programming interface of the FormsAuthentication class in ASP.NET
1.x. The method is useful when a user signs out, and you want to redirect her
to the login page afterwards. When this happens, the method figures out what
the login page is and calls Response.Redirect.

Table 10-4 Methods of the FormsAuthentication Class

Method Description

Authenticate Attempts to validate the supplied credentials
against those contained in the configured
<credentials> section.

Decrypt Returns a decrypted authentication ticket,
given a valid encrypted authentication ticket
obtained from an HTTP cookie.

Encrypt Produces a string containing an encrypted
authentication ticket suitable for use in an
HTTP cookie.

GetAuthCookie Creates an authentication cookie for a given
username.

GetRedirectUrl Returns the URL for the original request.

HashPasswordForStoringInConfigFile Given a password and a string identifying the
hash type, this method hashes the password
for storage in the web.config.

Initialize Initializes the FormsAuthentication class.

RedirectFromLoginPage Redirects an authenticated user back to the
originally requested URL.

RedirectToLoginPage Performs a redirect to the configured or
default login page.

RenewTicketIfOld Conditionally updates the sliding expiration on
an authentication ticket.

SetAuthCookie Creates an authentication ticket and attaches it
to the cookies collection of the outgoing
response. It doesn’t redirect to the originally
requested URL.

SignOut Removes the authentication ticket.

C10620245.fm Page 322 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 323

Setting Up a Forms Authentication Layer
Let’s review the steps for setting up a forms authentication layer on top of a
Web application. These steps are not much different from what you do in
ASP.NET 1.x. However, some of the methods in the FormsAuthentication class
and some of the new security-specific server controls in ASP.NET 2.0 (more on
this in a moment) make programming easier and faster.

The typical web.config file of a secure application looks like the following
code snippet:

<configuration>
<system.web>

<authentication mode="Forms">
<forms name=“.ASPXAUTH”

loginUrl="login.aspx”
protection="All” />

</authentication>
<authorization>

<deny users=“?” />
</authorization>

</system.web>
</configuration>

The anonymous user is denied access in the <authorization> section, and
all users are redirected to a particular login page to enter their credentials. The
login page is responsible for authenticating the user and emitting a ticket.
According to the code just shown, the authentication ticket is encrypted in the
default way and packed into a cookie with the default name. Figure 10-1 shows
a reasonable login page.

F10DR01Figure 10-1 The login page of the sample application, in which the user
enters credentials and clicks to log in

C10620245.fm Page 323 Thursday, June 10, 2004 12:29 PM

324 Part III Application Services

Note the URL displayed in the address bar. The query string embeds in the
ReturnUrl variable the originally requested page. Let’s review the source code
associated with the click event of the form button:

void Logon_Click(object sender, EventArgs e)
{

bool bAuthenticated = false;
string user = userName.Text;
string pswd = passWord.Text;

// Custom authentication
bAuthenticated = ValidateUser(user, pswd);
if (bAuthenticated)

FormsAuthentication.RedirectFromLoginPage(user, false);
else

errorMsg.Text = “Sorry, yours seems not to be a valid account.";
}

bool ValidateUser(string user, string pswd)
{

// TODO:: something useful here
return true;

}

A custom function takes the credentials and validates them against a user-
defined data store—typically a SQL Server database. The AuthenticateUser
function returns a Boolean value, which tells the code whether to display an
error message or just redirect to the originally requested page.

In ASP.NET 2.0, RedirectFromLoginPage has three overloads:

public void RedirectFromLoginPage(String, Boolean)
public void RedirectFromLoginPage(String, Boolean, String)
public void RedirectFromLoginPage(String, Boolean, String, String)

The first argument is the name of the user. The Boolean argument indi-
cates whether a persistent cookie must be created. Note, though, that persistent
cookies aren’t a good idea when the user logs on from a shared computer—you
should at least give her a choice between create a temporary or persistent
cookie. The third argument, when requested, indicates the cookie path; the
fourth specifies the authentication type—cookied or cookieless.

Figure 10-2 shows the main application’s page when a registered and
authenticated user is being served. The name of the user is displayed in the top-
most bar along with a button for logging off.

C10620245.fm Page 324 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 325

F10DR02Figure 10-2 The page of the application when a registered user is connected

Anonymous Identification
Anonymous identification is an optional new ASP.NET 2.0 feature that
assigns an identity to users who are not authenticated. This feature does
not affect the identity of the account that processes the request, nor does
it affect any other aspects of user identification and authorization. When
enabled, anonymous user identification merely assigns a unique identity
to a nonauthenticated user so she looks like a regularly authenticated user.
This feature allows you to track the user or assign personalization proper-
ties. Functionally, anonymous identification relates to personalization only
and doesn’t modify any other aspect of the membership subsystem. The
unique ID is not customizable by programmers.

The anonymous user’s ID is stored in a cookie, much like a Forms
authentication ticket is stored. But the membership system doesn’t con-
sider an anonymous user to be logged in. If the user’s browser doesn’t
accept cookies, the anonymous identification can be embedded in the
URL of requested pages.

If an anonymous user logs in, the anonymous identification informa-
tion is discarded and the user is treated as an authenticated user. As you
saw in Chapter 4, when this happens the user’s personalization values can
be migrated to the new identity and retained as part of the user identity.
The anonymous ID is generated by an HTTP module and stored in a
cookie. The behavior of the module and the properties of the cookie are
determined by the following configuration setting:

<anonymousIdentification enabled="true|false” />

The module fires a couple of events—Remove and Create—when the
anonymous ID is removed and created, respectively.

C10620245.fm Page 325 Thursday, June 10, 2004 12:29 PM

326 Part III Application Services

The name of the connected user can be retrieved using the User object
from the HTTP context. The following expression returns the username:

string name = HttpContext.Current.User.Identity.Name;

Here the logoff button is a plain submit button. However, you can create
both the name of the user and the logoff button by using some new facility con-
trols in ASP.NET 2.0. We’ll cover them in detail later in the chapter.

Managing Membership and Roles
In ASP.NET 1.x, you must write the code that validates the user credentials
against a data store—typically a database. In many cases, this is boilerplate
code that you must write repeatedly. The new Membership class in ASP.NET 2.0
saves you from this repetitive task. Not only does it reduce the amount of code
needed to authenticate a user, but it also supplies a built-in infrastructure for
managing roles.

Using the features of the membership subsystem, you can rewrite the
code that authenticates a user as follows:

void Logon_Click(Object sender, EventArgs e)
{

string user = userName.Text;
string pswd = passWord.Text;
if (Membership.ValidateUser(user, pswd))

FormsAuthentication.RedirectFromLoginPage(user, false);
else

errorMsg.Text = “Sorry, that’s not it.";
}

This code doesn’t look much different from what you would write for an
ASP.NET 1.x application, but there’s one big difference: the use of the Validate-
User built-in function. As long as you hold, or can obtain, the right data pro-
vider, that function call does the authenticating. Earlier in the chapter, you saw
a sample function named ValidateUser written and used for the same purpose;
I left it codeless for simplicity. The Membership class’s ValidateUser function
does the same thing, but for real this time as long as you configure the users’
data store.

The Membership Class
The membership feature consists of a neat and elegant API that doesn’t require
you to have a deep understanding of the data storage tools and mechanisms
(such as SQL Server, stored procedures, and encryption). It shields you from the

C10620245.fm Page 326 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 327

details of how the credentials are retrieved and compared, and how to encrypt
and decrypt. The Membership class contains a few static methods that you use
to obtain a unique identity for each connected user. This information can also
be used with other ASP.NET services, including role-based function enabling
and personalization.

Among the members of the class are methods for creating, updating, and
deleting users, but not methods for managing roles and programmatically set-
ting what a user can and cannot do. Like the personalization API (discussed in
Chapter 4), the Membership class works on top of a data provider. If you want
to use a custom data store (such as an Active Directory or a personal database),
you can create your own provider and just plug it in. You can use multiple pro-
viders at the same time, which allows the application to select the right one at
run time.

The Programming Interface of the Membership Class
The membership subsystem is made up of a set of classes and interfaces that
encapsulate the logic for creating and managing users and for authenticating
users based on the supplied credentials. Table 10-5 lists the properties exposed
by the Membership class.

The Provider property returns a reference to the membership provider
currently in use. As you’ll see in a moment, the provider is selected in the con-
figuration file. ASP.NET 2.0 comes with a couple of predefined providers that

Table 10-5 Properties of the Membership Class

Property Description

ApplicationName Gets and sets an optional string to identity the applica-
tion. Defaults to the application’s metabase path.

EnablePasswordReset Returns true if the provider supports password reset.

EnablePasswordRetrieval Returns true if the provider supports password
retrieval. (Password retrieval is accomplished via the
PasswordRecovery control—more on this later.)

Provider Returns an instance of the currently configured pro-
vider.

Providers Returns the collection of all registered providers.

RequiresQuestionAndAnswer Returns true if the provider requires a password ques-
tion/answer when retrieving or resetting the password.

UserIsOnlineTimeWindow Specifies the time window, in minutes, during which
the user is considered to be online.

C10620245.fm Page 327 Thursday, June 10, 2004 12:29 PM

328 Part III Application Services

target Access and SQL Server databases. However, many more membership
providers are in the works. You can obtain the list of available providers
through the Providers collection. Some of the properties are provider-specific
and are not implemented if the underlying provider doesn’t support them.

Table 10-6 details the methods supported by the Membership class. This
list gives a clearer idea of the tasks the class accomplishes.

The class supports fairly advanced functionality, such as estimating the
number of users currently using the application. It uses the value assigned to
the UserIsOnlineTimeWindow property to determine this number. A user is con-
sidered online if he has done something with the application during the previ-
ous time window. The default value for the UserIsOnlineTimeWindow property
is 15 minutes. After 15 minutes of inactivity, a user is considered offline.

Setting Up Membership Support
Let’s look at how to use the membership API in ASP.NET 2.0 applications. The
membership API relies on a particular data store. The membership model sup-
ports a variety of storage media as long as special component—the membership
data provider—exists to wrap it. ASP.NET 2.0 comes with a couple of built-in

Table 10-6 Methods of the Membership Class

Method Description

CreateUser Creates a new user and fails if the user already exists. The
method returns a MembershipUser object representing any
available information about the user.

DeleteUser Deletes the user corresponding to the specified name.

FindUsersByEmail Returns a collection of membership users whose e-mail
address corresponds to the specified e-mail.

FindUsersByName Returns a collection of membership users whose user-
name matches the specified username.

GeneratePassword Generates a random password of the specified length.

GetAllUsers Returns a collection of all users.

GetNumberOfUsersOnline Returns the total number of users currently online.

GetUser Retrieves the MembershipUser object associated with the
current or specified user.

GetUserNameByEmail Obtains the username that corresponds to the specified
e-mail. This method assumes that the e-mail is a unique
identifier in the user database.

UpdateUser Takes a MembershipUser object and updates the informa-
tion stored for user.

ValidateUser Authenticates a user using supplied credentials.

C10620245.fm Page 328 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 329

providers; one targets an Access database, and the other works with a SQL
Server. Before you deploy the application, you should create and fully set up the
membership data store.

The Web Application Administration Tool in Visual Studio 2005 provides a
user interface for creating and administering the registered users of your appli-
cation. Figure 10-3 provides a glimpse of the user interface.

F10DR03Figure 10-3 The Web Application Administration Tool lets you
configure the membership data model

The security wizard you can run from the tool creates the membership
database (which is an Access database by default) to which the site administra-
tor can add users and roles. (See Figure 10-4.)

F10DR04Figure 10-4 Managing users and roles with the Web Application
Administration Tool

C10620245.fm Page 329 Thursday, June 10, 2004 12:29 PM

330 Part III Application Services

The Access database is the same .mdb file we worked with in Chapter 4
for personalization. This database contains a table with usernames and related
passwords. Once the application is fully configured for membership, you need
to enter only a few changes to the code you saw earlier.

if (Membership.ValidateUser(user, pswd))
FormsAuthentication.RedirectFromLoginPage(user, false);

You call the ValidateUser static method on the Membership class to check
the username and password against the list of users stored in the database.

Managing Users and Passwords
The Membership class provides easy-to-use methods for creating and managing
user data. For example, to create a new user programmatically, all you do is
place a call to the CreateUser method. Let’s assume you have a login page with
two mutually exclusive panels—one for registered users and one for new users,
as shown in Figure 10-5.

F10DR05Figure 10-5 A login page that allows new users to register

If you click the button that allows new users to register, the page switches
the panels and displays the input form for collecting the name and password of
the new user. The click handler for the Add button runs the following code:

void AddNewUser_Click (object sender, EventArgs e)
{

Membership.CreateUser(NewUserName.Text, NewUserPswd.Text);
NewUserPanel.Visible = false;
LogUserPanel.Visible = true;

// Preset the username text box in the log-in panel
userName.Text = NewUserName.Text;

}

To delete a user, you call the DeleteUser method:

Membership.DeleteUser(userName);

C10620245.fm Page 330 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 331

You can just as easily get information about a particular user by using the
GetUser method. The method takes the username and returns a Membership-
User object:

MembershipUser user = Membership.GetUser(“DinoE”);

Once you’ve got a MembershipUser object, you know all you need to
know about a particular user, and you can, for example, programmatically
change the password. An application commonly needs to execute several oper-
ations on passwords, including changing the password, sending a user her
password, or resetting the password, possibly with a question/answer chal-
lenge protocol. These functions are all supported by the membership API, but
not necessarily by the underlying provider. Note that if the provider does not
support a given feature, an exception is thrown if the method is invoked. Here’s
the code that changes a password:

MembershipUser user = Membership.GetUser(“DinoE”);
user.ChangePassword(user.GetPassword(), newPswd);

To use the ChangePassword method, you must pass in the old password.
In some cases, you might want to allow users to simply reset their password
instead of changing it. You do this by using the ResetPassword method:

MembershipUser user = Membership.GetUser(“DinoE”);
string newPswd = user.ResetPassword();

In this case, the subsystem of your application that calls ResetPassword is
also in charge of sending the new password to the user—for example, via e-
mail. Both the GetPassword and ResetPassword methods have a second over-
load that takes a string parameter. If specified, this string represents the answer
to the user’s “forgot password” question. The Membership API matches the pro-
vided answer against the stored answers; if a user is identified, the password is
reset or returned.

It goes without saying that the ability to reset the password, as well as sup-
port for a password challenge, is specific to the provider and is configured in
the web.config file. The password question and the related answer are exposed
as read/write members of the MembershipUser class. They must be set when the
user is created and are stored in the membership database.

The Membership Provider
The beauty of the membership model lies not merely in the extremely compact
code you need to write to validate or manage users but also in the fact that the
model is abstract and extensible. If you have an existing data store filled with
user information, you can integrate it with the Membership API without much

C10620245.fm Page 331 Thursday, June 10, 2004 12:29 PM

332 Part III Application Services

effort. All you have to do is write a custom data provider—a class that inherits
the MembershipProvider class which, in turn, inherits the ProviderBase class:

public class OracleMembershipProvider : MembershipProvider
{

// Implements all abstract members of the class and, if
// needed, defines custom functionality
§

}

The code shows the signature of a custom provider that uses an Oracle
database to store its membership information. Once you have written your own
made-to-measure provider, the only thing left to do is tell the membership sub-
system to use the custom provider. This requires a little change in the applica-
tion’s web.config file, as shown here:

<configuration>
<system.web>

<membership defaultProvider = “Mainframe">
<providers>

<add name="OracleMembershipProvider”
type="Samples.OracleMembershipProvider, samples” />

</providers>
</membership>

</system.web>
</configuration>

In front of this declaration, the membership API instantiates the specified
provider class and uses it through the implemented interfaces. No other action
is required on your part.

The ProviderBase Class
All the providers used in ASP.NET 2.0 implement a common set of members—
those defined by the ProviderBase class. The class comes with one method, Ini-
tialize, and one property, Name. The Name property returns the official name
of the provider class. The Initialize method takes the name of the provider and
a name/value collection object packed with the content of the provider’s con-
figuration section. The method is supposed to initialize its internal state with the
values just read out of the web.config file.

The MembershipProvider Class
Many of the methods and properties used with the Membership class are actu-
ally implemented by calling a corresponding method or properties in the
underlying provider. Table 10-7 lists the methods defined by the Membership-
Provider base class.

C10620245.fm Page 332 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 333

All these methods are marked as abstract virtual (must-inherit, overridable
according to the Visual Basic .NET jargon) in the class. The MembershipPro-
vider class also features a few properties. They are listed in Table 10-8.

Table 10-7 Methods of the MembershipProvider Class

Method Description

ChangePassword Takes a username in addition to the old and
new password and changes the user’s pass-
word.

ChangePasswordQuestionAndAnswer Takes a username and password and changes
the pair of question/answer that allows reading
and changing the password.

CreateUser Creates a new user account and returns a Mem-
bershipUser-derived class. The method takes the
username, password, and e-mail address.

DeleteUser Deletes the record that corresponds to the spec-
ified username.

FindUsersByEmail Returns a collection of membership users
whose e-mail address corresponds to the speci-
fied e-mail.

FindUsersByName Returns a collection of membership users
whose username matches the specified user-
name.

GetAllUsers Returns the collection of all users managed by
the provider.

GetNumberOfUsersOnline Returns the number of users that are currently
considered to be online.

GetPassword Takes the username and the password’s answer
and returns the current password for the user.

GetUser Returns the information available about the
specified username.

GetUserNameByEmail Takes an e-mail address and returns the corre-
sponding username.

ResetPassword Takes the username and the password’s answer
and resets the user password to an autogener-
ated password.

UpdateUser Updates the information available about the
specified user.

ValidateUser Validates the specified credentials against the
stored list of users.

C10620245.fm Page 333 Thursday, June 10, 2004 12:29 PM

334 Part III Application Services

The provider can also store additional information with each user. You
can derive a custom class from MembershipUser, add any extra members, and
return an instance of that class via the standard GetUser method of the member-
ship API. To use the new class, you must cast the object returned by GetUser to
the proper type, as shown here:

MyCompanyUser user = (MyCompanyUser) Membership.GetUser(name);

In addition to the members listed in Table 10-7 and Table 10-8, a custom
membership provider can add new and custom members. These are defined
outside the official schema of the interface and are therefore available only to
the users of the custom provider.

For simplicity, the membership API tends to hide the underlying provider
from the developer’s view. In many cases, the API just routes the calls to the
selected provider. However, this works well only if the invoked methods are
part of the MembershipProvider base class. In the case of custom members, you
must explicitly invoke the methods on the provider object. The following code
illustrates how to retrieve the instance of a particular membership provider:

MyCompanyProvider prov;
prov = (MyCompanyProvider) Membership.Providers["MyCompanyProvider"];

Note that the Providers collection is also the key property for authenticat-
ing users using a dynamically selected provider:

MembershipProvider prov;
prov = (MembershipProvider) Membership.Providers["MyCompanyProvider"];
prov.ValidateUser(user, pswd);

This feature allows you to support multiple providers and authenticate
users via a specific provider. For example, you can design your application to
support a legacy database of users through a custom provider while storing
new users in a standard SQL Server table. In this case, you use different mem-
bership providers for different users.

Table 10-8 Properties of the MembershipProvider Class

Property Description

ApplicationName Gets and sets an optional string to identify the
application

EnablePasswordReset Indicates whether the provider supports password reset

EnablePasswordRetrieval Indicates whether the provider supports password
retrieval

RequiresQuestionAndAnswer Indicates whether the provider requires a question/
answer challenge to enable password changes

C10620245.fm Page 334 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 335

Built-In Providers
As mentioned, ASP.NET 2.0 comes with two built-in membership providers:
AccessMembershipProvider (the default) and SqlMembershipProvider. The
former stores user data in an Access database; the latter uses a SQL Server data-
base. The Access provider is for the situation in which no access to SQL Server
(or MSDE) is available. For a real-world enterprise scenario, the choice is a no-
brainer—use the SQL Server provider.

The SqlMembershipProvider performs all access to SQL Server using
stored procedures but doesn’t require an extensive knowledge of the syntax
and semantics of SQL Server. You decide whether multiple applications will use
the same database or whether each application should manage its own data-
base. The ASP.NET 2.0 Framework comes with a T-SQL script that installs (and
uninstalls) the membership database and necessary tools.

Configuring a Membership Provider
Any configuration information about membership providers is stored in the
<membership> section. The section contains a child <providers> element under
which individual providers are configured. The following is an excerpt from the
machine.config file that ships with the PDC build:

<membership defaultProvider="AspNetAccessProvider”
userIsOnlineTimeWindow="15” >

<providers>
§

<providers>
</membership>

The <membership> section supports a couple of attributes: defaultPro-
vider, which indicates the default provider, and userIsOnlineTimeWindow,
which indicates the maximum number of minutes of idleness before a user is
declared offline. The following code snippet shows the typical configuration
block for a membership provider:

<add name=“..."
type=“..."
connectionStringName=“..."
enablePasswordRetrieval="true|false"
enablePasswordReset="true|false"
requiresQuestionAndAnswer="true|false"
applicationName="/"
requiresUniqueEmail="true|false"
passwordFormat="Hashed"
description=“..."

/>

C10620245.fm Page 335 Thursday, June 10, 2004 12:29 PM

336 Part III Application Services

No matter the type of the data store—SQL Server, Access, Oracle, or Active
Directory—a connection string is always needed. The connectionStringName
attribute points to another section in the web.config file in which all needed
connection strings are held. To add a new provider, you just add an extra, prop-
erly configured <add> block.

Managing Roles
Roles in ASP.NET simplify the implementation of applications that require
authorization. A role is just a logical attribute assigned to a user. An ASP.NET
role is a plain string that refers to the logical role the user plays in the context
of the application. In terms of configuration, each user can be assigned one or
more roles. This information is attached to the identity object, and the applica-
tion code can check it before the execution of critical operations.

For example, an application might define two roles—Admin and Guest,
each granting its users a set of permissions. Users belonging to the Admin role
can perform tasks that other users are prohibited from performing.

Note Assigning roles to a user account doesn’t add any security
restrictions by itself. It is the responsibility of the application to ensure
that authorized users perform critical operations only if they are mem-
bers of a certain role.

In ASP.NET, the role manager feature simply maintains the relationship
between users and roles. ASP.NET 1.1 has no built-in support for managing
roles. You can attach some role information to an identity, but this involves
writing some custom code. Checking roles is easier, but ASP.NET 2.0 makes the
whole thing significantly simpler.

The Role Management API
The role management API lets you define roles as well as specify programmat-
ically which users are in which roles. The easiest way to configure role manage-
ment, define roles, add users to roles, and create access rules is to use the Web
Application Administration Tool. (See Figure 10-6.)

You enable role management by adding the following script to your appli-
cation’s web.config file:

<roleManager enabled="true” />

C10620245.fm Page 336 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 337

F10DR06Figure 10-6 Using the Web Application Administration Tool to define
the roles recognized by an application

You can use roles to establish access rules for pages and folders. The fol-
lowing <authorization> block states that only Admin members can access the
pages controlled by the web.config file:

<configuration>
<system.web>

<authorization>
<allow roles="Admin” />
<deny users="*” />

</authorization>
</system.web>
<configuration>

The Web Administration Tool provides a visual interface for creating asso-
ciations between users and roles. If necessary, you can instead perform this task
programmatically by calling various role manager methods. The following code
demonstrates how to create the Admin and Guest roles and populate them with
usernames:

Roles.CreateRole(“Admin”);
Roles.AddUsersToRole(“DinoE", “Admin”);
Roles.CreateRole(“Guest”);
string[] guests = new string[2];
guests[0] = “JoeUsers";
guests[1] = “Godzilla";
Roles.AddUsersToRole(guests, “Guest”)

C10620245.fm Page 337 Thursday, June 10, 2004 12:29 PM

338 Part III Application Services

At run time, information about the logged-in user is available through the
User object. The following code demonstrates how to determine whether the
current user is in a certain role and subsequently enable specific functions:

if (User.IsInRole(“Admin”))
{

// Enable functions specific of the role
§

}

When role management is enabled, ASP.NET 2.0 looks up the roles for the
current user and binds that information to the User object. This same feature
had to be manually coded in ASP.NET 1.x.

