
TEAM LinG

Alex Homer
Dan Kent

Dave Sussman
Dan Whalin

800 East 96th Street, Indianapolis, Indiana 46240

ASP.NET 1.1

00 0672326744 FM 5/4/04 12:25 PM Page i

TEAM LinG

ASP.NET 1.1 Insider Solutions
Copyright © 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32674-4

Library of Congress Catalog Card Number: 2004091341

Printed in the United States of America

First Printing: June 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information
provided is on an “as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

1-317-428-3341

international@pearsontechgroup.com

Associate Publisher
Michael Stephens

Acquisitions Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Charlotte Clapp

Project Editor
Dan Knott

Copy Editor
Kitty Jarrett

Indexer
Heather McNeill

Proofreader
Katie Robinson

Technical Editors
Dan Maharry
Justin Rogers

Team Coordinator
Cindy Teeters

Designer
Gary Adair

Page Layout
Bronkella Publishing

00 0672326744 FM 5/4/04 12:25 PM Page ii

Contents at a Glance

Introduction...1

Part I Web Form User Interfaces

1 Web Forms Tips and Tricks...7

2 Cross-Page Posting ..51

3 Loading Progress and Status Displays ..75

4 Working with Nested List Controls ..109

Part II Reusability

5 Creating Reusable Content...155

6 Client-Side Script Integration ..197

7 Design Issues for User Controls ...243

8 Building Adaptive Controls..297

9 Page Templates ...353

Part III Data Techniques

10 Relational Data-Handling Techniques...385

11 Working with XML Data ..429

Part IV Hosting and Security

12 Side-by-Side Execution in ASP.NET ..479

13 Taking Advantage of Forms Authentication...499

14 Customizing Security..537

Index ..561

00 0672326744 FM 5/4/04 12:25 PM Page iii

Table of Contents

Introduction 1

Part I Web Form User Interfaces

1 Web Forms Tips and Tricks 7

Getting More from ASP.NET Validation Controls ..8
Validating a RadioButtonList Control ...9
Validating a CheckBoxList Control ...11
Validating Nonstandard Control Values ...12
Using List and Validation Controls in a DataGrid Control14

Taking Control of Content Layout in a DataGrid Control31
Controlling the Width of Columns in a DataGrid Control32
Using Multiple Edit Controls in a DataGrid Control Column33
Controlling the Width of Edit Controls in a DataGrid Control35
Providing Scrollable Content in a DataGrid Control36

Loading Controls Dynamically at Runtime ...38
The ASP.NET Control Tree ...38
Creating a DataGrid Control Dynamically at Runtime41
Loading User Controls Dynamically at Runtime46

Summary ...49

2 Cross-Page Posting 51

Techniques for Passing Values Between Pages ...52
Accessing Request Values in Another Page52
Changing the action Attribute of a Form ..53
Redirecting Postbacks to the Target Page ..57

Client-Side Versus Server-Side Redirection ...60
Exposing Values to Another Page via References62

The Event Handlers That Call the Server.Transfer Method63
The Public Properties in the Main Page ...64
The Target Page for the Server.Transfer Method65
Changing the Method and Clearing the Request Collections67

The Server.Execute Method ...68
Capturing Output from the Server.Execute Method69
The Target Page for the Server.Execute Method70

Summary ...72

00 0672326744 FM 5/4/04 12:25 PM Page iv

3 Loading Progress and Status Displays 75

Displaying a “Please Wait” Page ..76
A Simple “Please Wait” Example ..77

Displaying a Progress Bar Graphic ...85
The Progress Bar Animated Graphic Files ..86
Displaying the Progress Bar Graphic ...87

Implementing a Staged Page Load Process ..92
The Steps in Implementing a Staged Page Load Process92
Status Information in ASP.NET and the XMLHTTP Object93
The Staged Process Operation Page ...94
The Staged Process Main Page in the Staged Loading Example98

Summary ...107

4 Working with Nested List Controls 109

Displaying Related Data in Nested DataGrid Controls110
Declarative Nested Binding to a DataSet Instance110
Filling Nested DataGrid Controls with a DataSet Instance119
Declarative Nested Binding to a Custom Function125
Filling Nested DataGrid Controls from a DataReader Instance128

A Master/Detail Display with DataList and DataGrid Controls134
Declaring the DataList and DataGrid Controls135
Populating the DataList Control ..140
Populating the DataGrid Control ..143
Selecting a Row in the DataList Control ..143
Editing a Row in the DataGrid Control ...145
Updating the Original Data in the Database149

Summary ...150

Part II Reusability

5 Creating Reusable Content 155

Techniques for Creating Reusable Content ...156
Server-Side Include Files ..156
ASP.NET User Controls ..158
Custom Master Page and Templating Techniques162
ASP.NET Server Controls Built As .NET Assemblies163
Using COM or COM+ Components via COM Interop166

Building a ComboBox User Control ...169
Design Considerations ...169
The HTML for a Drop-Down Combo Box ...170

00 0672326744 FM 5/4/04 12:25 PM Page v

ASP.NET 1.1 Insider Solutionsvi

The Structure and Implementation of the ComboBox User Control ...173
Outputting the Appropriate HTML ..175
The ShowMembers Method ..176
Public Property Accessor Declarations ...176
The Property Accessors for the ComboBox User Control178
The Page_Load Event Handler for the ComboBox Control183

Using the ComboBox Control ...189
Populating the ComboBox Controls from an ArrayList Instance191
Displaying the Members of the ComboBox User Control192
Displaying Details of the Selected Item ...192
Setting the Properties of the ComboBox User Control193

Populating the ComboBox Control ..194
Summary ...196

6 Client-Side Script Integration 197

Client-Side Interaction on the Web ...198
Client-Side Scripting in the Browser ..199
CSS2 and Dynamic HTML ...199
Selecting Your Target ...200
Version 6 Browser-Compatible Code Techniques201
The Client-Side Code in the ComboBox User Control203

Useful Client-Side Scripting Techniques ..207
Buttons, Grids, and Client-Side Script ..208
Detecting and Trapping Keypress Events211
Creating a MaskedEdit Control ...218
Using the MaskedEdit Control ...224
Creating a One-Click Button ..230

Summary ...240

7 Design Issues for User Controls 243

The Effect of User Controls on Design and Implementation244
Converting the MaskedEdit Control Page to a User Control245
Adding Validation Controls to the MaskedEdit Control251

Building a SpinBox User Control ..254
The User Interface Declaration for the SpinBox Control255
The Private and Public Members of the Control256
The Server-Side Code Within the SpinBox Control261

Integrating Client-Side Script Dialogs ...267
How the Client Dialogs Example Works ...269
The clientdialog.ascx User Control ..269

00 0672326744 FM 5/4/04 12:25 PM Page vi

viiContents

Browser-Adaptive Script Dialogs ...274
How the Adaptive Client Dialogs Example Works276

Integrating Internet Explorer Dialog Windows ..283
How the Modal Dialog Window Example Works285
The Internet Explorer showModalDialog Method285

Browser-Adaptive Dialog Windows ..290
How the Browser-Adaptive Dialog Window Example Works291

Summary ...294

8 Building Adaptive Controls 297

The Advantages of Server Controls ..298
The Basics of Building Server Controls ..298

The Process of Building a Server Control299
The Life Cycle of ASP.NET Controls ..299
The Life Cycle of a Server Control ...300
Creating a Class for a Server Control ..301
Choosing and Extending a Base Class ..302

Building a MaskedEdit Server Control ..305
The MaskedEdit Control Class File ..305
Compiling and Testing the MaskedEdit Control312

Building a SpinBox Server Control ..315
The Standard SpinBox Control Class File316
Using an Adaptive SpinBox Control ...334

Making the SpinBox Control Adaptive ...335
Coping with Older and Nonstandard Browsers337
Adaptability Changes to the SpinBox Control Class339
Testing and Using an Adaptive SpinBox Control346

Installing a SpinBox Control in the GAC ..348
Changes to the SpinBox Control Class File for GAC Installation349
Compiling the SpinBox Control Class File349
Installing the SpinBox Assembly into the GAC350
Testing the GAC-Installed Control ..351

Summary ...352

9 Page Templates 353

Designing for Consistency ...354
Templating Solutions ...355
A Simple Layout Server Control ..355

Custom Layout Control Output ..357
Creating Content from a Custom Control358
Creating a Custom Layout Control ...360

00 0672326744 FM 5/4/04 12:25 PM Page vii

ASP.NET 1.1 Insider Solutionsviii

A Server Control That Uses Templates ...365
Creating a Templated Server Control ...366

Creating Default Content for Templates ..371
Creating Dynamic Regions for Page Content ...372
Using a Custom Page Class for a Page Template373

Creating the Content and ContentPlaceHolder Controls373
Creating a Custom Page Class ...374
Creating a Master Page ..378
Using a Custom Page Class ...379

Using Custom Controls in Visual Studio .NET ...380
Summary ...381

Part III Data Techniques

10 Relational Data-Handling Techniques 385

Using Parameters with SQL Statements and Stored Procedures386
Using Submitted Values in a SQL Statement386
Ordering of Stored Procedures and Query Parameters392
Using Default Values in a Stored Procedure393

Filling a DataSet Instance With and Without a Schema400
Loading the Schema for a DataSet Instance400
The Sample Page for Filling a DataSet Instance401

Writing Provider-Independent Data Access Code410
Dynamically Instantiating a .NET Framework Class410
The Code in the Provider-Independent Data Access Sample Page ...411

Updating Multiple Rows by Using Changed Events415
The Edit and Cancel Buttons ..418
Populating the DataGrid Control ..419
Handling the ItemDataBound Event ...420
Handling the Changed Events ...422
Updating the Source Data ..424
Creating the Client-Side Script to Highlight a Control426

Summary ...427

11 Working with XML Data 429

The Role of XML in ASP.NET ...430
XML API Pros and Cons ..430

The Forward-Only API: XmlTextReader ..431
The DOM API: XmlDocument ...431
The Cursor-Style API: XPathNavigator ...432
The XML Serialization API: XmlSerializer ..432

00 0672326744 FM 5/4/04 12:25 PM Page viii

Combining the XmlTextReader and XmlTextWriter Classes433
Parsing XML Strings ..437
Accessing XML Resources by Using the XmlResolver Class438

XmlResolver, Evidence, and XslTransform439
Searching, Filtering, and Sorting XML Data ...442

Searching and Filtering XML Data ...442
Sorting XML Data ..446

Creating a Reusable XML Validation Class ...456
Converting Relational Data to XML ...460

Customizing XML by Using the DataSet Class461
Adding CDATA Sections into XML Documents464

Simplifying Configuration by Using XML ..466
Accessing Configuration Settings by Using XPathNavigator467
Using XML Serialization ..470

Summary ...474

Part IV Hosting and Security

12 Side-by-Side Execution in ASP.NET 479

How Version 1.1 of the .NET Framework Is Distributed480
How Installing a New Version of the .NET Framework Affects Existing

Applications ...481
Configuration Settings in machine.config481
The ASP.NET State Service and SQL Server State Service481
The ASP.NET Process Account ...482
Windows Performance Counters ...482
Running Version 1.0 Applications on Version 1.1 of the

.NET Framework ..482
Running Version 1.1 Applications on Version 1.0488

How ASP.NET Selects the Runtime Version ...488
How to Specify the ASP.NET Version for Individual Applications489

Installing ASP.NET Without Updating Script Mappings489
Using the aspnet_regiis.exe Tool to Configure Runtime Versions490

ASP.NET and IIS 6.0 on Windows Server 2003492
IIS 6.0 Web Service Extensions ..493
IIS 6.0 Application Pools ..494

Summary ...497

13 Taking Advantage of Forms Authentication 499

Building a Reusable Sign-in Control ...500
Hashing Passwords ..506

ixContents

00 0672326744 FM 5/4/04 12:25 PM Page ix

Helping Users Who Forget Their Passwords ..508
Persistent Authentication Cookies ...514

Setting a Timeout ..515
Mandatory Expiration ...515

Using Forms Authentication in Web Farms ..516
Using <machineKey> Elements to Implement Single Sign-in

Systems ...518
Cookieless Forms Authentication ...519

Creating a Hyperlink Control to Add the Authentication Ticket521
Protecting Non-ASP.NET Content ..523
Supporting Role-Based Authorization with Forms Authentication526
Using Multiple Sign-in Pages ...528
Dealing with Failed Authorization ..530
Listing Signed-in Users ...531
Forcibly Signing Out a User ..533
Summary ...535

14 Customizing Security 537

Building a Custom Authentication Module ..538
What Is an Authentication Module? ...538
Building a Custom Identity Class ..538
Building the HTTP Module ..540
Running Authentication Modules in Tandem542

Building a Custom Authorization Module ..543
Running Authorization Modules in Tandem545

Trust Levels ..546
Using One of the Preconfigured Trust Levels546
Forcing an Application to Use a Trust Level548
Creating Custom Trust Levels ...549
Recommended Use of Permissions ...556

Summary ...559

Index 561

00 0672326744 FM 5/4/04 12:25 PM Page x

About the Authors
Alex Homer began his love/hate relationship with computers in 1980, with the Altair
and Sinclair Z80, and he now lives and works in the idyllic rural surroundings of the
Derbyshire Dales in England. Alex has written or contributed to more than 30 books on
Web development topics for major publishers. He is a Microsoft MVP and INETA
member, and he speaks regularly at conferences around the world. In what spare time is
left, he runs his own software and consulting company, Stonebroom Limited
(http://stonebroom.com).

Dave Sussman is a freelance writer, trainer, and consultant who lives in a rural village
in England. He spends most of his time in betaland, a strange place inhabited by test
software that changes daily and where there only seem to be 12 hours in a day. He
strongly believes in the Douglas Adams view of deadlines. He can be contacted at
davids@ipona.com.

Dan Wahlin, a Microsoft MVP, is the president of Wahlin Consulting and founded the
XML for ASP.NET Developers Web site (www.XMLforASP.NET), which focuses on using XML
and Web services in the .NET platform. In addition to consulting, Dan is also a corpo-
rate trainer/speaker, and he teaches XML and .NET training courses around the United
States. Dan coauthored ASP.NET: Tips, Tutorials, and Code and authored XML for ASP.NET
Developers (both from Sams Publishing).

Dan Kent currently edits the Evolution series for Sams Publishing, builds sites that
support community regeneration, and performs cutting-edge video shows as half of VJ
duo Syzygy.

After studying artificial intelligence, he went on to become part of the dot-com bubble,
building online community sites that empowered newcomers to the Web to create Web
presences. He decided to leave frontline programming and concentrate on passing on
some of his know-how. His desire to be involved with books was kindled by some work
as a technical reviewer for Wrox, which he went on to as a technical editor.

While at Wrox, Dan developed the Problem-Design-Solution concept, which pioneered
the approach of presenting readers with real-world solutions in the context of real
applications. He also worked with the Microsoft ASP.NET team to help programmers
learn more about the fantastic technology they created and contributed as an author to
the highly respected Professional ASP.NET Security, now sadly out of print. Two years,
four job titles, and far too many books later, Dan decided to leave Wrox.

00 0672326744 FM 5/4/04 12:25 PM Page xi

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can
email or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We
do have a User Services group, however, where I will forward specific technical questions related
to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web
site at www.samspublishing.com. Type the ISBN (0672326744) or the title of the book into
the Search field to find the page you’re looking for.

00 0672326744 FM 5/4/04 12:25 PM Page xii

Introduction

Are you getting the most from ASP.NET? While it’s easy to build quite complex pages quickly
and easily with ASP.NET, if you acquire a more intimate knowledge of the .NET Framework as
a whole, you can really take advantage of the great features it provides.

This book explores some of the more advanced topics that help you to build better, more effi-
cient, and more attractive Web pages and Web applications. In fact, many of the examples in
this book are designed to illustrate and provide solutions for questions and problems that
appear regularly on the ASP.NET forums and newsgroups.

What This Book Covers
Topics include getting more from the DataGrid control, creating reusable content as both user
and server controls, using page templating and cross-page posting, building secure applica-
tions, validating user input, integrating client-side script, providing great cross-browser
support, and much more.

The book is divided into four sections:

■ Part I, “Web Form User Interfaces,” is a combination of many useful techniques for
solving issues that ASP.NET developers regularly face. The chapters in this part include
tips and tricks with Web forms and information on cross-page posting, displaying
progress and status information, and working with nested ASP.NET list controls.

n Part II, “Reusability,” demonstrates how you can create reusable content for Web pages
and applications. Topics include client-side script integration; user and server control
design and construction; adaptive controls; and master pages, templates, and page
subclassing techniques.

n Part III, “Data Techniques,” covers some of the issues that you should think about when
working with both relational and XML data, including tips and tricks, protecting your
server, and performance.

n Part IV, “Hosting and Security,” covers topics that are mainly concerned with installing,
setting up, and using ASP.NET. This includes side-by-side execution of different
versions, ASP.NET forms authentication, and general security configuration issues.

Who This Book Is For
This book is for developers who are using ASP.NET and have a reasonable grasp of the basic
topics for building Web pages and Web applications in ASP.NET. It is not designed to act as a

01 0672326744 Intro 5/4/04 12:21 PM Page 1

beginner’s guide or as a comprehensive reference to all the techniques available in ASP.NET.
However, the topics that it does cover are introduced in sufficient depth that a reasonably
experienced ASP.NET user will be able to learn and take advantage of the techniques
described.

For example, Chapter 5, “Creating Reusable Content,” explains what user and server controls
are and how to build them—in such a way that the reader does not need to have any prior
experience of these topics. It describes and illustrates properties and methods, how to expose
functionality from a control, and how to use that control in Web pages and applications.

What You Need to Use This Book
This book covers ASP.NET 1.1, and you must be running this version of ASP.NET to use the
sample code that is available for download. The examples are not designed for use in Visual
Studio .NET, which means that you can use them (and edit them to suit your own projects)
in tools such as Web Matrix or in any text editor. You can, of course, convert them yourself
to run within Visual Studio .NET if you wish.

All the sample code for this book can be downloaded from the Sams Web site at
www.samspublishing.com. It is also available at www.daveandal.net/books/6744/, where you can
run many of the examples online without needing to download them and install them on
your own server.

Many of the examples in this book rely on a database server to provide values for the pages.
The database used in the book is the sample Northwind database provided with SQL Server
and MSDE, and a suitable Access database is included with the downloadable samples for the
book as well. You can use a different database server if you prefer, provided that you have a
managed provider for the .NET Framework available, and you must edit the connections
strings in the web.config file to specify your database server.

Other than that, you can run the examples and experiment with the techniques they illus-
trate without requiring any other special software or hardware.

Conventions Used in This Book
Special conventions are used to help you get the most from this book and from Web markup.

Text Conventions
Various typefaces in this book identify terms and other special objects.

n Screen messages, code listings, and command samples appear in monospace type.

n Uniform Resource Locators (URLs) used to identify pages on the Web and values for
HTML attributes also appear in monospace type.

Introduction2

01 0672326744 Intro 5/4/04 12:21 PM Page 2

3Introduction

n Terms that are defined in the text appear in italics. Italics are sometimes used for
emphasis, too.

n In code lines, placeholders for variables are indicated by using italic monospace type.

n User input information will appear in bold monospace type.

Special Elements
Throughout this book, you’ll find best
practices, sidebars, and cross-references.
These elements provide a variety of infor-
mation, ranging from warnings you
shouldn’t miss to ancillary information
that will enrich your learning experience:

Sidebars for More Information
Sidebars are designed to provide information
that is ancillary to the topic being discussed.
Read these if you want to learn more about
an application or a task.

Best Practices
Bets practices are designed to help you decide which is the best way to approach the task being
discussed and which is the best way to make use of the technology or maximize its benefits.

BEST PRACTICE

01 0672326744 Intro 5/4/04 12:21 PM Page 3

01 0672326744 Intro 5/4/04 12:21 PM Page 4

PART I

Web Form User
Interfaces

1 Web Forms Tips and Tricks

2 Cross-Page Posting

3 Loading Progress and Status Displays

4 Working with Nested List Controls

02 0672326744 Pt 1 5/4/04 12:26 PM Page 5

02 0672326744 Pt 1 5/4/04 12:26 PM Page 6

1
Web Forms

Tips and Tricks

We start this chapter by looking at some
of the more unusual ways you can use the
ASP.NET validation controls, such as within
a list control—something that comes up
regularly on ASP.NET mailing lists and
forums.

Next, we take a brief look at creating some-
thing other than the standard layout in a
DataGrid control. We show a couple exam-
ples that demonstrate how you can specify
the width of the columns, expose more
than one editable value in a column, and
display long text strings in scrollable cells.

Finally, we look at a topic that seems to
regularly cause problems for users: creating
instances of controls dynamically when a
page is loaded. This technique can provide
far more flexibility than just declaring all
the controls within the HTML section of the
page, but it means you have to be fairly
organized when developing the page—and
remember to re-create all the controls in the
correct order on each postback.

IN THIS CHAPTER
Getting More from ASP.NET Validation
Controls 8

BEST PRACTICE:
Protecting Your Pages from Spoofing
Attacks 12

BEST PRACTICE:
Displaying the Correct Currency Symbol 21

BEST PRACTICE:
Selecting the Current Value in a Nested
List Control 27

BEST PRACTICE:
Using a Stored Procedure to Update the
Data Store 30

Taking Control of Content Layout in a
DataGrid Control 31

BEST PRACTICE:
Setting the Width of All the Columns 33

Loading Controls Dynamically at
Runtime 38

Summary 49

03 0672326744 CH01 5/4/04 12:22 PM Page 7

Getting More from ASP.NET Validation Controls
Many developers do not realize just how versatile the validation controls provided with ASP.NET
are. The common scenario is to use them to validate the contents of a text box, a task that they
are ideally suited to. However, you can also use them to validate almost any Web Forms or
HTML control as well. For example, if you have a list box or a drop-down list that has a
“dummy” entry displayed by default, you can force users to select one of the other values in the
list by using a validation control.

Suppose that the list is populated as follows:

<asp:ListBox id=”TheListBox” runat=”server”>

<asp:ListItem Text=”Please select a value...” Value=”” />

<asp:ListItem Text=”Value1” Value=”1” />

<asp:ListItem Text=”Value2” Value=”2” />

<asp:ListItem Text=”Value3” Value=”3” />

</asp:ListBox>

The first entry in the list has a value for the text (the Text property and the corresponding
content of the <option> element that is generated). However, it has no value (the Value property
and the corresponding value attribute that is generated are empty strings). Therefore, you can
use a RequiredFieldValidator control to force the user to select an entry in the list that does have
a value:

<asp:RequiredFieldValidator id=”ListValRequired” runat=”server”

ControlToValidate=”TheListBox”

ErrorMessage=”You must select a value in the list”>

*

</asp:RequiredFieldValidator>

Likewise, you can use other validation controls to force a specific value to be selected. Of course,
it’s likely that your list control will contain only valid values anyway. However, one possible
reason for validating the selected value might be to compare it to another control. This example
uses a CompareValidator control to make sure the same selection is made in two list controls:

<asp:CompareValidator id=”ListLimitValue” runat=”server”

ControlToValidate=”TheListBox”

ControlToCompare=”AnotherList”

Operator=”Equal”

Type=”String”

ErrorMessage=”You must select the same value in both lists”>

*

</asp:CompareValidator>

1
Web Forms Tips and Tricks

8

03 0672326744 CH01 5/4/04 12:22 PM Page 8

9Getting More from ASP.NET Validation Controls

Validating a RadioButtonList Control
A scenario that may arise is a situation in which you use a RadioButtonList control to generate a
list of option buttons. You might decide that there is an obvious “default” option and preselect
it by setting the SelectedIndex property when you generate the list. However, this can result in
users submitting the value without actually considering whether it is the appropriate one—they
might just click the Submit button without reading all the options.

To get around this, you can add a RequiredFieldValidator control to force the user to select one
of the options, without having to specifically select one of the options as the default in your
code. If the user makes no selection, the “value” of the RadioButtonList control is an empty
string:

<asp:RequiredFieldValidator id=”RadioListValRequired” runat=”server”

ControlToValidate=”TheRadioButtonList”

ErrorMessage=”You must select a value in the radio button list”>

No value selected

</asp:RequiredFieldValidator>

And, of course, you can use another valida-
tion control to check the value that the user
selected—just as in the earlier list control
example. The following code uses a
RangeValidator control with the comparison
type set to “String” to perform a case-sensitive
check that the Value property of the selected
option button is between “W” and “Z”:

<asp:RangeValidator id=”RadioListValue” runat=”server”

ControlToValidate=”TheRadioButtonList”

MinimumValue=”W”

MaximumValue=”Z”

Type=”String”

ErrorMessage=”You must select a value between W and Z”>

Invalid value selected

</asp:RangeValidator>

The Location of the Error Message
Notice in the preceding section that we avoid the common use of an asterisk (*) for the content
of the validation control in both the examples of validating a RadioButtonList control. Normally,
for text boxes and list controls, the content of the validation control is displayed next to the
control when it contains an invalid value.

However, the default for the RadioButtonList control (and the CheckBoxList control) is to gener-
ate an HTML table. This means that the content of the validation control will appear below the
list control rather than next to it. Specifying a meaningful message, rather than just an asterisk,
makes it easier to see where the error is, as shown in Figure 1.1.

Validating Option Buttons
If you are validating against text values for
the Value properties of the option buttons, it
generally makes sense to use a
RegularExpressionValidator control
instead of a RangeValidator control. This
provides far wider opportunities for accurately
specifying what is valid, rather than relying
just on a specific range of character codes.

03 0672326744 CH01 5/4/04 12:22 PM Page 9

Performing Numeric Comparisons
You need to take some care if you are using
numeric values for the Value property of items
in a list control and then attaching a valida-
tion control. Remember to specify the correct
comparison type because the “String”
comparison type treats the values differently
from the “Integer” type—the concepts of “less
than” and “greater than” are different for
strings and numbers:

<asp:RangeValidator id=”RadioListValue” runat=”server”

ControlToValidate=”TheRadioButtonList”

MinimumValue=”2”

MaximumValue=”5”

Type=”Integer”

ErrorMessage=”You must select a value between 2 and 5”>

Invalid value selected

</asp:RangeValidator>

Setting Validation Properties Dynamically
One of the prime reasons for using list controls rather than text boxes in a page is to limit the
selections that a user can make. Therefore, in most cases, the list of values that users can select
from only contain valid options, rendering most validation other than requiring a selection to
be made (using a RequiredFieldValidator control) unnecessary.

However, bear in mind that you can set the properties of validation controls dynamically on the
server side, just as you do for any other Web Forms control. This means that you can react to
other conditions (such as values selected in other pages, the time of day, the user location, and
so on) to specify which options in a list are valid when the page is generated—while still
displaying all the options.

For example, if you had a custom function that discovered the weather conditions for a speci-
fied city, you could write code in the Page_Load event handler to set the maximum and
minimum values of a RangeValidator control named ValidateWeather like this:

If GetWeather(“Manchester”) = “Raining” Then

ValidateWeather.MinimumValue=”2”

ValidateWeather.MaximumValue=”3”

End If

1
Web Forms Tips and Tricks

10

FIGURE 1.1 Displaying meaningful error
messages below a
RadioButtonList control.

Validating String and Numeric Values
If you use the comparison type “String”
when values are numeric, you’ll get in-
accurate results. For example, if the
MinimumValue property of the validation
control is “5”, the value 10 will be considered
to be invalid because it comes before “5” in
alphabetic (character-code) order.

03 0672326744 CH01 5/4/04 12:22 PM Page 10

11Getting More from ASP.NET Validation Controls

Validating a CheckBoxList Control
A CheckBoxList control can support validation, but not along the same lines as other list
controls. If you try to attach any validation control other than CustomValidator to a CheckBoxList
control, you’ll get the compiler error “Control ‘control-id’ referenced by the ControlToValidate
property of ‘validator-id’ cannot be validated.” This is because the CheckBoxList control does not
expose a “value” property as do the RadioButtonList control and most other Web Forms and
HTML controls.

There is another factor to consider here. The reason for using a CheckBoxList control is to offer
the user the opportunity to select more than one value. (If the user could select only one value,
you would probably use a RadioButtonList control instead.)

However, you can use a CustomValidator control in conjunction with a CheckBoxList control to
perform most kinds of validation, if required. For example, you can force the user to select one
(or more) of the check boxes and prevent the form from being submitted with no check boxes
selected. Or you can limit the number that can be checked or even perform tests against the
captions of those that are checked or unchecked.

The CustomValidator control requires that you write server-side, and optionally client-side, func-
tions to perform the actual validation. For example, if you have a CheckBoxList control with its
id property set to MyCheckBoxList, you can attach a CustomValidator control to it like this:

<asp:CustomValidator id=”ValidateCheckBoxList” runat=”server”

ClientValidationFunction=”ClientValidateCheckboxList”

OnServerValidate=”ServerValidateCheckboxList”

ErrorMessage=”You cannot select more than five checkboxes”>

More than five checkboxes selected

</asp:CustomValidator>

Then it’s just a matter of writing the server-side and client-side validation functions. The server-
side function can use the Items collection exposed by the CheckBoxList control to count the
number of check boxes that are set (their Checked property is True). If the result is five or fewer,
you return True so that the validation control will return True for its IsValid property:

Sub ServerValidateCheckboxList(sender As Object, _

e As ServerValidateEventArgs)

Dim iCount As Integer = 0

For Each oCheck As ListItem In MyCheckBoxList.Items

If oCheck.Selected Then

iCount += 1

End If

Next

e.IsValid = (iCount <= 5)

End Sub

You can also access the captions of each CheckBox control through the Text property of each
entry in the Items collection, or you can simply use their index positions within the collection
to see which are checked or unchecked.

03 0672326744 CH01 5/4/04 12:22 PM Page 11

The next section of code shows the function called by the CustomValidator control to perform
the same validation test client side in JavaScript. To get a reference to the check boxes, it iterates
through the first <form> element on the page, checking the name (ID) of each control it finds to
see if it is one of the check boxes in the CheckBoxList control (whose names are all in the form
MyCheckBoxList_n):

function ClientValidateCheckbox(source, args) {

var iCount = 0;

var aCtrls = document.forms[0].elements;

for (var i=0; i < aCtrls.length; i++) {

if (aCtrls[i].name.substring(0, 14) == ‘MyCheckBoxList’)

{

if (aCtrls[i].checked) iCount++;

}

}

args.IsValid = (iCount <= 5);

}

1
Web Forms Tips and Tricks

12

Protecting Your Pages from Spoofing Attacks
You should always perform server-side validation—even if you perform it client side as well—to
prevent any chance of the user spoofing your application by removing client-side validation code from
the page or turning off script support on which the client-side validation depends.

BEST PRACTICE

Validating Nonstandard Control Values
Some controls, such as the CheckBoxList control we examined in the preceding section, don’t
fully support the use of validation controls. Another example is the Calendar control that is
provided with ASP.NET. However, for all these types of controls, there is a simple technique you
can use to perform server-side validation: You add an ASP.NET TextBox control to the page and
then arrange for this to contain the current value of the control you want to validate when a
postback occurs—by handling the appropriate OnXxxxxChanged event in your server-side code. All
this event handler has to do is copy the current value from the control into the text box and
then call the Validate method of the attached validation control(s).

For the CheckBoxList control, for example, you handle OnSelectedIndexChanged. You must also
arrange for the control to cause a postback when the value changes by setting the AutoPostBack
property:

<asp:CheckBoxList id=”MyCheckBoxList” runat=”server”

OnSelectedIndexChanged=”SetCBLTextbox”

AutoPostback=”True” />

03 0672326744 CH01 5/4/04 12:22 PM Page 12

13Getting More from ASP.NET Validation Controls

Then you add the TextBox control, hiding it from view in the page by setting the visibility style
selector to hidden:

<asp:Textbox id=”CBLTextbox” Columns=”1” runat=”server”

Style=”visibility:hidden” />

Now you just add the validation controls you require to the page, specifying that they should
validate the TextBox control and not the CheckBoxList control. For example, the following forces
the user to select at least one check box:

<asp:RequiredFieldValidator id=”RequireCBLSelection” runat=”server”

ControlToValidate=”CBLTextbox”

ErrorMessage=”You must select at least one check box”>

No items selected

</asp:RequiredFieldValidator>

The server-side event handler that runs when
the selection in the CheckBoxList control is
changed is shown next. It just copies the
value into the TextBox control and then calls
the Validate method of the single validation
control attached to the TextBox control:

Sub SetCBLTextbox(sender As Object, _

e As EventArgs)

CBLTextbox.Text =

MyCheckBoxList.SelectedValue

RequireCBLSelection.Validate()

End Sub

Validating a Calendar Control
The technique described in the preceding
section works with the ASP.NET Calendar
control. This control automatically causes a
postback to the server when a date is selected,
so there is no AutoPostBack property to set this
time, and you handle the OnSelectionChanged
event. Listing 1.1 shows the declaration of the Calendar control, the hidden TextBox control, the
two validation controls that are attached to the TextBox control, and the event handler for the
OnSelectionChanged event.

Hidden Controls and Validation
You cannot use an HTML hidden-type <input>
control here because that does not support
the ASP.NET validation controls. This is why
you instead use a TextBox control. You can
also use Visible=”False” to completely
remove the TextBox control from the page,
although it remains in the server-side control
tree and still allows server-side validation to
be performed. However, client-side validation
will not be performed unless the text box is
part of the page that is sent to the browser.
Hiding it by using the visibility style selec-
tor allows the client-side validation to be
performed when the page is first loaded (and
no check boxes are selected) without the text
box being visible in most modern browsers.
You can always place it in some non-obvious
position in the page in case a user’s browser
doesn’t support CSS.

03 0672326744 CH01 5/4/04 12:22 PM Page 13

LISTING 1.1 Validating a Calendar Control

<asp:Calendar id=”TheCalendar” runat=”server”

OnSelectionChanged=”SetCalendarTextbox” />

<asp:Textbox id=”CalendarTextbox” Columns=”1” runat=”server”

Style=”visibility:hidden” />

<asp:RequiredFieldValidator id=”RequireCalendarDate” runat=”server”

ControlToValidate=”CalendarTextbox”

ErrorMessage=”You must select a date in the calendar”>

No date was selected

</asp:RequiredFieldValidator>

<asp:RangeValidator id=”RangeCalendarDate” runat=”server”

ControlToValidate=”CalendarTextbox”

MinimumValue=”01/01/2004”

MaximumValue=”31/01/2004”

Type=”Date”

ErrorMessage=”You must select a date in January 2004”>

An invalid date was selected

</asp:RangeValidator>

...

Sub SetCalendarTextbox(sender As Object, e As EventArgs)

CalendarTextbox.Text = TheCalendar.SelectedDate

RequireCalendarDate.Validate()

RangeCalendarDate.Validate()

End Sub

This example requires the selection of a date, using a RequiredFieldValidator control, and it
requires this date to be within the month of January 2004, by using a RangeValidator control.
Notice that the comparison type is set to “Date” in this example and that a meaningful text
string is used as the content of the validation controls because it will appear below the Calendar
control (which is rendered as an HTML table).

Finally, the event handler copies the currently selected date into the TextBox control and then
calls the Validate methods of the two validation controls that are attached to the TextBox
control.

Using List and Validation Controls in a DataGrid Control
A situation that seems to cause a lot of questions on mailing lists and forums is the use of
ASP.NET validation controls within a templated list control such as a DataGrid, DataList, or

1
Web Forms Tips and Tricks

14

03 0672326744 CH01 5/4/04 12:22 PM Page 14

15Getting More from ASP.NET Validation Controls

Repeater control. The following sections show how easy it is to use these controls in a DataGrid
control to validate the values entered by the user when a row is in “edit” mode.

The following sections also summarize the technique for using list controls within the rows of a
DataGrid control, although this chapter uses only simple nested list controls such as the
DropDownList and RadioButtonList controls.

To learn more about advanced topics for the DataGrid control, see Chapter 4, “Working with
Nested List Controls.”

The DataGrid Control Validation Sample Page
Figure 1.2 shows the sample page that the following sections explore. It lists 10 rows from the
Products table in the Northwind database, with each row displaying a link to edit the row
contents. Notice also that the Discontinued column, which is a bit column in the database
(effectively a Boolean value), contains a graphic image in “normal” (non-edit) mode.

FIGURE 1.2
Using list and validation controls
in a DataGrid control.

When an Edit link is clicked in the sample page, that row is displayed in edit mode, as shown in
Figure 1.3. Notice that two of the columns display list controls, whose selections reflect the
current value in the row. The user can only select a value from these list controls for these two
columns when he or she edits a row.

Also notice that the Discontinued column now displays a check box where the user can effec-
tively specify “yes” (checked) or “no” (not checked). To demonstrate the validation features of
the page, there are some hints below the data grid on how to force an input error to occur. We’ll
come back and look at these features shortly.

03 0672326744 CH01 5/4/04 12:22 PM Page 15

Storing a DataSet Object in the User’s ASP.NET Session
The source data for this example comes from an ADO.NET DataSet instance that is populated
from the database when the page is first loaded. In a DataGrid control that allows users to select
and edit rows, one issue is the fact that the control has to be rebound to its data source every
time the user selects a row or places a row into edit mode, as well as when the user clicks the
Update or Cancel button in a row that is in edit mode.

This example also demonstrates how you can store this DataSet object in the user’s ASP.NET
session to minimize the number of trips you need to make to the database. The only time that
you need to go back to the database and refresh the DataSet object’s contents is when the user
changes a value in any row. This is useful because the DataSet object contains not just one but
three tables—meaning that a lot of processing is required to fill it.

The first table in the DataSet object contains the 10 rows you want to display from the Products
table (to which you have to join the Suppliers and Categories tables in order to get the supplier
and category names). The second and third tables in the DataSet object contain all the rows
from the Products table (used to populate the drop-down list of products) and the Categories
table (used to populate the radio button list of categories).

1
Web Forms Tips and Tricks

16

FIGURE 1.3
The sample page with
one row in edit mode.

03 0672326744 CH01 5/4/04 12:22 PM Page 16

17Getting More from ASP.NET Validation Controls

A Button control labeled Kill Session is located
at the bottom of the page, and a message is
displayed next to it when the DataSet object
has been filled or refreshed from the database.
Then, as the user interacts with the DataGrid
control after the initial page load, he or she
sees that this message is displayed only when
a row is updated.

However, the user can force the DataSet object
to be discarded and refilled on the next page
load by clicking the Kill Session button. All
this does is remove the existing DataSet object
from the session, and after the page reloads,
the user sees the message that a new one has
been created and filled from the database.

Declaring the DataGrid Control
The example shown in Figures 1.2 and 1.3
contains a DataGrid control that is declared
within the page in the usual way, but it uses
templates for several of the columns. Listing
1.2 shows the outline declaration of the
DataGrid control, with the contents of the
<Columns> element removed. We’ll look at the
<Columns> element in the following section.

LISTING 1.2 The Outline Declaration of the DataGrid Control

<form runat=”server”>

<asp:DataGrid id=”dgr1” runat=”server”

Font-Size=”10” Font-Name=”Tahoma,Arial,Helvetica,sans-serif”

BorderStyle=”None” BorderWidth=”1px” BorderColor=”#deba84”

BackColor=”#DEBA84” CellPadding=”5” CellSpacing=”1”

DataKeyField=”ProductID”

OnEditCommand=”DoItemEdit”

OnUpdateCommand=”DoItemUpdate”

OnCancelCommand=”DoItemCancel”

OnItemDataBound=”BindRowData”

AutoGenerateColumns=”False”>

<HeaderStyle Font-Bold=”True” ForeColor=”#ffffff”

BackColor=”#b50055” />

<ItemStyle BackColor=”#FFF7E7” VerticalAlign=”Top” />

<AlternatingItemStyle BackColor=”#ffffc0” />

Using Cookieless Sessions in ASP.NET
If the user’s browser does not support
cookies, or if cookies are blocked in the
browser’s security settings, the application
described here cannot by default take advan-
tage of ASP.NET sessions. One solution is to
use the cookieless sessions feature, by
adding a <sessionState> element to the
<system.web> section of the web.config file
in the application root folder:

<system.web>

<sessionState cookieless=”true” />

</system.web>

Downloading and Running This Example
You can download this example, as well as
the rest of the samples for this book, from
our Web site, at www.daveandal.net/books/
6744/. You can also run several of the exam-
ples online from the same URL. It contains a
[view source] link at the bottom of the page
so that you can view the source code.

03 0672326744 CH01 5/4/04 12:22 PM Page 17

<Columns>

... column declarations here ...

</Columns>

</asp:DataGrid>

...

<asp:ValidationSummary id=”valSummary” runat=”server”

DisplayMode=”BulletList”

HeaderText=”The following errors were detected:” />

<asp:Button Text=”Kill Session” id=”btnKill”

OnClick=”KillSession” runat=”server” />

<asp:Label id=”lblErr” EnableViewState=”False” runat=”server” />

</form>

Notice that Listing 1.2 specifies the name of the primary key column in the source for the data
rows (ProductID) and declares the names of the event handlers that will handle the EditCommand,
UpdateCommand, and CancelCommand events that occur when the user edits the values in a row. The
code also declares a handler for the ItemDataBound event that is raised automatically as the
control is being bound to its data source; this is where you populate and set the selected index
of the nested list controls in a row that is in edit mode.

Listing 1.2 also includes the AutoGenerateColumns=”False” attribute because you will be creating
the columns for the DataGrid control yourself. You must do this to incorporate the nested list
controls and the validation controls that you want to include in this example.

Following the declaration of the DataGrid control is the ValidationSummary control, where a list of
any validation errors is displayed when the user attempts to submit updates to the row values.
Then comes the Kill Session button and the Label control that displays errors or help messages
(such as hints on how to force a validation error to occur).

The Product Key, Name, and Supplier Columns
Listing 1.3 shows the start of the <Columns> element that is omitted from Listing 1.2. The first
two columns (the product ID and product name) in the data grid cannot be edited, so you use
BoundColumn elements for these and include the ReadOnly=”True” attribute. The inclusion of this
attribute means that when a row is placed in edit mode, the column will not display the value
in a text box.

1
Web Forms Tips and Tricks

18

LISTING 1.2 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 18

19Getting More from ASP.NET Validation Controls

LISTING 1.3 The Declaration of the First Three Columns in the DataGrid Control

...

<Columns>

<asp:BoundColumn DataField=”ProductID” HeaderText=”ID”

HeaderStyle-HorizontalAlign=”Center” ReadOnly=”True” />

<asp:BoundColumn DataField=”ProductName” HeaderText=”Product”

HeaderStyle-HorizontalAlign=”Center” ReadOnly=”True” />

<asp:TemplateColumn HeaderText=”Supplier”

HeaderStyle-HorizontalAlign=”Center” >

<ItemTemplate>

<%# Container.DataItem(“Supplier”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:DropDownList id=”lstSupplier” runat=”server” />

<asp:CompareValidator id=”valSupplier” runat=”server”

ControlToValidate=”lstSupplier”

ControlToCompare=”lstCategory”

Operator=”NotEqual”

ErrorMessage=”This combination ... is not valid”

Display=”Dynamic” Text=”*” />

</EditItemTemplate>

</asp:TemplateColumn>

...

The supplier name can be edited, but rather than use a BoundColumn element (without the
ReadOnly=”True” attribute), you can use the standard technique of declaring an <ItemTemplate>
section and an <EditItemTemplate> section directly. This gives you more control over the content
of the column in both normal and edit modes, although you are actually just inserting the
column value when in normal mode.

In edit mode, however, you want to display a list of suppliers from the database and select the
one that corresponds to the value of this column in the current row. So you declare a
DropDownList control here. It will be populated, and the appropriate value selected, at runtime by
code that runs in response to the ItemDataBound event (you’ll see this later in the chapter).

You also want to validate the user’s selection for the column value if it is changed. The user
can’t select an “empty” or “null” value because the DropDownList will contain only valid supplier
names. (If you’d used a TextBox control here, adding a RequiredFieldValidator control would be
the appropriate way to ensure that it is not empty when the page is submitted.)

However, to simulate validation within a row, you can add a couple artificial constraints to the
process. You can use a CompareValidator control to ensure that the Value property of the item
selected in the DropDownList control (which will be the numeric key of the supplier) is not the

03 0672326744 CH01 5/4/04 12:22 PM Page 19

same as the Value property selected in the RadioButtonList control that displays the category
names. (Again, the Value property of each radio button is the numeric key for that category.)

Figure 1.4 shows the DropDownList and RadioButtonList controls within the row that is currently
in edit mode. It turns out that (as suggested by the hint at the bottom of the page) the supplier
Grandma Kelly’s Homestead and the category Confections have the same row key values.
Therefore, as you can see in Figure 1.4, the validation control displays its content (an asterisk)
when this combination of values is selected.

1
Web Forms Tips and Tricks

20

FIGURE 1.4 The DropDownList and
RadioButtonList controls
within the row that is in edit
mode.

The Category and Price Columns
The next two column declarations within the <Columns> element are for the Category and Price
columns—shown in full in Listing 1.4. Again, both are TemplateColumn controls, each with an
<ItemTemplate> element and an <EditItemTemplate> element that defines the content in normal
and edit modes. In normal mode, the column values are displayed directly, although in the case
of the Price column you format the value to two fixed decimal places and prefix it with a $ char-
acter.

LISTING 1.4 The Declaration of the Category and Price Columns in the DataGrid Control

...

<asp:TemplateColumn HeaderText=”Category”>

<ItemTemplate>

<%# Container.DataItem(“Category”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:RadioButtonList id=”lstCategory” runat=”server” />

<asp:CompareValidator id=”valCategory” runat=”server”

ControlToValidate=”lstCategory”

Operator=”NotEqual”

ValueToCompare=”5”

ErrorMessage=”This category is no longer available”

Display=”Dynamic” Text=”*” />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Price”

HeaderStyle-HorizontalAlign=”Center”

ItemStyle-HorizontalAlign=”Right”>

03 0672326744 CH01 5/4/04 12:22 PM Page 20

21Getting More from ASP.NET Validation Controls

<ItemTemplate>

<%# DataBinder.Eval(Container.DataItem, _

“UnitPrice”, “${0:F2}”) %>

</ItemTemplate>

<EditItemTemplate>

$<asp:TextBox Columns=”3” id=”txtPrice” runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“UnitPrice”, “{0:F2}”) %>’ />

<asp:RequiredFieldValidator id=”valPrice1” runat=”server”

ControlToValidate=”txtPrice”

ErrorMessage=”You must enter a price”

Display=”Dynamic” Text=”*” />

<asp:RangeValidator id=”valPrice2” runat=”server”

ControlToValidate=”txtPrice”

MaximumValue=”999.99”

MinimumValue=”0.99”

ErrorMessage=”Price must be between $0.99 & $999.99”

Display=”Dynamic” Text=”*” />

<asp:CustomValidator id=”valPrice3” runat=”server”

ControlToValidate=”txtPrice”

ClientValidationFunction=”ClientValidatePrice”

OnServerValidate=”ServerValidatePrice”

ErrorMessage=”The price must end with 0, 5 or 9”

Display=”Dynamic” Text=”*” />

</EditItemTemplate>

</asp:TemplateColumn>

...

LISTING 1.4 Continued

Displaying the Correct Currency Symbol
When you are displaying currency values, it’s tempting to format them using the standard currency
symbols (for example, {0:C}). However, bear in mind that the actual currency symbol displayed
depends on the locale of the server, so the application may display a different currency symbol if
installed on a machine that is set to a different locale. While this is perhaps unlikely in the United
States, it is more likely to be a concern in areas that support more than one “local” locale (pardon
the play on words). Specifying fixed format to two decimal places and declaring the currency charac-
ter explicitly protects against this happening.

BEST PRACTICE

The <EditItemTemplate> element for the Category column contains the RadioButtonList control
shown in Figure 1.5, plus a single validation control that (in this example) prevents the category
with key value 5 (Grains/Cereals) from being selected.

03 0672326744 CH01 5/4/04 12:22 PM Page 21

However, there are three validation controls attached to the text box in which the value of the
Price column is displayed. A RequiredFieldValidator control prevents the text box from being
left empty, and a RangeValidator control ensures that the entered value is a valid numeric value
between 0.99 and 999.99. Then, to add an extra twist, a CustomValidator control is added as well.
This uses both client-side and server-side functions (which we’ll discuss soon) to implement
good supermarket pricing practice by forcing the value to end with a 0, 5, or 9.

Figure 1.5 shows three rows of the DataGrid control, the last of which is in edit mode. You can
see the way that the Price column is formatted with the currency symbol in normal mode. In
edit mode, the value appears in the text box, and the currency symbol appears outside it.

1
Web Forms Tips and Tricks

22

FIGURE 1.5 The Price, Discontinued, and
EditCommand columns in the
DataGrid control.

The Discontinued and EditCommand Columns
Figure 1.5 shows the two remaining columns in the DataGrid control: the Discontinued and the
EditCommand columns. The Discontinued column displays a “tick” image for normal-mode
rows when that product is discontinued and a check box that allows the user to change the
status when the row in is edit mode. In the final column, the EditCommand column, you can
see that every row displays the Edit link when in normal mode, and the row that is in edit
mode displays the Update and Cancel links.

Listing 1.5 shows the declaration of these two columns. The Discontinued column contains an
<ItemTemplate> section that declares an ASP.NET Image control. Both the AlternateText and
ImageUrl properties of the Image control are bound to the value in this column of the current
row. If you hover the mouse pointer over the image in a normal-mode row, you see the ToolTip
generated by the AlternateText property, which contains either “True” or “False”. ASP.NET
formats values from a Boolean column like this when the general (“G”) format is specified.

Likewise, the ImageUrl property is automatically set to one of two values—”True.gif” or
“False.gif”—during the data binding process, depending on the value in this row. This means
that the appropriate one of the two images provided in the images folder within the root of the
application will be displayed. (False.gif is just an empty transparent image.)

The <EditItemTemplate> element for the Discontinued column is simple compared to the
<ItemTemplate> element. It contains just the declaration of the CheckBox control that is bound to
the values in this column.

The EditCommandColumn control, as shown in Listing 1.5, creates the Edit, Update, and Cancel
links shown in Figure 1.5. You simply specify an EditCommandColumn control and set the text
values for the links, and it will automatically generate the appropriate links, depending on
which mode the row is in.

03 0672326744 CH01 5/4/04 12:22 PM Page 22

23Getting More from ASP.NET Validation Controls

LISTING 1.5 The Declaration of the Discontinued and EditCommand Columns

...

<asp:TemplateColumn HeaderText=”Discontinued”

ItemStyle-HorizontalAlign=”Center”>

<ItemTemplate>

<asp:Image Width=”12” Height=”12” runat=”server”

AlternateText=’<%# DataBinder.Eval(Container.DataItem,_

“Discontinued”, “{0:G}”) %>’

ImageUrl=’<%# DataBinder.Eval(Container.DataItem, _

“Discontinued”, “~/images/{0:G}.gif”) %>’ />

</ItemTemplate>

<EditItemTemplate>

<asp:CheckBox id=”chkDiscontinued” runat=”server”

Checked=’<%# Container.DataItem(“Discontinued”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:EditCommandColumn EditText=”Edit”

CancelText=”Cancel” UpdateText=”Update” />

</Columns>

...

The Custom Validation Functions
Having looked at the declarations of the controls within the page, you can now look at the rele-
vant features of the code that make it all work. The first thing to consider is the two functions
required for the CustomValidator control that is attached to the text box in the Price column.

These functions look pretty similar to the ones discussed earlier in this chapter, in the section
“Validating a CheckBoxList Control,” but this time they enforce a different rule. They recognize
the value as being valid only if it ends with a 0, 5, or 9 (see Listing 1.6). In each case, the
current value of the control to which the validators are attached is available as the Value prop-
erty of the object passed to the function as the second parameter.

LISTING 1.6 The Client-Side and Server-Side Custom Validation Functions

<script language=”JavaScript”>

<!--

// client-side validation function for CustomValidator

function ClientValidatePrice(source, args) {

var bValid = false;

var sValue = args.Value.toString();

var sLast = sValue.substring(sValue.length - 1, sValue.length)

if (‘059’.indexOf(sLast) != -1)

bValid = true;

03 0672326744 CH01 5/4/04 12:22 PM Page 23

args.IsValid = bValid;

return;

}

//-->

</script>

...

<script runat=”server”>

Sub ServerValidatePrice(sender As Object, _

e As ServerValidateEventArgs)

Dim bValid As Boolean = False

Dim sValue As String = e.Value

If sValue.Length > 0 Then

Dim sLast As String = sValue.Substring(sValue.Length - 1)

If “059”.IndexOf(sLast) <> -1 Then

bValid = True

End If

End If

e.IsValid = bValid

End Sub

...

</script>

Handling the Page_Load Event
As with almost all pages that use a DataGrid control, you need to handle the Page_Load event to
populate the control the first time the page is loaded (see Listing 1.7). After that, the values the
control displays are held in the viewstate of the page. If you try to repopulate the DataGrid
control on every postback, it won’t be possible to properly set the mode (normal or edit) or
access the updated values.

LISTING 1.7 The Page_Load Event Handler and BindDataGrid Routine

‘ page level variable to hold a DataSet

Dim oDS As DataSet

Sub Page_Load()

If Not Page.IsPostback Then

BindDataGrid()

End If

End Sub

...

1
Web Forms Tips and Tricks

24

LISTING 1.6 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 24

25Getting More from ASP.NET Validation Controls

Sub BindDataGrid()

‘ try and get DataSet from current user’s Session

oDS = CType(Session(“inx11vdgr”), DataSet)

If oDS Is Nothing Then

lblErr.Text &= “Loaded DataSet from the database
”

‘ declare SQL statements and use them to fill the three tables

‘ code not shown here - see downloadable samples for details

‘ ...

‘ save DataSet in current user’s Session

Session(“inx11vdgr”) = oDS

End If

‘ bind DataGrid to Products table

dgr1.DataSource = oDS

dgr1.DataMember = “Products”

dgr1.DataBind()

End Sub

Note that you use a page-level variable to store a reference to the DataGrid control so that it is
available in all the routines in the page that may need to access it. The BindDataGrid routine
shown in the Page_Load event handler is also shown in Listing 1.7. The bulk of the data access
code has been removed from Listing 1.7 because there is nothing special about it; it just creates
the three SQL statements to extract the data from the Northwind database and push it into
three tables in the data set. You can download the sample code or use the [view source] link in
the online version (see www.daveandal.net/books/6744/) to see all the code.

The important point about the BindDataGrid routine is the way that it caches the DataSet object
in the user’s ASP.NET session in between page loads. It looks for a session variable named
inx11vdgr and attempts to convert that into a DataSet instance. If this is successful, the DataSet
object is reused, without requiring a trip back to the database to be filled.

However, if it is not found in the user’s session, it is filled and then stored there, ready for the
next postback and page load. This means that the page will automatically cache the DataSet
object where ASP.NET sessions are supported and gracefully fall back to re-creating and filling it
on each postback if sessions are not supported.

The final step is to bind the Products table in the DataSet object to the DataGrid control and call
the DataBind method to start the process of displaying the values.

LISTING 1.7 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 25

Handling the ItemDataBound Event
When you declared the DataGrid control in the page, you specified that the ItemDataBound event
should cause the routine named BindRowData to execute. You added this OnItemDataBound attribute
to the declaration of the DataGrid control:

OnItemDataBound=”BindRowData”

So, each time a row in the DataGrid control is bound to its data source row, the BindRowData
routine (shown in Listing 1.8) will be executed. In this routine, you have to populate the
DropDownList and RadioButtonList controls declared in the <EditItemTemplate> sections of the
DataGrid control, but you only have to do this for the row that is currently being edited. So you
check the ItemType property of the DataGridItemEventArgs instance passed to the event handler
first.

If this row is in edit mode, you can get a reference to each control in turn and then bind it to
the appropriate table in the DataSet object (Suppliers or Categories). You also have to select the
correct value in these two lists, depending on the value currently in the relevant column of this
row. You can extract the values of the columns in the current row from the Item.DataItem prop-
erty of the DataGridItemEventArgs instance, specifying the column name you require. The
Item.DataItem property is a reference to the DataRowView instance from the source data table that
is being used to populate this row of the DataGrid control.

LISTING 1.8 The BindRowData Handler for the ItemDataBound Event

Sub BindRowData(sender As Object, e As DataGridItemEventArgs)

‘ see what type of row (header, footer, item, etc.) caused event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

‘ only process it if it’s the row in Edit mode

If oType = ListItemType.EditItem Then

‘ get a reference to DropDownList control in the edit row

Dim oSupplier As DropDownList _

= CType(e.Item.FindControl(“lstSupplier”), DropDownList)

‘ bind it to the Suppliers table

oSupplier.DataSource = oDS

oSupplier.DataMember = “Suppliers”

oSupplier.DataTextField = “CompanyName”

oSupplier.DataValueField = “SupplierID”

oSupplier.DataBind()

‘ set the current selection to the row value

oSupplier.SelectedValue _

= e.Item.DataItem(“SupplierID”).ToString()

1
Web Forms Tips and Tricks

26

03 0672326744 CH01 5/4/04 12:22 PM Page 26

27Getting More from ASP.NET Validation Controls

‘repeat for Categories RadioButtonList

Dim oCategory As RadioButtonList _

= CType(e.Item.FindControl(“lstCategory”), RadioButtonList)

‘ bind it to the Categories table

oCategory.DataSource = oDS

oCategory.DataMember = “Categories”

oCategory.DataTextField = “CategoryName”

oCategory.DataValueField = “CategoryID”

oCategory.DataBind()

oCategory.SelectedValue _

= e.Item.DataItem(“CategoryID”).ToString()

End If

End Sub

At this point, the page is complete, as far as displaying the data is concerned. The combination
of calling the DataBind method against the table bound to the DataGrid control and the interven-
tion in the ItemDataBound event to populate and select the appropriate value for the nested list
controls in any edit row (although there will be no row in edit mode when the page first loads,
of course) means that the user will see what is shown in Figure 1.2.

LISTING 1.8 Continued

Selecting the Current Value in a Nested List Control
When you nest list controls inside another list control, such as a DataGrid, DataList, or Repeater
control, it’s important to select the appropriate value in each nested list control to match the value
already in the row. If you don’t, when the user submits the page, the value in the row will be
changed—even though the user hasn’t selected a different value in the nested list control.

BEST PRACTICE

Editing and Updating the Data
You need to consider how to handle edits to the data in the DataGrid control. In fact, the
process used in this example is basically the “standard” way that you see in documentation for
the DataGrid control: When the user clicks the Edit link, that row is displayed in edit mode, as
shown in earlier Figures 1.3 and 1.5. Listing 1.9 shows the DoItemEdit event handler that is
executed when any of the Edit links are clicked (recall that you specified the event handlers in
the declaration of the DataGrid control; for example, OnEditCommand=”DoItemEdit”).

03 0672326744 CH01 5/4/04 12:22 PM Page 27

LISTING 1.9 The DoItemEdit Handler for the EditCommand Event

Sub DoItemEdit(sender As Object, e As DataGridCommandEventArgs)

‘ set the EditItemIndex of the grid to this item’s index

dgr1.EditItemIndex = e.Item.ItemIndex

‘ bind grid to display newly-loaded data

BindDataGrid()

‘ display the validation error hints

helptext.Visible = True

End Sub

In the DoItemEdit routine, you just set the EditItemIndex property of the DataGrid control to
specify which row should be displayed in edit mode, and then you call the BindDataGrid routine
to display all the rows in their correct modes. You also display the hints (for causing a validation
error) shown at the bottom of the page, by setting the Visible property of the <div> element
that contains them to True.

Handling the UpdateCommand Event
After the user changes the values in the row that is in edit mode, he or she clicks the Update
link that is available in that row to push the changes back into the database. The Update link
causes the DoItemUpdate event handler to be executed, which builds up the SQL statement
required to update the original table in the database. You can see this in Listing 1.10. The code
simply references the four controls in this row that allow editing, and it uses their values to
create the SQL statement.

LISTING 1.10 The DoItemUpdate Handler and ExecuteSQLStatement Routine for the
UpdateCommand Event

Sub DoItemUpdate(sender As Object, e As DataGridCommandEventArgs)

If Page.IsValid Then

‘ remove existing DataSet from current user’s Session

Session(“inx11vdgr”) = Nothing

‘ get a reference to controls in the edit row

Dim oSupplier As DropDownList _

= CType(e.Item.FindControl(“lstSupplier”), DropDownList)

Dim oCategory As RadioButtonList _

= CType(e.Item.FindControl(“lstCategory”), RadioButtonList)

Dim oPrice As TextBox _

= CType(e.Item.FindControl(“txtPrice”), TextBox)

1
Web Forms Tips and Tricks

28

03 0672326744 CH01 5/4/04 12:22 PM Page 28

29Getting More from ASP.NET Validation Controls

Dim oDisc As CheckBox _

= CType(e.Item.FindControl(“chkDiscontinued”), CheckBox)

‘ create a suitable SQL statement and execute it

Dim sSQL As String

sSQL = “UPDATE Products SET SupplierID=” & oSupplier.SelectedValue & “, “ _

& “CategoryID=” & oCategory.SelectedValue & “, “ _

& “UnitPrice=” & oPrice.Text & “, “ _

& “Discontinued=” & CType(oDisc.Checked, Int16) & “ “ _

& “WHERE ProductID=” & dgr1.DataKeys(e.Item.ItemIndex)

ExecuteSQLStatement(sSQL)

‘ set EditItemIndex of grid to -1 to switch out of Edit mode

dgr1.EditItemIndex = -1

‘ bind grid to display row in new mode

BindDataGrid()

‘ hide the validation error hints

helptext.Visible = False

End If

End Sub

...

Sub ExecuteSQLStatement(sSQL)

‘ execute SQL statement against the original data source

Dim sConnect As String _

= ConfigurationSettings.AppSettings(“NorthwindOleDbConnectString”)

Dim oConnect As New OleDbConnection(sConnect)

Try

oConnect.Open()

Dim oCommand As New OleDbCommand(sSQL, oConnect)

If oCommand.ExecuteNonQuery() <> 1 Then

lblErr.Text &= “ERROR: Could not update the selected row
”

End If

oConnect.Close()

Catch oErr As Exception

LISTING 1.10 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 29

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text &= “ERROR: “ & oErr.Message & “
”

End Try

End Sub

1
Web Forms Tips and Tricks

30

LISTING 1.10 Continued

Using a Stored Procedure to Update the Data Store
This section, of course, provides a demonstration of the use of the ASP.NET controls and is not the
ideal real-world approach. You should consider using a stored procedure to push the changes back
into the database, or at least use a parameterized SQL statement to prevent users from attacking
the database by entering malicious text into edit controls. See Chapter 10, “Relational Data-Handling
Techniques,” for more details.

BEST PRACTICE

Also notice that this routine first removes any existing DataSet instance from the user’s ASP.NET
session so that the new data will be fetched from the database when the BindDataGrid routine is
called toward the end of this routine. However, before calling this routine to repopulate the
grid, you set the EditItemIndex property to 0 so that the current row will go out of edit mode.
You end by hiding the hint text again because it applies only when there is a row in edit mode.

Listing 1.10 also shows the ExecuteSQLStatement routine that the DoItemUpdate routine uses to
actually execute the SQL statement—with the ExecuteNonQuery method of a Command instance. If
an error occurs, a message is displayed in the page. However, because you’ve validated all your
values first, you should be protected from simple data update errors!

Handling the CancelCommand Event
The only other link in the DataGrid control that the user might click (available only for the row
that is currently being edited) is the Cancel link. The event handler that executes when this
occurs only has to reset the EditItemIndex property of the DataGrid control, repopulate the
control (using the cached DataSet object, if one is available), and hide the hint text (see
Listing 1.11).

03 0672326744 CH01 5/4/04 12:22 PM Page 30

31Taking Control of Content Layout in a DataGrid Control

LISTING 1.11 The DoItemCancel Handler for the CancelCommand Event

Sub DoItemCancel(sender As Object, e As DataGridCommandEventArgs)

‘ set EditItemIndex of grid to -1 to switch out of Edit mode

dgr1.EditItemIndex = -1

‘ bind grid to display row in new mode

BindDataGrid()

‘ hide the validation error hints

helptext.Visible = False

End Sub

Removing Existing Session Data
The final section of code in the DataGrid control validation sample page runs when the Kill
Session button is clicked. This button is outside the DataGrid control, so a standard event
handler is used. In it, you just remove the existing DataSet object from the user’s ASP.NET
session and then call the BindDataGrid routine to re-create and fill it (see Listing 1.12).

LISTING 1.12 The KillSession Handler for the Click Event of the Button Control

Sub KillSession(sender As Object, e As EventArgs)

‘ remove existing DataSet from current user’s Session

Session(“inx11vdgr”) = Nothing

‘ bind grid to display newly loaded data

BindDataGrid()

End Sub

Taking Control of Content Layout in a
DataGrid Control
The majority of the previous sections of this chapter concentrate on the use of the ASP.NET vali-
dation controls, especially within a DataGrid control. However, we have also looked at a few
other features of the DataGrid control along the way, including the use of nested list controls
within a DataGrid control.

We’ll come back to the issues of using nested list controls in a lot more detail in Chapter 4.
However, there are a couple other interesting topics we cover next in this chapter that also use

03 0672326744 CH01 5/4/04 12:22 PM Page 31

DataGrid controls. These techniques are not concerned with nested controls but with how you
can get more from the ASP.NET server controls when you build your applications and Web
pages.

The following sections look at an example that moves away from the standard approach and
appearance of the DataGrid control to provide something that might be more intuitive or useful
to users. And it’s no more complicated to implement than the “ordinary” approach. It should
help remind you that you can often find solutions or develop new techniques just by thinking
laterally—and by becoming familiar with all the properties, methods, and events of the ASP.NET
server controls.

Controlling the Width of Columns in a DataGrid Control
In Figure 1.6, the Precis column contains a lot of text. Normally, the table that a DataGrid
control creates would expand to fill the width of the browser window, making the Precis
column a lot wider (and perhaps making the content harder to read). However, for this example,
we’ve specified the width of each of the columns in the declaration of the DataGrid control so
that they no longer expand to fill the available width.

1
Web Forms Tips and Tricks

32

FIGURE 1.6
Controlling the width of
columns in a DataGrid control.

To specify the width of a column, you simply add the ItemStyle-Width attribute to the declara-
tion of the column:

ItemStyle-Width=”300px”

03 0672326744 CH01 5/4/04 12:22 PM Page 32

33Taking Control of Content Layout in a DataGrid Control

In Internet Explorer, this causes the DataGrid control to add the width style selector to the
opening <td> tag of the table cell that represents this column:

<td style=”width:300px;”>...</td>

However, like most of the ASP.NET Web Forms controls, the DataGrid control generates different
output for “up-level” clients than for “down-level” clients. Only Internet Explorer 5.x and
higher are classified as up-level, even though most other modern browsers understand CSS. But
thankfully, the DataGrid control is clever enough to cope with this by adding the width attribute
to the opening <td> tags in other browsers:

<td width=”300”>...</td>

It doesn’t matter what type of column you’re working with—BoundColumn, TemplateColumn,
HyperlinkColumn, EditCommandColumn, or other type of column. The only limitation seems to be
that the width cannot be made less than the longest “unbreakable” section of text or other
content. In other words, the column won’t shrink to less than the length of the longest unhy-
phenated word or the width of an image.

Setting the Width of All the Columns
You should set the width of all the columns in a DataGrid control which contain text that might
disturb the layout you want for your page. The browser allocates the column widths dynamically,
based on the width of the content, restrictions applied to each <td> element, and the width of the
browser window. So just limiting the width of one column allows the other columns to grow to fill the
available width.

BEST PRACTICE

Using Multiple Edit Controls in a DataGrid Control Column
The example shown in Figure 1.6 contains an Edit link in each row. Clicking the Edit link
changes that row into edit mode, and the content of the Precis column is displayed in two
TextBox controls, as shown in Figure 1.7.

FIGURE 1.7
Editing the contents of the Precis
column in two TextBox controls.

03 0672326744 CH01 5/4/04 12:22 PM Page 33

In fact, the content of the Precis column shown in the DataGrid control comes from two
columns in the original data source. We’ve used code (not listed here) in the page to generate an
ADO.NET DataTable instance that contains three columns: ISBN, Title, and Precis. Listing 1.13
shows the complete declaration of the TemplateColumn element that implements the Precis
column in the DataGrid control. We use the ItemStyle-Width attribute, and we also add the
ItemStyle-VerticalAlign=”Top” attribute to every column to get the layout we want.

The <ItemTemplate> element simply specifies the contents of the two columns, Title and Precis,
with the Title column in bold and followed by a
 element. The <EditItemTemplate>
element contains two TextBox controls, again separated by a
 element. The second one is
set to multiline mode, and we specify the number of rows (lines). This means that the layout of
the content in the Precis column doesn’t change when the user switches the row into edit
mode, but the two separate values are available for editing.

LISTING 1.13 The TemplateColumn Declaration for the Precis Column

<asp:TemplateColumn HeaderText=”Precis”

HeaderStyle-HorizontalAlign=”Left”

ItemStyle-Width=”300px”

ItemStyle-VerticalAlign=”Top”>

<ItemTemplate>

<%# Container.DataItem(“Title”) %>

<%# Container.DataItem(“Precis”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:Textbox id=”txtTitle” runat=”server”

Width=”300” Style=”width:300px”

Text=’<%# Container.DataItem(“Title”) %>’ />

<asp:Textbox id=”txtPrecis” runat=”server”

TextMode=”MultiLine” Rows=”5”

Width=”300” Style=”width:300px”

Text=’<%# Container.DataItem(“Precis”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

The sample page contains code to handle the various edit and update events of the DataGrid
control, exactly as is done in earlier examples, but it doesn’t actually persist the changes. This is
because the data is generated by code within the page and not taken from a database. However,
the code in the page does generate a sample SQL statement that could be executed to update a
database, and it displays the SQL statement at the bottom of the page when the Update link is
clicked. (Figure 1.8 provides a combined before-and-after view of the results.)

1
Web Forms Tips and Tricks

34

03 0672326744 CH01 5/4/04 12:22 PM Page 34

35Taking Control of Content Layout in a DataGrid Control

Just because there are two controls in the same column of each row doesn’t change the way that
you can access each control. The FindControl method, which is used in previous examples to get
a reference to an edit control in the current row, works just the same:

Dim oTitle As TextBox _

= CType(e.Item.FindControl(“txtTitle”), TextBox)

Dim oPrecis As TextBox _

= CType(e.Item.FindControl(“txtPrecis”), TextBox)

You can use the [view source] link at the bottom of the sample page in the online version (see
www.daveandal.net/books/6744/) to see all the code if you wish.

Controlling the Width of Edit Controls in a DataGrid Control
One more issue arises that you need to be aware of when specifying column widths in a DataGrid
control. Although the DataGrid control is clever enough to handle column widths for both up-
level and down-level clients, the same can’t be said for many other Web Forms controls.

For example, the TextBox control has both a Width property and a Columns property. The value of
the Columns property is used to set the size attribute of the <input type=”text”> element that is
generated, which vaguely controls the width, based on the number of characters and the font
size and style settings. However, the value of the Width property is used to generate a style attrib-
ute that accurately determines the width of the control, regardless of the font size and style
settings.

Unfortunately, this style attribute is only output to up-level clients, so in even the latest of the
non-Internet Explorer browsers (the down-level clients), the text box assumes some default
width of its own. You need to declaratively add the style attribute you want. The
EditItemTemplate section that follows specifies both the Width and Style properties of the two
TextBox controls:

<EditItemTemplate>

<asp:Textbox id=”txtTitle” runat=”server”

Width=”300” Style=”width:300px”

Text=’<%# Container.DataItem(“Title”) %>’ />

<asp:Textbox id=”txtPrecis” runat=”server”

TextMode=”MultiLine” Rows=”5”

Width=”300” Style=”width:300px”

Text=’<%# Container.DataItem(“Precis”) %>’ />

</EditItemTemplate>

FIGURE 1.8
Displaying a SQL statement after editing the
contents of the Precis column.

03 0672326744 CH01 5/4/04 12:22 PM Page 35

Now the page looks and works the same in most of the new browsers and in some not-so-new
ones as well (for example, Netscape Navigator 4.5).

Providing Scrollable Content in a DataGrid Control
Limiting the width of columns in a DataGrid control is a useful way to exert extra control over
the appearance of pages. However, if there is a lot of content in a cell, the DataGrid control
expands vertically to accommodate all of it. You can easily prevent this by placing the content
into scrollable containers in each column.

Figure 1.9 shows the sample page. You can see that in the Precis column, the rows that are in
normal mode display the content inside a scrollable container. In edit mode, a multiline TextBox
control allows the content to be edited just as in the previous example (although the controls
that display the title have been removed from this example).

1
Web Forms Tips and Tricks

36

FIGURE 1.9
Using scrollable containers within a
DataGrid control.

To enable scrolling for the contents of a column, you need to enclose it in a suitable container
element and add the appropriate style selectors to that container element. The obvious choice

of container element is a <div> element or an
ASP.NET Panel control. If you don’t intend to
reference the content of the column in
normal mode, the container doesn’t have to
be a server control (it will not contain the
runat=”server” attribute). In this case, it can
be an ordinary HTML element and therefore
not part of the ASP.NET control tree when the
page is being generated on the server side.

When to Access the Controls
Usually the only reason you would need to
reference the controls in a row when it is not
in edit mode is if you are modifying the
content as the DataGrid control is generat-
ing its output (for example, during the
ItemDataBound event).

03 0672326744 CH01 5/4/04 12:22 PM Page 36

37Taking Control of Content Layout in a DataGrid Control

There is no need to reference the content of the Precis column in normal mode in this example,
so we can use a <div> element. If you decide to use a server control, beware of the ASP.NET Panel
control. Although it generates a <div> element in Internet Explorer 5.x and higher, it generates
an HTML <table> element in all other browsers. The <div> element was not part of the original
HTML recommendations, although almost all browsers in use today do recognize it.

Using the HtmlGenericControl Class
Instead of using the Panel control, you might prefer to generate a server-side <div> control
explicitly in order to avoid the issue of the Panel control changing its output depending on the
browser:

<div id=”MyDiv” runat=”server”>Content goes here</div>

You implement this by using the ASP.NET HtmlGenericControl class, which is used for any
element that contains the runat=”server” attribute but is not implemented by a specific control
type within the .NET Framework. The HtmlGenericControl class (located in the System.Web.
UI.HtmlControls namespace) is descended from Control and HtmlControl, and it implements
several of the common properties that all server controls provide.

It exposes an Attributes collection and a Controls collection, together with properties such as ID,
Disabled, EnableViewState, Page, Parent, Visible, and Style. It also has a TagName property that is
read/write and that reflects the actual HTML tag that is generated (such as “DIV” or “P”). (We’ll
be looking at the Controls collection in more detail later in this chapter.)

The only unusual feature is that there is no Text or Value property. Instead, you read or write the
content of the element by using the InnerHtml property (which sets or returns all the content
between the opening and closing tags of the control, including other elements), or the InnerText
property (which sets or returns just the text content of the control).

Listing 1.14 shows the TemplateColumn declaration for the scrollable content example shown in
Figure 1.9. Notice that the ItemStyle-Width attribute has been removed from the TemplateColumn
itself because the container control will be of a fixed size and will restrain the content—so the
column will not expand beyond the size of the container element.

You can see the various style selectors applied to the <div> element. As well as width and height,
this code turns on scrollbars with the overflow selector. To give the appearance of a container, a
thin black border is added, and the background is changed to white.

LISTING 1.14 The TemplateColumn Declaration for the Scrollable Content Version of the
Precis Column

<asp:TemplateColumn HeaderText=”Precis”

HeaderStyle-HorizontalAlign=”Left”>

<ItemTemplate>

<div style=”width:300;height:70;overflow:scroll;

border:1 solid black;padding:2;

background-color:white”>

<%# Container.DataItem(“Precis”) %>

03 0672326744 CH01 5/4/04 12:22 PM Page 37

</div>

</ItemTemplate>

<EditItemTemplate>

<asp:Textbox id=”txtPrecis” runat=”server”

TextMode=”MultiLine” Rows=”4”

Width=”300” Style=”width:300px”

Text=’<%# Container.DataItem(“Precis”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

You might like to experiment with the CellPadding and CellSpacing properties of the DataGrid
control, as well as with different values of the border style selector, to get a different appearance
for the scrollable regions. For example, “style=border:3 inset” when CellPadding and CellSpacing
are both zero gives a very compact grid-like effect.

Loading Controls Dynamically at Runtime
When the ASP team at Microsoft was designing ASP.NET, it probably seemed obvious that the
way forward was to compile the pages into some kind of executable code. This approach means
that there is a distinct separation between the tasks (and the amount of processing work
ASP.NET has to do) of generating a page the first time it is executed—when it has to be compiled
and the resulting code written to disk—and subsequent executions of the compiled code.

As a result, the way that the structure and content of a page are discovered and created from a
file containing declarative definitions and code in <script runat=”server”> sections only affects
the “initial hit” performance and not the performance on subsequent requests. Consequently,
this has provided a development environment that supports quite complex page creation tech-
niques, such as the use of server controls and user controls, page and control state maintenance,
and dynamic creation of a control tree for the page.

In particular, the use of a developer-accessible control tree has made it really easy to use
ASP.NET to build pages that, in ASP 3.0 and many other Web development environments,
would required complicated Response.Write statements, #include directives, and other tricks.

Being able to create controls dynamically at runtime, meanwhile, is extremely useful if you
don’t know beforehand how many instances of a particular control you need on the page. For
example, you might need to create a number of text boxes or buttons, depending on the value
entered by the user, which could therefore be different each time the page is executed.

The ASP.NET Control Tree
As ASP.NET processes a page, it generates a control tree that contains references to all the server
controls on the page. Note that this only includes server controls—basically declarative elements
that contain the runat=”server” attribute. Figure 1.10 shows a conceptual view of a page that

1
Web Forms Tips and Tricks

38

LISTING 1.14 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 38

39Loading Controls Dynamically at Runtime

contains several server controls, including a server-side <form> element that contains many of
the controls on the page. Notice also that the Hyperlink and HtmlAnchor (<a> element) controls in
this example have child Image and HtmlImage controls. These represent the typical output that
provides clickable images:

Page

HtmlGenericControl

Label

Image

TextBox

HtmlInputFile

CheckBox

Hyperlink

Button

Image

HtmlAnchor
HtmlImage

HtmlForm

Label

FIGURE 1.10 A conceptual view of an
ASP.NET page that contains
nested controls.

In more technical terms, the page consists of a hierarchy of control instances. Figure 1.11 shows
this in tree form. Each object in the tree is a server control that is descended directly or indi-
rectly from System.Web.UI.Control and thus exposes a Controls property that references a
ControlCollection instance. Each ControlCollection instance is, as you might guess, a collection
of references to all the child controls for that control.

You can manipulate the control tree by adding controls to and removing them from these
ControlCollection instances. When the page is rendered, the control tree is used to build the
HTML (or other output) that is sent to the client. Table 1.1 shows the properties and methods of
the ControlCollection object that are useful when manipulating the control tree.

03 0672326744 CH01 5/4/04 12:22 PM Page 39

TABLE 1.1
The Members of the ControlCollection Object for Working with, Adding, and Removing Controls

Property or Method Description

Count Returns the number of controls in the ControlCollection instance.

Item Acts as the indexer for the zero-based ControlCollection instance, returning a
reference to a control within the collection.

Add(control) Adds the Control instance referenced by the control parameter to the end of the
ControlCollection instance of this control.

AddAt(index, control) Inserts the Control instance referenced by the control parameter into the
ControlCollection instance of this control at the specified Integer index.

Clear() Removes all the controls from the ControlCollection instance of this control.

Contains(control) Returns a Boolean value indicating whether the Control instance referenced in the
control parameter is a member of this control’s ControlCollection instance.

IndexOf(control) Returns the Integer index of the Control instance referenced in the control
parameter within this control’s ControlCollection instance.

Remove(control) Removes the Control instance referenced in the control parameter from this
control’s ControlCollection instance.

RemoveAt(index) Removes the Control instance at the specified Integer index from this control’s
ControlCollection instance.

Adding Controls to the Control Tree
In most cases, you can just use the Add method to add controls to the control tree in the correct
order to produce the output you want. This is generally easier than trying to figure out where to
insert a control within a collection, although the other methods are useful if you need to do any
complex management of the child controls for a particular control.

Probably the easiest way to insert a control into a page at a specific point is to use an ASP.NET
PlaceHolder control. This generates no output in the page, but it does expose a ControlCollection
instance to which you can add other controls. When you use this approach, the newly added

1
Web Forms Tips and Tricks

40

Page

Label

Label

HtmlGeneric
Control

Image CheckBox

TextBox HtmlInputFile Button

HtmlAnchor

HtmlImage

Hyperlink

Image

HtmlForm

FIGURE 1.11
The ASP.NET control tree
for the page shown in
Figure 1.10.

03 0672326744 CH01 5/4/04 12:22 PM Page 40

41Loading Controls Dynamically at Runtime

controls will always appear in the same position in the page, even if you later add or remove
controls from elsewhere in the control tree or the parent control’s ControlCollection instance.

The following code demonstrates the use of the PlaceHolder control. In the Page_Load event, you
just create a new Hyperlink control and set the NavigateUrl property. Then you create a new
Image control and specify its ImageUrl property. Next, you add the Image control to the
ControlCollection instance of the Hyperlink control and add the Hyperlink control to the
ControlCollection instance of the PlaceHolder control:

<asp:PlaceHolder id=”ph1” runat=”server” />

...

Sub Page_Load()

Dim oLink As New Hyperlink()

oLink.NavigateUrl = “http://www.daveandal.net”

Dim oImage As New Image()

oImage.ImageUrl = “~/images/True.gif”

oLink.Controls.Add(oImage)

ph1.Controls.Add(oLink)

End Sub

When the page is rendered, the following
output is generated (ASP.NET automatically
adds the border=”0” attribute):

Creating a DataGrid Control Dynamically at Runtime
Compared to the previous, somewhat trivial example, the following example generates a more
complex page which contains a DataGrid control that supports inline editing. The result is
shown in Figure 1.12.

The Actual Output Format
The output is not actually indented as shown
here, but instead is generated as a single line
with no spaces or carriage returns. In this
example it is formatted with carriage returns
and indented so that you can see the result
more clearly.

FIGURE 1.12
A dynamically generated DataGrid
control.

03 0672326744 CH01 5/4/04 12:22 PM Page 41

The page contains all the server-side code to handle the events in the DataGrid control, using the
same techniques in the first example in this chapter. (We won’t be looking at that code here.)
With this example, we are interested in the way that the DataGrid control itself is generated. The
HTML section of the sample page contains a server-side <form> element, but no other content:

<form id=”frmMain” runat=”server”>

<!-- DataGrid and Label will be dynamically inserted here -->

</form>

Instead, the DataGrid control and the Label
control used to display any data access errors
are added to the page dynamically during the
Page_Load event. Also, the various events in
the DataGrid control are wired to the appropri-
ate event handlers already located in the
<script> section of the page.

The previous example uses a PlaceHolder
control as the container to which the new
controls are added. However, a server-side
<form> element works just as well, and in this
example you can add the controls directly to
the ControlCollection instance of the HtmlForm
control that implements the server-side <form>
control.

Setting Size and Color Properties Dynamically
You can generate values for some of the properties of Web Forms server controls. Properties that
set the color of parts of the output, such as ForeColor and BackColor, accept references to a Color
structure. Properties that accept sizes, such as Width and BorderWidth, accept references to a Unit
structure. When declaring a server control in the HTML section of the page, you can use the
color names or size values directly, as in this example:

<HeaderStyle ForeColor=”#ffffff” BackColor=”#b50055” />

<ItemStyle BorderWidth=”1px” />

However, to set these properties dynamically, you have to provide an instance of the correct
structure classes. Here’s an example:

oGrid.HeaderStyle.ForeColor = Color.FromName(“#ffffff”)

oGrid.HeaderStyle.BackColor = Color.FromName(“#b50055”)

oGrid.ItemStyle.BorderWidth = Unit.Pixel(1)

The Unit structure is part of the System.Web.UI.WebControls namespace, so it is available by
default in all ASP.NET Web pages. However, the Color structure is defined in the System.Drawing

1
Web Forms Tips and Tricks

42

Choosing the Event when Adding Controls
Instead of generating the controls during
other ASP.NET page events, such as Init or
Render, we had most success getting the
process to work reliably, especially when
wiring up event handlers, by using the
Page_Load event. The controls must be
generated on every postback (not just when
the page is first loaded) and in exactly the
same order and with the same ID values.
Unlike control values, dynamically generated
controls are not maintained in the viewstate
of the page. However, values are maintained
and will be reloaded after the controls have
been created and added to the control tree.

03 0672326744 CH01 5/4/04 12:22 PM Page 42

43Loading Controls Dynamically at Runtime

namespace, which is not imported into ASP.NET pages by default. Therefore, you have to
include the appropriate Import directive in any pages that reference a Color structure:

<%@Import Namespace=”System.Drawing” %>

Creating the DataGrid Control
Creating the DataGrid control itself is not difficult; it just requires quite a lot of repetitive code.
You create an instance of a DataGrid control, set all the properties, and then you add it to the
Controls collection of the <form> element in the page. You do the same with the Label control
that will display any data access errors.

Listing 1.15 shows the declaration of two page-level variables that are used to hold references to
the new controls (so that they can be accessed in routines other than the Page_Load event
handler), followed by the start of the Page_Load event handler. Here, you create the DataGrid
control and add all the properties that set the appearance and behavior of the control. You can
reduce the amount of code required by taking advantage of the Visual Basic .NET With construct.

Notice how you set the properties of objects that are actually children of the DataGrid control,
such as the HeaderStyle, ItemStyle, and AlternatingItemStyle objects. You can use a nested With
construct or just reference them by using a period to access the child objects.

LISTING 1.15 Dynamically Generating a DataGrid Control

Dim oGrid As DataGrid

Dim oLabel As Label

Sub Page_Load()

‘ create a DataGrid control

oGrid = New DataGrid()

‘ set control properties

With oGrid

.id = “dgr1”

.BorderStyle = BorderStyle.None

.BorderWidth = Unit.Pixel(0)

.BackColor = Color.FromName(“#deba84”)

.CellPadding = 3

.CellSpacing = 0

.DataKeyField = “CustomerID”

.Width = Unit.Percentage(100)

.AutoGenerateColumns = False

With .HeaderStyle

.Font.Bold = True

.ForeColor = Color.FromName(“#ffffff”)

.BackColor = Color.FromName(“#b50055”)

End With

03 0672326744 CH01 5/4/04 12:22 PM Page 43

.ItemStyle.BackColor = Color.FromName(“#fff7e7”)

.AlternatingItemStyle.BackColor = Color.FromName(“#ffffc0”)

End With

‘ create a column for the DataGrid control

‘ and set properties

Dim oCol1 As New EditCommandColumn()

With oCol1

.EditText = “Edit”

.CancelText = “Cancel”

.UpdateText = “Update”

End With

‘ add column to DataGrid

oGrid.Columns.Add(oCol1)

‘ repeat for remaining columns

Dim oCol2 = New BoundColumn()

With oCol2

.DataField = “CustomerID”

.HeaderText = “ID”

.ReadOnly = True

End With

oGrid.Columns.Add(oCol2)

...

‘ same for CompanyName, City, Country and Phone columns

...

Toward the end of Listing 1.15, you can see the columns being added. You create an instance of
the appropriate type of column, set the properties, and then add the column to the Columns
collection. Like the Controls property, the Columns property of a DataGrid control is a collection
of references to the columns that make up the DataGrid control. Listing 1.15 does not contain
the declarations of the Company Name, City, Country, and Phone columns because they are
identical to the Customer ID column (except, of course, that they refer to different columns in
the source data).

Wiring Up the DataGrid Control Events
With the DataGrid control complete, you can attach its events to the appropriate event handler
routines already present in the page, as shown in Listing 1.16. In Visual Basic .NET you use the
AddHandler statement, and in C# you just append the event delegates by using the += operator.
You can wire up the EditCommand, UpdateCommand, and CancelCommand events, targeting them at the

1
Web Forms Tips and Tricks

44

LISTING 1.15 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 44

45Loading Controls Dynamically at Runtime

event handlers named DoItemEdit, DoItemUpdate, and DoItemCancel. This achieves the same result
as declaring them directly in the page, as in the DataGrid control example earlier in this chapter:

OnEditCommand=”DoItemEdit”

OnUpdateCommand=”DoItemUpdate”

OnCancelCommand=”DoItemCancel”

LISTING 1.16 Wiring Up the Event Handlers, Creating the Label Control, and Populating the
DataGrid Control

...

‘ add event handlers to the grid

AddHandler oGrid.EditCommand, _

New DataGridCommandEventHandler(AddressOf DoItemEdit)

AddHandler oGrid.UpdateCommand, _

New DataGridCommandEventHandler(AddressOf DoItemUpdate)

AddHandler oGrid.CancelCommand, _

New DataGridCommandEventHandler(AddressOf DoItemCancel)

‘ create new Label control and set properties

oLabel = New Label()

With oLabel

.id = “lblErr”

.EnableViewState = False

End With

‘ add new controls to page as children of <form>

frmMain.Controls.Add(oGrid)

frmMain.Controls.Add(oLabel)

‘ only need to databind if it is not a postback

‘ viewstate used to populate dynamically added controls

If Not Page.IsPostback Then

oGrid.DataSource = GetCustomers()

oGrid.DataBind()

End If

End Sub

After attaching the event handlers, you generate a new Label control and set its properties. Then
you add the DataGrid and the Label controls to the ControlCollection instance of the server-side
<form> control declared in the page (as shown in Listing 1.16).

Populating the DataGrid Control
The final task in this example, shown at the end of Listing 1.16, is to populate the DataGrid
control. As long as the control tree you generate is the same every time the page is loaded, the

03 0672326744 CH01 5/4/04 12:22 PM Page 45

values of all the controls will be maintained through the viewstate of the page—even for
dynamically added controls. So you only have to perform the data binding to the data source if
this is not a postback, just as you would if you had declared the DataGrid control directly within
the HTML section of the page.

The viewstate of the page also stores the values of many of the other properties of the controls
on the page. So if you allow users to modify properties, such as whether specific columns are
visible or the color of the text, you’ll want these values to be preserved across page loads and
not be reset every time you regenerate the control. In this case, you can set the values only the
first time the page loads, at the same time as populating the DataGrid control. For example, this
code sets the style of the header row only when the page first loads, but it is maintained across
postbacks within the viewstate of the page:

If Not Page.IsPostback Then

oGrid.DataSource = GetCustomers()

oGrid.DataBind()

oGrid.HeaderStyle.Font.Bold = True

oGrid.HeaderStyle.ForeColor = Color.FromName(“#ffffff”)

oGrid.HeaderStyle.BackColor = Color.FromName(“#b50055”)

End If

Loading User Controls Dynamically at Runtime
The final topic we’ll briefly look at to finish this chapter is dynamically loading user controls at
runtime. In theory, the principles are the same as for the DataGrid control; however, there are a
couple things to be aware of with user controls. A user control is not strongly typed—in other
words, it is usually generated as an instance of the generic UserControl class, whereas other
server controls are specific classes from the .NET Framework class library.

You can use the LoadControl method of the Page object to load a user control. The following
code takes the path and name of the .ascx disk file and returns a reference to the control as a
UserControl instance that you can add to the ControlCollection instance of any other control:

Dim oNewCtrl As UserControl = LoadControl(“path-to-ascx-file”)

oExistingControl.Controls.Add(oNewCtrl)

This is fine if the user control is simply some static user interface content. However, if you want
to access properties or other members of the user control, you have a problem because the
UserControl class that represents the user control doesn’t expose them. In that case, you have to
add to the page a reference to the user control, and you have to specify the classname of the
user control in the .ascx file.

When you insert a user control in the page declaratively, you use a Register directive to specify
the tag prefix and tag name you’ll be using, and you use the path and name of the .ascx file
that implements the user control. Here’s an example:

<%@Register TagPrefix=”ahh” TagName=”Spinbox”

Src=”..\ascx\user-spinbox.ascx” %>

1
Web Forms Tips and Tricks

46

03 0672326744 CH01 5/4/04 12:22 PM Page 46

47Loading Controls Dynamically at Runtime

When you want to insert a user control dynamically and be able to access it as a strongly typed
object, you use the Reference directive instead. The following example just takes the path and
name of the user control:

<%@Reference Control=”..\ascx\user-spinbox.ascx” %>

However, this assumes that the user control itself declares a classname. In the user control, you
have to add the ClassName attribute to the Control directive, as in this example:

<%@Control Language=”VB” ClassName=”UserSpinBox” %>

Now you can use the CType statement in Visual Basic (or a direct cast in C#) to convert the
UserControl reference into a reference to the specific class. For example, you can load an
instance of the SpinBox user control you’ll be meeting later in this book and expose it as a
UserSpinBox instance with the following code:

Dim oCtrl As UserControl = LoadControl(“..\ascx\user-spinbox.ascx”)

Dim oSpinBox As UserSpinBox = CType(oCtrl, UserSpinBox)

Alternatively, if you just want to set a property (such as the Increment property), you can use
something like this:

Dim oCtrl As UserControl = LoadControl(“..\ascx\user-spinbox.ascx”)

CType(oCtrl, UserSpinBox).Increment = 3

oPlaceHolder.Controls.Add(oCtrl)

An Example of Loading a User Control
To briefly demonstrate the dynamic loading of a user control, the final example in this chapter
loads instances of the custom SpinBox user control, as shown in Figure 1.13.

The page contains both a Register and a Reference directive for the SpinBox user control:

<%@Register TagPrefix=”ahh” TagName=”Spinbox”

Src=”..\spinbox\ascx\user-spinbox.ascx” %>

<%@Reference Control=”..\spinbox\ascx\user-spinbox.ascx” %>

The first SpinBox instance you see in the page
is inserted declaratively, which is possible
because of the presence of the Register direc-
tive. However, as you can see from Listing
1.17, the remainder of the page is made up
basically of three PlaceHolder controls where
you can dynamically add the other instances
of the SpinBox control.

Running the SpinBox Example
As you’ll see in Chapter 8, “Building Adaptive
Controls,” which discusses the SpinBox
control, you have to copy a file that we
provide with the samples into the
aspnet_client folder of your Web site for
this example to work. You should copy the
file spinbox.js from the samples into a new
subfolder named custom within the
aspnet_client folder of your Web site.

03 0672326744 CH01 5/4/04 12:22 PM Page 47

LISTING 1.17 The <form> Section of the Page and Declaration of One SpinBox Control

<form runat=”server”>

Declared in HTML section of page: <ahh:Spinbox runat=”server” />

<hr />

Created dynamically: <asp:PlaceHolder id=”ph1” runat=”server” />

<hr />

Inserting three new control instances:<p />

<asp:PlaceHolder id=”ph2” runat=”server” />

<hr />

Inserting three instances of the same control reference:

<asp:PlaceHolder id=”ph3” runat=”server” />

</form>

Listing 1.18 shows the Page_Load event handler. You generate a SpinBox control as a UserControl
instance, and then you set the Increment property by converting the reference into a UserSpinBox
instance, before adding it to the ControlCollection instance of the first PlaceHolder control.

Next, you add three separate new instances of the SpinBox control to the ControlCollection
instance of the second PlaceHolder control. (You may have wondered if it is possible to use
multiple instances of the same control.) You place each one on a new line by separating them
with a
 element. Notice how you generate this by using an HtmlGenericControl instance, as
mentioned earlier in this chapter.

LISTING 1.18 The Page_Load Event Handler That Loads the SpinBox Control Instances

Sub Page_Load()

Dim oCtrl1 As UserControl = LoadControl(“..\spinbox\ascx\user-spinbox.ascx”)

1
Web Forms Tips and Tricks

48

FIGURE 1.13 A sample page that demon-
strates loading user controls
dynamically.

03 0672326744 CH01 5/4/04 12:22 PM Page 48

49Summary

CType(oCtrl1, UserSpinBox).Increment = 3

ph1.Controls.Add(oCtrl1)

Dim oCtrl2 As UserControl

For iCount As Integer = 1 To 3

oCtrl2 = LoadControl(“..\spinbox\ascx\user-spinbox.ascx”)

ph2.Controls.Add(oCtrl2)

ph2.Controls.Add(New HtmlGenericControl(“br”))

Next

Dim oCtrl3 As UserControl = LoadControl(“..\spinbox\ascx\user-spinbox.ascx”)

For iCount As Integer = 1 To 3

ph3.Controls.Add(oCtrl3)

ph3.Controls.Add(New HtmlGenericControl(“br”))

Next

End Sub

Finally, the code demonstrates a common mistake that some people make when inserting
controls into a page dynamically. Instead of creating a new instance of the control each time (as
in the previous For...Next loop with the LoadControl method), it simply loads the user control
and then inserts it into the PlaceHolder control’s ControlCollection instance three times.

If you look back at Figure 1.13, you’ll see that even though the control gets added three times,
the sequence of actions that render the page remove all but the last instance. This is because the
three references in the ControlCollection collection are all to the same instance of the user
control. So remember to create new instances of your user controls if you want to insert multi-
ple instances into the page.

Summary
This chapter covers quite a few different but interlinked topics. It starts with a look at how you
can get more from the very clever ASP.NET validation controls. In particular, it looks at how you
can use them with non-text controls and how you can validate other types of controls that do
not directly support validation. This section of the chapter concludes with an example that uses
the validation controls within a DataGrid control. Along the way, we looked at using images in a
DataGrid control column to indicate Boolean values, populating and selecting values in simple
nested list controls, and storing the source DataSet instance in the user’s ASP.NET session to
improve performance and efficiency.

Next, this chapter looks at some different issues with the DataGrid control, specifically aimed at
exerting more control over presentation of the contents. It talks about how you can control the
width of columns, edit more than one value in a cell, and provide scrolling in a cell to avoid
having the DataGrid control expand vertically when long text strings are displayed.

LISTING 1.18 Continued

03 0672326744 CH01 5/4/04 12:22 PM Page 49

This chapter also looks at the techniques for inserting controls into a page dynamically. As well
as covering some of the basic theory of the ASP.NET control tree, this chapter provides an
example that dynamically creates a DataGrid control, complete with inline editing. This involves
considering when to populate the grid, as well as wiring up the events in the DataGrid control to
the appropriate event handlers.

Finally, this chapter finishes with a look at the issues involved in loading user controls dynami-
cally and being able to access their properties and methods as strongly typed objects.

1
Web Forms Tips and Tricks

50

03 0672326744 CH01 5/4/04 12:22 PM Page 50

2
Cross-Page

Posting

Isn’t it amazing how some people are never
satisfied? In ASP 3.0, it was becoming the de
rigueur approach to build pages that post
back to themselves and include code that
detects which button was clicked, extract
the values of the HTML controls on the
page, and then repopulate them. This
required loads of fiddly work, inserting
value and selected attributes into each
control and building the decision constructs
that decide which code to execute in
response to the user’s action.

Then along came ASP.NET, with its
fiendishly clever postback architecture that
does all the difficult stuff automatically.
Hardly any code is required, there’s no need
to poke around in the Request.Form and
Request.QueryString collections, and even
proper event handling is provided.

So what do people keep asking how to do
now? They want to post values back to a
different page! A lot of programmers at
Microsoft would be turning in their graves if
they weren’t still alive to see it. However,
because there actually are some legitimate
situations in which this is useful, this
chapter looks at the possibilities and tech-
niques for implementing ASP.NET server-
side forms that post back to different pages.
You might want to do this if you need to

IN THIS CHAPTER
Techniques for Passing Values Between
Pages 52

Client-Side Versus Server-Side
Redirection 60

Exposing Values to Another Page via
References 62

Best Practice: Exposing Control Values
or Control References As Properties 65

Best Practice: Reducing Data
Transfer Volumes by Using the
Server.Transfer Method 68

The Server.Execute Method 68

Summary 72

04 0672326744 CH02 5/4/04 12:26 PM Page 51

take advantage of pages in another application or site but still want to use server controls in
your page. Or you might want to reuse pages so that each one can receive values from several
sources. Whatever the reason, this chapter demonstrates how you can achieve it.

Techniques for Passing Values Between Pages
ASP.NET engenders a postback architecture, where pages containing a server-side form (a <form>
element that contains the runat=”server” attribute) are always posted back to themselves. In
fact, this is effectively enforced by ASP.NET, which doesn’t allow server-side code to set the
action attribute of a server-side form (in other words, the Action property of the HtmlForm control
instance that implements a server-side form) to any value other than the current URL.

However, there are basically four ways that you can force a <form> element to pass values to a
different page:

n Use a non-server control for the <form> element—in other words, omit the
runat=”server” attribute—This means that the page will behave just as in ASP 3.0, and
you can collect the values in the controls on the form from the Request collections in the
traditional way. This also allows you to have multiple forms on the page, but it prevents
you from using many of the ASP.NET server controls on the form. It also prevents the
ASP.NET postback architecture from working, so you cannot access the controls on the
original page—you can access only their posted values.

n Use client-side script to change the action attribute of the <form> element after
the page has loaded into the browser—However, this method requires the target
page to have the MAC encoding check on the viewstate disabled to prevent an error.

n Use the Response.Redirect method to load the target page after the values have
been posted back to the original page—The submitted values must then be extracted
from the Request collections, and you also have to use an intermediate page to handle the
case where the method of the form is set to POST (the default for a server-side form) rather
than GET.

n Use the Server.Transfer or Server.Execute method to cause the second page to run
within the context of the original page—In this case, you can expose values and
controls as properties of the original page and access them in the target page. The user
does not see the URL of the target page in his or her browser.

This chapter does not look at the first of these techniques because it does not differ from tradi-
tional pre-ASP.NET methods. However, it does look at two sample pages that explore the
concepts of the other three techniques.

Accessing Request Values in Another Page
The sample page redirectpage.aspx, shown in Figure 2.1, allows you to experiment with the
second and third of the techniques listed in the preceding section. The page contains several
server-side controls, hosted within a server-side <form> element. The first three (the text box, list,

2
Cross-Page Posting

52

04 0672326744 CH02 5/4/04 12:26 PM Page 52

53Techniques for Passing Values Between Pages

and drop-down list) are only there to provide values that will be passed to the target page. The
option buttons allow you to select which method will be used: POST or GET.

Below these controls are four buttons that submit the form to the server. The first two use
client-side code to change the action attribute of the <form> element before the page is submit-
ted so that it is actually submitted to a different target page. The second two buttons are wired
up to server-side event handlers that call the Response.Redirect method to load the target page.

Changing the action Attribute of a Form
The first two buttons in the sample page shown in Figure 2.1 are ordinary HTML <input>
elements that call a client-side script function named changeAction and pass to it the name of
the target page that will be loaded:

<input type=”submit” name=”btnChangeAction”

value=”Submit (normal)”

onclick=”changeAction(‘catchrequest.aspx’)” />

<input type=”submit” name=”btnActionNoMAC”

value=”Submit (no MAC check)”

onclick=”changeAction(‘catchnomac.aspx’)” />

The changeAction function simply changes the action attribute of the server-side <form> element
that contains all the controls on the page to the specified URL:

function changeAction(sURL) {

var theForm = document.getElementById(‘frmMain’);

theForm.action = sURL;

}

In the case of the first button, the target page is catchrequest.aspx. This page contains an
ASP.NET Label control and a server-side <form> element with an ASP.NET Button control:

FIGURE 2.1 A sample page that demon-
strates changing the action
attribute and redirection.

04 0672326744 CH02 5/4/04 12:27 PM Page 53

Values in the Request collections:

<asp:Label id=”lblRequest” runat=”server” />

<form runat=”server”>

<asp:Button Text=”Back” runat=”server” OnClick=”GoBack” />

</form>

The server-side code in this page, shown in Listing 2.1, implements a Page_Load event handler
that simply iterates through the Request.QueryString and Request.Form collections, collecting any
values stored there and displaying them in the Label control. The GoBack event handler, which
executes when the button on the page captioned Back is clicked, redirects the browser back to
the original page.

LISTING 2.1 The Page_Load and GoBack Event Handler Routines

Sub Page_Load()

If Not Page.IsPostback Then

‘ display the values in the Request collections

lblRequest.Text &= “* QueryString collection:
”

For Each oValue As String In Request.QueryString

lblRequest.Text &= “ “ & oValue & “ = “ _

& Request.QueryString(oValue) & “
”

Next

lblRequest.Text &= “* Form collection:
”

For Each oValue As String In Request.Form

lblRequest.Text &= “ “ & oValue & “ = “ _

& Request.Form(oValue) & “
”

Next

End If

End Sub

‘ return to previous page and end current response

Sub GoBack(sender As Object, args As EventArgs)

Response.Redirect(“redirectpage.aspx”, True)

End Sub

When you try this example by clicking the Submit (Normal) button in the original page, you see
an ASP.NET error page, indicating that the viewstate for the page is corrupted (see Figure 2.2).
This is because ASP.NET encodes the viewstate it stores in the page along with the control tree
and other details of the original page. When a postback occurs, ASP.NET validates this encoded
data against the current page to act as a guard against malicious spoofing or other attacks.
Because the page that is now executing is different from the original page, the validation check
fails.

2
Cross-Page Posting

54

04 0672326744 CH02 5/4/04 12:27 PM Page 54

55Techniques for Passing Values Between Pages

Turning Off Viewstate Validation
You can get around the failed validation check problem by turning off viewstate validation in
the target page. This means, of course, that the target page is no longer protected against spoof-
ing, so if you use this technique, you must be sure to fully validate any submitted values to
prevent malicious activity.

To turn off viewstate validation, you simply add the attribute EnableViewStateMac=”False” to the
Page directive. In this example, clicking the Submit (No MAC Check) button on the original page
changes the action attribute of the form to point to the page catchnomac.aspx. This page is identi-
cal to the catchrequest.aspx page, except that it also contains the EnableViewStateMac=”False”
attribute. The result of clicking this button is shown in Figure 2.3, where you can see that now
the values in the Request.Form collection are available and displayed.

Changing the Method Property of a Server-Side Form Control
In the example described in the preceding section, the values in the <form> element are posted
to the server because the default for the method attribute of a server-side form is POST. However,
you can change it to GET by adding the method=”get” attribute to the declaration of the <form>
control:

<form method=”get” runat=”server”>

You can also change the Method property by using server-side code in your ASP.NET page or with
client-side script code. The sample page allows you to change the method attribute of the form by
using client-side script, which means that you can choose the method you want to use before
submitting the form. Figure 2.4 shows the two option buttons for this, which are located on the
page above the four submit buttons.

FIGURE 2.2
The error message
displayed when the view-
state validation check fails.

04 0672326744 CH02 5/4/04 12:27 PM Page 55

Listing 2.2 shows the declaration of the RadioButtonList control that creates these option
buttons. It has AutoPostback set to True, and any change to the selected index executes the
server-side event handler named ChangeMethod (also shown in Listing 2.2). This just sets the
Method attribute to the selected value.

LISTING 2.2 A RadioButtonList Control and an Event Handler to Change the Method of a Form

<asp:RadioButtonList id=”optMethod” runat=”server”

RepeatDirection=”Horizontal” RepeatLayout=”Flow”

OnSelectedIndexChanged=”ChangeMethod” AutoPostback=”True”>

<asp:ListItem Text=”POST (default)” Value=”post” Selected=”True” />

<asp:ListItem Text=”GET” Value=”get” />

</asp:RadioButtonList>

...

Sub ChangeMethod(sender As Object, args As EventArgs)

frmMain.Method = optMethod.SelectedValue

End Sub

If you select the GET option button and then click the Submit (No MAC Check) button again,
the values then appear in the Request.QueryString collection instead of in the Request.Form
collection. They are also visible in the browser’s address bar, appended to the URL as the query
string.

2
Cross-Page Posting

56

FIGURE 2.3
Turning off viewstate validation to
allow the target page to execute.

FIGURE 2.4 Changing the Method property
of a server-side form.

04 0672326744 CH02 5/4/04 12:27 PM Page 56

57Techniques for Passing Values Between Pages

Redirecting Postbacks to the Target Page
The two submit actions described in the preceding section work by fooling the browser and
ASP.NET into working just like they do in ASP 3.0 and earlier. The browser automatically posts
the values of the elements on the form or sends them as a query string, depending on the value
of the method attribute of the <form> element.

The technique that this section examines uses
a different approach. You allow ASP.NET to
perform a postback in the usual way, but then
you perform redirection to the target page by
using the Response.Redirect method in the
server-side code.

The server-side event handler named
DoRedirect, which you attach to the Redirect
button on the original page, looks like this:

Sub DoRedirect(sender As Object, _

args As EventArgs)

Response.Redirect(“catchrequest.aspx”, _

True)

End Sub

It simply redirects the browser to the same
catchrequest.aspx page (described in Listing
2.1) that displays the values in the
Request.QueryString and Request.Form collec-
tions. However, if you click the Redirect button, you’ll see that there are no values sent from the
page following a call to the Response.Redirect method (see Figure 2.5).

Halting Execution by Using the
Response.Redirect Method
The Redirect method has two overloads.
The first takes a single parameter—the URL
of the page to redirect to. The second over-
load accepts an additional Boolean parame-
ter, which indicates whether processing of the
current page should be halted. Usually, when
you perform a redirection, you set this second
parameter to True. However, in some cases
you might like to continue executing the origi-
nal page code—even though the output from
the page will not be sent to the client. For
example, you might want to redirect the user
to a different page when an error occurs but
allow the original page code to clean up any
resources it’s using, such as closing database
connections. You can always halt execution
later by calling the Response.End method.

FIGURE 2.5
The Response.Redirect method does
not pass values to the target page.

Passing Form Values to a Target Page by Using Response.Redirect
Listing 2.3 shows the server-side event handler that is attached to the Redirect with Values
button, the last of the four buttons on the original sample page. Similar to the Redirect button,
it performs a redirection to the catchrequest.aspx page, which displays the values in the
Request.QueryString and Request.Form collections. However, before it does this, it creates a query
string containing the values of the text box, list, drop-down list, and option buttons on the
page (you don’t pass the values of the four buttons).

04 0672326744 CH02 5/4/04 12:27 PM Page 57

LISTING 2.3 The Event Handler for the Redirect with Values Button

Sub DoRedirectValues(sender As Object, args As EventArgs)

‘ create query string containing control values

Dim sQuery As String = “?txtThis=” & txtThis.Text _

& “&lstThis=” & lstThis.SelectedValue _

& “&ddlThis=” & ddlThis.SelectedValue _

& “&optMethod=” & optMethod.SelectedValue

‘ get setting of “method” option buttons

If optMethod.SelectedValue = “post” Then

‘ redirect to a page that will post them to the “catch” page

Response.Redirect(“postrequest.aspx” & sQuery, True)

Else

‘ redirect straight to the “catch” page

Response.Redirect(“catchrequest.aspx” & sQuery, True)

End If

End Sub

The next decision depends on the value of the RadioButtonList control that creates the
two option buttons—it will be either POST or GET. If it is POST, you redirect not to the catchre-

quest.aspx page, but to another page, named postrequest.aspx (which we’ll examine shortly),
that itself redirects to the catchrequest.aspx page.

However, if the GET option button is selected, you redirect straight to the catchrequest.aspx
page. In this case, the control values added to the query string will be available in the
Request.QueryString collection within the target page.

Posting Form Values with Redirect via an Intermediate Page
In this chapter you’ve seen that when you use the Response.Redirect method, the values in a
<form> element are not passed to the target page. In the previous section you got around this by
adding the values to the query string. However, if the target page requires the values to be
posted as part of the form itself, you have to introduce a little subterfuge to achieve this.

In this case, you redirect to an intermediate page that captures the values from the query string
and inserts them into hidden-type <input> controls within a <form> section. Then you arrange
for the form to be posted to the actual target page, where the values will appear in the
Request.Form collection.

Listing 2.4 shows the Page_Load event handler of the intermediate page, named postrequest.aspx.
In it you simply iterate through the name/value pairs in the Request.QueryString collection,
create a new HtmlInputHidden control for each one, set the name (using the ID property, which

2
Cross-Page Posting

58

04 0672326744 CH02 5/4/04 12:27 PM Page 58

59Techniques for Passing Values Between Pages

sets the id and name attributes), and specify the value. Then you add the hidden control to the
Controls collection of an ASP.NET PlaceHolder control located within the <form> section of the
page.

LISTING 2.4 The Page_Load Event Handler for the Intermediate Posting Page

Sub Page_Load()

Dim oInput As HtmlInputHidden

Dim sItem As String

For Each sItem in Request.QueryString

oInput = New HtmlInputHidden()

oInput.ID = sItem

oInput.Value = Server.HtmlEncode(Request.QueryString(sItem))

phForm.Controls.Add(oInput)

Next

End Sub

Listing 2.5 shows the HTML declarations for the postrequest.aspx page and the client-side script
that submits it to the server automatically. The <form> element is not a server-side form in this
case because you need to set the action attribute to the URL of the target page that will receive
the values. And you must remember to set the method attribute to POST because the default for a
non-server-side form is GET.

LISTING 2.5 The Client-Side Code to Submit the Sample Form

<script language=”JavaScript”>

function submitForm() {

document.forms[0].submit()

}

</script>

...

<body onload=”submitForm()”>

<form action=”catchrequest.aspx” method=”post”>

<asp:PlaceHolder id=”phForm” runat=”server” />

<noscript>

<input type=”submit” value=”Click to continue” />

</noscript>

</form>

</body>

</html>

04 0672326744 CH02 5/4/04 12:27 PM Page 59

Notice that the page also contains a
<noscript> section that will display a simple
HTML submit button if scripting is not avail-
able. This is required for the user to be able to
submit the values to the server in this case.

However, you want the values to be submitted
automatically when possible, and the page
contains a simple client-side script function
that achieves this by calling the submit
method of the <form> element. You call this
function as soon as the page has finished
loading by specifying it as the onclick attrib-
ute of the opening <body> tag in the page. The
result is that this page will submit the values
in the hidden <input> elements to the target
page, using the POST method—without requir-
ing user intervention unless client-side script-
ing is disabled or unavailable.

Figure 2.6 shows the results of clicking the
Redirect with Values button. You can see that
the values added to the query string in the
original pager, before the call to the Redirect
method, now appear in the Request.Form
collection.

2
Cross-Page Posting

60

FIGURE 2.6
The result of using an intermediate
page to post the values to the target
page.

Client-Side Versus Server-Side Redirection
Earlier in this chapter we talked about how a Web server sends HTTP headers to the client in
response to every HTTP request. These headers contain information about the Web server and
the resource it is sending back. The HTTP redirection header “302 Object Moved” causes the

Query String Considerations
Passing values in the query string is fine, as
long as they are limited in size. Depending on
the browser and server in use, the total length
of the URL and query string will be limited to
somewhere between 1KB and 4KB. If the
pages are complex, and especially if they
contain items such as a DataGrid control, the
viewstate that is sent as part of the request
can grow to alarming proportions. For example,
the viewstate of the sample page, containing
just a few simple controls, is over 120 bytes.

The other issues with including form values in
the query string are that it makes these
values highly visible to users and that it allows
users to bookmark the page with these values
included in the query string. For many applica-
tions, therefore, you will probably want to use
the Request.Form collection to pass values
between pages. However, the intermediate
page method described in this section doesn’t
actually solve the problem because part of
the process still involves the use of the query
string. In this case, you can either use the
approach described earlier in this chapter—
changing the action of the form and turning
off viewstate validation—or you can use the
technique described in the following section,
which uses the Server.Transfer method.

04 0672326744 CH02 5/4/04 12:27 PM Page 60

61Client-Side Versus Server-Side Redirection

browser to load the resource at a different
URL from the one it originally requested. Of
course, the browser responds to this header by
issuing a new request, which specifies the new
location of the resource.

The Response.Redirect method used in earlier
examples in this chapter relies on this redirec-
tion process. It works by sending the HTTP
redirection header back to the client. The
client then loads the target page from the new
location. So even though it is a server-based
instruction, it is actually an example of client-
side redirection.

The fourth technique for forcing a form to
post to an alternative page and passing values
between these pages described earlier in this
chapter, in the section “Techniques for
Passing Values Between Pages,” involves the
use of server-side redirection.

Microsoft added server-side redirection to ASP
in version 3.0 by providing two new methods for the Server object:

n Transfer—This method causes execution of the current page to end at the point where the
method is called, and control passes to the new page. When that page ends, the response
is complete. It is effectively a GOTO statement.

n Execute—This method causes execution to pause at the point where the method is called,
and control passes to the new page. However, when execution of the new page ends,
control passes back to the original page and continues from the point where it was paused.
It is more like a GOSUB statement or a function call.

Note that these methods only accept a virtual path located on the same Web site.

These two methods continue to be available in ASP.NET, and in fact are more useful than ever
before because you can now create a reference to the instances of the original page in code that
is running in the new page. This effectively means that you can communicate with the original
page, making it easy to pass values from one page to another.

Both the Transfer and Execute methods are completely server bound and do not involve the
client. They don’t rely on the client responding to HTTP headers, as does the Response.Redirect
method, and there is no indication in the browser that redirection is taking place. The URL of
the page doesn’t change, and the user just sees output as though it were generated by the origi-
nal page—regardless of how and when the Transfer and Execute methods were executed.

Because the new page is executed within the context of the original page, rather like a function
or subroutine, all globally available (that is, Public) objects are accessible in the new page

Limitations of the Response.Redirect
Method
One limitation with the Response.Redirect
method is that it must be executed before
any content (that is, anything except other
HTTP headers) has been sent to the client. In
early versions of ASP, you had to enable
buffering on the server by executing
Response.Buffer = True to prevent any
content from being sent until the page was
complete or until you executed the
Response.Flush or Response.End methods.
Since version 3.0 of ASP, buffering has been
on by default, and this is the case in ASP.NET
as well. This means that you can usually call
Response.Redirect anywhere in a page, as
long as you haven’t turned buffering off,
executed the Response.Flush method, or
executed one of the new ASP.NET methods
that writes output directly to the response
(such as Response.WriteFile).

04 0672326744 CH02 5/4/04 12:27 PM Page 61

through the HttpContext object that ASP.NET uses to keep track of the original page. If you check
out the properties of the HttpContext class, you’ll see that it provides access to everything that
you use in your ASP.NET code. You can access the current Request, Response, Server, Session, and
Application objects, plus objects such as User (details of the current user), Cache (the ASP.NET
global user cache), and Trace. So there are really no limitations on what code within the page
that you transfer to, or execute, can do.

Exposing Values to Another Page via References
The ability to access the current context within a page that is being executed in response to the
Server.Transfer method or the Server.Execute method is extremely useful. However, it becomes
even more useful when combined with the fact that ASP.NET allows you to create a reference to
the original page within the context of the page that you transferred to or executed.

For this to work, you must assign a classname to the original page by adding it as an attribute to
the Page directive. For example, you can assign the name ReferencePage to the class that is
created when the page is compiled. Although in this case the page file is named referencepage.
aspx, the classname and filename do not have to be the same—any names can be used:

<%@Page Language=”VB” ClassName=”ReferencePage” %>

Then, in a page that will be executed using the Server.Transfer method or the Server.Execute
method, you can create a reference to the current instance of the original page. First, you have
to add a reference to the original page file that contains the class definition (that is, the page
that declares the classname):

<%@Page Language=”VB” %>

<%@Reference Page=”referencepage.aspx” %>

Now code running in the new page can use the Handler property of the Context object to get a
reference to the original page and cast it to the correct type:

Dim oPage As ReferencePage = CType(Context.Handler, ReferencePage)

In C#, this is the equivalent:

ReferencePage oPage = (ReferencePage) Context.Handler;

Then, through the reference you’ve created, you can access any Public content of the original
page. You can do the following:

n Read and write the values of Public properties (unless they are declared as being ReadOnly
or WriteOnly)

n Call Public functions and execute Public subroutines

n Access server controls that are referenced through a Public ReadOnly property

2
Cross-Page Posting

62

04 0672326744 CH02 5/4/04 12:27 PM Page 62

63Exposing Values to Another Page via References

The sample page described in the following
sections demonstrates many of these features
for the Server.Transfer method. You’ll learn
more about the Server.Execute method later
in this chapter, in the section “The Server.
Execute Method.”

The sample page named referencepage.aspx
demonstrates the way that a reference to the
original page can be used with the Server.Transfer method (see Figure 2.7). This page contains
the same set of controls as the previous example, but it has only two submit buttons.

Calling Event Handlers in the Original Page
In theory, you can call any Public event
handlers in the original page, although it’s not
obvious where this would be directly useful.
It’s generally better to expose references to
any server controls in the page that you want
to interact with as Public properties.

FIGURE 2.7
A sample page that uses the
Server.Transfer method.

The reason for the two buttons is that the Server.Transfer method has two overloads. The first
takes a single parameter, which is the URL or name of the page to transfer control to. The
second overload accepts an additional Boolean parameter that determines whether the contents
of the Request collections (Form, QueryString, Cookies, and ServerVariables) will not be cleared
when the transfer takes place. The default value for this parameter is True (the Framework SDK
says the default is False, but that is incorrect), which means that the collections will be
preserved. If you set it to False, the collections will not be preserved—in other words, all the
values in the collections will be removed.

The Event Handlers That Call the Server.Transfer Method
Listing 2.6 shows the event handlers for the two buttons in the sample page. The first is
attached to the Transfer with Request button and specifies that the Request collections will be
preserved. The second event handler is attached to the Transfer No Request button and specifies
that the Request collections will not be preserved.

04 0672326744 CH02 5/4/04 12:27 PM Page 63

LISTING 2.6 Two Event Handlers That Initiate a Server.Transfer Method

Sub DoTransferTrue(sender As Object, args As EventArgs)

‘ use True to specify that Request collections are *not* cleared

‘ in fact True is the default anyway (the SDK is wrong on this)

Server.Transfer(“catchreference.aspx”, True)

End Sub

Sub DoTransferFalse(sender As Object, args As EventArgs)

‘ use False so that no Request values are passed

‘ page properties are still available in target page

Server.Transfer(“catchreference.aspx”, False)

End Sub

The Public Properties in the Main Page
The main page shown in Figure 2.7 defines a name for the class it creates as an attribute of the
Page directive, just as is done earlier in this chapter:

<%@Page Language=”VB” ClassName=”ReferencePage” %>

Inside the <script> section of the page, you declare the Public properties that you want to
expose to the page to which you’ll transfer execution. You declare three ReadOnly properties, as
shown in Listing 2.7. The TextValue property returns the Text property of the TextBox control;
the ListIndex property returns the SelectedIndex property of the ListBox control; and the
DropList property returns a reference to the DropDownList control itself.

LISTING 2.7 The Public Properties Declared Within the Main Sample Page

‘ public properties exposed to other pages

Public ReadOnly Property TextValue As String

Get

Return txtThis.Text

End Get

End Property

Public ReadOnly Property ListIndex As Integer

Get

Return lstThis.SelectedIndex

End Get

End Property

2
Cross-Page Posting

64

04 0672326744 CH02 5/4/04 12:27 PM Page 64

65Exposing Values to Another Page via References

Public ReadOnly Property DropList As DropDownList

Get

Return ddlThis

End Get

End Property

LISTING 2.7 Continued

Exposing Control Values or Control References As Properties
If you only want to access specific properties of a control or values that are used in the code within
the page, exposing these as simple individual values is the best approach. When you do so, you
maintain control over the values that can be accessed in the target page. In this example, all three
are ReadOnly properties, so they cannot be changed in the target page. However, with the exception
of the reference to the DropDownList control, you could declare the properties as read/write by
omitting the ReadOnly keyword and including a Set...End Set section within the property declara-
tion. Chapter 5, “Creating Reusable Content,” describes the syntax for declaring properties in more
detail.

BEST PRACTICE

Exposing a reference to a control itself, as you’ve done with the DropDownList control, is useful if
the code in the target page will need to access (read and/or write) a range of properties of the
control. For example, you could set multiple properties by using something like this:

With MyPage.DropList

.DataSource = MyDataReader

.DataTextField = “thiscolumn”

.SelectedIndex = 3

With .Items

.Insert(0, New ListItem(“First Option”, “0”))

.Add(New ListItem(“Last Option”, “999”))

End With

End With

You can also call methods on the control, as in this example:

MyPage.DropList.DataBind()

The Target Page for the Server.Transfer Method
As shown in Listing 2.6, both the buttons in the main sample page transfer execution to a target
page named catchreference.aspx. The only difference is that the second button clears the
contents of the Request collections when the transfer takes place. The target page simply displays

04 0672326744 CH02 5/4/04 12:27 PM Page 65

the values of the Public properties that are exposed by the main page, plus the contents of the
Request.QueryString and Request.Form collections. Figure 2.8 shows the target page when the
Transfer with Request button in the main page is clicked.

2
Cross-Page Posting

66

FIGURE 2.8
The target page for the transfer method,
displaying the values of the properties and
Request collections.

The HTML declarations in the target page are identical to those in the catchrequest.aspx page
used to display the values in the Request collections in the earlier examples in this chapter, with
the exception of an extra Label control that you see at the top of the page (refer to Figure 2.8).
This control is used to display the values of the properties exposed by the main page.

There is the same Back button at the bottom of the page, and the same server-side event handler
as in the catchrequest.aspx page is used to direct the browser back to the main page.

Where the catchreference.aspx page really differs from the catchrequest.aspx page is in the
Page_Load event handler, as shown in Listing 2.8. Within a Try...Catch construct, you attempt to
extract the values of the properties from the main page, and you display these in the first Label
control. You use a Try...Catch construct in case the page is loaded directly, in which case it will
not be able to create an instance of the original page.

LISTING 2.8 The Page_Load Event Handler for the Target Page

Sub Page_Load()

If Not Page.IsPostback Then

Try

‘ get a reference to the previous page

Dim oRefPage As ReferencePage

oRefPage = CType(Context.Handler, ReferencePage)

‘ display the property values from the previous page

04 0672326744 CH02 5/4/04 12:27 PM Page 66

67Exposing Values to Another Page via References

lblProperties.Text = “TextValue = “ _

& oRefPage.TextValue & “
” _

& “ListIndex.ToString() = “ _

& oRefPage.ListIndex.ToString() & “
” _

& “DropList.ToString() = “ _

& oRefPage.DropList.ToString() & “
” _

& “DropList.SelectedValue = “ _

& oRefPage.DropList.SelectedValue

Catch

lblProperties.Text = “ERROR: Cannot reference previous page”

End Try

‘ display the values in the Request collections

lblRequest.Text &= “* QueryString collection:
”

For Each oValue As String In Request.QueryString

lblRequest.Text &= “ “ & oValue & “ = “ _

& Request.QueryString(oValue) & “
”

Next

lblRequest.Text &= “* Form collection:
”

For Each oValue As String In Request.Form

lblRequest.Text &= “ “ & oValue & “ = “ _

& Request.Form(oValue) & “
”

Next

End If

End Sub

Notice how you get a reference to the original page from the Context.Handler property and
convert it onto the specific class ReferencePage that is declared in the main page, just as
described earlier in this chapter. When you have this reference to the main page, you can access
the properties within it in the same way that you access properties of any object.

The remainder of the code in Listing 2.8 extracts any values in the Request.QueryString and
Request.Form collections and displays them in the second Label control, in exactly the same way
as in earlier examples in this chapter.

Changing the Method and Clearing the Request Collections
Figure 2.8 shows that the values sent from the form on the main page appear within the
Request.Form collection. However, this is only because the default for a server-side <form>
element, as noted earlier, is method=”post”. You can use the option buttons to change the
method of the form, as in the examples earlier in this chapter, and then you’ll see that the
values appear in the QueryString collection as expected.

LISTING 2.8 Continued

04 0672326744 CH02 5/4/04 12:27 PM Page 67

Just to prove another point, if you go back to the main page and click the second button,
Transfer No Request, you’ll see that the Public properties in the original page are still available
but the Request collections are empty (see Figure 2.9). Of course, when you’re using this tech-
nique, it’s usually the values of the properties exposed by the main page that you’re really inter-
ested in—not the Request collection contents.

2
Cross-Page Posting

68

FIGURE 2.9
The result when the Request collections are
cleared by the Transfer method.

Reducing Data Transfer Volumes by Using the Server.Transfer Method
One way you can reduce the amount of data you pass to the target page with the Transfer method
is to set the second parameter of the method to False, to clear the values from the Request collec-
tions. If there are specific values in the Request.QueryString and Request.Form collections that
you want to access in the target page, you can always extract them and expose them as Public
properties of the main page.

BEST PRACTICE

The Server.Execute Method
The following sections briefly look at the Server.Execute method. This method works much like
the Server.Transfer method, and you can access values in the original page in the same way. To
try it out, you can simply replace this line:

Server.Transfer(“catchreference.aspx”, True)

with this line:

Server.Execute(“catchreference.aspx”)

in the sample page. You’ll see the content generated by the page that is executed, followed by
the content generated by the original page when execution returns to it.

The Server.Execute method differs from Server.Transfer in that it does not provide a Boolean
parameter that determines whether the Request collections will be preserved. The Request collec-
tions are always preserved when the Server.Execute method is called, and they are always available

04 0672326744 CH02 5/4/04 12:27 PM Page 68

69The Server.Execute Method

in the original page when control returns to
that page. If this were not the case, the
ASP.NET postback architecture would fail to
work correctly in cases where control proper-
ties or values had been changed.

Also, like functions or subroutines, you can
use the Server.Execute method more than
once in a page, and you can execute the same
or different pages each time.

Capturing Output from the
Server.Execute Method
A useful aspect of the Server.Execute method is that a second overload accepts a StringWriter
instance as the second parameter. When the Execute method is called in this case, the output
generated by the page that is executed is written to the StringWriter instance and not into the
Response instance of the original page. This means that you can execute another page, capture
the output it generates, and use it as required in the original page.

Figure 2.10 is a sample page that demonstrates this feature. It looks similar to the previous
examples in this chapter, but notice that the two option buttons now allow you to specify
whether the results should be HTML encoded.

Creating Reusable Content by Using
Server.Transfer
The Server.Execute method provides an
interesting opportunity for creating reusable
content because you can execute other pages
just as though they were subroutines. You
could, for example, build a library of such
pages and then execute them from any of
your main pages as required. Chapter 5
examines other ways of creating reusable
content.

FIGURE 2.10
A sample page that demonstrates the
Server.Execute method.

This page calls the Server.Execute method with a StringWriter instance as the second parameter,
and then it displays the contents of the StringWriter instance in the original page. Note that the
StringWriter class is defined within the System.IO namespace, so you must import that name-
space into your page.

The option buttons allow you to decide whether to display the page as text with the HTML tags
visible (that is, HTML encoded) or whether to display it in rendered form (as it would appear
when loaded directly by a browser).

04 0672326744 CH02 5/4/04 12:27 PM Page 69

Listing 2.9 shows the DoExecute event handler that runs when the Execute button in the main
page is clicked. It creates a new StringWriter instance and passes it to the Execute method, along
with the URL of the target page to execute. On return, the code checks the value of the
RadioButtonList control to see whether the result should be HTML encoded. If it is being
encoded, the output is wrapped in a <pre> element so that the source of the target page is
displayed with the carriage returns and indenting visible.