The Roles Class
When role management is enabled, ASP.NET creates an instance of the Roles
class and adds it to the current request context—the HttpContext object. The
Roles class features the methods listed in Table 10-9.

Table 10-9 Methods of the Roles Class

Method Description

AddUsersToRole Adds an array of users to a role

AddUsersToRoles Adds an array of users to multiple roles

AddUserToRole Adds a user to a role

AddUserToRoles Adds a user to multiple roles

CreateRole Creates a new role

DeleteCookie Deletes the cookie that the role manager used to cache all the
role data

DeleteRole Deletes an existing role

FindUsersInRole Returns a string array filled with the names of users in a role
where the username contains a match for the specified name.
For example, if the name to match is ‘user’, the users ‘user1’,
‘user2’, ‘user3’ are returned in alphabetical order.

GetAllRoles Returns all the available roles

GetRolesForUser Returns a string array listing the roles that a particular mem-
ber belongs to

GetUsersInRole Returns a string array listing the users that belong to a partic-
ular role

IsUserInRole Determines whether the specified user is in a particular role

RemoveUserFromRole Removes a user from a role

C10620245.fm Page 338 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 339

Table 10-10 lists the properties available on the Roles class.

Some of the methods on the Roles class need to query continuously for the
roles associated with a given user, so when possible, the roles for a given user
are stored in an encrypted cookie. On each request, ASP.NET checks to see
whether the cookie is present; if so, it decrypts the role ticket and attaches any
role information to the User object. Note that the cookie is valid only if the
request is for the current user. When you request role information for other
users, the information is read from the data store using the configured role pro-
vider. To enable cookie support, you must ensure that the cacheRolesInCookie
attribute is set to true in the <roleManager> configuration section.

RemoveUserFromRoles Removes a user from multiple roles

RemoveUsersFromRole Removes multiple users from a role

RemoveUsersFromRoles Removes multiple users from multiple roles

RoleExists Returns true if the specified role exists

Table 10-10 Properties of the Roles Class

Property Description

ApplicationName Gets and sets an optional string to identify the application.

CacheRolesInCookie Returns true if cookie storage for role data is enabled.

CookieName Specifies the name of the cookie used by the role manager to
store the roles.

CookieProtectionValue Specifies an option for securing the roles cookie. Possible
values are All, Clear, Hashed, and Encrypted.

CookieRequireSSL Indicates whether the cookie requires SSL.

CookieSlidingExpiration Indicates whether the cookie has a fixed expiration time or a
sliding expiration.

CookieTimeout Returns the time, in minutes, after which the cookie will
expire.

Enabled Indicates whether role management is enabled.

Provider Returns the current role provider.

Providers Returns a list of all supported role providers.

Table 10-9 Methods of the Roles Class

Method Description

C10620245.fm Page 339 Thursday, June 10, 2004 12:29 PM

340 Part III Application Services

The Role Provider
The role management API is completed by two components that work in the
background—the role manager HTTP module and the role provider. The role
manager is responsible for adding the appropriate roles to the current identity
object (such as the User object). The module listens for the AuthenticateRequest
event and does its job.

For its I/O activity, the module uses a provider component. The role pro-
vider is a class that inherits the RoleProvider class. The schema of a role pro-
vider is not much different from that of a membership provider. Table 10-11
details the members of the RoleProvider class.

You can see the similarity between some of these methods and the pro-
gramming interface of the Roles class. This is not coincidental—it’s the intention
of using patterns in the new ASP.NET 2.0 provider data model. You can select
any provider and still have your high-level code work. You can manipulate any
data store without being an expert in that syntax.

ASP.NET ships with two built-in role providers—AccessRoleProvider
(default) and SqlRoleProvider. The former stores role information in a new table
in the familiar AspNetDb.mdb file; the latter uses a SQL Server table. You can
register a custom role provider by using the child <providers> section in the
<roleManager> section:

<roleManager
enabled="false”
cacheRolesInCookie="true|false”

Table 10-11 Methods of the RoleProvider Class

Method Description

AddUsersToRoles Adds an array of users to multiple roles

CreateRole Creates a new role

DeleteRole Deletes the specified role

FindUsersInRole Returns the name of users in a role matching a given user-
name pattern.

GetAllRoles Returns the list of all available roles

GetRolesForUser Gets all the roles a user belongs to

GetUsersInRole Gets all the users who participate in the given role

IsUserInRole Indicates whether the user belongs to the role

RemoveUsersFromRoles Removes an array of users from multiple roles

RoleExists Indicates whether a given role exists

C10620245.fm Page 340 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 341

cookieName=“.ASPXROLES”
cookieTimeout="30"
cookiePath="/”
cookieRequireSSL="true|false”
cookieSlidingExpiration="true|false"
cookieProtection="All”
defaultProvider="AccessRoleProvider">
<providers>

<add name=“...”
type=“..."
connectionStringName=“..."
applicationName="/"
description=“...” />

</providers>
§

</roleManager>

Security-Related Controls
In addition to the membership and role management APIs, ASP.NET 2.0 offers
several server controls that make programming security-related aspects of a
Web application easier than ever: Login, LoginName, LoginStatus, LoginView,
PasswordRecovery, ChangePassword, and CreateUserWizard. These are com-
posite controls, and they provide a rich, customizable user interface. They
encapsulate a large part of the boilerplate code and markup you would other-
wise have to write repeatedly.

The Login Control
An application based on the Forms authentication model always needs a login
page. Aside from the quality of the graphics, all login pages look alike. They
contain a couple of text boxes (for username and password), a button to vali-
date credentials, plus perhaps a Remember Me check box—links to click if the
user has forgotten his password or needs to create an account. The Login con-
trol provides all this for free, including the ability to validate the user against the
default membership provider.

Setting Up the Login Control
The Login control is a composite control that provides all the common user
interface elements of a login form. Figure 10-7 shows the default user interface
of the control. To get it, you simply drop the control from the toolbox onto the
Web form, or you just type the following code:

<asp:login runat="server” id="MyLoginForm” />

C10620245.fm Page 341 Thursday, June 10, 2004 12:29 PM

342 Part III Application Services

F10DR07Figure 10-7 The Login control in action

The Login control also has optional user interface elements for functions
such as password reminder, new user registration, help link, error messages,
and a custom action in case of a successful login. When you drop the control
onto a Visual Studio 2005 form, the AutoFormat verb lets you choose among a
few predefined styles, as in Figure 10-8.

F10DR08Figure 10-8 The predefined styles of the Login control

C10620245.fm Page 342 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 343

The appearance of the control is fully customizable through templates and
style settings. All user interface text messages are also customizable through
properties of the class.

The Programming Interface of the Control
Table 10-12 lists all the properties of the Login control. You can see that the con-
trol is modularized, and each constituent part can be individually customized.

Table 10-12 Properties of the Login Control

Property Description

CheckBoxStyle Defines the style of the Remember Me check box.

CreateUserText Gets or sets the text of a link to a registration page for
new users.

CreateUserUrl Gets or sets the URL to the new-user registration page.

DestinationPageUrl Gets or sets the URL of the page displayed to the user
when a login attempt is successful.

DisplayRememberMe Indicates whether to enable the user to choose to
store an authentication cookie on the user’s computer.

EnableValidation Indicates whether to validate the text-entry fields of
the control.

FailureAction Gets or sets the action that occurs when a login
attempt fails. Options are Refresh (the page is
refreshed to display an error message) or Redirect-
ToLoginPage (redisplays the login page).

FailureText Gets or sets the text displayed when a login attempt
fails.

FailureTextStyle Defines the style of the error text.

HelpPageText Gets or sets the text of a link to the help page.

HelpPageUrl Gets or sets the URL to the help page.

HyperLinkStyle Defines the style of the hyperlink controls displayed in
the control.

InstructionText Gets or sets login instruction text for the user.

InstructionTextStyle Defines the style for instruction text.

LabelStyle Defines the style of the control labels.

LayoutTemplate Gets or sets the template used to display the contents
of the control.

MembershipProvider Gets or sets the name of the membership data pro-
vider used by the control.

C10620245.fm Page 343 Thursday, June 10, 2004 12:29 PM

344 Part III Application Services

If you don’t like the standard user interface of the control, you can define
your own template:

<asp:login runat="server” id="MyLoginForm">
<layouttemplate>

§
</layouttemplate>

</asp:login>

Orientation Indicates whether constituent controls should be dis-
played horizontally or vertically (default).

Password Gets the password entered by the user.

PasswordLabelText Gets or sets the text of the label for the Password text
box.

PasswordRecoveryText Gets or sets text of a link to the password recovery
page.

PasswordRecoveryUrl Gets or sets the URL to the password recovery page.

PasswordRequiredErrorMessage Gets or sets the error message to display when the
password field is left blank.

RememberMeSet Indicates whether the Remember Me check box is set.

RememberMeText Gets or sets the text of the label for the Remember Me
check box.

SubmitButtonImageUrl Gets or sets the URL of an image to use for the submit
button.

SubmitButtonStyle Defines the style of the submit button.

SubmitButtonText Gets or sets the text for the submit button.

SubmitButtonType Gets or sets the type of button to use when rendering
the control (push or link button).

TextBoxStyle Defines the style of text boxes.

TitleText Gets or sets the title of the control.

TitleTextStyle Defines the style of the title text.

UserName Gets the username entered by the user.

UserNameLabelText Gets or sets the text of the label for the UserName text
box.

UserNameRequiredErrorMessage Gets or sets the error message to display when the
username field is left blank.

VisibleWhenLoggedIn Indicates whether to show the Login form once the
user is authenticated.

Table 10-12 Properties of the Login Control

Property Description

C10620245.fm Page 344 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 345

Your template can include new elements, and you can recycle default
components. To do the latter, you should use the same ID for the controls as in
the default template. To simplify this operation, right-click on the control in the
Visual Studio designer, choose Convert To Template, and switch to Source
view. The markup you see is the default template of the control expressed as
ASP.NET code. Use it as a starting point for creating your own template.

Events of the Control
The Login control fires the events listed in Table 10-13.

In most common cases, though, you don’t handle any of these events. The
most common use for the Login control is to set up the user interface of the
login page for use with Forms authentication. The form itself performs member-
ship authentication, displays error messages, and redirects to the originally
requested page when the login is successful.

The LoginName Control
The LoginName control is an extremely simple and useful server control. It
works like a sort of label control and displays the user’s name on a Web page:

<asp:loginname runat="server” />

The control captures the name of the currently logged-in user from the
User intrinsic object and outputs it using the current style. Internally, the control
builds a dynamic instance of a Label control, sets fonts and color accordingly,
and displays the text returned by the following expression:

string name = HttpContext.Current.User.Identity.Name;

The LoginName control has a pretty slim programming interface that con-
sists of only one property—FormatString. FormatString defines the format of
the text to display. It can contain only one placeholder, as shown here:

myLogin.FormatString = “Welcome, {0}";

Table 10-13 Events of the Login Control

Event Description

Authenticate Fires when a user is authenticated.

LoggedIn Fires when the user logs in to the site after a successful
authentication.

LoggingIn Fires when a user submits login information but before the
authentication takes place. The operation can still be canceled.

LoginError Fires when a login error is detected.

C10620245.fm Page 345 Thursday, June 10, 2004 12:29 PM

346 Part III Application Services

If Dino is the name of the current user, the code generates a “Welcome,
Dino” message.

The LoginStatus Control
The LoginStatus control indicates the state of the authentication for the current
user. Its user interface consists of a link button to log in or log out, depending
on the current user login state. If the user is acting as an anonymous user—that
is, he never logged in—the control displays a link button to invite the user to
log in. Otherwise, if the user successfully passed through the authentication
layer, the control displays the logout button.

Setting Up the LoginStatus Control
The LoginStatus control is often used in conjunction with the LoginName con-
trol to display the name of the current user (if any), plus a button to let her log
in or out. The style, text, and action associated with the button changes are con-
veniently based on the authentication state of the user.

The following code creates a table showing the name of the current user
and a button to log in or log out:

<table width="100%” border="0">
<tr>

<td>
<asp:loginname runat="server” FormatString="Welcome, {0}” />

</td>
<td align="right">

<asp:loginstatus runat="server” LogoutText="Log off” />
</td>

</tr>
</table>

Figure 10-9 shows the results. The first screenshot demonstrates a page
that invites a user to log in; the second shows the LoginName and LoginStatus
controls working together in the case of a logged-in user. To detect whether the
current user is authenticated and adapt the user interface, you can use the IsAu-
thenticated property of the Identity object.

void Page_Load(object sender, EventArgs e)
{

if (User.Identity.IsAuthenticated)
Msg.Text = “Enjoy more features";

else
Msg.Text = “Login to enjoy more features.";

}

C10620245.fm Page 346 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 347

F10DR09Figure 10-9 The LoginStatus control invites a user who is not currently
logged in to log in; next, it displays more features reserved to registered
users.

The Programming Interface of the Control
Although the LoginStatus control is quite useful in its default form, it provides
a bunch of properties and events that you can use to configure it. The proper-
ties are listed in Table 10-14.

Table 10-14 Properties of the LoginStatus Control

Property Description

LoginImageUrl Gets or sets the URL of the image used for the login link.

LoginText Gets or sets the text used for the login link.

LogoutAction Determines the action taken when a user logs out of a Web site.
Possible values are Refresh, Redirect, and RedirectToLoginPage.

LogoutImageUrl Gets or sets the URL of the image used for the logout button.

LogoutPageUrl Gets or sets the URL of the logout page.

LogoutText Gets or sets the text used for the logout link.

C10620245.fm Page 347 Thursday, June 10, 2004 12:29 PM

348 Part III Application Services

The control also features a couple events—LoggingOut and LoggedOut.
The former fires before the user clicks to log off. The latter is raised immedi-
ately after the logout process has completed.

The LoginView Control
The LoginView control allows you to aggregate the LoginStatus and LoginName
controls to display a custom user interface that takes into account the authenti-
cation state of the user as well as the role. The control, which is based on tem-
plates, simplifies creation of a user interface specific to the anonymous or
connected state and particular roles. In other words, you can create as many
templates as you need, one per state or per role.

The Programming Interface of the Control
Table 10-15 lists the properties of the user interface of the LoginView control.

Note that the LoggedInTemplate template is displayed only to logged-in
users who are not members of one of the role groups specified in the Role-
Groups property. The template (if any) specified in the <rolegroups> tag always
takes precedence.

The LoginView control also fires the ViewChanging and ViewChanged
events. The former reaches the application when the control is going to change
the view (such as when a user logs in). The latter event fires when the view has
changed.

Table 10-15 Properties of the LoginView Class

Property Description

AnonymousTemplate Gets or sets the template to display to users who are not
logged in to the application

Controls Returns the collection of controls defined within the body of
the login control

LoggedInTemplate Gets or sets the template to display to users who are logged in
to the application

RoleGroups Returns the collection of templates defined for the supported
roles

RoleProvider Gets or sets the name of the role data provider in use

C10620245.fm Page 348 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 349

Creating a Login Template
The LoginView control lets you define two distinct templates to show to anon-
ymous and logged users. You can use the following markup to give your pages
a common layout and manage the template to show when the user is logged in:

<asp:loginview runat="server">
<anonymoustemplate>

<table width="100%” border="0"><tr><td>
To enjoy more features,
<asp:loginstatus runat="server">

</td></tr></table>
</anonymoustemplate>
<loggedintemplate>

<table width="100%” border="0"><tr>
<td><asp:loginname runat="server” /></td>
<td align="right"><asp:loginstatus runat="server” /></td>

</tr></table>
</loggedintemplate>

</asp:loginview>

Basically, the LoginView control provides a more flexible, template-based
programming interface to distinguish between logged-in and anonymous scenar-
ios. It makes the use of the IsAuthenticated property seen above unnecessary.

Creating Role-Based Templates
The LoginView control also allows you to define blocks of user interface to dis-
play to all logged-in users who belong to a particular role. As mentioned, these
templates take precedence over the <loggedintemplate> template if both apply.

<asp:loginview runat="server">
<rolegroups>

<asp:rolegroup roles="Admin">
<contenttemplate>

§
</contenttemplate>

</asp:rolegroup>
<asp:rolegroup roles="Guest">

<contenttemplate>
§

</contenttemplate>
</asp:rolegroup>

</rolegroups>
</asp:loginview>

C10620245.fm Page 349 Thursday, June 10, 2004 12:29 PM

350 Part III Application Services

The content of each <contenttemplate> block is displayed only to users
whose role matches the value of the roles attribute. You can use this feature to
create a role-specific menu. For the LoginView control to work well, role man-
agement must be enabled, of course. The default role provider is used, but you
can change it through the RoleProvider property.

The PasswordRecovery Control
The PasswordRecovery control is another server control that wraps a common
piece of Web user interface into an out-of-the-box component. The control rep-
resents the form that enables a user to recover or reset a lost password and
receive it back through an e-mail message.

Configuring the Environment
After you drop the PasswordRecovery control onto a Web form, you must make
some changes to the membership environment before it will work. First you
must ensure that the ensurePasswordRetrieval attribute in the web.config file is
turned on. (It is false by default.)

The following configuration script shows how to proceed. You first
remove the current definition of the provider of choice (the Access provider in
this case) and then add a brand new definition where a few attributes are over-
ridden.

<membership>
<providers>

<remove name="AspNetAccessProvider” />
<add name="AspNetAccessProvider” type="…”

connectionStringName="AccessFileName”
enablePasswordRetrieval="true”

enablePasswordReset="true”
requiresQuestionAndAnswer="false”
passwordFormat="Clear”

requiresUniqueEmail="false”
applicationName="/” />

</providers>
</membership>

Another required change involves how the password is stored in the
membership data store. By default, passwords are not stored as clear text; their
text is hashed using some system parameters as the key. Unfortunately, hash
algorithms are not two-way algorithms. In other words, the hash mechanism is
great at encrypting and comparing passwords, but it doesn’t retrieve the clear
text. If you plan to use the PasswordRecovery control, you must set the pass-

C10620245.fm Page 350 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 351

wordFormat attribute in the <provider> section to Clear or Encrypted. In this
way, a clear text string will be returned to users.

Retrieving a Password
Unlike many of the other security-related controls, the PasswordRecovery con-
trol cannot work without a child element, MailDefinition.

<asp:passwordrecovery runat="server">
<maildefinition from="admin@contoso.com” />

</asp:passwordrecovery>

The <maildefinition> element indicates the sender of the e-mail message
that returns the password to the user. For sending e-mails, the control relies on
the settings in the <smtpMail> section of the web.config file. The following
script shows the default content of the section in machine.config:

<smtpMail serverName="localhost” serverPort="25” />

If the user has a question/answer pair defined and the requiresQuestion-
AndAnswer attribute is turned on (see Figure 10-10), the PasswordRecovery
control can change its own user interface to display the question and ask for the
answer before the password is retrieved and sent back.

F10DR10Figure 10-10 Configuring the PasswordRecovery control
in Visual Studio 2005

The ChangePassword Control
The ChangePassword control provides an out-of-the-box virtually codeless
solution that enables end users to change their password to the site. The control
supplies a modifiable and customizable user interface and built-in behaviors to
retrieve the old password and save a new one. The underlying API for pass-
word management is the same Membership API we discussed earlier in this
chapter.

<asp:ChangePassword ID="ChangePassword1” Runat="server” />

The ChangePassword control will work in scenarios where a user may or
may not be already authenticated. The control detects if a user is authenticated
and automatically populates a username text box with the name. Even though

C10620245.fm Page 351 Thursday, June 10, 2004 12:29 PM

352 Part III Application Services

the user is authenticated he or she will still be required to reenter the current
password. Once the password has been successfully changed, the control may
send—if properly configured—a confirmation e-mail to the user, as you see in
Figure 10-11.

F10DR11Figure 10-11 The ChangePassword control in action

As mentioned, the ChangePassword control is extensively based on the
Membership API and makes use the ValidateUser and ChangePassword meth-
ods on the Membership class.

The CreateUserWizard Control337
The CreateUserWizard is designed to provide a native functionality for creating
a new user using the Membership API. The control offers a basic behavior that
the developer can extend to send a confirmation e-mail to the new user and
add steps to the wizard to collect additional information like address, phone
number, or maybe roles.

Customization is supported in two ways: customizing one of the default
steps and by adding more user-defined steps. Figure 10-12 shows the control in
action in a sample page.

C10620245.fm Page 352 Thursday, June 10, 2004 12:29 PM

Chapter 10 ASP.NET Security 353

F10DR12Figure 10-12 The CreateUserWizard control in action

Summary

Web applications typically use forms-based authentication for their security
layer. The user sees a login form and is asked to specify her credentials. If the
credentials are validated, the user is redirected to the originally requested page.
Unlike other forms of Web authentication (such as Passport), forms-based
authentication requires the developer to provide both the custom logic for val-
idating and authorizing the user and any necessary user interface. Forms
authentication in ASP.NET 1.x represents a quantum leap from what was previ-
ously available, but you have to write a lot of code even though the entire infra-
structure is provided by the system.

In ASP.NET 2.0, the new membership and role management API has
greatly improved the machinery of Forms authentication. This API is built
around the concept of a provider, which is a component that exposes a suite of
data-driven methods that are not tied to the physical data store. This model,
which we analyzed in Chapter 4 in terms of personalization, is particularly well-
suited to the membership system. The membership and role providers are com-
ponents that manage users and roles from a particular data store. They make

C10620245.fm Page 353 Thursday, June 10, 2004 12:29 PM

354 Part III Application Services

the type of data store irrelevant because the API just talks to a pluggable com-
ponent with a well-known interface.

A further big improvement in the ASP.NET 2.0 security infrastructure is the
security-related server controls, including Login and LoginView. These controls
integrate well with the membership and role management API, and they make
building a security layer around ASP.NET 2.0 applications much less complex
and tedious than in previous versions of ASP.NET and in classic ASP.

C10620245.fm Page 354 Thursday, June 10, 2004 12:29 PM

Part IV

Advanced Topics

C11620245.fm Page 355 Wednesday, June 9, 2004 4:49 PM

C11620245.fm Page 356 Wednesday, June 9, 2004 4:49 PM

357

The ASP.NET Runtime
Environment

ASP.NET 2.0 is a highly evolved product with new features, new tools, and
more abstraction but essentially the same underlying environment as in previ-
ous versions. HTTP requests are processed in a nearly identical way, but the
HTTP pipeline has been enriched with new handlers, new system events, and
more powerful objects. The eventing model—a fundamental piece of the
ASP.NET jigsaw puzzle—is also still there, but revised and enhanced.

All in all, the new ASP.NET release builds on top of ASP.NET 1.0 and
ASP.NET 1.1, offers some redesigned features, and adds new features to address
specific user requests. ASP.NET 2.0 has no breaking changes and is 100 percent
compatible with previous versions through the side-by-side execution model.

In this chapter, we’ll briefly examine the overall environment that sur-
rounds ASP.NET applications and makes them work. The underlying infrastruc-
ture has not radically changed. HTTP handlers and modules are still there and
work as expected, but with a few more events and methods. The page served
to the browser is still made up of HTML markup and script code, but it is orga-
nized differently. The view state works as before. While running, a page is still
an instance of a class that is dynamically created out of the .aspx source code.
The runat attribute plays the same key role, and procedural code can be writ-
ten both in line and behind classes.