LISTING 2.9 Calling the Execute Method with a StringWriter Instance

Sub DoExecute(sender As Object, args As EventArgs)

‘ create StringWriter and use it when executing target page

Dim oWriter As New StringWriter()

Server.Execute(“catchexecute.aspx”, oWriter)

‘ see if result should be HTML-encoded

If optEncode.SelectedValue = “Yes” Then

lblResult.Text = “<pre>” _

& Server.HtmlEncode(oWriter.ToString()) _

& “</pre>”

Else

lblResult.Text = oWriter.ToString()

End if

End Sub

The Target Page for the Server.Execute Method
The target page used in this example is basically the same as the one used in the Server.Transfer
example earlier in this chapter. One difference is that you have to reference the main page for
this example, executepage.aspx:

<%@Reference Page=”executepage.aspx” %>

You also have to change the line that accesses the Context.Handler property and specify the class-
name that is declared within the executepage.aspx page:

Dim oRefPage As ExecutePage = CType(Context.Handler, ExecutePage)

The other changes are prompted by the fact that you no longer need a Back button because
control passes back to the main page after execution of the target page is complete. Therefore,
the controls on the main page will still be visible.

2
Cross-Page Posting

70

04 0672326744 CH02 5/4/04 12:27 PM Page 70

71The Server.Execute Method

Figures 2.11 and 2.12 show the results of clicking the Execute button in this example. Figure
2.11 specifies that the result should be HTML encoded, and you can see the output that is
generated by the target page—including the values of the Public properties that it accesses
within the main page. Effectively, you are looking at the same thing you would see if you
loaded the page and then selected View, Source in the browser.

FIGURE 2.11
Displaying the results of the
Server.Execute method in
HTML-encoded form.

Figure 2.12 shows the result when the content of the StringWriter instance is simply written
into the Label control, without being HTML encoded first. The output is rendered just as it
would be if it were loaded directly into the browser. However, it looks a little odd and has lost
some formatting because the content that is being rendered contains its own opening and
closing <html> and <body> tags (as you can see if you refer to Figure 2.11).

04 0672326744 CH02 5/4/04 12:27 PM Page 71

Summary
This chapter focuses on how you can force ASP.NET to load alternative pages when the user
submits a form that is implemented as a server control. Although it might seem simple, there
are some interesting side effects and several useful opportunities, depending on the approach
you decide to take. This chapter demonstrates three of the common approaches:

n Using client-side script to change the action attribute of the <form> element after the page
has loaded into the browser

n Using the Response.Redirect method to load the target page after the values have been
posted back to the original page

n Using the Server.Transfer method or the Server.Execute method to cause the second page
to run within the context of the original page

All these methods have some features that recommend them, and there is no obvious single
solution. Understanding the way that each works and the limitations it applies should make it

2
Cross-Page Posting

72

FIGURE 2.12
Displaying the results of the
Server.Execute method, as
normally rendered.

04 0672326744 CH02 5/4/04 12:27 PM Page 72

73Summary

easier to choose the appropriate one when you find that you need to implement this kind of
behavior in your own Web pages and Web applications.

Changing the action attribute of the <form> element is a neat way to perform redirection to
another page, but you have to disable viewstate validation in the target page in order for it to
succeed. Using the Response.Redirect method avoids this problem, but the limit on query string
length might be an issue.

In many cases, the third of the techniques examined, using the Server.Transfer method or the
Server.Execute method, provides the best solution. You can access properties and even controls
in the original page, and in fact you can access any other features of the page as well because
the target page runs in the same context as the original page. However, you can’t use this
approach to send values to a page on to another Web site.

Finally, this chapter looks at an alternative use for the Server.Execute method. Because it can
accept a StringWriter instance and write the content of the target page to that StringWriter
instance, you can use it to fetch content and then process it before displaying it in your pages.

04 0672326744 CH02 5/4/04 12:27 PM Page 73

04 0672326744 CH02 5/4/04 12:27 PM Page 74

3
Loading

Progress and
Status

Displays

ASP.NET is extremely fast when you’re
creating and delivering Web pages. However,
no matter how fast and efficient your Web
server and the software it runs (including
your Web applications) are, the delay
between the user clicking a button and
seeing the results can vary tremendously. On
a good ADSL or direct Internet connection,
it might be a “wow, that was quick” few
seconds. On a dial-up connection, especially
when the server is on the other side of the
world, it’s more likely to be the seemingly
interminable “did I remember to pay the
phone bill?” response.

One feature that most executable applica-
tions offer but that is hard to provide in a
Web application is accurate status informa-
tion and feedback on a long-running
process. However, this can be achieved in at
least two different ways, depending on the
process your application is carrying out and
the kind of status or feedback information
you want to provide.

One technique is a “smoke and mirrors” ap-
proach, in that it makes the user feel com-
fortable that something is happening—while

IN THIS CHAPTER
Displaying a “Please Wait” Page 76

BEST PRACTICE:
Replacing the Existing Page in the
Browser 80

Displaying a Progress Bar Graphic 85

Implementing a Staged Page Load
Process 92

Summary 107

05 0672326744 CH03 5/4/04 12:25 PM Page 75

in fact the information the user sees bears no real relationship to the progress of the server-based
operation. The other approach, covered toward the end of the chapter, provides accurate status
and feedback details but imposes limitations on client device type and the kinds of operation for
which it is suitable.

In this chapter you will see what is possible regarding loading progress and status displays. You’ll
learn how to use and adapt a variety of techniques to suit your own applications and require-
ments. This chapter starts with a look at the theory of the process and examines the simplest
way it can be achieved.

Displaying a “Please Wait” Page
Many ASP.NET developers find that despite their best efforts in producing efficient code that
minimizes response times, the vagaries of database response times, the transit time over the
Internet, and user input criteria that are not specific enough can result in a lengthy delay before a
page appears in the browser. The result is that users often click the submit button several times to
try to elicit a response from your server, sometimes causing all kinds of unfortunate side effects.

Chapter 6, “Client-Side Script Integration,” looks at some specific solutions for creating a one-click
button. However, an alternative approach is to provide a page that loads quickly and that displays a
“please wait” message or some suitable graphic feature, while the real target page is being processed
and delivered. In ASP 3.0 and other dynamic Web programming environments, it’s common to han-
dle this process with separate pages that implement the three execution stages shown in Figure 3.1.

3
Loading Progress and Status Displays

76

<form action=“wait.asp”>
 <input type=“submit” />
</form>

start.asp

-display results-

main.asp

<meta http-equiv=“refresh”
 content=“0;url=main.asp” />
Please wait…

wait.asp FIGURE 3.1
The traditional separate-
pages approach to
providing a “please
wait” message.

ASP.NET engenders the single-page postback
architecture approach. However, you can
build similar features into ASP.NET applica-
tions by implementing the three pages as
separate sections of a single page. The server
control approach to populating elements and
attributes on the page also makes it easier to
work with elements such as the <meta>
element that you use as part of the process.
Figure 3.2 shows the ASP.NET approach, as it
is adopted in the example described in the
following sections.

Passing Values Between Requests
Of course, what’s missing from Figures 3.1 and
3.2 is how any values submitted by the user
are passed from the “please wait” page to the
code that creates the results. In ASP 3.0 and
other dynamic Web page technologies, the
usual technique is to include a placeholder
within the content attribute of the <meta>
element that gets replaced by a query string
containing the values sent from the <form>
section. You can then extract these from the
query string in the page or section of code that
generates the results. You’ll see this discussed
in more detail in the section “Displaying the
“Please Wait” Message,” later in this chapter.

05 0672326744 CH03 5/4/04 12:25 PM Page 76

77Displaying a “Please Wait” Page

A Simple “Please Wait” Example
Figure 3.3 shows the initial display of a simple sample page that displays a “please wait”
message while the main processing of the user’s request is taking place. The page queries the
Customers table in the sample Northwind database that is provided with SQL Server. In the text
box on the page, the user enters all or part of the ID of the customer he or she is looking for.

<!------form to collect values--->
<form runat=“server” Visible=“False”>
 <asp:Button runat=“server”/>
</form>

<!------section to display “wait” message--->
<meta http-equiv=“refresh”
 content=“0;url=do-it-all.aspx” />
<div runat=“server” Visible=“False”>
 Please wait…
</div>

<!------section to display results--->
<div runat=“server” Visible=“False”>
 -display results here-
</div>

do-it-all.aspx FIGURE 3.2 The ASP.NET single-page
approach to providing a
“please wait” message.

FIGURE 3.3 The initial page of the simple
“please wait” example.

When the user clicks the Go button, the
value in the text box is submitted to the
server, and the page shown in Figure 3.4 is
displayed. No complex processing is required
to display this page, and the total size of the
content transmitted across the wire is small,
so it should appear very quickly. The user
knows that his or her request is being
handled, and there is no submit button for
the user to play with in the meantime.

Obtaining the Sample Files
You can download this example and the other
examples for this book from the Sams Web site
at www.samspublishing.com, or from
www.daveandal.net/books/6744/. You can
also run many of this book’s examples online at
www.daveandal.net/books/6744/.

05 0672326744 CH03 5/4/04 12:25 PM Page 77

After a short delay (about 3 or 4 seconds, in this example), the main page, which contains the
results, is returned to the user and replaces the “please wait” message. You can see in Figure 3.5
that the main page contains a list of customers matching the partial ID value that was provided.
At the bottom of the page is a New Customer link that takes the user back to the first page.

3
Loading Progress and Status Displays

78

FIGURE 3.4 The “please wait” message
that is displayed while process-
ing the main page.

FIGURE 3.5 The main page, displaying the
results of a search for match-
ing customers.

The HTML and Control Declarations
Listing 3.1 shows the relevant parts of the sample page shown in the preceding section. Notice
that although you include a <meta> element in the <head> section of the page, you don’t specify
any attributes for it. Instead, you give it an ID and specify that it is a server control by including
the runat=”server” attribute. However, this <meta> element will have no effect on the page or the
behavior of the browser until you specify the attributes for it in the server-side code.

LISTING 3.1 The HTML and Control Declarations for the Simple “Please Wait” Sample Page

<html>

<head>

<!----- dynamically filled META REFRESH element ----->

<meta id=”mtaRefresh” runat=”server” />

</head>

<body>

<!----- form for selecting customer ----->

05 0672326744 CH03 5/4/04 12:25 PM Page 78

79Displaying a “Please Wait” Page

<form id=”frmMain” Visible=”False” runat=”server”>

Enter Customer ID:

<asp:Textbox id=”txtCustomer” runat=”server” />

<asp:Button id=”btnSubmit” Text=”Go” runat=”server” />

</form>

<!----- “please wait” display ----->

<div id=”divWait” Visible=”False” runat=”server”>

<center>

<p> </p>

<p> </p>

Searching, please wait...<p />

<p> </p>

<p> </p>

</center>

</div>

<!----- section for displaying results ----->

<div id=”divResult” Visible=”False” runat=”server”>

<asp:Label id=”lblResult” runat=”server” /><p />

<asp:DataGrid id=”dgrResult” runat=”server” /><p />

<asp:Hyperlink id=”lnkNext” Text=”New Customer” runat=”server” />

</div>

</body>

</html>

The remainder of the page is made up of the three sections that implement the three pages
shown in Figures 3.3 through 3.5. All three pages include a Visible=”False” attribute in their
container element—either the <form> element itself for the first one or the containing <div>
element for the other two pages. So all three sections will be hidden when the page is loaded,
and you can display the appropriate one by simply changing its Visible property to True.

Meta Refresh and Postback Issues
As you can see from the figures and code so far in this chapter, this example uses a <meta>
element in the “please wait” page to force the browser to load the main page. This much-used
technique is a handy way to redirect the browser to a different page, and it is supported in
almost every browser currently in use today.

When you use the server-side Response.Redirect method in an ASP.NET (or ASP 3.0) page, the
server sends two HTTP headers to the client to indicate that the browser should load a different
page from the one that was requested. The 302 Object Moved header indicates that the requested

LISTING 3.1 Continued

05 0672326744 CH03 5/4/04 12:25 PM Page 79

resource is now at a different location, and the Location new-url header specifies that the
resource is located at the URL denoted by new-url.

The <meta> element supports the http-equiv attribute, which is used to simulate the effects of
sending specific HTTP headers to the browser. To redirect the browser to a different URL, using a
<meta> element, you can use this:

<meta http-equiv=”refresh” content=”[delay];url=[new-url] />

In this syntax, [delay] is the number of seconds to wait before loading the page specified in
[new-url]. All browsers will maintain the current page they are displaying until they receive the
first HTTP header sent by the server for the new page. So if the processing required for creating
the new page takes a while and the server does not send any response until the processing is
complete, the user will continue to see the page containing the <meta> element (the “please
wait” message). By default, ASP.NET enables response buffering, so it does not generate any
output until the new page is complete and ready to send to the browser.

3
Loading Progress and Status Displays

80

Replacing the Existing Page in the Browser
Web browsers continue to display the existing page when you click a link in that page or enter a new
URL in the address bar, while they locate and start to load the new page. However, as soon as the
first items of the page that will be rendered are received (as opposed to the HTTP headers), the exist-
ing page is removed from the display, to be replaced by the progressive rendering of the new page.

One important point to note, however, is that if you disable output buffering by setting Response.
Buffer = False, or if you force intermediate output to be sent to the response by using Response.
Flush, the page currently displayed in the browser will be discarded as soon as the partial output of
the new page is received.

You can delay the removal of the existing page in some browsers—for example, Internet Explorer
supports page translations, which take advantage of the built-in Visual Filters and Transitions feature (see
http://msdn.microsoft.com/workshop/author/filter/filters.asp#Interpage_Transition).

BEST PRACTICE

However, the issue here is that unlike when you submit an ASP.NET <form> element, the redirec-
tion caused by the <meta> element doesn’t perform a postback. This means that viewstate for the
page will not be maintained, and the values of any controls on the whole page (including the
nonvisible sections) will be lost. So any values that you want to pass to the page the next time it
loads (that is, when you display the results of processing the main section of the page) must be
passed in the query string of the URL specified in the <meta> element.

Of course, this is what you would have to do in the pre-ASP.NET example shown in Figure 3.1 as
well. Code in the page must collect the values from all the controls in the <form> section of the
page when it is posted to the server, and it must build up a query string containing these within
the <meta> element. You’ll see how to do this in the following section.

05 0672326744 CH03 5/4/04 12:25 PM Page 80

81Displaying a “Please Wait” Page

The Page_Load Event Handler
The Page_Load event handler for the sample page first has to determine the current stage of the
three-step process:

n Stage 1—The user has just posted the <form> element containing his or her input to the
server.

n Stage 2—The “please wait” message is displayed, and the <meta> element has caused the
browser to request the page containing the results.

n Stage 3—The user has clicked the New Customer link to go back to Stage 1.

The following sections describe the code and page content that is used in the example to imple-
ment these three stages.

Displaying the “Please Wait” Message
Listing 3.2 shows the first section of the Page_Load event handler for the sample page. The only
time a postback will have occurred is at Stage 1 because the other two stages are initiated by a
<meta> element or a hyperlink. (Code in a section of the Page_Load event handler makes the
<form> element visible when the page first loads, as you’ll see shortly.)

LISTING 3.2 The First Part of the Page_Load Event Handler

Sub Page_Load()

If Page.IsPostback Then

‘ user submitted page with customer ID

‘ create URL with query string for customer ID

‘ next page will not be a postback, so viewstate will be lost

Dim sRefreshURL As String = Request.Url.ToString() _

& “?custID=” & txtCustomer.Text

‘ use META REFRESH to start loading next page

mtaRefresh.Attributes.Add(“http-equiv”, “refresh”)

mtaRefresh.Attributes.Add(“content”, “0;url=” & sRefreshURL)

‘ hide <form> section and show “wait” section

frmMain.Visible = False

divWait.Visible = True

Else

...

The Page.IsPostback property will be True only at Stage 1. At that point, you can extract the
value of the text box (and any other control values that you might have in more complex exam-
ples) and build up the URL and query string for the <meta> element. You obviously want to

05 0672326744 CH03 5/4/04 12:25 PM Page 81

reload the same page, so you get the URL from the Url property of the current Request instance.
In this example, the only value you need to maintain as the page is reloaded is the value of the
text box, and you use the name custID for this as you create the query string.

Then, as shown in Listing 3.2, you add the attributes you need to the <meta> element already
declared in the page. You declare the <meta> element as a server control by using the following:

<meta id=”mtaRefresh” runat=”server” />

ASP.NET will implement this element as an instance of the HtmlGenericControl class because
there is no specific control type within the .NET Framework class library for the <meta> element.
However, the HtmlGenericControl type has an Attributes collection that you can use to add the
attributes you need to it. You add the http-equiv=”refresh” attribute and the content attribute,
with a value that will cause the browser to immediately reload the page. If you view the source
of the page in the browser (by selecting View, Source), you’ll see the complete <meta> element:

<meta id=”mtaRefresh” http-equiv=”refresh” content=”0;url=

➥ /daveandal/books/6744/loadwait/simplewait.aspx?custID=a”></meta>

The next line of code hides the <form> section
of the page. Because this stage is a postback,
the viewstate of the controls on the page is
maintained, so the form will remain visible if
you don’t hide it. The final code line makes
the section containing the “please wait”
message visible.

Displaying the Results
Listing 3.3 shows the second section of the Page_Load event handler. This section is executed
only if the Page.IsPostback property is False; however, you have to detect whether the page is
being loaded by the <meta> element in the “please wait” page (Stage 2) or the hyperlink in the
results page (Stage 3).

LISTING 3.3 The Second Part of the Page_Load Event Handler

...

Else

‘ get customer ID from query string

Dim sCustID As String = Request.QueryString(“custID”)

If sCustID > “” Then

‘ page is loading from META REFRESH element and

‘ so currently shows the “please wait” message

‘ a customer ID was provided so display results

divResult.Visible = True

3
Loading Progress and Status Displays

82

The HtmlGenericControl Class
The HtmlGenericControl class is described
in more detail in Chapter 1, “Web Forms Tips
and Tricks,” where it is used for another
control type that is not part of the .NET
Framework class library.

05 0672326744 CH03 5/4/04 12:25 PM Page 82

83Displaying a “Please Wait” Page

‘ set URL for “Next Customer” hyperlink

lnkNext.NavigateUrl = Request.FilePath

‘ get data and bind to DataGrid in the page

FillDataGrid(sCustID)

Else

‘ either this is the first time the page has been

‘ loaded, or no customer ID was provided

‘ display controls to select customer

frmMain.Visible = True

End If

End If

End Sub

You’ve just seen how the code that runs in Stage 1, when the user submits the form, adds the
customer ID to the query string as custID=value. (When the user loads the page by clicking the
hyperlink in the results page, there will be no query string.) So you test for the presence of a
customer ID value and, if there is one, you can make the section of the page that displays the
results visible, set the URL of the hyperlink in that section of the page so that it will reload the
current page, and then call a separate routine, named FillDataGrid, that calculates the results
and fills the ASP.NET DataGrid control in this section of the page.

At the end of Listing 3.3 you can see the code
that runs for Stage 3 of the process. In this
case, you know that it’s not a postback, and
there is no customer ID in the query string.
So either this is the first time the page has
been accessed or the user did not enter a
customer ID value in the text box. In either
case, you just have to make the <form> section
visible, and the user ends up back at Stage 1
of the process.

Populating the DataGrid Control
The only other code in the sample page is responsible for fetching the required data from the
database and populating the DataGrid control on the page. The full or partial customer ID,
extracted from the query string at Stage 2 of the process, is passed to the FillDataGrid routine,
which is shown in full in Listing 3.4.

LISTING 3.3 Continued

Viewstate and the Visible Property
Notice that because the page does not main-
tain viewstate for Stages 2 and 3, you don’t
need to hide the other sections of the page
content. All three carry the Visible=”False”
attribute, so they will not be displayed unless
you specifically change the Visible property
to True when the page loads each time.

05 0672326744 CH03 5/4/04 12:25 PM Page 83

LISTING 3.4 The Final Part of the Page_Load Event Handler

Sub FillDataGrid(sCustID As String)

Dim sSelect As String _

= “SELECT CustomerID, CompanyName, City, Country, Phone “ _

& “FROM Customers WHERE CustomerID LIKE @CustomerID”

Dim sConnect As String _

= ConfigurationSettings.AppSettings(“NorthwindSqlClientConnectString”)

Dim oConnect As New SqlConnection(sConnect)

Try

‘ get DataReader for rows from Northwind Customers table

Dim oCommand As New SqlCommand(sSelect, oConnect)

oCommand.Parameters.Add(“@CustomerID”, sCustID & “%”)

oConnect.Open()

dgrResult.DataSource = oCommand.ExecuteReader()

dgrResult.DataBind()

oConnect.Close()

lblResult.Text = “Results of your query for Customer ID ‘“ _

& sCustID & “‘“

‘ force current thread to sleep for 3 seconds

‘ to simulate complex code execution

Thread.Sleep(3000)

Catch oErr As Exception

oConnect.Close()

lblResult.Text = oErr.Message

End Try

End Sub

The code here is fairly conventional. It creates a parameterized SQL statement and then executes
it with a Command instance to return a DataReader instance that points to the result set generated
by the database. You use the customer ID passed to the routine as the value of the single
Parameter instance you create, and the resulting DataReader instance is bound to the DataGrid
control. See the section “Using Parameters with SQL Statements and Stored Procedures” in
Chapter 10, “Relational Data-Handling Techniques,” for more details on using parameterized
SQL statements.

3
Loading Progress and Status Displays

84

05 0672326744 CH03 5/4/04 12:25 PM Page 84

85Displaying a Progress Bar Graphic

Simulating a Complex or Lengthy Process
The code used to populate the DataGrid control in this example is unlikely to qualify as a
complex or lengthy operation. Unless someone pulls the network cable out, it won’t take long
enough for the user to see the “please wait” message in the demonstration page. So to simulate
a long process, you can insert a call to the Sleep method of the static Thread object, specifying
that the current thread should wait 3 seconds before continuing:

Thread.Sleep(3000)

The only point to watch for here is that you have to import the System.Threading namespace
into the page to be able to access the Thread object:

<%@Import Namespace=”System.Threading” %>

Displaying a Progress Bar Graphic
A static “please wait” message is fine, but it could not be described as eye-catching, and it gives
no indication that anything is actually happening. The server could die while the message is
being shown, leaving you still staring at the “please wait” message three days later. It’s nice to
have some kind of indication that the Web site is still alive and really is working furiously to
generate the results you asked for.

Unfortunately, with the way that Web browsers and HTTP work, this isn’t easy to achieve. Each
request/response is treated as a single unit of operation, and there is no persistent connection
over which status information can be passed. There are ways around this, of course, but they
tend to hit performance and cause undue server loading. You’ll see an example of this in the
section “Implementing a Staged Page Load Process,” later in this chapter.

An alternative is to display something that makes it look like the browser is working hard but
actually bears no relationship to what’s happening on the server. When you do this, you avoid
the need for extra connections while the main process is taking place, and yet you still satisfy
the user’s desire to see something happening. The simplest solution is to use an animated GIF
file in the page instead of or in addition to the “please wait” message.

Figure 3.6 shows the “please wait” page for this example. Instead of just a text message, you
now also have a progress bar that appears to reflect the state of the long-running process that is
generating the results the user is waiting for.

As intimated earlier, however, the progress bar is an illusion in that it will keep moving, regard-
less of whether the page takes a minute or a month to appear. But by carefully choosing the
timing of the animation in the GIF file to match the anticipated average response times for
average users, you can get it to look quite realistic.

05 0672326744 CH03 5/4/04 12:25 PM Page 85

Other than the appearance of the progress
bar, the remainder of this example looks the
same as the previous example, which displays
just the “please wait” text message. Therefore,
the following sections concentrate on what’s
different in the declaration of the HTML, the
server controls, and the code used to drive
this page compared to the previous example.

The Progress Bar Animated
Graphic Files
We provide four different versions of the
animated progress bar graphic in the images
folder of the examples you can download for
this book (from www.daveandal.net/books/
6744/). The only difference between them is
the speed at which the progress display
moves from left to right. The details of these
graphics files are summarized in Table 3.1.

TABLE 3.1
The Progress Bar Animated GIF Files for This Example

Filename Description

progressbar10.gif The indicator progresses at a steady speed from left to right in approximately 10 seconds,
and it remains at the fully right (complete) position for 10 seconds before starting again.

progressbar20.gif The indicator progresses at a steady speed from left to right in approximately 20 seconds,
and it remains at the fully right (complete) position for 10 seconds before starting again.

progressbar30.gif The indicator progresses at a steady speed from left to right in approximately 30 seconds,
and it remains at the fully right (complete) position for 10 seconds before starting again.

progressbarlog.gif The indicator progresses in logarithmic fashion from left to right in approximately 30
seconds, starting quickly and then getting slower. It remains at the fully right (complete)
position for 10 seconds before starting again.

3
Loading Progress and Status Displays

86

FIGURE 3.6 Displaying a progress bar while
loading another page.

Achieving True and Accurate Status Displays
To achieve a real page-loading status display,
you can arrange for your server-side code to
flush chunks of output to the client as it
carries out the processing required to generate
the results. These chunks of output could be
client-side script that writes status details
within the current browser page or even just
simple elements that load images to
indicate progress of the operation. As an
example, the MSN Expedia Web site
(www.expedia.com) flushes partial page
output to the browser, as you can see if you
view the source of the page while it’s search-
ing for that holiday in Florida you keep promis-
ing your kids. However, it also uses a “dummy”
animated graphic, just as this example does,
which effectively indicates nothing about the
actual underlying process of the operation.

05 0672326744 CH03 5/4/04 12:25 PM Page 86

87Displaying a Progress Bar Graphic

Displaying the Progress Bar Graphic
In theory, building the progress bar sample page should be easy. You just have to insert an
element into the section of the page that is displayed for Stage 2 of the process in the previous
example, and you’re done, right? However, most Web developers approach these trivial tasks
with trepidation and with a knowledge gleaned from experience that nothing ever works quite
as you expect when dealing with Web browsers—especially Web browsers from different manu-
facturers.

It turns out that trepidation is definitely justified here. Simply adding an element fails to
work properly because as soon as the redirection is initiated by the <meta> element, most
browsers stop loading any images for the current page. In this case, unless the progress bar is
already cached (and the server is extremely responsive when the browser checks whether the file
has changed since it was cached), the result is a “missing image” placeholder instead of a
progress bar.

The solution to this problem is to force the browser to delay for a few seconds—long enough to
load the progress bar graphic—before beginning the refresh process that requests the next page.
You can set this delay to 3 seconds in the sample page by changing the content attribute you
add to the <meta> element in the Page_Load event handler:

mtaRefresh.Attributes.Add(“content”, “3;url=” & sRefreshURL)

Now the page works fine in recent Netscape, Mozilla, and Opera browsers. But it still doesn’t
work properly in Internet Explorer. It seems that Internet Explorer “turns off” the animation in
animated GIF files as soon as a new page is requested. After the 3-second delay, the progress bar
just stalls—which ruins the whole effect! So, for Internet Explorer, you have to find an alterna-
tive approach, as described in the following sections.

An Alternative Page-Loading Technique for Internet Explorer
We experimented with several seemingly obvious approaches to loading the progress bar graphic
and reloading the page using client-side script in Internet Explorer, all to no avail. It seems that
the only way to circumvent the issue with the stalled animated graphic is to find a completely
different way to load the next page (that is, reload the current page with the customer ID in the
query string).

Internet Explorer 5 and higher have access to the MSXML parser component; it is part of a
Windows installation and is distributed with Internet Explorer as well. Part of the MSXML
parser component is an object named XMLHTTP, which you can use to request a resource from the
server in the background while a page is loaded and displayed in the browser.

The XMLHTTP object is instantiated and manipulated with client-side script within a Web page,
and it exposes properties and methods that allow you to make GET and POST requests to a server
both synchronously and asynchronously. Although it is ostensibly designed for fetching XML
documents, it works equally well fetching any type of resource, including HTML pages that
probably aren’t fully XML (or XHTML) compliant.

05 0672326744 CH03 5/4/04 12:25 PM Page 87

Loading Pages with the XMLHTTP Object
The process for using the XMLHTTP object is relatively simple, especially if you are happy to load the
new page synchronously. You can create an instance of the XMLHTTP object by using the following:

var oHTTP = new ActiveXObject(“Microsoft.XMLHTTP”);

Next you open an HTTP connection, specifying the HTTP method (usually “GET” or “POST”), the
URL of the target resource, and the value false to indicate that you want synchronous opera-
tion. Then you can use the send method to send the request:

oHTTP.open(“method”, target-url, false);

oHTTP.send();

After the response has been received from the server, you test the status property (the value of
the HTTP status header) to see if it is 200 (which means “OK”) and extract the page as a string
from the XMLHTTP object by using the following:

if (oHTTP.status == 200)

sResult = oHTTP.responseText;

else

// an error occurred

However, if you use synchronous loading, the browser will not respond to any other events
(including animating the GIF file) while the request for the next page is executing. Instead, you
need to use asynchronous loading to allow the browser to carry on reacting as normal while the
server creates and returns the new page.

Asynchronous Loading with the XMLHTTP Object
For asynchronous loading, you first have to specify the name of a callback function that will be
executed each time the readystate property of the XMLHTTP object changes and specify true for
the third parameter of the open method:

oHTTP.onreadystatechange = myCallbackHandler;

oHTTP.open(“method”, target-url, true);

oHTTP.send();

The callback function you specify will be executed several times as the XMLHTTP object fetches the
response from the server. When the response is complete, the value of the readystate property
will be 4, and at that point you can test for an error and extract the page as a string:

function myCallbackHandler () {

if (oHTTP.readyState == 4) {

if (oHTTP.status == 200)

sResult = oHTTP.responseText;

else

// an error occurred

}

}

3
Loading Progress and Status Displays

88

05 0672326744 CH03 5/4/04 12:25 PM Page 88

89Displaying a Progress Bar Graphic

Using the XMLHTTP Object in the Progress
Bar Sample Page
Listing 3.5 shows the client-side code
included in the progress bar sample page. It
works exactly as just demonstrated, with the
only additions being a test to see that an
instance of the XMLHTTP object was successfully
created and the display of any error messages
in a element, located below the progress
bar graphic in the page.

LISTING 3.5 Loading the Results Page with XMLHTTP

<script language=’javascript’>

<!--

// variable to hold reference to XMLHTTP object

var oHTTP;

function loadTarget(sURL) {

// create instance of a new XMLHTTP object

oHTTP = new ActiveXObject(“Microsoft.XMLHTTP”);

if (oHTTP != null) {

// specify callback for loading completion

oHTTP.onreadystatechange = gotTarget;

// open HTTP connection and send async request

oHTTP.open(‘GET’, sURL, true);

oHTTP.send();

}

else {

document.all[‘spnError’].innerText

= ‘ERROR: Cannot create XMLHTTP object to load next page’;

}

}

function gotTarget() {

// see if loading is complete

if (oHTTP.readyState == 4) {

// check if there was an error

if (oHTTP.status == 200) {

// dump next page content into this page

document.write(oHTTP.responseText);

}

else {

document.all[‘spnError’].innerText

= ‘ERROR: Cannot load next page’;

Information on the XMLHTTP Object
You can find a full reference to the XMLHTTP
object (effectively the XMLHTTPRequest inter-
face) in the MSDN library, at http://msdn.
microsoft.com/library/en-us/xmlsdk30/
htm/xmobjxmlhttprequest.asp.

05 0672326744 CH03 5/4/04 12:25 PM Page 89

}

}

}

//-->

One interesting point about this listing is in the gotTarget callback handler. After you’ve
extracted the complete content of the new page as a string, you simply write it into the current
browser window, using the client-side document.write method. This replaces the current content,
giving the same output as in the first example in this chapter, after the main customer lookup
process has completed (refer to Figure 3.5).

What you’ve actually achieved here is to reload the same page again in the background, while
still at Stage 2 of the process (displaying the “please wait” message and progress bar) and then
use it to replace the current page. But because the URL you request contains the customer ID in
the query string this time, the new page generated by the server will be the one for Stage 3 of
the process (containing the DataGrid control, populated with the results of the database search).
Altogether, this is a neat and interesting solution!

The Changes to the HTML and Server Control Declarations in This Example
The only remaining features of this example that we need to examine are how to initiate the
client-side code that loads the results page and how to handle cases where client-side scripting is
disabled in the browser. In the HTML section of the page, you declare the <body> element as a
server control this time, by adding an ID and the runat=”server” attribute—just as you did for
the <meta> element earlier in this chapter:

<body id=”tagBody” runat=”server”>

Then, in the Page_Load event handler, you can add an appropriate onload attribute to the
opening <body> tag in the server-side code. Listing 3.6 shows the changed section of the
Page_Load event handler. The only section that differs in this example from the first example is
the part where the postback from Stage 1 occurs—where you are generating the “please wait”
page for Stage 2 of the process.

LISTING 3.6 The Page_Load Event Handler for the Progress Bar Example

If Page.IsPostback Then

Dim sRefreshURL As String = Request.Url.ToString() _

& “?custID=” & txtCustomer.Text

‘ if it’s IE, need to load new page using script because

‘ the META REFRESH prevents the animated GIF working

If Request.Browser.Browser = “IE” Then

tagBody.Attributes.Add(“onload”, “loadTarget(‘“ _

& sRefreshURL & “‘);”)

3
Loading Progress and Status Displays

90

LISTING 3.5 Continued

05 0672326744 CH03 5/4/04 12:25 PM Page 90

91Displaying a Progress Bar Graphic

‘ set META REFRESH as well in case script is disabled

‘ use long delay so script can load page first if possible

mtaRefresh.Attributes.Add(“http-equiv”, “refresh”)

mtaRefresh.Attributes.Add(“content”, “30;url=” & sRefreshURL)

Else

‘ not IE so use META REFRESH to start loading next page

‘ allow 3 seconds for progress bar image to load

mtaRefresh.Attributes.Add(“http-equiv”, “refresh”)

mtaRefresh.Attributes.Add(“content”, “3;url=” & sRefreshURL)

End If

frmMain.Visible = False

divWait.Visible = True

Else

...

You use the ASP.NET Request.Browser object, which exposes a property also named (rather
confusingly) Browser. This property indicates the browser type, and if it is “IE”, you know that
you are serving to an Internet Explorer browser—so we can add the onload attribute to the
<body> element by using the Attributes collection of the HtmlGenericControl class that imple-
ments it in ASP.NET. The result, when viewed in the browser, looks like this:

<body id=”tagBody” onload=”loadTarget(‘/daveandal/books/6744

➥ /loadwait/progressbar.aspx?custID=a’);”>

You also add a “catch all” feature in case
scripting is disabled, by setting the attributes
of the <meta> element. In this case, the <meta>
element will cause a page reload after 30
seconds. You can also see in Listing 3.6 the
changed value of the content attribute that
you apply for non–Internet Explorer browsers,
to allow the progress bar graphic to load
before the redirection commences (as
discussed earlier in this chapter).

LISTING 3.6 Continued

Checking for the Version of Internet Explorer
In theory, you should test for the browser
version as well as the type because the
XMLHTTP object is available only in version 5
and higher of Internet Explorer. However, the
“catch all” you build in for when scripting is
disabled will also make the page work (after
a fashion) on earlier versions of Internet
Explorer. Whether anyone is still using version
4 or earlier, with all the security issues inher-
ent in those versions, is open to discussion.

05 0672326744 CH03 5/4/04 12:25 PM Page 91

Implementing a Staged Page Load Process
We hinted earlier in this chapter that there are ways you can generate “real” status messages in
the browser while executing a complex or lengthy operation on the server. Although the tech-
nique of simply flushing chunks of content back to the browser as the process runs does work,
it’s not particularly efficient in terms of connection usage or server loading.

Web servers are designed to receive a connection and resource request, generate the required
response, and disconnect as quickly as possible to allow the next user to connect and make a
resource request. Because it’s likely that most complex operations will involve database access on

the server, holding open a connection to the
database while you flush chunks of content
back to the client is probably not a good idea.

However, if you can break down the complex
or lengthy process into separate individual
stages, it is possible to provide useful “real”
status feedback in the browser. In fact, it’s
reasonably easy to do this in Internet Explorer
5 and higher, by using the XMLHTTP object used
in the previous example.

The Steps in Implementing a Staged Page Load Process
Figure 3.7 shows a flowchart of a staged process that is implemented as the next example in this
chapter. The main page, named stagedloading.aspx, uses the XMLHTTP component to request a
separate operation page, named stagedfetchpage.aspx, four times. Each request contains, in the
query string, a customer ID that the user provides and a step value that indicates which stage of
the process is currently being performed. The operation page uses these values to collect the
appropriate row set from the Northwind database at each stage and add to a DataSet instance a
table that is stored in the user’s ASP.NET session.

In between requests, the main page can display progress and status information, or it can
display any error messages returned by the operation page. When the process is complete in this
example, the value returned (the total for all matching orders) is displayed—together with a
button that allows the user to view the list of orders. This data is in the DataSet instance stored
in the user’s ASP.NET session, so it can be extracted and displayed without requiring another trip
to the database.

Of course, you can easily tailor this example to display different data at any stage and provide
links to access any of the tables in the DataSet instance. In fact, this process opens up a whole
realm of opportunities for collecting data of all kinds and combining and then querying it after-
ward. Figure 3.8 shows a screenshot of the sample page while it is collecting details of orders for
all customers whose ID starts with m and building up the DataSet instance.

3
Loading Progress and Status Displays

92

Flushing Intermediate Content to the Client
Of course, if the process has to access several
different data sources to generate the result-
ing page, as is most likely the case with the
MSN Expedia example mentioned earlier in
this chapter, you can flush the individual
chunks of “status” content to the browser in
between opening each connection, extracting
the data, and closing it again.

05 0672326744 CH03 5/4/04 12:25 PM Page 92

93Implementing a Staged Page Load Process

You’ll learn about this page in more detail
shortly, but first you need to see how you can
pass status and other information back to the
XMLHTTP object. Then you’ll see how the opera-
tion page, which collects the data and stores
it in the user’s session, works. After that,
you’ll see how the main page calls this opera-
tion page and how it displays the status infor-
mation and results.

Status Information in ASP.NET
and the XMLHTTP Object
When a browser or any other client (such as
XMLHTTP) requests an HTML page, the server

Send Request

Update Status Display

Send Request

Update Status Display

Send Request

Update Status Display

Send Request

Update Status Display

Display Order Total

Display Orders List

XMLHTTP

XMLHTTP

XMLHTTP

XMLHTTP

stagedloading.aspx
stagedfetchpage.aspx

Add
Customers

Add
Orders

Add
Details

Calculate
Total

DataSet in
ASP.NET
Session

Database

FIGURE 3.7
A flowchart of the steps in
implementing a staged page
load process.

FIGURE 3.8 The staged processing and
reporting sample page in
action.

Accessing Physically or Geographically
Separated Data Sources
The set of steps used in this example could
easily be performed in one pass. However,
using separate stages demonstrates how you
could in a more complex scenario access
multiple different data sources that could be
physically and geographically separated.
These data sources might be Web services,
XML documents, or other types of data
sources—and not just relational databases.
For instance, take the MSN Expedia example
mentioned earlier: It’s likely that the data
sources being accessed would be hosted by
different airlines, hotels, rental car compa-
nies, and so on.

05 0672326744 CH03 5/4/04 12:25 PM Page 93

returns an HTTP status header, followed by the page that was requested. If there is no error (that
is, the page can be found and executed by the server), it returns the status header “200 OK”.

However, even if the process of loading and executing the page succeeds, you can still control
the status code that is returned by setting the Status, StatusCode, and/or StatusDescription prop-
erties of the current ASP.NET Response object. The values of these properties will be exposed by
the status and statusText properties of the XMLHTTP object after it loads the page (see Table 3.2).
You can find a full list of the standard HTTP status codes at www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

TABLE 3.2
The Equivalent Status-Related Properties of the ASP.NET Response and XMLHTTP Objects

ASP.NET Response
Object Property XMLHTTP Object Property Description

Status No direct equivalent A combination of the status code and status descrip-
tion (for example, “200 OK” or “302 Object Moved”)

StatusCode status The numeric part of the status information (for
example, 200 or 302)

StatusDescription statusText The text or description part of the status information
(for example, “OK” or “Object Moved”)

By default, the server will automatically set the ASP.NET Status property to “200 OK” if there is
no error or to the standard HTTP status code for any error that does occur (for example, “500
Internal Server Error” if there is an ASP.NET code execution error). However, if you trap
ASP.NET errors in the code—for example, a failed database connection or a numeric calculation
error—you must set the Status property (or the StatusCode and StatusDescription properties) if
an error does occur.

The Staged Process Operation Page
The main page that the user sees makes repeated requests to the operation page
(stagedfetchpage.aspx), passing the customer ID and the appropriate step number each
time. Because it does this by using the XMLHTTP component, the operation page doesn’t have to
generate any HTML or output. All it has to do is indicate to the main page whether there was an
error or whether this step of process succeeded.

However, not all the values you pass back to the XMLHTTP object in this example are strictly status
messages; for example, the order value total that is displayed at the end of the process must be
returned to the main page. So rather than use the StatusDescription property (statusText in
XMLHTTP), you can write these messages directly into the page that is returned. The XMLHTTP object
can retrieve this as the responseText property, as shown in the previous example.

The Page_Load Event Handler for the Staged Loading Example
Listing 3.7 shows the Page_Load event handler in the operation page, together with the page-level
variable that holds a reference to the DataSet instance stored in the session. The values for the
customer ID and the current step are collected from the query string each time the page loads.

3
Loading Progress and Status Displays

94

05 0672326744 CH03 5/4/04 12:25 PM Page 94

95Implementing a Staged Page Load Process

LISTING 3.7 The Page_Load Event Handler for the Staged Loading Example

Dim oDS As DataSet

Sub Page_Load()

Dim sCustID As String = Request.QueryString(“custID”)

Dim sStep As String = Request.QueryString(“step”)

Dim sSelect As String

‘ force current thread to sleep for 3 seconds

‘ to simulate complex code execution

Thread.Sleep(3000)

Select Case sStep

Case “1”

oDS = New DataSet()

sSelect = “SELECT CustomerID, CompanyName, City, “ _

& “Country, Phone FROM Customers “ _

& “WHERE CustomerID LIKE @CustomerID”

AddTable(“Customers”, sCustID, sSelect)

Case “2”

oDS = CType(Session(“thedata”), DataSet)

sSelect = “SELECT OrderID, OrderDate FROM Orders “ _

& “WHERE CustomerID LIKE @CustomerID”

AddTable(“Orders”, sCustID, sSelect)

Case “3”

oDS = CType(Session(“thedata”), DataSet)

sSelect = “SELECT [Order Details].OrderID, “ _

& “Products.ProductID, Products.ProductName, “ _

& “[Order Details].Quantity, [Order Details].UnitPrice “ _

& “FROM [Order Details] JOIN Products “ _

& “ON [Order Details].ProductID = Products.ProductID “ _

& “WHERE [Order Details].OrderID IN “ _

& “ (SELECT OrderID FROM Orders “ _

& “ WHERE CustomerID LIKE @CustomerID)”

AddTable(“OrderDetails”, sCustID, sSelect)

Case “4”

oDS = CType(Session(“thedata”), DataSet)

CalculateTotal()

Case Else

Response.Status = “500 Internal Server Error”

Response.Write(“Error: Invalid Query String Parameter”)

End Select

End Sub

05 0672326744 CH03 5/4/04 12:25 PM Page 95

Next, to simulate a long process, you force
the current thread to sleep for 3 seconds (as
you did in the “please wait” example) before
using the step value from the query string to
decide which action the page will carry out.
The first three stages of the operation must
create and execute a database query to extract
the appropriate set of rows and then add
these to the DataSet instance in the user’s
session. The AddTable routine, which you’ll
see shortly, achieves this. Obviously, you have
to a create new DataSet instance at Stage 1,
but the remaining stages can extract this
DataSet instance from the user’s session.

At Stage 4 in this example, the operation page
has to calculate the order total and return it
to the main page, using the routine
CalculateTotal (which you’ll see shortly). Any
value greater than 4 for the step parameter is
treated as an error, and the page returns the
server-side execution error “500 Internal
Server Error”. A more detailed error message
is also sent back as the content of the
returned page.

Adding Tables to the DataSet Instance
Adding a table to the DataSet instance you
extract from the user’s session is simple, and

the code in Listing 3.8 demonstrates the traditional techniques you use. Notice that, in this
code, you check whether you actually managed to find a DataSet instance in the session, and
you return an error status and message if not. After adding the table, you push the updated
DataSet instance back into the session. If there is an error while extracting the rows, a suitable
error status and message are returned to the user instead.

LISTING 3.8 The AddTable Routine for the Staged Loading Example

Sub AddTable(sTableName As String, sCustID As String, _

sSelect As String)

If oDS Is Nothing Then

Response.Status = “500 Internal Server Error”

Response.Write(“Error: Cannot access DataSet in session”)

Else

3
Loading Progress and Status Displays

96

Accessing the Customer ID Value
The value of the customer ID entered into the
text box cannot be extracted directly as the
Text property of the ASP.NET TextBox
control when this page is executed. The page
is loaded with the “GET” method by the
XMLHTTP object, with the customer ID
appended to the query string, so it must be
collected from there each time.

What Happens if Cookies Are Disabled?
The sample page will fail to work properly if
the user has cookies disabled in his or her
browser because ASP.NET will not be able to
maintain a user session. One solution would
be to enable cookieless sessions by adding
the element <sessionState cookieless=
”true” /> to the <system.web> section of
the web.config file for the application. In
this case, you must also modify the src
attribute of the non–server control
elements to specify the full path to the
images because the inclusion of the session
key in the page URL breaks the links to
images that are specified only as relative
paths from the URL of the page that hosts
them.

05 0672326744 CH03 5/4/04 12:25 PM Page 96

97Implementing a Staged Page Load Process

Dim sConnect As String = ConfigurationSettings.AppSettings(_

“NorthwindSqlClientConnectString”)

Dim oConnect As New SqlConnection(sConnect)

Dim oDA As New SqlDataAdapter(sSelect, oConnect)

oDA.SelectCommand.Parameters.Add(“@CustomerID”, sCustID & “%”)

Try

‘ fill table in DataSet and put back into session

oDA.Fill(oDS, sTableName)

Session(“thedata”) = oDS

Response.Status = “200 OK”

Response.Write(“OK”)

Catch oErr As Exception

Response.Status = “500 Internal Server Error”

Response.Write(“Error: “ & oErr.Message)

End Try

End If

End Sub

Calculating the Total Value of the Orders
The final section of the operation page in the staged loading example is shown in Listing 3.9.
This simply references the OrderDetails table in the DataSet instance and sums the values in
each row by multiplying the quantity by the unit price. The result is written back to the
response as a fixed-point number with two decimal places.

LISTING 3.9 The CalculateTotal Routine for the Staged Loading Example

Sub CalculateTotal()

Dim dTotal As Decimal = 0

Try

For Each oRow As DataRow In oDS.Tables(“OrderDetails”).Rows

dTotal += (oRow(“Quantity”) * oRow(“UnitPrice”))

Next

Response.Status = “200 OK”

LISTING 3.8 Continued

05 0672326744 CH03 5/4/04 12:25 PM Page 97

Response.Write(dTotal.ToString(“F2”))

Catch oErr As Exception

Response.Status = “500 Internal Server Error”

Response.Write(“Error: “ & oErr.Message)

End Try

End Sub

The Staged Process Main Page in the Staged Loading Example
Now that you have seen how the operation page performs the updates to the DataSet instance
and returns status and information messages, you can now look at the main page that calls this
operation page at each stage of the overall process. Listing 3.10 shows the HTML content of the
main page. You can see that there is an ASP.NET TextBox control for the user to enter the full or
partial customer ID and an <input> element that creates the submit button captioned Calculate.

LISTING 3.10 The HTML Declarations for the Main Page in the Staged Loading Example

<form runat=”server”>

<!----- form for selecting customer ----->

<asp:Label id=”lblEnter” runat=”server”

Text=”Enter Customer ID:” />

<asp:Textbox id=”txtCustomer” runat=”server” />

<input id=”btnGo” type=”submit” value=”Calculate”

onclick=”return getResults();” runat=”server”/>

<!----- “please wait” display ----->

<table border=”0”>

<tr>

<td><img id=”img1” src=”../images/False.gif” width=”12”

height=”12” hspace=”5” /></td>

<td>Loading Customer Data</td>

</tr><tr>

<td><img id=”img2” src=”../images/False.gif” width=”12”

height=”12” hspace=”5” /></td>

<td>Loading Orders Data</td>

</tr><tr>

<td><img id=”img3” src=”../images/False.gif” width=”12”

height=”12” hspace=”5” /></td>

<td>Loading Order Details</td>

3
Loading Progress and Status Displays

98

LISTING 3.9 Continued

05 0672326744 CH03 5/4/04 12:25 PM Page 98

99Implementing a Staged Page Load Process

</tr><tr>

<td><img id=”img4” src=”../images/False.gif” width=”12”

height=”12” hspace=”5” /></td>

<td>Calculating Total</td>

</tr>

</table>

<!----- section for displaying total ----->

<div id=”divResult”>

<p />

</div>

<!----- section for displaying orders ----->

<div id=”divOrderList”>

<asp:Button id=”btnOrders” style=”visibility:hidden”

Text=”Show Orders” OnClick=”ShowOrders” runat=”server” />

<asp:DataGrid id=”dgrOrders” EnableViewState=”False”

runat=”server” /><p />

</div>

</form>

<img id=”imgTrue” style=”visibility:hidden”

src=”../images/True.gif” />

<img id=”imgThis” style=”visibility:hidden”

src=”../images/This.gif” />

You use the HTML <input> element here
because this is easier to connect to a client-
side event handler than the ASP.NET Button
element. (You don’t have to add the onclick
attribute on the server via the Attributes
collection.) You always return false from the
event handler that is attached to this button
because you must prevent it from submitting
the page to the server.

The HTML table that follows the text box and
button contains an element and a
 element for each stage of the process.
The client-side code that executes the opera-
tion page will update the src attribute of the
 element to change the image that is
displayed and the font-weight style selector of
the text as each stage takes place.

LISTING 3.10 Continued

Declaring the Button as a Server Control
You could omit the runat=”server” attribute
from the button. This would mean that the
<input> element would not be a server
control. However, you want to be able to hide
the button if the browser is not Internet
Explorer 5 or higher, and, because you perform
this check on the server side when the page
loads (as you’ll see shortly), you need to be
able to reference it in the server-side code.

You could also use the HTML <button>
element instead of the <input> element. The
<button> element is not supported in all
browsers, but because this page will work only
in Internet Explorer (where it is supported), this
would not be an issue.

05 0672326744 CH03 5/4/04 12:25 PM Page 99

The other two sections of the page are a <div> section, where any error messages and the final
order total will be displayed as each stage of the process executes, and another <div> section,
where the list of orders is displayed if the user clicks the Show Orders button. You’ll learn about
this aspect of the sample page after you see how it performs the initial four stages of calculating
the order total.

Finally, right at the end of the page are two more elements that are hidden from view with
the visibility:hidden style selector. You use these to preload the images for the list of operation
stages. You display the image named This.gif (a right-pointing arrow) for each stage as it starts
and then replace it with the image True.gif (a large check mark) if it completes successfully. You
can see these two images in Figure 3.8.

Displaying the Current Operation Progress in the Staged Loading Example
Listing 3.11 shows the two client-side JavaScript functions you use to manipulate the progress
indicators in the page. As each stage of the process is started, you make a call to the setCurrent
function. As each stage completes, you call the setCompleted function. In both cases, you supply
the stage number (a value from 1 to 4 in this example) as the single parameter.

LISTING 3.11 The Client-Side Routines to Display Operation Progress in the Staged Loading
Example

function setCurrent(iStep) {

// get reference to image and change to “arrow”

// using image pre-loaded in hidden element

var oImg = document.getElementById(‘imgThis’);

var oElem = document.getElementById(‘img’ + iStep.toString());

oElem.src = oImg.src;

// get reference to span and change text to bold

oElem = document.getElementById(‘spn’ + iStep.toString());

oElem.style.fontWeight = ‘bold’;

}

function setCompleted(iStep) {

// get reference to image and change to “tick”

// using image pre-loaded in hidden element

var oImg = document.getElementById(‘imgTrue’);

var oElem = document.getElementById(‘img’ + iStep.toString());

oElem.src = oImg.src;

// get reference to span and change text back to normal

oElem = document.getElementById(‘spn’ + iStep.toString());

oElem.style.fontWeight = ‘’;

}

The code in the setCurrent and setCompleted functions is very similar. It starts by getting a refer-
ence to the preloaded and hidden element that contains either the arrow image (This.gif)
or the check mark image (True.gif).

3
Loading Progress and Status Displays

100

05 0672326744 CH03 5/4/04 12:25 PM Page 100

101Implementing a Staged Page Load Process

The and elements that indicate the four process stages shown in the page have
values for their id attributes that indicate which stages they apply to. For example, the first stage
uses the id attributes “img1” and “spn1”, respectively, for the and elements. So the
code can get references to the correct elements by using the step number passed to it as a
parameter.

With these references, it’s then just a matter of updating the src property of the element
to display the appropriate image and setting the style.fontWeight property of the
element.

Executing the Operation Page with XMLHTTP
Listing 3.12 shows the code that executes the operation page discussed earlier in this chapter.
Three page-level variables are declared to hold references to items that will be accessed from
separate functions: the element, where the status and any error messages are displayed,
the XMLHTTP object, and the customer ID that the user entered.

LISTING 3.12 The Client-Side Routines to Execute the Operation Page

var oResult;

var oHTTP;

var sCustID;

function getResults() {

// get reference to “result” label and texbox value

oResult = document.getElementById(‘spnResult’);

var oTextbox = document.getElementById(‘txtCustomer’);

sCustID = oTextbox.value;

if (! sCustID == ‘’) {

// hide DataGrid control

var oElem = document.getElementById(‘dgrOrders’);

if (oElem != null) oElem.style.visibility = ‘hidden’;

// get Customers data

fetchData(1)

}

else

oResult.innerText = ‘No customer ID specified’;

// return false to prevent button from submitting form

return false;

}

function fetchData(iStep) {

// create instance of a new XMLHTTP object because we

// can’t change readystate handler on existing instance

oHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

if (oHTTP != null) {

// update status display and build data page URL

05 0672326744 CH03 5/4/04 12:25 PM Page 101

setCurrent(iStep);

var sURL = ‘stagedfetchpage.aspx?custid=’ + sCustID

+ ‘&step=’ + iStep.toString();

// set correct handler for XMLHTTP instance

switch (iStep) {

case 1: {

oHTTP.onreadystatechange = gotCustomers;

break;

}

case 2: {

oHTTP.onreadystatechange = gotOrders;

break;

}

case 3: {

oHTTP.onreadystatechange = gotDetails;

break;

}

case 4: {

oHTTP.onreadystatechange = gotTotal;

}

}

// open HTTP connection and send async request

oHTTP.open(‘GET’, sURL, true);

oHTTP.send()

}

else

oResult.innerText = ‘Cannot create XMLHTTP object’;

}

Next comes the main getResults function, which is executed when the Calculate button is
clicked. It collects a reference to the element that will hold the results, along with the
customer ID that the user entered into the text box on the page. If there is a value here, it hides
the DataGrid control that could still be displaying the list of orders from a previous query, and
then it calls the fetchData function with the parameter set to 1 to perform Stage 1 of the process.
If there is no customer ID, it just displays an error message instead.

The fetchData function (also shown in Listing 3.12) will be called at each stage of the process,
starting—as you’ve just seen—with Stage 1. This function’s task is to create an instance of the
XMLHTTP object and execute the operation page with the correct combination of values in the
query string. It first checks that an instance of XMLHTTP was in fact created, and then it calls the
setCurrent function shown in Listing 3.11 to update the status display in the page. Then it
creates the appropriate URL and query string for this stage of the process.

However, recall that you have to access the operation page asynchronously to allow the main
page to update the status information, so you must specify a client-side event handler for the

3
Loading Progress and Status Displays

102

LISTING 3.12 Continued

05 0672326744 CH03 5/4/04 12:25 PM Page 102

103Implementing a Staged Page Load Process

readystatechange event of the XMLHTTP object. The page contains four event handlers, and you
select the appropriate one by using a switch statement before opening the HTTP connection and
calling the send method of the XMLHTTP object to execute the operation page.

Handling the XMLHTTP readystatechange Events
Listing 3.13 shows the four event handlers that are declared in the switch statement in Listing
3.12. They are all very similar, and by looking at the first of them, gotCustomers, you can see that
they do nothing until the loading of the operation page is complete (when the readystate prop-
erty is 4). Then, if the status code returned from the operation page is 200 (“OK”), they call the
setCompleted function shown in Listing 3.11 to indicate that this stage completed successfully. If
any other status code is returned, the code displays the value of the responseText property (the
content of the page returned, which will be the error details) in the page.

LISTING 3.13 The Event Handlers for the XMLHTTP readystatechange Event

function gotCustomers() {

// see if loading is complete

if (oHTTP.readyState == 4) {

// check if there was an error

if (oHTTP.status == 200) {

// update status display and fetch next set of results

setCompleted(1);

fetchData(2);

}

else

oResult.innerText = oHTTP.responseText;

}

}

function gotOrders() {

// see if loading is complete

if (oHTTP.readyState == 4) {

// check if there was an error

if (oHTTP.status == 200) {

// update status display and fetch next set of results

setCompleted(2);

fetchData(3);

}

else

oResult.innerText = oHTTP.responseText;

}

}

function gotDetails() {

// see if loading is complete

if (oHTTP.readyState == 4) {

05 0672326744 CH03 5/4/04 12:25 PM Page 103

// check if there was an error

if (oHTTP.status == 200) {

// update status display and fetch next set of results

setCompleted(3);

fetchData(4);

}

else

oResult.innerText = oHTTP.responseText;

}

}

function gotTotal() {

// see if loading is complete

if (oHTTP.readyState == 4) {

// check if there was an error

if (oHTTP.status == 200) {

// update status display

setCompleted(4);

// display result in page and show Orders button

oResult.innerText = ‘Total value of all orders $ ‘

+ oHTTP.responseText;

var oElem = document.getElementById(‘btnOrders’);

oElem.style.visibility = ‘visible’;

}

else

oResult.innerText = oHTTP.responseText;

}

}

As each stage completes, the code must initiate the next stage. In the first three event handlers
(shown in Listing 3.13), this just involves calling the fetchData function (shown in Listing 3.12)
again—but with the next stage number as the parameter. The instance of the XMLHTTP object that
is created will then have the event handler for the next stage attached to the readystatechange
event.

At Stage 4, when the gotTotal function is called after the operation page has successfully calcu-
lated and returned the total value of matching orders, the responseText property will return the
total as a string. The function displays this value in the page and then changes the visibility
style selector of the Show Orders button to make it visible. However, if there is an error, the
error message is displayed instead.

Figure 3.9 shows the sample page after the four steps have completed successfully. You can see
that the order total is displayed and the Show Orders button is now visible as well.

3
Loading Progress and Status Displays

104

LISTING 3.13 Continued

05 0672326744 CH03 5/4/04 12:25 PM Page 104

105Implementing a Staged Page Load Process

Fetching and Displaying a List of Orders
After the four stages of the process in the
staged loading example have completed
successfully, the user’s session contains a
DataSet instance that is fully populated with
lists of matching customers, orders, and order
details rows from the database. This means
that you can easily display some or all of the
results of the four-stage process (as well as the
total already displayed in the page) by
querying this DataSet instance—without
having to hit the database again.

The Show Orders button (refer to Figure 3.9), which appears only after all four stages of the
operation are complete, runs a server-side routine that extracts a list of order lines from the
DataSet instance and displays them in the DataGrid control included in the HTML declarations of
the page. Figure 3.10 shows the result.

FIGURE 3.9 The sample page, after
successfully processing all the
stages.

FIGURE 3.10 The sample page, displaying
the list of orders from the
cached DataSet instance.

Why Do the Check Mark Images Disappear?
Notice that the check mark images disappear
from the page following the postback that
populates the DataSet instance. Remember
that unlike changes made in server-side
ASP.NET code, any changes made to the page
displayed in the browser using client-side
script are not persisted across postbacks.

05 0672326744 CH03 5/4/04 12:25 PM Page 105

The Server-Side Code in the Staged Process Main Page
Most of the action in the main page in the staged loading example is the result of the client-side
script examined in the previous section. However, two tasks require server-side code. Because the
page will work only in Internet Explorer 5 and higher, you really should make some attempt to
test the browser type and display an error message in other browsers. Second, you need to
handle click events for the Show Orders button and populate the DataGrid control that displays
the list of order lines.

Listing 3.14 shows the complete server-side code for the main page. In the Page_Load event, you
can access the BrowserCapabilities object that is exposed by the Request.Browser property and
test the browser name and version. If the browser is not Internet Explorer 5 or higher, you
display an error message and hide the text box and Calculate button so that the page cannot be
used.

LISTING 3.14 The Server-Side Page_Load and ShowOrders Event Handlers

Sub Page_Load()

‘ check that the browser is IE 5 or higher

If Request.Browser.Browser <> “IE” _

Or Request.Browser.MajorVersion < 5 Then

‘ display message and hide input controls

lblEnter.Text = “Sorry, this page requires Internet Explorer 5 or higher”

txtCustomer.Visible = False

btnGo.Visible = False

End If

End Sub

Sub ShowOrders(sender As Object, args As EventArgs)

‘ bind DataGrid to contents of DataSet in user’s Session

dgrOrders.DataSource = CType(Session(“thedata”), DataSet)

dgrOrders.Datamember = “OrderDetails”

dgrOrders.DataBind()

End Sub

When the Show Orders button is clicked (after the four stages of the process in the sample page
are complete), the routine named ShowOrders is executed. This simply accesses the DataSet
instance stored in the user’s session, binds the OrderDetails table to the DataGrid control, and
calls the DataBind method.

Catching and Displaying Errors from the Operation Page
The code shown in the preceding sections is designed to cope with any errors that might occur
in the operation page, which does the real work of querying the database and building up the
DataSet instance that contains all the results. As with any database operation, there is a possibil-
ity that something will go wrong—from a failed connection to changed permissions within the

3
Loading Progress and Status Displays

106

05 0672326744 CH03 5/4/04 12:25 PM Page 106

107Summary

tables, changed column names, or even
network failure if the database server is
remote from the Web server.

As you’ve seen, the operation page returns
one of the standard HTTP status codes each
time, and it writes output into the page it
generates. This content consists of just the
text “OK” for the first three stages (where the
DataSet instance is being created), but this
text is not displayed in the main page.
However, if there is an error within the opera-
tion page, the XMLHTTP object detects it
because the status code is not 200, and it
displays the contents of the returned page.

As an example, if you change the SQL state-
ment used for Stage 3 (extracting the order
details) so that it references a non-existent
column in the database, the Try...Catch
construct in the operation page code (refer to Listing 3.8) catches the error. It returns the status
code “500 Internal Server Error” and the text “Error:”, followed by the error message (as
returned by ASP.NET when the data access operation failed) as the content of the page. The
client-side code then displays the returned page content, as shown in Figure 3.11.

Making the Staged Process Work in Other
Browsers
The staged loading example absolutely
requires that the MSXML parser be available
on the client and so it works only in Internet
Explorer 5 and higher. However, it could be
implemented in other browsers (and different
types of clients), using other suitable client-side
software components. There are Java applets
available that could be used in other browsers,
or you could create your own Java applet or
ActiveX controls. The main issue will be
persuading the user to install these. Although
this solution would be fine on an intranet
where you can install the code on each
machine and keep control, users out there on
the Internet might be less keen to download
unknown components and allow them to run.

FIGURE 3.11 The sample page, reporting a
data access error.

Although it’s taken a while to examine the code used in this example, you can see that it is not
really very complicated. It allows you to create and manage staged processes that provide accu-
rate feedback to users and that can manage errors and display useful status information.

Summary
This chapter is devoted to the topic of finding ways to present users with status information
while a complex or lengthy process is taking place. This chapter looks at two different
approaches: displaying a simple “please wait” message or animated GIF image and implement-
ing the server-side process as a series of staged individual operations.

05 0672326744 CH03 5/4/04 12:25 PM Page 107

The first of these techniques doesn’t really provide feedback because the user is just looking at
what is effectively the shadow of the last page that the browser displayed. Underneath, it is
waiting for a response from the server. However, displaying a message indicating that the user
should wait gives the impression that something really is happening. And removing from the
page any buttons or other controls that the user might be tempted to play with prevents the
page from being resubmitted and upsetting your server-side code.

This chapter also shows how you can improve on the simple “please wait” text message by
using an animated GIF image—in this case, a progress bar. By choosing an image that progresses
at a rate matching the average page load time, you can make it look as though your server is
working flat out to satisfy their request.

Displaying a progress bar image should be a simple task, but as you discovered, there are issues
that arise. (And they say that Web development is child’s play!) You ended up having to find
two different solutions: one for Internet Explorer and another for other types of browsers. This
gave you the opportunity to look into how you can load pages in the background by using the
XMLHTTP object that is part of the standard installation of Internet Explorer 5 and above.

Finally, this chapter looks at a process that uses the XMLHTTP object to implement a staged execu-
tion and page loading process. This is a really neat solution for an application that has to
perform separate tasks to build up the final page that is returned to the client. And, of all the
techniques examined in this chapter, this one alone has the advantage of providing accurate
real-time status information as the server processes proceed.

If you decide to follow the asynchronous page-loading route, you might like to look at an
implementation designed for the .NET Framework by Microsoft, called the Asynchronous
Invocation Application Block for .NET. See http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnpag/html/paiblock.asp for more details.

3
Loading Progress and Status Displays

108

05 0672326744 CH03 5/4/04 12:25 PM Page 108

4
Working with
Nested List

Controls

ASP.NET introduced many extremely
useful server controls that can reduce devel-
opment time and make it easier to create
attractive Web pages with a lot less
programming effort. Among these is the
DataGrid control, which—for developers
building pages that display and manage
data—has become almost the de facto solu-
tion. However, many developers still have
problems using the DataGrid control when
stepping beyond the basic mode that it
provides for displaying rows of data.