We’ll look first at side-by-side compatibility—a neat feature that allows
you to install ASP.NET 2.0 without breaking any of your current applications.

C11620245.fm Page 357 Wednesday, June 9, 2004 4:49 PM

358 Part IV Advanced Topics

Installing ASP.NET 2.0
So you’ve just gotten your hands on ASP.NET 2.0. What’s the next step? Before
you install the new framework, you should make sure it won’t kill any of the
running applications and won’t mess up your system.

The great news about ASP.NET is that you can run several versions of the
runtime engine at the same time. Many developers faced this issue when they
upgraded to ASP.NET 1.1—how to ensure that the new runtime didn’t break
any existing (and working) applications.

The Microsoft .NET Framework provides support for side-by-side execu-
tion, which allows multiple versions of an assembly to be installed on the same
computer at the same time. Individual managed applications, including
ASP.NET applications, can then select which version of the .NET Framework to
use. The choice doesn’t affect other applications that require a different version.

Side-by-Side Backward Compatibility
Any version of the .NET Framework, including version 2.0, comes with a redis-
tributable package that includes the ASP.NET engine. The redistributable pro-
gram is named dotnetfx.exe. When you install it, by default all existing ASP.NET
applications are reconfigured to use the version being installed. But this hap-
pens only if a few conditions are met.

The version of the .NET Framework you are installing must be newer than
the version that is currently mapped to each application. It must also be com-
patible with the version mapped to the application. Two version numbers that
differ only by a minor revision and build number are said to be compatible. Ver-
sions whose major revision numbers do not match are considered incompati-
ble. ASP.NET 2.0 is perfectly compatible with previous versions because it has
a version number of 2.0.xxxx, where xxxx represents the build number.

To prevent the remapping of all existing applications to the installing ver-
sion of the .NET Framework, you should use the /noaspupgrade command-line
option with the dotnetfx.exe setup program, as shown here:

dotnetfx.exe /C:"install /noaspupgrade”

The /C switch overrides the internal command (in this case, install) as
defined by the programmer. As a result, the above program installs ASP.NET 2.0
but doesn’t upgrade existing applications to version 2.0. Note that when you
install Whidbey, dotnetfx.exe is the first executable that runs.

Remapping Applications to ASP.NET 1.1
Sadly, you generally get advice about the command-line switches of dot-
netfx.exe after it’s too late—that is, when you’ve just finished with the setup of

C11620245.fm Page 358 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 359

ASP.NET 2.0. By then, all applications will have been upgraded. How do you
recover and make an existing application support ASP.NET 1.1 once it has been
upgraded to version 2.0? Do you recall the aspnet_regiis.exe tool in ASP.NET
1.1? It’s still the recommended tool for this task.

To make sure that a given ASP.NET application uses the correct runtime
files, you must guarantee that all the ASP.NET-related extensions are managed
by the correct executable. For example, to make sure that the Foo Web site is
bound to ASP.NET 1.1 even after you have upgraded to ASP.NET 2.0, you run
the following command-line program:

aspnet_regiis.exe -s W3SVC/1/ROOT/Foo

Of course, you must use the copy of aspnet_regiis.exe to run from the
install directory of the target version of ASP.NET. For example, to remap Foo to
ASP.NET 1.1, you run aspnet_regiis from the following folder (the folder of the
ASP.NET 1.1 framework):

C:\Windows\Microsoft.NET\Framework\v1.1.4322

You take a similar approach to uninstall a version of ASP.NET without
uninstalling the associated .NET Framework. You use the aspnet_regiis.exe util-
ity of the target version and run it with the –u option.

Note By default, when you install ASP.NET 2.0 all applications are
updated to use the installing version of ASP.NET as long as no serious
compatibility issues exist. However, this procedure does not move any
custom configuration settings in the current machine.config file. If your
application needs customized configuration settings to work, you must
manually update the new machine.config file.

The ASP.NET Underpinnings
The process by which a Web request becomes plain HTML text for the
browser is not much different in ASP.NET 1.1 and ASP.NET 2.0. The request is
picked up by Microsoft Internet Information Services (IIS), given an identity
token, and passed to the ASP.NET ISAPI extension (aspnet_isapi.dll)—the
entry point for any ASP.NET-related processing. This is the general process,
but a number of key details depend on the underlying version of IIS and the
process model in use.

In ASP.NET 2.0, the architecture of the runtime environment has been
abstracted and enhanced to support alternative scenarios. The steps and the

C11620245.fm Page 359 Wednesday, June 9, 2004 4:49 PM

360 Part IV Advanced Topics

managed objects that bring an .aspx request to generate plain HTML are nearly
the same as in previous versions, but what happens before the HTTP pipeline
is activated is remarkably different.

Let’s start by reviewing the ASP.NET process model, and then we’ll look at
the changes in the IIS/ASP.NET infrastructure.

The IIS 5.x Process Model
The process model is the sequence of operations needed to process a request.
When the ASP.NET runtime runs on top of IIS 5.x, the process model is based
on a separate worker process named aspnet_wp.exe. This Win32 process
receives control directly from IIS through the hosted ASP.NET ISAPI extension.
The extension is passed any request for ASP.NET resources, and it hands them
over to the worker process. The worker process loads the common language
runtime (CLR) and starts the pipeline of managed objects that make the original
request evolve from a HTTP payload to a full-featured page for the browser.

The aspnet_isapi module and the worker process implement advanced
features such as process recycling, page output caching, memory monitoring,
and thread pooling. The worker process and the ISAPI module communicate
through named pipes, and a single instance of the worker process serves all
Web applications, except a Web garden is implemented. Each Web application
runs in a distinct AppDomain within the worker process. By default, the worker
process runs under a restricted, poorly privileged account named ASPNET.

When ASP.NET runs under IIS 6.0, the default process model is different
and the aspnet_wp.exe process is not used. Although it is not recommended
practice, you can configure ASP.NET to work under IIS 6.0 using the IIS 5.0 pro-
cess model and isolation mode. In this case, the worker process isolation archi-
tecture of IIS 6.0 is disabled and the native process model of ASP.NET is used
for all ASP.NET applications on the server machine.

Caution When you set the IIS 6.0 Web application service to work in
IIS 5.0 isolation mode, the process model of IIS 6.0 is disabled and IIS
dispatches calls as IIS 5.0 would. This feature affects not only
ASP.NET applications but all installed applications—as a result, you
lose all the features of the IIS 6.0 isolation mode that are based on
application pools.

C11620245.fm Page 360 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 361

The IIS 6.0 Process Model
When the underlying Web server is IIS 6.0, things change quite a bit. Unless you
opt to run the IIS Web service in IIS 5.x isolation mode, ASP.NET applications
are hosted by the IIS standard worker process named w3wp.exe, into which the
ASP.NET ISAPI extension is loaded to service the request.

IIS 6.0 implements its HTTP listener as a kernel-level module. As a result,
all incoming requests, including requests for ASP.NET pages, are first managed
by that listener, which is implemented as a driver named http.sys running in
kernel mode. The http.sys driver listens for requests and posts them to the
request queue of the appropriate application pool. An application pool is a
worker process and a virtual directory. A module called the Web Administration
Service (WAS) reads from the IIS metabase and instructs the http.sys driver to
create as many request queues as there are application pools registered in the
metabase.

Each application pool is managed by a distinct instance of the same
worker process (w3wp.exe). As a result, you can have ASP and ASPX applica-
tions managed by the same worker process. Sound weird? Well, it’s really not.

The worker process looks up the URL of the request and loads a specific
ISAPI extension. For example, it loads aspnet_isapi.dll for ASP.NET-related
requests. Under the IIS 6.0 process model, the aspnet_isapi extension is respon-
sible for loading the CLR and starting the HTTP pipeline. All the settings in the
<processModel> section of the machine.config file are ignored, and similar
information is read from the IIS metabase instead. ASP.NET settings that do not
relate to the process model continue to be read from the configuration file. The
w3wp.exe worker process runs under a restricted account that is functionally
similar to ASPNET but is named NetworkService. (It’s a built-in service account
of Windows Server 2003.)

This description isn’t specific to a particular version of ASP.NET. But in
ASP.NET 2.0, the interaction between the Web server environment and the
ASP.NET runtime environment has been refined by adding a couple of extra
layers that abstract the overall design and make it general enough to also sup-
port non-HTTP protocols such as SOAP and SMTP. In particular, the SOAP pro-
tocol makes room for a parallel runtime aimed at handling the next generation
of Web services—code-named Indigo. In ASP.NET 1.1, Web services are treated
as a special kind of Web request. The next generation of Web services will have
its own set of runtime services hosted by the Web server at the same level of the
ASP.NET engine.

C11620245.fm Page 361 Wednesday, June 9, 2004 4:49 PM

362 Part IV Advanced Topics

The WebHost Application Management System
ASP.NET 2.0 is part of a new process and AppDomain management system
whose code name is WebHost. In brief, WebHost is an extensible model for
application activation and hosting. It’s a common layer of code that hosts and
manages applications that can be activated and controlled through messages.
Examples of such message-based managed applications are currently limited to
ASP.NET 2.0 and Indigo applications. Bits and pieces of WebHost appear in the
IIS 6.0 architecture and made their debut in the aspnet_isapi module on IIS 5.0
and Windows 2000.

Starting with the .NET Framework 2.0, the WebHost platform has been
finalized as managed components supplied by various providers, including
ASP.NET, Indigo, and IIS itself. WebHost manages the lifetime of worker pro-
cesses, AppDomains, and application components. In doing so, it also provides
services such as configuration management, dynamic compilation, and output
caching. Applications managed by WebHost must define the high-level compo-
nents listed in Table 11-1.

Table 11-1 ASP.NET 2.0 Components in the WebHost Platform

Component Description

Application Manager Manages the lifetime of AppDomains and application compo-
nents within the worker process. Already implemented as an
internal component of aspnet_isapi 1.x, it is now generalized
to handle messages arriving on all protocols (including HTTP)
and route them to AppDomains.

Hosting Environment A library loaded inside the worker process that handles com-
munication with the WebHost host platform (IIS). For example,
it answers ping requests. The component also interfaces with
the Process Host, a managed object that controls the execution
of .NET applications.

Process Host Provides the ability to host the CLR within the worker process
and hosts the application manager and the protocol handlers.

Protocol Handlers Components that retrieve protocol-specific requests from a
queue and service them.

C11620245.fm Page 362 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 363

WebHost is expected to provide a number of benefits, such as a single
activation and hosting model for all message-activated applications and support
for activation over multiple protocols (not just HTTP). WebHost provides a
common set of services for all message-activated applications, regardless of the
protocol recognized by the particular application. Services include process and
AppDomain recycling, health monitoring, and deadlock detection.

If you’re a former ASP.NET 1.x programmer and know the basics of IIS 6.0,
you think of the WebHost environment as a common layer of code that exposes
and personalizes some Web server services to message-activated managed
applications. To support these goals, in fact, WebHost clients must implement
the process host and application manager components.

Important The WebHost environment is involved with request pro-
cessing only if the IIS 6.0 process model is used. If ASP.NET 2.0 is
hosted on IIS 5.0 or if the IIS 5.0 process model is used, ASP.NET
uses its own worker process—aspnet_wp.exe. In this case, the
ASP.NET ISAPI extension receives the request and creates the appli-
cation manager, which in turn creates an instance of the AppDomain’s
protocol handler to service the request.

The WebHost Process Manager
The WebHost process manager is a Windows service provided by IIS. It starts
up and shuts down worker processes and initiates all process management
actions, such as recycling and idle detection. The WebHost process manager
receives messages from message receivers, which are components that listen to
special incoming packets. Message receivers include a component for HTTP
messages based on the IIS 6.0 http.sys kernel-mode driver and the SOAP-TCP
listener adapter provided with Indigo.

The WebHost process manager passes control to the IIS 6.0 worker pro-
cess together with information about the WebHost application to start (such as
an ASP.NET 2.0 application). The information includes a unique application ID,
the root URL and the physical location of the application, the ID of the corre-
sponding IIS 6.0 application pool, the logon account, and a set of protocols that
can be used to activate the application. Figure 11-1 shows the overall WebHost
architecture.

C11620245.fm Page 363 Wednesday, June 9, 2004 4:49 PM

364 Part IV Advanced Topics

F11DR01Figure 11-1 The WebHost architecture, which permits the flow of mes-
sages from IIS up to the ASP.NET 2.0 runtime environment

Protocol Handlers
In the context of WebHost, protocol handlers play a double role: receiving as
well as dispatching messages from the queue. They connect applications with
message receivers through a message queue. Each receiver captures messages
of a particular type (such as HTTP, TCP, or SOAP) and places them in a proto-
col-specific queue. As Figure 11-1 shows, there are two kinds of protocol han-
dlers—process handlers and AppDomain handlers.

A process protocol handler is a global component shared by all applica-
tions in the pool managed by the worker process. The protocol handler man-
ages all the messages for any pooled application. An AppDomain protocol
handler is a component local to each application domain that has visibility only
on the messages destined for the AppDomain it lives in.

WebHost Process Manager
(part of IIS 6.0)

Metabase
Message receivers

http.sys SOAP SMTP

Application
Manager

App Config
Data

AppDomain
Protocol Handlers

Application

Hosting Environment

AppDomain

Process Host

Worker Process

Process Protocol
handlers

C11620245.fm Page 364 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 365

Walking Through an ASP.NET Request
Once in the worker process, the request is first routed through the IIS core
engine that handles requests for static resources (such as HTML or JPG) and
dynamic resources (such as ASP or ASPX). Requests for .aspx resources are
then dispatched to the ASP.NET ISAPI extension (aspnet_isapi.dll). Thus the
ASP.NET ISAPI gets information about the request and creates the process host
object.

The process host is responsible for hosting the CLR in the IIS 6.0 worker
process and for keeping track of process protocol handlers. The ASP.NET 2.0
process host is an object living inside aspnet_isapi that implements the IProcess-
Host interface. Note that this interface is COM-compatible, so unmanaged hosts
can implement it. (In fact, aspnet_isapi.dll is a Win32 library.) The ASP.NET pro-
cess host creates the application manager—the component responsible for
starting, stopping, and managing all AppDomains within the worker process.

The application manager acts as a common tool for pumping requests up
to the AppDomains that will actually service them. The application manager
also allows enumeration of currently running applications by returning an array
of objects representing the state of the individual application. The programming
interface of the application manager lets members manage the lifetime of
objects in applications and participate in process management actions such as
recycling.

In ASP.NET, a request is actually executed within an AppDomain. When
the application manager creates an AppDomain, its hosting environment is also
created. The hosting environment is represented by an ASP.NET framework
class and provides services to the application itself. Each AppDomain contains
a single instance of the hosting environment class. This class provides a number
of static methods that allow you to register new objects, obtain configuration
information, and control the AppDomain lifetime through a reference counting
mechanism.

In the AppDomain, the protocol handler continuously pings the corre-
sponding queue, and when a message representing a request for the applica-
tion is found, it is picked up and processed. The processing happens in much
the same way as in ASP.NET 1.x. The protocol handler obtains the request,
packs it into a HttpWorkerRequest structure, and processes it, passing the object
to an AppDomain-specific instance of the HttpRuntime class. Just as in ASP.NET
1.x, HttpRuntime is the entry point in the HTTP pipeline that processes an
ASP.NET request.

After control has passed to the HTTP pipeline, what happens is also much
the same as in previous versions. The request is managed by an HTTP handler
and filtered by a collection of HTTP modules. A new HTTP handler (one of a

C11620245.fm Page 365 Wednesday, June 9, 2004 4:49 PM

366 Part IV Advanced Topics

handful of new internal handlers) serves images to users more effectively. Quite
a few new modules are available as well.

Before we go further, let’s get a quick refresher on the ASP.NET runtime
components.

Note The WebHost architecture underlies the hosting capabilities of
ASP.NET. The application manager, process host, host environment,
and protocol handlers are abstractions for common functionality
required for hosting ASP.NET outside IIS. In ASP.NET 1.1, the hosting
model wasn’t rigorously defined. WebHost makes up for that. If you
still can’t see the big picture, you can take a look at the source code of
Cassini—the Microsoft’s mini–Web server that hosts the ASP.NET
engine. You can get the source code from http://www.asp.net. The
classes that form the Cassini application map almost 1:1 to the com-
ponents of the WebHost framework.

ASP.NET Runtime Components
ASP.NET maps each incoming HTTP request to a particular HTTP handler. An
HTTP handler is the component that actually serves the request. It is an instance
of a class that implements the IHttpHandler interface. The ProcessRequest
method of the interface is the central console that governs the processing of the
request. A special breed of component called the HTTP handler factory pro-
vides the infrastructure for creating the physical instance of the handler to ser-
vice the request. For example, the PageHandlerFactory class parses the source
code of the requested .aspx resource and returns a compiled instance of the
class that represents the page.

An HTTP handler is designed to process one or more URL extensions.
Handlers can be given an application or a machine scope—that is, they can
process the assigned extensions within the context of the current application or
all applications installed on the machine. HTTP handlers were introduced in
ASP.NET 1.0, and their role and base implementation has not changed in
ASP.NET 2.0.

HTTP modules are classes that implement the IHttpModule interface and
handle runtime events. A module can deal with two types of public events:
events raised by HttpApplication (including asynchronous events) and events
raised by other HTTP modules. For example, the SessionStateModule in
ASP.NET supplies session state services to an application. It fires the End and

C11620245.fm Page 366 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 367

Start events that other modules can handle through the familiar Session_End
and Session_Start signatures.

Overall, HTTP handlers and modules have the same functionality as Inter-
net Server Application Programming Interface (ISAPI) extensions and filters,
respectively, but with a much simpler programming model. All ASP.NET ver-
sions allow you create custom handlers and custom modules.

Tools and Executables
Although the ASP.NET ISAPI and the worker process are the key components of
the ASP.NET runtime infrastructure, other executables are involved. Table 11-2
lists the main components.

As mentioned, if ASP.NET runs under IIS 6.0 using the IIS 6.0 process
model, the worker process is not aspnet_wp but the w3wp.exe executable,
which is an integral part of the IIS 6.0 platform. In this case, the default
account is not ASPNET but NETWORKSERVICE, which has the same limited
set of privileges.

The aspnet_filter.dll component is a small Win32 ISAPI filter used to
back up cookieless session states for ASP.NET applications. In Windows
Server 2003, when the IIS 6.0 process model is enabled, it also prohibits
requests for nonexecutable resources located in critical directories under the
application root folder. Examples of protected directories include Bin, Code,
Resources, and Data.

The optional aspnet_state.exe service is more vital to Web applications
because it has to do with session state management. It can be used to store session
state data outside of the Web application memory space. The executable is a Win-
dows NT service that can be run locally or remotely. When the service is active, an
ASP.NET application can be configured to store any session information into the

Table 11-2 Main Executables in ASP.NET 2.0

Name Type Account

aspnet_isapi.dll Win32 DLL (ISAPI extension) LOCAL SYSTEM

aspnet_wp.exe Win32 EXE ASPNET

aspnet_filter.dll Win32 DLL (ISAPI filter) LOCAL SYSTEM

aspnet_state.exe Win32 NT Service ASPNET

aspnet_regiis.exe Win32 EXE LOCAL SYSTEM

aspnet_regsql.exe Win32 EXE LOCAL SYSTEM

aspnet_compiler.exe Win32 EXE LOCAL SYSTEM

C11620245.fm Page 367 Wednesday, June 9, 2004 4:49 PM

368 Part IV Advanced Topics

memory of this process. This means more reliable storage of session data
because the data is not subject to process recycling and ASP.NET applications
failure. The service runs under the ASPNET local account but can be configured
using the Service Control Manager interface.

The aspnet_regiis.exe utility configures the environment for side-by-side
execution of different ASP.NET versions on a single computer. It is also helpful
for repairing IIS and ASP.NET broken configurations. The utility works by
updating the script maps stored in the IIS metabase root and below. (A script
map is an association set between resource types and ASP.NET modules.)
Finally, the tool can be used to display the status of all installed versions of
ASP.NET and perform other configuration operations such as granting NTFS
permissions to specific folders and create client-script directories.

A couple of new tools in ASP.NET 2.0, aspnet_regsql and aspnet_compiler,
address important features of the environment. The aspnet_regsql tool lets you
configure all the SQL Server tables needed to implement a few tasks. (Figure
11-2 shows the tool’s user interface.)

F11DR02Figure 11-2 The user interface of the aspnet_regsql tool

In ASP.NET 1.x, the use of a SQL Server database was limited to only one
situation—storing the session state to a persistent table. To create the necessary
database infrastructure, Microsoft provided a couple of T-SQL scripts. ASP.NET
2.0 has three new features that might rely on a SQL Server database: Member-
ship, Personalization, and Role Management. You can use the aspnet_regsql
tool’s wizardlike command-line utility to help you configure SQL Server as
needed.

C11620245.fm Page 368 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 369

Note The new database-related features of ASP.NET 2.0 support a
provider design pattern that allows for the data store to be inter-
changed. You can choose data providers other than SQL Server; in
such cases, you don’t need to run aspnet_regsql utility to set them up.

Finally, the aspnet_compiler tool provides a mechanism for precompiling
the pages of a Web application so that all the needed assemblies are generated
for all the pages in the application. Based on the command line of the utility,
you can precompile the content of a virtual directory to a new physical direc-
tory or locally. Here’s an example:

aspnet_compiler –v /TestApp c:\inetpub\wwwroot\test

Built-In HTTP Handlers
ASP.NET 1.x defines a main type of HTTP handler for each of three types of
resources: .aspx, .asmx, and .ashx. For completeness, you should add the han-
dlers needed to serve .soap and .rem resources that are invoked when a .NET
Remoting object is hosted within IIS. ASP.NET 2.0 has a new handler extension
(.asix) for dynamically generated images requested directly over the Web.

The class that handles .asix requests is ImageGeneratorFactory. It is a fac-
tory class that returns the actual HTTP handler object—an instance of the
ImageGenerator class. You write ASIX components in a way that closely resem-
bles simple HTTP handlers (ASHX resources) in ASP.NET 1.x. The ASIX
resource is a class written in a file that begins with an @Image directive. (We
discussed a sample ASIX resource in Chapter 8.)

One of the nicest features of HTTP handlers is that you can configure
them so the class is invoked whenever a particular URL (or family of URLs) is
requested. Note that in this case the HTTP handler is invoked whether or not
the specified URL exists. In other words, if you bind a given handler to a fake
URL such as foo.axd, the handler is invoked whenever a request for the URL is
made. You need not have a server-side file with that name. In ASP.NET 1.x, this
feature was used to implement the ASP.NET trace viewer.

The trace viewer continues to work in the same way in ASP.NET 2.0. It is
an HTTP handler that gets into the game whenever the trace.axd resource is
invoked. You won’t find a file with that name on your machine, but the
ASP.NET infrastructure will detect its invocation and promptly react, as Figure
11-3 shows.

C11620245.fm Page 369 Wednesday, June 9, 2004 4:49 PM

370 Part IV Advanced Topics

F11DR03Figure 11-3 The trace viewer in action, activated by the fake
trace.axd URL

ASP.NET 2.0 has many other AXD resources with a new HTTP handler
running behind them. Figure 11-4 shows the list of internal handlers defined in
ASP.NET 2.0.