This chapter looks particularly at displaying
hierarchical data from related tables or row
sets. This is common in many applications,
and this chapter investigates four alternative
approaches. It also looks at the specific issue
of providing a master/detail display where
the user can choose to show or hide the
related rows.

IN THIS CHAPTER
Displaying Related Data in Nested
DataGrid Controls 110

A Master/Detail Display with
DataList and DataGrid Controls 134

Summary 150

06 0672326744 CH04 5/4/04 12:22 PM Page 109

Displaying Related Data in Nested
DataGrid Controls
Developers regularly find that they have to build pages that can display data from related tables
in a data source and, at first glance, the DataGrid control doesn’t seem to be able to do this.
Many third-party grid controls are available for ASP.NET that are designed to provide this
feature, but it’s quite easy to achieve the same effect with a DataGrid control or a combination of
ASP.NET list controls.

The process requires that the list controls be nested so that each row within the grid that
displays the parent rows contains a list control bound to the related child rows. There are
several oft-used approaches for selecting the correct set of child rows for each parent row. The
following are the four most common:

n Declarative nested binding to a DataSet instance—This is the simplest approach,
and it requires no code to be written except that required to generate and populate the
DataSet instance the first time that the page is opened.

n Filling nested DataGrid controls programmatically from a DataSet instance—This
technique allows you to extract all the data you want in one operation, while still main-
taining control over the selection of child rows, and access or modify the row contents as
required.

n Declarative nested binding to a custom function that returns a row set—This
technique combines the previous two approaches, allowing custom handling of the data
when creating the row set to be combined with the simple declarative approach to
performing the binding.

n Filling nested DataGrid controls from a DataReader instance—This is a useful tech-
nique when you need to display only a few rows. It allows you to dynamically select the
child rows you want for each parent row, and it gives you full control over the content at
the point where the grid is being populated.

Declarative Nested Binding to a DataSet Instance
The simplest way to populate nested DataGrid
controls is to use syntax that allows the child
rows to be specified using declarative tech-
niques. In other words, you specify the
binding properties of the nested grid at
design time, and ASP.NET fetches the rows
and performs the binding to generate the
output at runtime.

The sample page in Figure 4.1 shows nested binding of three DataGrid controls, displaying data
extracted from the Northwind sample database that is provided with SQL Server. The outer, or
root, DataGrid control displays details from the Customers table, and the grid nested within it

4
Working with Nested List Controls

110

Running the Examples on Your Own Server
You must edit the connection string in the
web.config file provided in the root folder of
the examples to suit your server and environ-
ment before running this example on your own
server. Alternatively, you can run all the exam-
ples online at www.daveandal.net/books.

06 0672326744 CH04 5/4/04 12:22 PM Page 110

111Displaying Related Data in Nested DataGrid Controls

The page starts the usual Page and Import directives:

<%@Page Language=”VB” EnableViewState=”False” %>

<%@Import Namespace=”System.Data” %>

<%@Import Namespace=”System.Data.OleDb” %>

However, in this case you turn off viewstate
for the page. You don’t intend to perform
postbacks, which means that you’ll only
generate the data once, and you don’t need
to preserve the values in the grid, so there is
no point in storing it in the viewstate.

Declaring the DataGrid Controls
Listing 4.1 shows the declaration of the
<form> section of the page and the three
DataGrid controls. It also includes a Label
control where you will display any data access

FIGURE 4.1
Nested DataGrid controls, using
declarative data binding.

Saving Bandwidth by Disabling Viewstate
To give you some idea of the savings in band-
width and consequent download time, the
resulting page contains 20,207 bytes of view-
state data with viewstate enabled in the Page
directive. With viewstate disabled, this is
reduced to 50 bytes. You could also omit the
<form> tags from the page, as they are re-
quired only when you’re performing a postback.
However, if you place a Web Forms control such
as a TextBox control on the page—perhaps to
allow editing of the contents—you must use a
server-side <form> tag. Most ASP.NET develop-
ment tools insert a server-side <form> tag into
every page by default.

displays a list of orders (in the Order History column). However, this nested grid contains within
its Details column another DataGrid control, which is bound to data extracted from the Order
Details table. The result is a hierarchical display of all three sets of related data rows.

06 0672326744 CH04 5/4/04 12:22 PM Page 111

errors. The declaration of the DataGrid control includes a range of style and formatting attrib-
utes, including declarations of the <HeaderStyle>, <ItemStyle>, and <AlternatingItemStyle>
elements.

LISTING 4.1 The Declaration of the DataGrid Controls

<form runat=”server”>

<asp:Label id=”lblErr” EnableViewState=”False” runat=”server” />

<asp:DataGrid id=”dgr1” runat=”server”

Font-Size=”10” Font-Name=”Tahoma,Arial,Helvetica,sans-serif”

BorderStyle=”None” BorderWidth=”1px” BorderColor=”#deba84”

BackColor=”#DEBA84” CellPadding=”5” CellSpacing=”1”

AutoGenerateColumns=”False” >

<HeaderStyle Font-Bold=”True” ForeColor=”#ffffff”

BackColor=”#b50055” />

<ItemStyle BackColor=”#FFF7E7” VerticalAlign=”Top” />

<AlternatingItemStyle backcolor=”#ffffc0” />

<Columns>

<asp:TemplateColumn HeaderText=”Customer Details”>

<ItemTemplate>

<%# Container.DataItem(“CompanyName”) %>

City: <%# Container.DataItem(“City”) %>

Country: <%# Container.DataItem(“Country”) %>

CustomerID: “<%# Container.DataItem(“CustomerID”) %>”

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Order History”>

<ItemTemplate>

<asp:DataGrid id=”dgr2” runat=”server”

BorderStyle=”None” BorderWidth=”0” Width=”100%”

BackColor=”#deba84” CellPadding=”5” CellSpacing=”2”

AutoGenerateColumns=”False”

DataSource=’<%# CType(Container.DataItem, _

DataRowView).CreateChildView(“CustOrders”) %>’ >

<HeaderStyle BackColor=”#c0c0c0” />

<ItemStyle Font-Bold=”True” VerticalAlign=”Top” />

<Columns>

<asp:BoundColumn DataField=”OrderID”

HeaderText=”Number” />

4
Working with Nested List Controls

112

06 0672326744 CH04 5/4/04 12:22 PM Page 112

113Displaying Related Data in Nested DataGrid Controls

<asp:TemplateColumn HeaderText=”Details”>

<ItemTemplate>

<asp:Label runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“OrderDate”, “{0:dddd dd MMM yyyy}”) %>’ />

<asp:DataGrid id=”dgr3” runat=”server”

BorderStyle=”None” BorderWidth=”0”

CellPadding=”3” CellSpacing=”0” Width=”100%”

AutoGenerateColumns=”False”

DataSource=’<%# CType(Container.DataItem, _

DataRowView).CreateChildView(_

“OrdersODetails”) %>’ >

<HeaderStyle BackColor=”#c0c0c0” />

<Columns>

<asp:BoundColumn DataField=”ProductID”

HeaderText=”ID” />

<asp:BoundColumn DataField=”ProductName”

HeaderText=”Product” />

<asp:BoundColumn DataField=”Quantity”

ItemStyle-HorizontalAlign=”Right”

HeaderStyle-HorizontalAlign=”Right”

HeaderText=”Qty” />

<asp:BoundColumn DataField=”UnitPrice”

DataFormatString=”${0:f2}”

ItemStyle-HorizontalAlign=”Right”

HeaderStyle-HorizontalAlign=”Right”

HeaderText=”Price”/>

</Columns>

</asp:DataGrid>

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

</form>

LISTING 4.1 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 113

You can’t rely on the autogeneration feature for the columns in the grid in this example
because you want to include a DataGrid control in one of the columns. So you include the
AutoGenerateColumns=”False” attribute in the declaration of the main root DataGrid control and
include a <Columns> element where you declare the columns you want.

Inside this <Columns> element, you specify a <TemplateColumn> element that displays a range of
values extracted from the data rows that will be used to populate this grid. You include the
company name, city, and country, as well as the value of the key column named CustomerID. You
specify each by using the standard syntax for accessing the DataItem instance (the current row)
of the Container object (the binding context that references the set of data rows) and specifying
the column name:

<%# Container.DataItem(“column-name”) %>

The second column in this root grid is another <TemplateColumn> element, but this time it
contains a nested DataGrid control (id=”dgr2”)—so each row in the root DataGrid control will
contain an instance of the nested DataGrid control to display order details. This DataGrid control
also disables auto-generation of columns and contains a <Columns> element. The important point
to note here is that you declare the data source for this nested DataGrid control at design time.
Later in this chapter you’ll see how the declaration you’ve used works.

Meanwhile, the nested DataGrid control contains one BoundColumn element to display the value of
the order ID (the row key) for each order for this customer and a <TemplateColumn> element that
contains another nested DataGrid control (id=”dgr3”). An instance of this third DataGrid control
will be generated for every order and will be used to display the order lines for this order. In this
case, you just use the normal BoundColumn elements to display the product ID, name, quantity,
and unit price.

Declaring the DataSource Property for a Nested List Control
The interesting part of Listing 4.1, and the feature that makes it work, is the way you declare the
DataSource attributes for the two nested DataGrid controls. Normally, as with the root DataGrid,
you specify the DataSource property for the list controls at runtime. However, when you nest list
controls (as in this example), you can specify a function that returns the set of data to populate
the control within the declarative definition of that control.

The following is the first DataSource attribute used in the example:

DataSource=’<%# CType(Container.DataItem, _

DataRowView).CreateChildView(“CustOrders”) %>’

This statement converts the data source row that is providing the data to populate the current
row of the root grid into a DataRowView instance, and then it calls its CreateChildView method.
The name of a relationship between the current data source row set and the child row set must
be provided, and the function returns a set of child rows that are related to the current row in
the parent row set.

For this to work, the data must be stored in such a way that the relationship between the parent
and child row sets is available, and the obvious way to meet this criterion is to populate tables

4
Working with Nested List Controls

114

06 0672326744 CH04 5/4/04 12:22 PM Page 114

115Displaying Related Data in Nested DataGrid Controls

in an ADO.NET DataSet instance with the rows from the data source. Then you create the rela-
tionship(s) between these tables within the DataSet instance.

In this example, you have three DataGrid controls, so there are three sets of data rows in the
DataSet instance that you use to populate them: data extracted from the Customers, Orders, and
Order Details tables in the Northwind database. The DataSet instance that contains these rows
also contains two relationships (DataRelation objects), named CustOrders and OrdersODetails (see
Figure 4.2).

DataSet
Customers

Orders

DataRelation
CustOrders

OrderDetails

DataRelation
OrdersODetails

FIGURE 4.2
The structure of the
DataSet instance for the
nested DataGrid control
example.

The first of these relationships is used to create the row set for the data source of the second
DataGrid control (id=”dgr2”) that displays details (such as the delivery address) of each order for
the current customer. The second relationship is used to create the row set for the data source of
the third DataGrid control (id=”dgr3”), which displays the individual lines for each order:

DataSource=’<%# CType(Container.DataItem, _

DataRowView).CreateChildView(“OrdersODetails”) %>’ >

When you subsequently bind the root DataGrid control to its data source, the nested grids will
automatically be populated with the matching sets of child rows.

Populating a DataSet Instance and Adding Relationships
The code in the sample page is responsible for creating the DataSet instance and adding the rela-
tionships between the tables to it. Listing 4.2 declares a page-level variable to hold the DataSet
instance and then calls a separate routine named FillDataSet in the Page_Load event handler to
fill it with the data and relationships required. When you have the DataSet instance, you bind it
to the root DataGrid, specify which table it should draw its data from, and call the DataBind
method to initiate the process of binding all three DataGrid objects.

06 0672326744 CH04 5/4/04 12:22 PM Page 115

LISTING 4.2 The Page-Level Variable and the Code in the Page_Load Event Handler

‘ variable to hold reference to DataSet across routines

Dim oDataSet As DataSet

Sub Page_Load()

‘fill the data set with some rows from database

FillDataSet(“c%”)

‘ bind the data to the grid for display

dgr1.DataSource = oDataSet

dgr1.DataMember = “Customers”

dgr1.DataBind()

End Sub

Listing 4.3 shows the FillDataSet routine that is used to populate the DataSet instance. This
routine receives a String object that contains the full or partial match for the customer ID
whose orders you want to list. (In Listing 4.2, it is set to “c%” to extract order details for all
customers whose ID starts with c.) Using this ID, you can build the SQL statements you require
to extract the appropriate sets of rows from the Customers, Orders, and Order Details tables in the
database. You have to join the Products table in the third SQL statement to get the name of the
product because the Order Details table only contains a foreign key to the rows in this table—
not the product name.

LISTING 4.3 The Code to Populate the DataSet Instance

Sub FillDataSet(sCustID As String)

‘ get DataSet with rows from Northwind tables

Dim sCustSql As String _

= “SELECT CustomerID, CompanyName, City, Country “ _

& “FROM Customers WHERE CustomerID LIKE ‘“ & sCustID & “‘“

Dim sOrdersSql As String _

= “SELECT CustomerID, OrderID, OrderDate FROM Orders “ _

& “WHERE CustomerID LIKE ‘“ & sCustID & “‘“

Dim sDetailsSql As String _

= “SELECT [Order Details].OrderID, Products.ProductID, “ _

& “Products.ProductName, [Order Details].Quantity, “ _

& “[Order Details].UnitPrice “ _

& “FROM [Order Details] JOIN Products “ _

& “ON [Order Details].ProductID = Products.ProductID “ _

& “WHERE [Order Details].OrderID IN “ _

& “ (SELECT OrderID FROM Orders “ _

4
Working with Nested List Controls

116

06 0672326744 CH04 5/4/04 12:22 PM Page 116

117Displaying Related Data in Nested DataGrid Controls

& “ WHERE CustomerID LIKE ‘“ & sCustID & “‘)”

Dim sConnect As String _

= ConfigurationSettings.AppSettings(“NorthwindOleDbConnectString”)

Dim oConnect As New OleDbConnection(sConnect)

oDataSet = New DataSet()

Try

‘ fill DataSet with three tables

Dim oDA As New OleDbDataAdapter(sCustSQL, oConnect)

oConnect.Open()

oDA.Fill(oDataSet, “Customers”)

oDA.SelectCommand.CommandText = sOrdersSql

oDA.Fill(oDataSet, “Orders”)

oDA.SelectCommand.CommandText = sDetailsSql

oDA.Fill(oDataSet, “OrderDetails”)

oConnect.Close()

‘ create relations between the tables

Dim oRel As New DataRelation(“CustOrders”, _

oDataSet.Tables(“Customers”).Columns(“CustomerID”), _

oDataSet.Tables(“Orders”).Columns(“CustomerID”))

oDataSet.Relations.Add(oRel)

oRel = New DataRelation(“OrdersODetails”, _

oDataSet.Tables(“Orders”).Columns(“OrderID”), _

oDataSet.Tables(“OrderDetails”).Columns(“OrderID”))

oDataSet.Relations.Add(oRel)

Catch oErr As Exception

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text = oErr.Message

End Try

End Sub

LISTING 4.3 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 117

Next, the connection string is extracted from
web.config, and you can create a Connection
instance and a new empty DataSet instance.
Then, within the Try...Catch construct, you
create a DataAdapter instance, open the
connection, and fill the three tables—
changing the CommandText property of
DataAdapter to the appropriate SQL statement
as you go.

Creating and Adding the DataRelation Instances
When the tables are filled, you can create and add the relationships you need between them.
You create a new DataRelation object by specifying the name you want to assign to it, the
column in the parent table that contains the key to match to the child table, and the column in
the child table that contains this value as a foreign key. Figure 4.3 shows the relationships
between the Northwind database tables that are used in this example, as well as the primary key
and foreign keys in each table.

4
Working with Nested List Controls

118

Using Stored Procedures
You could use stored procedures to extract
the rows, of course, but the aim of this
example is to demonstrate binding tech-
niques for the server controls, so you use SQL
statements to avoid unnecessary complexity.

FIGURE 4.3 The relationships between the
tables used in this example.

In Listing 4.3 you can see that to create the relationship between the Customers and Orders tables
in the DataSet instance, you use the following:

Dim oRel As New DataRelation(“CustOrders”, _

oDataSet.Tables(“Customers”).Columns(“CustomerID”), _

oDataSet.Tables(“Orders”).Columns(“CustomerID”))

Then, to add this relationship to the DataSet instance, you use the following:

oDataSet.Relations.Add(oRel)

To create the relationship between the Orders and Order Details tables and add that relationship
to the DataSet instance, you use the following:

oRel = New DataRelation(“OrdersODetails”, _

oDataSet.Tables(“Orders”).Columns(“OrderID”), _

oDataSet.Tables(“OrderDetails”).Columns(“OrderID”))

oDataSet.Relations.Add(oRel)

Other than closing the connection if it’s open and displaying a message if an error occurs, this is
all the code you need. When the page is opened, the DataSet instance is filled with data, and the
three relationships are added. Then the DataBind method causes the three DataGrid controls to be
populated. The output you want (refer to Figure 4.1) is then generated automatically.

06 0672326744 CH04 5/4/04 12:22 PM Page 118

119Displaying Related Data in Nested DataGrid Controls

Filling Nested DataGrid Controls with a DataSet Instance
Instead of using declarative binding, as demonstrated in the previous example, you might want
to exert more control over the binding of child rows to their respective DataGrid controls. The
example in this section uses the same DataSet instance as the previous example, but in this case,
you’ll bind the nested DataGrid controls dynamically, using code, instead of defining the bind-
ings declaratively.

This approach allows you to access the data row and examine the values, modify them as
required, and even decide whether to bind the nested DataGrid control at runtime. You could,
for example, test whether a product was in stock before displaying the details or omit discontin-
ued products when generating sales forecasts.

Figure 4.4 shows the output for this example, and you can see that there are subtle differences
from the preceding example. This example omits the details of orders that have not yet been
shipped. (In this example, the orders numbered 10782 and 10937 are visible in Figure 4.1.) This
example also highlights the names of products that have unit prices greater than $10.00, using
bold italic text.

FIGURE 4.4
A page that demonstrates nested
data binding to a DataSet instance.

The Changes to This Example when Declaring the DataGrid Controls
When you declare the DataGrid controls in this example, you no longer include the DataSource
attributes for the two nested grids (dgr1 and dgr2), but you do add two more: the DataKeyField
and OnItemDataBound attributes.

06 0672326744 CH04 5/4/04 12:22 PM Page 119

The DataKeyField attribute specifies the name of the column in the source row set that contains
the primary key for each row. You can easily extract this value for any row by referring to the
DataKeys(row-index) property of the DataGrid control.

The OnItemDataBound attribute specifies the name of an event handler that the DataGrid control
will execute each time it binds to the source data for a row. In this event handler, you can access
the ASP.NET server controls in the current row and the row in the source row set that is provid-
ing the data for the row.

The opening tag of the root DataGrid control (id=”dgr1”) looks like this:

<asp:DataGrid id=”dgr1” runat=”server”

...

AutoGenerateColumns=”False”

DataKeyField=”CustomerID”

OnItemDataBound=”BindOrdersGrid”>

The opening tag of the first nested DataGrid control (id=”dgr2”) looks like this:

<asp:DataGrid id=”dgr2” runat=”server”

...

AutoGenerateColumns=”False”

DataKeyField=”OrderID”

OnItemDataBound=”BindOrderItemsGrid”>

The Changes to This Example when Populating the Data Set
The only change to the code used to populate the DataSet instance and add the relationships to
it occurs because, this time, you want to be able to access the value of the ShippedDate column
in the Orders table for each row; this is how you detect whether the order has shipped. All you
do is add the ShippedDate column to the SQL statement that extracts the rows from the Orders
table:

Dim sOrdersSql As String _

= “SELECT CustomerID, OrderID, OrderDate, ShippedDate “ _

& “FROM Orders WHERE CustomerID LIKE ‘“ & sCustID & “‘“

Handling the ItemDataBound Events
In this example, you’ve removed the DataSource attributes from the two nested DataGrid
controls, which means that they will not display anything when you view the page. All you’ll
see is the list of customers, generated when the root DataGrid is bound to the Customers table in
the DataSet instance by code in the Page_Load event handler. However, both this root DataGrid
control and the first of the nested DataGrid controls will execute the custom routines when the
ItemDataBound event occurs.

The ItemDataBound Event Handler for the Customers Table DataGrid Control
The root DataGrid control, which displays data from the Customers table, will execute the routine
named BindOrdersGrid for each row it contains. The task here is to create a row set containing

4
Working with Nested List Controls

120

06 0672326744 CH04 5/4/04 12:22 PM Page 120

121Displaying Related Data in Nested DataGrid Controls

just the appropriate matching child rows from the Orders table and then bind that row set to
the nested DataGrid control within each Customers row. Along the way, after you’ve created the
child row set, you can play with it by changing the values and the output generated by the
DataGrid control.

The BindOrdersGrid routine is shown in Listing 4.4. In it, you first test what type of item the
event is occurring for—it could be a row containing data, a header row, a footer row, or a separa-
tor row. (All these types of row can be declared using templates or attributes of the DataGrid
control, and the ItemDataBound event occurs for them all when present.) Also, notice that the
code tests for an AlternatingItemRow instance. Even if you only define an <ItemTemplate> element
or use a BoundColumn control, the event is raised alternately as an Item row type and an
AlternatingItem row type.

LISTING 4.4 The BindOrdersGrid Event Handler

Sub BindOrdersGrid(sender As Object, e As DataGridItemEventArgs)

‘ see what type of row (header, footer, item, etc.) caused the event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

‘ only process it if it’s an Item or AlternatingItem event

If oType = ListItemType.Item _

Or oType = ListItemType.AlternatingItem Then

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = CType(e.Item.FindControl _

(“dgr2”), DataGrid)

‘ get value of CustomerID for this row from DataKeys collection

Dim sKey As String = dgr1.DataKeys(e.Item.ItemIndex)

‘ get a DataView containing just the current row in

‘ the Customers table within the DataSet

Dim oView, oChildView As DataView

oView = oDataSet.Tables(“Customers”).DefaultView

oView.RowFilter = “CustomerID = ‘“ & sKey & “‘“

oChildView = oView(0).CreateChildView(_

oDataSet.Relations(“CustOrders”))

‘ find rows that have not yet shipped and delete them

‘ have to go backwards through row collection to avoid

‘ errors as indexes of rows change when one is deleted

For iIndex As Integer = (oChildView.Count - 1) To 0 Step -1

If oChildView(iIndex)(“ShippedDate”).ToString() = “” Then

oChildView(iIndex).Delete()

End If

06 0672326744 CH04 5/4/04 12:22 PM Page 121

Next

‘ bind nested “orders” DataGrid to child DataView

oGrid.DataSource = oChildView

oGrid.DataBind()

End If

End Sub

The next step is to get a reference to the
DataGrid control within the current row. The
event handler is executed once for each row
in the root DataGrid control. It receives a
DataGridItemEventArgs instance that contains
more details of the event and a reference to
the current row in the DataGrid control as a
DataGridItem object. This object has a whole
range of properties that can be used to set
the style of the row, such as the background
and foreground colors, borders, font, text
alignment, and so on. However, the proper-
ties and methods you’re usually most inter-
ested in when accessing or manipulating
the contents of a row are those shown in
Table 4.1.

TABLE 4.1
Commonly Used Properties and Methods of the DataGridItem Object

Property or Method Description

Cells Gets a collection of the table cells in the current row as TableCell objects.

Attributes Enables attributes to be added to or removed from the HTML elements that are gener-
ated for the current row.

Controls Returns a collection of all the child controls for the current row.

DataItem Returns a reference to the source data row as a DataRowView object.

DataSetIndex Returns the index of the current row within the bound data source.

EnableViewState Specifies whether the controls in the current row will persist their viewstates within the
page.

ItemIndex Returns the index of the current row within the Items collection of the DataGrid control.

ItemType Returns a value from the ListItemType enumeration that indicates the current row type.

FindControl(“id”) Returns a reference to a control within the row, given its ID, or Nothing if the control is
not found.

HasControls() Returns True if the current row contains any server controls, or False if not.

4
Working with Nested List Controls

122

LISTING 4.4 Continued

Testing the Row Type in ItemDataBound
Event Handlers
A common mistake when handling the
ItemDataBound event and the ItemCreated
event is to fail to properly establish the type of
row that each event is being raised for before
trying to access the contents. For example, if a
row contains a Label control when in “normal”
mode and a TextBox control when in “edit”
mode, you must determine the row type before
trying to access the Label or TextBox control.
If the row type is ListItemType.Item or
ListItemType.AlternatingItem, you can only
access the Label control. If it is ListItemType.
EditItem, you can only access the TextBox
control. The same kind of logic applies to a row
that is in “selected” mode, in which case the row
type is ListItemType.SelectedItem.

06 0672326744 CH04 5/4/04 12:22 PM Page 122

123Displaying Related Data in Nested DataGrid Controls

You can use the FindControl method to locate the DataGrid control we’re looking for in the
current row. You have to cast the result to the correct type on return because the FindControl
method returns the reference as a generic Object type:

Dim oGrid As DataGrid = CType(e.Item.FindControl(“dgr2”), DataGrid)

Then you generate the set of child rows that match the current row by creating a filtered
DataView instance on the Customers table, which will only contain the row for the current
customer. You do this by extracting the ID of the current customer from the DataKeys collection
of the DataGrid control, using the ItemIndex property of the DataGridItem instance passed to the
routine (refer to Table 4.1).

Then, to limit the rows that are displayed in the DataGrid control, you set the RowFilter property
of the default DataView instance of the Customers table, as shown in this section of the code:

Dim sKey As String = dgr1.DataKeys(e.Item.ItemIndex)

Dim oView, oChildView As DataView

oView = oDataSet.Tables(“Customers”).DefaultView

oView.RowFilter = “CustomerID = ‘“ & sKey & “‘“

Now you can use the CreateChildView method of the first (and only) row in the DataView instance
to create the set of related child rows from the Orders table. You do this the same way as in the
previous declarative binding example, specifying the name of the DataRelation instance that
links the two tables in the DataSet instance:

oChildView = oView(0).CreateChildView(_

oDataSet.Relations(“CustOrders”))

At this point, you can perform any actions you want to carry out on the source data or on the
DataGrid row and its contents. In this example, you want to hide any rows that have not yet
shipped. You can do this by simply deleting them from the child DataView instance. However,
because the index of the remaining rows changes when a row is deleted, you have to iterate
through the rows in reverse order:

For iIndex As Integer = (oChildView.Count - 1) To 0 Step -1

If oChildView(iIndex)(“ShippedDate”).ToString() = “” Then

oChildView(iIndex).Delete()

End If

Next

Then, when you’re happy with the contents of the DataView instance, you can bind it to the
nested DataGrid control to which you’re holding a reference in the oGrid variable:

oGrid.DataSource = oChildView

oGrid.DataBind()

This causes the DataGrid control showing the orders for the current customer to generate its
contents (a list of orders for this customer) for display. However, remember that you also

06 0672326744 CH04 5/4/04 12:22 PM Page 123

declared an ItemDataBound event handler for this DataGrid control—and in it you’ll perform
much the same process you’ve just seen to populate the third DataGrid control, which contains
the list of order lines.

The ItemDataBound Event Handler for the Orders Table DataGrid Control
The second DataGrid control, which displays data from the Orders table, will execute the routine
named BindOrderItemsGrid for each row as it is bound to its data source. Listing 4.5 shows this
routine in full. Much of this listing is similar to the BindOrdersGrid routine in Listing 4.4. The
differences are summarized individually in this section.

LISTING 4.5 The BindOrderItemsGrid Event Handler

Sub BindOrderItemsGrid(sender As Object, e As DataGridItemEventArgs)

‘ see what type of row (header, footer, item, etc.) caused the event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

‘ only process it if it’s an Item or AlternatingItem event

If oType = ListItemType.Item _

Or oType = ListItemType.AlternatingItem Then

‘ get the value of the CustomerID column

‘ argument sender is a reference to the containing DataGrid

Dim iKey As Integer = sender.DataKeys(e.Item.ItemIndex)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = CType(e.Item.FindControl(“dgr3”), DataGrid)

‘ get a DataView containing just the current row in

‘ the Orders table within the DataSet

Dim oView, oChildView As DataView

oView = oDataSet.Tables(“Orders”).DefaultView

oView.RowFilter = “OrderID = “ & iKey

oChildView = oView(0).CreateChildView(_

oDataSet.Relations(“OrdersODetails”))

‘ find rows where unit price is greater

‘ than $10.00 and highlight product name

For iIndex As Integer = 0 To oChildView.Count - 1

If oChildView(iIndex)(“UnitPrice”) > 10 Then

oChildView(iIndex)(“ProductName”) = “<i>” _

& oChildView(iIndex)(“ProductName”) & “</i>”

End If

Next

‘ bind nested “order details” DataGrid to child DataView

4
Working with Nested List Controls

124

06 0672326744 CH04 5/4/04 12:22 PM Page 124

125Displaying Related Data in Nested DataGrid Controls

oGrid.DataSource = oChildView

oGrid.DataBind()

End If

End Sub

After checking the type of item that the event was raised for, the next task is to get a reference
to the child DataGrid control that you want to populate with the lists of order lines from the
OrderDetails table in the DataSet instance. In the BindOrdersGrid routine, you accessed the
DataKeys collection of the current DataGrid control (the one that raised the ItemDataBound event)
simply by referring to the DataGrid control with its ID. This works because there is only one
instance of the root DataGrid control.

However, the DataGrid control for which you’re handling the ItemDataBound event this time is
one of multiple instances—there is an instance for each order for each customer. Therefore, you
can’t just use the ID of the grid (dgr2) to reference the DataKeys collection. The actual ID of each
grid will be a combination of the parent grid control ID, any intermediate container control IDs,
and the ID of this DataGrid control—in other words, something like “dgr1__ctl2_dgr2”.

However, remember that event handlers pass a reference to the control that raised the event as
the first (sender) parameter. You can use this to get a reference to the DataKeys collection, and
from it you can get the OrderID value of the current order. Then you can get a reference to the
child grid control in this row (the one that will display the order lines), using the FindControl
method of the current DataGridItem instance as before.

The next section of code in Listing 4.5 creates the child DataView instance you want to bind to
the DataGrid control in this row, using the same techniques as in Listing 4.4. However, before
you bind this row set to the DataGrid control, you “massage” it by checking for any items that
have a unit price greater than $10.00. For each one you find, you just add some formatting
elements to the text value in the ProductName column of that row in the DataView instance, before
binding it to the current DataGrid control to display the results.

Declarative Nested Binding to a Custom Function
The third technique for binding related data to nested list controls is actually a combination of
the two techniques just described. ASP.NET supports declarative data binding statements that
bind to the result of a function, using the following syntax:

<%# function-name(parameters) %>

You can use this technique to insert the result of a function almost anywhere in an ASP.NET
page. You can use it simply to generate output directly. For example, if you have a function that

LISTING 4.5 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 125

returns the description for a specific paragraph in a document, you can insert the result into the
page by using the following:

<p>This paragraph describes <%# GetParaDescription(42) %></p>

Alternatively, you can bind the function result to a property of a server control. For example,
you can set the Text property of a Label control by using the same function like this:

<asp:Label id=”mylabel” runat=”server”

Text=’<%# GetParaDescription(42) %>’ />

Your code simply has to call the DataBind method of the appropriate container control to force
the binding to take place. In the two preceding cases, you’d call the DataBind method of the Page
object itself.

Of course, this approach to declarative binding is just what you used in the first example in this
chapter. You specified the DataSource property of the nested DataGrid controls, using an attribute
such as this:

DataSource=’<%# CType(Container.DataItem, _

DataRowView).CreateChildView(“OrdersODetails”) %>’

CreateChildView is a method of the DataRowView class, and it returns a DataView instance (a row
set) that can be used as the source for a DataGrid control. So you shouldn’t be surprised to see in
the next example that you can use the same approach but specify a custom function that
returns a row set and have it used to populate the nested DataGrid controls.

The Custom Functions to Return Row Sets
In the previous example, you handled the ItemDataBound event of two of the DataGrid controls so
that you could create and then massage the row sets before using them to populate their respec-
tive nested DataGrid controls. In this example, you use the same core code to generate the row
sets you need, and you modify their contents, as in the previous example. However, this time
the two sections of code (which were in the BindOrdersGrid and BindOrderItemsGrid event
handlers) are extracted and converted into functions that return a DataView instance.

Listing 4.6 shows the two functions, named GetOrdersGridRows and GetOrderItemsGridRows.
Obviously, this time, because you aren’t using the functions to handle events, you don’t have
access to the DataGridItemEventArgs objects that contain details of the event and that are passed
to the ItemDataBound event handler. However, the only information you actually need to be able
to create the appropriate row set is the value of the key for the current row in the DataGrid
control.

LISTING 4.6 The Custom Functions That Return Row Sets

Function GetOrdersGridRows(sRowKey As String) As DataView

‘ get a DataView containing just the current row in

‘ the Customers table within the DataSet

4
Working with Nested List Controls

126

06 0672326744 CH04 5/4/04 12:22 PM Page 126

127Displaying Related Data in Nested DataGrid Controls

Dim oView, oChildView As DataView

oView = oDataSet.Tables(“Customers”).DefaultView

oView.RowFilter = “CustomerID = ‘“ & sRowKey & “‘“

oChildView = oView(0).CreateChildView(_

oDataSet.Relations(“CustOrders”))

For iIndex As Integer = (oChildView.Count - 1) To 0 Step -1

If oChildView(iIndex)(“ShippedDate”).ToString() = “” Then

oChildView(iIndex).Delete()

End If

Next

Return oChildView

End Function

Function GetOrderItemsGridRows(iRowKey As Integer) As DataView

‘ get a DataView containing just the current row in

‘ the Orders table within the DataSet

Dim oView, oChildView As DataView

oView = oDataSet.Tables(“Orders”).DefaultView

oView.RowFilter = “OrderID = “ & iRowKey

oChildView = oView(0).CreateChildView(_

oDataSet.Relations(“OrdersODetails”))

For iIndex As Integer = 0 To oChildView.Count - 1

If oChildView(iIndex)(“UnitPrice”) > 10 Then

oChildView(iIndex)(“ProductName”) = “<i>” _

& oChildView(iIndex)(“ProductName”) & “</i>”

End If

Next

Return oChildView

End Function

Assuming that you can pass this key as a parameter to your functions, the remaining code
(which actually generates the DataView instance) is identical to that in Listings 4.4 and 4.5. You
reference the single row in the parent table that matches the key supplied as a parameter, and
you use the CreateChildView method to generate the child row set. Then you remove any rows
for orders that have not shipped or highlight the names of products over $10.00, just as before.

LISTING 4.6 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 127

Binding DataGrid Controls to Custom Functions
The two functions described in the preceding section replace the two event handlers that are
used in the previous example, so you must remove the OnItemDataBound attributes from the two
DataGrid controls. The server-side code to populate the DataGrid control, add the DataRelation
instances to it, and initiate the binding of the root DataGrid control in the Page_Load event
handler is identical to the code in the previous example.

The only other change to the page is the way you declare the DataSource attributes for the two
DataGrid controls. The first of the nested DataGrid controls (id=”dgr2”), which displays the list of
orders for each customer, contains the following DataSource attribute:

DataSource=’<%# GetOrdersGridRows(_

Container.DataItem(“CustomerID”)) %>’

The GetOrdersGridRows function takes a parameter that is the ID of the current customer.
Normally, in the ItemDataBound event handler, you’d get this value from the DataKeys collection
of the root DataGrid control. However, the DataView instance that provides the data for this
DataGrid control contains the value of the customer ID in each row. It is included in the SQL
statement, and you use it when you generate the value for the Customer Details column. You
can therefore refer to it here and use it as the parameter value for the function, in the same way
you would to populate a column in the DataGrid control.

The same logic applies to the second nested DataGrid control (id=”dgr3”), which displays the list
of order lines for each order. In this case, the parameter is the order ID, and again it is in the
row set you use to populate the parent DataGrid control. So you can set the DataSource property
of the innermost DataGrid control by using the following:

DataSource=’<%# GetOrderItemsGridRows(_

Container.DataItem(“OrderID”)) %>’

Figure 4.5 shows the result of this example; you can see that it produces identical output to the
previous example. This is to be expected because the code you use to generate the row sets is the
same. Only the way that you apply it to binding the grid controls differs.

Filling Nested DataGrid Controls from a DataReader Instance
The fourth and final approach to populating nested list controls doesn’t use a DataSet instance
as the source of the rows. Instead, it uses a DataReader instance to extract the data for the data
store. Or, to be more precise, it uses multiple DataReader instances.

It’s generally accepted that the DataReader class provides better performance than the DataSet
approach when you’re extracting data and using it in an ASP.NET page. Figures published by
Microsoft while ASP.NET was under development suggested that there were gains of more than
20%, although ultimately the performance gain depends on how you actually end up using the
data.

4
Working with Nested List Controls

128

06 0672326744 CH04 5/4/04 12:22 PM Page 128

129Displaying Related Data in Nested DataGrid Controls

The DataReader Class Versus the DataSet Class
The DataReader class is far lighter weight than the DataSet class. It’s really just a “pipe” that
connects the results of a query in the database with the consumer in the ASP.NET page (or other
type of application). When you’re using ASP.NET server-side data binding, the DataReader class is
generally the optimal solution, unless you need to cache the data after extracting it or pass it
between the tiers of an application.

So how does the DataReader class work when you’re performing nested data binding? In some
ways, it makes the process more complicated. And rudimentary tests show that it doesn’t tend
to provide any performance increase unless there are only a few rows in the root row set.

The reason for this is that you can’t create a hierarchy of tables and the relationships between
them with a DataReader instance. You can only get one or more unrelated row sets from the data
store. This means that each time you need a row set to populate a nested list control, you end
up generating a DataReader instance, opening the connection, executing the query, and return-
ing the row set.

Okay, so you could reduce the performance hit by reusing the same DataReader instance each
time (although you’d have to close it and reopen it) and by holding the database connection
open until all the row sets have been extracted. But this isn’t likely to provide major perform-
ance gains because the real hit is the multiple trips to the database that are required.

Still, this technique might prove useful in certain scenarios, and you might decide to adopt it if
you have pages with a shallow hierarchy and few rows in the root row sets. This is where any

FIGURE 4.5
A sample page that uses declarative
binding to custom functions.

06 0672326744 CH04 5/4/04 12:22 PM Page 129

performance gains are most likely to be felt. Figure 4.6 shows the output from the sample page,
and you can see that it is identical to the example shown in Figure 4.1. That example used a
DataSet instance as the data source, but the declarations of the DataGrid controls, and the data
itself, are the same.

4
Working with Nested List Controls

130

FIGURE 4.6
A demonstration page that uses a
DataReader instance to extract the
data rows.

The Changes to This Example when Declaring the DataGrid Controls
The previous examples demonstrate the appearance and disappearance of the OnItemDataBound
attributes in the DataGrid controls. Now they’re back again. In this example, you handle the

ItemDataBound event just as you did when we
used a DataSet instance as the source for the
DataGrid controls, in the second example in
this chapter (refer to Figure 4.4).

So the root DataGrid control contains the
attribute OnItemDataBound=”BindOrdersGrid”,
and the nested DataGrid control that
displays the list of orders for each customer
contains the attribute OnItemDataBound=
”BindOrderItemsGrid”. In fact, the declaration
of the three grid controls is identical to what

Creating Custom Functions to Return a
DataReader Instance
Of course, there’s no reason you can’t create
custom functions that return row sets as open
DataReader instances rather than as
DataView instances. If you did this, you could
avoid handling the ItemDataBound event and
instead use the same declarative approach as
in the preceding example. As you can see, the
four examples in this chapter are designed to
give you a taste of the possible combinations
of techniques. They by no means cover the
complete set of permutations.

06 0672326744 CH04 5/4/04 12:22 PM Page 130

131Displaying Related Data in Nested DataGrid Controls

is used in the example of Figure 4.4—where you bound them to row sets extracted from a
DataSet instance.

The Changes to the Server-Side Code in This Example
Using a DataReader instance instead of a DataSet instance requires an almost complete change to
the server-side code in the page. Listing 4.7 shows the Page_Load event handler, which binds the
root DataGrid control to its data source, and the three functions that return DataReader instances.
The first of these is used to generate the row set containing a list of customers that is bound to
the root DataGrid control in the Page_Load event handler.

LISTING 4.7 The Page_Load Event Handler and the Routines to Fetch the Row Sets

Sub Page_Load()

‘ bind the data to the grid for display

dgr1.DataSource = GetCustomers()

dgr1.DataBind()

End Sub

Function GetCustomers() As OleDbDataReader

Dim sSelect As String _

= “SELECT CustomerID, CompanyName, City, Country “ _

& “FROM Customers WHERE CustomerID LIKE ‘c%’”

Return GetReader(sSelect)

End Function

Function GetOrders(sKey As String) As OleDbDataReader

Dim sSelect As String _

= “SELECT OrderID, OrderDate FROM Orders WHERE CustomerID=’” & sKey & “‘“

Return GetReader(sSelect)

End Function

Function GetOrderLines(iKey As Integer) As OleDbDataReader

Dim sSelect As String _

= “SELECT Products.ProductID, Products.ProductName, “ _

& “[Order Details].Quantity, [Order Details].UnitPrice “ _

& “FROM [Order Details] JOIN Products “ _

06 0672326744 CH04 5/4/04 12:22 PM Page 131

& “ON [Order Details].ProductID = Products.ProductID “ _

& “WHERE OrderID=” & iKey.ToString()

Return GetReader(sSelect)

End Function

The three functions shown in Listing 4.7 simply declare a SQL statement and then call the func-
tion named GetReader shown in Listing 4.8 to create the DataReader instance and return it. When
creating the row sets for the list of orders or the list of order lines, you need a parameter that
specifies the current customer ID or order ID. You can see in Listing 4.7 how these parameters
are used to build the SQL statements.

Notice in Listing 4.8 that you specify the value CommandBehavior.CloseConnection as a parameter
to the ExecuteReader method when you create the DataReader instance. This ensures that the
connection will be closed when the DataReader instance is closed or when it goes out of scope.

LISTING 4.8 The Routine to Create a DataReader Instance

Function GetReader(sSQL As String) As OleDbDataReader

‘ get DataReader for rows from Northwind tables

Dim sConnect As String _

= ConfigurationSettings.AppSettings(“NorthwindOleDbConnectString”)

Dim oConnect As New OleDbConnection(sConnect)

Try

oConnect.Open()

Dim oCommand As New OleDbCommand(sSQL, oConnect)

Return oCommand.ExecuteReader(CommandBehavior.CloseConnection)

Catch oErr As Exception

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text = oErr.Message

End Try

End Function

4
Working with Nested List Controls

132

LISTING 4.7 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 132

133Displaying Related Data in Nested DataGrid Controls

Handling the ItemDataBound Events
As shown in the example in Figure 4.4, the Page_Load event handler initiates the process of
displaying the related data by binding the root DataGrid control to the set of customer rows.
This raises the ItemDataBound event for each row as it’s bound, and in the event handler
(BindOrdersGrid), you generate the appropriate set of order rows and bind it to the nested
DataGrid control. This in turn causes the ItemDataBound event to be raised for each row in this
DataGrid control. In the event handler for this event (BindOrderItemsGrid), you generate the
matching set of order detail rows and bind it to the third DataGrid control.

Listing 4.9 shows the two event handlers BindOrdersGrid and BindOrderItemsGrid. As before, you
have to check what type of item the event is being raised for, and then you can extract the
value of the key from the current row. In the BindOrdersGrid routine, you reference the root
DataGrid control, and in the BindOrderItemsGrid routine you use the reference to the DataGrid
control that is passed to the event handler as the sender parameter.

Next, you get a reference to the nested DataGrid control in the current row, using the FindControl
method of the DataGridItem object that is passed to the event handler. Then you can bind this
grid to the result of the appropriate method for generating a DataReader instance.

LISTING 4.9 The Event Handlers for the ItemDataBound Events

Sub BindOrdersGrid(sender As Object, e As DataGridItemEventArgs)

‘ see what type of row (header, footer, item, etc.) caused the event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

‘ only process it if it’s an Item or AlternatingItem event

If oType = ListItemType.Item _

Or oType = ListItemType.AlternatingItem Then

‘ get value of CustomerID for this row from DataKeys collection

Dim sKey As String = dgr1.DataKeys(e.Item.ItemIndex)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = CType(e.Item.FindControl(“dgr2”), DataGrid)

‘ bind nested “orders” DataGrid to DataReader

oGrid.DataSource = GetOrders(sKey)

oGrid.DataBind()

End If

End Sub

Sub BindOrderItemsGrid(sender As Object, e As DataGridItemEventArgs)

06 0672326744 CH04 5/4/04 12:22 PM Page 133

‘ see what type of row (header, footer, item, etc.) caused the event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

‘ only process it if it’s an Item or AlternatingItem event

If oType = ListItemType.Item _

Or oType = ListItemType.AlternatingItem Then

‘ get the value of the CustomerID column

‘ argument sender is a reference to the containing DataGrid

Dim iKey As Integer = sender.DataKeys(e.Item.ItemIndex)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = CType(e.Item.FindControl(“dgr3”), DataGrid)

‘ bind nested “order details” DataGrid to DataReader

oGrid.DataSource = GetOrderLines(iKey)

oGrid.DataBind()

End If

End Sub

As you can see, using the DataReader class is
not that different from using the DataSet class
as far as implementation is concerned.
However, remember that you must consider
the ramifications of the increased number of
trips to the database that the DataReader
approach requires.

A Master/Detail Display
with DataList and
DataGrid Controls
So far, you’ve only seen pages that display
related data and you’ve only used the
DataGrid control. To demonstrate some differ-
ent techniques when using nested list
controls, this section shows an example that
provides a collapsible master/detail display,
using two different list controls; it also allows
the child rows to be edited.

4
Working with Nested List Controls

134

LISTING 4.9 Continued

Other Approaches to Accessing the Data
and Performing Nested Data Binding
With the four approaches described in this
chapter, you can create the row set to popu-
late the nested DataGrid control in whatever
way you want. The last example uses simple
SQL statements with a DataReader instance,
but you could equally well use any stored
procedure to generate the required results
and massage these results as in earlier
examples to get exactly the row set you want.
Likewise, you could build a row set from an
XML document or using custom code to add
the rows and columns directly. You could also
combine the use of DataSet instances and
DataReader instances, or you could use a
HashTable instance, an ArrayList instance,
or whatever data source suits the list controls
you are using in the page. And while this
chapter’s examples use DataGrid controls,
the same techniques work with various
combinations of other list controls—such as
Repeater, DataList, ListBox, and
CheckBoxList controls.

06 0672326744 CH04 5/4/04 12:22 PM Page 134

135A Master/Detail Display with DataList and DataGrid Controls

Figure 4.7 shows the completed sample page. You can see the same list of customers as in the
previous examples in this chapter. For each one there is a drop-down button that, when clicked,
opens a list of the orders for that customer and allows them to be edited. At the same time, the
button changes to an “up” button that closes the list of orders. Selecting a different customer
while one list is open closes that list and opens the selected one, to provide a compact display
that reduces bandwidth requirements and provides faster page load times.

FIGURE 4.7
Creating a collapsible master/detail
display for related row sets.

Declaring the DataList and DataGrid Controls
The sample page consists of a DataList control that generates the list of customers, to which you
apply various formatting and style attributes. This is bound to a row set extracted from the
Customers table in the Northwind database through a DataReader instance.

However, when a row in the DataList control is switched to selected mode, that row also
displays a DataGrid control containing the customer’s order details. These rows are extracted
from the Orders table of the database through another DataReader instance.

Finally, when the Edit link in one of the order rows for the selected customer is clicked, that row
is placed into edit mode. It then displays the data in the row set that is not read-only in text
boxes and provides the Update and Cancel links. Listing 4.10 shows the complete declaration of
the DataList control and the nested DataGrid controls.

LISTING 4.10 The Declaration of the DataList and DataGrid Controls

<asp:DataList id=”dtl1” Width=”95%” runat=”server”

CellPadding=”3” CellSpacing = “2”

DataKeyField=”CustomerID”

OnItemCommand=”DoItemSelect”

06 0672326744 CH04 5/4/04 12:22 PM Page 135

OnItemDataBound=”BindOrdersGrid” >

<HeaderStyle Font-Bold=”True” ForeColor=”#ffffff”

BackColor=”#b50055” />

<FooterStyle Font-Bold=”True” ForeColor=”#ffffff”

BackColor=”#b50055” />

<ItemStyle BackColor=”#FFF7E7” VerticalAlign=”Top” />

<AlternatingItemStyle BackColor=”#FFFFC0” />

<HeaderTemplate>

Customer List

</HeaderTemplate>

<ItemTemplate>

<asp:ImageButton CommandName=”Select”

ImageUrl=”~/images/click-down.gif”

Width=”16” Height=”17” runat=”server”

AlternateText=”Click to view orders” />

<%# Container.DataItem(“CustomerID”) %>

<%# Container.DataItem(“CompanyName”) %>

<%# Container.DataItem(“City”) %>

<%# Container.DataItem(“Country”) %>

Phone: <%# Container.DataItem(“Phone”) %>

</ItemTemplate>

<SelectedItemTemplate>

<asp:ImageButton CommandName=”UnSelect”

ImageUrl=”~/images/click-up.gif”

Width=”16” Height=”17” runat=”server”

AlternateText=”Click to hide orders” />

<%# Container.DataItem(“CustomerID”) %>

<%# Container.DataItem(“CompanyName”) %>

<%# Container.DataItem(“City”) %>

<%# Container.DataItem(“Country”) %>

Phone: <%# Container.DataItem(“Phone”) %>

<asp:DataGrid id=”dgr1” runat=”server”

BorderStyle=”None” BorderWidth=”0” BackColor=”#DEBA84”

CellPadding=”3” CellSpacing=”0” Width=”100%”

DataKeyField=”OrderID”

OnEditCommand=”DoItemEdit”

OnUpdateCommand=”DoItemUpdate”

OnCancelCommand=”DoItemCancel”

AutoGenerateColumns=”False” >

<HeaderStyle BackColor=”#c0c0c0” />

4
Working with Nested List Controls

136

LISTING 4.10 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 136

137A Master/Detail Display with DataList and DataGrid Controls

<Columns>

<asp:EditCommandColumn EditText=”Edit”

CancelText=”Cancel” UpdateText=”Update” />

<asp:BoundColumn DataField=”OrderID” HeaderText=”Number”

ReadOnly=”True” />

<asp:TemplateColumn HeaderText=”Ordered”>

<ItemTemplate>

<%# DataBinder.Eval(Container.DataItem, “OrderDate”, _

“{0:dd MMM yyyy}”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox Columns=”8” id=”txtOrderDate”

runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“OrderDate”, “{0:dd MMM yyyy}”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Required”>

<ItemTemplate>

<%# DataBinder.Eval(Container.DataItem, “RequiredDate”, _

“{0:dd MMM yyyy}”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox Columns=”8” id=”txtRequiredDate”

runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“RequiredDate”, “{0:dd MMM yyyy}”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Shipped”>

<ItemTemplate>

<%# DataBinder.Eval(Container.DataItem, “ShippedDate”, _

“{0:dd MMM yyyy}”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox Columns=”8” id=”txtShippedDate”

runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“ShippedDate”, “{0:dd MMM yyyy}”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Freight”

HeaderStyle-HorizontalAlign=”Right”

ItemStyle-HorizontalAlign=”Right”>

LISTING 4.10 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 137

<ItemTemplate>

<%# DataBinder.Eval(Container.DataItem, _

“Freight”, “${0:f2}”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox Columns=”3” id=”txtFreight” runat=”server”

Text=’<%# Container.DataItem(“Freight”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:BoundColumn DataField=”ShipperName”

HeaderText=”Via” ReadOnly=”True”/>

</Columns>

</asp:DataGrid>

</SelectedItemTemplate>

<FooterTemplate>

</FooterTemplate>

</asp:DataList>

The Important Points of the DataList Control Declaration
The DataList control displays the list of customers, and you add to it three attributes that
control its behavior in terms of viewing the order list for each customer. You set the
DataKeyField attribute to the CustomerID column in the source row set so that you can easily get
the ID of the customer for the current row:

DataKeyField=”CustomerID”

You also specify the names of two event handlers. The routine named DoItemSelect will be
executed when any control within the DataList control causes a postback, and the routine
named BindOrdersGrid will be executed each time a row in the DataList control is bound to its
source data:

OnItemCommand=”DoItemSelect”

OnItemDataBound=”BindOrdersGrid”

The DataList control declaration uses a header and a footer row to achieve the appearance of the
dark bands above and below the list, with the header containing just the plain text “Customer
List” and the footer containing a nonbreaking space character () to preserve the row
height.

4
Working with Nested List Controls

138

LISTING 4.10 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 138

139A Master/Detail Display with DataList and DataGrid Controls

In the <ItemTemplate> section, you use an ImageButton control to generate the drop-down button.
The declaration of the ImageButton control sets CommandName to “Select”; this value is used to
detect whether the ImageButton button was clicked when the ItemCommand event was raised. You
also specify the image file for the button (in the images subfolder of the application root), the
size, and the alternate text that will provide the pop-up ToolTip:

<asp:ImageButton CommandName=”Select”

ImageUrl=”~/images/click-down.gif”

Width=”16” Height=”17” runat=”server”

AlternateText=”Click to view orders” />

The remainder of the <ItemTemplate> content is made up of the usual Container.DataItem
(“column-name”) data binding statements that display values from the customer row.

The <SelectedItemTemplate> section of the DataList control declaration comes next. This contains
the content that will only be displayed for the single row that is in selected mode when the
DataList control is bound to its data source. (If no row is selected, this content will not be
displayed.) In this template, you provide another ImageButton control that allows the user to
close the list. You use a different CommandName setting this time (“UnSelect”), and you use a differ-
ent image and alternate text (see Figure 4.8):

<asp:ImageButton CommandName=”UnSelect”

ImageUrl=”~/images/click-up.gif”

Width=”16” Height=”17” runat=”server”

AlternateText=”Click to hide orders” />

FIGURE 4.8 The buttons to open and close
the lists of orders.

Then, after the same set of Container.DataItem(“column-name”) data binding statements as in the
<ItemTemplate> section (because you want to display the customer details in both modes) comes
the declaration of the nested DataGrid control.

The Important Points of the DataGrid Control Declaration
The DataGrid control that displays the order details for the selected customer is placed in the
<SelectedItemTemplate> element of the DataList control, so it will be generated and displayed
only for the row (if any) that is currently in selected mode.

In the opening tag, you add the attributes that wire up event handlers for the three events you
want to handle: the EditCommand event that occurs when an Edit link is clicked, the UpdateCommand
event that occurs when an Update link is clicked, and the CancelCommand event that occurs when

06 0672326744 CH04 5/4/04 12:22 PM Page 139

a Cancel link is clicked. You also specify the OrderID column from the source row set as the
DataKeyField value and turn off autogeneration of columns in the DataGrid control:

DataKeyField=”OrderID”

OnEditCommand=”DoItemEdit”

OnUpdateCommand=”DoItemUpdate”

OnCancelCommand=”DoItemCancel”

AutoGenerateColumns=”False”

To create the Edit, Update, and Cancel links in each row, you declare the first column within
the <Columns> element of the DataGrid control as an <EditCommandColumn> element. In it, you can
set the text that will be displayed for the three links:

<asp:EditCommandColumn EditText=”Edit”

CancelText=”Cancel” UpdateText=”Update” />

The rest of the columns for the DataGrid control are declared either as read-only BoundColumn
controls like this:

<asp:BoundColumn DataField=”column-name”

HeaderText=”column-heading” ReadOnly=”True” />

or as <TemplateColumn> elements that display the value as text when in normal mode or in a
TextBox control when in edit mode:

<asp:TemplateColumn HeaderText=”Ordered”>

<ItemTemplate>

<%# DataBinder.Eval(Container.DataItem, “OrderDate”, _

“{0:dd MMM yyyy}”) %>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox Columns=”8” id=”txtOrderDate”

runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“OrderDate”, “{0:dd MMM yyyy}”) %>’ />

</EditItemTemplate>

</asp:TemplateColumn>

Populating the DataList Control
You’ll recognize much of the code used to populate the DataList control and the nested DataGrid
controls because it is very similar to the code in the previous example, where you populate

4
Working with Nested List Controls

140

06 0672326744 CH04 5/4/04 12:22 PM Page 140

141A Master/Detail Display with DataList and DataGrid Controls

nested DataGrid controls using a DataReader
instance. However, one major change in this
example is that you are supporting postbacks,
to allow the user to show or hide order details
and edit them.

The first consequence of this, taking into
account the fact that you have enabled view-
state for this page, is that you must be sure to
populate the DataList control only when the
page first loads and not following a postback.

Listing 4.11 shows the Page_Load event
handler for this example, and it contains the
functions that create the DataReader instance
required to provide the data for the DataList
and DataGrid controls. This time, you only
need two row sets—the lists of customers and
orders—and these are provided by the two
functions named GetCustomers and GetOrders.
Each one uses the same GetReader function as
in the previous example to generate the
DataReader instance and return it.

LISTING 4.11 The Page_Load Event Handler and Functions That Generate the Row Sets
from the Database

Sub Page_Load()

If Not Page.IsPostback Then

dtl1.DataSource = GetCustomers()

dtl1.DataBind()

End If

End Sub

Function GetCustomers() As OleDbDataReader

Dim sSelect As String _

= “SELECT CustomerID, CompanyName, City, Country, Phone “ _

& “FROM Customers WHERE CustomerID LIKE ‘c%’”

Return GetReader(sSelect)

End Function

Using Viewstate with List Controls
Not enabling viewstate is a common error
newcomers make when using data binding
and postbacks with the list controls in
ASP.NET. If viewstate is not enabled, the list
control will not maintain its state; there will
be no values in it after a postback. However,
if you repopulate it in the Page_Load event
after every postback, the list control may not
behave properly. For example, it may not
display the selected row or raise events on
the server when controls in the grid (such as
the Edit links) are activated. The solution is to
enable viewstate and only populate the list
control in the Page_Load event handler the
first time the page is loaded. Afterward, you
repopulate the list control only when you
change a property such as SelectedIndex or
EditIndex, in order to display the rows in the
appropriate modes. And you only do so in the
event handler that handles the mode change,
as you’ll see in this example.

06 0672326744 CH04 5/4/04 12:22 PM Page 141

Function GetOrders(sKey As String) As OleDbDataReader

Dim sSelect As String _

= “SELECT Orders.OrderID, Orders.OrderDate, “ _

& “Orders.RequiredDate, Orders.ShippedDate, Orders.Freight, “ _

& “Shippers.CompanyName As ShipperName “ _

& “FROM Orders JOIN Shippers “ _

& “ON Orders.ShipVia = Shippers.ShipperID “ _

& “WHERE CustomerID=’” & sKey & “‘“

Return GetReader(sSelect)

End Function

Function GetReader(sSQL As String) As OleDbDataReader

‘ get DataReader for rows from Northwind tables

Dim sConnect As String _

= ConfigurationSettings.AppSettings(“NorthwindOleDbConnectString”)

Dim oConnect As New OleDbConnection(sConnect)

Try

oConnect.Open()

Dim oCommand As New OleDbCommand(sSQL, oConnect)

Return oCommand.ExecuteReader(CommandBehavior.CloseConnection)

Catch oErr As Exception

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text = oErr.Message & “<p />”

End Try

End Function

4
Working with Nested List Controls

142

LISTING 4.11 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 142

143A Master/Detail Display with DataList and DataGrid Controls

Populating the DataGrid Control
As each row in the DataList control is bound to its source data, the ItemDataBound event is raised.
This causes the BindOrdersGrid event handler that you specified for the OnItemDataBound attribute
of the DataList control to execute. Listing 4.12 shows the BindOrdersGrid event handler, and you
can see that the first task is (as usual) to examine the row type.

However, in this case, the nested DataGrid control will exist only if the current row in
the DataList control is in selected mode, so you check to see whether the row type is
ListItemType.SelectedItem. If it is, you get the customer ID from the DataKeys collection, get a
reference to the nested DataGrid control in this row, and then bind the DataGrid control to the
result of the GetOrders function shown in Listing 4.11. The customer ID is passed to the
GetOrders function so that it returns only the order rows for the current customer.

LISTING 4.12 The BindOrdersGrid Event Handler for the ItemDataBound Event

Sub BindOrdersGrid(sender As Object, e As DataListItemEventArgs)

‘ see what type of row (header, footer, item, etc.) caused the event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

‘ only process it if it’s the Selected row

If oType = ListItemType.SelectedItem Then

‘ get value of CustomerID for this row from DataKeys collection

Dim sKey As String = dtl1.DataKeys(e.Item.ItemIndex)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = CType(e.Item.FindControl(“dgr1”), DataGrid)

‘ bind nested “orders” DataGrid to DataReader

oGrid.DataSource = GetOrders(sKey)

oGrid.DataBind()

End If

End Sub

Selecting a Row in the DataList Control
You’ve seen how the nested DataGrid control is populated for the row that is in selected mode.
To put the row into this mode, you handle the ItemCommand event of the DataList control. Recall
that you included the attribute OnItemCommand=”DoItemSelect” in the declaration of the DataList
control, so any postback that is initiated by a control within the DataList control will raise the
ItemCommand event and execute the DoItemSelect event handler routine.

06 0672326744 CH04 5/4/04 12:22 PM Page 143

Listing 4.13 shows the DoItemSelect event handler. The first step is to determine which control
caused the postback, and you do this by examining the CommandName property of the control
referenced by the sender argument passed to the event handler. You set this property on the two
ImageButton controls that display the up and down images in the first column of the DataList
control.

LISTING 4.13 The Event Handler for the ItemCommand Event of the DataList Control

Sub DoItemSelect(sender As Object, e As DataListCommandEventArgs)

‘ see if it was the Select button that was clicked

If e.CommandName = “Select” Then

‘ set the SelectedIndex property of the list to this item’s index

dtl1.SelectedIndex = e.Item.ItemIndex

dtl1.DataSource = GetCustomers()

dtl1.DataBind()

End If

‘ see if it was the Un-Select button that was clicked

If e.CommandName = “UnSelect” Then

‘ set the SelectedIndex property of the list to -1

dtl1.SelectedIndex = -1

dtl1.DataSource = GetCustomers()

dtl1.DataBind()

End If

End Sub

If the down image was clicked (CommandName=”Select”), you want to put that row into selected
mode by setting the SelectedIndex property of the DataList control to the index of the row. You
get the index of the current row from the ItemIndex property of the current DataListItem
instance, set the SelectedIndex property, and then repopulate the DataList control. The control
will automatically display the current row in selected mode by using the contents of the
<SelectedItemTemplate> element instead of the <ItemTemplate> element.

Alternatively, if the CommandName property of the control that caused the postback is set to
“UnSelect”, you know that the user clicked the up button in this row. In this case, you just set
the SelectedIndex property to -1 and repopulate the DataList control to display all the rows in
normal mode.

4
Working with Nested List Controls

144

06 0672326744 CH04 5/4/04 12:22 PM Page 144

145A Master/Detail Display with DataList and DataGrid Controls

Editing a Row in the DataGrid
Control
If a row in the DataList control is in selected
mode, the DataGrid control that displays the
orders for the selected customer is visible. The
first column of this DataGrid control contains
the three links, Edit, Update, and Cancel,
depending on whether that DataGrid control
row is currently in edit mode. So you have to
handle three events that can be raised by the
DataGrid control. You specified the event
handlers as attributes when you declared the
DataGrid control:

OnEditCommand=”DoItemEdit”

OnUpdateCommand=”DoItemUpdate”

OnCancelCommand=”DoItemCancel”

The event handlers for the EditCommand event,
named DoItemEdit, and the CancelCommand event, named DoItemCancel, are shown in Listing 4.14.
The one issue you have to contend with is that the DataGrid control is nested within one of the
rows of the parent DataList control. So to get a reference to it, you can search for it within the
Controls collection of the row in the DataList control that is currently selected.

LISTING 4.14 The Event Handlers for Switching Into and Out of Edit Mode

Function GetDataGridRef() As DataGrid

‘ get a reference to the DataGrid in the selected DataList row

Dim oRow As DataListItem = dtl1.Items(dtl1.SelectedIndex)

Return CType(oRow.FindControl(“dgr1”), DataGrid)

End Function

Sub DoItemEdit(sender As Object, e As DataGridCommandEventArgs)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = GetDataGridRef()

‘ set the EditItemIndex of the grid to this item’s index

oGrid.EditItemIndex = e.Item.ItemIndex

‘ bind grid to display row in new mode

‘ get CustomerID from the DataKeys collection of the DataList

Accessing the Controls in a Row in the
DataList Control
Each row in a DataList control is repre-
sented by a DataListItem instance in the
DataListCommandEventArgs object that is
passed to the ItemDataBound and
ItemCreated event handlers. The
DataListItem object is very similar to the
DataGridItem object discussed earlier in this
chapter. It has the same commonly used
members shown in Table 4.1 for the
DataGridItem object, with the exception of
the DataSetIndex property and the Cells
collection (because the individual values in a
DataList control are not output as HTML
table cells). Likewise, the individual rows in a
Repeater control are represented by the
RepeaterItem object, which provides a
slightly more restricted set of properties.