F11DR04Figure 11-4 The list of ASP.NET 2.0 internal HTTP handlers
as it appears in the ASP.NET configuration snap-in

The snap-in component that you see in the figure represents another
pleasant addition in ASP.NET 2.0. It is a sort of user interface built around the
contents of the machine.config file. It’s just one of the features that developers

C11620245.fm Page 370 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 371

called for loudly in the past months! Let’s see what role these new HTTP han-
dlers really play in ASP.NET 2.0.

Table 11-3 lists the ASP.NET 2.0 internal HTTP handlers. All are new but
one—the aforementioned trace handler that is mapped to the trace.axd
resource.

The Web Site Administration tool is also integrated with Visual Web Devel-
oper and Visual Studio. Among other things, it allows you to create any data-
base infrastructure for security, membership, and personalization.

Table 11-3 ASP.NET 2.0 Internal HTTP Handlers

Resource Description

CachedImageService.axd Allows you to retrieve cached copies of dynamically
generated images created by the Image Generation service.
Requires the data parameter, which indicates the storage
key.

Counters.axd Allows you to retrieve information captured by the Site
Counter service. In cooperation with controls such as
HyperLink and AdRotator, the service collects counting
information and caches it to a database—typically Jet or
SQL Server.

Precompile.axd Precompiles the current application so that any access to
application resources doesn’t cause delay.

Trace.axd As in ASP.NET 1.x, traces the application by collecting and
showing on demand the trace output generated by the vari-
ous requests.

WebAdmin.axd Links to the ASP.NET Web Application Administration tool.
The tool enables administrators to manage application secu-
rity, add personalization, view reports, and select or change
the application data sources.

WebResource.axd Used to insert script code into HTML pages. In ASP.NET 2.0,
any script code needed to make the page work (such as the
notorious __doPostBack Javascript function) is referenced
into the source HTML through this handler. Here’s a code
snippet that brings in the default code for handling Web
Forms basics:

<script language="javascript”
src="WebResource.axd?r=WebForms.js”
type="text/javascript” />

If you want to save a copy of the script code, point your
browser to the AXD resource and save the output to disk.

C11620245.fm Page 371 Wednesday, June 9, 2004 4:49 PM

372 Part IV Advanced Topics

New HTTP Modules
The ASP.NET framework defines a number of built-in HTTP modules that
implement services to applications. Table 11-4 lists the predefined modules reg-
istered in ASP.NET 2.0’s machine.config file. Figure 11-5 shows them through
the new ASP.NET snap-in.

F11DR05Figure 11-5 The list of the default HTTP modules in ASP.NET 2.0

Some of the modules are a revised version of modules already available in
ASP.NET 1.x, while others are specific to ASP.NET 2.0. The modules shown in
bold in Table 11-4 are new in version 2.0.

Table 11-4 Default ASP.NET 2.0 HTTP Modules

HTTP Module Description

AnonymousIdentification Creates and sets the personalization ID that ASP.NET 2.0
associates with each anonymous user.

ErrorHandlerModule Installs an event handler for the application’s error event
so ASP.NET mobile applications can report errors in a
sort of automated way.

FileAuthorization Verifies that the remote user has Windows NT permis-
sions to access the requested resource.

FormsAuthentication Enables applications to use Forms authentication.

OutputCache Manages the page output caching.

C11620245.fm Page 372 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 373

HTTP modules are behind many of the important new features of ASP.NET
2.0 that you’ve already seen in this book—in particular, the personalization
mechanism and anonymous identification. (Anonymous identification is not an
oxymoron—it’s the built-in implementation of a feature that many developers
coded manually in dozens of e-commerce Web sites.)

Page Output Caching
In version 1.x, page output caching was a hot new feature that sped up many
applications. Page output caching is the system’s ability to store in memory the
image of requested pages and serve them up as static resources until something
happens to invalidate the cached image. Under the hood, cached pages are
stored in the ASP.NET Cache and organized in various ways—per header,
parameter, name, or duration.

Although page output caching and the Cache API are often presented as
distinct features, they are simply two sides of the same coin. In both ASP.NET
1.x and ASP.NET 2.0, page output caching is implemented using the Cache API,

PageCountersModule Counts successful requests for a page and writes them to
the database. Pages served from the cache are still
counted, but not pages that return errors.

PassportAuthentication Provides a wrapper around Passport authentication ser-
vices.

Personalization Provides personalization services for an application. It
adds a dynamically generated personalization class to
HttpContext.

RoleManager Retrieves the list of roles from the role manager cookie
on every request and populates the User property on
HttpContext.

SessionState Provides session-state services for the application.

SessionID The default implementation of the ISessionIDModule
interface, which allows to provide your own custom ses-
sion ID generation, validation, encoding, and decoding.

UrlAuthorization Provides URL-based authorization services to access
specified resources.

WindowsAuthentication Enables ASP.NET applications to use Windows and IIS-
based authentication.

Table 11-4 Default ASP.NET 2.0 HTTP Modules

HTTP Module Description

C11620245.fm Page 373 Wednesday, June 9, 2004 4:49 PM

374 Part IV Advanced Topics

and the overall configuration can be controlled at the page and control level via
the @OutputCache directive.

The @OutputCache Directive
The @OutputCache directive declaratively controls the output caching policies
of an ASP.NET page or a user control. In ASP.NET 2.0, it supports the attributes
listed in Table 11-5.

Table 11-5 Attributes of the @OutputCache Directive

Attribute Description

Duration A required attribute that indicates the time, in seconds, that the
page or user control is maintained in the cache.

Location Indicates the location of the output cache. Not supported for user
controls. The default value is Any, which means the page can be
cached anywhere—client, proxy server, or original Web server.

Shared Indicates whether the output of a user control is shared among mul-
tiple pages using that control. The default is false, which means that
each page has its own copy of the control’s output.

The attribute is not supported for ASPX pages.

SqlDependency Indicates a dependency on the specified table on a given SQL
Server database. Whenever the contents of the table changes, the
page output is removed from the cache.

VaryByControl A semicolon-separated list of strings representing fully qualified
names of properties on a user control. Valid only for caching user
controls; don’t use it with ASP.NET pages.

VaryByCustom Specifies any text that represents custom output caching require-
ments. If this attribute has a value of <browser>, the cache is varied
by browser name and major version information. The value can be
a custom string, but you must provide the custom logic to deter-
mine whether multiple copies of the same page must be created
and how.

VaryByHeader A semicolon-separated list of HTTP headers that’s used to vary the
output cache. When this attribute is set to multiple headers, the out-
put cache contains a different version of the requested page for
each specified header.

VaryByParam A semicolon-separated list of parameters that’s used to vary the out-
put cache. When this attribute is set to multiple strings, the output
cache contains a different version of the requested document for
each specified parameter.

C11620245.fm Page 374 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 375

The Shared attribute is new to ASP.NET 2.0. If it is set to true, the cached
output of user controls across different ASP.NET pages is shared among all
pages, thus conserving processing power and memory. In ASP.NET 1.x (and, by
default, in ASP.NET 2.0) each page using a given user control maintains a dis-
tinct copy of the user control.

The SqlDependency Attribute
The SqlDependency attribute is the @OutputCache directive’s interface to the
SqlCacheDependency class we discussed in Chapter 9. When the SqlDepen-
dency attribute is set, a SQL Server cache dependency object is created. When
the dependency is broken, the page output is invalidated. The SqlDependency
attribute offers an interesting shortcut to setting up a full dependency via man-
ual code. (See Chapter 9.)

The SqlDependency attribute binds the output of the containing page to
the state of a particular table in a SQL Server 7.0 or SQL Server 2000 database:

<% @OutputCache Duration="15” VaryByParam="none"
SqlDependency="Northwind:Employees” %>

A page containing this code snippet has its output cached for 15 seconds
or until a record changes in the Employees table in the Northwind database.
Note that the Northwind string here is not the name of a database—it’s the
name of an entry in the <caching> section of the configuration file. That entry
contains detailed information about the connection string to use to reach the
database. For the mechanism to work, the database and the table must be
enabled for change notification, as discussed in Chapter 9.

You can specify multiple dependencies by separating multiple data-
base:table pairs with a semicolon in the value of the SqlDependency attribute. If
you’re setting the attribute while using SQL Server Yukon, you must set the
attribute’s value to the name of a command notification object. The command
notification object embeds information about the connection string, the data-
base, and the particular query run. (See Chapter 9 for more details.)

Disk Output Cache
Disk output cache is an optional feature that allows you to store the response
of pages on disk instead of in memory. Saving to disk allows caching of more
pages while reducing impact on the process working set and enabling cached
data to survive application restarts. You enable disk output caching through the
diskCacheable attribute in the <outputCacheSettings> configuration block.

<caching>
<outputCacheSettings diskcacheable="true” />

</caching>

C11620245.fm Page 375 Wednesday, June 9, 2004 4:49 PM

376 Part IV Advanced Topics

By using the <diskOutputCache> block at the same level as <output-
CacheSettings>, you can control the amount of disk that can be used for cach-
ing. Not all pages can be cached to disk. Cacheable pages include pages with
file dependencies only or absolute expiration. Pages that take advantage of the
VaryByCustom attribute in @OutputCache can’t be cached. The same applies to
pages that have sliding expirations and have dependencies on other cached
items. In addition to system requirements for disk cacheability, you can prevent
a page from disk caching programmatically:

Response.Cache.SetDiskCacheable(false);

A page marked for disk cacheability can fail to persist for a number of rea-
sons, including exceeded quotas or incompatible settings. Because disk output
cache is a noninvasive feature, these failures are handled silently and no excep-
tion is thrown.

Post-Cache Substitution
Post-cache substitution is a new ASP.NET 2.0 feature designed to optimize the
partial caching of pages. In ASP.NET 1.x, developers must resort to user controls
to cache portions of a page. Post-cache substitution allows you to cache por-
tions of a page using the opposite approach—the whole page is cached except
specific regions. By using this mechanism, you can have an AdRotator control
serve a different advertisement on each request even if the host page is cached.

To use post-cache substitution, you place a new control—the <asp:substi-
tution> control—at the page location where content should be substituted, and
you set the MethodName property of the control to a callback method:

<form runat="server">
<h2>

Welcome
<asp:Substitution runat="server” MethodName="GetUserName” />!

</h2>
</form>

The MethodName property must be set to a static method on the control’s
containing page or user control. Here’s an example:

<script language="C#” runat="server">
public static string GetUserName(HttpContext context)
{

return context.User.Identity.Name;
}

</script>

The method is a sort of callback that is invoked when the page is being
restored from the cache.

C11620245.fm Page 376 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 377

The Structure of ASP.NET 2.0 Pages
ASP.NET 2.0 is 100 percent backward compatible, and the source code you
need to write for a relatively simple page is nearly identical to that in ASP.NET
1.x. But ASP.NET 2.0 has a bag of new goodies that make the source code of a
real-world page look a bit different from a functionally analogous page in
ASP.NET 1.x.

A Sample Page
In ASP.NET 2.0, the structure of Web pages is the same as in ASP.NET 1.x. Pages
still have three main parts—directives, procedural code, and layout information.
However, a few more directives have been defined (such as @Image and
@Master) and a few attributes have been added to the main directive—@Page.
The code-behind mechanism is still supported, but it obeys different rules
because the compilation model has been redesigned. Consider the following
relatively simple page:

<%@ Page Language="C#” %>

<script runat="server">
void DoSomething(object sender, EventArgs e)
{

msg.Text = data.Text;
}
</script>

<html>
<body>
<form runat="server">

<asp:textbox runat="server” id="data” />
<asp:button runat="server” Text="Click me” onclick="DoSomething” />

<asp:label runat="server” id="msg” />

</form>
</body>
</html>

The page displays a text box and a command button. When the button is
clicked and the page posts back, the content of the text box is displayed in the
body of the page. Figure 11-6 shows the output of the page.

C11620245.fm Page 377 Wednesday, June 9, 2004 4:49 PM

378 Part IV Advanced Topics

F11DR06Figure 11-6 The output of the sample page

The page behaves as expected. The single form model is preserved, and
the postback mechanism works as before. The page is compiled on the fly the
first time it is accessed. The .aspx source code is parsed, and a C# or Visual
Basic .NET class is generated and compiled to a dynamic assembly. The assem-
bly is stored in a temporary folder, whose name and location are determined
using the same pattern as in previous versions. So is the page processing the
same way as in ASP.NET 1.1? Well, not exactly.

A Quick Look at the HTML Source Code
After the first version 2.0 page displays in the browser, look at the HTML source
code created for it. Even a quick glance reveals enhancements, particularly to
the client-side script code that implements the postback eventing model.

The following is the HTML code generated for the page shown in Figure 11-6:

<html>
<body>
<form name="Form1” method="post” action="test1.aspx">
<div style="display:none">

<input type="hidden” name="__EVENTTARGET” value="“ />
<input type="hidden” name="__EVENTARGUMENT” value="“ />
<input type="hidden” name="__VIEWSTATE” value=“... “ />

</div>

<script language="javascript” type="text/javascript">
<!--
var theForm = document.forms[‘Form1’];
function __doPostBack(eventTarget, eventArgument) {

if (theForm.onsubmit == null || theForm.onsubmit()) {
theForm.__EVENTTARGET.value = eventTarget;
theForm.__EVENTARGUMENT.value = eventArgument;

C11620245.fm Page 378 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 379

theForm.submit();
}

}
// -->
</script>
<input name="data” type="text” value="ASP.NET 2.0” id="data” />
Click me

ASP.NET 2.0
</form>
</body>
</html>

In general, ASP.NET 2.0 supports more Web form interaction scenarios
that require some script code. For example, you can now designate a default
button in the form and catch the user pressing Enter. A built-in piece of Java-
Script code then performs the magic of firing the action associated with the
default form button. Other script-related features are the long-awaited option of
setting the focus programmatically and the ability to execute cross-page posting
by programmatically changing the action property of the form.

The Compilation Model
Since the first version, ASP.NET has compiled a few file types on the fly—Web
pages (.aspx), Web services (.asmx), HTTP handlers (.ashx), and embedded
user controls (.ascx). These files are compiled on demand when first required
by an application. Any changes made to a dynamically compiled file—or to glo-
bal.asax and web.config—invalidate all affected resources and are reflected in
the displayed page. This mechanism greatly simplifies application develop-
ment. In fact, developers need only save the file to cause changes to take effect
within the application.

Such a dynamic compilation model is extended in ASP.NET 2.0 to account
for other file types—typically class files. The new ASP.NET build system
removes the need for an explicit precompilation step within the Visual Studio
.NET IDE and provides an extensibility model allowing new file types to be
added.

Dynamic Compilation
When designing a Web site, many developers group source files and resources
in different folders. In most cases, the name of the folder defined to contain cer-
tain resources is unimportant, but some folder names are commonly used. For
example, virtually any site has an images folder filled with pictures and graphics

C11620245.fm Page 379 Wednesday, June 9, 2004 4:49 PM

380 Part IV Advanced Topics

for the pages. Likewise, a Components folder is often used to group user and
custom controls, helper classes, and the like. In ASP.NET 1.x, the xBin folder is
for local assemblies that have application scope.

ASP.NET 2.0 has a few new predefined folders, which the build system
handles: Code, Resources, and Themes. Their content is managed by ASP.NET,
which processes files and generates and links assemblies.

The Code Folder
The Code folder is intended for class files (.vb and .cs files), Web Service
description files (.wsdl files), and typed data sets (.xsd files). All files are pro-
cessed to generate classes and are then compiled to a single assembly. The
assembly has application scope and is placed in an internal folder managed by
ASP.NET. No dynamic assemblies are ever found in the Bin folder or anywhere
else in the application’s Web space. Any class defined in a file placed in the
Code folder is immediately visible from any page within the application, regard-
less of the path to the page. You can also create subdirectories below the Code
folder to better reflect the logical organization of the files.

Note that all class files in the Code folder must be written in the same lan-
guage—be it Visual Basic .NET or C#—because they’re all compiled to a single
assembly and thus must have a matching source language. To use different lan-
guages, you must organize your class files in folders and add some entries to
the configuration file to tell build system to create distinct assemblies.

Here’s an example. Suppose you have two files named source.cs and
source.vb. Because they’re written in different languages, they can’t stay
together in the Code folder. You can then create two subfolders—say, Code/VB
and Code/CS—and move the files to the subfolder that matches the language.
Next you can add the following entries to the web.config file:

<configuration>
<system.web>
<compilation>

<codeSubDirectories>
<add directoryName="VB” />
<add directoryName="CS” />

</codeSubDirectories>
</compilation>
</system.web>
</configuration>

Note that the <codeSubDirectories> section is valid only if it is set in the
web.config file in the application root. Each <codeSubDirectories> section
instructs the build system to create a distinct assembly. This means that all the

C11620245.fm Page 380 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 381

files in the specified directory must be written in the same language, but differ-
ent directories can target different languages.

If WSDL files are placed in the Code folder, the build system creates and
compiles a class that represents the proxy to the specified Web service. In
ASP.NET 1.x, you have to reference the Web service and generate the proxy
explicitly.

A similar pattern is followed for XSD files. An XSD file represents the
strongly typed schema of a table of data. In the .NET Framework 1.1, a typed
DataSet must be manually created using the xsd.exe tool. In ASP.NET 2.0, all
you have to do is drop the source XSD file in the Code folder.

The Resources Folder
In the Resources directory, only .resx and .resources file types are considered to
be built for the resources assembly. Resource files provide for easy application
localization. You create satellite assemblies with application resources (typi-
cally, images and text) specific to a culture, and the runtime does the rest, load-
ing and using the right one. In ASP.NET 1.x, the developer had to create satellite
assemblies manually. ASP.NET 2.0 parses and compiles resource files in the
Resources folders.

A simple naming convention is used to bind a resource file to a partic-
ular culture. A single file with no culture defined is the default or neutral
resource file (for example, AppResources.resx). All other files that define cul-
ture-based resources embed the culture signature in the name. For example,
AppResources.en-US.resx represents the American English version, and App-
Resources.it-IT.resx is for the Italian version.

The Resources directory is compiled before any Code assemblies or
ASP.NET assemblies. The resulting resource assembly for the neutral culture has
application scope and is therefore referenced from other assemblies generated
in the application. Satellite assemblies are generated for the additional cultures.
All types defined in the resource assemblies belong to the Resources
namespace and are static objects.

The Themes Folder
The application’s Themes folder defines one or more themes for controls. A
theme is a set of skins and associated files such as stylesheets and images that
can be used within an application to give a consistent user interface to controls.
In the Themes folder, each theme occupies a single subdirectory, which has the
same name as the theme. All related files are stored in this directory.

When a theme is loaded, the contents of the theme directory are parsed
and compiled into a class that inherits from the Theme class. Any theme defined
outside the Themes directory structures is ignored by the ASP.NET build system.

C11620245.fm Page 381 Wednesday, June 9, 2004 4:49 PM

382 Part IV Advanced Topics

Compilation Settings and Life Cycle
The dynamic compilation process is affected by the settings in the <compilation>
section of the web.config file. Two attributes are of particular importance in this
section—maxBatchSize and maxBatchGeneratedSize. The former indicates the
maximum number of pages and classes allowed in a single assembly. The
default upper bound is 1000. The latter attribute sets a limit on the size of each
generated assembly. The default is 3 MB.

The files in the Resources folder are the first to be compiled. They are fol-
lowed by the files in the Code folder and any file class file referenced by the
application. Next is global.asax and any other resource file outside the
Resources folder. Finally, pages and user controls are processed.

Note The ASP.NET 2.0 build system is highly customizable and can
be extended to support custom files. The key to this change is the
<buildProviders> section in the application configuration files. The
<add> section lets you define a new build provider associated with a
file extension and a folder, as in the following example:

<buildProviders>
<add extension="*.my” appliesTo="Web”

type="Samples.MyBuildProvider” />
</buildProviders>

A build provider object is an object derived from the Build-
Provider base class. The appliesTo attribute indicates one or more
folders to which the provider applies. Web indicates any Web folder
except special folders, such as Code, Resources, or custom folders.

Site Precompilation
As mentioned, dynamically created assemblies are placed in an internal folder
managed by the ASP.NET runtime. Unless files are modified, the compilation
step occurs only once per page—when the page is first requested. Although in
many cases the additional overhead is no big deal, removing it still represents
a form of optimization. Site precompilation consists of deploying the whole site
functionality through assemblies. A precompiled application is still made up of
source files, but all pages and resources are fictitiously accessed before deploy-
ment and compiled to assemblies. The dynamically created assemblies are then
packaged and installed to the target machine.

C11620245.fm Page 382 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 383

Site precompilation was possible in ASP.NET 1.x, but in version 2.0 it has
the rank of a system tool, fully supported by the framework. Site precompila-
tion offers two main advantages:

■ Requests to the site don’t cause any delay because the pages and
code are compiled to assemblies.

■ Sites can be deployed without any source code, thus preserving and
protecting the intellectual property of the solutions implemented.

Precompilation can take two forms: in-place precompilation and deploy-
ment precompilation.

In-Place Precompilation
In-place precompilation allows a developer or a site administrator to access
each page in the application as if it were being used by end users. This means
each page is compiled as if for ordinary use. The site is fully compiled before
entering production, and no user will experience a first-hit compilation delay,
as in version 1.x. In-place precompilation takes place after the site is deployed,
but before it goes public.

Changes and extensions don’t strictly require a full stop of the system.
Files can be simply added or replaced, and users are served the new version
upon next access. To avoid any delay in case of changes, you can precompile
just the file that was modified by using the precompile.axd handler:

http://www.contoso.com/precompile.axd

Note that the compiler skips pages that are up-to-date. Precompilation
occurs only on files that have been changed or added or have been affected by
changes in file dependencies (such as web.config, global.asax, and files in the
Code and Resources directories).

Precompilation is essentially a batch compilation that generates all needed
assemblies in the fixed ASP.NET directory on the server machine. If any file fails
compilation, precompilation will fail on the application. Once compiled, a site
cannot be deployed to another machine. In-place precompilation assumes that
the site is running under IIS.

Precompilation for Deployment
Precompilation for deployment generates a manifest of a site made up of
assemblies, static files, and configuration files. The manifest is generated on a
target machine and can also be packaged and then copied to a production
machine. This form of precompilation doesn’t require source code to be left on
the target machine.

C11620245.fm Page 383 Wednesday, June 9, 2004 4:49 PM

384 Part IV Advanced Topics

Precompilation for deployment requires the use of the aspnet_compiler
command-line tool:

aspnet_compiler –m metabasePath
-c virtualPath
-p physicalPath
targetPath

The role of each parameter is explained in Table 11-6.

If no target path is specified, the precompilation takes place in the virtual
path of the application and source files are therefore preserved. If a different
target is specified, only assemblies are copied, and the new application runs
with no source file in the production environment. Static files such as images,
web.config, and HTML pages are not compiled—they are just copied to the tar-
get destination. If you don’t want to deploy HTML pages as clear text, rename
them to .aspx and compile them. A similar approach can be used for image
files. In this case, you expose them through .asix resources. (See Chapter 8.)
Note, however, that if you hide images and HTML pages behind ASP.NET exten-
sions, you lose in performance because IIS is used to process static files more
efficiently than ASP.NET.

As a final note, consider that packaged sites are not sensitive to file
changes unless you deploy them with source code. If you install an assembly-
only application, you must separately recompile and redeploy the application
for changes to take effect.