06 0672326744 CH04 5/4/04 12:22 PM Page 145

oGrid.DataSource = GetOrders(dtl1.DataKeys(dtl1.SelectedIndex))

oGrid.DataBind()

End Sub

Sub DoItemCancel(sender As Object, e As DataGridCommandEventArgs)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = GetDataGridRef()

‘ set EditItemIndex of grid to -1 to switch out of Edit mode

oGrid.EditItemIndex = -1

‘ bind grid to display row in new mode

‘ get CustomerID from the DataKeys collection of the DataList

oGrid.DataSource = GetOrders(dtl1.DataKeys(dtl1.SelectedIndex))

oGrid.DataBind()

End Sub

The function named GetDataGridRef shown at the start of Listing 4.14 does this by first getting a
reference to the DataListItem object that represents the selected row in the DataList control,
using the current SelectedIndex property of the DataList control to locate it. You know that one
row must be selected; otherwise, the DataGrid control would not be visible and the user could
not have clicked the Edit link or the Cancel link. Then you can use the FindControl method
exposed by the selected DataListItem object to locate the DataGrid control.

Then, in the DoItemEdit routine, you can use
the GetDataGridRef function to get a reference
to the DataGrid control and set EditItemIndex
to the index of the row containing the Edit
link that was clicked. To display the grid with
this row in edit mode, you repopulate it,
using the GetOrders routine shown in Listing
4.11. This requires the ID of the currently
selected customer, and you can get that easily
enough from the DataList control’s DataKeys
collection—by specifying the current
SelectedIndex value of the DataList control as
the row index for the DataKeys collection.

To switch the row out of edit mode when the
user clicks the Cancel link, you just get a

4
Working with Nested List Controls

146

LISTING 4.14 Continued

Using the Sender Argument As a
Reference to the Source Control
You may have realized that there is a simpler
approach to getting a reference to the nested
DataGrid control than is used in this
example. In fact, you saw the alternative
technique in previous examples in this
chapter. You can use the sender argument
passed to the event handler instead; this
argument is, of course, a reference to the
control that raised the event. However, the
function provided in this example is intended
to demonstrate another way that you can
achieve the same result, and it may come in
handy in other situations.

06 0672326744 CH04 5/4/04 12:22 PM Page 146

147A Master/Detail Display with DataList and DataGrid Controls

reference to the DataGrid control (again using
the GetDataGridRef function), set
EditItemIndex to -1, and repopulate the grid.

The remaining event handler, named
DoItemUpdate, is executed when the user clicks
the Update link after changing some values in
the text boxes within the grid. This is a more
complicated routine, although much of the
code is concerned with trapping data input
errors.

Listing 4.15 shows the complete event handler, and you can see that the first task is to get a
reference to the DataGrid control. Then you can get references to each of the TextBox controls in
the row by using the FindControl method of the current DataGridItem instance.

LISTING 4.15 The Event Handler for the UpdateCommand Event of the DataGrid Control

Sub DoItemUpdate(sender As Object, e As DataGridCommandEventArgs)

‘ get a reference to the DataGrid control in this row

Dim oGrid As DataGrid = GetDataGridRef()

‘ get a reference to the text boxes

Dim oOrdered As TextBox _

= CType(e.Item.FindControl(“txtOrderDate”), TextBox)

Dim oRequired As TextBox _

= CType(e.Item.FindControl(“txtRequiredDate”), TextBox)

Dim oShipped As TextBox _

= CType(e.Item.FindControl(“txtShippedDate”), TextBox)

Dim oFreight As TextBox _

= CType(e.Item.FindControl(“txtFreight”), TextBox)

‘ verify that the values are valid

Dim dOrderDate, dRequDate, dShipDate As DateTime

Dim cFreight As Decimal

Try

dOrderDate = DateTime.Parse(oOrdered.Text)

Catch

lblErr.Text = “ERROR: Invalid value entered for Order Date”

Exit Sub

End Try

Try

dRequDate = DateTime.Parse(oRequired.Text)

Catch

lblErr.Text = “ERROR: Invalid value entered for Required Date”

Exit Sub

Using the UpdateCommand Event
Notice that you don’t have to worry about what
type of row you’re dealing with here, as you do
when handling the ItemDataBound and
ItemCreated events. The UpdateCommand
event is only raised for the row that is already
in edit mode, so you know that the controls
defined in the <EditItemTemplate> section
will be present in this row.

06 0672326744 CH04 5/4/04 12:22 PM Page 147

End Try

Try

dShipDate = DateTime.Parse(oShipped.Text)

Catch

lblErr.Text = “ERROR: Invalid value entered for Shipped Date”

Exit Sub

End Try

Try

cFreight = Decimal.Parse(oFreight.Text)

Catch

lblErr.Text = “ERROR: Invalid value entered for Freight Cost”

Exit Sub

End Try

‘ create a suitable SQL statement and execute it

Dim sSQL As String

sSQL = “UPDATE Orders SET OrderDate=’” _

& dOrderDate.ToString(“yyyy-MM-dd”) & “‘, “ _

& “RequiredDate=’” _

& dRequDate.ToString(“yyyy-MM-dd”) & “‘, “ _

& “ShippedDate=’” _

& dShipDate.ToString(“yyyy-MM-dd”) & “‘, “ _

& “Freight=” & cFreight.ToString() & “ “ _

& “WHERE OrderID=” & oGrid.DataKeys(e.Item.ItemIndex)

ExecuteSQLStatement(sSQL)

‘ set EditItemIndex of grid to -1 to switch out of Edit mode

oGrid.EditItemIndex = -1

‘ bind grid to display row in new mode

‘ get CustomerID from the DataKeys collection of the DataList

oGrid.DataSource = GetOrders(dtl1.DataKeys(dtl1.SelectedIndex))

oGrid.DataBind()

End Sub

The code in Listing 4.15 extracts the values from the four TextBox controls, using a Try...Catch
construct to detect invalid values and catch errors. If an invalid data type conversion occurs for
the Parse method, the Catch section of each construct displays the error message in a Label
control located above the DataList control in the page and prevents further processing by
exiting from the event handler routine. Figure 4.9 shows the result when an invalid value is
detected.

4
Working with Nested List Controls

148

LISTING 4.15 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 148

149A Master/Detail Display with DataList and DataGrid Controls

Next, the routine builds up a SQL statement. It uses the values from the TextBox controls,
together with the current order ID extracted from the DataKeys collection of the current DataGrid
control. This SQL statement is passed to a separate routine named ExecuteSQLStatement, which
we’ll look at shortly. Of course, you could use a stored procedure to update the database if
preferred.

Finally, you switch the current row in the
DataGrid control out of edit mode and repop-
ulate it to display the updated values.

Updating the Original Data in
the Database
The final section of code in the sample page
is the ExecuteSQLStatement routine, shown in
Listing 4.16. There’s nothing new or exciting
here: You just create a Connection instance and
a Command instance, open the Connection
instance, and execute the SQL statement by
calling the ExecuteNonQuery method. If it
doesn’t update just one row, or if an error
occurs, you display a suitable error message.

LISTING 4.16 The Routine to Push the Updates Back into the Database

Sub ExecuteSQLStatement(sSQL)

‘ execute SQL statement against the original data source

Dim sConnect As String = ConfigurationSettings.AppSettings(_

“NorthwindOleDbConnectString”)

FIGURE 4.9
Catching data entry errors and
invalid values in the master/detail
sample page.

Concurrent Update Checking
Notice that you don’t perform full concurrent
update error checking here. If the data is
updated by another user while the page is
displayed, the second user’s changes will be
overwritten. To avoid this, you would have to
check the existing value in every column of
the row in the database against its original
value when the page was first displayed. This
is easier to do when the data you use to
populate the page is held in a DataSet
instance. With a DataReader instance (as in
this example), you would probably decide to
store the original values in hidden controls in
the row that is in edit mode or use a time-
stamp or GUID column in the database that
indicates whether the row has been changed
concurrently.

06 0672326744 CH04 5/4/04 12:22 PM Page 149

Dim oConnect As New OleDbConnection(sConnect)

Try

oConnect.Open()

Dim oCommand As New OleDbCommand(sSQL, oConnect)

If oCommand.ExecuteNonQuery() <> 1 Then

lblErr.Text &= “ERROR: Could not update the selected row”

End If

oConnect.Close()

Catch oErr As Exception

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text &= “ERROR: “ & oErr.Message & “<p />”

End Try

End Sub

Summary
The topic covered in this chapter is quite narrow, focusing only on the use of nested list
controls in ASP.NET pages. However, as you’ve seen, there are plenty of issues to understand,
several interesting problems to solve, and a great many options for how to go about the process.

This chapter describes how to use a DataSet instance or a DataReader instance and discusses the
performance implications. It also shows how you can perform the binding declaratively to a
function or by handling the ItemDataBound event and generating the row set you need that way.
And, as mentioned previously, you can mix and match the techniques and the data sources in
almost any combination to achieve the desired end result.

As well as addressing four basic techniques, this chapter looks at the nature of the objects that
are available in the event handlers, such as the DataGridItem and DataListItem objects. It is vital
that you understand what they offer and how to get the most from them. When you nest list
controls, which event is being raised and how to handle it can quickly become confusing.

4
Working with Nested List Controls

150

LISTING 4.16 Continued

06 0672326744 CH04 5/4/04 12:22 PM Page 150

151Summary

One issue that is mentioned a couple times in this chapter and that often causes problems as
you develop pages that use complex combinations of list controls is that you must be sure your
event handlers test what type of row they are handling. Bear in mind that the FindControl
method cannot detect errors in your code at compile time because it only searches for controls
at runtime and silently returns null (Nothing in Visual Basic .NET) if it can’t find the control it’s
looking for. The result is a runtime error that can be hard to track down.

This chapter finishes up with a look at how a combination of list controls, in this case a
DataList control and a DataGrid control, can be used to build collapsible master/detail pages with
very little effort. And, along the way, this chapter discusses more ways for detecting the source
of events and postbacks and managing the edit process inside a list control.

06 0672326744 CH04 5/4/04 12:22 PM Page 151

06 0672326744 CH04 5/4/04 12:22 PM Page 152

PART II

Reusability

5 Creating Reusable Content

6 Client-Side Script Integration

7 Design Issues for User Controls

8 Building Adaptive Controls

9 Page Templates

07 0672326744 Pt 2 5/4/04 12:24 PM Page 153

07 0672326744 Pt 2 5/4/04 12:24 PM Page 154

5
Creating
Reusable
Content

Although the general public’s view of
computer programmers as a breed apart
might be less than complimentary, we are
really no different from any other people
when it comes to having a hatred of dull,
repetitive work. When writing code, experi-
enced programmers are constantly on the
lookout for ways to encapsulate chunks that
are reusable and save the effort of having to
write the same code repeatedly. Subroutines
and functions are obvious examples of ways
to do this within a single application;
components, DLLs, and .NET assemblies
provide the same kind of opportunities
across different applications.

However, when building Web pages and
Web-based interfaces for your applications,
it can be difficult to choose the obvious or
the most efficient approach for creating
reusable content. Traditional techniques
have been to read from disk-based template
files and to use disk-based include files that
rely on the server-side include feature of
most Web server systems.

Of course, the use of external code in the
form of COM or COM+ components, and in
ASP.NET, the use of .NET assemblies, is also
prevalent in Web pages. However, the
complexity of the plumbing between

IN THIS CHAPTER
Techniques for Creating Reusable
Content 156

Building a ComboBox User Control 169

Using the ComboBox Control 189

Populating the ComboBox Control 194

BEST PRACTICE:
Editing the Connection String 194

Summary 196

08 0672326744 CH05 5/4/04 12:26 PM Page 155

COM/COM+ components and the host application has never really been an ideal approach
when working with Web pages that have extremely short transitory lifetimes on the server.
These components work much better when instantiated within an executable application where
they have a longer lifetime.

In ASP.NET, the ideal solution from a component point of view is to use native .NET managed
code assemblies. These are, of course, the building blocks of ASP.NET itself, and they provide the
classes that implement all the ASP.NET controls we use in our pages. However, the .NET
Framework provides several techniques that are extremely useful and efficient and that can
provide high levels of reuse for interface declarations and runtime code.

Techniques for Creating Reusable Content
Before delving too deeply into any of the specific techniques for creating reusable content, we’ll
briefly summarize those that are commonly used within ASP.NET Web applications:

n Server-side include files

n ASP.NET user controls

n Custom master page and templating techniques

n ASP.NET server controls built as .NET assemblies

n Using COM or COM+ components via COM Interop

Server-Side Include Files
Many people shun the use of server-side includes in ASP.NET, preferring to take advantage of
one of the newer and flashier techniques that are now available (such as user controls, server
controls, and custom templating methods). However, server-side includes are just as useful in
ASP.NET as they are in “classic” ASP. They are also more efficient than in ASP because ASP.NET

pages are compiled into an assembly the first
time they are referenced, and this assembly is
then cached and reused automatically until
the source changes.

As long as none of the files on which an
assembly is dependent change (this applies to
things like other assemblies and user controls
as well as to server-side include files), the
page will not be recompiled. This means that
the include process will be required only the
first time the ASP.NET page is referenced, and
it will not run again until recompilation is
required. The content of the include file
becomes just a part of the assembly.

5
Creating Reusable Content

156

Using Server-Side Include Files to Insert
Code Functions
Remember that you aren’t limited to just
using text and HTML in a server-side include
file. You can place client-side and server-side
code into it and, in fact, you can put in it any
content that you can use in an ASP.NET page.
This means you can, for example, place just
code routines into a server-side include file
and then call those functions and subroutines
from other code in the main hosting page, or
you can even call them directly from control
events. However, you can only include files
that are located within the same virtual appli-
cation as the hosting page.

08 0672326744 CH05 5/4/04 12:26 PM Page 156

157Techniques for Creating Reusable Content

Of course, the same include file is likely to be used in more than one page. Any change to that
file will therefore cause all the assemblies that depend on it to be recompiled the next time they
are referenced. This makes include files extremely useful for items of text or declarative HTML
that are reused on many pages but that change rarely. An example is a page footer containing
the Webmaster’s contact details and your copyright statement.

Including Dynamic Text Files in an ASP.NET Page
Another area where server-side include files are useful is where you have some dynamically
generated text or HTML content that you want to include in a Web page.

One particular example we use ourselves is to remotely monitor the output generated by a
custom application that executes on the Web server. It generates a disk-based log file as it runs
and allows the name and location of the log file to be specified. We place the log file in a folder
that is configured as a virtual Web application root and then insert it into an empty ASP.NET
page by using a server-side include statement (see Listing 5.1).

LISTING 5.1 Including a Log File in an ASP.NET Page

<%@Page Language=”VB” %>

<html>

<body>

<pre>

<!-- #include file=”myappruntime.log” -->

</pre>

</body>

</html>

Downsides of the Server-Side Include Technique
Although server-side includes are useful, there are at least a couple issues to be aware of with
them. The first is one that has long annoyed users of classic ASP. The filename and path of the
include file cannot be accessed or changed dynamically as the page executes. This is because the
#include directive is processed before ASP.NET gets to see the page. You can’t decide, for
example, which file to include at runtime.

However, you can change the content of the section of the page that is generated from a server-
side include file at runtime by including ASP.NET control declarations within the file and setting
the properties of these controls at runtime. For example, if the include file contains the code
shown in Listing 5.2, you can make the Webmaster’s email address visible or hide it by setting
the Visible property of the Panel control at runtime, as shown in Listing 5.3.

LISTING 5.2 Server-Side Include Files Containing ASP.NET Server Controls

©2004 Yoursite.com - no content reproduction without permission

<asp:Panel id=”WebmasterPanel” runat=”server”>

webmaster@yoursite.com

</asp:Panel>

08 0672326744 CH05 5/4/04 12:26 PM Page 157

LISTING 5.3 Setting Properties of Controls in a Server-Side Include File at Runtime

<!-- #include file=”myfooter.txt” -->

...

<script runat=”server”>

Sub Page_Load()

If (some condition) Then

WebmasterPanel.Visible = True

Else

WebmasterPanel.Visible = False

End If

End Sub

</script>

Designer Support for Server-Side
Include Files
The second issue with using server-side
include files is that they are rarely supported
in the tools that are available to help build
pages and sites. This doesn’t mean that you
can’t use them, but it does mean that you’re
unlikely to get WYSIWYG performance from
the tool. However, this may not be important
for things like footers or other minor sections
of output.

ASP.NET User Controls
The server-side include approach we just discussed is useful and works well with ASP.NET. But
there are other ways to build reusable content, and these techniques often overcome the limita-
tions of server-side include files and also offer a better development model as a whole. The
simplest, and yet extremely powerful, approach introduced with ASP.NET is the concept of user
controls.

Whereas server-side include files are effectively just chunks of content that get inserted into the
page before it is processed by ASP.NET, user controls are control objects in their own right. The
System.Web.UI.UserControl class that is used to implement all user controls is descended from the
same base class (System.Web.UI.Control) as all the server controls in ASP.NET.

This means that a user control is instantiated by ASP.NET and becomes part of the control tree
for the page. It also means that it can implement and expose properties that can be accessed by
other controls and by code written within the hosting page. And, because it is part of the
control tree, any other server controls that it contains can also be accessed in code within the
hosting page, as well as by code within the user control itself (see Figure 5.1).

5
Creating Reusable Content

158

When Is an Include File Actually Included?
Listings 5.2 and 5.3 prove that the include file
is inserted into the page before ASP.NET gets
to see it. The code in Listing 5.3 should
produce a compile error and report that it
can’t find the control with ID WebmasterPanel
because the declaration of this control is not
in the page. However, by the time ASP.NET
gets to compile the page, the include file has
already been inserted into it.

08 0672326744 CH05 5/4/04 12:26 PM Page 158

159Techniques for Creating Reusable Content

Registering and Inserting a User Control
A user control is written as a separate file that must have an .ascx file extension. It is then regis-
tered with any page that needs to use it, via the Register directive. The Register directive speci-
fies the tag (element) prefix and name that will identify the user control within the page, and
this prefix and name are then used to instantiate the user control at the required position
within the declarative content of the page, as shown in Listing 5.4.

LISTING 5.4 Registering a User Control and Inserting It into a Page

<%@Page Language=”VB” %>

<%@Register TagPrefix=”ahh” TagName=”ComboBox” Src=”ascx\combo.ascx” %>

...

<body>

Simple Combo List Box:

<ahh:ComboBox id=”cboTest1” IsDropDownCombo=”False” runat=”server” />

...

</body>

You can see in Listing 5.4 how similar the technique for using a user control is to using the
standard server controls that are provided with ASP.NET. All the properties of the System.Web.
UI.Control class are available (for example, id, EnableViewState, Visible) and can be set using
attributes or at runtime in your code. The id property is set to “cboTest1” in Listing 5.4.

You can set the values of properties that are specific to this user control in exactly the same way.
For example, Listing 5.4 shows the value of the IsDropDownCombo property being set to False. And
any Public methods that the user control
exposes can be executed from code in the
hosting page, just as with a normal server
control. Figure 5.2 shows a page that hosts
the ComboBox user control you’ll develop later
in this chapter.

ASP.NET
Page

ASP.NET
Page

User
Control

User
Control

User
Control

User
Control

User
Control

FIGURE 5.1 Reusing user controls in multi-
ple ASP.NET pages.

Running the ComboBox Control Example
Online
If you want to try out this control, go to the
sample pages for this book. You can also run it
online on our own server, at www.daveandal.
net/books/6744/combobox/combo.aspx.

08 0672326744 CH05 5/4/04 12:26 PM Page 159

The Contents of a User Control
As with server-side includes, you can place
almost any content in a user control. It can
be just declarative HTML or client-side code
and text, or it can include ASP.NET server
controls, server-side code, and even other user
controls.

Oftentimes you need to insert the same user
control more than once into a page, in the
same way that you use server controls. Of
course, this isn’t obligatory, but it does mean
that you need to bear in mind some obvious

limitations to the content user controls include if you are to use them more than once. There
are two things you should generally not include in a user control:

n The opening and closing <html>, <title>, or <body> elements. These should be placed in the
hosting page so that they occur only once.

n Server-side form controls (for example, <form> elements that contain the runat=”server”
attribute). There can be only one server-side form on an ASP.NET page (except when
you’re using the MobilePage class to create pages suited to mobile devices).

A common scenario is to use a user control that generates no user interface (no visible output)
but exposes code functions or subroutines that you want to be able to reuse in several pages. As
long as these routines are marked as Public, they will be available to code running in the
hosting page—which can reference them through the ID that is assigned to the user control.
Listing 5.5 shows how you can access a method of a user control (which in this case just returns
a value) and how you can set and read property values. Later in this chapter, you’ll see in more
detail how properties and methods are declared within a user control.

LISTING 5.5 Accessing Properties or Methods of a User Control

‘ call the ShowMembers method and get back a String

Dim sSyntax As String = cboTest1.ShowMembers()

‘ set the width and number of rows of the control

cboTest1.Width = 200

5
Creating Reusable Content

160

FIGURE 5.2 A ComboBox control imple-
mented as a user control.

Nesting User Controls
Note that you can’t insert an instance of the
same user control into itself. The nested user
control would then insert another instance of
itself again, ad infinitum, creating a circular
reference. The compiler would detect this situ-
ation and generate an error. If you need to
nest user controls, you must create a hosting
instance that references a different file that is
identical in content except that it does not
contain the reference to the nested control.

08 0672326744 CH05 5/4/04 12:26 PM Page 160

161Techniques for Creating Reusable Content

cboTest1.Rows = 10

‘ read the current text value of the control

Dim sValue As String = cboTest1.Text

User Controls and Output Caching
One extremely good reason for taking advantage of user controls (and, in fact, perhaps one of
the prime reasons for their existence) is that they can be configured differently from the hosting
page as far as the page-level directives are concerned. In an ASP.NET page, you can add a range
of attributes to the Page directive and use other directives, such as OutputCache, to specify how
the page should behave. This includes things like whether debugging and tracing are enabled,
whether viewstate is supported, and how output caching should be carried out for the page.

The simplest output cache declaration specifies the number of seconds for which the output
generated by ASP.NET for the page should be cached and reused, and it specifies which parame-
ters sent to the page can differ to force a new copy to be generated. When you use an asterisk (*)
for the VaryByParams attribute, a different copy of the page will be cached for each varying value
sent in the Request collections (Form and QueryString):

<%@OutputCache Duration=”300” VaryByParam=”*” %>

Output caching provides a huge performance
benefit when the content generated by the
page is the same for most clients or when
there are only a limited number of different
versions of the page (in other words, when
the values sent in the Form and QueryString
collections fall into a reasonably small
subset). When there are many different
cached versions, the process tends to be self-
defeating.

The OutputCache directive can be declared in a user control, just as it can in a normal ASP.NET
page, but it affects only the output generated by the user control. There is also one extra feature
supported by the OutputCache directive when used in a user control: the Shared attribute.

User controls are designed to be instantiated within more than one ASP.NET page, and yet it’s
reasonable to suppose that the output they generate could be the same in many cases (regardless
of the page that uses them). When the OutputCache directive in a user control includes the attrib-
ute Shared=”True”, the same cached output is used for all the pages that host this user control.
This saves memory and processing when the output required is the same for all the pages that
use the control.

The Downsides of User Controls
Although user controls provide a great development environment for reusable content, they also
have a couple of downsides that you must consider. The first and most obvious of these is that

LISTING 5.5 Continued

Managing Caching Individually for
User Controls
User controls allow you to divide a page into
sections and manage output caching individu-
ally for each section. This means that you can
cache the output for sections that change
rarely (or for which there are few different
versions) for longer periods, while caching
other sections for shorter periods or not at all.

08 0672326744 CH05 5/4/04 12:26 PM Page 161

they are specific to an ASP.NET application. Unlike the standard ASP.NET server controls, which
can be used in any ASP.NET application on a server, user controls can only be instantiated in
pages that reside in the same Web application (the root folder of the virtual application, as
defined in Internet Services Manager, or a subfolder of this application that is not also defined
as a virtual application).

In most cases, this is not a real problem. User controls tend to be specific to an application. For
example, if you implement a footer section for all your pages as a user control, it probably
makes sense for it to be used only within that application. However, some user controls (such as
the ComboBox control shown earlier in this chapter) may be useful in many different applications.
In this case, you will have to maintain multiple copies of the same user control—one for each
application that requires it.

Furthermore, many people still tend to see user controls as being the “poor man’s solution” for
building controls, as in the ComboBox example earlier in this chapter. There are good reasons for
this: One is that you can’t expose events from a user control in the same way you can from a
server control that is defined as a class and compiled into an assembly. We’ll look at this topic
in Chapter 8, “Building Adaptive Controls.”

Finally, of course, you can’t hide your code in a user control in quite the same way as you can
by compiling a server control into an assembly. Like an ASP.NET page, the source of a user
control is just a text file that must be present in the Web site folders. It’s unlikely that you could
build up your own software megacorporation just by selling user controls.

Custom Master Page and Templating Techniques
One common use of both server-side include files and user controls is to insert some common
section of content into a page, perhaps to create the page header, the footer, or a navigation
menu. There is, however, a technique that effectively tackles this issue from the opposite direc-
tion: You can create a master page or template for the site and base all the pages on this master
page or template. All the content in the master page or template then appears on every page,
and each individual page only has to implement the content sections that are specific to that
page.

The master page approach tends to encompass the concept of the individual pages being
dynamically generated each time from the master page, with the individual content sections
being inserted into it (see Figure 5.3). However, bear in mind that ASP.NET pages are compiled
on first hit and then cached, so the process happens only the first time the page is referenced
and when the source of the page (the master page itself, or the individual content sections)
changes.

A template, on the other hand, usually conjures up a vision of a single page from which the
individual content pages are generated in their entirety—rather like some kind of merge process
(see Figure 5.4). In fact, using master pages and using templates are generically very similar, and
both produce compiled pages that are cached for use in subsequent requests.

5
Creating Reusable Content

162

08 0672326744 CH05 5/4/04 12:26 PM Page 162

163Techniques for Creating Reusable Content

Chapter 9, “Page Templates,” looks at master pages and page templates; you’ll see more discus-
sion there of the different techniques you can use and the various ways you can code pages to
provide the most efficient and extensible solutions.

ASP.NET Server Controls Built As .NET Assemblies
The next step up the ladder of complexity versus flexibility is to create reusable content as a
native .NET server control. The controls you create using this technique are functionally equiva-
lent, in terms of performance and usability, to the standard server controls provided with
ASP.NET. The controls provided in the box with ASP.NET are written in C#, and they’re
compiled into assemblies. The ASP.NET Web Forms controls (those prefixed with asp:) are all
implemented within the assembly named System.Web.dll, which is stored in your %windir%\
Microsoft.NET\Framework\[version]\ folder.

Subsequent chapters show how easy it is to create your own server controls and then use them
in Web pages just as you would the standard ASP.NET controls. Figure 5.5 shows the SpinBox
control that is created in Chapter 8, with three instances inserted into the page and various
styles applied to them.

Content
Block

Content
Block

Content
Block

Content
Block

+ =

Master
Page

ASP.NET
Page

FIGURE 5.3 Generating ASP.NET pages from
a master page.

Template

ASP.NET
Page

ASP.NET
Page

ASP.NET
Page

Process
template

Data
Input

FIGURE 5.4
Generating ASP.NET pages from a
template.

08 0672326744 CH05 5/4/04 12:26 PM Page 163

Server controls provide a few important advantages over user controls and most other reusable
content methods. They encapsulate the code and logic, making it harder for others to steal any
intellectual property they contain. Although server controls can still be disassembled to view the
Microsoft Intermediate Language (MSIL) code they contain, most users are unlikely to be able to
see how they work. You can also use obfuscation techniques (as built into Visual Studio) to
make it much more difficult for even experienced users to discover the working of a control.

Second, user controls can expose events that you can handle in the hosting page, exactly as the
standard ASP.NET Web Forms controls do. For example, the SpinBox control exposes an event
named ValueChanged, which can be handled by assigning an event handler to the OnValueChanged
attribute of the control, as shown in Listing 5.6.

LISTING 5.6 Handling the ValueChanged Event of the SpinBox Control

<ahh:StandardSpinBox id=”spnTest1” runat=”server”

OnValueChanged=”SpinValueChanged” />

...

...

Sub SpinValueChanged(sender As Object, e As EventArgs)

‘ display message when value of control has changed

lblResult.Text &= “Detected ValueChanged event for control “ _

& sender.ID & “. New value is “ _

& sender.Value.ToString()

End Sub

Third, server controls can be installed into the global application cache (GAC) so that they are
available to all applications on the machine and not restricted to a single application, as are user
controls and server-side include files. The following section looks at this particular topic in more
detail.

Local and Machinewide Assembly Installation
In many cases, when you build custom controls as assemblies, you’ll probably want to use them
only within the ASP.NET application for which they were designed. As long as the assembly
resides in the bin folder of the application, it will be available to any ASP.NET page (or Web
service or other resource) that references it. All you need to do is add to the page an appropriate

5
Creating Reusable Content

164

FIGURE 5.5 A SpinBox control implemented
as a .NET server control.

08 0672326744 CH05 5/4/04 12:26 PM Page 164

165Techniques for Creating Reusable Content

Register directive that specifies the tag prefix for elements that will declare instances of the
control, the namespace in the assembly within which the control is declared, and the assembly
filename, without the .dll extension:

<%@ Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”std-spinbox” %>

You can then add an instance of the control to the page, using the following:

<ahh:SpinBox id=”spnTest” runat=”server” />

However, as just mentioned, you can make a control or an assembly available machinewide by
installing it in the GAC. For a control to be available to all the applications on the machine,
three major requirements must be met:

n There must be a way for a control to be uniquely identifiable among all other controls,
aside from its name. Because the assemblies that implement controls can be installed
anywhere on the machine, the filename of the assembly is not sufficient to uniquely
identify it.

n There must be a way to specify the version of the control so that new versions can be
installed for applications that require them, while the existing version can remain in use
for other applications.

n The .NET Framework requires that assemblies must be digitally signed using public key
encryption techniques to protect the assemblies from malicious interference with the
code.

You can meet all three of these requirements by applying a strong name to an assembly. You
create a strong name by using a utility named sn.exe to generate a public encryption key pair,
and then you add attributes to the assembly before it is compiled to attach this key pair to the
assembly and specify the version, the culture, and optionally other information.

After the assembly has been compiled, you
can add it to the GAC by using the
gacutil.exe utility, the .NET Framework
Configuration Wizard, or Windows Installer.
Finally, ASP.NET pages that use the control
must include a Register directive that speci-
fies the assembly name, version, culture, and
public key. For example, this is how you
would register the version of the SpinBox
control that is inserted into the GAC (and
which has the name GACSpinBox):

<%@Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”GACSpinBox,Version=1.0.0.0,Culture=neutral,

➥ PublicKeyToken=92b16615bf088252” %>

A Note About the Assembly Attribute
Important: The text string specified for the
Assembly attribute of the Register directive
must all be on one line and not broken as it
is here due to the limitation of the page
width.

08 0672326744 CH05 5/4/04 12:26 PM Page 165

In Chapter 8 you’ll build the SpinBox server control you’ve seen in this chapter. At that point,
you’ll walk through the process, step-by-step, of making a server control globally available across
applications.

The Downside of ASP.NET Server Controls
The only real limitation with building server controls is that you really have to know at least the
basics of how your chosen language supports and implements features such as inheritance. You
also need to understand the event sequence and the life cycle of controls. However, to quote
that oft-used saying, “it’s not rocket science.” You can quickly pick up the knowledge you
require.

Using COM or COM+ Components via COM Interop
Using components is a great way to provide encapsulated and reusable content, as you’ve seen
in the preceding sections of this chapter. So far this chapter has talked about various types of
components (using the word in the broadest sense) that are all fully compatible with ASP.NET.
However, you may have COM or COM+ components that you are already using in a classic ASP
application, or you might want to use COM components that are part of Windows or an appli-
cation you have already installed in an ASP.NET application.

To use COM or COM+ components within the .NET Framework, you can create a wrapper that
exposes the interface in a format that allows managed code to access it. You effectively create a

.NET manifest that describes the component
and that acts as a connector between the
component and the .NET runtime environ-
ment. Each property, method, and event is
mapped through the wrapper, and you can
then use the component in the same way you
would use a fully managed code (.NET)
assembly.

The overall process is referred to as COM
Interop, and it provides a path to move to
.NET without having to rewrite all the busi-
ness logic and custom components required
in an existing or new application immedi-
ately, although you should consider this to be
a temporary measure and aim to build native
components as part of the process when and
where possible.

Creating a .NET Wrapper for a COM or COM+ Component
If you are building an application by using Visual Studio .NET, you can create a type library
wrapper by simply adding to your project a reference to the component. You right-click the
References entry in the Solution Explorer window and select Add Reference. In the Add
Reference dialog that appears, you go to the COM tab and select the component or library you
want to use.

5
Creating Reusable Content

166

Performance Issues with COM Interop
Using wrapped COM components affects the
performance of your pages. The extra
marshaling of values across the
managed/unmanaged boundary with each
property setting and method call is less effi-
cient than with a native managed code
component. The actual performance degrada-
tion generally depends on the number of calls
you have to make when using the compo-
nent; for example, a component that requires
you to set a dozen property values and then
call a method is likely to degrade perform-
ance more than one that lets you make a
single method call with a dozen parameters.
The actual marshaled size of the parameters
or values you pass to properties and methods
also has some effect on the performance.

08 0672326744 CH05 5/4/04 12:26 PM Page 166

167Techniques for Creating Reusable Content

Alternatively, you can use the Type Library Import utility provided with the .NET Framework.
The utility tlbimp.exe is installed by default in the Program Files\Microsoft.NET\SDK\[version]\
Bin folder. To use it, you specify the COM component DLL name and add any options you want
to control specific features of the wrapper that is created. You can find a full list of these options
in the locally installed .NET SDK at ms-help://MS.NETFrameworkSDKv1.1/cptools/html/
cpgrftypelibraryimportertlbimpexe.htm or by searching for tlbimp in the index.

Using the tlbimp Utility
As an example of how to use the Type Library Import utility provided with the .NET Framework,
let’s look at an example of how to create a wrapper for a fictional custom COM component.
The DLL is named stnxsltr.dll, and it implements a class named XslTransform within the name-
space Stonebroom. To create the wrapper, you would copy the DLL to a temporary folder and
navigate to this folder in a command window. The following command runs the tlbimp utility
for version 1.1 of the Framework and generates the type library wrapper as a .NET assembly with
the .dll file extension:

“C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\tlbimp” stnxsltr.dll

Notice in Figure 5.6 that the name of the new DLL is the name of the namespace declared
within the component, not the filename of the original component DLL. This is required to
allow ASP.NET to find the type library when it is imported into a page.

FIGURE 5.6
Executing the tlbimp utility to gener-
ate a wrapper for a COM component.

Now you would copy the new wrapper DLL into the bin folder of an application and use the
component in ASP.NET pages just as you would a native .NET component. You’d use an Import
directive to import the type library wrapper, and then instantiate the component by using the
classname. You could use the full namespace.classname syntax when instantiating the compo-
nent, but this is not actually required. Because the namespace has been imported, you could
instantiate the component by using just the classname (see Listing 5.7).

LISTING 5.7 Using a Custom XslTransform COM Component in ASP.NET

<%@Import Namespace=”Stonebroom” %>

<script runat=”server”>

Sub Page_Load()

08 0672326744 CH05 5/4/04 12:26 PM Page 167

Dim oXml As New XslTransform

Dim sStatus As String

Dim sXMLFile As String = “/data/xml/myfile.xml”

Dim sXSLFile As String = “/data/xsl/myfile.xsl”

Dim sOutFile As String = “/results/myfile.html”

Dim blnWorked As Boolean = oXml.TransformXML(sXMLFile, _

sXSLFile, sOutFile, sStatus)

lblResult.Text = sStatus

End Sub

ASP Compatibility for Apartment-Threaded
COM Components
When you’re using COM or COM+ compo-
nents, one issue to be aware of is that the
threading model used in ASP.NET is not
directly compatible with components that are
single threaded or apartment threaded.
Single-threaded components are not suitable
for use in ASP or ASP.NET anyway, so this
factor should not be an issue.

However, components built with Visual Basic
5 and 6 are usually apartment threaded (via
the single-threaded apartment [STA] model)
and work fine with only minor performance
degradation in classic ASP. Until the arrival
of the .NET Framework, which makes creati-
ng components in any managed code

language easy, Visual Basic was quite a popular environment for building business components
and server controls.

To overcome any issues with running apartment-threaded components in ASP.NET, you should
always add the attribute ASPCompat=”True” to the Page directive. This forces ASP.NET to adopt a
threading model that matches the requirements of Visual Basic apartment-threaded compo-
nents. It also allows components to access the intrinsic ASP objects, such as ObjectContext, and
the OnStartPage method. There is some performance degradation, but it is not usually significant
except in highly stressed Web applications and Web sites.

However, if you add the ASPCompat=”True” attribute to a page that creates instances of apartment-
threaded components before the request is scheduled, you will encounter much more significant
performance degradation. You should always create instances of any apartment-threaded
components you need in a Page event such as Page_Load or Page_Init.

5
Creating Reusable Content

168

LISTING 5.7 Continued

Coping with Classname Collisions
The fictional custom component described
here has the same classname,
XslTransform, as a native .NET class within
the .NET Framework class library. However,
you do not import the System.Xml.Xsl
namespace (within which the .NET
Framework component lives) into the page,
so there is no collision of classnames. If there
were, you would get a compilation error such
as “XslTransform is ambiguous, imported
from the namespaces or types
System.Xml.Xsl, Stonebroom.” In that case,
you would use the full namespace.
classname syntax to identify which class you
require (for example, Dim oXml As New
Stonebroom.XslTransform).

08 0672326744 CH05 5/4/04 12:26 PM Page 168

169Building a ComboBox User Control

Building a ComboBox User Control
In the rest of this chapter, you’ll see how to build a user control that implements some useful
features you can make available in the pages of a Web application. You’ll build the ComboBox
control you saw earlier in this chapter and then see how it can be used in an ASP.NET page just
as a native .NET Web Forms control would be used.

The combo box style of control is one of the most significant omissions from the standard set of
controls that are implemented in a Web browser. There is no single HTML element you can use
to create one, so you have to build up the complete interface to represent the features you want,
using separate HTML control elements. The first step is to consider the requirements for the
control and the HTML you will have to generate to produce the final effect you want in a Web
page.

Design Considerations
It’s usual for a combo box control to offer two modes of operation. The simplest is a combina-
tion of a text box and a list control, linked together so that a user can type a value in the text
box or select a value from the list. Typing in the text box automatically scrolls and selects the
first value in the list that matches the text in the text box, whereas selecting from a list places
that value into the text box (see Figure 5.7).

FIGURE 5.7 A standard ComboBox control,
showing a user typing in a
value and selecting from the
list.

The easiest way to create this kind of output in a Web browser is to use a single-cell table to
restrain the two controls and include a
 element to force the list to wrap to the next line.
By right-aligning the contents of the table cell and controlling the width of the text box and list
control with the CSS width selector at runtime, you get the appearance you want (see Listing 5.8).

LISTING 5.8 The HTML Required to Implement the Simple ComboBox Control Shown in Figure 5.7

<table border=”0” cellpadding=”0” cellspacing=”0”>

<tr><td align=”right”>

<asp:TextBox id=”textbox” runat=”server” />

<asp:ListBox id=”listbox” runat=”server” />

</td></tr>

</table>

08 0672326744 CH05 5/4/04 12:26 PM Page 169

The HTML for a Drop-Down Combo Box
In the second mode of operation of a combo box control, the list is normally hidden and
appears only when the user wants to select from it rather than type a value in the text box. The
actual behavior of this kind of control varies to some extent, but you might want to implement
it so that the user clicks the down button at the right end of the text box to show (drop down)
the list. As with the simple combo box shown in the preceding section, selecting a value in the
list places that value in the text box.

With this type of combo box, when the list is open, the down button changes to an up button
that can be used to close the list again. As the user types in the text box, the first matching item
in the list is selected. If the user selects a value in the list, it automatically closes, and that value
is copied to the text box (see Figure 5.8).

5
Creating Reusable Content

170

FIGURE 5.8 The drop-down ComboBox
control, showing a user typing
in a value and opening the list,
as well as the result of select-
ing from the list.

Obviously, the HTML required to implement this version of the control is more complex than
that for the other version of the control; also, it depends on the browser’s support for advanced
features, such as CSS2. In particular, you need to be able to show and hide the list control,
change the image that is displayed for the down and up buttons, and position the elements
within some kind of container.

To create this type of control, you can use a <div> element as the container and CSS absolute
positioning to fix the elements in the correct position. You can also use the CSS display selector
to show and hide the list control. As with the simple ComboBox control, the handling of user
interaction is carried out through client-side JavaScript to provide the best possible user experi-
ence, rather than posting back to the server with each user interaction.

The HTML used to create the drop-down control, shown in Listing 5.9, declares the enclosing
<div> element with the position:relative style selector so that it acts as a positioning container.
Within it are the declarations of the ASP.NET Web Forms controls that will implement the text
box, the image button (an <input type=”image”> element), and the list box.

LISTING 5.9 The HTML Required to Implement the Drop-Down ComboBox Control Shown in Figure 5.8

<div id=”dropdiv” Style=”position:relative” HorizontalAlign=”Right” runat=”server”>

<asp:TextBox Style=”vertical-align:middle” id=”textbox2” runat=”server”

/><asp:ImageButton id=”dropbtn” BorderWidth=”0” Width=”16” Height=”20”

Style=”vertical-align:middle”

ImageUrl=”~/images/click-down.gif” runat=”server” />

<asp:ListBox Style=”display:none;position:absolute;left:20;top:25”

id=”dropbox” runat=”server” />

<asp:Image id=”imageup” ImageUrl=”~/images/click-up.gif”

08 0672326744 CH05 5/4/04 12:26 PM Page 170

171Building a ComboBox User Control

Style=”display:none” runat=”server” />

<asp:Image id=”imagedown” ImageUrl=”~/images/click-down.gif”

Style=”display:none” runat=”server” />

</div>

The list box is absolutely positioned under the text box, shifted 20 pixels to the right. You can
adjust the width of the text box and list control dynamically at runtime, using the width style
selector, after you find out how wide it needs to be from the settings made by code or declara-
tions in the hosting page.

There are also two Image controls, which contain the up and down images used by the image
button. They are both declared with the display:none style selector so that they are not visible in
the page. Note that you use the tilde (~) placeholder in the ImageUrl attributes to specify that the
images reside in a folder named images under the current application root.

The ComboBox User Control Interface
You need to consider what kind of interface you should expose from the user control to allow
the hosting page to modify the behavior and appearance of the control—either in code or
through attributes added to the control declaration. Let’s say you settle on exposing the proper-
ties and the single method shown in Table 5.1.

TABLE 5.1
The Interface for the ComboBox User Control

Property or Method Description

IsDropDownCombo This property is a Boolean value, with a default of False. When it is True, a drop-
down combo box is created. When it is False, a simple combo box is created.

CssClass This property is a String value. It specifies the classname of the CSS style class to
apply to the text box and list.

DataSource This property is of type Object. It is a reference to a collection, DataReader instance,
DataTable instance, or HashTable instance that contains the data to use with server-
side data binding to fill the list.

DataTextField This property is a String value. It is the name of the column or item in the data
source that will be used to create the visible list of items.

DataTextFormatString This property is a String value. It is a standard .NET-style format string that will be
applied to the values in the DataTextField property when the list box is being filled.

Items This property is a read-only ListItemCollection instance. It is a reference to the
collection of ListItem objects that make up the list of values in the control.

Rows This property is an Integer value with a default of 5. It specifies the number of rows
to display in the list.

SelectedIndex This property is an Integer value. It sets or returns the index of the item in the list
that is currently selected. It returns -1 if no item is selected.

SelectedItem This property is a read-only ListItem instance. It returns a reference to the ListItem
object that is currently selected, or Nothing (null in C#) if no item is selected.

LISTING 5.9 Continued

08 0672326744 CH05 5/4/04 12:26 PM Page 171

SelectedValue This property is a String value. It sets or returns the text in the text box and selects
the matching value in the list, if present. It returns an empty string if no item is
selected and the text box is empty.

Width This property is an Integer value, with a default of 150. It sets or returns the current
width of the text box, in pixels.

ShowMembers() This method returns a formatted string that contains a summary of the properties
exposed by the control, ready to be inserted into an HTML page.

Many of these properties map directly to properties of the controls contained within the user
control. However, others are more complex to implement because they affect more than one of
the contained controls. Notice that you can expose an interface that allows server-side data
binding to be used to populate the list. Using data binding is a common and popular way to fill
list controls, and the combo box in this example really has to support it to be useful in many
applications.

The other issue is that you want to hide the constituent controls so that users are not tempted
to read or set values in those controls directly. Instead, users must access them by using the
properties you expose and leave it to the code within the user control to figure out how to read
or apply the values in the appropriate way.

The property names in this example are going to be familiar to users of the standard Web Forms
controls, making for a much more intuitive user experience with the ComboBox control. However,
one unconventional feature is the ShowMembers method, which simply generates a listing of the
properties of the control. For users who are not developing in an environment that can display
the properties of controls (such as Visual Studio or WebMatrix), this can be useful. Figure 5.9
shows the string that is returned from the method, as it is displayed in a Web page.

5
Creating Reusable Content

172

TABLE 5.1
Continued

Property or Method Description

FIGURE 5.9 The output of the ShowMembers
method of the ComboBox
control, as displayed in the
sample Web page.

Exposing Style Properties
For this example, you do not expose much in the way of style properties. The CssClass property
(as exposed by most ASP.NET Web Forms controls) can be used to change the appearance of the
text box and list. One common technique is to expose the contained controls from a user
control, allowing the hosting page to set all the standard properties of these controls, including
all the style properties, such as BackColor, BorderWidth, and Font. However, that is not appropriate
for this control.

08 0672326744 CH05 5/4/04 12:26 PM Page 172

173Building a ComboBox User Control

You also need to maintain strict control over at least the width style selector that is applied to
the text box and list, in order to maintain the position you want for these elements in the
control. By applying the value of the CssClass property to the text box and list first and then
setting the width selector afterward, you can override any setting that might upset the layout.
You could extend this approach to other style selectors as well. Another approach would be to
expose just, say, the Font property of the text box and list. However, any settings that the user
requires can be made by applying the relevant value to the CssClass property of the control.

The Structure and Implementation of the ComboBox User Control
To give you a feel for the structure and implementation of the ComboBox user control, Listing 5.10
and, later in this chapter, Listing 5.11 show an outline of the content with the actual code
removed for clarity. The following sections of this chapter fill in the gaps.

LISTING 5.10 An Outline of the Server-Side Script Section of the ComboBox User Control

<%@Control Language=”VB” %>

<script runat=”server”>

<%-------------- Private Internal Variables ------------------%>

Private _width As Integer = 150

Private _rows As Integer = 5

<%------------------ Public Method ---------------------------%>

Public Function ShowMembers() As String

...

End Function

<%-------------- Public Property Variables -------------------%>

Public IsDropDownCombo As Boolean = False

Public CssClass As String

Public DataSource As Object

Public DataTextField As String

Public DataTextFormatString As String

<%------------ Property Accessor Declarations ----------------%>

Public Property Width As Integer

...

End Property

Public Property Rows As Integer

...

End Property

Public Property SelectedValue As String

...

08 0672326744 CH05 5/4/04 12:26 PM Page 173

End Property

Public ReadOnly Property Items As ListItemCollection

...

End Property

Public ReadOnly Property SelectedItem As ListItem

...

End Property

Public Property SelectedIndex As Integer

...

End Property

<%--%>

...

... code to set the properties of the constituent controls

... and create the remaining output that is required

...

</script>

Following the opening Control directive,
which tells ASP.NET that this is a user control,
is the server-side script section. It declares two
Private variables that you use within the
control to maintain values for the properties
that are exposed. This is followed by the
Public declaration of the ShowMembers method
and the declaration of five Public variables.
You set default values for some of the Private
and Public variables, and these will be used if
the page does not provide specific values at
runtime.

Exposing Properties As Public Variables
One of the easiest ways to expose properties from a user control is through Public variables. The
values are, of course, accessible from within the user control because they are just ordinary vari-
ables. However, the user of the control can read or set these directly, by referencing them
through the id property of the user control when declared in the hosting page. For example, if
the ComboBox control is declared as follows:

<ahh:ComboBox id=”MyCombo” runat=”server” />

the user can set the IsDropDownCombo property with this:

MyCombo.IsDropDownCombo = True

5
Creating Reusable Content

174

LISTING 5.10 Continued

Setting Property Values Through Attributes
Note that when you’re setting a property
value through attributes, regardless of the
data type, the value must be enclosed in
single or double quotes. This is exactly the
same way the standard .NET server controls
work. The value is converted to the correct
data type automatically when the control is
compiled and instantiated by ASP.NET.

08 0672326744 CH05 5/4/04 12:26 PM Page 174

175Building a ComboBox User Control

The user can also set the property declaratively in the usual .NET Web Forms control way:

<ahh:ComboBox id=”MyCombo” IsDropDownCombo=”True” runat=”server” />

Exposing Properties by Using Accessor Routines
The six remaining properties of the ComboBox user control are declared using Public accessor
routines. An accessor routine allows the declaration of a property as read-only, write-only, or
read/write, and it allows you to execute code when the value is set or read (whether it is set in
code in the hosting page or through an attribute in the declaration of the control). You’ll see
these property accessor routines soon, after you look at the remainder of the user control struc-
ture.

Outputting the Appropriate HTML
Listing 5.11 shows the remaining content of the user control. You know that you will have to
generate two different chunks of HTML, depending on whether you are creating a simple combo
box or the drop-down variety. To do this, you declare both versions, enclosing each one in an
ASP.NET PlaceHolder control, with its Visible property set to False. At runtime, all you need to
do is change the Visible property to True for the relevant PlaceHolder control, and the correct
section of HTML will be output.

Listing 5.11 The Visible User Interface Section of the ComboBox User Control

<%----------------- List-style Combo Box ---------------------%>

<asp:PlaceHolder id=”pchStandard” visible=”false” runat=”server”>

<table border=”0” cellpadding=”0” cellspacing=”0”>

<tr><td align=”right”>

<asp:TextBox id=”textbox” runat=”server” />

<asp:ListBox id=”listbox” runat=”server” />

</td></tr>

</table>

</asp:PlaceHolder>

<%----------------- Drop-down Combo Box ----------------------%>

<asp:PlaceHolder id=”pchDropDown” visible=”false” runat=”server”>

<div id=”dropdiv” Style=”position:relative” HorizontalAlign=”Right”

runat=”server”>

<asp:TextBox Style=”vertical-align:middle” id=”textbox2” runat=”server”

/><asp:ImageButton id=”dropbtn” BorderWidth=”0” Width=”16” Height=”20”

Style=”vertical-align:middle”

ImageUrl=”~/images/click-down.gif” runat=”server” />

<asp:ListBox Style=”display:none;position:absolute;left:20;top:25”

id=”dropbox” runat=”server” />

<asp:Image id=”imageup” ImageUrl=”~/images/click-up.gif”

Style=”display:none” runat=”server” />

<asp:Image id=”imagedown” ImageUrl=”~/images/click-down.gif”

08 0672326744 CH05 5/4/04 12:26 PM Page 175

Style=”display:none” runat=”server” />

</div>

</asp: PlaceHolder>

The ShowMembers Method
The declaration of the ShowMembers method is almost trivial. In the Public function that imple-
ments the method, you simply construct a string that contains the required formatted HTML,
and you return it as the value of the function (see Listing 5.12).

LISTING 5.12 The Implementation of the ShowMembers Method

Public Function ShowMembers() As String

Dim sResult As String = “Combo Box User Control” _

& “</p>Properties:
” _

& “IsDropDownCombo (Boolean, default False)
” _

& “CssClass (String)
” _

& “DataSource (Object)
” _

& “DataTextField (String)
” _

& “DataTextFormatString (String)
” _

& “Items (ListItemCollection, Read-only)
” _

& “Rows (Integer, default 5)
” _

& “SelectedIndex (Integer)
” _

& “SelectedItem (ListItem, Read-only)
” _

& “SelectedValue (String)
” _

& “Width (Integer, default 150 px)”

Return sResult

End Function

Code in the hosting page can then display this string to the user. In the sample page, you
simply use it to set the Text property of an ASP.NET Label control declared within the page:

lblResult.Text = MyCombo.ShowMembers()

Public Property Accessor Declarations
We mentioned the use of property accessor routines earlier in this chapter. This section looks at
the implementation in the ComboBox user control. The simplest type of property accessor is
shown in Listing 5.13. This property accessor exposes a read/write property that returns the
value of an internal variable or sets the value of the internal variable to the value provided by
code or in the control declaration within the hosting page. The value assigned to the property
from the hosting page must be able to be cast (converted) into the correct data type, as defined
in the property accessor declaration, or an exception will be raised.

5
Creating Reusable Content

176

LISTING 5.11 Continued

08 0672326744 CH05 5/4/04 12:26 PM Page 176

177Building a ComboBox User Control

LISTING 5.13 A Simple Property Accessor Routine

Public Property property-name As data-type

Get

Return internal-variable

End Get

Set

internal-variable = value

End Set

End Property

In the example in Listing 5.13, the new value for the internal variable is obtained using the
keyword value, which is automatically set to the value assigned to the property. An alternative
approach is to specify the name of the variable that will receive the new value when the prop-
erty is set, as shown in Listing 5.14.

LISTING 5.14 A Property Accessor Routine That Specifies the Variable TheNewValue

Public Property property-name(TheNewValue) As data-type

Get

Return internal-variable

End Get

Set

_ internal-variable = TheNewValue

End Set

End Property

Read-Only and Write-Only Property Accessors
If you need to implement properties as read-only or write-only, you omit the Get or Set section,
as appropriate. However, in Visual Basic .NET you must also add the ReadOnly or WriteOnly
keyword to the property declaration, as shown in Listing 5.15.

LISTING 5.15 Specifying Read-Only and Write-Only Property Accessors

Public ReadOnly Property property-name As data-type

Get

Return internal-variable

End Get

End Property

Public WriteOnly Property property-name As data-type

Set

internal-variable = value

End Set

End Property

08 0672326744 CH05 5/4/04 12:26 PM Page 177

Property Accessors in C#
Listing 5.16 shows how you declare a property accessor in C#. Other than the use of curly
braces, the overall approach is identical to that in Visual Basic .NET, with one exception: You
don’t use the ReadOnly and WriteOnly keywords in C# for read-only and write-only properties.

LISTING 5.16 Specifying Property Accessors in C#

public data-type property-name {

get {

return internal-variable;

}

set {

internal-variable = value;

}

}

The Property Accessors for the ComboBox User Control
The ComboBox control in this example has a property named Width that you expose via an acces-
sor routine rather than as a Public variable. This is because you want to be able to execute some
code when the property is set, which isn’t possible if you just expose a variable from within the
user control. When the user sets the Width property, you want to accept the value only if it is
greater than 20 (it represents the width of the control, in pixels). So in the Get section of the
accessor, you copy the value to the internal variable named _width only if it’s greater than 20
(see Listing 5.17).

LISTING 5.17 The Property Accessor for the Width Property

Public Property Width As Integer

Get

Return _width

End Get

Set

If value > 20 Then

_width = value

SetWidth()

End If

End Set

End Property

If the value is accepted, you then have to make sure all the constituent controls that use the
value are correctly updated. Listing 5.18 shows how you use the value of the internal variable
_width to set the width CSS style selector for the containing <div> element, the text box, and the
list. The code in Listing 5.18 checks the value of the IsDropDown property first and then sets the

5
Creating Reusable Content

178

08 0672326744 CH05 5/4/04 12:26 PM Page 178

179Building a ComboBox User Control

values for the appropriate controls; however, you could just set them all, even though some
controls will not actually be output to the client.

LISTING 5.18 The SetWidth Routine That Applies the Width Property

Private Sub SetWidth()

If IsDropDownCombo = True Then

dropdiv.Style(“width”) = _width.ToString()

textbox2.Style(“width”) = (_width - 17).ToString()

dropbox.Style(“width”) = (_width - 20).ToString()

Else

textbox.Style(“width”) = _width.ToString()

listbox.Style(“width”) = (_width - 20).ToString()

End If

End Sub

The same principles apply to the Rows property as to the Width property. Rows specifies the
number of items that will be visible in the fixed or drop-down list of the ComboBox control. The
accessor for this property accepts only values greater than zero, and it then applies the specified
value to the appropriate list control (see Listing 5.19). Again, you only set the value of the
appropriate control, but you could set both, even though only one will be output to the client.

LISTING 5.19 The Rows Property Accessor and SetRows Routine

Public Property Rows As Integer

Get

Return _rows

End Get

Set

If value > 0 Then

_rows = value

SetRows()

End If

End Set

End Property

...

Private Sub SetRows()

If IsDropDownCombo = True Then

dropbox.Rows = _rows

Else

listbox.Rows = _rows

End If

End Sub

08 0672326744 CH05 5/4/04 12:26 PM Page 179

The Items property of the ComboBox control exposes the items in the fixed or drop-down list
section of the ComboBox control as a ListItemCollection instance, just like all the other standard
Web Forms list controls (ListBox, DropDownList, RadioButtonList, and so on). And, like the stan-
dard controls, this property is read-only. You just need to return a reference to the Items prop-
erty of the appropriate ListBox control within the user control, as shown in Listing 5.20.

LISTING 5.20 The Read-Only Items Property Accessor

Public ReadOnly Property Items As ListItemCollection

Get

If IsDropDownCombo Then

Return dropbox.Items

Else

Return listbox.Items

End If

End Get

End Property

The SelectedItem, SelectedIndex, and SelectedValue Properties
The three remaining properties exposed by the ComboBox control—SelectedItem, SelectedIndex,
and SelectedValue—provide information about the item that is currently selected. Again, follow-
ing the model of the standard list controls, you expose a read-only property named SelectedItem
that returns a ListItem instance representing the first selected item within the Items collection
and a read/write property named SelectedIndex that sets or returns the index of the first selected
item. You also provide a read/write property named SelectedValue. This property was added to
the ASP.NET Web Forms ListControl base class (from which all the list controls are descended) in
version 1.1 of the .NET Framework.

Listing 5.21 shows the implementation of the SelectedItem property. This isn’t quite as straight-
forward as the properties examined so far. If the user has selected an item in the list, it will also
be in the text box. However, the user may have typed into the text box a value that is not in the
list (and so no item will be selected in the list). So the value in the text box really represents the
selected value of the control.

Therefore, depending on which mode the control is in and whether there is a value selected in
the appropriate list, you create a new ListItem instance or return a reference to an existing one.
Notice that when you are creating a new ListItem control instance for the text box, you set both
the Text and Value properties to the value of the text box.

LISTING 5.21 The SelectedItem Property Accessor Routine

Public ReadOnly Property SelectedItem As ListItem

Get

If IsDropDownCombo Then

If dropbox.SelectedIndex < 0 Then

Return New ListItem(textbox2.Text, textbox2.Text)

Else

5
Creating Reusable Content

180

08 0672326744 CH05 5/4/04 12:26 PM Page 180

181Building a ComboBox User Control

Return dropbox.SelectedItem

End If

Else

If listbox.SelectedIndex < 0 Then

Return New ListItem(textbox.Text, textbox.Text)

Else

Return listbox.SelectedItem

End If

End If

End Get

End Property

The SelectedIndex property is a little more complex than the other properties. It’s a read/write
property; however, the Get section is simple enough—you just return the value of the
SelectedIndex property for the appropriate list (see Listing 5.22). The complexity in the Set
section comes from the fact that you first have to ensure that the new value is within the
bounds of the list. It can be -1 to deselect any existing selected value, or it can be between zero
and one less than the length of the ListItemCollection instance. If the new value is valid, you
can set the SelectedIndex property of the list control and then copy that value into the text box
as well (as would happen if the user selected that value in the browser).

LISTING 5.22 The SelectedIndex Property Accessor Routine

Public Property SelectedIndex As Integer

Get

If IsDropDownCombo Then

Return dropbox.SelectedIndex

Else

Return listbox.SelectedIndex

End If

End Get

Set

If IsDropDownCombo Then

If (value >= -1) And (value < dropbox.Items.Count) Then

dropbox.SelectedIndex = value

textbox2.Text = dropbox.Items(SelectedIndex).Text

End If

Else

If (value >= -1) And (value < listbox.Items.Count) Then

listbox.SelectedIndex = value

textbox.Text = listbox.Items(SelectedIndex).Text

End If

End If

End Set

End Property

LISTING 5.21 Continued

08 0672326744 CH05 5/4/04 12:26 PM Page 181

Finally, the most complex of all the property accessors is SelectedValue. As shown in Listing
5.23, you can get the selected value from the appropriate list within the user control easily
enough (depending on the mode the ComboBox control is in). However, setting the SelectedValue
property involves first copying the new value to the text box and then searching through the
list to see if it contains an entry with this value. If it does, you must select this item as well (or,
if the value appears more than once in the list, you must select the first instance). Moreover,
you have to do all this with the appropriate text box and list control, depending on the mode
that the ComboBox control is currently in.

LISTING 5.23 The SelectedValue Property Accessor Routine

Public Property SelectedValue As String

Get

If IsDropDownCombo Then

Return textbox2.Text

Else

Return textbox.Text

End If

End Get

Set

If IsDropDownCombo Then

textbox2.Text = value

dropbox.SelectedIndex = -1

For Each oItem As ListItem In dropbox.Items

If value.Length <= oItem.Text.Length Then

If String.Compare(oItem.Text.Substring(0, value.Length), _

value, True) = 0 Then

oItem.Selected = True

Exit For

End If

End If

Next

Else

textbox.Text = value

listbox.SelectedIndex = -1

For Each oItem As ListItem In listbox.Items

If value.Length <= oItem.Text.Length Then

If String.Compare(oItem.Text.Substring(0, value.Length), _

value, True) = 0 Then

oItem.Selected = True

Exit For

End If

End If

Next

End If

5
Creating Reusable Content

182

08 0672326744 CH05 5/4/04 12:26 PM Page 182

183Building a ComboBox User Control

End Set

End Property

The Page_Load Event Handler
for the ComboBox Control
Now that you’ve looked in some detail at
how to expose properties from a user control,
the next stage is to see what happens when
the control is instantiated in a hosting page.
Although many events occur during the
process of loading and executing an ASP.NET
page and any user controls it contains, at this
point you’re most interested in the Page_Load
event.

You need to accomplish the following tasks
during the Page_Load event of the control.
They don’t have to be performed in this
specific order, though this is the ordering
used in the example code:

n Output the client-side script functions
that are required to make the control
work interactively.

n Set the CSS selectors and CSS class for the constituent controls.

n Attach the client-side event handlers to the constituent controls.

n Set the server-side data-binding properties and bind the list.

n Make sure that the width of the constituent controls and the number of rows in the list
control are correctly set to override any conflicting CSS style property settings made in the
hosting page.

Generating the Client-Side Script Section
Listing 5.24 shows the client-side script section that you must create and send to the client to
enable the control to operate interactively. The selectList function runs when the user makes a
selection in the list. It copies the selected value into the text box and, if the current mode is a
drop-down combo box, it closes the list by calling the openList function that is shown at the
end of Listing 5.24.

LISTING 5.23 Continued

Factoring the Code in the Property
Accessors
You could, of course, create routines that
remove some of the repeated code shown in
Listing 5.23, but the intention here is to illus-
trate how setting a property of a composite
control (that is, a control that contains other
controls) can actually involve often quite
complex internal processing.

The Ordering of Load and Init Events for a
User Control
The Page_Load event for a user control
occurs immediately after the Page_Load
event for the hosting page. However, this is
not the case for all events. The other useful
event, Page_Init, occurs for all instances of
a user control immediately before the
Page_Init event of the hosting page.

08 0672326744 CH05 5/4/04 12:26 PM Page 183

LISTING 5.24 The Client-Side Script Required for the Control

<script language=’javascript’>

function selectList(sCtrlID, sListID, sTextID) {

var list = document.getElementById(sCtrlID + sListID);

var text = document.getElementById(sCtrlID + sTextID);

text.value = list.options[list.selectedIndex].text;

if (sListID == ‘dropbox’) openList(sCtrlID);

}

function scrollList(sCtrlID, sListID, sTextID) {

var list = document.getElementById(sCtrlID + sListID);

var text = document.getElementById(sCtrlID + sTextID);

var search = new String(text.value).toLowerCase();

list.selectedIndex = -1;

var items = list.options;

var option = new String();

for (i = 0; i < items.length; i++) {

option = items[i].text.toLowerCase();

if (option.substring(0, search.length) == search) {

list.selectedIndex = i;

break;

}

}

}

function openList(sCtrlID) {

var list = document.getElementById(sCtrlID + ‘dropbox’);

var btnimg = document.getElementById(sCtrlID + ‘dropbtn’);

if(list.style.display == ‘none’) {

list.style.display = ‘block’;

btnimg.src = document.getElementById(sCtrlID + ‘imageup’).src;

}

else {

list.style.display = ‘none’;

btnimg.src = document.getElementById(sCtrlID + ‘imagedown’).src;

}

return false;

}

</script>

The scrollList function runs after the user presses and releases any key while the text box has
the focus. It just has to search the list for the first matching value and select it. Notice that it
ignores the letter case of the values by converting both values to lowercase before checking for a
match.

5
Creating Reusable Content

184

08 0672326744 CH05 5/4/04 12:26 PM Page 184

185Building a ComboBox User Control

The openList function runs when the user
clicks the image button at the end of the text
box, when the current mode is a drop-down
combo box (this control is not generated for a
simple combo box). It is also called, as you
saw earlier, from the selectList function. The
code in the openList function shows or hides
the list control by switching the CSS display
selector value between “block” and “none”,
depending on the current value, and it also
swaps the src attribute of the image button to
show the appropriate up or down button image.

Registering Client Script Blocks
The traditional way to generate client-side
script sections in a Web page when using ASP
is to simply write the code directly within the
source of the page. This works fine in
ASP.NET, too, because the <script> element
does not contain the runat=”server” attribute,
so ASP.NET ignores it and sends it to the
client as literal output.

You’ll be generating the script section from
within a user control, and user controls are
intended to allow multiple copies to be
placed in the same hosting page. In this case,
you’d end up with multiple copies of the
script section as well. To prevent this, you use the features of ASP.NET that are designed to inject
items such as client-side script into the output generated by the page.

You first create the entire script section in a String variable, and then you register that script
block with the hosting page by using the RegisterClientScriptBlock method. The string is
injected into the page immediately after the opening server-side <form> tag (and after any
hidden controls that ASP.NET requires, such as the one that stores the viewstate). The page also
keeps track of registrations based on a string value you provide for the key. The hosting page is
referenced through the Page property of the user control:

Page.RegisterClientScriptBlock(“identifier”, script-string)

Then, to ensure that you only ever insert one copy of the script, you can use the
IsClientScriptBlockRegistered method to check whether a script section with the same identifier
has already been registered. You register and insert the script section only if it hasn’t been
injected:

If Not Page.IsClientScriptBlockRegistered(“identifier”) Then

Page.RegisterClientScriptBlock(“identifier”, script-string)

End If

More on Using Client-Side Script Code
Chapter 7, “Design Issues for User Controls,”
looks in more detail at the techniques used
in this client-side code. Chapter 7 talks about
client-side scripting in general and how you
can integrate it with ASP.NET and your own
custom controls. It also discusses browser
compatibility issues. In subsequent chapters
you’ll see how you can build controls that
adapt their behavior to different browsers.

What About the runat=”client”
Attribute?
Interestingly, the W3C specifications suggest
that you use <script runat=”client”>,
although “client” is the default value for this
attribute in the browser if the value is omitted.
Unfortunately, ASP.NET doesn’t allow you to
include this attribute, and if you try to use it,
you get the error “The Runat attribute must
have the value Server.” This is a shame because
“client” would make it more obvious what
the script section was intended for.

08 0672326744 CH05 5/4/04 12:26 PM Page 185

The Parameters for the Client-Side Functions
If you are using multiple copies of the same user control in a page, you have to make sure that
the client-side script can identify which instance it should be processing. One easy way around
this is to use the JavaScript keyword this, which returns a reference to the current object or
control.

However, the user control in this example contains constituent controls, and these vary depend-
ing on the mode of the control. So you have to pass in several values to allow the code to
process the correct constituent controls. You can see in the earlier listings that the two main
client-side script functions take three parameters: the id property of the current user control and
the IDs of the ListBox and TextBox controls within the current user control:

function scrollList(sCtrlID, sListID, sTextID) { ...

When a user control is inserted into a hosting page, it is usually allocated an id value within the
declaration:

<ahh:ComboBox id=”cboTest1” runat=”server” />

If the user does not specify an id value, ASP.NET adds an autogenerated one, such as _ctl5.
Either way, you can retrieve this id value from within the user control through the UniqueID
property that is exposed by all controls (inherited from System.Web.UI.Control). Although the
autogenerated value is often the same as the id property, it may not be if the control is used
within the template of another control—for example, in a data-bound Repeater or DataList
control.

The constituent controls within a user control also have their id values massaged by ASP.NET.
This is required; otherwise, multiple copies of a user control inserted into a hosting page would
generate the same id values for their constituent controls. ASP.NET automatically prefixes the
constituent controls with the ID of the user control itself plus an underscore. So, for example,
the control with the ID value “textbox2” would appear in the control hierarchy of the hosting
page with the id value “cboTest1_textbox2”.

Therefore, in the user control in this example,
you can create the ID prefix that will be
added to the ID of the constituent controls by
referencing the UniqueID property of the user
control (the current object, as obtained using
the keyword Me in Visual Basic .NET or this
in C#):

Dim sCID As String = Me.UniqueID & “_”

The Code in the Page_Load Event Handler
In the Page_Load event, you can now generate the identifier for the current control and build the
client-side script as a string. You must remember to include a carriage return at the end of each
line of the script and use single quotes in the code itself so that each line of code can be
wrapped in double quotes. In Visual Basic .NET, you can use the built-in vbCrlf constant to

5
Creating Reusable Content

186

Discovering the id Values of the Controls
You can view the source of the page in the
browser (by selecting View, Source in Internet
Explorer) to see the id values that are gener-
ated. This is also a good way to debug your
pages and find errors, as you get to see what
output the user control is actually sending to
the client.

08 0672326744 CH05 5/4/04 12:26 PM Page 186

187Building a ComboBox User Control

output a carriage return. In C#, you just have to include \n at the end of each line and also
remember to replace any forward slashes in the code with \\.

An abbreviated section of the code to create the script section is shown in Listing 5.25 (the
complete code, as seen in the browser, is shown in Listing 5.24, so there is no point in repeating
it all here). You register this script to inject a copy if it doesn’t already exist.

LISTING 5.25 The First Part of the Code in the Page_Load Event Handler

Sub Page_Load()

Dim sCID As String = Me.UniqueID & “_”

Dim sScript As String = vbCrlf _

& “<script language=’javascript’>” & vbCrlf _

& “function selectList(sCtrlID, sListID, sTextID) {“ & vbCrlf _

& “ var list = document.getElementById(sCtrlID + sListID);” _

& vbCrlf _

... etc ...

& “}” & vbCrlf _

& “<” & “/script>” & vbCrlf

If Not Page.IsClientScriptBlockRegistered(“AHHComboBox”) Then

Page.RegisterClientScriptBlock(“AHHComboBox”, sScript)

End If

...

The next task in the Page_Load event handler
is to set the properties and attributes of the
constituent text box, list, and image button
controls. Listing 5.26 shows this final section
of code, continuing from Listing 5.25. Recall
from earlier in this chapter that the two sets
of HTML declarations for the two different
modes that the ComboBox control can exhibit
are enclosed in PlaceHolder controls that have
their Visible property set to False. So depend-
ing on the mode you’re currently in, you make the appropriate section of HTML visible by
setting the Visible property of the PlaceHolder control that encloses it to True.

LISTING 5.26 The Remaining Code for the Page_Load Event Handler

...

If IsDropDownCombo = True Then

pchDropDown.Visible = True

If CssClass <> “” Then

Hiding the Closing </script> Tag
You can hide the closing </script> tag from
the compiler by splitting it into two sections
in the source code. This is a throwback to a
technique used when writing script dynami-
cally into the page, which prevents the
browser from raising an error. It isn’t actually
required here, but it does no harm.

08 0672326744 CH05 5/4/04 12:26 PM Page 187

dropbox.CssClass = CssClass.ToString()

textbox2.CssClass = CssClass.ToString()

End If

dropbox.Attributes.Add(“onclick”, “selectList(‘“ & sCID _

& “‘, ‘dropbox’, ‘textbox2’)”)

textbox2.Attributes.Add(“onkeyup”, “scrollList(‘“ & sCID _

& “‘, ‘dropbox’, ‘textbox2’)”)

dropbtn.Attributes.Add(“onclick”, “return openList(‘“ _

& sCID & “‘)”)

dropbox.DataSource = DataSource

dropbox.DataTextField = DataTextField

dropbox.DataTextFormatString = DataTextFormatString

dropbox.DataBind()

Else

pchStandard.Visible = True

If CssClass <> “” Then

listbox.CssClass = CssClass

textbox.CssClass = CssClass

End If

listbox.Attributes.Add(“onclick”, “selectList(‘“ & sCID _

& “‘, ‘listbox’, ‘textbox’)”)

textbox.Attributes.Add(“onkeyup”, “scrollList(‘“ & sCID _

& “‘, ‘listbox’, ‘textbox’)”)

listbox.DataSource = DataSource

listbox.DataTextField = DataTextField

listbox.DataTextFormatString = DataTextFormatString

listbox.DataBind()

End If

SetWidth()

SetRows()

End Sub

Now you can apply any CSS classname that may have been specified for the CssClass property
to both the list and text box. Then you add the attributes to the text box and list that attach the
client-side script functions. You use the complete ID of this instance of the user control (which
you generated earlier) and specify the appropriate text box and list control IDs. If you’re creat-
ing a drop-down combo box, you also have to connect the openList function to the list control.

Next, you set the data binding properties of the list within the user control to the values speci-
fied for the matching properties of the user control and call the DataBind method. In fact, you
could check whether the DataSource property has been set first, before setting the properties and

5
Creating Reusable Content

188

LISTING 5.26 Continued

08 0672326744 CH05 5/4/04 12:26 PM Page 188

189Using the ComboBox Control

calling DataBind. This would probably be marginally more efficient, although the DataBind
method does nothing if the DatSource property is empty.

Finally, you call the SetWidth and SetRows routines again to ensure that any conflicting CSS styles
are removed from the constituent controls. And that’s it; the ComboBox control is complete and
ready to go. You’ll use it in a couple simple sample pages next to demonstrate setting the prop-
erties and using data binding.

Using the ComboBox Control
The first example of using the ComboBox control contains three instances and applies three differ-
ent styles to them so that you can see the possibilities (see Figure 5.10). You can find this page
in the samples that you can download for this book (see www.daveandal.net/books/6744/), or you
can just run it online on our server (also see www.daveandal.net/books/6744/). There is a [view
source] link at the bottom of the page that you can use to see the source code and the source of
the .ascx user control.

FIGURE 5.10
The ComboBox user control demonstration
page in action.

The page contains a Register directive for the ComboBox control:

<%@Register TagPrefix=”ahh” TagName=”ComboBox” Src=”ascx\combo.ascx” %>

As shown in Listing 5.27, three instances of the ComboBox control are then declared within the
<form> section of the page. However, because the constituent controls reside within a <div>

08 0672326744 CH05 5/4/04 12:26 PM Page 189

element or a <table> element (depending on the mode specified), you have to use another
<table> element to place a caption next to them. Listing 5.27 shows the attributes you specify
for each one to apply the CSS style class (defined elsewhere in the page) and the other proper-
ties you set declaratively.

LISTING 5.27 The Declaration of the ComboBox Controls in the Sample Page

<form runat=”server”>

<hr />

<table border=”0”><tr><td align=”right” valign=”top”>

Simple Combo List Box:</td><td>

<ahh:ComboBox id=”cboTest1” IsDropDownCombo=”False” runat=”server” />

</td></tr></table>

<hr />

<table border=”0”><tr><td align=”right” valign=”top”>

Styled Drop-down Combo Box:</td><td>

<ahh:ComboBox id=”cboTest2” CssClass=”bluegray”

IsDropDownCombo=”True” runat=”server” />

</td></tr></table>

<hr />

<table border=”0”><tr><td align=”right” valign=”top”>

Wide and More Rows Drop-down
Combo Box with Larger Font:</td><td>

<ahh:ComboBox id=”cboTest3” CssClass=”reverse” Width=”300”

Rows=”10” IsDropDownCombo=”True” runat=”server” />

</td></tr></table>

<hr />

Select Combo Box and specify action to apply:<p />

<asp:RadioButtonList id=”optCbo” RepeatLayout=”Flow”

RepeatDirection=”Horizontal” RepeatColumns=”3” runat=”server” >

<asp:ListItem Value=”cboTest1” Text=”Simple ” />

<asp:ListItem Value=”cboTest2” Text=”Styled ” />

<asp:ListItem Value=”cboTest3” Text=”Wide and More Rows” />

</asp:RadioButtonList>

<p />

<asp:Button Text=” ” OnClick=”ShowMembers” runat=”server” />

Display the syntax by calling the ShowMembers method

<p />

...

... other controls here to set properties ...

...

<asp:Label id=”lblResult” EnableViewState=”False” runat=”server” />

</form>

5
Creating Reusable Content

190

08 0672326744 CH05 5/4/04 12:26 PM Page 190

191Using the ComboBox Control

The sample page also contains a RadioButtonList control that is used to specify which of the
three ComboBox controls you want to apply the property settings to dynamically and a series of
controls to specify the action to carry out on the selected ComboBox control. They are not all
shown in Listing 5.27 to avoid unnecessary duplication. Notice that the Value properties of the
items in the RadioButtonList control are the IDs of the three ComboBox controls.

Populating the ComboBox Controls from an ArrayList Instance
The Page_Load event handler is shown in Listing 5.28. If the current request is not a postback,
you set the radio button to the first option and then create an ArrayList instance containing the
values to be displayed in the ComboBox control list. By using data binding, you can apply this to
all three of the ComboBox controls, just as you would any other list control—but with one excep-
tion. The user control in this example automatically calls the DataBind method when it loads
(after the current Page_Load event has occurred for the hosting page), so you don’t do it here.
You can also take advantage of the DataTextFormatString property exposed by the ComboBox
control to specify how the values are formatted in the third instance. This gives the effect you
see in Figure 5.10 (for example, Animal ‘buffalo’).

LISTING 5.28 The Page_Load Event Handler in the Sample Page

Sub Page_Load()

If Not Page.IsPostback Then

‘ executed when page is first loaded

‘ select first combobox in radiobutton list

optCbo.SelectedIndex = 0

‘ create ArrayList to populate comboboxes

Dim aVals As New ArrayList()

aVals.Add(“aardvark”)

aVals.Add(“baboon”)

aVals.Add(“buffalo”)

aVals.Add(“cheetah”)

aVals.Add(“frog”)

aVals.Add(“giraffe”)

aVals.Add(“lion”)

aVals.Add(“lynx”)

‘ assign to DataSource of comboboxes

cboTest1.DataSource = aVals

cboTest2.DataSource = aVals

cboTest3.DataSource = aVals

‘ set display format string for third combobox

08 0672326744 CH05 5/4/04 12:26 PM Page 191

cboTest3.DataTextFormatString = “Animal ‘{0}’”

End If

End Sub

Displaying the Members of the ComboBox User Control
When the user clicks the Show Members button, the routine named ShowMembers in the hosting
page is executed. In it, you first have to get a reference to the ComboBox control currently selected
in the RadioButtonList control. Then you call the ShowMembers method of this ComboBox control to
get back a string, and you display that in a Label control in the page (see Listing 5.29). To see
the result of this, refer to Figure 5.9.

LISTING 5.29 Calling the ShowMembers Method

Sub ShowMembers(oSender As Object, oArgs As EventArgs)

‘ get a reference to the selected comboxbox control

Dim oCtrl As Object = Page.FindControl(optCbo.SelectedValue)

‘ call ShowMembers method of combobox control

lblResult.Text = oCtrl.ShowMembers()

End Sub

Displaying Details of the Selected Item
The sample page contains a button that displays details of the item currently selected in the
ComboBox control. Figure 5.11 shows the output that this generates in the page, and you can see
the values for the SelectedIndex, SelectedValue, and SelectedItem properties, plus the items in the
list, as obtained by iterating through the Items collection.

5
Creating Reusable Content

192

LISTING 5.28 Continued

FIGURE 5.11 The output of the
ShowMembers method of the
ComboBox control, as
displayed in a Web page.

08 0672326744 CH05 5/4/04 12:26 PM Page 192

193Using the ComboBox Control

Listing 5.30 shows the code that executes when this button in the hosting page is clicked. After
the code gets a reference to the currently selected ComboBox control, a StringBuilder instance is
used to create the string that is displayed in a Label control. Again, the process of extracting the
values from the ComboBox control is exactly the same as you would use with any other Web
Forms list control.

LISTING 5.30 The ShowSelected Routine That Calls the ShowMembers Method

Sub ShowSelected(oSender As Object, oArgs As EventArgs)

‘ get a reference to the selected comboxbox control

Dim oCtrl As Object = Page.FindControl(optCbo.SelectedValue)

‘ use a StringBuilder to hold string for display

Dim sResult As New StringBuilder(“Property Values:
”)

‘ collect details of current selection from combobox

sResult.Append(“SelectedIndex: “ & oCtrl.SelectedIndex & “
”)

sResult.Append(“SelectedValue: “ & oCtrl.SelectedValue & “
”)

sResult.Append(“SelectedItem.Text: “ & oCtrl.SelectedItem.Text & “<p />”)

‘ collect all items in the combobox list

sResult.Append(“ListItems Collection:
”)

For Each iItem as ListItem In oCtrl.Items

sResult.Append(iItem.Text & “
”)

Next

‘ display results in the page

lblResult.Text = sResult.ToString()

End Sub

Setting the Properties of the ComboBox User Control
The remaining buttons in the sample page set various properties of the selected ComboBox control,
including SelectedIndex, SelectedValue, Width, and Rows. They validate the values first to make sure
they are of the correct data types and within range. Then, after obtaining a reference to the
current ComboBox control, as in the previous examples, they apply the property setting(s) to it. This
chapter doesn’t list all the code for these routines because it is extremely repetitive, but you can
see it by using the [view source] link at the bottom of the page at www.daveandal.net/books/6744/.

08 0672326744 CH05 5/4/04 12:26 PM Page 193

Populating the ComboBox Control
The sample page described in this section (populating.aspx) demonstrates different ways of
populating the ComboBox user control. As in the previous example, it registers the control with a
Register directive and then declares three instances of it. This time, they are all of the default
style. However, the lists are filled using three different techniques this time, as you can see in
Figure 5.12.

5
Creating Reusable Content

194

FIGURE 5.12 Filling the ComboBox control
list, using different data
sources and data binding.

The first list is filled using the same ArrayList instance as in the previous example. The second is
filled from the Northwind sample database that is supplied with SQL Server, using the values
from the ProductName column of the Products table. The third ComboBox control is filled by creat-
ing new ListItem instances in code and adding them to the ComboBox control’s Items collection
(the ListItemCollection instance exposed by the Items property). This section of code also
demonstrates how you can access a specific item in the list and read or change its value.

All this is done within the Page_Load event
handler for the sample page, with the excep-
tion of a separate routine that creates a
DataReader instance for the table in the
Northwind database. Listing 5.31 shows the
complete code for this sample page.

LISTING 5.31 Code That Demonstrates Techniques for Populating the ComboBox Control

Sub Page_Load()

If Not Page.IsPostback Then

‘ populate combobox controls

Editing the Connection String
You must edit the connection string in the
web.config file to point to your database
server, and you must specify the correct user-
name and password if you run the examples
on your own server.

08 0672326744 CH05 5/4/04 12:26 PM Page 194

195Populating the ComboBox Control

‘ databind ArrayList to first one

Dim aVals As New ArrayList()

aVals.Add(“aardvark”)

aVals.Add(“baboon”)

aVals.Add(“buffalo”)

aVals.Add(“cheetah”)

aVals.Add(“frog”)

aVals.Add(“giraffe”)

aVals.Add(“lion”)

aVals.Add(“lynx”)

cboTest1.DataSource = aVals

‘ databind second combobox to a DataReader

cboTest2.DataSource = GetDataReader()

cboTest2.DataTextField = “ProductName”

‘ insert values directly into list for third combobox

Dim oList As ListItemCollection = cboTest3.Items

For iLoop As Integer = 1 To 9

oList.Add(New ListItem(“Item: “ & iLoop.ToString()))

Next

oList.Insert(3, New ListItem(“Inserted: 3a”))

End If

End Sub

Function GetDataReader() As OleDbDataReader

‘ get DataReader for rows from Northwind Products table

Dim sConnect As String _

= ConfigurationSettings.AppSettings(“NorthwindOleDbConnectString”)

Dim sSelect As String _

= “SELECT ProductName FROM Products WHERE ProductName LIKE ‘c%’”

Dim oConnect As New OleDbConnection(sConnect)

Try

oConnect.Open()

Dim oCommand As New OleDbCommand(sSelect, oConnect)

Return oCommand.ExecuteReader(CommandBehavior.CloseConnection)

Catch oErr As Exception

LISTING 5.31 Continued

08 0672326744 CH05 5/4/04 12:26 PM Page 195

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text = oErr.Message

End Try

End Function

Summary
This chapter begins by looking at the techniques that are available in ASP.NET for creating
reusable content and for reducing the amount of repetitive work you need to do when building
Web sites and Web applications. While the server-side include approach is still valid, there are
better ways. User controls and custom server controls both offer advantages, and they provide a
natural approach that integrates well with ASP.NET in both style and effectiveness.

Other techniques briefly discussed in this chapter are using master pages and templates and
wrapping existing COM/COM+ components for use in ASP.NET. Chapter 9, “Page Templates”
looks in more depth at the first of these options, but this book does not pursue the COM/COM+
wrapper technique any further.

The second part of this chapter walks through the design and construction of a nontrivial user
control that implements a feature that is missing from the standard range of browser-based
control elements—a dual-mode combo box. You saw how it uses constituent controls, how to
expose properties and methods, and how to use code within the control to manage its behavior
and appearance.

Finally, to complete the chapter, you saw how you can use the new ComboBox control in ASP.NET
pages. However, this chapter does not address a few issues. One is the way that the client-side
script within the control works; we’ll come back to this issue in Chapter 6. Another is the
general compatibility of the control in different browsers. As you’ve seen in this chapter, the
sample ComboBox control works fine in Internet Explorer 5.0, and it also works well in the latest
versions of Opera. However, there are issues in other browsers, especially older ones. In subse-
quent chapters, you’ll see how you must understand the issues, how you can address them, and
how you can build controls that adapt to suit a wider range of browser types.

5
Creating Reusable Content

196

LISTING 5.31 Continued

08 0672326744 CH05 5/4/04 12:26 PM Page 196

6
Client-Side

Script
Integration

ASP.NET provides plenty of clever server-
side controls that ultimately generate HTML
elements in the browser. However, with the
notable exception of the validation controls
and one or two other features, that’s really
all they do. In fact, when they start to build
Web applications, most developers who are
used to building Windows applications find
that the interface features Web developers
have become accustomed to using are quite
poor.

We can’t do much about the actual client-
side HTML elements and controls that are
available because that’s the whole nature of
the Web. Content is supposed to be univer-
sally supported in all browsers, and browsers
are supposed to follow accepted standards.
Therefore, if your application needs some
fancy new kind of multistate psychedelic
flashing button, you’re going to have to
find a way to build it yourself. And depend-
ing on how you implement it, you might
then have to find a way to persuade all the
people who use your site to download this
great new control and install it on their
machine.

IN THIS CHAPTER
Client-Side Interaction on the Web 198

Useful Client-Side Scripting
Techniques 207

Summary 240

09 0672326744 CH06 5/4/04 12:24 PM Page 197

Client-side scripting has been a feature of
Web development for almost as long as the
Web in its current incarnation has been
around. Scripting provides an increasing
number of useful features that you can take
advantage of to make Web applications
appear more seamless, responsive, and inter-
active, while still running well in almost all
popular browsers in use today.

This book is about ASP.NET and not client-
side scripting, but, in fact, the two are no longer really divisible. ASP.NET generates client-side
script in varying quantities, depending on the server controls you place on a page. Even simple
effects such as auto-postback depend on some client-side script.

And you saw client-side script being used in the ComboBox control you created in Chapter 5,
“Creating Reusable Content.”

This chapter takes a look at the major client-side script issues that affect you when you create
ASP.NET pages, as well as when you create reusable content such as user controls and server
controls. This is by no means a reference work on client-side scripting, but it reinforces some of
the basic techniques and demonstrates useful ways that even very simple script can solve
common issues you come up against when building ASP.NET Web applications.

Client-Side Interaction on the Web
Client-side interaction is hard to achieve because of the disconnected nature of HTTP and the
way that browsers and Web servers work. Information is passed to and from the client only
during distinct phases of the Web-surfing process. The server builds the page and sends it to the
browser, and the browser submits the page back to the server when it’s ready for another one.

Okay, so there are some well-known ways that you can get around this issue, usually by
installing a component in the browser that can send and receive HTTP requests without having
to reload the current page. The XMLHTTP component within the MSXML parser in Internet
Explorer 5 and above is a good example. You can also use Macromedia Flash and a range of
third-party plug-ins or components for other browsers. However, the point is that if you want a
page to be interactive to the extent that it “does stuff” while loaded into the browser, you need
to find a way to execute code within the confines of the browser.

When you’re building items of reusable content, as demonstrated in Chapter 5, client-side
scripting allows you to push the envelope beyond the simple flow layout of HTML controls to
provide extra features that are often seen in traditional executable applications. The following
sections explore the fundamental aspects of where, when, and how—and then move on to look
at some useful techniques that integrate client-side and server-side programming and provide
examples you can use in your own pages.

6
Client-Side Script Integration

198

Avoiding Meaningless and Annoying Content
In reality, most people have seen enough in the
way of annoying Java applets, malicious ActiveX
controls, time-wasting Flash animations, and
pointless Shockwave effects. They expect an
application to do what it says on the box by
being intuitive and easy to understand and
working seamlessly and as fast as possible,
given the nature of Internet connections.

09 0672326744 CH06 5/4/04 12:24 PM Page 198

199Client-Side Interaction on the Web

Client-Side Scripting in the Browser
Client-side scripting has been supported in the mainline Web browsers since Netscape Navigator 2
and Internet Explorer 3. These browsers, and many others, support the simple HTML Document
Object Model (DOM) by exposing specific elements to script that runs within the browser. Such
elements include frames, forms, controls (such as <input> and <select>), images, links, and
anchors (<a> elements with name=”...” rather than href=”...”). Script can also access the funda-
mental objects such as the current window and the document within a frame or a window.

This level of accessibility to the page content allows the traditional effects such as reading and
setting the values of controls, submitting a form, or swapping images in an element. It
also supports a small set of useful events, such as detecting when a control gets or loses the
focus or receives a click (via keyboard or mouse). However, this basic level of support for script-
ing does not offer the three main features that you often need when building better controls or
interactive content:

n Access to all the elements on the page, with the ability to read and set the content of each
one, show or hide it, and generally manipulate it.

n Access to a full range of keypress events, so that you can manage how a control behaves,
depending on user interaction via the keyboard.

n The ability to position elements outside the flow model, using fixed (absolute) coordinates
that are relative to a container (such as the page or a parent element). It’s nice to be able
to do this dynamically and even be able to move elements around while the page is
displayed.

CSS2 and Dynamic HTML
While much has been made of the “browser wars” over the past few years, the situation today
regarding the use of client-side scripting is actually a lot more favorable than it was. Microsoft
and Netscape added a feature set they called Dynamic HTML to their version 4 browsers,
although the blatant incompatibility between them (and the resulting outcry from Web devel-
opers and standards bodies alike) was perhaps one of the key factors in the evolution of more
comprehensive client-side standards over the following years.

Today we have Cascading Style Sheets (CSS) at version 2, HTML at version 4, and XHTML at
version 1.0; together, they provide not only a comprehensive display model based on the origi-
nal CSS recommendation but also a standard set of methods for accessing and manipulating
document content from script or code running on the client. While these recommendations are
fundamentally similar to the original Microsoft implementation in Internet Explorer 4, there are
subtle differences. However, the mainline manufacturers all have “version 6” browsers available
that generally do meet the basic CSS2, HTML4, and XHTML recommendations. These include
the following:

09 0672326744 CH06 5/4/04 12:24 PM Page 199

n Internet Explorer 5.x and 6.x, although CSS2 support is generally more comprehensive and
less buggy in version 6 than in earlier versions. And there are still some issues with the way
that the box display model works.

n Mozilla 1.x (effectively a version 6 browser) and Netscape 6.x, which use the same render-
ing engine (depending on minor version number) and generally support the latest stan-

dards very well. Minor exceptions are
occasional buggy rendering, particular with
absolutely positioned elements.

n Opera 6.x and 7.x, which both have
comprehensive support for the latest stan-
dards, although problems with dynamic
positioning have occurred in version 6.0.
Opera 4.0 and 5.0 also supported CSS2 to
a large extent.

Selecting Your Target
Are most users out there using a version 6 browser? Admittedly, our own Web site is mainly
aimed at developers working with the latest Microsoft technologies, so the results we see are
probably not representative of the population, but around 75% of our visitors are using Internet
Explorer 5 or higher, Netscape/Mozilla 6 or higher, and Opera 6 or higher. Looking at the stats
available on other sites, the percentage of visitors using these newer browsers varies from some-
thing over 55% to almost 90%.

It’s probably reasonable to assume that you
can take advantage of CSS2 and HTML4
features to add client-side interactivity to your
pages, without affecting the majority of users.
Of course, that doesn’t mean you can ignore
the rest because there are issues such as
providing accessibility to users of text-only
browsers, page readers, and other devices
aimed at specialist markets or disabled users.

The language of choice for client-side
programming is, of course, JavaScript—because
only Internet Explorer can natively support
VBScript. There are several versions of
JavaScript available, but the “vanilla” version
1.x satisfies almost all requirements for the
simple client-side interactivity you need when
building most user controls and server con-
trols. And because Internet Explorer actually
has its own JScript/ECMAScript interpreter

6
Client-Side Script Integration

200

CSS2 Support in Version 6 Browsers
In reality, some of the more esoteric features
of CSS2 are not fully supported in all version
6 browsers or are less than totally compatible
across the different version 6 browsers.
However, the basic techniques that we take
advantage of in our examples do work in all
the current version 6 browsers.

Why Use the Latest Browser?
You probably wouldn’t want to risk driving on
an icy freeway during rush hour in a 1910
Model T Ford. Four-inch-wide tires, vague
steering, and a distinct lack of braking
performance when compared to those in
modern vehicles, would make this a risky
undertaking at the best of times. Likewise,
using an old and unsupported browser is an
equally foolhardy adventure these days, with
the proliferation of malicious scripts, annoying
Java applets, and downright dangerous
ActiveX controls that are out there on the
Web and being delivered daily in junk email
messages. Most car drivers appreciate the
added safety of antilock brakes, airbags, and
seatbelts, and the sensible browser user does
the same by choosing the latest browser so
that he or she can stay secure with the
updates and patches provided for it.

09 0672326744 CH06 5/4/04 12:24 PM Page 200

201Client-Side Interaction on the Web

rather than a real JavaScript one, staying with the features in JavaScript 1.0 or 1.1 provides the
best compatibility option.

Version 6 Browser-Compatible Code Techniques
Given the three tasks listed earlier in this chapter that you most commonly need to accomplish
in client-side script—access to all elements, access to keypress information, and dynamic posi-
tioning of elements—the following sections look at how these can be achieved in modern
browsers using script.

Accessing Elements Within a Page
Internet Explorer 4 was the first mainstream browser to provide full access to all the elements in
a page by exposing them from the document object as a collection called all. It also allowed selec-
tion of a set of elements by type, via the use of the getElementsByTagname method. While CSS2
provides the same getElementsByTagname method, it replaces the document.all collection with two
methods named getElementById and getElementByName. Because ASP.NET sets the id and name
attributes of an element that is created by a server control to the same value (with the exception
of the <input type=”radio”> element), the getElementById and getElementByName methods gener-
ally provide the same result.

Therefore, the technique for getting a reference to an element within client-side script depends
on whether you are only going to send the page to a CSS2-compliant client or whether you
want the code to adapt to different client types automatically. The accepted technique for
providing adaptive script in a page is to test for specific features that identify the browser type
or the support it provides for CSS2. These features are summarized in Table 6.1.

TABLE 6.1
Features You Can Use to Detect the Browser Type or Its Feature Support

Feature Description

document.all collection Supported by Internet Explorer 4.0 and above

document.layers collection Supported by Netscape Navigator 4.x only

getElementById method Supported by CSS2-compliant browsers

By using the features described in Table 6.1,
you can write code such as that shown in
Listing 6.1 to execute different sections of
script, depending on which browser loads the
page. Notice that this causes Internet Explorer
5.x to execute the CSS2-compliant code. If
you find that this does not perform correctly
with your specific client-side scripts, you can
change the tests so as to place Internet
Explorer versions 4.x and 5.x into the
same section by checking the value of the
navigator.appName and navigator.appVersion properties as well.

Using the ASP.NET
BrowserCapabilities Object
You can use the ASP.NET
BrowserCapabilities object to sniff the
browser type and deliver the appropriate
page or include the appropriate script or
controls. Chapter 7, “Design Issues for User
Controls,” and Chapter 8, “Building Adaptive
Controls,” demonstrate this approach.

09 0672326744 CH06 5/4/04 12:24 PM Page 201

LISTING 6.1 Detecting the Client’s Feature Support in Script Code

if (document.getElementById) {

... code for CSS2-compliant browsers here ...

}

else if (document.all) {

... code for IE 4.x here ...

}

else if (document.layers) {

... code for Netscape Navigator 4.x here ...

}

else {

... code for older browsers here ...

}

However, as discussed earlier, the number of users still running Navigator 4.x and Internet
Explorer 4.x is extremely low, so you generally need to test only for CSS2 support and provide
fallback for all other browsers. There’s not a lot of point in spending long development times on
supporting browsers that only 1% of users may still be running.

Accessing Keypress Information
Microsoft’s early implementation of Dynamic HTML exposed three keypress events for all the
interactive elements on a page and for the document object itself. These are the keydown, keypress,
and keyup events, and they occur in that order. The keypress event exposes the ANSI code of the
key that was pressed, and the other two events expose a value that identifies the key itself (as
located within the internal keyboard mappings) rather than the actual character.

Listing 6.2 shows the generally accepted technique for detecting a keypress that works in
Internet Explorer version 4.x and higher and in CSS2-enabled browsers. If the event is exposed
by the window object, as in Internet Explorer 4 and above, it is extracted from the keyCode prop-
erty of the event object. In CSS2-compliant browsers, the event is passed to the function by the
control to which the function is attached as a parameter, and it can be extracted from the which
property.

LISTING 6.2 Detecting a Keypress Event and the Code of the Key That Was Pressed

<element onkeypress=”showKey(event);”>

...

<script language=”javascript”>

<!--

var iKeyCode = 0;

if (window.event)

iKeyCode = window.event.keyCode

else

if (e)

iKeyCode = e.which;

6
Client-Side Script Integration

202

09 0672326744 CH06 5/4/04 12:24 PM Page 202

203Client-Side Interaction on the Web

window.status = iKeyCode.toString();

//-->

</script>

Dynamic and Absolute Element Positioning
The final feature set that you often need a browser to support when creating user controls and
server controls is a way of positioning elements within and outside the usual flow of the page,
changing that setting dynamically, and specifying the size of elements. Again, the original
Microsoft Dynamic HTML approach has survived almost intact in CSS2, so these features are
available in Internet Explorer 4.x and above, as well as in CSS2-compliant browsers. In more strict
terms, the features that you are most likely to take advantage of are summarized in Table 6.2.

TABLE 6.2
Dynamic and Absolute Element Positioning Features

Feature Description

Showing and hiding elements Set the display selector of the style attribute to block, inline,
or hidden. Other values can be used, but these three are most
useful. The value block forces this element to start on a new line
and following content to wrap to a new line. The value inline
means that preceding and following content will be on the same
line, unless that content forces a new line. The value hidden
removes the element and all child elements from the page.

Absolute positioning Set the position selector of the style attribute to absolute to
fix an element using the top and left coordinates provided as the
top and left style selectors. This removes the element from the
flow layout of the page. The alternative is position:relative,
which forces the element to follow the flow layout of the page but
also allows it to act as a container within which child elements
can be absolutely positioned. If no parent element contains
position:absolute or position:relative, the current element
is positioned with respect to the top left of the browser window.

Specifying the actual size of elements Set the width and height selectors of the style attribute to
fixed values. These values can be specified with units px (pixels),
pt (points), in (inches), cm (centimeters), mm (millimeters), or pc
(picas) or the typographical units em, en, and ex. The default is px.

Positioning and moving elements dynamically The values for the display, position, top, left, width, and
height selectors can be changed while the page is loaded, and
the page will immediately reflect these changes by showing, hiding,
or moving the element.

The Client-Side Code in the ComboBox User Control
To demonstrate the feature sets described so far in this chapter, let’s briefly review some of the
code from Chapter 5, “Creating Reusable Content.” That chapter shows how easy it is to build a
ComboBox user control for use in browsers that support CSS2 (see Figure 6.1).

LISTING 6.2 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 203

This control includes client-side code that manipulates the control elements and their values
while the page is loaded into the browser, using most of the features just discussed. Listing 6.3
shows the complete client-side code section. In each of the three functions in Listing 6.3, you
can see that you get a reference to the controls you want to manipulate by using the
getElementById function that is exposed by the document object.

LISTING 6.3 The Client-Side Script for the ComboBox User Control

<script language=’javascript’>

function selectList(sCtrlID, sListID, sTextID) {

var list = document.getElementById(sCtrlID + sListID);

var text = document.getElementById(sCtrlID + sTextID);

text.value = list.options[list.selectedIndex].text;

if (sListID == ‘dropbox’) openList(sCtrlID);

}

function scrollList(sCtrlID, sListID, sTextID) {

var list = document.getElementById(sCtrlID + sListID);

var text = document.getElementById(sCtrlID + sTextID);

var search = new String(text.value).toLowerCase();

list.selectedIndex = -1;

var items = list.options;

var option = new String();

for (i = 0; i < items.length; i++) {

option = items[i].text.toLowerCase();

if (option.substring(0, search.length) == search) {

list.selectedIndex = i;

break;

}

}

}

function openList(sCtrlID) {

var list = document.getElementById(sCtrlID + ‘dropbox’);

var btnimg = document.getElementById(sCtrlID + ‘dropbtn’);

if(list.style.display == ‘none’) {

6
Client-Side Script Integration

204

FIGURE 6.1 The customer ComboBox user
control created in Chapter 5.

09 0672326744 CH06 5/4/04 12:24 PM Page 204

205Client-Side Interaction on the Web

list.style.display = ‘block’;

btnimg.src = document.getElementById(sCtrlID + ‘imageup’).src;

}

else {

list.style.display = ‘none’;

btnimg.src = document.getElementById(sCtrlID + ‘imagedown’).src;

}

return false;

}

</script>

Alternative Client Support Options
The code in Listing 6.3 doesn’t provide support for non-CSS2 browsers. This is because the only
ones that support another feature needed for this control (absolute positioning) are Internet
Explorer 4.x and Netscape 4.x. Because the
number of hits likely to be encountered from
these two browsers is negligible, it doesn’t
seem worth supporting them.

However, extending support to Internet
Explorer 4 isn’t hard; you would just need to
add the test for the document.all collection, as
shown in Listing 6.4, and then access the
elements by using this collection. The remain-
ing code will work fine as it is.

LISTING 6.4 Adapting the selectList Function to Work in Internet Explorer 4.x

function selectList(sCtrlID, sListID, sTextID) {

var list;

var text;

if (document.all) {

list = document.all[sCtrlID + sListID];

text = document.all[sCtrlID + sTextID];

}

else {

list = document.getElementById(sCtrlID + sListID);

text = document.getElementById(sCtrlID + sTextID);

}

text.value = list.options[list.selectedIndex].text;

if (sListID == ‘dropbox’) openList(sCtrlID);

}

LISTING 6.3 Continued

Accessing the document.all Collection
and the getElementID Method in
JavaScript
Remember that document.all is a collection
(array) of elements, so in JavaScript, you must
use square brackets ([]) to access the
members. On the other hand, getElementId
uses ordinary parentheses (()) because it’s a
method, and you are providing the element ID
as a parameter.

09 0672326744 CH06 5/4/04 12:24 PM Page 205

Keypress Events in the ComboBox Control
The scrollList function shown in Listing 6.3 continually selects the first matching value in the
list while the user is typing in the text box section of the ComboBox. To work, it must be called
every time a key is pressed so that it can search the list for the appropriate value (if one exists).
To achieve this, you handle the onkeyup event, which runs when the user releases a key.

You attach the scrollList function to the input element that implements the text box by using
server-side code (as shown in Chapter 5). When the page gets to the client, the HTML declara-
tion of the text box (with the nonrelevant style information omitted) looks like this:

<input name=”cboTest2:textbox2” type=”text” id=”cboTest2_textbox2”

onkeyup=”scrollList(‘cboTest2_’, ‘dropbox’, ‘textbox2’)” />

You can see that a keyup event will pass the three required parameters to the scrollList func-
tion. However, you aren’t actually interested in detecting which key was pressed because the
function just compares the values within the text box and the list to figure out which entry to
select. This means that you don’t have to pass the event object (required to detect which key
was pressed in Netscape and Mozilla browsers) as a parameter. In later examples, you’ll see occa-
sions where you do need to detect the actual key value.

Element Positioning in the ComboBox Control
The version of the ComboBox control that provides a drop-down list uses absolute positioning to
fix the width of the enclosing <div> element, the width of the text box within it, and the posi-
tion and size of the <select> list that implements the drop-down list part of the control. You can
see in Listing 6.5 that the top of the list is positioned 25 pixels below the top of the text box
and 20 pixels to the left of the text box. The widths of the text box and list are adjusted accord-
ingly, depending on the width of the enclosing <div> element. All these values are calculated on
the server and are used to create the style selectors shown in Listing 6.5.

LISTING 6.5 The Style Selectors for Positioning the Text Box and List in the ComboBox User Control

<div id=”cboTest1_dropdiv” Style=”position:relative;width:150;”>

<input type=”text” id=”cboTest1_textbox2” ...

style=”vertical-align:middle;width:133;” />

<input type=”image” id=”cboTest1_dropbtn” ... />

<select size=”5” id=”cboTest1_dropbox” ...

style=”display:none;position:absolute;left:20;top:25;width:130;”>

<option value=”aardvark”>aardvark</option>

...

<option value=”lynx”>lynx</option>

</select>

</div>

6
Client-Side Script Integration

206

09 0672326744 CH06 5/4/04 12:24 PM Page 206

207Useful Client-Side Scripting Techniques

Notice that the list has the selector display:none so that it’s not visible in the page when it loads.
Likewise, the two elements that hold the up and down button images are not visible
either. They are simply there to preload the images so that they can be instantly switched when
the user opens and closes the list.

Showing and Hiding the List Control
The code in the openList function shown in Listing 6.3 has the job of showing and hiding the
drop-down list when the user clicks the up/down button or makes a selection from the list. It’s
simply a matter of switching the display selector for the list between none and block, depending
on whether the list is already open or closed. At the same time, you switch the button image.
The relevant code section is shown in Listing 6.6.

LISTING 6.6 Showing and Hiding the Drop-Down List Part of the ComboBox Control

if(list.style.display == ‘none’) {

list.style.display = ‘block’;

btnimg.src = document.getElementById(sCtrlID + ‘imageup’).src;

}

else {

list.style.display = ‘none’;

btnimg.src = document.getElementById(sCtrlID + ‘imagedown’).src;

}

Useful Client-Side Scripting Techniques
The following sections demonstrate some useful client-side scripting techniques. These tech-
niques are some of the several that regularly crop up as questions on ASP.NET mailing lists and
discussion forums:

n Trapping an event that occurs on the client and popping up a confirmation dialog before
carrying out the action on the server (for example, getting the user to confirm that he or
she wants to delete a row in a DataGrid control).

n Trapping a Return keypress to prevent a form from being submitted or trapping any other
keypress that might not be suitable for a control or an application you are building.

n Handling individual keypress events (for example, implementing a MaskedEdit control).

n Creating a button that the user can click only once—effectively creating a form that can
only be submitted once. This prevents the user from causing a second postback, which
might interrupt server-side processing, when nothing seems to be happening at the client.

The following sections start by examining the ways you can inject client-side confirmation
dialogs into ASP.NET code and then look at how to trap keypresses and prevent a form from
being submitted.

09 0672326744 CH06 5/4/04 12:24 PM Page 207

Buttons, Grids, and Client-Side Script
A common scenario with the excellent ASP.NET grid and list controls is to allow users to edit
and delete rows inline—while they are displayed within a DataGrid or DataList control. The
DataGrid control can provide attractive and interactive pages, with minimum code requirement
from the developer. However, one feature that many people ask for is to be able to prompt users
before carrying out some action such as deleting a row.

One way would be to trap the delete event on the server and generate a confirmation page to
send back to the user. However, this is counterintuitive, inefficient, and breaks the flow of the
application. The user will probably expect something like what is shown in Figure 6.2.

6
Client-Side Script Integration

208

FIGURE 6.2
Confirming a button click before allow-
ing a row to be deleted.

In fact, this kind of feature is extremely easy to add to the DataGrid control and other controls.
All you need is a simple client-side script function that pops up a JavaScript confirm dialog and
returns true or false, depending on which button the user clicked. You then return that value to
the control that raised the event—in this example, the Delete button. If you return true, the
event is processed and the row is deleted. If you return false, the event is canceled and the row
is not deleted.

Listing 6.7 shows the client-side function, named ConfirmDelete, that is used in this example.
You can see that this function is extremely simple, taking just the product name as a parameter.
It displays the confirmation message in a confirm dialog and returns the value from the dialog
(which will, of course, be true if the user clicked OK or false if the user clicked Cancel). You
declare this function in the <head> section of the page, although you could inject it into the
page by using the RegisterClientScriptBlock method (as described in Chapter 5) if you prefer.

LISTING 6.7 The Client-Side ConfirmDelete Function

<script language=’javascript’>

<!--

function ConfirmDelete(sName) {

var sMsg = ‘Are you sure you want to delete “‘ + sName + ‘“?’;

return (confirm(sMsg));}

09 0672326744 CH06 5/4/04 12:24 PM Page 208

209Useful Client-Side Scripting Techniques

//-->

</script>

The Declaration of the DataGrid Control
The visible part of the sample page is made up of the <form> section shown in Listing 6.8, which
contains the declaration of the DataGrid control. A lot of this code sets the appearance of the
DataGrid, but the important point to note is that you assign server-side event handlers to the
OnItemCommand and OnItemDataBound attributes.

You also add a TemplateColumn element to the grid and declare a Button control within it, giving
it the CommandName value “Delete”. This will appear as the first column of the grid, and because
you haven’t changed the AutoGenerateColumns property from its default of True, the DataGrid
control will automatically generate bound display columns for all the columns in the source
rows as well.

The ItemCommand event will normally be raised when the user clicks the Delete button (which
submits the form), but the client-side function will prevent the form from being submitted by
canceling the event on the client if the user clicks Cancel in the confirmation dialog.

LISTING 6.8 The Declaration of the Form and DataGrid Control

<form id=”frmMain” runat=”server”>

<asp:DataGrid id=”dgr1” runat=”server”

Font-Size=”10” Font-Name=”Tahoma,Arial,Helvetica,sans-serif”

BorderStyle=”None” BorderWidth=”1px” BorderColor=”#deba84”

BackColor=”#DEBA84” CellPadding=”5” CellSpacing=”1”

DataKeyField=”ProductID”

OnItemCommand=”DoItemCommand”

OnItemDataBound=”WireUpDeleteButton”>

<HeaderStyle Font-Bold=”True” ForeColor=”#ffffff”

BackColor=”#b50055” />

<ItemStyle BackColor=”#FFF7E7” VerticalAlign=”Top” />

<AlternatingItemStyle backcolor=”#ffffc0” />

<Columns>

<asp:TemplateColumn>

<ItemTemplate>

<asp:Button id=”blnDelete” Text=”Delete”

CommandName=”Delete” runat=”server” />

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

</form>

LISTING 6.7 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 209

So how do you attach the client-side
ConfirmDelete function to the Delete buttons
in each row? You use the ItemDatabound event
of the DataGrid control. This occurs for each
row as it is bound to the data source to create
the output shown in the page, and the code
in Listing 6.8 specifies that the event handler
named WireUpDeleteButton will be called each
time this event is raised by the DataGrid
control.

The WireUpDeleteButton Event Handler
Listing 6.9 shows the WireUpDeleteButton
event handler, and you can see that the first

task (as is usual when handling this event) is to make sure that you only process the correct
type of row. You want to access the Delete button in every row where it occurs, so you must
handle the event for both Item and AlternatingItem rows.

LISTING 6.9 The Code for the WireUpDeleteButton Event Handler

Sub WireUpDeleteButton(source As Object, e As DataGridItemEventArgs)

‘ make sure this is an Item or AlternatingItem row

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

If oType = ListItemType.Item _

Or oType = ListItemType.AlternatingItem Then

‘ get ProductName value from this row

Dim sName As String = e.Item.Cells(3).Text

‘ escape any single quotes

sName = sName.Replace(“‘“, “\’”)

‘ get a reference to the Delete Button in this row

Dim oCtrl As Button _

= CType(e.Item.FindControl(“blnDelete”), Button)

‘ attach the client-side onclick event handler

oCtrl.Attributes.Add(“onclick”, _

“return ConfirmDelete(‘“ & sName & “‘);”)

End If

End Sub

6
Client-Side Script Integration

210

Item and AlternatingItem Rows
The ItemDataBound event is called for every
row in the DataGrid control, including
header, footer, separator, selected, and edit
rows, as well as the item and alternating item
rows that you want to process. Also bear in
mind that, even if you don’t specify an
AlternatingItem template (or any styling
information for the alternating rows), the
event handler will identify alternate rows as
being of AlternatingItem type, so you need
to test for both Item and AlternatingItem
row types.

09 0672326744 CH06 5/4/04 12:24 PM Page 210

211Useful Client-Side Scripting Techniques

When you find a suitable type of row, you get the text from the third cell in that row (the
product name). The DataGrid control knows what the values that will be used to populate this
row are when the ItemDataBound event occurs, even though it has not yet created the final
markup that will appear in the page. Although in this case you extract the value from the
output row, you could equally well query the row in the data source to which it is bound by
using the following:

Dim sName As String = e.Item.DataItem(“ProductID”)

After you’ve extracted the product name, you must escape any single quotes it might contain.
Otherwise, you’ll get an error when you try to use the value in your client-side JavaScript func-
tion because a single quote will be treated as a string-termination character.

Then you can get a reference to the Delete button by using the FindControl method and attach
the client-side function to the client-side click event by specifying it as the onclick attribute.
Notice that you insert the product name from this row into the attribute to create the function
parameter, and you include the return keyword so that the value of the function will be
returned to the button control in the browser.

If you view the source of the page in the browser, you’ll see the output that ASP.NET actually
creates for each row, as in this example:

<input type=”submit” value=”Delete” ...

onclick=”return ConfirmDelete(‘Vegie-spread’);” />

Now, if the user clicks the Delete button and
then clicks Cancel in the confirmation dialog,
the function returns false and the click
event is not processed. The result is that the
page is not submitted, so the row is not
deleted.

This chapter doesn’t list the code that creates
the DataReader instance, performs the data
binding to the DataGrid control, or deletes the row when the Delete button is clicked. All this is
conventional and is just the same as you would normally use to fill a DataGrid control and
process user interaction. You can view all the code for this example by using the [view source]
link at the bottom of the example page.

Detecting and Trapping Keypress Events
Web browsers, by default, allow the user to submit a form by pressing the Return key—even
when the input focus is on another control. If there is more than one <form> section on a page,
the browser should submit the one containing the element that currently has the focus. In fact,
each browser behaves slightly differently:

n Internet Explorer switches the focus to the form’s submit button and activates (that is,
clicks) it. Even if there is more than one submit button on the current form, Internet
Explorer always moves to and activates the first one.

An Easy Way to Use Client-Side Dialogs
Chapter 7, “Design Issues for User Controls,”
describes some useful techniques for includ-
ing client-side dialogs in applications. The
chapter describes a user control that makes
it easy to attach client-side script dialogs to
elements in your ASP.NET pages.

09 0672326744 CH06 5/4/04 12:24 PM Page 211

n Netscape and Mozilla don’t move the focus, but they always activate the first submit
button.

n Opera is more intelligent than Internet Explorer, Netscape, and Mozilla. As you move the
focus to and between elements on a form, Opera automatically sets the submit button as
the default button, which is then activated when Return is pressed. However, when there
is more than one submit button on a form, Opera changes the one that is the default (the
one with the darker gray outline) as you move between the controls on the form. When
you press Return, the submit button that follows the current control (within the buttons’
declaration order in the page source) is activated.

Generally, the default behavior of all the browsers is fine. However, ASP.NET imposes a limita-
tion on Web page structure in that there can be only one server-side <form> section. In other
words, only one <form runat=”server”> control can be placed on a page.

So there are really two issues here. You might
want to trap the Return key so that it doesn’t
submit the form (or trap some other key so
that it does not produce a character or carry
out some other action). Alternatively, you
might have more than one submit button on
a form, perhaps because you want to offer the
user more than one option when submitting
the form. If you allow the Return key to be
processed, the effect will always be that of the
user clicking the first submit button on the
form.

Listing 6.10 shows the code to detect a keypress event and discover which key was pressed.
Notice that you enclose the key detection code in a function that accepts both a reference to the
event and a key code value. If the user presses a key that generates a key code equal to the speci-
fied code, you return the value false from the function. Otherwise, you return the value true.

LISTING 6.10 A Function to Detect the Keypress Code and Return true or false

function trapKeypress(e, theKey) {

var iKeyCode = 0;

if (window.event) iKeyCode = window.event.keyCode

else if (e) iKeyCode = e.which;

return (iKeyCode != theKey);

}

You can attach the trapKeypress function to any control that exposes keypress events (keydown,
keypress, or keyup). The important point is that you must return the value from the function to
the element that raised the event, as in this example:

<element onkeypress=”return trapKeypress(event, 13);”>

6
Client-Side Script Integration

212

Multiple Forms on Pages That Use the
ASP.NET Mobile Control
The limitation of a single form doesn’t apply
to pages that inherit from MobilePage and
that are designed for use in small-screen
devices such as cellular phones. These
devices usually require pages that contain
more than one <form> section to create the
individual screens (called cards) that the
device will display. (The set of cards is, not
surprisingly, called a deck.)

09 0672326744 CH06 5/4/04 12:24 PM Page 212

213Useful Client-Side Scripting Techniques

Now the browser will ignore the keypress (in this example, the Return key with ANSI code 13) if
the trapKeypress function returns false or process it as usual if the function returns true.
Therefore, you can prevent the Return key from being processed by a control by attaching the
trapKeypress function to that control (or to more than one control). To trap a different key, or
more than one key, you would just have to pass the appropriate key code(s) to the function.

It’s also possible to detect the state of the
Ctrl, Shift, and Alt keys within a keypress
event. The event object passed to the event
handler for CSS2-compliant browsers exposes
three Boolean properties named altKey,
ctrlKey, and shiftKey that are true if the
corresponding key was pressed when the
event occurred. Internet Explorer 6.0 extends
this by adding three more properties that
allow you to tell if it was the Alt, Ctrl, or Shift key on the left side of the keyboard: altLeft,
ctrlLeft, and shiftLeft. You’ll see these properties in use in the next example.

Discovering the Key Codes You Need
As mentioned earlier, the key code returned from the keypress event is different from the key
code returned from the keydown and keyup events for non-alphanumeric keys. To help you
discover the key code you want, we’ve included a simple page within the examples for this book
that displays the key codes for each event and the states of the Ctrl, Shift, and Alt keys.

Figure 6.3 shows that the keydown and keyup events always return the key code 65 for the A key,
regardless of whether the Shift key is pressed as well; the keypress event returns the correct ANSI
codes for both uppercase and lowercase letters.

Some Keypress Events Cannot Be Canceled
For security reasons, you cannot trap and
cancel keypresses that initiate system events.
Although you can detect the keypress event
and extract the key code, you cannot prevent
key combinations that open menus or close
the browser.

FIGURE 6.3
A sample page that displays
key mappings and keypress
information.

The relevant sections of the code in this page are shown in Listing 6.11, which demonstrates
how you can collect the states of the Ctrl, Shift, and Alt keys as well as the actual key code.

LISTING 6.11 The Code for the Key Mappings Sample Page

<form>

<input type=”text” size=”40” id=”txtTest”

value=”Put cursor here and press a key”

09 0672326744 CH06 5/4/04 12:24 PM Page 213

onkeydown=”showKeycode(event, ‘keydown’);”

onkeypress=”showKeycode(event, ‘keypress’);”

onkeyup=”showKeycode(event, ‘keyup’);” />

<p />

<div id=”divResult”></div>

</form>

...

...

function showKeycode(e, sEvent) {

var iKeyCode = 0;

if (window.event) iKeyCode = window.event.keyCode

else if (e) iKeyCode = e.which;

var theDiv = document.getElementById(‘divResult’);

var theTextbox = document.getElementById(‘txtTest’);

if (sEvent == ‘keydown’) {

theDiv.innerHTML = ‘’;

theTextbox.value = ‘’;

}

theDiv.innerHTML += sEvent + ‘ event - key code is: ‘

+ iKeyCode.toString()

if (e.altKey == true)

if (e.altLeft == true)

theDiv.innerHTML += ‘, the Left ALT key was pressed’

else theDiv.innerHTML += ‘, the ALT key was pressed’;

if (e.ctrlKey == true)

if (e.ctrlLeft == true)

theDiv.innerHTML += ‘, the Left CTRL key was pressed’

else theDiv.innerHTML += ‘, the CTRL key was pressed’;

if (e.shiftKey == true)

if (e.shiftLeft == true)

theDiv.innerHTML += ‘, the Left SHIFT key was pressed’

else theDiv.innerHTML += ‘, the SHIFT key was pressed’;

theDiv.innerHTML += ‘
’;

}

The <form> section of Listing 6.11 contains just the text box and the <div> element that displays
the results. All three keypress events are wired up to a function named showKeycode, and they
pass to this function a reference to the event object, together with the event name as a string to
use to create the output seen in the page. Because you don’t intend to cancel any keypresses,
you don’t return the value of the function to the control.

The next section of code in Listing 6.11 shows the function (showKeycode) that handles the three
keypress events and displays the values you see in the page. If the event name is keydown, code

6
Client-Side Script Integration

214

LISTING 6.11 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 214

215Useful Client-Side Scripting Techniques

in the showKeycode function first removes any existing content (generated by previous
keypresses) from the text box and from the <div> element that displays the results. Then the
output is generated, using the key code detected at the start of the function, and by appending
the settings of the Ctrl, Shift and Alt keys.

Notice how the code sets the Internet Explorer extension properties for the left-hand keys to
true, as well as the CSS2 standard properties, so you have to do a quick check to see what output
to generate for each one. Browsers other than Internet Explorer will return false for the left-
hand key properties that don’t exist, so the else part of the if construct is executed in that case.

Trapping the Return Key in a Form
We need to look at one more detail of trap-
ping keypress events. You’ve seen how to trap
a keypress for a control, but often you’ll have
several controls on a form, so you’ll need to
attach the function to each one. However, by
default, events bubble up through the control
hierarchy of the page. This means that you
can handle a keypress event for the contain-
ing element as well as at the individual
control level. Obviously, the form itself is a
container, so it’s a good place to trap keypress
events. You could also trap them at the page
level by attaching the function directly to the
opening <body> tag.

The sample page, shown in Figure 6.4,
contains a single server-side <form> element
that contains a selection of controls, includ-
ing two submit buttons. The effect of the
<hr /> element used to separate the two sets
of controls makes it look like there are two
separate forms, but of course this isn’t possi-
ble in an ASP.NET page. If you experiment with
this page, you’ll discover that you cannot sub-
mit the form by pressing the Return key.

The client-side code used in this page (see Listing 6.12) is basically the same as the code in
Listing 6.10. However, notice that this time you declare a page-level variable named blnReturn,
and you use the keypress event to set its value to false if the user pressed the Return key or true
otherwise.

LISTING 6.12 The Client-Side Code to Trap and Store the Keypress Information

<script language=”javascript”>

<!--

var blnReturn = true;

Setting the Tab Order of Controls
You should consider including the TabIndex
attribute on form elements, especially where
you want to trap keypress events. This allows
you to control the order in which the input
focus moves from one control to another
when the Tab key is pressed, and providing a
logical sequence makes it easier to work with
complex forms. You set the TabIndex attrib-
ute when declaring server controls in
ASP.NET, or you can set the TabIndex prop-
erty dynamically at runtime, to an Integer
value that denotes the index of the control
within the tab order of the page:

<asp:TextBox runat=”server”

TabIndex=”3” />

For non-server controls, you just add a
TabIndex attribute in the usual way:

<input type=”text” tabindex=”3” />

09 0672326744 CH06 5/4/04 12:24 PM Page 215

function trapReturn(e) {

var iKeyCode = 0;

if (window.event) iKeyCode = window.event.keyCode

else if (e) iKeyCode = e.which;

blnReturn = (iKeyCode != 13);

}

//-->

</script>

6
Client-Side Script Integration

216

FIGURE 6.4 The sample page that traps the
Return key.

LISTING 6.12 Continued

Storing the Key Code Test Result
The reason for using a separate variable to store the result of the key code test is that you need
to handle the submit event of the form and return the value false from the onsubmit event
handler if you want to prevent the form from being submitted. You can’t perform the key code
test in the onsubmit event handler because the keypress information is not available when this
event is raised. Instead, you capture the result of the test in the keypress event and store it in a
variable, as shown in Listing 6.12, when the keypress event occurs.

Effectively, the blnReturn variable reflects the validity of the last keypress, and you can then use
the value of this variable in the submit event of the form. If the last keypress was the Return key,
blnReturn is false and the form is not submitted. Listing 6.13 shows the HTML declarations for
the page in Figure 6.4, and you can see the two event handler attributes attached to the opening
<form> tag.

09 0672326744 CH06 5/4/04 12:24 PM Page 216

217Useful Client-Side Scripting Techniques

LISTING 6.13 The Declaration of the HTML <form> Section Within the Sample Page

<form id=”frmMain” runat=”server”

onkeydown=”trapReturn(event);”

onsubmit=”return blnReturn;”>

<asp:TextBox id=”txtTest1” Text=”Some value” runat=”server” />

<p />

<asp:CheckBox id=”chkTest1” AutoPostback=”True”

Text=”AutoPostback Checkbox” OnCheckedChanged=”ButtonClick”

runat=”server” />

<asp:CheckBox id=”chkTest2” Text=”Normal CheckBox” runat=”server” />

<p />

<asp:Button id=”btnOne” CommandName=”Button 1”

Text=”Submit Button 1” runat=”server” OnClick=”ButtonClick” />

<hr />

<asp:TextBox id=”txtTest2” Text=”Another value” runat=”server” />

<p />

<asp:RadioButton id=”optTest1” GroupName=”grp1”

AutoPostback=”True” Text=”AutoPostback Radio Button”

OnCheckedChanged=”ButtonClick” runat=”server” />

<asp:RadioButton id=”optTest2” GroupName=”grp1” Checked=”True”

Text=”Normal RadioButton” runat=”server” />

<p />

<asp:Button id=”btnTwo” CommandName=”Button 2”

Text=”Submit Button 2” OnClick=”ButtonClick” runat=”server” />

<p />

<asp:Label id=”lblMsg” EnableViewState=”False” runat=”server” />

</form>

Listing 6.13 also shows the declarations of the other controls placed on the form, as well as the
two submit buttons. None of these controls require any client-side event handlers because the
keypress events will bubble up to the <form> element and be trapped there. However, you need
server-side event handler declarations for some of the controls so that they call the ASP.NET
routine named ButtonClick if they are used to initiate a postback.

The ButtonClick event handler is shown in Listing 6.14. You can see that all it does is display the
current time (so that you can easily tell whether the form was submitted) and the text of the
control that caused the postback.

09 0672326744 CH06 5/4/04 12:24 PM Page 217

LISTING 6.14 The Server-Side Code That Displays Information when the Page Is Submitted

<script runat=”server”>

Sub ButtonClick(sender As Object, e As EventArgs)

‘ display time page was last submitted

lblMsg.Text = “Page submitted at “ _

& DateTime.Now.ToString(“hh:mm:ss”) _

& “ by “ & sender.Text

End Sub

</script>

Creating a MaskedEdit Control
As well as the ComboBox control described in Chapter 5, “Creating Reusable Content,” there is at
least one other control missing from the standard set provided by Web browsers—a MaskedEdit
control. This is really just a text box that allows only specific characters to be entered, depend-
ing on the mask (that is, the character-by-character definition of the string that is acceptable).

Let’s look at a simple example of a MaskedEdit control that demonstrates some useful techniques
you can adapt to your own applications. You’ll convert it into a user control and a custom
server control in later chapters, but for now, you should just look at the actual control imple-
mentation.

One other feature of the sample control is interesting. You can see in Figure 6.5 that the text
box displays the mask as a series of light gray underscores and literal characters (such as the
hyphens between the number groups in this case). You’ll see how this is achieved after you look
at the rest of the code in the page.

6
Client-Side Script Integration

218

FIGURE 6.5 The MaskedEdit control
sample page in action.

Trapping and Handling the Keypress Events
You’ve seen techniques for trapping keypress events and extracting the key code information
in previous examples in this chapter. The MaskedEdit control obviously uses much the same

09 0672326744 CH06 5/4/04 12:24 PM Page 218

219Useful Client-Side Scripting Techniques

techniques to catch each keypress and figure out whether the character the user typed is valid
for the current location in the text box (in other words, whether it matches the mask).

The client-side code section of the sample page comprises four functions and some page-level
variable declarations. These are the functions:

n doKeyDown—This function is executed when the user presses a key. Its task is to cancel any
keypresses that the control cannot support. With a few exceptions, it cannot handle
nonprintable characters.

n doKeyPress—This function is executed when the user releases a key. It checks the key code
against the mask and cancels it if it is not valid. In cases where an uppercase letter is
expected, the code automatically converts lowercase letters to uppercase and accepts them.

n doKeyUp—This function is executed when the user releases a key. Its task is to add to the
text box any literal characters that follow the current character so that the user does not
have to enter them manually. It also creates a message in the status bar that indicates the
next character that is expected.

n doFocus—This function is executed when the control first receives the focus. It just has to
make sure that any literal characters at the start of the mask are inserted into the text box.
It does this by calling the doKeyUp function.

The mask can contain only the characters shown in Table 6.3.

TABLE 6.3
The Characters That Can Be Used to Define the Mask for the MaskedEdit Control

Character Allows Only…

a Lowercase or uppercase letters, or the numbers 0 to 9.

A Uppercase letters or the numbers 0 to 9.

l Lowercase or uppercase letters, but not numbers.

L Uppercase letters, but not numbers.

n Only the numbers 0 to 9.

? Any printable character.

Listing 6.15 shows the page-level variables. You can see the string that contains the mask char-
acters and a string you use to define alphabetic characters. This second string is also used to
extract the ANSI/Unicode character code and to convert letters to uppercase. The bStarting vari-
able is used by the doKeyUp function to force it to check whether there are any literal characters
at the start of the mask, which it must insert into the text box when it first gets the focus.