Table 11-6 Parameters of the aspnet_compiler Tool

Parameter Description

metabasePath An optional parameter that indicates the full IIS metabase path of the
application

physicalPath An optional parameter that indicates the physical path of the
application

targetPath An optional parameter that indicates the destination path for the
compiled application

virtualPath A required parameter that indicates the virtual path of the application

C11620245.fm Page 384 Wednesday, June 9, 2004 4:49 PM

Chapter 11 The ASP.NET Runtime Environment 385

Summary

Looking at ASP.NET 2.0 from the perspective of the HTTP runtime might give
the misleading impression that upgrading to the new version is no big deal
because overall ASP.NET still looks like the same, familiar programming envi-
ronment. And in spite of the wealth of new features it offers, ASP.NET 2.0 rep-
resents an evolution, not a revolution. In this chapter, we first toured the new
HTTP runtime hosting model, and then the new compilation model. Both have
little visibility at the application level and can pass unnoticed. But this architec-
tural change provides programmers with better performance, scalability, and
stability, as well as new features.

ASP.NET 2.0 is better integrated with the .NET Framework and hints at
future evolutions of the platform, specifically Indigo. The compilation model is
probably the only aspect of the technology that has undergone a true revolution
from version 1.x. Now all files of interest can be built by the system, making the
just hit save pattern the official way of working within ASP.NET projects. This is
definitely an important step toward easier development and greater productivity.

C11620245.fm Page 385 Wednesday, June 9, 2004 4:49 PM

C11620245.fm Page 386 Wednesday, June 9, 2004 4:49 PM

387

ASP.NET Configuration
and Instrumentation

The behavior of an ASP.NET application is affected both by system-level set-
tings and by the characteristics of the application itself. When running, the
application obtains a map of the current system settings from the system’s
machine.config file, and then it applies those settings to any changes that the
application requires. The machine.config file contains default and machine-
specific values for all supported settings. Machine settings are normally con-
trolled by the system administrator, and applications should not be given write
access to it. Because the machine.config file is outside the Web space of the
application, it cannot be reached even if an attacker succeeds in injecting mali-
cious code into the system.

An application can override most of the default values stored in the
machine.config file by creating one or more web.config files. At a minimum, an
application creates a web.config file in its root folder. The web.config file is a
subset of machine.config, written according to the same XML schema. Although
web.config allows you to override some of the default settings, you cannot
override all settings defined in machine.config. In particular, the information
about the ASP.NET process model can be defined only in a machinewide man-
ner using the machine.config file.

If the application contains child directories, it can define a web.config file
for each folder. The scope of each configuration file is determined in a hierar-
chical, top-down manner. The settings actually applied to an application and
thus its Web pages is determined by the sum of the changes that the various
web.config files in the hierarchy of the application carry. Along this path, any of

C12620245.fm Page 387 Wednesday, June 9, 2004 4:53 PM

388 Part IV Advanced Topics

those web.config files can extend, restrict, and override any type of settings
defined at an upper level, including the machine level, unless the setting is
restricted to a certain level (such as process model). If no configuration file
exists in an application folder, the settings valid at the upper level are applied.

Changes to the Configuration API
In previous versions of ASP.NET, you can access configuration information by
using the ConfigurationSettings class. But you can only read the current set-
tings, and only using a weakly typed approach. More important, although in
theory you can use the class to read any settings, you can actually use it only for
application-specific settings and custom sections. For example, consider the
code that would be necessary in ASP.NET 1.1 to read the value of the Enable-
VersionHeader attribute in the <httpRuntime> section (which determines
whether an ASP.NET-specific header containing version information should be
added to all responses):

object o = ConfigurationSettings.GetConfig(“system.web/httpRuntime”);

The code returns an object of type HttpRuntimeConfig, which is defined
in the System.Web.Configuration namespace. Unfortunately, though, that class
cannot be accessed programmatically because of its protection level. What a
shame, because that internal class exposes a property for each attribute and
would make programmatic configuration of the application like child’s play.

Guess what you find in ASP.NET 2.0? A number of public configuration
classes, one per predefined section, that expose through properties and meth-
ods the contents of the .config files. ASP.NET 2.0 fills another key gap by sup-
plying tools to programmatically update the .config files (which is allowed
when writing privileges have been granted).

Section-Specific Classes
.NET 2.0 ships with a comprehensive management API for reading, editing, and
creating web.config file settings. The root class for programmatic access to the
configuration infrastructure is Configuration. Using the static methods of this
class, you can access the machine.config file and any web.config file defined in
the context of the application. Table 12-1 lists these static methods.

C12620245.fm Page 388 Wednesday, June 9, 2004 4:53 PM

Chapter 12 ASP.NET Configuration and Instrumentation 389

Table 12-2 lists the nonstatic properties of the Configuration class.

Table 12-1 Static Methods of the Configuration Class

Property Description

GetExeConfiguration Returns a Configuration object that represents the configu-
ration settings for the current executable.

This method is used by Windows Forms applications only.

GetMachineConfiguration Returns a Configuration object that represents the con-
tents of the machine.config file for the specified location
and server.

GetWebConfiguration Returns a Configuration object that represents the con-
tents of the web.config file for the specified location,
server, and path.

Table 12-2 Properties of the Configuration Class

Property Description

AppSettings Returns the collection of user-defined application settings, in the
form of name/value pairs.

FilePath Gets the physical path to the configuration file represented by this
Configuration object.

HasFile Indicates whether or not there’s a web.config file which applies to
this Configuration object.

Locations Retrieves the collection of the locations (if any) defined in the
machine.config file.

Path Returns the virtual path to the application represented by this Con-
figuration object.

SectionGroups Retrieves the collection of the section groups defined in the config-
uration files.

Sections Retrieves the collection of the sections defined in the configuration
files. By using the name of the section as the selector, you can
obtain a reference to a class that provides a strongly typed repre-
sentation of the information.

C12620245.fm Page 389 Wednesday, June 9, 2004 4:53 PM

390 Part IV Advanced Topics

Each section is mapped to a public class that inherits from Configuration-
Section. These classes expose the attributes of the corresponding section as
typed properties, making it easy for you to read or edit values. The following
listing shows the signature of one of these section classes, HttpRuntimeSection:

namespace System.Web.Configuration
{

public sealed class HttpRuntimeSection: ConfigurationSection
{

// Constructors
public HttpRuntimeSection();
public HttpRuntimeSection(bool allowDefinition, bool allowOverride);

// Properties
public int AppRequestQueueLimit { get; set; }
public bool Enable { get; set; }
public bool EnableKernelOutputCache { get; set; }
public bool EnableVersionHeader { get; set; }
public TimeSpan IdleTimeOut { get; set; }
public TimeSpan ExecutionTimeout { get; set; }
public int MaxRequestLength { get; set; }
public int MinFreeThreads { get; set; }
public int MinLocalRequestFreeThreads { get; set; }
public bool UseFullyQualifiedRedirectUrl { get; set; }
public int RequestLengthDiskThreshold { get; set; }
§
// Methods
public override XmlNode GetRawXml();
public override void UpdateRawXml(XmlNode xmlNode);

}
}

The two overridable methods are defined in the base class. GetRawXml
returns an XMLDOM representing the contents of the section. UpdateRawXml
takes a modified XMLDOM and serializes it to disk in the associated configura-
tion file.

Reading Configuration Settings
Let’s look at how to use the configuration API to read a particular setting from
a configuration file. Suppose you want to know whether the application is
configured to run on a multiprocessor machine in Web garden mode. In the
<processModel> section, the Boolean webGarden attribute tells the ASP.NET
runtime about that:

Configuration cfg = Configuration.GetWebConfiguration(“/”);
ProcessModelSection sec = cfg.Sections["ProcessModel"];
bool bWebGarden = sec.WebGarden;

C12620245.fm Page 390 Wednesday, June 9, 2004 4:53 PM

Chapter 12 ASP.NET Configuration and Instrumentation 391

The GetWebConfiguration method takes the URL of the folder from which
you want to read and returns another instance of the Configuration class that
contains the current snapshot of the settings. Next you navigate to the informa-
tion required and consume it. As the code shows, the resultant listing is neat
and simple to understand.

Writing Configuration Settings
As mentioned earlier, ASP.NET applications should never modify the
machine.config file, and you should carefully consider any updates to web.con-
fig. Custom settings should be saved to external files. For example, you can use
an external XML file linked to the <appSettings> section:

<configuration>
<appSettings file="myfile.config” />

</configuration>

The custom .config file must have the same schema as standard configu-
ration files. Using an external file offers a number of benefits. First, it simplifies
the management of the parameters. Second, you don’t need to touch a system
file. Notice that any modifications to a .config file cause the affected pages
(which might include the whole application) to recompile. If you need to save
custom settings, using a distinct file saves you from such side effects.

However, if you must write to a configuration file, how do you do that?
Here’s an example that overwrites the default value of the EnableVersion-
Header attribute in the configuration file:

Configuration cfg = Configuration.GetWebConfiguration(“/”);
HttpRuntimeSection sec = (HttpRuntimeSection) cfg.Sections["HttpRuntime"];
bool bEnableVer = sec.EnableVersionHeader;
sec.EnableVersionHeader = !bEnableVer;
cfg.Update();

The properties have read/write capabilities, so you can change any value.
Notice, though, that simply setting the property doesn’t result in a disk update.
To persist the changes, you have to call the Update method on the Configura-
tion class. The update will succeed only if the application has full control of the
folder. Notice that, by default, both the ASPNET and the NETWORKSERVICE
accounts—those used to run ASP.NET applications in Windows 2000, Windows
XP, and Windows 2003 Server—don’t have write privileges on any user folder.

The ASP.NET Administrative Tool
In addition to full programmatic access to the configuration settings, ASP.NET
2.0 provides an interactive tool for administering the environment. The tool

C12620245.fm Page 391 Wednesday, June 9, 2004 4:53 PM

392 Part IV Advanced Topics

integrates with the IIS Microsoft Management Console (MMC) snap-in. As a result,
a new property page (named ASP.NET) is added to each Web directory node.

The page contains an edit button that, if clicked, provides you with a
new set of property pages that together supply an interactive user interface
for editing the .config files. The code behind the ASP.NET administrative tool
leverages the underlying configuration API. Earlier in this chapter, you saw a
few pages from the tool. The page for the HTTP runtime configuration is
shown in Figure 12-1.

F12DR01Figure 12-1 The property page for visually editing the
<httpRuntime> section

Changes to the Configuration Schema
In ASP.NET 2.0, the schema of the configuration files has changed a bit—it
includes new sections and modifies some of the existing ones. Let’s start with a
look at changes to existing sections.

Changed Configuration Sections
Table 12-3 lists the most important configuration sections that have changed
between ASP.NET 1.x and ASP.NET 2.0.

C12620245.fm Page 392 Wednesday, June 9, 2004 4:53 PM

Chapter 12 ASP.NET Configuration and Instrumentation 393

The table is not an exhaustive list of changes to the configuration schema.
Other sections, such as <globalization>, have minor changes. For more details,
refer to the .NET Framework programmer’s reference guide.

New Configuration Sections
The long list of new features in ASP.NET 2.0 has directly affected the schema of
the configuration files. A number of new sections have been defined in addition
to the standard ones supported by ASP.NET 1.1. Table 12-4 lists the major new
ones you are likely going to work with.

Table 12-3 Updated Configuration Sections

Section Description

<compilation> Lists default and custom-built providers and sets batch compilation
parameters. In this section, you can also control how dynamic
assemblies map to source code classes.

<httpHandlers> Includes new HTTP handlers for precompilation, image caching,
counters, and Web resources.

<httpModules> Includes new HTTP modules such as SessionID, RoleManager, and
AnonymousIdentification.

<httpRuntime> Adds support for automatic shutdown after a specified idle time.

<pages> Identifies page-specific configuration settings such as import and
register directives and master pages settings. This section can be
declared at the machine, site, application, and subdirectory levels.

<sessionState> Now supports custom session stores.

Table 12-4 New Configuration Sections

Section Description

<anonymousIdentification> Configures the built-in mechanism for creating the ID
assigned to the anonymous user.

<connectionStrings> Lists declarative references to connection strings used
by applications. Each connection string is given a
unique name by which it is referenced.

<healthMonitoring> Configures the health monitoring API, a set of tools
designed to trace the performance of running applica-
tions.

C12620245.fm Page 393 Wednesday, June 9, 2004 4:53 PM

394 Part IV Advanced Topics

We’ll conclude the chapter by looking at the new health monitoring API,
which is a diagnostic tool for ASP.NET.

The Health Monitoring API
The health monitoring API in ASP.NET 2.0 gives the system administrator and
the members of the operational staff of a Web site tools for monitoring the
health of the system. The ability to rapidly diagnose failing operations or bro-
ken subsystems is crucial to maintaining the performance of a Web site.

<imageGeneration> Configures how the Image Generation Service works.
Attributes include the type of storage and the cacheabil-
ity of the images.

<membership> Configures providers that are registered to store and
retrieve membership data (such as user IDs and pass-
words). Built-in providers store credentials in a local
SQL Server database or an Access database.

<profile> Configures how a user profile is persisted. This section
lets you define the schema of the class that represents
the user profile. You can also configure the providers
that will store personalization data.

<roleManager> Configures how role information about the current user
will be stored (for example, in a cookie) and which pro-
viders are enabled to contain the list of supported roles.

<siteCounters> Configures the built-in service that tracks the Web site
usage (for example, links and visits) and the providers
to use for storing data.

<siteMap> Registers the providers supported for storing site layout
information. By default, the map is stored in XML files
that are read using a particular provider object.. Custom
providers of site maps are registered here.

<smtpMail> Configures the SMTP service by specifying the server
name, port, and default values for fields such as From
or Subject.

<webSiteAdministrationTool> Contains information about the location and the struc-
ture of the Web Admin tool (WebAdmin.axd). You can
use this section to add new toolbar buttons and new
features to administer.

Table 12-4 New Configuration Sections

Section Description

C12620245.fm Page 394 Wednesday, June 9, 2004 4:53 PM

Chapter 12 ASP.NET Configuration and Instrumentation 395

The health monitoring API enables real-time tracing of running applica-
tions and provides statistics about usage and performance. The API’s two main
features are customizable analysis and automated notification of problems.

Customizable Event-Level Analysis
To effectively manage ASP.NET applications, administrators need runtime infor-
mation about the system that is a reliable indicator of the health of the system.
More important, this information should be easily consumable using standard
tools and techniques. Table 12-5 details the events exposed by the ASP.NET
health monitoring facility. The events are registered in the machine.config file.

By using the web.config file, you can disable some of these events. In
addition, you can set a nonnegative integer that indicates (in seconds) how
often the HeartBeat event is raised by each AppDomain to update statistics.

The ASP.NET infrastructure provides event information in a variety of
modes, including Windows Management Instrumentation (WMI), the Windows
event log, and performance counters. How events are delivered depends on
which providers are defined in the configuration files and how they are
mapped to events.

Table 12-5 Events Exposed by the Health Monitoring API

Event Description

All Audits Fired for all audit events caught

All Errors Fired for any error event caught

All Events Fired for any event caught

Application Lifetime Event Contains information about application events, including
restart and stop

Failure Audits Contains information about failure audit events

HeartBeat Optional periodic event that provides process statistical
information

Infrastructure Errors Contains information about error events that are related to
the system configuration or application code (such as
compilation errors)

Request Processing Errors Contains information about errors that occur while servic-
ing a request

Request Processing Event Contains information about the request and the thread on
which it’s executing

Success Audits Contains information about success audit events

C12620245.fm Page 395 Wednesday, June 9, 2004 4:53 PM

396 Part IV Advanced Topics

Automated Notification of Problems
Each event can be associated with a profile and a provider. The profile deter-
mines how often the event is fired; the provider indicates the component to
which the event is delivered. The links between events, profiles, and providers
are established through configuration. Table 12-6 lists supported built-in event
stores.

You can configure the settings of these event providers by using the
machine.config file.

The profile of an event determines parameters that affect how the event is
treated by ASP.NET. For example, the profile establishes the minimum number
of occurrences of each event before it’s actually fired as well as the threshold
after which the event stops being fired. You can also configure the minimum
duration between two consecutive events of the same type. Finally, the profile
of an event is bound to a comma-separated list of providers that are to be
invoked whenever the event is fired. Only those providers receive notification.

Summary

ASP.NET 2.0 is definitely a major upgrade to ASP.NET 1.x. Brand-new features live
side by side with improvements and fixes all around the existing infrastructure. In
this book, you’ve discovered what’s new and why, and often how it is expected
to be implemented in the final version of ASP.NET 2.0. As this final chapter dem-
onstrates, the configuration schema—the schema of the XML file that developers

Table 12-6 Event Stores Supported by the Health Monitoring API

Provider Description

EventLog Stores events to the specified Windows event log. The default event log
is Application.

LogFile Stores events to the specified file on disk.

MailEvent For each event, sends a notification e-mail to the specified list of e-mail
addresses.

SqlEvent Records events by adding a new row to the specified SQL Server data-
base.

WmiEvent Reflects generated ASP.NET events as WMI events.

C12620245.fm Page 396 Wednesday, June 9, 2004 4:53 PM

Chapter 12 ASP.NET Configuration and Instrumentation 397

and administrators use to tune up the behavior of an application—has also
changed significantly to deal with the new features in ASP.NET 2.0.

The configuration API is now a full-fledged API, not just a collection of
utilities for reading settings programmatically. A new suite of classes lets you
read and modify the .config files without your having to worry about schema
and concurrent access. ASP.NET 2.0 also features new administrative tools, new
instrumentation tools for diagnosis, and performance counters to measure the
throughput of an application. Ready-to-use system tools and a health monitor-
ing API let you create custom tools that make monitoring ASP.NET 2.0 easier
and more effective than ever before.

C12620245.fm Page 397 Wednesday, June 9, 2004 4:53 PM

C12620245.fm Page 398 Wednesday, June 9, 2004 4:53 PM

399

Index

Symbols
 <% … %> delimiters, 133, 138

A
Abort property, SqlRowsCopiedEventArgs class,

153
absolute expiration, cache, 192, 302
Access

AccessDataSource controls, 176, 179–180
AdRotator control, 199
membership provider, 330, 335
personalization data store, 93
personalization provider, 113, 114
role provider, 340
site counter provider, 280, 284

access layer, personalization provider, 112
AccessDataSource controls, 176, 179–180
AccessMembershipProvider provider, 335
AccessRoleProvider provider, 340
AcquireRequestState event, session state module,

293, 299
Active Directory, 315
active resultsets, SQL Server provider and

multiple, 156
Active Server Pages (ASP), 47, 195
active view, 39
ActiveStepIndex property, Wizard control, 256
ActiveViewIndex property, 39
Adapter property, 36
adaptive rendering

DetailsView control, 230
GridView control, 216
as new feature, 36

<add> element, 108
Add method, 111
administrative tool, ASP.NET, 116, 391
ADO.NET 1.x batch updates, 144
ADO.NET 2.0

ASP.NET 2.0 data access enhancements, 131.
See also data access enhancements

class enhancements, 157–163. See also
ADO.NET class enhancements

programming model and .NET data provider
factory model, 140

ADO.NET class enhancements, 157–163
DataTable and DataSet readers, 157–159
DataTableReader class, 158
filling tables with Load method, 159
managing views of data with DataView class,

162–163
XML serialization, 159–162

AdRotator control, 197, 199–200
aggregate dependencies, 305
AggregateCacheDependency class, 305
allowAnonymous attribute, 118
AllowPaging property

DetailsView control, 236
GridView control, 224

AllowSorting property, GridView control, 208
Amazon Web Services API, 86, 88
anonymous users

anonymous identification, 325
anonymous personalization, 117, 121
blocking, 316, 323
IDs, 325

anonymousIdentification attribute, 117
AnonymousIdentification HTTP module, 372
<anonymousIdentification> section, configuration

file, 393
AppDomains. See also WebHost application

management system
application manager component, 365
code-beside model, 15
IIS 5.x process model, 360
protocol handlers, 364

appearance properties
DetailsView control, 231
GridView control, 210

Z01I620245.fm Page 399 Thursday, June 17, 2004 1:41 PM

400

Application event log, 396
application manager component, 362, 365
Application object

Cache object vs., 300
state management, 287

application pool, IIS 6.0 process model, 361
application services, 251. See also rich controls
application-level binding, master page, 57
applications

asynchronous, 21
creating, 3
health monitoring, 394–396
preventing remapping of, 358
remapping of, to ASP.NET 1.1, 358
special folders for, 13
Visual Studio 2005 and, 4

<appSettings> section, configuration file, 136
app.sitemap configuration file, 184, 274
arrays, user profiles and, 110
asix file extension, 271, 369
ASP (Active Server Pages), 47, 195
<asp:> prefix, 36
<asp:button> element, 32
<asp:connection> element, 102
<asp:Content> element, 54, 60, 61
<asp:ContentPlaceHolder> element, 61
<asp:editorzone> element, 94
ASP.NET 1.x. See also ASP.NET 2.0

ColdFusion emulation code, 168
cookie-based Forms authentication, 317
data access, 131
data binding architecture, 165
DataBinder Eval method, 132
dynamic image generation, 264
hosting model, 366
limits of cache dependencies, 302
remapping applications to ASP.NET 1.1, 358
user controls vs. ASP.NET 2.0 master pages,

46–47
ASP.NET 2.0, 1–44. See also ASP.NET 1.x

administrative tool, 116, 391
code-beside model, 14–19
configuration files. See configuration files
creating applications, 3
creating sample Web site, 8–14. See also Web

sites

data access enhancements. See data access
enhancements

data source controls. See data source controls
data-bound controls. See data-bound controls
HTTP protocol, 3
installing, 358–359
master pages. See master pages
mobile controls, 30
Page object model. See Page class
personalization. See personalization; themes;

user profiles
provider model, 112
rich controls. See rich controls
runtime environment. See runtime environment
security. See security
server controls, 35–43. See also controls; server

controls
special folders, 13
state management. See state management
Visual Studio 2005 and, 3, 4–7. See also Visual

Studio 2005
Web Parts framework. See Web Parts framework
Web site template, 8
worker process memory, 292

ASPNET account, 12, 360, 367, 391
ASP.NET Configuration applet, 93
ASP.NET Web Application Administration tool,

116
AspNetAccessProvider database, 113, 280
aspnet_compiler.exe tool, 367, 384
aspnetdb.mdb file, 114, 284
aspnet_filter.dll ISAPI filter, 367
aspnet_isapi.dll ISAPI extension, 359, 360, 361,

365, 367
aspnet_regiis.exe tool, 140, 359, 367
aspnet_regsqlcache tool, 310
aspnet_regsql.exe tool, 367
aspnet_Roles table, 115
AspNetSqlProvider database, 113
aspnet_state.exe file, 292, 367
aspnet_Users table, 115
aspnet_wp.exe worker process, 12, 360, 363, 367
<asp:PageCatalogPart> element, 97
<asp:parameter> control, 42
<asp:substitution> control, 376
<asp:wizardstep> control, 252
aspx files, 7, 361. See also Page class

Application event log

Z01I620245.fm Page 400 Thursday, June 17, 2004 1:41 PM

401

assemblies
code-beside model, 14
installing multiple versions, 358
satellite, 381
Visual Studio 2005 and, 6

Async attribute, 21, 148
asynchronous applications, 21
asynchronous commands, SQL Server provider,

146–149
.NET Framework asynchronous pattern and,

146–147
executing, 147–149

AsyncState property, IAsyncResult class, 149
attributes

ASP.NET 1.x Forms authentication, 318
@Master directive, 52–54
membership provider, 335
new @Page directive, 20
@OutputCache directive, 374–375
user profile, 108

AuthenticateRequest event, 340
<authentication> section, configuration file, 318
authentication tickets, 317
authentication types, 315
authorization, role management and, 336
<authorization> section, configuration file, 316,

323
AutoGenerateColumns property, GridView

control, 216
AutoGenerateDeleteButton property

DetailsView control, 236
GridView control, 228

AutoGenerateEditButton property
DetailsView control, 236
GridView control, 226

AutoGenerateRows property, DetailsView
control, 238

AutoGenerateSelectButton property, GridView
control, 239

automated notification of problems, 396
automatic caching, enabling, 191
AutoSave property, DataSetDataSource control,