LISTING 6.15 The Page-Level Variables and the Handler for the keydown Event

var sMaskSet = ‘aAlLn?’

var sUAscii = ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

var bStarting = true;

09 0672326744 CH06 5/4/04 12:24 PM Page 219

function doKeyDown(e, textbox, sMask) {

// trap and cancel keys that are not appropriate

var iKeyCode = 0; // collect key code

if (window.event) iKeyCode = window.event.keyCode;

else if (e) iKeyCode = e.which;

if (iKeyCode == 32 || iKeyCode == 39 || iKeyCode == 35

|| iKeyCode == 8 || iKeyCode == 9)

return true; // space left end backspace tab

if (iKeyCode < 47) // non-printable character

return false;

}

Handling the keydown Event
Listing 6.15 shows the doKeyDown function, which returns false if the key code represents one of
the nonprintable values that cannot be accepted. This forces the text box to ignore that keypress
event.

Handling the keypress Event
Listing 6.16 shows the doKeyPress event handler, which is executed next if the doKeyDown func-
tion returned true. After clearing the status bar, you extract the key code and then see whether
the end of the mask has already been reached. If it has, the only keypress you can accept is the
Backspace key (code 8). Otherwise, you return false to cancel the keypress and leave the text
box value as it already stands.

LISTING 6.16 The Client-Side Handler for the keypress Event

function doKeyPress(e, textbox, sMask) {

window.status = ‘’;

var iKeyCode = 0; // collect key code

if (window.event) iKeyCode = window.event.keyCode;

else if (e) iKeyCode = e.which;

// check if mask already filled, and not backspace

var iLength = textbox.value.length;

if ((iLength == sMask.length) && (iKeyCode != 8))

return false;

// get mask character for this position in textbox

var sMaskChar = sMask.charAt(iLength);

// see if it’s a special character

if (sMaskSet.indexOf(sMaskChar) > -1) {

6
Client-Side Script Integration

220

LISTING 6.15 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 220

221Useful Client-Side Scripting Techniques

// masked character required

switch (sMaskChar) {

case ‘a’: // any alphanumeric character

if ((iKeyCode > 47 && iKeyCode < 58)

|| (iKeyCode > 64 && iKeyCode < 91)

|| (iKeyCode > 96 && iKeyCode < 123))

return true

else return false;

case ‘A’: // uppercase alphanumeric character

if ((iKeyCode > 47 && iKeyCode < 58)

|| (iKeyCode > 64 && iKeyCode < 91))

return true

else if (iKeyCode > 96 && iKeyCode < 123) {

textbox.value += sUAscii.charAt(iKeyCode - 97);

return false;

}

else return false;

case ‘l’: // any letter

if ((iKeyCode > 64 && iKeyCode < 91)

|| (iKeyCode > 96 && iKeyCode < 123))

return true

else

return false;

case ‘L’: // uppercase letter

if (iKeyCode > 64 && iKeyCode < 91)

return true

else if (iKeyCode > 96 && iKeyCode < 123) {

textbox.value += sUAscii.charAt(iKeyCode - 97);

return false;

}

else return false;

case ‘n’: // any numeric character

if (iKeyCode > 47 && iKeyCode < 58)

return true

else return false;

case ‘?’: // any character

return true;

default: return false;

LISTING 6.16 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 221

}

}

else

return true;

}

If the mask is not yet filled, you then examine it to see whether the character the user typed
matches the mask. This code uses a rather long switch statement, mainly to make it easy to see
how it works. You might prefer to create smaller functions or more compact code for your own
implementation. You return true if the key matches the mask or false to cancel the event if the
key does not match the mask. Notice that lowercase letters are automatically converted to
uppercase where the mask value is ‘A’ or ‘L’.

Handling the keyup Event
After the doKeyPress event has been processed, the keyup event is raised, and you handle it with
the doKeyUp function shown in Listing 6.17. If the bStarting variable is false, you know that the
user has typed something into the text box, so you again extract the key code from the event
passed to the function.

LISTING 6.17 The Client-Side Handler for the keyup Event

function doKeyUp(e, textbox, sMask) {

if (bStarting != true) {

var iKeyCode = 0; // collect key code

if (window.event) iKeyCode = window.event.keyCode;

else if (e) iKeyCode = e.which;

if (iKeyCode < 47 && iKeyCode != 32) return;

}

// check if next mask characters are literals

// and add to text box if they are

while ((textbox.value.length < sMask.length) &&

(sMaskSet.indexOf(sMask.charAt(textbox.value.length)) == -1)) {

textbox.value += sMask.charAt(textbox.value.length);

}

var sNext;

if (textbox.value.length == sMask.length)

sNext = ‘Complete’

else

switch (sMask.charAt(textbox.value.length)) {

case ‘a’:

sNext = ‘Expecting any alphanumeric character (0-9,A-Z,a-z)’;

break;

case ‘A’:

sNext = ‘Expecting an uppercase alphanumeric char (0-9,A-Z)’;

6
Client-Side Script Integration

222

LISTING 6.16 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 222

223Useful Client-Side Scripting Techniques

break;

case ‘l’:

sNext = ‘Expecting any letter (A-Z, a-z)’;

break;

case ‘L’:

sNext = ‘Expecting an uppercase letter (A-Z)’;

break;

case ‘n’:

sNext = ‘Expecting any numeric character (0-9)’;

break;

case ‘?’:

sNext = ‘Expecting any character’;

break;

default: sNext = ‘’;

}

window.status = sNext;

}

Then, using a while construct, you add to the text box any literal characters that appear at the
start of the mask. The two conditions that must be met for the while loop to execute are that
the length of the mask must be greater than the length of the text in the text box and the
current character must not be one of the special mask characters which indicate that the user
must enter a value.

So the code first compares the length of the mask with the length of the text in the text box to
make sure that execution of the while loop stops at the end of the mask. Then it checks whether
the current character in the value in the text box is also present in the string that contains the
valid mask characters (sMask). If it is, this means that it is one of the special placeholders that
indicate the kind of value that the user must enter, so the while loop just moves to the next
character. If it is not a valid mask character, then it must be a literal character, so it is added to
the string value in the text box.

After this, you can create the prompt indicating the next character type that is expected and
display that in the browser’s status bar.

Meanwhile, the variable bStarting will be true if the user hasn’t entered anything into the text
box yet (in other words, if this is the first keypress event). At this point, you want to insert any
literal characters that appear at the start of the mask string, and you achieve this by handling
the focus event for the text box, as shown in the next section.

Handling the focus Event
Listing 6.18 shows the function that is executed when the text box gets the focus. You simply
set the bStarting value to true, call the onKeyUp function, and then set bStarting back to false
again. This causes the doKeyUp function to add any literal characters and display the prompt in
the status bar, but without attempting to extract the key code first.

LISTING 6.17 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 223

LISTING 6.18 The Client-Side Event Handler for the focus Event

function doFocus(e, textbox, sMask) {

bStarting = true;

doKeyUp(e, textbox, sMask);

bStarting = false;

}

Together, the four functions doKeyDown,
doKeyPress, doKeyUp, and doFocus implement
the complete MaskedEdit control feature.
There are some limitations, due mainly to the
fact that the browser security model prevents
canceling of some keypress and other events,
and the text box control in the browser does
not offer all the features of controls you
might be used to in, for example, a Windows
Forms or executable application. One particu-
lar issue is that users can click on the text box
to reposition the input cursor, thereby break-
ing the mask code.

Using the MaskedEdit Control
Listing 6.19 shows the HTML declarations of the controls in the page shown in Figure 6.5. The
two drop-down lists are populated with the four sample mask strings and three text sizes, from
which you can select to experiment with the control. The MaskedEdit control is declared as an
ordinary ASP.NET TextBox control, and you’ll add the event handlers that perform the magic to
it in the server-side Page_Load event later in this chapter.

LISTING 6.19 The HTML Declarations in the MaskedEdit Control Sample Page

<form id=”frmMain” runat=”server”>

<asp:DropDownList id=”selMask” AutoPostback=”True” runat=”server”>

<asp:ListItem Value=”nnnn-nn-nnTnn:nn:nn” Text=”UTC Date and Time” />

<asp:ListItem Value=”Qnnnnn-LLnn” Text=”Part Number” />

<asp:ListItem Value=”(nnn)-nnn-nnnn” Text=”US Phone Number” />

<asp:ListItem Value=”LLn? nLL” Text=”UK Postal Code” />

</asp:DropDownList>

<asp:DropDownList id=”selSize” AutoPostback=”True” runat=”server”>

<asp:ListItem Value=”10” Text=”10 pt” />

<asp:ListItem Value=”12” Text=”12 pt” />

<asp:ListItem Value=”16” Text=”16 pt” />

</asp:DropDownList><p />

6
Client-Side Script Integration

224

Validating the Value the User Enters
Although the MaskedEdit control works
reasonably well, you might decide to add an
ASP.NET RegularExpressionValidator
control to the page as well to ensure that the
input actually does match the mask when
submitted. This would also have the advan-
tage of validating the value on the server side
after the page is submitted—something you
should always do to prevent the server from
being spoofed by the user creating a dummy
page that contains invalid values.

09 0672326744 CH06 5/4/04 12:24 PM Page 224

225Useful Client-Side Scripting Techniques

<asp:TextBox id=”txtMaskEdit” Columns=”25” runat=”server” /> <p />

</form>

The Server-Side Page_Load Event Handler
The Page_Load event handler is shown in Listing 6.20. In it you collect the mask string and font
size from the drop-down lists in the page, and you specify the font name. Then you apply these
font details to the text box. Here you’re using the Courier New font. You need a monospaced
(fixed-pitch) font so that the characters typed into the text box will line up correctly with the
light-gray placeholders.

LISTING 6.20 The Page_Load Event Handler for the MaskedEdit Control Demonstration Page

Sub Page_Load()

Dim sMask As String = selMask.SelectedValue

Dim sFont As String = “Courier New”

Dim sSize As String = selSize.SelectedValue

txtMaskEdit.Text = “”

txtMaskEdit.Style(“font-family”) = sFont

txtMaskEdit.Style(“font-size”) = sSize & “pt”

Dim sQuery As String = sMask

sQuery = sQuery.Replace(“a”, “_”)

sQuery = sQuery.Replace(“A”, “_”)

sQuery = sQuery.Replace(“l”, “_”)

sQuery = sQuery.Replace(“L”, “_”)

sQuery = sQuery.Replace(“n”, “_”)

sQuery = sQuery.Replace(“?”, “_”)

sQuery = Server.UrlEncode(sQuery)

sFont = Server.UrlEncode(sFont)

txtMaskEdit.Style(“background-image”) _

= “url(mask-image.aspx?mask=” _

& sQuery & “&font=” & sFont & “&size=” & sSize & “&cols=” _

& txtMaskEdit.Columns.ToString() & “)”

Dim sTip As String = sMask

sTip = sTip.Replace(“a”, “[a]”)

sTip = sTip.Replace(“A”, “[A]”)

sTip = sTip.Replace(“l”, “[l]”)

sTip = sTip.Replace(“L”, “[L]”)

sTip = sTip.Replace(“n”, “[n]”)

LISTING 6.19 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 225

sTip = sTip.Replace(“?”, “[?]”)

txtMaskEdit.ToolTip = “Mask: “ & sTip & vbCrlf & “ where:” _

& vbCrlf & “[a] = any alphanumeric character (0-9, A-Z, a-z)” _

& vbCrlf & “[A] = an uppercase alphanumeric char (0-9, A-Z)” _

& vbCrlf & “[l] = any letter character (A-Z, a-z)” _

& vbCrlf & “[L] = an uppercase letter character (A-Z)” _

& vbCrlf & “[n] = any numeric character (0-9)” _

& vbCrlf & “[?] = any character”

txtMaskEdit.Attributes.Add(“onkeydown”, _

“return doKeyDown(event, this, ‘“ & sMask & “‘)”)

txtMaskEdit.Attributes.Add(“onkeypress”, _

“return doKeyPress(event, this, ‘“ & sMask & “‘)”)

txtMaskEdit.Attributes.Add(“onkeyup”, _

“return doKeyUp(event, this, ‘“ & sMask & “‘)”)

txtMaskEdit.Attributes.Add(“onfocus”, _

“return doFocus(event, this, ‘“ & sMask & “‘)”)

End Sub

Where do the light-gray placeholders come from, and how do you get them into the text box?
In this example you’re taking advantage of the fact that you can specify an image for the back-
ground of most controls—including a text box—under the CSS2 recommendations. So all you
have to do is create a suitable image that contains the placeholder characters and assign it to the
text box’s background-image style selector. The text that the user types into the text box will then
overlay the image, giving the effect shown in Figure 6.5.

The sample page uses a separate ASP.NET page named mask-image.aspx to generate the required
image dynamically at runtime. The code in the Page_Load event creates the URL that will load
this page. It also appends as the query string the mask string as it will appear in the text box (all
the special characters that denote values the user must type are replaced with underscores), the
font name, the font size, and the value of the Columns property of the text box. All this informa-
tion is required to be able to create the appropriate image.

You also want to provide a pop-up ToolTip for the text box that makes it easy for the user to
understand what input is required. So the next stage in the Page_Load event handler is to build a
suitable string and assign it to the ToolTip property of the text box. If you embed carriage
returns into the ToolTip string, Internet Explorer will break up the string to give a neater display
(although unfortunately other browsers ignore the carriage returns). Figure 6.6 shows the
ToolTip as it appears in Internet Explorer 6.

6
Client-Side Script Integration

226

LISTING 6.20 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 226

227Useful Client-Side Scripting Techniques

The final stage in the Page_Load event is to attach the client-side functions to the text box to
turn the text box into a MaskedEdit control. As demonstrated several times already in this
chapter, you specify the values required for the client-side function parameters. For each func-
tion, you must pass in a reference to the client-side event (using the event keyword), a reference
to the current control (using the this keyword), and the mask to use. Here’s an example:

txtMaskEdit.Attributes.Add(“onkeydown”, _

“return doKeyDown(event, this, ‘“ & sMask & “‘)”)

The result is that the Page_Load event now creates an <input type=”text”> control with a range of
attributes. Listing 6.21 shows the output that is generated when this page is viewed in a browser.
This code shows the ToolTip with embedded carriage returns, the four event handler attributes,
and the style declarations that specify the font and the background image.

LISTING 6.21 The Output Generated for the MaskedEdit Control when the Page Is Viewed in a
Browser

<input name=”txtMaskEdit” type=”text” size=”25” id=”txtMaskEdit”

title=”Mask: [n][n][n][n]-[n][n]-[n][n]T[n][n]:[n][n]:[n][n]

where:

[a] = any alphanumeric character (0-9, A-Z, a-z)

[A] = an uppercase alphanumeric character (0-9, A-Z)

[l] = any letter character (A-Z, a-z)

[L] = an uppercase letter character (A-Z)

[n] = any numeric character (0-9)

[?] = any character”

onkeydown=”return doKeyDown(event, this, ‘nnnn-nn-nnTnn:nn:nn’)”

onkeypress=”return doKeyPress(event, this, ‘nnnn-nn-nnTnn:nn:nn’)”

onkeyup=”return doKeyUp(event, this, ‘nnnn-nn-nnTnn:nn:nn’)”

onfocus=”return doFocus(event, this, ‘nnnn-nn-nnTnn:nn:nn’)”

style=”font-family:Courier New;font-size:10pt;background-image

:url(mask-image.aspx?mask=____-__-__T__%3a__%3a__&

font=Courier+New&size=10&cols=25);” />

FIGURE 6.6 The MaskedEdit control page,
showing a mask and the corre-
sponding ToolTip.

09 0672326744 CH06 5/4/04 12:24 PM Page 227

Generating the Background Mask Image
The only remaining code you need to examine now is that which generates the image for the
background of the text box. Generating images dynamically before the .NET Framework came
along was hard, and most Web developers relied on custom COM components created by third-
party suppliers. However, the .NET Framework removes much of the complexity from creating
images dynamically. This is not to say that you still won’t find many great image components
and server controls around—and for complex tasks, these components and controls can save a
huge amount of development time.

Nevertheless, the requirements for this example are simple. You just need to create an image
that contains a text string. Listing 6.22 shows the complete code for the page mask-image.aspx,
which generates the image and returns it as a stream that represents a GIF file.

LISTING 6.22 The ASP.NET Page That Generates the Mask Image for the Text Box

<%@Page Language=”VB” %>

<%@Import Namespace=”System.Drawing” %>

<%@Import Namespace=”System.Drawing.Imaging” %>

<script runat=”server”>

Sub Page_Load()

‘ set content-type of response so client knows it is a GIF image

Response.ContentType=”image/gif”

‘ get mask and font details from query string and URL-decode

Dim sText As String = Server.UrlDecode(Request.QueryString(“mask”))

Dim sFont As String = Server.UrlDecode(Request.QueryString(“font”))

Dim sSize As String = Request.QueryString(“size”)

Dim sCols As String = Request.QueryString(“cols”)

Dim iWidth, iHeight As Integer

iWidth = Integer.Parse(sSize) * Integer.Parse(sCols)

iHeight = Integer.Parse(sSize) * 3

‘ create a new bitmap

Dim oBitMap As New Bitmap(iWidth, iHeight)

‘ create new graphics object to draw on bitmap

Dim oGraphics As Graphics = Graphics.FromImage(oBitMap)

‘ create the rectangle to hold the text

Dim oRect As New RectangleF(0, 0, oBitMap.Width, oBitMap.Height)

‘create a solid brush for the background and fill it

6
Client-Side Script Integration

228

09 0672326744 CH06 5/4/04 12:24 PM Page 228

229Useful Client-Side Scripting Techniques

Dim oBrush As New SolidBrush(Color.White)

oGraphics.FillRectangle(oBrush, oRect)

‘ create a Font object for the text style

Dim oFont As New Font(sFont, Single.Parse(sSize))

‘ create a brush object and draw the text

oBrush.Color = Color.FromArgb(153, 153, 153)

oRect = New RectangleF(-1, 1, oBitMap.Width, oBitMap.Height)

oGraphics.DrawString(sText, oFont, oBrush, oRect)

‘ write bitmap to response

oBitmap.Save(Response.OutputStream, ImageFormat.Gif)

‘ dispose of objects

oBrush.Dispose()

oGraphics.Dispose()

oBitmap.Dispose()

End Sub

</script>

Notice that you have to import the Drawing and Imaging namespaces to be able to use the classes
they contain. You also have to set the ContentType value for the page to “image/gif” so that the
browser will treat it as an image. After this, you extract the values from the query string that
you need to build the image. You URL-encoded them in the Page_Load event handler when you
created the query string (because some of them contain spaces or other non-URL-legal charac-
ters), so you have to decode them first.

Calculating the Size of the Image and the Bitmap
You need to make sure your image is large enough to fill the text box, or you’ll get multiple
copies tiled over the background. However, you don’t want to make it any bigger than necessary
because you want to minimize download times to achieve the fastest possible rendering. You use
the number of columns and the font size to give an image of sufficient width and height.

The code then creates a new Bitmap instance of that size and from it a Graphics object that you
can use to draw and write on the image. By default the image is black (with a pixel value zero),
so you create a rectangle the same size as the image and a new white SolidBrush object. The Fill
method of the brush then paints the image white.

Drawing the Text
To draw the text, you need to create an instance of a Font object that represents the font and
size specified by the values in the query string, and then you need to change the color of the

LISTING 6.22 Continued

09 0672326744 CH06 5/4/04 12:24 PM Page 229

SolidBrush object to light gray. Then it’s simply a matter of defining a rectangle where you want
to draw the text (you have to adjust the top and left values slightly to get the best lineup possi-
ble in the text box) and writing the text onto the Bitmap instance. To return the Bitmap instance,
you save it directly to the ASP.NET Response object’s current OutputStream instance, specifying the
image format you want.

Usability Issues with the MaskedEdit Control
Although the MaskedEdit control is neat, easy to use, and works quite well, you’ll probably
discover a few shortcomings when you start to experiment with it. We mentioned the difficul-
ties in absolutely controlling the user’s keypresses and mouse clicks earlier in this chapter, and
you might want to extend the code to try to handle these more accurately. There is also the
issue that, if you type quickly, the client-side event handler code cannot keep up, and it misses
the literal characters in the mask string.

Another issue that you’ll come across concerns the background mask image. The actual size and
spacing of the characters on the bitmap that the mask-image.aspx page generates depend on the
environment of the server (the screen resolution, the installed fonts, and other internal parame-
ters). However, the text that is displayed in the text box as the user types depends on the
settings of the user’s machine (that is, the client machine). You are likely to find slight misalign-
ment occurring in some cases.

Having said all this, the techniques demonstrated for creating images dynamically and for
handling keypress events are still valid—and you will no doubt find many other uses for them
in your own applications.

Creating a One-Click Button
Now that you’ve seen how to use client-side code to detect keypress events, let’s move on to talk
about how you can use client-side code and/or server-side code to prevent users from clicking a
button on a page more than once—or at least detecting if they do so.

There are several ways to approach this problem, and the example used here demonstrates four
of the most obvious solutions:

n Disable the button as soon as it is clicked, by handling the onclick event with client-side
code, and setting the disabled property to true. If the form has more than one submit
button or uses AutoPostback on other controls, you also have to disable those controls at
the same time. Remember that some browsers (especially older ones) do not allow controls
to be disabled.

n Trap the client-side onclick event of the button and set a client-side variable to true; then
prevent the button from being clicked again while this value is true by returning false
from the event handler.

n Set a client-side variable to true as soon as the form is submitted and prevent it from being
submitted again while this value is true. This is useful if the form has more than one
submit button or uses AutoPostback on other controls because you don’t need to change
the properties of these controls (as you would with the first method). However, this
approach does not give the user visual feedback that the button is disabled.

6
Client-Side Script Integration

230

09 0672326744 CH06 5/4/04 12:24 PM Page 230

231Useful Client-Side Scripting Techniques

n Allow the user to submit the form multi-
ple times but detect this on the server
and carry out the required processing
only the first time the form is submitted.
Again, there is no visual feedback for the
user with this method, but this
approach works when the client’s
browser does not support client-side
scripting (or the user has disabled it).

Figure 6.7 shows the sample page after the
button has been clicked. You can see that,
under the text box, a message indicating how
many times the page has been submitted so far is displayed. By default, all three methods of
preventing the page from being submitted more than once are enabled, and they are processed
in the same order as the check boxes on the page. You can turn off each one to see the remain-
ing methods in action; we’ll look at what effects this has shortly.

Disabled Buttons in Opera
Opera, even in version 7, does not gray out a
button or control that is disabled. However, it
does correctly prevent the user from clicking
a button or activating a control that has the
disabled property set to true. Someone
once told me that Opera was so named
because it was designed to keep the other
browser manufacturers on their toes with
regard to performance, usability, and features.
But if this were the case, surely it would have
been named Ballet.

FIGURE 6.7 The one-click button demon-
stration page in action.

Figure 6.8 shows a schematic view of how the controls on the sample page affect the way that it
runs and which of the four techniques for preventing multiple button clicks or multiple server-
side page processing are employed. The three decision boxes correspond to the three check
boxes in the page.

The Code to Implement a One-Click Button
The visible part of the sample page is created using the HTML shown in Listing 6.23. None of
the controls has a client-side event handler attached in the declaration shown here; you’ll be
adding them dynamically at runtime.

LISTING 6.23 The Form Section of the One-Click Button Sample Page

<form id=”frmMain” runat=”server”>

<asp:TextBox id=”txtTest” Text=”Required value” runat=”server” />

<asp:Button id=”btnOneClick” Text=”Click me” runat=”server” />

09 0672326744 CH06 5/4/04 12:24 PM Page 231

<asp:Label id=”lblMsg” EnableViewState=”False” runat=”server” />

<asp:Checkbox id=”chkNoDisable” runat=”server”

Text=”Do not disable button after first click.” />

<asp:Checkbox id=”chkAllowClick” runat=”server”

Text=”Allow multiple button clicks to be processed.” />

<asp:Checkbox id=”chkAllowSubmit” runat=”server”

Text=”Allow page to be submitted again while processing.” />

</form>

6
Client-Side Script Integration

232

Click event
occurred for

button

Disable
button after
first click?

Allow
multiple button

clicks?

No

Allow
page to be
submitted?

Yes

Yes

Yes

Count postbacks
sever-side

set disabled=true
submit form

No Return false
from onclick

event handler

No Return false
from onsubmit
event handler

Done

Done

Done

Done

LISTING 6.23 Continued

FIGURE 6.8
A schematic of the processes for preventing
multiple page submissions in the one-click
button example.

Setting the disabled Property of the Button to true
When all three methods for preventing multiple form submissions are enabled, the one that
actually prevails is the one that disables the submit button as soon as it’s clicked. It’s easy
enough to do this; you just attach a client-side function that sets the disabled property of the
button to true in that button’s onclick event.

09 0672326744 CH06 5/4/04 12:24 PM Page 232

233Useful Client-Side Scripting Techniques

However, you can’t do this directly within the declaration of the submit button in this example
because you’ve used an ASP.NET Button server control, and the OnClick attribute sets the server-
side event handler (not the client-side one). If you write this:

<asp:Button text=”Submit” runat=”server”

onclick=”MyServerCode” />

you can expect the server-side routine or function named MyServerCode to be executed when the
button is clicked, after the page has been submitted to the server. One way you can get around
this is to use the ordinary HTML server controls instead of the ASP.NET Web Forms controls.
The button control implemented by the HtmlInputButton class exposes the OnServerClick event
handler property to define code that runs on the server, allowing you to use the onclick attrib-
ute to specify the client-side event handler:

<input type=”submit” value=”Submit” runat=”server”

onserverclick=”MyServerCode”

onclick=”MyClientSideCode();”/>

The other approach is to use a Web Forms
control but add the client-side attribute
dynamically when creating the page on the
server. This allows the client-side onclick
functionality to coexist with the server-side
event handling. When the button is clicked,
the client-side code runs first, and then, after
the page is posted back to the server, any
ASP.NET server-side event handler attached to
the control is invoked:

control.Attributes.Add(“onclick”, “MyClientSideCode()”)

The sample page uses this technique. In the server-side Page_Load event handler, you specify that
the client-side function named buttonClick will be executed when the button is clicked. You pass
to this function a reference to the current control (using the this keyword) and assign the
return value to the event:

btnOneClick.Attributes.Add(“onclick”, “return buttonClick(this);”)

The Client-Side buttonClick Event Handler
Listing 6.24 shows the buttonClick client-side event handler that is called when the button on
the sample page is clicked. In theory, all you actually need to do to prevent it from being clicked
again is to set the disabled property to true, using the following:

buttonOneClick.disabled = true;

However, in Internet Explorer and Opera, this prevents the form from being submitted the first
time as well (although it works as expected in Netscape and Mozilla). This means that you have

HtmlControls Versus WebControls
Property Names
Remember that you have to use the ordinary
HTML attribute names with the standard
controls from the System.Web.UI.
HtmlControls namespace. For example, the
caption of a button is set with the Value
property and not with the Text property.

09 0672326744 CH06 5/4/04 12:24 PM Page 233

to submit the form programmatically within the code, after setting the disabled property of the
button:

buttonOneClick.disabled = true;

document.forms[0].submit();

You could even do this directly in the declaration of the button, rather than writing a function
and calling it from the onclick attribute. However, because you are implementing several tech-
niques in the same page, the event handlers are a little more complicated. When the button is
clicked, you look to see if the first check box is selected. If it is not, you disable the button to
prevent it from being clicked again.

LISTING 6.24 The Client-Side buttonClick Event Handler and Timer Routines

var bButtonClicked = false;

function buttonClick(ctrl) {

// check value of first checkbox

var theForm = document.forms[0];

if(theForm.elements[‘chkNoDisable’].checked == false) {

// first checkbox is not ticked

// disable submit button

ctrl.disabled = true;

startTimer();

theForm.submit();

}

// check value of second checkbox

if(theForm.elements[‘chkAllowClick’].checked == false) {

// second checkbox is not ticked

if (bButtonClicked == false) {

// first time button was clicked

bButtonClicked = true;

startTimer();

return true;

}

else {

// prevent button event from being executed

return false;

}

}

else {

// second checkbox is ticked

// allow button event to continue

startTimer();

return true;

}

6
Client-Side Script Integration

234

09 0672326744 CH06 5/4/04 12:24 PM Page 234

235Useful Client-Side Scripting Techniques

}

function startTimer() {

// display “Please wait” message

var label = document.getElementById(‘lblMsg’);

label.innerHTML = ‘Please wait.’;

// start interval timer for one second

window.setTimeout(‘showProgress()’, 1000);

}

function showProgress() {

// update “Please wait” text

var label = document.getElementById(‘lblMsg’);

label.innerHTML += ‘.’;

// restart interval timer for one second

window.setTimeout(‘showProgress()’, 1000);

}

The sample page contains a couple routines that start and then reset a timer within the page, to
provide a progress indicator showing that the server is processing the page. (You simulate a long
process taking place on the server side, as you’ll see shortly.) You can see the two timer func-
tions, named startTimer and showProgress, at the end of Listing 6.24. After disabling the button,
you call the routine to start the timer and then submit the form by calling its submit method (as
discussed earlier). The result is shown in Figure 6.9.

LISTING 6.24 Continued

FIGURE 6.9 The progress indicator that
runs while the page is being
processed.

Trapping the click Event for the Button
The buttonClick event shown in Listing 6.24 continues by looking to see if the second check box
is selected. If it isn’t, you want to prevent more than one button click from being processed.
(Remember that if the first check box is selected, the button will not be disabled after the first
click.) In other words, you allow the first button click to be handled normally, but you trap and
prevent any subsequent clicks by returning false from the event handler.

09 0672326744 CH06 5/4/04 12:24 PM Page 235

This is similar to the techniques used in the previous examples to trap a keypress event. You
declare a page-level variable named bButtonClicked that is initially set to false (shown at the
start of Listing 6.24). When a click event occurs, code in the buttonClick event handler tests to
see if bButtonClicked is false. If it is, bButtonClicked is set to true, and the code starts the progress
indicator timer and returns true from the function to allow the click to be processed by the
browser.

If the button has already been clicked, bButtonClicked will be true, so the function can return
false to prevent this click event from being processed. Finally, if the second check box is not
selected, you start the timer and return true to allow the click to be processed.

Trapping the submit Event for the Form
Having seen how you can prevent multiple click events from being processed by using a page-
level variable, you won’t be surprised to see how the sample page prevents multiple submissions
of a form. Listing 6.25 shows the formSubmit function, which is attached to the opening <form>
element when the page is created (in the server-side Page_Load event), using the following:

frmMain.Attributes.Add(“onsubmit”, “return formSubmit(this);”)

A page-level variable named bFormSubmitted is initially set to false and then switched to true
when the form is first submitted. The progress indicator timer is also started at this point, and
the function returns true to allow the form to be submitted. Subsequent attempts to submit the
form fail because the function returns false. However, if the third check box is selected, the
function always returns true to allow the form to be submitted multiple times—whereupon the
final approach to handling multiple form submissions comes into play.

LISTING 6.25 The Client-Side formSubmit Function

var bFormSubmitted = false;

function formSubmit(ctrl) {

// check value of third checkbox

if(ctrl.elements[‘chkAllowSubmit’].checked == false) {

// third checkbox is not ticked

if (bFormSubmitted == false) {

// first time form was submitted

bFormSubmitted = true;

startTimer();

return true;

}

else {

// prevent form from being submitted

return false;

}

}

else {

// third checkbox is ticked

6
Client-Side Script Integration

236

09 0672326744 CH06 5/4/04 12:24 PM Page 236

237Useful Client-Side Scripting Techniques

// allow form to be submitted

startTimer();

return true;

}

}

Counting Postbacks with Server-Side Code
If all three check boxes are selected in the sample page, the user will be able to submit the form
multiple times before the postback has completed and the page is reloaded into the browser. To
prevent this from interrupting resource-intensive processing, you can use the final technique
demonstrated by this example.

This technique involves counting postbacks. A counter variable is added to both the page and
the user’s session. When the page is created, the same value is placed into the viewstate of the
page and stored in a session variable. Each time the page is posted back, the counter is incre-
mented and the new value is placed in the viewstate and in the session.

However, if the user submits the same page more than once, the value in the viewstate will
remain the same, whereas the value in the session variable will have been incremented when
the initial postback from this instance of the page occurred. Figure 6.10 shows the process as a
schematic diagram to make it easier to see how this works.

LISTING 6.25 Continued

Session = 1 Viewstate = 1

Create page

Submit form

Increment
counter

Session = 2

Session = 3

Viewstate = 2

Create page

Submit form

Increment
counter

Submit form again
Values do not match!

FIGURE 6.10 Counting postbacks to prevent
multiple processing of the
same page.

The Page_Load Event Code for Counting Postbacks
All the processing required to implement counting of postbacks is performed within the
Page_Load event of the page, although you could attach it to server-side event handlers instead if
required. Listing 6.26 shows the complete Page_Load event handler. After you add the client-side
event handlers required for the previous techniques to the button and form elements on the
page, you check to see if this is a postback or if the page is being loaded for the first time.

09 0672326744 CH06 5/4/04 12:24 PM Page 237

LISTING 6.26 The Page_Load Event Handler Code for Counting Postbacks

Sub Page_Load()

‘ add client-side event attributes to button and form here

...

If Page.IsPostBack Then

‘ collect session and viewstate counter values

Dim sPageLoads As String = Session(“PageLoads”)

Dim sPageIndex As String = ViewState(“PageIndex”)

If sPageLoads = “” Then

lblMsg.Text &= “WARNING: Session support “ _

& “is not available.”

Else

Dim iPageLoads As Integer = Integer.Parse(sPageLoads)

Dim iPageIndex As Integer = Integer.Parse(sPageIndex)

‘ see if this is the first time the page was submitted

If iPageLoads = iPageIndex Then

lblMsg.Text &= “Thank you. Your input [“ _

& iPageLoads.ToString() & “] has been accepted.”

‘ *************************************

‘ perform required page processing here

‘ *************************************

‘ delay execution of page before sending response

‘ page is buffered by default so no content is sent

‘ to the client until page is complete

Dim dNext As DateTime = DateTime.Now

dNext = dNext.AddSeconds(7)

While DateTime.Compare(dNext, DateTime.Now) > 0

‘ wait for specified number of seconds

‘ to simulate long/complex page execution

End While

Else

lblMsg.Text &= “WARNING: You clicked the button “ _

& (iPageLoads - iPageIndex + 1).ToString() & “ times.”

End If

‘ increment counters for next page submission

Session(“PageLoads”) = (iPageLoads + 1).ToString()

6
Client-Side Script Integration

238

09 0672326744 CH06 5/4/04 12:24 PM Page 238

239Useful Client-Side Scripting Techniques

ViewState(“PageIndex”) = (iPageLoads + 1).ToString()

End If

Else

‘ preset counters when page first loads

Session(“PageLoads”) = “1”

ViewState(“PageIndex”) = “1”

lblMsg.Text=”Click the button to submit your information”

End If

End Sub

If you look at the code at the end of Listing
6.26, you can see that when it’s not a post-
back, you just set the viewstate and session
values to “1” (remember that they are stored
as String values). The viewstate of the page is
a useful bag for storing small values. These
values are encoded into the rest of the view-
state that ASP.NET automatically generates for
the page it is creating.

If this is a postback, the first step is to check
whether sessions are supported by looking for
the value you stored against the PageLoads key
when the page was initially created. The
process will not work if there is no value in
the session, and at this point, you need to
decide what you want to do about it. If you
absolutely need to perform the postback
counting process, you can warn the user that
he or she must enable sessions, or perhaps
you would redirect the user to a page that
uses ASP.NET cookieless sessions. You might
even decide to use cookieless sessions for all
clients.

Comparing the Postback Counter Values
The next step in the process of checking for
multiple postbacks is to compare the values
in the viewstate and the session. If they are the same, you can accept the postback and start
processing any submitted values. The sample page displays a message to indicate the current
postback counter value. The code in the page uses a loop that waits seven seconds to simulate a

LISTING 6.26 Continued

Using a Hidden Control to Store Values
An alternative approach would be to store the
value in a hidden-type input control on the
page. However, this is less secure than using
the viewstate because the value can be viewed
by users, who might be tempted to try to spoof
the server by changing the value (although this
is probably an unlikely scenario).

Using Cookieless Sessions in ASP.NET
The ASP.NET cookieless sessions feature
provides session support for clients that do
not themselves support HTTP cookies. It
works by “munging” (that is, inserting) the
session ID into the URL of the page and auto-
matically updating all the hyperlinks in the
page to reflect the updated URL. All you need
to do to enable cookieless sessions is place
in the root folder of the application a
web.config file that contains the following:

<configuration>

<system.web>

<sessionState cookieless=”true” />

</system.web>

</configuration>

09 0672326744 CH06 5/4/04 12:24 PM Page 239

long process. Afterward, you can increment
the counter values in the viewstate and
session, and then you can allow the page to
be created and sent to the client.

However, if the viewstate and session values
are different, you know that the postback has
occurred from a page that you are already
processing. Rather than try to cancel the

existing processes that were started by previous postbacks from this instance of the page, you
just ignore the current postback and don’t carry out the processing again. Instead, you return a
message to the user, indicating how many times he or she clicked the button. You can see the
result in Figure 6.11.

6
Client-Side Script Integration

240

FIGURE 6.11 The result in the one-click
button example when the
form is submitted more than
once.

Summary
This chapter takes a more comprehensive look at how the client-side script used in the ComboBox
control, described at the end of Chapter 5, works. It also discusses the three main requirements
for producing interactive pages when using client-side script:

n Access to all the elements on the page, with the ability to read and set the content of each
one, show or hide it, and generally manipulate it

n Access to a full range of keypress events, so that you can manage how a control behaves,
depending on user interaction via the keyboard

n The ability to statically and dynamically position elements outside the flow model, using
fixed (absolute) coordinates that are relative to a container

Following this discussion, the chapter delves deeper into integrating client-side code with
ASP.NET server-side code to produce useful controls and interactive pages. This chapter consid-
ers four topics:

n Trapping an event that occurs on the client and popping up a confirmation dialog before
carrying out the action on the server, by displaying a confirmation dialog before deleting a
row in a DataGrid control.

Trigger-Happy Button Clicks
Note that it’s possible to click the button so
quickly that ASP.NET does not have time to
start processing the page and update the
session value. In this case, the page reports
fewer clicks than actually occurred when the
final submit action has been processed.

09 0672326744 CH06 5/4/04 12:24 PM Page 240

241Summary

n Trapping the Return key to prevent a form from being submitted, or in fact trapping any
keypress that might not be suitable for a control or an application you are building.

n Handling individual keypress events, by implementing a MaskedEdit control.

n Creating a button that can be clicked only once, to prevent the user from causing a second
postback when nothing seems to be happening at the client.

So, as you’ve seen, getting exactly the performance, appearance, or usability you want is not
always easy (or even possible!). However, you can create components and build reusable content
that far exceeds the standard output that ASP.NET can provide on its own. Chapter 7 continues
this theme by looking at some more user controls that combine with the features of ASP.NET to
make building interactive pages easier.

09 0672326744 CH06 5/4/04 12:24 PM Page 241

09 0672326744 CH06 5/4/04 12:24 PM Page 242

7
Design Issues

for User
Controls

Chapters 5, “Creating Reusable Content,”
and 6, “Client-Side Script Integration,” look
at some techniques for building reusable
content for Web pages and Web applica-
tions and the advantages these techniques
can provide. This chapter continues the
theme by looking in detail at some more
user controls. You’ll see more useful ways
that you can create different types of
controls and provide functionality that is
not available using the standard set of
ASP.NET server controls and the HTML
elements supported by the browser.

In Chapter 5, you built a combo box as a
user control and learned about the basic
issues involved. Then, in Chapter 6 you
built a page that implements a MaskedEdit
control.

In this chapter you’ll see how you can
convert that control into a user control.
You’ll also learn about another useful
control—the SpinBox control.

User controls do not have to provide a user
interface. In this chapter you’ll also see a
couple user controls that provide extra func-
tionality for Web applications, but without
actually creating elements in the browser.

IN THIS CHAPTER
The Effect of User Controls on Design
and Implementation 244

Building a SpinBox User Control 254

Integrating Client-Side Script Dialogs 267

Browser-Adaptive Script Dialogs 274

Integrating Internet Explorer Dialog
Windows 283

Browser-Adaptive Dialog Windows 290

Summary 294

10 0672326744 CH07 5/4/04 12:26 PM Page 243

Instead, they expose methods that make it easier to integrate dialogs and other client-side
features with your ASP.NET code.

The final topic in this chapter is something that, to some extent, previous chapters glossed over:
how to cope with different browser types. This chapter discusses some of the major issues and
shows how to build controls that adapt to suit different browsers.

The Effect of User Controls on Design and
Implementation
Converting sections of an ASP.NET page into a reusable user control is usually a reasonably
simple task. HTML and text (content) work just the same way, as does any client-side script. And
server controls declared in a user control produce the same visible output and work the same
way, whether they’re placed directly into an ASP.NET page or encapsulated in a user control.

The things that do change and that you need to bear in mind, are listed next. They may not all
apply to the controls you build, but you’ll see all these issues in this chapter:

n The position of the server controls within the hierarchy of the final ASP.NET page changes
when the server controls are placed into a user control. The user control becomes a
container, and its constituent server controls are located within the Controls collection of
the user control. This changes the ID of the contained controls.

n User controls should support being used more than once within the same page, so they
must avoid containing HTML or controls that can only appear once in the final ASP.NET
page (for example, the <html>, <head>, and <body> elements, and the server-side <form
runat=”server”> element).

n If you need client-side script to be injected into a page, you must be sure that only one
instance of the script is created, regardless of how many user controls reside on the final
ASP.NET page (unless each code section is specific to that instance of the user control).

n If your user control requires any images or other resources to be loaded from disk, you
must decide how these will be referenced. For example, if an Image control within a user
control uses ImageUrl=”myfile.gif”, ASP.NET will expect the image to reside in the same
folder as the user control. It will modify the path automatically, depending on the loca-
tion of the page that hosts the user control.

n You need to consider whether to expose settings for the elements and behavior of a user
control as properties rather than expecting people who use the user control to reference
individual items within it. Exposing useful values as properties can make working with a
user control a great deal simpler, and it allows you to validate values and perform other
actions when property values are read or set.

n User controls can also expose methods, which can be functions that return values or just
routines (for example, Sub in Visual Basic .NET, void function in C#) that do something
within the control. You need to think about whether to allow the user to pass in the

7
Design Issues for User Controls

244

10 0672326744 CH07 5/4/04 12:26 PM Page 244

245The Effect of User Controls on Design and Implementation

values required for these methods as parameters or expect them to set any required values
by using Public properties of your user control.

n If controls contained within your user control will have client-side event handlers
attached, you must pass in all the values you need as parameters and not embed generated
values within the client-side script unless they are the same for every instance of the user
control. You’ll see what we mean by this in more detail in the following section.

n If the contained controls raise events that you want to handle, you must handle these
events within the user control. You cannot write event handlers in the hosting page for
events exposed by server controls you declare within a user control.

Converting the MaskedEdit Control Page to a User Control
The MaskedEdit control example in Chapter 6 was written as an ASP.NET page (maskedit.aspx),
although it uses a second ASP.NET page (mask-image.aspx) to generate the background image for
the text box (see Figure 7.1).

FIGURE 7.1 The MaskedEdit user control
sample page.

To create a user control that implements the MaskedEdit control, you just need to lift out the
relevant code and declarations and place them into an .ascx file. Because the file implements a
user control, it must start with a Control directive. You can turn on debugging during develop-
ment to make it easier to see what’s happening if an error occurs:

<%@Control Language=”VB” Debug=”True” %>

Then you can declare the user interface section. In this case, it’s just an ordinary ASP.NET Web
Forms TextBox control. You specify the default value for the columns and provide an ID so that
you can refer to it in code within the user control:

<asp:TextBox id=”txtMaskEdit” Columns=”25” runat=”server” />

Defining the User Control Interface
As you go through the process of converting content from an ASP.NET page into a user control,
you must decide what properties and methods you want to expose from that user control. For

10 0672326744 CH07 5/4/04 12:26 PM Page 245

this example, only two properties are exposed: a String value that defines the mask for the text
box and the size of the font to use within the text box as an Integer value. Because you won’t
validate the values that are applied to the properties in this example, you can use the simplest
approach and just declare them as Public variables, as shown here:

Public Mask As String

Public FontSize As Integer

The values effectively become fields of the user control that can be accessed from the hosting
ASP.NET page.

You also need to declare one internal variable, which you will use to store the font name for the
text box and the image you generate to represent the mask. You know that it must be a mono-
spaced (fixed-pitch) font, so this example is limited to the Courier New font that is installed
with Windows:

Private _font As String = “Courier New”

Notice that this (intentionally) small set of Public properties severely limits opportunities for
users of the user control to affect how the control behaves. Users create an instance of the
control (either declaratively or in code), but they cannot easily access the controls within it. For
example, if you declare an instance of the MaskedEdit control like this:

<ahh:MaskEdit id=”oCtrl” runat=”server” />

you might be tempted to try to access the text box named txtMaskEdit within it (perhaps to
change the number of columns), by using this:

oCtrl.txtMaskEdit.Columns = 100 ‘ produces a compiler error

This fails because the text box declared
within the user control is generated as a
Protected member of the control. The preced-
ing code will result in the error “txtMaskEdit
is not accessible in this context because it is
‘Protected’.” However, users can get around
this by using the built-in FindControl method
of the user control. This searches the Controls
collection and returns the control with the
matching ID value as a reference to the
Control type. If you convert this into a
TextBox type, the text box can be accessed:

CType(oCtrl.FindControl(“txtMaskEdit”), TextBox).Columns = 100

This introduces an interesting point. If you or developers who use your control in their pages
can access the controls it contains, do you need to expose properties that provide access to the
controls? Maybe it’s just as easy to allow developers to set the number of columns on a text box
by using the technique just demonstrated.

7
Design Issues for User Controls

246

User Controls Cannot Hide Their Content
Bear in mind that you can’t encapsulate (and
hide) controls and content in a user control
as you can with a custom server control—like
those you’ll be meeting in Chapter 8,
“Building Adaptive Controls.” However, user
controls are only plain-text files anyway, so
developers who make use of a user control
can always open it to see what’s inside (and
modify it as well, if they wish!).

10 0672326744 CH07 5/4/04 12:26 PM Page 246

247The Effect of User Controls on Design and Implementation

In fact, that is probably not a good idea. It means that developers have to dig about inside the
user control in a text editor to find the value of ID for the control they want to access and risk
runtime errors through using the FindControl method (which cannot perform type checking at
compile time). And if they are using the control in a development environment that provides
IntelliSense or lists of properties and methods, only the Public interface members exposed by
the control will be visible.

If you want to expose the constituent controls from a user control, you should do so as proper-
ties of the user control. For example, Listing 7.1 shows how you could expose the text box
(which has the id attribute value txtMaskEdit) as a read-only property from the MaskedEdit user
control.

LISTING 7.1 Exposing a Constituent Control from a User Control

Public ReadOnly Property Textbox As Textbox

Get

Return txtMaskEdit

End Get

End Property

Users of the control can then access the text box and its properties in the usual way:

oCtrl.Textbox.Columns = 100

The issue now is that the users can set any properties they want on the control. In this case,
specifying the number of columns, the font name, or the background image will effectively
break the control. The only redeeming feature is that users are likely to make changes in the
Page_Load event of the hosting page, which runs before the Page_Load event of the user control.
Therefore, you can make sure that any specific properties that might break the control if set to
inappropriate values are set back to suitable values in the Page_Load event of the user control.

The Page_Load Event Handler
Not surprisingly, most of the code used in the MaskedEdit page to create and set the attributes
and properties of the controls just needs to be lifted out of the page and placed into the
Page_Load event handler of the user control. This includes the code shown in Listing 7.2, which
sets the style attributes for the text box, generates the correct format for the background mask
image, and creates the ToolTip.

LISTING 7.2 The Page_Load Event Handler for the MaskedEdit User Control

Sub Page_Load()

‘ add style attributes to Textbox

txtMaskEdit.Style(“font-family”) = _font

txtMaskEdit.Style(“font-size”) = FontSize & “pt”

‘ create mask for display as Textbox background

10 0672326744 CH07 5/4/04 12:26 PM Page 247

Dim sQuery As String = Mask

sQuery = sQuery.Replace(“a”, “_”)

sQuery = sQuery.Replace(“A”, “_”)

sQuery = sQuery.Replace(“l”, “_”)

sQuery = sQuery.Replace(“L”, “_”)

sQuery = sQuery.Replace(“n”, “_”)

sQuery = sQuery.Replace(“?”, “_”)

‘ encode it for query string to pass to page

‘ mask-image.aspx that generates the image

sQuery = Server.UrlEncode(sQuery)

_font = Server.UrlEncode(_font)

‘ create and add background style attribute

txtMaskEdit.Style(“background-image”) _

= “url(mask-image.aspx?mask=” _

& sQuery & “&font=” & _font _

& “&size=” & FontSize & “&cols=” _

& txtMaskEdit.Columns.ToString() & “)”

‘ create string to use as Tooltip for control

Dim sTip As String = Mask

sTip = sTip.Replace(“a”, “[a]”)

sTip = sTip.Replace(“A”, “[A]”)

sTip = sTip.Replace(“l”, “[l]”)

sTip = sTip.Replace(“L”, “[L]”)

sTip = sTip.Replace(“n”, “[n]”)

sTip = sTip.Replace(“?”, “[?]”)

txtMaskEdit.ToolTip = “Mask: “ & sTip & vbCrlf & “ where:” _

& vbCrlf & “[a] = any alphanumeric character (0-9, A-z)” _

& vbCrlf & “[A] = an uppercase alphanumeric character” _

& vbCrlf & “[l] = any letter character (A-Z, a-z)” _

& vbCrlf & “[L] = an uppercase letter character (A-Z)” _

& vbCrlf & “[n] = any numeric character (0-9)” _

& vbCrlf & “[?] = any character”

...

Injecting the Client-Side Code into the Page
One aspect of using client-side code within a user control deserves some serious rethinking
when you develop reusable content such as the MaskedEdit control shown in this example. In
previous examples, you’ve generated the client-side JavaScript code you need to make controls
work by building it up as a string within the control.

7
Design Issues for User Controls

248

LISTING 7.2 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 248

249The Effect of User Controls on Design and Implementation

This is perfectly valid, and it does encapsulate the code nicely. All you have to do is provide the
.ascx file (or the custom server control, if that’s how you implement the reusable content). It
means that no other bits need to be installed in specific folders, and there’s no need for any
separate configuration settings.

However, it often makes sense to pool and reuse resources, as well as to separate them to make
maintenance, debugging, and upgrades easier. For example, take a look at the ASP.NET valida-
tion controls. When the browser is Internet Explorer 5 or above, these server controls inject
considerable amounts of JavaScript code into the page to handle client-side validation and
display the error indicators next to controls without requiring the client to submit the page.

This JavaScript code runs to more than 400 lines and is common to all the validation controls.
Rather than include all this code within every control, the ASP.NET installation routine places it
into a separate file named WebUIValidation.js, within the special folder named aspnet_client in
the root of all your Web sites. The aspnet_client folder contains a subfolder named system.web,
and within that is a subfolder for each version of ASP.NET installed on the machine.

So, in version 1.1, the validation controls inject a <script> element into the page that specifies
this file (in the folder /aspnet_client/system_web/1_1_4322/) rather than dumping all the
JavaScript directly into the page:

<script language=”javascript”

src=”/aspnet_client/system_web/1_1_4322/WebUIValidation.js”>

</script>

This has other advantages besides reducing the size of the compiled server controls. It makes
updating the JavaScript to cope with changes and updates to browsers it must support much
easier. The browser also caches this code file the first time it loads a page that uses it, thus reduc-
ing subsequent download times for pages that take advantage of client-side validation.

There’s no reason you can’t use the same
technique as the validation controls to expose
client-side script code for your own user and
server controls, although this example uses a
new subfolder named custom within the
aspnet_client folder to avoid confusion. The
script file itself must contain complete
JavaScript functions or sections of code but
not the <script> and </script> tags. To
capture this script for the MaskedEdit user
control, you can simply display the page in
the browser, select View, Source, and copy the
code into a new text file saved with the .js
file extension (the accepted extension for
JavaScript; for VBScript files, you use .vbs instead).

Creating an aspnet_client Folder
Manually
The aspnet_client folder and its contents
are generated by the program aspnet_
regiis.exe, which runs as part of the instal-
lation program for ASP.NET. However, the
program only creates the aspnet_client
folder within any existing Web sites. If you
add a new site to IIS on your server, you must
manually copy this folder to it. The folder also
contains scripts for other features of ASP.NET,
such as the SmartNav.js script for imple-
menting smart navigation.

10 0672326744 CH07 5/4/04 12:26 PM Page 249

Listing 7.3 shows how you now inject the
client-side code you need into the page
during the Page_Load event. Instead of creat-
ing a string containing all the code, you
create a string that contains just the
following:

<script language=’javascript’

src=’/aspnet_client/custom/maskedit.js’>

</script>

Of course, you still use the
RegisterClientScriptBlock and
IsClientScriptBlockRegistered methods to
make sure that this <script> element is
injected into the page only once, for the first
instance of the user control.

LISTING 7.3 Attaching Client-Side Event Handlers and Injecting Client-Side JavaScript Code into
a Page

...

‘ see if previous instance of this control has already

‘ added the required JavaScript code reference to the page

If Not Page.IsClientScriptBlockRegistered(“AHHMaskEdit”) Then

Dim sPath As String = “/aspnet_client/custom/”

Dim sScript As String = “<script language=’javascript’ “ _

& “src=’” & sPath & “maskedit.js’><” & “/script>”

‘ add this JavaScript code to the page

Page.RegisterClientScriptBlock(“AHHMaskEdit”, sScript)

End If

‘ add client-side event handler attributes

txtMaskEdit.Attributes.Add(“onkeydown”, _

“return doKeyDown(event, this, ‘“ & Mask & “‘)”)

txtMaskEdit.Attributes.Add(“onkeypress”, _

“return doKeyPress(event, this, ‘“ & Mask & “‘)”)

txtMaskEdit.Attributes.Add(“onkeyup”, _

“return doKeyUp(event, this, ‘“ & Mask & “‘)”)

txtMaskEdit.Attributes.Add(“onfocus”, _

“return doFocus(event, this, ‘“ & Mask & “‘)”)

End Sub

7
Design Issues for User Controls

250

Using Script Files Across Multiple
Applications
Recall that the scope rules of ASP.NET limit a
user control to the same virtual application as
the pages that host it. In other words, you can
reference an .ascx user control from an
.aspx page only if the user control is in a
folder located within the same ASP.NET appli-
cation. You can’t share a single user control
across multiple applications. However, some
resources in a Web page are requested directly
by the client—for example, the JavaScript .js
files considered here. They can be loaded from
any folder in any application, or even from a
different Web site or a different machine.

10 0672326744 CH07 5/4/04 12:26 PM Page 250

251The Effect of User Controls on Design and Implementation

Adding the Event Handler Attributes
The final task in working with the Page_Load
event handler is to link the elements in the
user control to the client-side script functions
to make the control react to events as it is
used. Recall from earlier in this chapter the
issue regarding passing parameters into the
client-side script.

If the client-side script were still declared
within the control, as part of the output it
generates, you might be tempted here to
include the value of the mask directly within
that code. You have the value stored in the
Mask property at the moment, so you could
use it as you create the client-side script
string:

Dim sScript As String = ...

& “var sMask = ‘“ & Mask & “‘;” & vbCrlf _

...

This would be okay if the mask were the same for every instance of the MaskedEdit control that
will use this script. Because there can be only one instance of the script on a page, all the
MaskedEdit controls on a page would have to use the same value for the mask. This is obviously
unnecessarily restrictive, so instead you pass the mask into each function that requires it as a
parameter.

For example, the code in Listing 7.3 provides three parameters to the doKeyDown method
described in Chapter 6. The signature of the function is as follows:

function doKeyDown(e, textbox, sMask)

The code in the Page_Load event attaches this to the keydown event of the text box, using the
following:

txtMaskEdit.Attributes.Add(“onkeydown”, _

“return doKeyDown(event, this, ‘“ & Mask & “‘)”)

The value of the Mask property can be different for each instance of the MaskedEdit user control,
and each instance will pass its own value for the mask into the client-side function.

Adding Validation Controls to the MaskedEdit Control
Having completed the conversion of the MaskedEdit page into a user control, let’s briefly
consider the suggestion made in Chapter 6 for adding validation controls to it. One problem
with the control has to do with limitations in the HTML TextBox control provided by the
browser that mean you can’t absolutely guarantee preventing the user from entering values that

Centralizing Images in the
aspnet_client Folder
The aspnet_client folder can also be used
to centralize any images that are required by
user controls. For example, the combo box
control described in previous chapters
requires the up and down button images. In
the sample control you created in Chapter 5,
you stored these images in a folder within the
same application as the user control; you
could instead load them from any folder (or
any site or server). So, for example, you could
create a control_images folder within the
aspnet_client folder and use it so that only
one copy of each image is required for all
your applications, and this image will be
cached by the browser and reused every time.

10 0672326744 CH07 5/4/04 12:26 PM Page 251

do not match the mask. In addition, an application may require the user to enter a value before
the page can be submitted.

You can add validation controls to the text box within the user control quite easily, and it
makes sense to do it this way because you already know what the mask is, so you can automati-
cally generate the appropriate validation rules. Of course, this doesn’t stop users from adding
custom validation code themselves—either client-side code in the page or in their server-side
code—but you can make the control easier to use by building validation into the control.

Listing 7.4 shows the declaration of the three validation controls added to the basic MaskedEdit
control. The first prevents the page from being submitted if there is no value in the text box,
and the second matches the value with a regular expression. Note that the regular expression is

not specified (there is no ValidationExpression
attribute within the declaration of the
control). You’ll be setting that at runtime in
the Page_Load event handler.

The third control you add is a
ValidationSummary control that displays the
error messages from the other two controls
when the user tries to submit an empty or
invalid value. However, bear in mind that,
when you build your own user and server
controls, adding features like this might make
the controls less useful or less flexible. Such
features can also upset the layout of pages in
which they are used.

LISTING 7.4 Attaching a RequiredFieldValidator Control and a RegularExpressionValidator
Control to the MaskedEdit Control

<asp:TextBox id=”txtMaskEdit” Columns=”25” runat=”server” />

<asp:RequiredFieldValidator id=”valRequired” runat=”server”

ControlToValidate=”txtMaskEdit”

ErrorMessage=”* You must enter a value”

Display=”dynamic”>

*

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id=”valRegex” runat=”server”

ControlToValidate=”txtMaskEdit”

ErrorMessage=”* Your entry does not match the mask”

Display=”dynamic”>

*

</asp:RegularExpressionValidator>

<asp:ValidationSummary id=”valSummary” runat=”server”

HeaderText=”The following errors were found:”

ShowSummary=”true” DisplayMode=”List” />

7
Design Issues for User Controls

252

Empty Values in the ASP.NET Validation
Controls
Remember that the only validation control
that detects an empty value is the
RequiredFieldValidator control. The
others intentionally treat empty controls as
being valid. If they didn’t work like this, the
user would always have to fill in every control
on the page. If you separate out the two
tasks of validating a value that exists and
preventing an empty value from being
accepted, the controls can support validation
in pages where some values are optional.

10 0672326744 CH07 5/4/04 12:26 PM Page 252

253The Effect of User Controls on Design and Implementation

For example, the ValidationSummary control, when visible, is implemented as a <div> element,
and this might prevent the control from being properly positioned within the flow (inline
layout) of other controls in the page. Or the user of the control might want to place the error
messages elsewhere on the page or create his or her own messages. The user might even want to
be able to turn client-side validation on and off, allow empty values, customize the error
messages, and so on.

Before long, you might end up implementing a long list of properties in your user control to
allow this kind of configuration. In fact, it might even be easier just to expose the validation
controls as properties from your user control; you saw how to do this in Listing 7.1.

Creating the Validation Expression
The only other task related to adding the validation controls to the sample user control is to
build the appropriate regular expression for the RegularExpressionValidator control. Regular
expressions are a complex topic, and some aficionados like to make them appear even more
complicated than they actually are. However, you can use very simple constructs to build the
regular expression for this example.

Regular expressions use the forward slash character to signify characters that have a special
meaning (sometimes called metacharacters); for example, \d means the digits 0 to 9. So the first
step is to replace any instances of the \ character in your mask with the sequence \\, to prevent
what follows from being treated as a special character.

With regular expressions, you can identify
characters as sequential sets by specifying the
first and last value, enclosed in square brack-
ets. You can combine sets by using a comma,
so the sequence [A-Z,a-z,0-9] will give a
match to the character at the current position
in the target string if it is an upper- or lower-
case letter or a digit.

So you can see how you build the regular
expression you need, without resorting to any
of the many metacharacters that are available.
Listing 7.5 shows the code you add to the
Page_Load event of the user control to create
the regular expression and assign it to the
ValidationExpression property of the
RegularExpressionValidator control.

LISTING 7.5 Creating a Regular Expression for a Validation Control in the Page_Load Event Handler

‘ create regular expression for validation control

Dim sRegex As String = Mask

sRegex = sRegex.Replace(“\”, “\\”)

sRegex = sRegex.Replace(“a”, “[A-Z,a-z,0-9]”)

sRegex = sRegex.Replace(“A”, “[A-Z,0-9]”)

sRegex = sRegex.Replace(“l”, “[A-Z,a-z]”)

The Regular Expression Party Game
A party trick I’ve seen demonstrated
(although thankfully not at all the parties I
attend) is to produce the shortest regular
expression possible that matches or modifies
a specific mask or string, without using pen
and paper. Regular expressions are extremely
powerful, can be used to produce modified
versions of a string, and can save a lot of
code in certain situations. The concept of
regular expressions might not be the easiest
of topics to grasp, but it is definitely worth
adding to your “I must learn more about…”
list if you are not familiar with it already.

10 0672326744 CH07 5/4/04 12:26 PM Page 253

sRegex = sRegex.Replace(“L”, “[A-Z]”)

sRegex = sRegex.Replace(“n”, “[0-9]”)

sRegex = sRegex.Replace(“?”, “.”)

valRegex.ValidationExpression = sRegex

The result of trying to submit a page with a partially completed value in the control is shown in
Figure 7.2. You can see the asterisk that the client-side validation script displays as soon as focus
moves from the control, and you can also see the output generated by the ValidationSummary
control underneath the text box.

7
Design Issues for User Controls

254

LISTING 7.5 Continued

FIGURE 7.2 The MaskedEdit user control,
with validation sample page.

Building a SpinBox User Control
A third control that complements the controls available in a normal Web browser is the SpinBox
control. This useful control makes it easy for users to enter numeric values, either by typing them
into a text box or by changing the existing value with the up and down buttons located at the end
of the text box. Users can also change the value by pressing the up, left, right, and down arrow keys
or the Home and End keys. A page that demonstrates the SpinBox control is shown in Figure 7.3.

The example in this chapter is implemented as a user control, just like the ComboBox and
MaskedEdit controls you’ve worked with previously. Therefore, much of the code and many of
the techniques are similar. However, we’ll discuss the particularly interesting points of the code
in more depth in the following sections. The specific points of interest are:

n Implementing AutoPostback so that the control behaves like a standard ASP.NET Web
Forms control

n Ensuring that the value within the control is always valid when a page is submitted

n Ensuring that values provided for properties of the control are valid and deciding what to
do if they are not

n Raising an exception when something goes wrong

10 0672326744 CH07 5/4/04 12:26 PM Page 254

255Building a SpinBox User Control

First, however, you’ll see the HTML and control declarations that are used to generate the user
interface.

The User Interface Declaration for the SpinBox Control
The SpinBox control (user-spinbox.ascx) uses the same technique as the ComboBox control you
built in Chapter 5 to position the elements it requires. A element with the style selector
position:relative forms the container, and within this you place an ASP.NET TextBox control
and two ImageButton controls. The ImageButton controls use position:absolute and have the top
selector set so that they will be correctly positioned vertically in relationship to the text box (see
Listing 7.6).

LISTING 7.6 The Declaration of the Constituent Controls for the SpinBox User Control

<asp:TextBox Style=”top:0;left:0;text-align:right” id=”textbox”

runat=”server”/>

<asp:ImageButton id=”imageup” Style=”position:absolute;top:0”

ImageUrl=”~/images/spin-up.gif” runat=”server” />

<asp:ImageButton id=”imagedown” Style=”position:absolute;top:10”

ImageUrl=”~/images/spin-down.gif” runat=”server” />

Of course, at this point you don’t know how wide the text box will be, so you can’t set the left
selector for the ImageButton controls. This is done in the Page_Load event, together with the speci-
fication of the text box width, using a value that is calculated from the property settings speci-
fied by the hosting page.

Notice that, as with the ComboBox control, you use the tilde (~) character here to specify that the
images for the ImageButton controls reside in a subfolder named images that is located within the

FIGURE 7.3 The SpinBox control demon-
stration page.

10 0672326744 CH07 5/4/04 12:26 PM Page 255

root of the current application. You could instead specify a machinewide location (such as
aspnet_client, as intimated in the sidebar “Centralizing Images in the aspnet_client Folder,”
earlier in this chapter).

The Private and Public Members of the Control
The SpinBox control uses four Private internal variables (see Listing 7.7) to hold values assigned
to properties of the control. It also exposes a ShowMembers method in the same way as the
ComboBox control example in Chapter 6.