181
axd files, 369–371

B
backward compatibility, 358
BaseDataBoundControl class, 196
BaseDataList classes, 197
batch operations, .NET data provider, 144–145

batch update-related events and errors, 145
profiling batch calls, 144
UpdateBatchSize property, 144

bcp utility, bulk copy operations and, 152
BeginInvoke method, 146
behavior properties

DetailsView control, 231
GridView control, 208

Bin folder, 13, 111, 380
binary .NET formatter, 111
binary serialization, 162
Bind method, 134, 245
binding. See data binding
BookFinder sample WebPart control, 85–93

changing Web zone layouts, 89–93
creating, 85–88
persisting layout changes, 93
styling, with Web zone properties, 88–89

BookSample master page example, 61–64
broken configurations, 368
<browserCaps> section, configuration file, 58
browsers, Web. See Web browsers
build providers, 382, 393
build system, 382. See also compilation model
BuildProvider class, 382
<buildProviders> section, configuration file, 382
bulk copy operations, SQL Server provider,

149–153
bcp utility and, 152
copying data from table to table, 151–152
SqlBulkCopy class, 150–151
tracking, 152

BULK INSERT statement, 149, 152
BulletedList control, 41, 200
BulletedListEventArgs class, 201
business objects, 18, 176, 181–182

C
cache dependencies, 300–312

AggregateCacheDependency class, 305
Cache object, 300. See also Cache object

cache dependencies

Z01I620245.fm Page 401 Thursday, June 17, 2004 1:41 PM

402

cache dependencies, continued
CacheDependency class, 301–305
designing classes for, 306
designing custom, 303–305
getting change notifications, 304
implementing custom, 306
new CacheDependency class methods, 303
SQL Server, 155, 309–312
testing custom, 308
tracking changes in files and directories, 301
tracking changes on cached items, 302
types of, 302
Web service–based, 305–309

Cache object
Application and Session objects vs., 300
cache dependencies, 302. See also cache

dependencies
CacheDependency object, 304
DynamicImage controls, 266
InProc mode, 292
page output caching, 373–377
SqlDataSource control, 191
state management, 287

CacheDependency class, 301–305
CachedImageService.axd image-generation

service, 266, 371
CacheDuration property, SqlDataSource control,

191
CacheExpirationPolicy property, SqlDataSource

control, 192
cacheRolesInCookie attribute, 339
caching. See cache dependencies; data caching;

page output caching
Callback Manager, 34
callbacks. See also postbacks

asynchronous commands, 148
GridView control, 224
script, 31–34

Cancel property, WiizardNavigationEventArgs
class, 262

cascading style sheets (CSS), themes vs., 122, 126
Cassini Web server, 6, 366
catalog parts, Web Parts, 80, 98
catalog zones, Web Parts, 81, 97
<cfquery> statement, 167, 168

<cfupdate>, <cfinsert>, and <cfdelete>
statements, 167

change notifications, cache dependency, 304
ChangeMode method, DetailsView control, 234
ChangePassword control, 351
ChangePassword method, Membership class, 331,

352
CheckBoxList control, 201
child master pages. See nested master pages
classes

ADO.NET enhancements, 157–163
ADO.NET factory, 141
building sample shared, 18–19
business object, 181
Code folder, 380
compiling, 15
configuration, 388–392
CSS (cascading style sheet), 122
custom personalization provider, 116
data source controls as, 172
designing cache dependency, 306
helper, 18
partial, 16
tabular data source control, 175
user profile, 108, 109
Web Parts editor parts, 95
Web Parts framework, 79

classic ASP. See ASP (Active Server Pages)
ClassName attribute, 17, 52, 74
Click event handlers, Web Parts, 89
click-throughs, site counters and, 279
ClientScript object, 22
ClientScriptManager class, 22
client-side state management, 287
Close method, SqlBulkCopy class, 150
Close verb, Web Parts, 81, 83, 96
code. See also code-beside model

adding, to Web Forms, 11
codeless data binding with data source

controls, 166–170
HTML. See HTML code
HTTP handler and script, 371
inline, 9, 14, 16
separation, 9

Code folder, 13, 18, 380
CodeBehind attribute, 15

Cache object

Z01I620245.fm Page 402 Thursday, June 17, 2004 1:41 PM

403

code-behind model
code-beside model vs., 14, 16
dynamic compilation of code-behind classes, 6
Visual Studio 2005 and, 9

code-beside model, 14–19
code-behind model vs., 14
compile-on-demand feature, 15–17
sharing source components, 17–19

code.dll file, 18
<codeSubDirectories> section, configuration file,

380
ColdFusion, 167–169
collections, user profiles and, 110
ColumnMappings collection, 150, 152
columns, GridView control, 216–219
<Columns> element, 217
command notification, SQL Server 2005, 312
commands, asynchronous. See asynchronous

commands, SQL Server provider
common language runtime (CLR) types

SQL Server provider support for, 154
user profile properties and, 108

Compact HTML 1.0 client target, 11
compatibility, side-by-side backward, 358
compilation model, 379–384

aspnet_compiler.exe tool, 369
code-behind model, 15
compile-on-demand feature, 15–17
dynamic compilation, 6, 379–382
dynamic event binding, 12
HTTP handlers, 371
master pages, 48
site precompilation, 382–384
Visual Studio 2005 and, 6

<compilation> section, configuration file, 382,
393

compiled templates, importing, 60
compile-on-demand feature, 15–17

code-beside vs. code-behind, 16
partial classes, 16

CompileWith attribute, 16, 21
composite controls

data-bound, 202–204
security-related, 341
Wizard control as, 252

CompositeControl class, 202
CompositeDataBoundControl class, 202, 203

Configuration API, 388–392. See also
configuration files

administrative tool, 391
reading configuration settings, 390
section-specific classes, 388–390
writing configuration settings, 391

Configuration class, 388
configuration files, 387–397

adding user profile scalar properties to, 108
AppSettings collection, 136
ASP.NET administrative tool, 391
aspnet_regiis.exe tool, 368
changed sections, 392
changes to Configuration API, 388–392
changes to schema of, 392–394
Code folder, 380
connection string storage, 137
cookieless Forms authentication settings,

318–320
custom build providers, 382
custom session data providers, 296
custom settings and ASP.NET 2.0 installation,

359
disk output cache, 375
dynamic compilation settings, 382
enabling site counter service, 280
enumerating installed data providers, 142–143
health monitoring API, 394–396
membership environment settings for

PasswordRecovery control, 350
membership provider settings, 335
new sections, 393–394
protecting configuration data, 139–140
reading settings, 390
relationship of machine.config files and

web.config files, 387. See also machine.config
file; web.config file

section-specific classes, 388–390
site map, 184
user profiles, 108
writing settings, 391

ConfigurationSection class, 390
ConfigurationSettings class, 388
connection model, Web Parts, 99–101

connection points and interfaces, 100
enabling connectivity, 100

Connection objects, Web Parts, 83

Connection objects, Web Parts

Z01I620245.fm Page 403 Thursday, June 17, 2004 1:41 PM

404

connection points, Web Parts, 100
connection string storage, .NET data provider,

136–140
configuration file section, 137
declarative binding of connection strings,

138–139
protecting configuration data, 139–140
retrieving connection strings programmatically,

137
connection strings

Access personalization provider, 115
enabling asynchronous operations in, 148
.NET data provider storage, 136–140
personalization provider, 114
SQL Server personalization provider, 115

[ConnectionConsumer] attribute, 103
[ConnectionProvider] attribute, 102
connections, data source control, 187
connections, Web Parts, 99–104

connection model, 99–101
master/detail schema, 101–104

ConnectionString property, SqlDataSource
control, 177

connectionStringName attribute, 114
ConnectionStrings collection, 137
<connectionStrings> section, configuration file,

137, 393
consumer WebPart controls, 99, 103
ConsumerConnectionPointID property, Web

Parts, 100
ConsumerID property, Web Parts, 100
content, WebPart control, 78, 80
Content class, 54, 55
Content controls, 55
content navigation, Web site, 273–279

accessing site map information, 275–277
binding site maps to controls, 277
defining site maps, 274
infrastructure, 274
SiteMapPath control, 278

content pages
<asp:Content> element, 54
attaching, to master pages, 57
changing master page for, 74
Content controls, 55
device-specific master pages, 57
invoking master page properties, 74

master pages, 48, 50. See also master pages
merging master pagesand, 58–60
page layout, 68–70
programming master pages from, 72–75
realistic example, 70–72
writing, 55–58

ContentPager control, 31
ContentPlaceHolder controls, 50, 51, 54, 59
ContentPlaceHolderID property, 54
Control class, 23, 55, 172, 202
@Control directive, 52
control skins, 124–127

associating, with controls, 124–126
dynamically loading, 126
SmokeAndGlass built-in, 124
Themes folder, 381
themes, 107, 123. See also themes

control state, 288–291
maintaining, for controls, 290
Page object model, 26
persisting, 290–291
programming, 289–291
server controls, 37
view state vs., 288–289
when to use, 289

ControlParameter objects, 189
controls

associating control skins with, 124–126. See also
control skins; themes

binding data source controls to, 168, 171
binding site maps to, 277
ChangePassword control, 351
CreateUserWizard control, 352
data source. See data source controls
data-bound. See data-bound controls
data-bound literal, 133
dynamic compilation and Themes folder, 381
Login control, 341–345
LoginName control, 345
LoginStatus control, 346–348
LoginView control, 348–350
maintaining control state for, 290. See also

control state
Page class lifecycle, 25–27
PasswordRecovery control, 350–351
post-cache substitution, 376
rich. See rich controls

connection points, Web Parts

Z01I620245.fm Page 404 Thursday, June 17, 2004 1:41 PM

405

security-related, 341–352
server. See server controls
site counter properties, 279–281
user. See user controls
Web Forms, 10
WebPart. See WebPart controls

Controls property, CompositeDataBoundControl
class, 203

cookieless attribute, 319
cookieless Forms authentication, 318–320
cookieless sessions, 292, 298, 367
cookies

anonymous user IDs in, 325
ASP.NET 1.x Forms authentication, 317
as authentication tickets, 317
cookieless Forms authentication, 318–320
cookieless sessions, 292, 298, 367
persistent, 324
roles in, 339
session IDs, 292, 298, 300
setting Forms authentication domain for, 320

copy, bulk. See bulk copy operations, SQL Server
provider

Copy Web site feature, 6
CopyToRows method, 145
CountClicks property, 279
counters. See performance counters; site counters
Counters.axd HTTP handler, 281, 371
CreateChildControls method,

CompositeDataBoundControl class, 202, 203
CreateConnection method, SqlClientFactory class,

142
CreateNewStoreData method,

SessionStateStoreProviderBase class, 296
CreateUser method, Membership class, 330
CreateUserWizard control, 352
cross-page postbacks, 23, 28–29
CSS files, 123
culture-based resources, 381
custom adapters, 36
custom cache dependencies, 303–305. See also

cache dependencies
custom configuration files, 391. See also

configuration files
custom image-generation services,

DynamicImage control, 271–273
custom membership providers, 334

custom personalization providers, 113, 115
custom session IDs, 298–299
custom session state modules, 299–300
custom types, user profile, 111
customizable event-level analysis, 395
customizing default session state modules,

294–299

D
data. See also databases; files

access. See data access enhancements
binding. See data binding
displaying, with FormView controls, 243–245
displaying, with GridView controls, 216–225
editing, with FormView controls, 245–247
editing, with GridView controls, 225–229
operations. See data operations
postback, 26
providers. See data providers
sources. See data sources
stores. See data stores
types. See data types
validation. See data validation

data access enhancements, 131–164
ADO.NET 2.0 and, 131
ADO.NET class enhancements, 157–163
data-binding syntax enhancements, 132–136
.NET data provider enhancements, 136–145
SQL Server provider enhancements, 145–157

data adapters, SqlDataSource controls and, 177
data binding. See also data-bound controls

connection string declarative, 138–139
data source control parameters and values, 190
data source controls and codeless declarative,

166–170
data source controls to controls, 171
DynamicImage control, 270
GridView control, 207, 214
master page, 57
page/class, 16
Repeater control, 87
site maps to controls, 277
syntax enhancements, 132–136

data caching, 191–193
data dictionary, replacing session, 297
Data folder, 8, 114

Data folder

Z01I620245.fm Page 405 Thursday, June 17, 2004 1:41 PM

406

data operations
AccessDataSource control, 179
data source control, 171, 187
data source views, 175
DetailsView control, 236
GridView control, 227
SqlDataSource control, 177

Data property
DataSetDataSource control, 180
XmlDataSource control, 185

data providers
build providers, 382, 393
custom session, 296
enumerating installed, 142–143
health monitoring event, 396
membership, 331–336. See also membership

providers
.NET data provider enhancements, 136–145
personalization, 112–116
protection, 139
role, 112, 115, 340
site counter, 280, 284
site map, 275

data source controls, 165–193
AccessDataSource controls, 179–180
binding, to controls, 171
caching behavior, 191–193
codeless data binding with, 166–170
connecting to, 187
DataSetDataSource controls, 180
heterogenous data sources, 170
hierarchical, 182–187
IDataSource interface, 173–175
ObjectDataSource controls, 181–182
parameters, 188–191
rationale behind, 166–170
richer design-time experience with, 172
SiteMapDataSource controls, 183–185
SqlDataSource controls, 176–179, 187–193
standard data operations for, 171
tabular, 175–182
as views, 172
XmlDataSource controls, 185–187

data sources
data providers, 136. See also data providers
data source controls and heterogenous, 170.

See also data source controls

declarative binding of connection strings, 138
DynamicImage control image, 265
GridView controls and empty, 215

data stores
custom session state, 292
Forms authentication, 324
health monitoring event, 396
membership, 329
persisting control state in, 290–291
personalization, 93, 96, 112
session state, 293, 294–297
user credentials in, 326

data types
data source control parameter, 189
GridView control column types, 217
SQL Server provider support for CLR, 154
SQL Server provider support for XML as native,

154
SQL Server provider unified model for large,

153
user profile, 108, 110, 111
Wizard step, 258

data validation
cookie, 317
Wizard control, 260

databases. See also data; files
asynchronous commands, 146–149
database dependencies, 155, 302, 309. See also

cache dependencies
DynamicImage control images from, 269
personalization, 108, 112, 116. See also

personalization providers
DataBind method

connection string storage, 138
DataBinder class, 134
DataBoundControl class, 199
GridView control, 213
Page class, 270

DataBinder class, 132–134
data-binding syntax enhancements, 132–136. See

also data binding
DataBinder class, 132–134
two-way data binding, 134
XPathBinder class, 135–136

data-bound controls, 195–248
AdRotator control, 199–200
binding site maps to, 277

data operations

Z01I620245.fm Page 406 Thursday, June 17, 2004 1:41 PM

407

BulletedList control, 200
class diagrams for, 196
composite, 202–204
DataBoundControl class, 198–199
DetailsView control. See DetailsView control
FormView control, 241–247
GridView control. See GridView control
hierarchical, 205–207. See also Menu control;

TreeView control
hierarchy of, 195–207
simple list controls, 199–202

DataBoundControl class, 198–199
methods, 199
properties, 198

DataBoundLiteralControl class, 133
DataControlField class, 216
DataFile property

AccessDataSource control, 176, 179
DataSetDataSource control, 180
XmlDataSource control, 185

DataGrid control
consumer WebPart control, 103
data binding, 169
GridView control vs., 195, 207
view state, 288

DataKeyNames property
DetailsView control, 236
FormView control, 247
GridView control, 227, 241

DataList control, 196, 258
DataNavigateUrlFields property, GridView

control, 219
DataReader objects, SqlDataSource controls and,

177
DataSet objects

AccessDataSource controls, 179
batch updates, 144–145
DataSetDataSource controls and XML

representations of, 176, 180
readers, 157–159
ReadXml method, 160
RemotingFormat property, 162
SqlDataSource controls, 177, 191
WebPart controls, 86
WriteXml method, 160

DataSetDataSource controls, 90, 176, 180

DataSource property
DataGrid control, 169
GridView control, 212
Object class, 205

DataSourceChanged event, IDataSource interface,
173

DataSourceControl abstract class, 172
DataSourceID property

data source control, 169
DataBoundControl class, 198
GridView control, 212, 214
ListControl class, 202
TreeView control, 278

DataSourceMode property, SqlDataSource
control, 177

DataSourceView objects, 173–175
DataTable objects. See also tables

DataView class and views of, 162–163
readers, 157–159
RemotingFormat property, 162
WebPart controls, 87
XML serialization, 159–162

DataTableReader class, 158
DataTextFormatString property, GridView

control, 219
DataView class, 162–163, 173
DbDataAdapter class, 144
DbProviderFactories class, 142, 143
DbProviderFactory class, 141
Debug attribute, 52
declarations

blocking overriding of theming capability, 125
connection string binding, 138–139
control skins, 124
data source controls and data binding with,

166–170
declarative event binding, 11

DeclarativeCatalogPart controls, 98
DefaultFocus property, 35
defaultProvider attribute, 113
defaults

cookieless attribute, 319
data items, 134
data source control parameter values, 190
DataTable view, 162
Forms authentication return URL, 320

defaults

Z01I620245.fm Page 407 Thursday, June 17, 2004 1:41 PM

408

defaults, continued
master page content, 55
master page events, 65
personalization provider, 113
session state module, 292–294
user profile property type, 109
user profile property values, 112, 118
Web Parts editor zones, 94

defaultUrl attribute, 320
DefaultValue property, Parameter class, 190
DefaultView property, DataTable class, 162
delegates, asynchronous, 146
DeleteUser method, Membership class, 330
deleting GridView control records, 228
dependencies. See cache dependencies
DependencyDispose method, CacheDependency

class, 304
deployment, site precompilation for, 383
description attribute, 114
deserializing control state, 38
design, data source controls and, 172
design mode, Web Parts, 81, 92
Design view, 8
designers, Visual Studio 2005, 4
DesktopScaling property, DynamicImage control,

268
DetailsView control, 230–241

as composite data-bound control, 204
controlling displayed fields, 238
creating master/detail views with GridView

control, 239–241
editing current record, 236–237
events, 234
FormView control vs., 242
inserting new records, 237
object model, 230–235
properties, 231–234

device filtering, 36
device-specific master pages, 57
device-specific rendering, 36
dialog boxes, Web Parts, 98
DiffGram XML format, 160
directories. See folders
disk output cache, 375
diskCacheable attribute, 375
display modes

DetailsView control, 233, 234
Web Parts, 81, 83, 98

Dispose event, 27
<div> element, 38
domain attribute, 320
domains, application. See AppDomains
dotnetfx.exe program, 358
drag-and-drop functionality, Web Parts, 81
DropDownList control, 195, 201
dynamic compilation, 379–382. See also

compilation model
Code folder, 380
compile-on-demand feature, 15–17
Resources folder, 381
settings and lifecycle, 382
Themes folder, 381

dynamic connections, Web Parts, 100
Dynamic HTML, Web Parts and, 98
dynamic image generation. See DynamicImage

control
dynamic link library (dll) files, 367–369
dynamic master pages, 74
dynamic styles, Menu control, 206
dynamic theme loading, 126
dynamic WebPart controls, 96–98

catalog part components, 98
catalog zones, 97

DynamicImage control, 264–273
architecture, 265–267
custom image-generation services, 271–273
dynamically generated images, 270
Image control vs., 265, 268
images from databases, 269
images from files, 269
 element vs., 264, 265
as new control, 41
programming interface, 267–268

DynamicImageBase class, 265

E
EditCommandColumn class, 226
editing

current DetailsView control record, 236–237
FormView control data, 245–247
GridView control data, 225–229
Web Parts editor zones and edit mode, 94–95

EditItemTemplate property, FormView control,
242, 245

editor parts, Web Parts, 80, 95

defaultUrl attribute

Z01I620245.fm Page 408 Thursday, June 17, 2004 1:41 PM

409

editor zones, Web Parts, 94–96
edit mode, 94–95
editor part components, 95

EditorZone objects, Web Parts, 81
e-mail

messages, 12
PasswordRecovery control, 350

embedded Web server. See local Web server
empty data sources, GridView controls and, 215
EnableCaching property, SqlDataSource control,

191
enabled attribute, 116
EnablePagingAndSortingCallbacks property,

GridView control, 208, 224
EnablePersonalization attribute, 21
EnableTheming attribute, 125
EnableTheming property, 125
encryption. See also security

configuration files and XML, 139
connection string, 136
cookie, 317
PasswordRecovery control, 350

EndInvoke method, 146
EndRequest event, session state module, 294
enumerating

installed data providers, 142–143
XML nodes, 135

environment, runtime. See runtime environment
ErrorHandlerModule HTTP module, 372
errors

batch copy operation, 152
batch update, 145

Eval method
DataBinder class, 132–134
FormView control, 245
WebPart controls, 86
XPathBinder class, 135

Evaluate method, Parameter class, 190
event handling. See also events

default events, 11
master pages, 60, 64
Web Parts, 89

EventHandler class, 173
EventLog store, health monitoring, 396
events. See also event handling

batch update, 145

canceling Wizard control, 262
data source control, 173
declarative event binding, 11
default, 11
DetailsView control, 234
filtering page navigation with Wizard control,

261–262
FormView control, 247
GridView control, 213–214
GridView control postback, 208
health monitoring, 395
HTTP modules, 366
Login control, 345
LoginStatus control, 348
LoginView control, 348
Page class, 24–27
personalization, 121
script callbacks, 32
session state module, 292, 299
SqlDataSource control, 188
Wizard control, 256, 260

executable (exe) files, 367–369
ExecuteReader method, SqlCommand class, 147
ExecuteXmlReader method, SqlCommand class,

154
expiration

cache dependency, 302
SqlDataSource control cache policies, 191

expression builder objects, 138
Extensible Stylesheet Language Transformations

(XSLT), 187
extensions, resource file, 369

F
F5 key, 12
factory class, ADO.NET 2.0, 141
fields

DetailsView control displayed, 238
GridView control templated, 220

file dependencies, 301. See also cache
dependencies

file notification change functionality, 301
FileAuthorization HTTP module, 372
FileContent property, 42
FileName property, 42

FileName property

Z01I620245.fm Page 409 Thursday, June 17, 2004 1:41 PM

410

files. See also data; data stores; databases
configuration. See configuration files
DynamicImage control images from, 269
executable (exe) and dynamic link library (dll),

367–369
file dependencies, 301
master pages vs. include, 47
serialization. See serialization
site map, 274

FileSystemWatcher class, 301, 304
FileUpload control, 42
filtering

page navigation with Wizard control events,
261–262

SqlDataSource control, 178, 241
FinishButtonClick event, Wizard control, 261, 263
fit mode, DynamicImage control, 268
focus, input, 35
folders

ASP.NET 1.x Bin, 380
ASP.NET 2.0 applications and special, 13
compilation of multiple master page files in, 59
configuration files, 387
critical, and aspnet_filter.dll, 367
dynamic compilation, 380, 381
FileUpload control, 42
Forms authentication and resource protection,

316
root, 8
themes, 123
tracking changes in, for cache dependencies,

301
FormatString property, LoginName control, 345
formatting, HTML, 11
forms, master page, 70
Forms authentication, 316–326

ASP.NET 1.x cookie-based, 317
ASP.NET 2.0 cookieless, 318–320
control flow, 317
FormsAuthentication class, 320–326
Windows and Passport authentication vs., 315

<forms> section, configuration file, 317, 318
FormsAuthentication class, 320–326

methods, 321
properties, 321
setting up Forms authentication layer, 323–326

FormsAuthentication HTTP module, 372
FormView control, 241–247

as composite data-bound control, 204
DetailsView control vs., 234, 239
displaying data, 243–245
editing data, 245–247
members, 242
object model, 242–243
templates, 221, 234, 239, 242

frames, WebPart controls vs., 79
FrontPage Server Extensions (FPSE), 4
FTP protocol, 4, 5, 10

G
GAC (global assembly cache), 111
generic programming, ADO.NET and, 141
GenericWebPart controls, 84
GetBytes method, SqlDataReader class, 153
GetCallbackEventReference method, 34
GetChars method, SqlDataReader class, 153
GetDataItem method, Page class, 134
GetDataReader method, DataTable and DataSet

class, 158
GetDataSet method, DataSetDataSource control,

180
GetFactory method, DbProviderFactories class,

142
GetFactoryClasses method, DbProviderFactories

class, 143
GetHierarchicalView method,

IHierarchicalDataSource interface, 182
GetHistory method, Wizard control, 256
GetRawXml method, ConfigurationSection class,

390
GetRows method, SiteCounter class, 283
GetSessionIDModule method, 299
GetSessionStaticObjects method,

SessionStateUtility class, 297
GetUser method

Membership class, 331
MembershipProvider class, 334

GetWebConfiguration method, Configuration
class, 391

global assembly cache (GAC), 111
global.asax file, 296
Google search engine, 86, 88

files

Z01I620245.fm Page 410 Thursday, June 17, 2004 1:41 PM

411

Gridview control, 207–229
adaptive rendering, 216
binding SqlDataSource controls to, 169
as composite data-bound control, 204
configuring columns for, 216–219
creating master/detail views with DetailsView

control, 239–241
DataGrid control vs., 207
deleting displayed records, 228
displaying data using, 216–225
editing data using, 225–229
empty data sources, 215
events, 213–214
in-place editing and updates, 226–228
inserting new records, 229
object model, 208–214
Page object model, 32
paging data, 224
properties, 208–213
selecting records in, 239
simple data binding, 214
site counter data, 284
sorting data, 221–224
templated fields, 220

<group> element, user profile, 111

H
<head> element, 27–28, 72
header, Wizard control, 252
Header property, 27, 72
HeaderText property, Wizard control, 252
health monitoring API, 394–396

automated notification of problems, 396
customizable event-level analysis, 395

health monitoring event providers, 396
<healthMonitoring> section, configuration file,

393
Hello, World page, 9
helper classes, 18
hiding WebPart controls, 83, 96
hierarchical data source controls, 182–187

SiteMapDataSource control, 183–185
XmlDataSource control, 185–187

hierarchical data-bound controls, 205–207
binding site maps to, 277
Menu control, 206
TreeView control, 205–206

HierarchicalDataBoundControl class, 185, 196,
205

HierarchicalDataSourceControl class, 182
HierarchicalDataSourceView class, 182
hosting environment component, 362, 365
hosting models, 366. See also WebHost

application management system
HTML code

formatting and validation, 11
HTML 3.2 client target, 11
layout, 8
Web page, 378–379

HtmlForm controls, 125
HtmlGenericControl object, 74
HtmlHead control, 27–28, 72, 125
HTTP handlers. See also HTTP modules

ASP.NET 1.x image generation, 265
built-in runtime component, 369–371
CachedImageService.axd as, 266
configuration file section, 393
requests, 365
runtime components, 366
site counter, 281
user-defined, 271

HTTP listener, 361
HTTP modules. See also HTTP handlers

configuration file section, 393
Forms authentication, 317, 325
new runtime component, 372–373
requests, 365
role manager, 340
runtime components, 366
session state, 291–300

HTTP protocol, 3
HTTP requests, 357, 359, 365–366. See also

process models
http.sys driver, 361, 363
HttpApplication class events, 366
HttpContext objects, 108, 116, 118
HttpCookie class, 320
<httpHandlers> section, configuration file, 393
<httpModules> section, configuration file, 393
HttpRuntime class, 365
<httpRuntime> section, configuration file, 393
HttpRuntimeConfig class, 388
HttpRuntimeSection class, 390

HttpRuntimeSection class

Z01I620245.fm Page 411 Thursday, June 17, 2004 1:41 PM

412

HttpSessionState class, 292, 297
HttpWorkerRequest structure, 365
hyperlink columns, GridView control, 219
HyperLink control, 281
HyperLink mode, BulletedList control, 201

I
IAsyncResult objects, 147, 148, 149
ICallbackContainer interface, 208
ICallbackEventHandler interface, 32, 208
ID, session. See session IDs
IDataSource interface, 173–175

data source views, 173–175
members, 173

IDbConnection interface, 141
identification, anonymous, 325
identities, user. See user identities
Identity object, 346
IEnumerable interface, 165, 171, 175
IHierarchicalDataSource interface, 182, 205
IHttpAsyncHandler interface, 21
IHttpHandler interface, 20, 366
IHttpModule interface, 299, 366
IHttpSessionState interface, 294
IIS (Internet Information Services)

Forms authentication, 315
IIS 5.x process model, 360
IIS 6.0 process model, 361, 363
local Web Server vs., 12
Visual Studio .NET 2003 and, 4
Visual Studio 2005 and, 5

IListSource interface, 165
Image control, DynamicImage control vs., 265,

268
@Image directive, 369
image generation. See DynamicImage control
Image property, DynamicImage control, 266, 270
ImageBytes property, DynamicImage control, 42,

266, 269
ImageFile property, DynamicImage control, 42,

266, 269
<imageGeneration> section, configuration file,

394
image-generation services, DynamicImage

control and, 266, 271–273
ImageGenerator class, 271, 369

ImageGeneratorFactory class, 369
ImageGeneratorUrl property, DynamicImage

control, 42, 272
images

DynamicImage control, 41
HTTP handlers, 369, 371
themes, 123

Images folder, 123
ImageScaling class, 268
ImageUrl property, DynamicImage control, 268
 element, 41, 264, 265
@Implements directive, 32
importing compiled templates, 60
impressions, site counters and, 279
INamingContainer interface, 203
include files, master pages vs., 47
Indigo, 361, 363
inheritance, master pages and visual, 66–68
Inherits attribute, 52
Init event

master page, 65
overriding control skin properties with, 124
Page class, 25
user profiles, 121

Init method, IHttpModule interface, 299
InitComplete event, 25
initialization

custom session state module, 299
page, 25

Initialize method
FormsAuthentication class, 322
ProviderBase class, 332

InitializeAsUserControl method, 60
inline code, 9, 14, 16
in-place editing, GridView control, 226–228
in-place site precompilation, 383
InProc mode, session module, 292
input focus, 35
input step, Wizard control, 259–260
<input type=file> element, 42
Insert method, CacheDependency class, 301
INSERT statement, 149, 152
inserting

DetailsView control records, 237
GridView control records, 229

InsertItemTemplate property, FormView control,
242, 245

HttpSessionState class

Z01I620245.fm Page 412 Thursday, June 17, 2004 1:41 PM

413

InsertTemplate class, 221
installation, ASP.NET 2.0, 358–359
IntelliSense

Visual Studio .NET 2003, 5
Visual Studio 2005, 7

interfaces, Web Parts, 100
Internet Explorer 6.0, 11
Internet Information Services. See IIS (Internet

Information Services)
Internet Server Application Programming

Interface (ISAPI). See aspnet_isapi.dll ISAPI
extension; HTTP handlers; HTTP modules

intranet scenarios, Windows authentication and,
315

intrinsic objects, Page class properties as, 22
IPageHeader interface, 28
IPaginationContainer interface, 20
IPostBackContainer interface, 208
IPostBackDataHandler interface, 26
IPostBackEventHandler interface, 208, 230
IProcessHost interface, 365
ISAPI (Internet Server Application Programming

Interface). See aspnet_isapi.dll ISAPI
extension; HTTP handlers; HTTP modules

IsAuthenticated property, Identity object, 346
IsCrossPagePostBack property, 23
ISessionIDModule interface, 293, 298
ISessionSessionItemCollection interface, 297
ISiteMapProvider interface, 275
isolation mode, IIS 5.0, 360
IsPostBack property, 23
item dependencies, 301, 302
item templates, 9
item-based pagination, 31
ItemCommand event, DetailsView control, 234
ITemplate class, 59
Items collection, 201, 297
ItemTemplate property, FormView control, 242
IWebPart interface, 84
IXmlSerializable interface, 161
IXPathNavigable interface, 135

J-K
Jet 4 OLE DB provider, 179
keys, cache, 191

L
Language attribute, 52, 56, 58, 64
languages, programming, 380
large data types, SQL Server provider unified

model for, 153
layouts

master page, 49, 68–70
Web Parts zone object, 89–93
WebPart control, 79

lifecycle
dynamic compilation, 382
Page class, 25–27

LinkButton mode, BulletedList control, 201
list controls, data-bound, 195, 199–202
ListBox control, 195, 201
ListControl class, 201
listener, HTTP, 361
Load event

data binding, 138
master page, 65, 72
overriding control skin properties using, 124
Page class, 26
user profile property values, 119

Load method, 159
LoadComplete event, 26
LoadControlState method, 37, 290
LoadOption enumeration, 159
local Web server

features of, 12
Visual Studio 2005 and, 5

LogFile store, health monitoring, 396
Login control, 341–345

events, 345
programming interface, 343
setting up, 341

login pages
Forms authentication, 316, 323
Login control as, 341. See also Login control

LoginName control, 91, 345, 346, 348
LoginStatus control, 346–348

LoginView control, 348
programming interface, 347
setting up, 346

LoginView control, 348–350
login templates, 349
programming interface, 348
role-based templates, 349

LoginView control

Z01I620245.fm Page 413 Thursday, June 17, 2004 1:41 PM

414

M
machine.config file. See also configuration files

ASP.NET 2.0 installation, 359
health monitoring events, 395
HTTP modules, 372
master pages, 58
personalization providers, 113
process model settings, 361
relationship of web.config file to, 387. See also

web.config file
snap-in component, 370

Macromedia ColdFusion, 167–169
<maildefinition> element, 351
MailEvent store, health monitoring, 396
Master attribute, 57
@Master directive, 50, 52–54
.master file extension, 50
master pages, 45–76

advantages of, 48–50
attaching content pages to, 57
changing, 74
Content controls, 55
content pages and, 50, 70–72. See also content

pages
ContentPlaceHolder controls, 54
creating, programmatically, 52
device-specific, 57
event handling, 60, 64
exposing properties, 73–74
importing compiled templates, 60
include files vs., 47
invoking properties on, 74
key characteristics, 50
@Master directive, 52–54
MasterPage class, 58
merging content pages and, 58–60
nested, 60–65
page layout, 68–70
programming, from content pages, 72–75
realistic example, 66–75
simple example, 51
specifying default content, 55
user controls vs., 46–47
visual inheritance, 66–68
Web sites, 9
writing, 51–55
writing content pages for, 55–58

Master property, Page class, 73, 74
master/detail views, DetailsView and GridView

control, 239–241
MasterPage class, 52, 58, 74
MasterPageFile attribute, 21, 57, 63
MasterPageFile property, Page class, 74
Membership class, 326–331

managing users and passwords, 330–331
programming interface, 327–328
setting up membership support, 328

membership management, 326–336. See also role
management

managing users and passwords, 330–331
Membership class, 326–331
membership providers, 331–336
setting up membership support, 328

membership providers, 331–336
ASP.NET 2.0 provider model, 112
built-in, 328, 335
configuring, 335
MembershipProvider class, 332–334
personalization providers, 115
Provider property, 327
ProviderBase class, 332

<membership> section, configuration file, 335,
394

MembershipProvider class, 332–334
MembershipUser class, 331, 334
Menu control

base class, 185
binding site map to, 277
as hierarchical data-bound control, 206

MenuItem class, 206
MenuItems collection, 206
menus, Web Parts, 91, 98
messages

email, 12
Web service, 161
WebHost. See WebHost application managment

system
<meta> element, 28
Metadata property, 28
methods

ADO.NET factory class, 141
asynchronous delegates, 146
Configuration class, 388
DataBoundControl class, 199

machine.config file

Z01I620245.fm Page 414 Thursday, June 17, 2004 1:41 PM

415

DataSourceView class, 174
FormsAuthentication class, 320, 321
IDataSource interface, 173
ISessionIDModule interface, 298
master page, 72
Membership class, 328
MembershipProvider class, 332
new CacheDependency class, 303
Page class, 23
RoleProvider class, 340
Roles class, 338
script-related, 22
SessionStateStoreProviderBase class, 295
SiteCounter class, 283
Wizard control, 256

Microsoft Active Server Pages (ASP), 47, 195
Microsoft ASP.NET. See ASP.NET 1.x; ASP.NET 2.0
Microsoft FrontPage Server Extensions (FPSE), 4
Microsoft Internet Explorer 6.0, 11
Microsoft Internet Information Services. See IIS

(Internet Information Services)
Microsoft Jet 4 OLE DB provider, 179
Microsoft Visual Studio 2005. See Visual Studio

2005
migration, anonymous user, 121
mobile devices

cookieless attribute, 319
DynamicImage control scaling for, 268
HTML 3.2 client target, 11
mobile controls, 30, 35

<mobile:> prefix, 36
MobileScaling property, DynamicImage control,

268
MoveTo method, Wizard control, 256
MsNbcWeather Web Part, 90
Multiple Active Result Set (MARS) feature, SQL

Server provider, 156
MultipleActiveResultSets attribute, 157
MultiView control, 39, 258
My MSN Web site, 78, 80
MyFavorites Web Part, 90

N
Name property, ProviderBase class, 332
names

browser prefixes, 58

class, 17
composite control child control, 203
cookies, 317
data source, 167
data source control, 169
DataSourceView objects as named views, 173
folder, 13
master page, 50, 52, 74
membership provider, 332
named control skins, 125
named data source control parameters, 191
provider factory, 142
resource files, 381
SQL command parameters, 227
stored connection string, 137
themes, 107
user profile, 108
usernames, 326, 330

navigation, Web site. See content navigation, Web
site

navigation, Wizard control, 252, 261–263
navigation bar, Wizard control, 253
NavigationButtonStyle objects, 258
NavigationPath controls, 184
nested master pages, 60–65

building example, 61–64
designing, 61

.NET data provider enhancements, 136–145
batch operations, 144–145
connection string storage, 136–140
provider factory model, 140–143
SQL Server provider, 145–157

.NET Framework
ADO.NET 2.0 and, 131
asynchronous pattern, 146–147
data providers, 136–145
Page class, 19
side-by-side execution, 358
version numbers, 358

Netscape 4.0 and Netscape 7.0, 11
NETWORKSERVICE account, 12, 361, 367, 391
neutral resource files, 381
NextButtonClick event, Wizard control, 261–262
nodes, site map, 274, 275–277
nonblocking, asynchronous commands and, 147

nonblocking, asynchronous commands and

Z01I620245.fm Page 415 Thursday, June 17, 2004 1:41 PM

416

notifications
automated, of problems, 396
cache dependency change, 304
enabling SQL Server databases for cache

dependency, 309–311
SQL Server 2005 command, 312
SQL Server provider and SQL, 155

NotifyAfter property, SqlBulkCopy class, 152
NotifyDependencyChanged method,

CacheDependency class, 304, 308
nvarchar type, 153

O
ObjectDataSource controls, 176, 181–182
[Obsolete] attribute, 22
ODBC data provider, 176
ODBC Data Source Name (DSN), 167
 element, 41
OLE DB data provider, 157, 176
OLE DB univeral data access strategy, 140
onclick attribute, 12
Opera 7.0, 11
operations, data. See data operations
Oracle provider, 157
@OutputCache directive, 374–375
OutputCache HTTP module, 372
<outputCacheSettings> section, configuration file,

375
overflow CSS style, 38

P
Page class, 19–35. See also Web pages

cross-page postbacks, 28–29
Eval method, 134
GetDataItem method, 134
Header property, 72
HtmlHead control, 27–28
lifecycle, 25–27
Master property, 73, 74
MasterPageFile property, 74
methods, 23
.NET Framework and, 19
new events, 24
new features, 20–27
@Page directive, 20–21. See also @Page

directive

pagination, 30–31
programming, 27–31
properties, 22–23
scripting object model, 31–35

@Page directive
CompileWith attribute, 16
@Master directive, 53
master pages, 48, 50, 57
Page class, 20, 20–21. See also Page class
Src attribute, 16
themes, 124

page layout, master page, 49, 68–70
page-level binding, master page, 57
page output caching, 373–377

disk output cache, 375
@OutputCache directive, 374–375
post-cache substitution and partial, 376
SqlDependency attribute, 375

page view tracking, 282
PageCatalogPart controls, 98
<pageCounters> section, configuration file, 282
PageCountersModule HTTP module, 373
PageHandlerFactory class, 366
PageIndex property, DetailsView control, 236
PageIndexChanging event, DetailsView control,

235
Page_Init event

master page, 65
overriding control skin properties using, 124
Page class, 25
user profiles, 121

Page_Load event
data binding, 138
master page, 65, 72
overriding control skin properties using, 124
Page class, 26
user profile property values, 119

Page_PreInit event
master page, 75
Page class, 25
themes, 126
user profiles, 121

Page_PreLoad event, 26
pager bar

DetailsView control, 236
GridView control, 224, 229

Pager control, 20, 30

notifications

Z01I620245.fm Page 416 Thursday, June 17, 2004 1:41 PM

417

PagerSettings objects, 211
PagerTemplate property, GridView control, 229
pages. See Web pages
<pages> element, 57
<pages> section, configuration file, 393
pagination

DetailsView control, 236
GridView control, 224
Page object model, 30–31

Panel class, WebPart controls and, 79, 84
Panel control, 38
Parameter class, 188
ParameterCollection class, 188
parameters

aspnet_compiler.exe tool, 384
data source control, 188–191
SqlDataSource control, 178

Parameters collection, DynamicImage control,
272

partial classes, 16
Passport authentication, 315
PassportAuthentication HTTP module, 373
PasswordRecovery control, 350–351

configuring membership environment, 350
retrieving passwords, 351

passwords. See also login pages
Access database, 330
managing users, 330–331
Membership class methods, 331
PasswordRecovery control, 350–351
strong, 18–19

PATH_INFO server variable, 318
performance

asynchronous commands, 146
data source control caching, 191–193
DynamicImage control, 269
health monitoring API, 394–396
master pages, 46
Multiple Active Result Sets feature, 156
nested master pages, 61

performance counters, 395
PerformDataBinding method,

CompositeDataBoundControl class, 203
permissions, roles and, 336. See also role

management; security
persistence. See configuration files; data stores;

files; serialization

personalization
data stores, 96
enabling, 93
Page class, 21
Personalization API, 77, 107–108
providers, 112–116
storing settings, 91
themes. See themes
user profiles. See user profiles

Personalization API, 77, 107–108
Personalization HTTP module, 373
personalization providers, 112–116

Access, 114
access and data storage layers, 112
ASP.NET 2.0 provider model, 112
configuring, 113
custom, 115
SQL Server, 115

PersonalizationProvider attribute, 21
Personalize event, 121
pixels, DynamicImage control images and, 268
placeholders, master page, 49
polling, asynchronous commands and, 148
pop-up and pop-under ads, 200
portals, Web Parts and, 77, 90
postbacks

cross-page, 23, 28–29
data and events, 26
script callbacks vs., 31. See also callbacks

PostBackUrl property, 28
post-cache substitution, 376
PostedFile property, 42
precompilation, site. See site precompilation
Precompile.axd HTTP handler, 371, 383
PreInit event

master page, 75
Page class, 25
themes, 126
user profiles, 121

PreLoad event, 26
PreRender event, 21, 26
PreRenderComplete event, 21, 26
PreviousButtonClick event, Wizard control, 261
__PREVIOUSPAGE hidden field, 29
PreviousPage property, 23, 29
process host component, 362, 365
process manager, WebHost, 363

process manager, WebHost,

Z01I620245.fm Page 417 Thursday, June 17, 2004 1:41 PM

418

process models
configuration files, 387
IIS 5.x, 360
IIS 6.0, 361, 363

process protocol handlers, 364
<processModel> section, configuration file, 361,

390
ProcessRequest method, 25, 366
Profile property, HttpContext object, 108, 116,

118
<profile> section, configuration file, 108, 111,

116, 394
ProfileModule module, 121
ProfileProvider class, 116
profiles, health monitoring event, 396
profiles, user. See user profiles
profiling batch calls, 144
programming languages, 380
Programming Microsoft ASP.NET, 20
projects

Visual Studio .NET 2003, 4–5, 14
Visual Studio 2005, 8

properties
accessing personalization, 118–121
Configuration class, 389
control skins and control, 124
DataBoundControl class, 198
DataSourceView class, 174
DetailsView control, 231–234
DynamicImage control, 265, 267–268
exposing master page, 73–74
FormsAuthentication class, 321
FormView control, 242
GridView control, 208–213
GridView control column, 218
grouping user profile, 111
invoking master page, 74
Login control, 343–344
LoginStatus control, 347
LoginView control, 348
master page, 72
Membership class, 327
MembershipProvider class, 333
Page class, 22–23
protected MasterPage class, 59
Roles class, 339
site counter, 279–281

SiteMap object, 276
SiteMapDataSource class, 185
SiteMapPath control, 279
SqlBulkCopy class, 150
SqlDataSource control, 177–179
user profile, 108. See also user profiles
Web Parts, 81, 92, 96
Web Parts zone object, 88–89
WebPart control, 83–85
WebPartVerb class, 89
Wizard control, 254–256

<properties> section, configuration file, 108
<protectedData> section, configuration file, 139
protection providers, 139
protocol handlers, 362, 364, 365
provider factory model, .NET data provider,

140–143
ADO.NET programming model, 140
enumerating installed data providers, 142–143
instantiating providers programmatically, 141

Provider property, Membership class, 327
provider WebPart controls, 99, 101–102
ProviderBase class, 332
ProviderConnectionPointID property, Web Parts,

100
ProviderID property, Web Parts, 100
ProviderName attribute, 138
ProviderName property, SqlDataSource control,

177
Providers collection, Membership class, 328, 334
providers. See data providers
<providers> section, configuration file, 113, 139,

335, 340
public members, master page, 72

Q
queries, XPath, 135
queues, notifications and, 155

R
RadioButtonList control, 201
RaiseCallbackEvent method, 32
RaisePostBackEvent method, 208
reading configuration settings, 390
ReadXml method, DataSet object, 160, 180

process models

Z01I620245.fm Page 418 Thursday, June 17, 2004 1:41 PM

419

RedirectFromLoginPage method,
FormsAuthentication class, 320, 324

RedirectToLoginPage method,
FormsAuthentication class, 322

@Register directive, 104
RegisterRequiresControlState method, 37
ReleaseRequestState event, session state module,

294, 300
remapping, application, 358
RemotingFormat property, DataTable and DataSet

class, 162
Render method, 27
RenderContents method, WebPart control, 102
RenderImage method, ImageGenerator class, 272
rendering, adaptive. See adaptive rendering
Repeater control

binding SqlDataSource controls to, 169
data-bound controls, 196
WebPart controls, 86

requests, HTTP, 357, 359, 365–366. See also
process models

ResetPassword method, Membership class, 331
resources

dynamic compilation and Resources folder, 381
Forms authentication and types of, 316
HTTP handlers and types of, 369
.master file extension, 50

Resources folder, 13, 381
resultsets, SQL Server provider and multiple

active, 156
ReturnUrl variable, 317, 320, 324
rich controls, 251–285

as application services, 251
DynamicImage control, 264–273
SiteMapPath control, 278
Web site functionality, 273–284
Wizard control, 251–263

role management, 336–340. See also membership
management

authorization, 336
role management API, 336–338
role providers, 340
Roles class, 338–339

role management API, 336–338
<roleManager> section, configuration file, 339,

340, 394
role providers, 112, 115, 340

role tickets, 339
RoleManager HTTP module, 373
RoleProvider class, 340
RoleProvider property, 350
Roles class, 338–339
root directory, 8
RowCommand, RowCreated, and RowDataBound

events, GridView control, 214
RowCount property, RowUpdatedEventArgs

class, 145
RowDeleting event, GridView control, 228
RowFilter property, DataView class, 162
rows, selecting distinct, 163
RowUpdated events, 145, 227
RowUpdatedEventArgs class, 145
RowUpdating events, 145, 227
runat attribute, 27, 59, 72, 357
runtime components, 366–373

built-in HTTP handlers, 369–371
HTTP handlers, HTTP modules, and, 366
new HTTP modules, 372–373
tools and executables, 367–369

runtime environment, 357–385
compilation model, 379–384
IIS 5.x process model, 360
IIS 6.0 process model, 361
installing ASP.NET 2.0, 358–359
page output caching, 373–377
runtime components, 366–373
Web pages, 377–379
WebHost application management system,

362–366

S
satellite assemblies, 381
Save method, 181
SaveAs method, 42
SaveControlState method, 37
SaveSessionID method, ISessionIDModule

interface, 300
saving DataSetDataSource control updates, 181
scalar properties, user profiles and, 108
scaling properties, DynamicImage control, 268
Schema property, DataSetDataSource control, 180
SchemaFile property, DataSetDataSource control,

180

SchemaFile property, DataSetDataSource control

Z01I620245.fm Page 419 Thursday, June 17, 2004 1:41 PM

420

schemas, XML, 160. See also XML
script callbacks, 31–34
script code HTTP handler, 371
script maps, aspnet_regiis.exe tool and, 368
scripting object model, 31–35

script callbacks, 31–34
setting input focus, 35

script-related methods, 22
scrollbars, Panel control, 38
search engines, WebPart controls and, 86, 88
SearchEngine class, 86
sections, configuration file, 392–394. See also

configuration files
changed, 392
classes for, 388–390
new, 393–394

Secure Sockets Layer (SSL), 317
security, 315–354

AccessDataSource control updates, 179
anonymous identification, 325
ASPNET account, 360, 367, 391
authentication types, 315
client-side state management, 287
encryption. See encryption
Forms authentication, 316–326
local Web server context, 12
membership management, 326–336
NETWORKSERVICE account, 361, 367, 391
protecting configuration data, 139–140
role management, 336–340
security-related controls, 341–352

Security Accounts Manager (SAM) database, 315
Security Setup Wizard, 93
security-related controls, 341–352

ChangePassword control, 351
CreateUserWizard control, 352
Login control, 341–345
LoginName control, 345
LoginStatus control, 346–348
LoginView control, 348–350
PasswordRecovery control, 350–351

Select method
DataSourceView class, 175
XPathBinder class, 135

SelectedIndex property
GridView control, 239
ListControl class, 202

SelectedIndexChanged event
GridView control, 239
ListControl class, 202

SelectedItem property, ListControl class, 202
SelectedValue property, ListControl class, 202
serialization

control state, 38, 289
user profile, 110
XML. See XML serialization

SerializationFormat enumeration, 162
serializeAs attribute, 110
Server Code view, 9, 11
server controls, 35–43. See also controls

adaptive rendering feature, 36
BulletedList control, 41
control state, 37
DynamicImage control, 41
FileUpload control, 42
MultiView control, 39
new core, 38–43
new features, 36–38
Panel control, 38
standard, vs. mobile, 35
user controls as. See user controls
Wizard control, 39

server-side state management, 287
Service Control Manager, 368
services, application, 251. See also rich controls
session IDs

cookies, 292
generating custom, 298–299

Session object
Cache object vs., 300
state management, 287

Session property, 292
session state management. See also session state

modules
aspnet_state.exe, 367
configuration file section, 393

session state modules, 291–300
acquiring session state, 293, 299
customizing, 294–299
default, 292–294
extensibility model, 291
generating custom session ID, 298–299
initialization of, 299
releasing session state, 294, 300

schemas, XML

Z01I620245.fm Page 420 Thursday, June 17, 2004 1:41 PM

421

replacing session data dictionary, 297
replacing session data store, 296
SessionStateStoreProviderBase class and session

data store, 294–296
terminating requests, 294
writing custom, 299–300

SessionID HTTP module, 373
SessionIDModule module, 298
Session_OnEnd event, 294
Session_OnStart event, 294
SessionState HTTP module, 373
<sessionState> section, configuration file, 296,

393
SessionStateModule module, 366
SessionStateStoreData class, 297
SessionStateStoreProviderBase class, 294–296
SessionStateUtility class, 297, 299
SetActiveView method, 39
SetFocus method, 35
Shared attribute, 375
shared source components. See source

components, shared
ShareMode property, AccessDataSource control,

180
sidebar, Wizard control, 253, 261
SidebarButtonClick event, Wizard control, 261
<SideBarTemplate> element, 258
side-by-side backward compatibility, 358
SignOut method, FormsAuthentication class, 320
simple data-bound controls, 199–202
Simple Mail Transfer Protocol (SMTP), 12
site counter providers, 280, 284
site counters, 279–284

accessing, programmatically, 282–284
built-in, 279
controls supporting, 279–281
HTTP handlers, 371
impressions and click-throughs, 279
provider objects, 284
tracking page views, 282

site map providers, 275
site navigation. See content navigation, Web site
site precompilation, 382–384

aspnet_compiler.exe tool, 369
for deployment, 383
HTTP handlers, 371
in-place, 383

SiteCounters class, 282–284
<siteCounters> section, configuration file, 280,

394
SiteMap objects, 273–279

accessing, 275–277
binding, to controls, 277
site structure, 274
SiteMapPath control, 278
transforming site map files into, 274

<siteMap> section, configuration file, 394
SiteMapDataSource controls, 183–185
siteMapFile attribute, 275
<siteMapNode> elements, 275
SiteMapNode objects, 275–277
SiteMapPath control, 278
SiteMapProvider and SiteMapViewType

properties, SiteMapDataSource control, 185
SkinID property, 125
skins, control. See control skins
sliding expiration, cache, 192, 302
SmokeAndGlass built-in theme, 122, 124
<smtpMail> section, configuration file, 351, 394
SOAP protocol, 361
SOAP-TCP listener adapter, 363
Sort property, DataView class, 162
SortExpression and SortDirection properties,

GridView control, 208, 222
sorting, GridView control data, 221–224
Sorting and Sorted events, GridView control, 222
source code, Web page HTML, 378–379. See also

HTML code
source components, shared, 17–19

building sample shared class, 18–19
Code subdirectory, 18

Source view, 9
sources, data. See data sources
sources, DynamicImage control image, 265
 element, 74
SQL (Structured Query Language)

data sources, 136. See also SqlDataSource
controls

notifications and dependencies, 155
SQL Server

ASP.NET 1.x storage modes, 292
aspnet_regsql.exe tool, 368
BulletedList control, 201

SQL Server

Z01I620245.fm Page 421 Thursday, June 17, 2004 1:41 PM

422

SQL Server, continued
cache dependency and data source controls,

192. See also SqlCacheDependency class
membership provider, 335
page output cache dependency, 375
personalization data store, 93
personalization provider, 113, 115
provider enhancements. See SQL Server

provider enhancements
role provider, 340
site counter provider, 284
SqlDataSource controls. See SqlDataSource

controls
SQL Server Profiler tool, 144
SQL Server provider enhancements, 145–157

asynchronous commands, 146–149
bulk copy operations, 149–153
Multiple Active Result Sets feature, 156
SQL notifications and dependencies, 155
SQL Server 2005-specific, 153–157
support for CLR types, 154
support for XML as native type, 154
unified model for large data types, 153

SqlBulkCopy class, 150–151
SqlCacheDependency class, 309–312

creating objects, 311
enabling databases to support notifications,

309–311
implementing dependencies, 312
page output caching, 375
SQL Server 2005 dependencies, 312
SqlDataSource controls, 191, 192

SqlCacheDependencyAdmin class, 310
SqlClientFactory class, 142
SqlCommand class, 147, 312
SqlDataReader class

bulk copy operations, 151
large data types, 153
MARS feature, 156

SqlDataSource controls, 187–193
AccessDataSource controls as, 179
binding, to controls, 169
caching behavior, 191–193
connecting to, 138, 187
DataSourceView objects, 175
DetailsView control, 241
events, 188

parameters, 188–191
properties, 176–179

SqlDataSourceMode enumeration, 177
SqlDependency attribute, 375
SqlDependency class, 155
SqlEvent store, health monitoring, 396
SqlException exceptions, 152
SqlMembershipProvider provider, 335
SqlNotificationRequest class, 155
SqlRoleProvider provider, 340
SqlRowsCopied event, 153
SqlRowsCopiedEventArgs class, 153
SqlServer mode, session module, 292
SqlXmlReader class, 155
Src attribute, 15, 16
SSL (Secure Sockets Layer), 317
state management, 287–313

aspnet_state.exe and session, 367
authentication state, 346
cache dependencies, 300–312
client-side vs. server-side, 287
control state, 288–291. See also control state
DetailsView control, 233
extending session state modules, 291–300
GridView control, 211
Page class properties and page, 22
view state. See view state

StateBag class, 288, 290
StateServer mode, session module, 292
static connections, Web Parts, 100
static styles, Menu control, 206
statistics, Web site. See site counters
steps, Wizard control, 252, 258–260
StepType property, WizardStep class, 258
storage modes, session module, 292
strong password shared source component,

18–19
structure, Web site. See SiteMap objects
style properties

DetailsView control, 232
GridView control, 210
Menu control, 206
SiteMapPath control, 279
Web Parts, 81
Web Parts zone object, 88–89
Wizard control, 254

styles, theme. See themes

SQL Server Profiler tool

Z01I620245.fm Page 422 Thursday, June 17, 2004 1:41 PM

423

stylesheets
linking, 28
Themes folder, 381

substitution, post-cache, 376
supertemplates. See master pages
synchronous operations, database, 146. See also

asynchronous commands, SQL Server
provider

syntax coloring, 9
System.Data namespace, 157
System.Data.OleDb namespace, 177
System.Data.SqlClient namespace, 177
System.Web.Configuration namespace, 388
System.Web.UI.HtmlControls namespace, 27
System.Web.UI.WebControls namespace, 54, 55,

252

T
tables. See also DataTable objects

bulk copying data between SQL Server,
151–152

shared provider, 115
tabular data source controls, 175–182

AccessDataSource control, 179–180
DataSetDataSource control, 180
ObjectDataSource control, 181–182
SqlDataSource control, 176–179, 187–193

Template class, 54
TemplateControl class, 20
TemplateField class, 220
templates

code separation, 16
DetailsView control properties, 234
FormView control properties, 242
GridView control pager bar, 229
GridView control properties, 211
GridView control templated fields, 220
importing compiled, 60
Login control, 344
LoginView control, 348–350
supertemplates. See master pages
Visual Studio 2005 item, 9
Visual Studio 2005 project, 8
Web site, 8–10
Wizard control, 252, 254, 258

Temporary ASP.NET Files folder, 18

testing
Web pages, 12
Web service-based cache dependency, 308

Theme attribute, 21, 124
Theme class, 381
Theme property, 126
themes, 122–127

associating, with pages and controls, 124–126
cascading style sheets (CSS) vs., 122
control skins, 124–127
creating, 123
dynamically loading, 126
Page class, 21
personalization, 107
SmokeAndGlass built-in, 124
structure of, 123
Themes folder, 381
Windows XP, 107, 122

Themes folder, 13, 123, 381
thread synchronization, 147
tickets

authentication, 317
role, 339

Timeout property, SessionStateStoreData class,
297

timestamps
cache dependencies, 301
SQL Server, 192

Title property, 28
tools, runtime components and, 367–369
ToTable method, DataView class, 163
trace viewer tool, 369, 371
Trace.axd HTTP handler, 371
tracking, bulk copy, 152
tracking, Web site. See site counters
TrackViewState method, 25
TransformArgumentList property, XmlDataSource

control, 187
transformations, XSLT, 187
TransformFile property, XmlDataSource control,

187
transition events, Wizard control, 260
TreeNodeBinding objects, 205
TreeView control

binding site map to, 277
as hierarchical data-bound control, 205–206
Page class scripting object model, 32

TreeView control

Z01I620245.fm Page 423 Thursday, June 17, 2004 1:41 PM

424

TreeView control, continued
SiteMapDataSource controls, 184
XmlDataSource controls, 185

triggers, SqlCacheDependency class, 312
Triple-DES (3DES) encryption algorithm, 317
two-way data binding, 134, 207
type attribute, 109
TypeName property, ObjectDataSource control,

176

U
 element, 41
uninstalling ASP.NET, 359
Unload event, 27
Update method, Configuration class, 391
UpdateBatchSize property, DbDataAdapter class,

144
UpdateRawXml method, ConfigurationSection

class, 390
updates

batch, 144–145
DetailsView control, 236
GridView control, 226–228

uploads, FileUpload control and, 42
UrlAuthorization HTTP module, 373
URLs

authentication tickets in, 318
cookieless sessions, 298
DynamicImage controls, 268
Forms authentication return, 317, 320, 324
HTTP handlers, 369
site navigation, 273

user controls. See also controls
master pages as, 52, 60
master pages vs., 46–47, 50
WebPart controls as, 82, 83, 86, 96

user identities
anonymous identification, 117
migrating anonymous, 121
personalization provider access layer, 112

user interface components. See master pages
User object, 326, 338, 339, 345
user profiles, 108–122

accessing personalization properties, 118–121
adding scalar properties, 108
anonymous personalization, 117

class representation, 109
collection types in, 110
creating, 108–112
creating personalization databases, 116
custom types in, 111
enabling and disabling personalization support,

116
grouping properties in, 111
page interactions with, 116–122
personalization, 107
personalization events, 121
personalization providers, 112–116

UserControl class, 52, 58, 60
user-defined HTTP handlers, 271
user-defined types, SQL Server 2005, 154
UserIsOnlineTimeWindow property, Membership

class, 328
usernames. See also login pages

Access database, 330
retrieving, 326

users
anonymous. See anonymous users
identities. See user identities
managing passwords, 330–331. See also

passwords
names. See usernames
profiles. See user profiles
roles, 336

V
ValidateUser method, Membership class, 326,

330, 352
validation

data, 260, 317
HTML, 11

validator controls, WizardStep object, 260
varchar and varbinary types, 153
verbs, Web Parts, 89, 91, 92
version numbers, .NET Framework, 358
View objects, 39, 258
view state

control state vs., 26, 37, 288–289
cross-page posting, 29

views
data source controls as, 172
DataView class, 162–163

triggers, SqlCacheDependency class

Z01I620245.fm Page 424 Thursday, June 17, 2004 1:41 PM

425

hierarchical data source controls, 182
MultiView control, 39
page view tracking, 282
site map, 185
state. See view state
Visual Studio 2005, 8
Wizard control, 252
WizardStep objects as View objects, 258

ViewState property, Control class, 288, 290
virtual directories, 5
visual attributes, themes and. See themes
visual inheritance, master pages and, 66–68
Visual Studio 2005, 4–7

ASP.NET 2.0, 3
ASP.NET Configuration applet, 93
ASP.NET Web Application Administration tool,

116
creating sample Web site, 8–14
creating sample Web site. See also Web sites
editing master pages in, 66
highlights of, 5–7
Visual Studio .NET 2003 vs., 4–5

W
w3wp.exe worker process, 12, 361, 367
WaitHandle objects, 147
WeatherCacheDependency class, 306
Web Administration Service (WAS), 361
Web Administration Tool

health monitoring API, 394
HTTP handler, 371
membership management, 329
role management, 336
site counter providers, 280, 284

Web applications, Visual Studio .NET 2003 and, 4.
See also applications

Web browsers
adaptive rendering. See adaptive rendering
device-specific master pages, 57
HTML validation, 11

Web Forms, 10, 11
Web Matrix, 4, 5
Web pages, 377–379. See also Page class

associating themes with, 123–126
configuration file section, 393
content. See content pages
HTML source code for, 378–379

HTTP script handler, 371
login. See login pages
master. See master pages
structure of, and sample, 377
user profiles, 116–122
Web Forms, 10, 11

Web Parts framework, 77–106
BookFinder sample WebPart control, 85–93
components, 79–85
connecting Web parts, 99–104
connection model, 99–101
control skins, 123
editing and listing Web parts, 94–98
Personalization API, 77
WebPart class, 83–85. See also WebPart controls
WebPart control content, 78
WebPart control layout, 79
WebPartManager class, 83
zone objects, 81–83

Web servers
Cassini, 366
local, 5, 12

Web service-based cache dependency, 305–309
designing class for, 306
implementing, 306
testing, 308

Web services
cache dependency, 305–309
IIS 6.0 process model, 361
messages, 161

Web sites, 8–14
adding code to Web Forms, 11
Copy Web site feature, 6
creating, using Visual Studio.NET templates,

8–10
designing Web Forms, 10
health monitoring, 394–396
local Web server, 12
precompilation, 382–384
rich controls for, 273–284
search engines, 88
site counters, 279–284
site map data source controls, 183–185
site maps and content navigation, 273–279
special folders, 13
Visual Studio 2005 feaures and, 5
Web Parts and portal, 77, 90

Web sites

Z01I620245.fm Page 425 Thursday, June 17, 2004 1:41 PM

426

Web wizards, 251. See also Wizard control
WebAdmin.axd HTTP handler, 371
web.config file. See also configuration files

Code folder, 380
cookies, 317
dynamic compilation settings, 382
encryption, 139
Forms authentication settings, 316, 323
local Web server, 12
master page application-level binding, 57
membership provider settings, 332
page themes, 125
page view tracking, 282
PasswordRecovery control settings, 350
relationship of machine.config file to, 387. See

also machine.config file
role management settings, 336
user profiles, 116

WebControl class, 84, 197, 202
WebForm_DoCallback function, 32
WebForm_DoPostBackWithOptions function, 28
WebHost application management system,

362–366
ASP.NET requests, 365–366
components, 362–363
process manager, 363
protocol handlers, 364

WebPart controls
adding, dynamically, 96–98
BookFinder sample, 85–93
changing Web zone layouts, 89–93
connecting, 99–104
connecting provider and consumer, 104
connection model, 99–101
consumer, 103
content, 78, 80
creating, 85–88
creating editor zones, 94–96
enabling connectivity, 100
layout, 79
persisting layout changes, 93
properties, 83–85
provider, 101–102
styling, with Web zone properties, 88–89

WebPartManager controls, 79, 83, 100

WebPartPageMenu controls, 91
WebParts property, WebPartZone object, 81
WebPartVerb objects, 89
WebPartZone objects, 81
WebResource.axd HTTP handler, 371
<webSiteAdministrationTool> section,

configuration file, 394
web.sitemap file, 183, 274, 275
weight-based pagination, 31
Windows authentication, 315
Windows Explorer, 7
Windows Forms visual inheritance, 66–68
Windows Management Instrumentation (WMI),

395
Windows Server 2003, 367
Windows XP themes, 107, 122
WindowsAuthentication HTTP module, 373
Wizard control, 251–263

adding Wizard steps to, 258–260
canceling events, 262
finalizing wizards, 263
fitering page navigation with events, 261–262
navigation operations, 261–263
as new core control, 39
overview of, 252–258
programming interface, 255–258
structure, 252
styles and templates, 254–255

WizardNavigationEventArgs structure, 261
WizardNavigationEventHandler delegate, 261
wizards, 251. See also Wizard control
WizardStep objects, 258–260

creating input step, 259–260
StepType property, 258
Wizard control, 256

WizardSteps collection, 258
<wizardsteps> element, 252
WmiEvent store, health monitoring, 396
worker process memory, 292
Write method, SiteCounters class, 283
WriteToServer method, SqlBulkCopy class, 150
WriteXML method, DataSet class, 160, 180
writing configuration settings, 391
WSDL files, dynamic compilation and, 381

Web wizards

Z01I620245.fm Page 426 Thursday, June 17, 2004 1:41 PM

427

X
XHTML 1.0 Transitional schema, 11
XML

binding data to Web parts, 90
configuration file section classes, 390
configuration files and encryption, 139
DataSetDataSource controls, 176, 180
schemas, 160
serialization, 159–160
site map files, 274
SQL Server provider support for, 154
TreeView control, 205
XmlDataSource controls, 185–187
XPathBinder class, 135–136

XML serialization, 159–162
DataSet ReadXml method, 160
DataSet WriteXml method, 160
RemotingFormat property, 162
user profiles, 110
XMLSerializer class, 161

XmlDataSource controls, 185–187
XmlDocument class, 185

XmlNode class, 185
XmlNode objects, 135
XmlReadMode enumeration, 160
XmlSerializer class, 111, 161
XmlSiteMapProvider class, 275
XmlTextReader objects, 154
XPath expressions, 135
XPath navigator objects, 135
XPathBinder class, 135–136
XSD files, dynamic compilation and, 381
XSLT (Extensible Stylesheet Language

Transformations), 187

Z
zone objects

catalog zones, 97
editor zones, 94–96
layouts, 89–93
styling properties, 88–89
Web Parts framework, 81–83, 87

Zones collection, Web Parts, 83
<zonetemplate> element, 82, 94

<zonetemplate> element

Z01I620245.fm Page 427 Thursday, June 17, 2004 1:41 PM

Microsoft Press. Confidential.
DevStandIndex3lvl, Index, PP1, edd version: TK, FrameMaker+SGML; xx

Z01I620245.fm Page 428 Thursday, June 17, 2004 1:41 PM

About the Author
Dino Esposito is the Microsoft ASP.NET and
ADO.NET expert at Wintellect, a premier training,
debugging, and consulting firm.

Dino writes the “Cutting Edge” column for
MSDN Magazine and is a regular contributor of
.NET Framework articles to Microsoft’s ASP.NET
and Longhorn DevCenter and other magazines,
including asp.netPRO Magazine (http://www
.aspnetpro.com), CoDe Magazine (http://www
.code-magazine.com), and the ASP.NET2TheMax
newsletter (http://www.windevnet.com/newsletters).
His books for Microsoft Press include Program-
ming Microsoft ASP.NET (2003), Building Web Solutions with ASP.NET and
ADO.NET (2002), and Applied XML Programming for Microsoft .NET (2002).
Up-to-date information about his upcoming articles and books can be found in
Dino’s blog at http://weblogs.asp.net/despos.

Dino is a cofounder of VB-2-the-Max (http://www.vb2themax.com), a pop-
ular Web site full of free technical information for .NET developers, as well as
two newer sites, CS-2-the-Max (for C# and C++ developers) and .Net-2-the-Max
(for all .NET developers). The 2-the-Max family has a highly selective search
engine that lets you search .NET articles and tips published anywhere on the
Web by category, language, or keyword.

Before becoming a full-time author, consultant, and trainer, Dino worked
for several top consulting companies. Based in Rome, Italy, he pioneered DNA
systems in Europe, and in 1994, designed one of the first serious Web applica-
tions—an image data bank. These days, you can find Dino at leading confer-
ences such as DevConnections, DevWeek, WinDev, and Microsoft TechEd.
Author bio photo

Z02B620245.fm Page 1 Thursday, June 10, 2004 1:10 PM

Z02B620245.fm Page 2 Thursday, June 10, 2004 1:10 PM

	Part I ASP.NET Essentials
	Part II Data Access
	Part III Application Services
	Part IV Advanced Topics