LISTING 7.7 The Internal Variables and the ShowMembers Method

Private _columns As Integer = 3

Private _increment As Integer = 1

Private _maxvalue As Integer = 99

Private _minvalue As Integer = 0

Public Function ShowMembers() As String

Dim sResult As String = “SpinBox User Control” _

& “</p>Properties:
” _

& “AutoPostback (Boolean, default False)
” _

& “CssClass (String)
” _

& “Columns (Integer, default 3)
” _

& “Increment (Integer, default 1)
” _

& “MaximumValue (Integer, default 99)
” _

& “MinimumValue (Integer, default 0)
” _

& “Text (String)
” _

& “Value (Integer)
”

Return sResult

End Function

The Property Fields and Accessor Routines
The properties of the SpinBox control are declared next. You declare two of them as fields by
using Public variables because you don’t need to perform any validation of their values when
they are set or read. The first of these is a String property that can be used to specify the CSS
style class for the text box within the control. The second is a Boolean property that is used to
indicate whether AutoPostback is required:

Public CssClass As String = “”

Public AutoPostback As Boolean = False

You want the control to behave like other Web Forms controls in that the user should be able to
choose whether to force it to post back to the server every time the value is changed
(AutoPostback = True) or allow repeated interaction with it without a postback occurring
(AutoPostback = False).

7
Design Issues for User Controls

256

10 0672326744 CH07 5/4/04 12:26 PM Page 256

257Building a SpinBox User Control

Regarding clicking the ImageButton controls (which are implemented in the browser as <input
type=”image”> elements), this is easy. You just have to trap the click event on the client and
return false from this event handler to prevent the page from being submitted. To implement
AutoPostback, you return true from these event handlers.

However, the issue is not quite as obvious where the text box is concerned. If you set the built-
in AutoPostback property to True for a standard ASP.NET TextBox control, the page will be posted
back to the server automatically when the text box loses the input focus. (ASP.NET does this by
injecting client-side script into the page to handle the blur event.)

However, you want to use the blur event to validate the text in the text box section of the
control to ensure that it represents a valid Integer value that is within the range of the current
maximum and minimum values. It’s also likely that users will type in the text box and then
interact with the up and down buttons. This would cause two postback events—one when the
text box loses the focus and one for the click on the button.

So you do not set the built-in AutoPostback property of the TextBox control to True, even if the
AutoPostback property of the user control is set to True. This is a good example of how you often
need to carefully consider how a user will interact with a compound control like the SpinBox
control when you implement properties for it.

Implementing Behavior and Appearance Properties for the SpinBox Control
Four properties specify the behavior and appearance of the SpinBox control. The Columns property
specifies the width of the text box within the control, in the same way that it is used to specify
the width of a normal ASP.NET TextBox control. The value is of type Integer, approximately
representing the number of characters that will be visible in the text box.

The three properties that specify the behavior of the control are Increment, MaximumValue, and
MinimumValue. It should be obvious what these do; the only things worth pointing out here are
that the maximum and minimum values are of type Integer and are inclusive (the control can
be set to the maximum or the minimum value) and that the increment must be a positive
Integer value.

Listing 7.8 shows the declaration of the properties. All four are read/write, and the Get section
simply returns the value of the matching internal variable. Because these internal variables all
have default values specified (refer to Listing 7.7), you can use the control without setting these
properties, and the default values will be available if these properties are read without first
being set.

LISTING 7.8 The Behavior and Appearance Property Declarations

Public Property Columns As Integer

Get

Return _columns

End Get

Set

If (value > 0) And (value < 1000) Then

_columns = value

Else

10 0672326744 CH07 5/4/04 12:26 PM Page 257

Throw New Exception(“Columns must be between 1 and 999”)
End If

End Set
End Property

Public Property Increment As Integer
Get
Return _increment

End Get
Set
If value > 0 Then
_increment = value

Else
Throw New Exception(“Increment must be greater than zero”)

End If
End Set

End Property

Public Property MaximumValue As Integer
Get
Return _maxvalue

End Get
Set
If value > _minvalue Then
_maxvalue = value

Else
Throw New Exception(“MaximumValue must be greater “ _

& “than current MinimumValue”)
End If

End Set
End Property

Public Property MinimumValue As Integer
Get
Return _minvalue

End Get
Set
If value < _maxvalue Then
_minvalue = value

Else
Throw New Exception(“MinimumValue must be less “ _

& “than current MaximumValue”)
End If

End Set
End Property

7
Design Issues for User Controls

258

LISTING 7.8 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 258

259Building a SpinBox User Control

Raising an Exception for Invalid Property Settings
When you create the property accessors for controls, you’ll often want to perform some valida-
tion of the values that are applied to these properties. This can prevent exceptions from being
raised within a control if users set inappropriate values, and it can ensure that the behavior of
the control is predictable.

In the SpinBox control, you make one design decision by limiting the number of columns for the
text box to fewer than 1,000. It seems extremely unlikely that the user would want more than
this, and if more columns were allowed, the resulting page would most likely be too wide to
display anyway. You also force the number of columns to be greater than 0 because otherwise
the control won’t be visible. Bear in mind that you should try to avoid applying design limita-
tions that will limit the usefulness of a control.

The other type of decision regarding property values is based on practicality. For example, you
make sure that the minimum value can only be set if the new value is less than the current
maximum value and vice versa. You also make sure that the increment is greater than 0 (other-
wise, the up and down buttons would work the wrong way around).

Of course, practicality decisions should also involve the prevention of errors. You prevent the
Columns property from being 0 or greater than 1,000 for basically cosmetic and usability reasons,
but you must prevent it from being less than 0 as well, or you’ll get a runtime error when you
try to apply the value to the TextBox control.

So what do you do if the user specifies an
invalid value? With the ComboBox control in
Chapter 5, you faced a similar issue with
properties such as SelectedIndex and
SelectedValue. In those two cases, you simply
ignored the value if it was out of range. For
example, if the user set the SelectedIndex
property to a value less than -1 or greater
than the index of the last item in the list, you
just ignored the setting and left the current
selection unchanged. If the user specified a value for the SelectedValue property that was not in
the list, you just ignored it. However, this is not the way most of the ASP.NET controls work. If
you specify a SelectedValue property value that is not in the list for a ListBox control, for
example, an ArgumentOutOfRangeException error is thrown.

In the SpinBox control, you follow the same
approach as the standard ASP.NET server
controls. If the user specifies an invalid value
for any of the four properties we’ve just
examined (Columns, Increment, MaximumValue,
and MinimumValue), you create a new Exception
instance that contains a description of the
error and throw it back to the calling routine.
There, the text description can be extracted
from the Message property of the exception.

Validating Input Values for Methods
and Properties
Validating input and raising appropriate
exceptions is a necessity when you are expos-
ing methods from controls, as well as in your
property accessors. You really should make
sure that your code is protected from invalid
parameter values.

Creating a Specific Exception Type
You could create instances of more specific
types of Exception, such as
ArgumentOutOfRangeException, and you
might prefer to do this with your controls.
This approach allows the hosting page to
catch the exceptions by type and handle the
different types in different ways.

10 0672326744 CH07 5/4/04 12:26 PM Page 259

Implementing the Text and Value Properties
The two remaining properties of the SpinBox user control are Text and Value. The only real differ-
ence between them is in the data type they accept and return. It seems intuitive to offer the
value of a control aimed at collecting numeric whole-number values as an Integer property, yet
the accepted property name for the value of a text box is the Text property. So, in line with the
typical programmer’s capability for indecision, the sample control implements both.

Listing 7.9 shows these property declarations. You just return the Text property of the text box
within the user control in the Get sections. The code attempts to convert it to an Integer type
for the Value property, and this will automatically return 0 if the text is not a valid representa-
tion of a number.

When the Text or Value property is set, you make sure that the new value is within the current
maximum and minimum values. In the case of the Text property, you also have to check that
the value provided represents a valid Integer type.

LISTING 7.9 The Text and Value Property Declarations

Public Property Text As String

Get

Return textbox.Text

End Get

Set

Dim iValue As Integer

Try

iValue = Int32.Parse(value)

Catch

Throw New Exception(“Text property must represent “ _

& “a valid Integer value”)

End Try

If (value >= _minvalue) And (value <= _maxvalue)

textbox.Text = value

Else

Throw New Exception(“Text property must be within “ _

& “the current MinimumValue and MaximumValue”)

End If

End Set

End Property

Public Property Value As Integer

Get

Try

Return Int32.Parse(textbox.Text)

Catch

End Try

End Get

Set

7
Design Issues for User Controls

260

10 0672326744 CH07 5/4/04 12:26 PM Page 260

261Building a SpinBox User Control

If (value >= _minvalue) And (value <= _maxvalue)

textbox.Text = value.ToString()

Else

Throw New Exception(“Value property must be within “ _

& “the current MinimumValue and MaximumValue”)

End If

End Set

End Property

The Server-Side Code Within the SpinBox Control
Other than the property accessors you’ve just seen, there is very little code in the remainder of
the SpinBox control. There is a Page_Load event handler, which we’ll discuss shortly, and there are
a couple auxiliary routines that are used to set features of the control and make sure that the
current value is within the maximum and minimum values set in the control. Listing 7.10
shows these two auxiliary routines.

LISTING 7.10 The SetColumns and SetMaxMinValues Routines

‘ set width of Textbox and position images

Private Sub SetColumns()

textbox.Columns = _columns

textbox.Style(“width”) = Columns * 10

imageup.Style(“left”) = textbox.Style(“width”)

imagedown.Style(“left”) = textbox.Style(“width”)

End Sub

‘ check if current value of Textbox is within

‘ current max and min limits, and reset if not

Private Sub SetMaxMinValues()

Dim iValue As Integer

Try

iValue = Int32.Parse(textbox.Text)

Catch

iValue = _minvalue

End Try

If iValue < _minvalue Then

iValue = _minvalue

End If

If iValue > _maxvalue Then

iValue = _maxvalue

End If

textbox.Text = iValue.ToString()

End Sub

LISTING 7.9 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 261

Setting the TextBox Control Width and Positioning the Images
When you originally implemented the SpinBox control, an interesting issue came to light about
setting the size of the control. The ComboBox control from Chapter 5 exposes a property named
Width, which is used to set the size of the control, in pixels. However, to match the properties of
the ASP.NET TextBox control, you expose a property named Columns for the SpinBox control.

But how do you relate the width of the text box with the setting of the Columns property? The
browser uses the current font style and size to work out how wide to make the text box (and
often doesn’t do so very accurately—try creating a TextBox control with Columns=”3”, and you’ll
probably find that there is room to type five or six characters).

You need to specify the exact size, in pixels,
so that you can accurately locate the up and
down buttons at the end of the text box.
Experimentation reveals that simply multiply-
ing the value of Columns by 10 gives a gener-
ally similar width in pixels, although you
might want to substitute a more realistic
calculation here. When you know the width,
you can apply it to the text box and also use
it to set the left position of the two
ImageButton controls. Notice that you set the
Columns property of the TextBox control as
well, although that will not actually affect the
width of the text box if the browser supports
CSS2.

Checking the MaximumValue and MinimumValue Properties
The second routine shown in Listing 7.10 is used to verify that the current value in the text box
of the control is within the maximum and minimum values. If it’s outside these values, you
simply set it to the current maximum or minimum value, depending on which is closest. You
use this routine in the Page_Load event of the control so that it validates the value each time the
hosting page loads.

The Page_Load Event Handler
Let’s now look at the Page_Load event handler, shown in full in Listing 7.11. There’s nothing
surprising here: You just collect the ID of the user control from the UniqueID property, for use
when connecting the client-side event handlers. You also check whether AutoPostback is turned
on and create an appropriate String value (“true” or “false”) to use when creating the parameter
string for the event handlers attached to the two ImageButton controls. From all these values, you
can then create a String value that represents the complete set of parameters for each client-side
event call.

7
Design Issues for User Controls

262

Setting the Width of a Text Box
The user of the control will probably just fiddle
with the Columns value until it seems right for
the page where it’s used, so you need to ask
yourself whether it is actually worthwhile to
spend a lot of time and effort on calculating
the width. One other approach would be to
use the current maximum and minimum
values to work out how wide it should be,
taking into account the font style and size. But
then, of course, you would need to be
convinced that the user will appreciate the
control changing its size every time the user
changes the maximum and minimum values.

10 0672326744 CH07 5/4/04 12:26 PM Page 262

263Building a SpinBox User Control

LISTING 7.11 The Page_Load Event Handler for the SpinBox Control

Sub Page_Load()

‘ control ID prefix for contained controls

Dim sCID As String = Me.UniqueID & “_”

‘ create true/false string for JavaScript code

Dim sAutoPostback As String = “false”

If AutoPostback Then

sAutoPostback = “true”

End If

‘ create JavaScript parameter string - used to set

‘ parameters for client-side control event handlers

Dim sParams As String = “‘“ & sCID & “textbox’, “ _

& _minvalue.ToString() & “, “ _

& _maxvalue.ToString() & “, “ _

& _increment.ToString() & “, “ _

& sAutoPostback

‘ see if previous instance of this control has already

‘ added the required JavaScript code to the page

If Not Page.IsClientScriptBlockRegistered(“AHHSpinBox”) Then

Dim sPath As String = “/aspnet_client/custom/”

Dim sScript As String = “<script language=’javascript’ “ _

& “src=’” & sPath & “spinbox.js’><” & “/script>”

‘ add this JavaScript code to the page

‘ add this JavaScript code to the page

Page.RegisterClientScriptBlock(“AHHSpinBox”, sScript)

End If

If CssClass <> “” Then

textbox.CssClass = CssClass

End If

‘ set client-side event handlers for controls

imageup.Attributes.Add(“onclick”, _

“return incrementValue(“ & sParams & “)”)

imagedown.Attributes.Add(“onclick”, _

“return decrementValue(“ & sParams & “)”)

textbox.Attributes.Add(“onblur”, _

“return checkValue(“ & sParams & “)”)

textbox.Attributes.Add(“onkeydown”, _

“return keyDown(event, “ & sParams & “)”)

10 0672326744 CH07 5/4/04 12:26 PM Page 263

SetColumns()

SetMaxMinValues()

End Sub

The next step is to inject a <script> element
into the output that will reference and load a
file named spinbox.js from the same
/aspnet_client/custom folder you used with
the MaskedEdit control earlier in this chapter.
You’ll see this client-side script file a little
later in this chapter.

Then, if the user of the control has specified a
value for the CssClass property, you can add
that to the text box, and then you can attach

the event handlers to the TextBox and ImageButton controls. You finish up with a call to the two
auxiliary routines described earlier in this chapter. The SetColumns routine adds the style attrib-
utes and properties to the constituent controls to specify their width and position (replacing any
conflicting settings applied by the CssClass property value), and the SetMaxMinValues routine
ensures that the text box value is within the prescribed range.

The Client-Side Script Code
As you can see in Listing 7.11, you are handling four client-side events—the click event for the
two ImageButton controls and the blur and keydown events for the TextBox control. Each event
calls a separate function in the client-side script and passes in the five parameters defined in the
sParams variable earlier in the listing. These are the five parameters:

n The full ID of the <input type=”text”> control that is generated by the ASP.NET TextBox
control (for example, “MyUserControl_textbox”)

n The current minimum value, as set in the MinimumValue property of the control

n The current maximum value, as set in the MaximumValue property of the control

n The current value of the increment for each button click, as set in the Increment property
of the control

n The value true or false, reflecting the setting of the AutoPostback property of the control

Listing 7.12 shows the complete contents of the spinbox.js file that the SpinBox user control
loads through the <script> element injected into the page. The incrementValue and
decrementValue functions are similar to each other, simply incrementing or decrementing the
contents of the text box by the value of the increment passed in as the iInc parameter.
However, they also check that the value of the control is a valid number, and if it is not, they
set it to the current minimum value. If the increment or decrement takes it beyond the current
valid range, they set it to the current maximum (iMaxVal) or minimum (iMinVal) value.

7
Design Issues for User Controls

264

LISTING 7.11 Continued

Using the Same Parameter Lists for All
Functions
You’ll see later in this chapter that you don’t
actually need to provide the bAutoPost
parameter for one of the functions, but it
makes no difference if you do. You simply
ignore it in the client-side function, and then
you can use the same parameter string that
you generate here for all the event handlers.

10 0672326744 CH07 5/4/04 12:26 PM Page 264

265Building a SpinBox User Control

LISTING 7.12 The Client-Side Script Functions for the SpinBox User Control

function incrementValue(sTextID, iMinVal, iMaxVal, iInc, bAutoPost) {

var textbox = document.getElementById(sTextID);

var textval = parseInt(textbox.value);

if (isNaN(textval) || textval < iMinVal)

textval = iMinVal;

else {

if (textval < (iMaxVal - iInc))

textval += iInc;

else

textval = iMaxVal;

}

textbox.value = textval.toString();

return bAutoPost;

}

function decrementValue(sTextID, iMinVal, iMaxVal, iInc, bAutoPost) {

var textbox = document.getElementById(sTextID);

var textval = parseInt(textbox.value);

if (isNaN(textval) || textval < iMinVal)

textval = iMinVal;

else {

if (textval > (iMinVal + iInc))

textval -= iInc;

else

textval = iMinVal;

}

textbox.value = textval.toString();

return bAutoPost;

}

function checkValue(sTextID, iMinVal, iMaxVal, iInc, bAutoPost) {

var textbox = document.getElementById(sTextID);

var textval = parseInt(textbox.value);

if (isNaN(textval) || textval < iMinVal)

textval = iMinVal;

if (textval > iMaxVal)

textval = iMaxVal;

textbox.value = textval.toString();

return false;

}

function keyDown(e, sTextID, iMinVal, iMaxVal, iInc, bAutoPost) {

var textbox = document.getElementById(sTextID);

var iKeyCode = 0;

10 0672326744 CH07 5/4/04 12:26 PM Page 265

if (window.event) iKeyCode = window.event.keyCode

else {

if (e) iKeyCode = e.which;

}

if (iKeyCode == 38)

incrementValue(sTextID, iMinVal, iMaxVal, iInc, bAutoPost);

if (iKeyCode == 40)

decrementValue(sTextID, iMinVal, iMaxVal, iInc, bAutoPost);

if (iKeyCode == 37 || iKeyCode == 36)

textbox.value = iMinVal.toString();

if (iKeyCode == 39 || iKeyCode == 35)

textbox.value = iMaxVal.toString();

return true;

}

These two functions are called when the client clicks the up button or the down button.
Because these are <input type=”image”> controls, they will cause a postback to the server unless
you return the value false from these functions. By returning the value of the bAutoPost parame-
ter (which is set to either true or false, depending on the setting of the AutoPostback property),
you can allow or prevent the postback, as required.

The checkValue function runs when the blur event occurs for the text box, usually when the user
clicks a different control in the page (including one of the up or down buttons). All this func-
tion does is ensure that the value in the text box represents a valid number and is within the

range specified. If it is not, the checkValue
function sets it to the minimum or maximum
value, depending on which is closer.

The fourth function, keyDown, runs when the
text box has the input focus and the user
presses a key. It detects the four arrow keys
and the Home and End keys, using their key
code values, and changes the value in the text
box accordingly. The up and down arrows
change it by the current increment by simply
calling the incrementValue and decrementValue
functions with the same set of parameters.
The left and right arrows, and the Home and
End keys, set it to the minimum value or the
maximum value.

7
Design Issues for User Controls

266

LISTING 7.12 Continued

Trapping Keypresses to Prevent Errors
You could use the keyDown event to trap
nonnumeric characters and prevent them
from being typed into the text box. However,
you would then have to be sure to properly
handle the Delete key, Backspace key, and
other keys as well, to allow the user to react
with the text box in the usual way. Because
you’ve provided plenty of protection against
allowing invalid values to be posted to the
server, this is unnecessary, but you could
easily add it if required. Chapter 6 provides
examples of handling keypress events and
detecting key code values with the
MaskedEdit control.

10 0672326744 CH07 5/4/04 12:26 PM Page 266

267Integrating Client-Side Script Dialogs

Integrating Client-Side Script Dialogs
Although we’re continuing with our theme of user controls, let’s now change direction a little to
look at a couple sample user controls that don’t provide any user interface at all. What’s the
point of building such a control? This kind of control allows you to reuse code (such as func-
tions or methods that are defined within the user control) or inject other types of nonvisible
output into the page.

One of the things that regularly confuses new users of ASP.NET, especially those who are used to
building traditional client-based executable applications, is that they can’t just pop up a message
box to ask the user to confirm an action or to let the user know something is going to happen.
However, this isn’t impossible to do, as you saw in Chapter 6, where you used a JavaScript
confirm dialog to make sure that the user wanted to delete rows from a database table. However,
all this really does is prevent the page from being submitted by returning false to the control
that raised the event on the client if the user clicks the Cancel button.

What happens if you want to ask the user a
question and then access the reply on the
server in ASP.NET code? The easy answer is
that you let the user submit a separate page
containing HTML controls, but often it’s nicer
(and more intuitive) to use a JavaScript alert,
confirm, or prompt dialog.

Figure 7.4 shows the demonstration page
provided with the samples for this book. An
alert dialog is attached to the first button on
the page (a simple <input type=”submit”>
button), so the dialog is displayed to the user
when he or she clicks this button, before the
form is submitted.

Using the VBScript MsgBox Function
It would be even nicer to be able to offer one
of the more attractive and configurable
VBScript MsgBox dialogs if you know that the
browser is Internet Explorer. However, in this
case, the client-side script will be written in
VBScript (not JavaScript) and it would there-
fore not work in other browsers. The solution
is to sniff the browser type on the server and
insert a different <script> section into the
page, depending on the browser type. You’ll
see how you can build adaptive controls like
this later in this chapter and throughout
Chapter 8.

FIGURE 7.4
Displaying an alert dialog in response
to a button click.

10 0672326744 CH07 5/4/04 12:26 PM Page 267

The second button (this one is an ASP.NET Button control) is connected to a confirm dialog, as
shown in Figure 7.5. After the user clicks a button in the confirm dialog, the page is posted back
to the server. You can see that the value detected on the server during the postback is displayed
at the bottom of the page. This means you can write server-side code that reacts in different
ways, depending on the user’s response in the dialog.

7
Design Issues for User Controls

268

FIGURE 7.5
Detecting the value selected by the
user in a confirm dialog.

Finally, the check box in the sample page has a prompt dialog attached to its client-side click
event. Changing the setting of the check box opens the prompt dialog and allows the user to
enter a value. After the dialog closes and the form is submitted, the value the user entered is
detected on the server and displayed in the page that is returned (see Figure 7.6). Notice that the
addition of the dialog to this control prevents AutoPostback from working in the usual way, so
you have to use the Submit button to submit the page.

FIGURE 7.6
Detecting the value entered by the
user into a prompt dialog.

However, you can use the two sets of option buttons shown in Figures 7.4 through 7.6 to
change the behavior of the page. You can instruct the client-side code that displays the dialogs
to cancel any action that the control they are attached to would usually initiate (for example,

10 0672326744 CH07 5/4/04 12:26 PM Page 268

269Integrating Client-Side Script Dialogs

you can prevent the postback from a button to which they are attached). You can also force the
code to automatically submit the page after the dialog is closed. Setting this option forces the
page to be submitted when the prompt dialog attached to the check box is closed.

How the Client Dialogs Example Works
Obviously, the action of opening the dialogs uses client-side script. However, what’s useful here
is that the return value from each dialog is passed back to the server the next time the page is
submitted. This is the case because you place the return value in a hidden-type control on the
form. Even if the user interacts with other controls before the form is submitted, the value will
remain in the hidden control. The only time it will change is if the user reopens the dialog and
makes a different selection or enters a different value.

This is what the ASP.NET code is actually doing when a dialog is attached to a control:

n Injecting into the page a hidden-type control (an <input type=”hidden”> element) that has
a unique name and ID

n Injecting into the page some client-side script that will handle the specified client-side
event of the control (such as the click event of a button)

n Building up the function name and parameters for the appropriate function within this
client-side script and assigning it to the appropriate event attribute of the control

Then, when the user fires the event (for example, by clicking a button), the client-side script
displays the appropriate dialog. When the dialog is closed, the function places the return value into
the hidden control and then—depending on the parameters provided by the user when attaching
the dialog—allows or prevents the form from being submitted or forces it to be submitted.

On the server, following this postback, the value is extracted from the hidden control and
displayed in the page. Of course, in a real application, you would use the value within your
server-side code as required.

The clientdialog.ascx User Control
As you no doubt expect, the code just described is packaged up into a user control for reuse in
any pages that require it. It’s relatively simple, and it demonstrates the features of user controls
discussed earlier in this chapter. It provides no user interface at all, but instead it exposes two
methods that can be called from the hosting page to perform the magic you’ve just seen:

n The AttachDialog method takes as parameters all the information required to display the
dialog, including the ID and event of the control to which the dialog will be attached and
the text to display. There are also optional parameters that allow you to specify whether
the underlying control event should be canceled and whether the form should be auto-
matically submitted when the dialog is closed.

n The GetDialogResult method takes a single parameter—the ID of the control to which the
dialog was attached—and returns the value as a String data type. In the case of a confirm
dialog, the returned value will be one of the strings “True” or “False”.

10 0672326744 CH07 5/4/04 12:26 PM Page 269

The DialogType Enumeration
The clientdialog.ascx page also exposes an enumeration of the dialog types. Using enumera-
tions is a useful way to define a closed set of values from which the user must choose one. You
can use enumerations to ensure that the user of the control can set only one of the specified
values for a property or—as you’ll see in this example—for a parameter to a method. The
DialogType enumeration is declared in the clientdialog.aspx page, as shown in Listing 7.13.

LISTING 7.13 The DialogType Enumeration Exposed by the User Control

‘ enumeration of dialog types

Public Enum DialogType

Alert = 0

Confirm = 1

Prompt = 2

End Enum

Because the enumeration is defined as being Public, you can also reference it in the page that
hosts the user control. For example, assuming that the user control has the ID value oCtrl, you
can create an Integer variable that equates to the Confirm value of the enumeration by using
this:

Dim iValue As Integer = oCtrl.DialogType.Confirm

The AttachDialog Method
Listing 7.14 shows the AttachDialog method. This is a subroutine because no return value is
required. You can see the parameters that the function takes, including the dialog type (as a
value from the DialogType enumeration just declared), the ID value of the control, the name of
the client-side event to which you’ll attach the dialog, the text to display in the dialog, and the
two optional parameters that control postbacks.

The first thing the method does is to inject into the page the hidden control for this dialog to
use to pass its return value back to the server. Because all the controls on the hosting page have
unique IDs, you just have to add some prefix to this to get a unique ID for the hidden control.
Listing 7.14 follows the standard ASP.NET approach of using the $ character to separate the
name prefix from the ID.

LISTING 7.14 The AttachDialog Method in the User Control

Sub AttachDialog(DlgType As DialogType, _

ControlID As String, _

EventName As String, _

MessageText As String, _

Optional CancelEvent As Boolean = False, _

Optional SubmitForm As Boolean = False)

‘ create hidden field in page for any return value

Dim sHidFieldName As String = “AHHClientDlg$” & ControlID

7
Design Issues for User Controls

270

10 0672326744 CH07 5/4/04 12:26 PM Page 270

271Integrating Client-Side Script Dialogs

Page.RegisterHiddenField(sHidFieldName, “”)

‘ create function name to attach to control

Dim sFunctionName, sParams As String

sParams = “(‘“ & sHidFieldName & “‘, ‘“ _

& MessageText.Replace(“‘“, “\’”) & “‘, “ _

& (Not CancelEvent).ToString().toLower() & “, “ _

& SubmitForm.ToString().toLower() & “);”

Select Case DlgType

Case DialogType.Alert:

sFunctionName = “return AlertDlgEvent” & sParams

Case DialogType.Confirm:

sFunctionName = “return ConfirmDlgEvent” & sParams

Case DialogType.Prompt:

sFunctionName = “return PromptDlgEvent” & sParams

End Select

‘ attach client-side event handler to element

‘ need to determine base control type and cast to the

‘ appropriate type that has an Attributes collection

Dim oCtrl As Control = Parent.FindControl(ControlID)

If TypeOf oCtrl Is HtmlControl Then

CType(oCtrl, HtmlControl).Attributes.Add(EventName, _

sFunctionName)

ElseIf TypeOf oCtrl Is WebControl Then

CType(oCtrl, WebControl).Attributes.Add(EventName, _

sFunctionName)

Else

Throw New Exception(“Control Type Not Supported”)

End If

‘ create client-side script if not already registered

If Not Page.IsClientScriptBlockRegistered(“AHHClientDlg”) Then

Dim sScript As String = vbCrlf _

& “<script language=’javascript’>” & vbCrlf _

& “<!--” & vbCrlf _

... rest of client-side script here ...

& “//-->” & vbCrlf _

& “<” & “/script>” & vbCrlf

Page.RegisterClientScriptBlock(“AHHClientDlg”, sScript)

End If

End Sub

LISTING 7.14 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 271

The hidden control is injected into the page
using the RegisterHiddenField method (this is
what ASP.NET uses to inject the hidden
controls it requires, such as the one that
contains the viewstate for the page). You need
a separate hidden control every time the
method is called. You could, of course, just
dynamically create an HtmlInputHidden control
instance and insert it into the control tree,
but using RegisterHiddenField is quicker and
easier.

Next, you build up a String value that contains the parameters to be used when calling the
client-side functions. All these functions require at a minimum the same four parameters: the ID
of the hidden control that carries the return value, the text to display in the dialog, and the two
Boolean values that control postbacks (the two parameters that control postbacks are optional).
For example, this is the signature of the function that displays a confirm dialog:

function ConfirmDlgEvent(sField, sMsg, bCancel, bSubmit)

The parameter string is then added to the function name (notice that you have to return the
function value to the underlying control to be able to cancel the event). This is followed by
code to attach the function to the control itself. You can get a reference to the control in the
hosting page with the FindControl method. By calling this for the Parent instance (the Page
object that is hosting the user control), you are actually searching the Controls collection of the
hosting page.

Converting the Target Control to Its Base Class
The reference that is returned by the FindControl method (provided that the control was located)
is of type Control (the base class for all ASP.NET server controls). However, this class does not
have an Attributes collection, so you have to cast the reference to either an HtmlControl class or
a WebControl class. These are the namespace-specific base classes for the HTML controls and the
Web Forms controls, respectively, and each has an Attributes collection.

This means that you have to figure out which type the underlying control actually is. The
easiest way to do this in Visual Basic .NET is to use the TypeOf statement. The following code:

If TypeOf oCtrl Is HtmlControl Then ...

returns True if oCtrl is of type HtmlControl or
is descended from the class HtmlControl, and
the reference can therefore be safely
converted into an instance of that type.

Provided that the control specified by the
user is descended from HtmlControl or
WebControl, you can then add the event

7
Design Issues for User Controls

272

Accessing the Hidden Control Created by
the RegisterHiddenField Method
The RegisterHiddenField method inserts
the hidden control into the output as literal
text, and it does not generate a server
control. This means that you cannot access it
on the server as you normally do with server
controls. To get the value, you have to extract
it from the Request.Form collection—as
you’ll see later in this chapter.

Testing a Control Object Type in C#
In C#, you can use the is operator to
compare two classes:

if (oCtrl is HtmlControl)

or you can use the similar typeof operator:

if (typeof(oCtrl) is HtmlControl)

10 0672326744 CH07 5/4/04 12:26 PM Page 272

273Integrating Client-Side Script Dialogs

attribute to it. If it’s not one of these two types, you can do nothing with it, so you throw an
exception instead.

The Client-Side JavaScript Code
The final section of code in Listing 7.14 should be immediately familiar by now. You just
inject the JavaScript code you need into the page, making sure you only do this once—for the
first instance of the user control in the hosting page. Listing 7.15 shows the actual output this
creates, rather than the code that shows the JavaScript string being created. This is much easier
to read!

LISTING 7.15 The Client-Side Script That Is Injected by the AttachDialog Method

function AlertDlgEvent(sField, sMsg, bCancel, bSubmit) {

var hidfield = document.forms[0].elements[sField];

hidfield.value = sMsg;

alert(sMsg);

if (bSubmit) document.forms[0].submit();

return bCancel;

}

function ConfirmDlgEvent(sField, sMsg, bCancel, bSubmit) {

var hidfield = document.forms[0].elements[sField];

if (confirm(sMsg) == true)

hidfield.value = ‘True’

else

hidfield.value = ‘False’;

if (bSubmit) document.forms[0].submit();

return bCancel;

}

function PromptDlgEvent(sField, sMsg, bCancel, bSubmit) {

var hidfield = document.forms[0].elements[sField];

hidfield.value = prompt(sMsg, ‘’);

if (bSubmit) document.forms[0].submit();

return bCancel;

}

You can see that Listing 7.15 provides a separate function for each dialog type, although they all
take the same parameters and work virtually the same way. After each function gets a reference
to its own hidden field, the ID of which is passed in by the sField parameter, the function
displays the appropriate dialog. Where there is a return value, this value is inserted into the
hidden control. Because there seems to be no better option, the alert dialog method returns the
text it displayed.

10 0672326744 CH07 5/4/04 12:26 PM Page 273

Then the functions check to see if the user
specified that the form should be submitted
automatically. If he or she did, the code calls
its submit method. Otherwise, the functions
return the value of the bCancel parameter. If
this value is false, it will prevent the underly-
ing control event from taking place (as you’ve
seen in several earlier examples).

The GetDialogResult Method
The second method of the sample user
control, GetDialogResult, provides an easy way
to extract the value for a specific dialog when
the page is next posted back to the server. If
the dialog has been shown, you know that

the return value is in a hidden control, so you just have to pull it out of the Request.Form collec-
tion. Remember that because you used the RegisterHiddenField method to insert the hidden
control, it is not actually a server control.

The single parameter to the GetDialogResult method is the ID of the control you attached the
dialog to, so it’s simply a matter of building up the full control ID and returning the matching
value from the Request.Form collection, as shown in Listing 7.16.

LISTING 7.16 The GetDialogResult Method in the User Control

Function GetDialogResult(ControlID As String) As String

‘ build hidden field name

Dim sHidFieldName As String = “AHHClientDlg$” & ControlID

‘ get posted value from Request collection

Return Request.Form(sHidFieldName)

End Function

Browser-Adaptive Script Dialogs
The user control that you’ve just seen works fine with all browsers that support client-side
scripting in JavaScript (which is effectively all modern browsers and most of the older ones).
However, you can go further to achieve more useful and attractive results in Internet Explorer,
as intimated earlier in this chapter.

Internet Explorer supports VBScript and, through it, the VBScript MsgBox and InputBox functions
that can display more configurable and attractive dialogs. Figures 7.7 and 7.8 demonstrate this;
in Figure 7.7, Internet Explorer displays a VBScript MsgBox function, and in Figure 7.8 Mozilla
displays the standard JavaScript alert dialog equivalent.

7
Design Issues for User Controls

274

Using Multiple Forms with the Sample
User Control
One point to note is that the functions
assume that the controls all reside in the first
form on the page (document.forms[0]). This
is likely to be the case with ASP.NET pages,
which support only a single server-side form
per page. However, it’s possible that there
may be another client-side form (a <form>
element that does not carry the runat=
”server” attribute) located before the server-
side form. In this case, you have to change
the index to the forms collection in the script
or perhaps pass it in as a parameter instead.

10 0672326744 CH07 5/4/04 12:26 PM Page 274

275Browser-Adaptive Script Dialogs

Is it worth the effort of building code to display different types of dialogs, when only Internet
Explorer users will see any benefit? That depends on what percentage of your visitors use
Internet Explorer. According to many independent sites that report traffic figures, more than
half of their visitors are using Internet Explorer 5 or Internet Explorer 6 now. Only you can
decide, of course, but if you take advantage of a user control like the one here, adding the
feature to your sites and applications is a painless process.

To give you an idea what you can achieve, Figure 7.9 shows the seven Internet Explorer–specific
dialog types exposed from the sample user control that is described next. There are other types
and variations of the MsgBox function in VBScript as well (including three-button dialogs), but
this example doesn’t include them. You could easily add them if required.

FIGURE 7.7 A VBScript MsgBox function,
displaying a custom icon and
title.

FIGURE 7.8 The standard JavaScript alert
dialog equivalent to the
VBScript MsgBox function in
Mozilla and other browsers.

10 0672326744 CH07 5/4/04 12:26 PM Page 275

How the Adaptive Client Dialogs Example Works
This is your first real taste of building adaptive controls that produce different results in differ-
ent browsers, although you’ll see more on this topic through the remainder of this chapter and
Chapter 8. To provide two different sets of dialogs, you have to solve at least a couple issues:

n What happens if an Internet Explorer–specific dialog type is specified when the client
browser is not Internet Explorer?

n How do you handle the requirement for two different client-side scripting languages?

The following sections look at how the code in this user control differs from the previous
JavaScript-only example.

The Changes to the DialogType Enumeration in This Example
When using VBScript, you have more dialog types, so the DialogType enumeration is different
(see Listing 7.17). Notice that you retain the existing three JavaScript types but supplement
them with the seven VBScript types. The ordering within the enumeration reflects the grouping
of the three main types of dialog—information only, yes/no, and input.

LISTING 7.17 The DialogType Enumeration for the Browser-Adaptive Example

‘ enumeration of dialog types

Public Enum DialogType

Alert = 0

VBInfoMessage = 1

VBWarningMessage = 2

VBCriticalMessage = 3

Confirm = 4

VBOKCancel = 5

VBYesNo = 6

VBRetryCancel = 7

7
Design Issues for User Controls

276

FIGURE 7.9
The dialog types exposed by the sample
browser-adaptive script dialog user control.

10 0672326744 CH07 5/4/04 12:26 PM Page 276

277Browser-Adaptive Script Dialogs

Prompt = 8

VBInput = 9

End Enum

The Changes to the AttachDialog Method in This Example
The VBScript dialogs allow you to specify the title (in the title bar) as well as the message text.
So the first change to the AttachDialog method allows users to specify the title text as an extra
parameter. You can declare it as an optional parameter in this example, slotting it in after the
message text:

Sub AttachDialog(DlgType As DialogType, _

ControlID As String, EventName As String, _

MessageText As String, Optional Title As String = “”, _

Optional CancelEvent As Boolean = False, _

Optional SubmitForm As Boolean = False)

Inside this method, you have to detect which browser you are serving the current page to so
that you can decide what output to send back. The ASP.NET BrowserCapabilities object is ideal
for this, and a reference to it is obtained from the Browser property of the current Request object:

Dim oBrowser As HttpBrowserCapabilities = Request.Browser

Among the properties exposed by the BrowserCapabilities object is a Boolean value that indicates
whether the current browser supports VBScript (just what you want):

Dim bUseVBS As Boolean = oBrowser(“VBScript”)

Having stored this away in a Boolean variable named bUseVBS, you continue by creating the two
language-specific variables you’ll need in order to create parts of the output from the method.
These are the language and file extension to use when creating the <script> element in the page
(because you’ll be injecting only a reference to the script file into the page—not the complete
script section, as you did in the previous example). These are the two variables you create, with
the default values that specify JavaScript for the script file:

Dim sLang As String = “javascript”

Dim sExt As String = “js”

Now you can use the Boolean variable you collected earlier to see if the current browser is
Internet Explorer and supports VBScript. If it is, you can specify the language and file extension
for the VBScript code file. If it is not, you have to modify the dialog type the user asked for
because only the three JavaScript dialogs can be used outside Internet Explorer (see Listing 7.18).

LISTING 7.17 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 277

LISTING 7.18 Setting the Language-Specific Variables and Dialog Type

If bUseVBS = True Then

‘ set language specific variables

sLang = “VBScript”

sExt = “vbs”

Else

‘ can only use JavaScript dialogs

Select Case DlgType

Case 1,2,3: DlgType = 0

Case 5,6,7: DlgType = 4

Case 9: DlgType = 8

End Select

End If

Identifying and Specifying the Dialog Type
You need to define the function name for the selected dialog. You now have 10 different types of
dialogs available, but several of them are just repetitions of the MsgBox function, with different
values for the buttons parameter. This parameter defines the icon that is displayed in the dialog, the
number of buttons and their captions, and which is the default button. Table 7.1 shows the values;
basically, you select one value from each of the three groups (Dialog Type, Icon, and Default
Button) and add them together to arrive at the button value that will create that type of dialog.

TABLE 7.1
The Button Values for the Different Types of MsgBox Dialogs in VBScript

Feature Value

Dialog Types
OK (only) 0

OK/Cancel 1

Abort/Retry/Ignore 2

Yes/No/Cancel 3

Yes/No 4

Retry/Cancel 5

Icons
Critical 16

Question 32

Exclamation 48

Information 64

Default Buttons
Button 1 0

Button 2 256

Button 3 512

Button 4 768

7
Design Issues for User Controls

278

10 0672326744 CH07 5/4/04 12:26 PM Page 278

279Browser-Adaptive Script Dialogs

Listing 7.19 shows the code that identifies the dialog when the user calls the AttachDialog
method and assigns the appropriate values to two String variables. The first is the name of the
function (with the return keyword so that the result is passed back to the underlying control as
before), and the second is the buttons value.

LISTING 7.19 Specifying the Dialog Type and Buttons Value

‘ set dialog type details

Dim sFunction, sButtons As String

Select Case DlgType

Case DialogType.Alert:

sFunction = “return AlertDlgEvent”

sButtons = “0”

Case DialogType.VBInfoMessage:

sFunction = “return VBInfoDlgEvent”

sButtons = “64”

Case DialogType.VBWarningMessage:

sFunction = “return VBInfoDlgEvent”

sButtons = “48”

Case DialogType.VBCriticalMessage:

sFunction = “return VBInfoDlgEvent”

sButtons = “16”

Case DialogType.Confirm:

sFunction = “return ConfirmDlgEvent”

sButtons = “0”

Case DialogType.VBOKCancel:

sFunction = “return VBQuestionDlgEvent”

sButtons = “33”

Case DialogType.VBYesNo:

sFunction = “return VBQuestionDlgEvent”

sButtons = “292”

Case DialogType.VBRetryCancel:

sFunction = “return VBQuestionDlgEvent”

sButtons = “309”

Case DialogType.Prompt:

sFunction = “return PromptDlgEvent”

sButtons = “0”

Case DialogType.VBInput:

sFunction = “return VBInputDlgEvent”

sButtons = “0”

End Select

‘ create function name to attach to control

sFunction &= “(‘“ & sHidFieldName & “‘, ‘“ _

& MessageText.Replace(“‘“, “\’”) & “‘, ‘“ _

& Title.Replace(“‘“, “\’”) & “‘, “ _

10 0672326744 CH07 5/4/04 12:26 PM Page 279

& sButtons & “, “ _

& (Not CancelEvent).ToString().toLower() & “, “ _

& SubmitForm.ToString().toLower() & “);”

Notice that you need only 6 different functions to cope with the 10 different dialog types. You
can generate the 3 different information (single-button) dialogs by using the same function with
different button values. The same principle applies to the 3 different question (2-button)
dialogs.

Finally, you can build up the String value that contains the parameters required for the client-
side functions. Then, using the same code as the previous example (not repeated here; refer to
Listing 7.14), you attach the functions and their parameters to the event attributes of the target
control.

Injecting the Client-Side Script Element
The final task in this example is to inject the appropriate <script> element into the output, as
shown in Listing 7.20. The signature of the client-side functions contains a couple extra
parameters—the title for the dialog and the buttons value:

return VBQuestionDlgEvent(sField, sMsg, sTitle,

iBtns, bCancel, bSubmit)

Notice in Listing 7.20 that you escape any single quotes to prevent a script error because you’re
using single quotes as the string delimiter in the function calls.

LISTING 7.20 Injecting the Client-Side Script Reference Element

‘ create client-side script if not already registered

If Not Page.IsClientScriptBlockRegistered(“AHHClientDlg”) Then

Dim sPath As String = “/aspnet_client/custom/”

Dim sScript As String = “<script language=’” & sLang & “‘ “ _

& “src=’” & sPath & “adaptive-dialog.” & sExt & “‘><” & “/script>”

‘ add this code to the page

Page.RegisterClientScriptBlock(“AHHClientDlg”, sScript)

Even though you use JavaScript-style syntax to declare the event attributes, the controls will
successfully call into functions written in VBScript as well as functions written in JavaScript.

The Changes to the Client-Side Script Functions in This Example
As you can see from Listings 7.18 through 7.20, you have two different client-side script files
(stored in the /aspnet_client/custom/ folder), one each in JavaScript and VBScript. Depending on
which browser hits the page, you’ll deliver one or the other of these two files via the <script>
element you saw being created in the preceding section.

7
Design Issues for User Controls

280

LISTING 7.19 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 280

281Browser-Adaptive Script Dialogs

The JavaScript functions are virtually unchanged from the ones used in the previous (non-
adaptive) example. The only difference is that they accept the two extra parameters passed to
the functions, as in this example:

function ConfirmDlgEvent(sField, sMsg, sTitle,

iBtns, bCancel, bSubmit) {

Of course, they can’t make use of these parameters because the JavaScript alert, confirm, and
prompt dialogs don’t provide the features these parameters are here to support. However, these
extra parameters are used by some of the functions in the VBScript code that is delivered to
Internet Explorer browsers.

The VBScript Client-Side Script File
If the current browser is Internet Explorer, the <script> element you inject into the page will
look like this:

<script language=’VBScript’

src=’/aspnet_client/custom/adaptive-dialog.vbs’></script>

Listing 7.21 shows the complete client-side script code in the file adaptive-dialog.vbs. You can
see that, other than using VBScript syntax rather than JavaScript syntax, the three functions for
the Alert, Confirm, and Prompt dialogs are the same as in the JavaScript version. These dialogs are
supported by Internet Explorer for compatibility reasons, and they work just the same way
(although they differ slightly in appearance).

The other three functions generate either MsgBox or InputBox dialogs and use the parameters
passed to them to control the appearance, the icon, the buttons layout, and the title in the title
bar of the dialog. However, each still accesses its own hidden control on the page and inserts the
return value into it just as the JavaScript versions of the functions do.

LISTING 7.21 The VBScript Client-Side Functions

Function AlertDlgEvent(sField, sMsg, sTitle, iBtns, bCancel, bSubmit)

Set hidfield = Document.Forms(0).Elements(sField)

hidfield.Value = sMsg

Alert(sMsg)

If (bSubmit) = True Then Document.Forms(0).Submit()

AlertDlgEvent = bCancel

End Function

Function VBInfoDlgEvent(sField, sMsg, sTitle, iBtns, bCancel, bSubmit)

Set hidfield = Document.Forms(0).Elements(sField)

hidfield.Value = sMsg

MsgBox sMsg, iBtns, sTitle

If (bSubmit) = True Then Document.Forms(0).Submit()

VBInfoDlgEvent = bCancel

End Function

10 0672326744 CH07 5/4/04 12:26 PM Page 281

Function ConfirmDlgEvent(sField, sMsg, sTitle, iBtns, bCancel, bSubmit)

Set hidfield = Document.Forms(0).Elements(sField)

If (Confirm(sMsg) = True) Then

hidfield.Value = “True”

Else

hidfield.Value = “False”

End If

If (bSubmit) = True Then Document.Forms(0).Submit()

ConfirmDlgEvent = bCancel

End Function

Function VBQuestionDlgEvent(sField, sMsg, sTitle, iBtns, bCancel, bSubmit)

Set hidfield = Document.Forms(0).Elements(sField)

iResult = MsgBox(sMsg, iBtns, sTitle)

If iResult = 1 Or iResult = 4 Or iResult = 6 Then

hidfield.Value = “True”

Else

hidfield.Value = “False”

End If

If (bSubmit) = True Then Document.Forms(0).Submit()

VBQuestionDlgEvent = bCancel

End Function

Function PromptDlgEvent(sField, sMsg, sTitle, iBtns, bCancel, bSubmit)

Set hidfield = Document.Forms(0).Elements(sField)

hidfield.Value = Prompt(sMsg, “”)

If (bSubmit) = True Then Document.Forms(0).Submit()

PromptDlgEvent = bCancel

End Function

Function VBInputDlgEvent(sField, sMsg, sTitle, iBtns, bCancel, bSubmit)

Set hidfield = Document.Forms(0).Elements(sField)

hidfield.Value = InputBox(sMsg, sTitle)

If (bSubmit) = True Then Document.Forms(0).Submit()

VBInputDlgEvent = bCancel

End Function

The one main difference between the JavaScript and VBScript dialogs is that the return value
from a call to the VBScript MsgBox function is an Integer value that identifies which button the
user clicked. These values are summarized in Table 7.2. In the case of the VBQuestionDlgEvent
function, you have to test for the three different possible values that signify OK, Retry, or Yes
and return “True” or “False”, as appropriate.

7
Design Issues for User Controls

282

LISTING 7.21 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 282

283Integrating Internet Explorer Dialog Windows

TABLE 7.2
The Return Values for the Buttons in a VBScript MsgBox Dialog

Button Clicked Value

OK 1

Cancel 2

Abort 3

Retry 4

Ignore 5

Yes 6

No 7

The hidden controls will contain the same types of values when submitted to the server as in
the previous JavaScript-only example, regardless of the language and dialog type used.
Therefore, the GetDialogResult method is unchanged, and the user control produces exactly the
same performance and results as the non-adaptive version—but it takes advantage of the extra
capabilities of Internet Explorer to give a more attractive (and often intuitive) outcome.

Integrating Internet Explorer Dialog Windows
You’ve just seen how you can build a user control that makes it easy to leverage features in
Internet Explorer, without compromising support for other browsers. Another dialog-related
feature of Internet Explorer is useful if you want to present users with a custom dialog that
contains more than the simple buttons or text input combination used in the previous example.

Internet Explorer contains a feature that
allows you to pop up both modal and mode-
less dialogs. The user control you’ve just seen
in the previous example integrates the stan-
dard range of modal dialog boxes. The sample
page you see here implements modal dialog
windows in Internet Explorer. Figure 7.10
shows the sample page, with the various
options you can select for the dialog window.
As well as specifying the size and position,
you can control whether the window is resiz-
able, whether it has a status bar and scroll-
bars, the border style, and the presence of a
Help button.

This example also provides an option to specify whether the main page will be posted back to
the server when the dialog window is closed or whether the click event of the button that
opens the dialog will be canceled (the CancelEvent property). Finally, you can pass an optional
string parameter (as the Arguments property) to the dialog.

Modeless Dialog Windows in Internet
Explorer
This example uses only a modal dialog
window. Modeless dialog windows are harder
to implement, but they are powerful in that
you can have code executing in both the
main page and the dialog page concurrently,
and that code can call methods and pass
values between the dialog and main windows
as it executes. You can search the MSDN
online SDK for showModelessDialog Method
for more details.

10 0672326744 CH07 5/4/04 12:26 PM Page 283

The dialog window itself is shown in Figure 7.11. This dialog window displays a list of
customers, and the ID of each customer is a clickable link. This is in fact just an ordinary Web
page, allowing you to create whatever content you want to appear in the dialog window.

7
Design Issues for User Controls

284

FIGURE 7.10
A sample page that opens an Internet Explorer
modal dialog.

FIGURE 7.11 A modal dialog page in
Internet Explorer.

This chapter doesn’t list the code used to
create the page displayed in the dialog
window because it’s not really relevant to the
discussion here. In fact, this example takes
advantage of the Internet Explorer–specific
feature that can implement client-side data
binding through the Tabular Data Control
(TDC). Because you know that only Internet
Explorer will display this page, you can make
it more interactive by adopting this useful
feature (for example, you can sort the rows by
using the links in the column headings,
without requiring a postback). You can
examine the code if you wish by clicking the
[view source] link at the bottom of the page.

Clicking one of the customer ID links closes the dialog window and passes the value back to the
main page. When the page is submitted (either automatically when the CancelEvent property is

Using Hyperlinks in a Modal Dialog Window
The Web page you open in the dialog window
can contain hyperlinks, ordinary <form>
elements, and/or an ASP.NET server-side
<form runat=”server”> element. However,
because the dialog is modal, the default
behavior is for these to open in a new
browser window rather than within the dialog
window. To force them to open or post back
to the dialog window, you must add a <base>
element to the <head> section of the page
that is displayed in the dialog, as in this
example:

<base target=”_self” />

10 0672326744 CH07 5/4/04 12:26 PM Page 284

285Integrating Internet Explorer Dialog Windows

False or when the user clicks the Get Result button), the selected value is displayed in the page,
as shown in Figure 7.12. If you close the dialog by clicking the Close button rather than select-
ing a customer, the result comes back as undefined. You can detect and use the result in your
server-side code, just as you can with the previous dialog examples in this chapter.

FIGURE 7.12 The result from the sample
dialog is displayed in the page
after a postback.

Notice that the dialog window contains a Help button in the title bar. If you click this button,
the cursor changes to the familiar Help style. Then, when you click on an element within the
window, a simple alert dialog containing the help text pops up. You have to implement this
pop-up dialog yourself by attaching a client-side event handler to the onhelp event attribute of
each element. Take a look at the source code by clicking the [view source link] at the bottom of
the page in the dialog window to see how it’s done.

How the Modal Dialog Window Example Works
The general approach and techniques used in this example are the same as those for the previ-
ous dialog examples. The principle of attaching client-side code to a control in the page to open
the dialog window and then saving the result in a hidden control from where it can be collected
by the GetDialogResult method is the same. What differs in this example is the client-side code
used to show the dialog and extract the result when it is closed. The next section looks at how
this is done.

The Internet Explorer showModalDialog Method
The syntax of the showModalDialog method used in this example is as follows:

returnValue = window.showModalDialog(URL, arguments, features)

where:

n URL is the relative or absolute URL of the page to display in the dialog window. Remember
to include <base target=”_self”> in the <head> section of the page if you want to be able to
use ASP.NET pages, forms, or hyperlinks in the dialog.

n arguments is a String value or an array of String values that are available to code running
in the dialog window page. This example uses a simple String value.

n features is a String value that contains instructions on what features to display for the
dialog window. These features are summarized in Table 7.3. Notice how the syntax of the
string, and the names of some of the features, are subtly different from the features string
used to open a new browser window via the more commonly used window.open method.

10 0672326744 CH07 5/4/04 12:26 PM Page 285

TABLE 7.3
The Features You Can Specify for a Modal Dialog Window

Feature Name Value Description
dialogHeight, dialogLeft, An integer or a The size and position of the dialog window relative to the
dialogTop, dialogWidth fractional number top-left corner of the screen. The recommended unit is pixels

(px), and the minimum width and height are 100 pixels.

center yes, no, 1, 0, on, off Locates the dialog at the center of the current browser
window. The default is yes.

dialogHide yes, no, 1, 0, on, off Specifies whether the dialog will be shown in print and print
preview. The default is no. This option is not available for
nontrusted applications.

edge sunken, raised Specifies the style of the dialog border. The default is raised.

help yes, no, 1, 0, on, off Specifies whether the dialog will display the Help button in
the title bar. The default is yes.

resizable yes, no, 1, 0, on, off Specifies whether the user can resize the dialog window. The
default is no. This feature is available only in Internet
Explorer 5.5 and higher.

scroll yes, no, 1, 0, on, off Specifies whether the dialog window will display scrollbars.
The default is yes.

status yes, no, 1, 0, on, off Specifies whether the dialog window will display the status
bar. The default is yes for nontrusted applications and no for
trusted applications. This feature is available only in Internet
Explorer 5.5 and higher.

unadorned yes, no, 1, 0, on, off Specifies whether the dialog window will display a border. The
default is no, but this feature is not available for nontrusted
applications.

Listing 7.22 shows the property (field) declarations for the user control that displays a modal
dialog window. These declarations equate to the options shown in Figure 7.10 and to the values
in Table 7.3 for the features of the dialog window. The code applies sensible default values to
each one in case the user of the control does not set them. This example uses simple Public
fields rather than property accessor routines to avoid repetition and unnecessary complexity—
but you might prefer to implement accessors in your own code.

LISTING 7.22 The Property Declarations for the User Control

Public Arguments As String = “”

Public BorderRaised As Boolean = False

Public CancelEvent As Boolean = False

Public Center As Boolean = True ‘Top and Left must be empty

Public Height As Integer = 400

Public HelpButton As Boolean = False

Public Left As Integer = 150

Public Resizable As Boolean = False ‘IE 5.5 and above only

Public ScrollBars As Boolean = True

Public StatusBar As Boolean = False ‘IE 5.5 and above only

Public Top As Integer = 150

Public Width As Integer = 600

7
Design Issues for User Controls

286

10 0672326744 CH07 5/4/04 12:26 PM Page 286

287Integrating Internet Explorer Dialog Windows

The Changes to the AttachDialog Method in This Example
Due to the number of variables the user can specify for a modal dialog, this example exposes the
properties in the preceding section rather than passing them all into the AttachDialog method
(as happens in the two previous examples). So the AttachDialog method in this example requires
only three parameters: the ID of the control to attach the dialog to, the name of the event for
that control, and the URL of the page to display in the dialog window.

Listing 7.23 shows the first of the changes you have to make to the AttachDialog method. This
example validates the values provided in the parameters, to the extent that they are not empty
String values, and throws an exception if they are.

Then you can build up the String value that represents the features you want to make available
for the dialog window. You set the values of a range of individual String variables that you’ll use
to create the final features string later on.

LISTING 7.23 The First Part of the AttachDialog Method

Public Sub AttachDialog(ControlID As String, _

EventName As String, _

SourceURL As String)

‘ check values are provided for parameters

If ControlID = “” Then

Throw New Exception(“Must specify ID of target control”)

End If

If EventName = “” Then

Throw New Exception(“Must specify name of event to handle”)

End If

If SourceURL = “” Then

Throw New Exception(“Must specify URL of page to display”)

End If

‘ variables used to build client-side script

Dim sFeatures, sScript As String

Dim sResize As String = “no”

If (Resizable = True) Then

sResize = “yes”

End If

Dim sStatus As String = “no”

If (StatusBar = True) Then

sStatus = “yes”

End If

Dim sBorder As String = “sunken”

If (BorderRaised = True) Then

sBorder = “raised”

End If

Dim sScroll As String = “no”

10 0672326744 CH07 5/4/04 12:26 PM Page 287

If (ScrollBars = True) Then

sScroll = “yes”

End If

Dim sHelp As String = “no”

If (HelpButton = True) Then

sHelp = “yes”

End If

Because a couple of the features for dialog windows are available only in Internet Explorer 5.5
and higher, you next use the BrowserCapabilities object (exposed by the ASP.NET Request.
Browser property) to check the browser type and version (see Listing 7.24). You create a Decimal
(floating-point) value that contains the major and minor version numbers.

Then, provided that you haven’t already done so in a previous instance of the control, you
build the client-side script in a String variable (as you’ve done in previous examples). The client-
side script here appears to be a bit more complex than that in earlier examples because you have
to create the features string as you go along. When the script is complete, you can create the
function name and parameters string and attach the whole thing to the target control in exactly
the same way as in the two previous examples (the code for this is not repeated here; refer to
Listing 7.15).

LISTING 7.24 Sniffing the Browser Type and Creating the Client-Side Script

‘ get browser version, but only if it’s Internet Explorer

Dim fVer As Decimal = 0

If Request.Browser.Browser = “IE” Then

Try

Dim iMajor As Integer = Request.Browser.MajorVersion

Dim iMinor As Integer = Request.Browser.MinorVersion

fVer = Decimal.Parse(iMajor.ToString() & “.” _

& iMinor.ToString())

Catch

End Try

End If

‘ create client-side script if not already registered

If Not Page.IsClientScriptBlockRegistered(“AHHIEDlg”) Then

‘ decide whether position is specified or centered

If (Center = True) Then

sFeatures = “center:yes;”

Else

sFeatures = “dialogTop:” & Top.ToString() _

& “px;dialogLeft:” & Left.ToString() & “px;”

End If

7
Design Issues for User Controls

288

LISTING 7.23 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 288

289Integrating Internet Explorer Dialog Windows

sFeatures &= “dialogHeight:” & Height.ToString() _

& “px;dialogWidth:” & Width.ToString() _

& “px;edge:” & sBorder & “;scroll:” _

& sScroll & “;help:” & sHelp & “;”

‘see if it’s IE 5.5 or higher

If fVer >= 5.5 Then

sFeatures &= “resizable:” & sResize _

& “;status:” & sStatus & “;”

End If

sScript = “<script language=’javascript’>” & vbCrlf _

& “<!--” & vbCrlf _

& “function IEDlgEvent(sURL, sArgs, sFeatures, sField,” _

& “ bSubmit) {“ & vbCrlf _

& “ var oHidden = document.getElementById(sField);” & vbCrlf _

& “ oHidden.value = window.showModalDialog(sURL, sArgs,” _

& “ sFeatures)” & vbCrlf _

& “ return bSubmit;” & vbCrlf _

& “}” & vbCrlf _

& “//-->” & vbCrlf _

& “<” & “/script>” & vbCrlf

Page.RegisterClientScriptBlock(“AHHIEDlg”, sScript)

End If

‘ create function name to attach to control

‘ must escape any single quotes in agruments string

Dim sArgs As String = Arguments.Replace(“‘“, “\’”)

Dim sFunctionName As String = “return IEDlgEvent(‘“ _

& SourceURL & “‘, ‘“ & sArgs & “‘, ‘“ _

& sFeatures & “‘, ‘“ & sHidFieldName & “‘, “ _

& (Not CancelEvent).ToString().ToLower() & “);”

‘ attach client-side event handler to element

... as in previous examples ...

To make it easier to see the result, the client-side script function named IEDlgEvent that is gener-
ated and injected into the page is shown in Listing 7.25. It takes as parameters the URL of the
page to display, the arguments string to pass to the dialog, the features string, the name of the
hidden control where the return value will be placed, and a Boolean value that specifies whether
the underlying control event will be canceled. You can see that the return value from the
showModalDialog method is simply placed into the hidden control when the dialog is closed, and
the value of the bSubmit parameter is returned to the underlying control.

LISTING 7.24 Continued

10 0672326744 CH07 5/4/04 12:26 PM Page 289

LISTING 7.25 The Client-Side IEDlgEvent Function That Is Generated by the User Control

function IEDlgEvent(sURL, sArgs, sFeatures, sField, bSubmit) {

var oHidden = document.getElementById(sField);

oHidden.value = window.showModalDialog(sURL, sArgs, sFeatures)

return bSubmit;

}

The IEDlgEvent function, shown in Listing 7.25, is called by the event handler attribute attached
to the target control—which, depending on the property settings made in the main page,
should look something like this:

return IEDlgEvent(‘dialogpage.aspx’, ‘S’, ‘center:yes;

dialogHeight:300px;dialogWidth:500px;edge:Sunken;scroll:yes;

help:yes;resizable:no;status:no;’, ‘AHHIEDlg$test1’, true);

Returning a Value from the Modal Dialog
The final issue to consider in the sample page is how to get the value selected in the dialog page
back to the main page. In fact, all you need to do is assign it to the returnValue property of the
window object that is hosting the main page and then close the dialog window by calling its
close method:

window.returnValue = sMyReturnVal;

window.close();

The value assigned to the returnValue property then appears as the return value of the call to the
showModalDialog method that originally opened the dialog window.

Browser-Adaptive Dialog Windows
As you discovered in the earlier examples in this chapter, it’s possible to build user controls that
automatically adapt to suit different browsers. The following sections show you how to build a
version of the Internet Explorer dialog window example that works in a similar way in other
browsers. The sample page that contains the options you can set is shown in Figure 7.13, and
you can see that the one extra property is ModalDialog, which you can set to True or False.

When ModalDialog is set to True and the page is viewed in Internet Explorer, the result is the
same as that in the previous example. A modal Internet Explorer dialog window is shown. If you
change ModalDialog to False or view the page in a different browser, it seems at first that the
result is the same (see Figure 7.14). However, this is actually a new browser window instance
and not a modal dialog. By setting the appropriate features when you call the standard
window.open method (which all browsers support), you get a similar appearance.

7
Design Issues for User Controls

290

10 0672326744 CH07 5/4/04 12:26 PM Page 290

291Browser-Adaptive Dialog Windows

However, one major difference in this case is that you can no longer easily provide automatic
postback (although it is possible, as you’ll see later in this chapter). The new window executes
separately from the main window. However, you use script in the new window to insert the
value the user selects into the hidden control in the main window, so it can be collected on a
postback from the main window (exactly as shown in Figure 7.12). You just click the Get Result
button after selecting a value (which closes the new window) to see this occur.

How the Browser-Adaptive Dialog Window Example Works
Much of the code in this example is the same as the code for the previous example. These are
the important points where it differs:

n In this example, you have to detect the browser type as before, but this time, you have to
determine whether it is Internet Explorer or some other browser.

n If the browser type is not Internet Explorer, you generate a features string that uses the
syntax and names specific to the window.open method rather than to the window.
showModalDialog method. Here’s an example:

“top=150,left=150,height=320,width=500,scrollbars=yes,

resizable=no,status=no,titlebar=yes,menubar=no,location=no,

fullscrceen=no,toolbar=no,directories=no”

FIGURE 7.13
The browser-adaptive dialog window sample
page.

FIGURE 7.14 The nonmodal (new window)
dialog page.

10 0672326744 CH07 5/4/04 12:26 PM Page 291

n You must generate and inject a different client-side script function, which calls the
window.open method rather than the window.showModalDialog method. In addition, when
using the window.open method, you can’t assign the return value to the hidden control.

n There is no arguments parameter for the window.open method, but you need to pass the
optional argument to the new window. So that the dialog page can work in both versions,
you append this value to the URL of the new page as a query string for both the
window.open method and the window.showModalDialog method. You can extract it from the
Request.QueryString collection within the new page by using the GetWindowArgument method
(which is described shortly). These are the two functions you generate to open a new
browser window and a modal dialog window:

function IEDlgEvent(sURL, sArgs, sFeatures, sField, bSubmit) {

window.open(sURL + ‘?arg=’ + escape(sArgs), ‘_blank’, sFeatures);

return false;

}

function IEDlgEvent(sURL, sArgs, sFeatures, sField, bSubmit) {

var oHidden = document.getElementById(sField);

oHidden.value = window.showModalDialog(sURL + ‘?arg=’

+ escape(sArgs), ‘’, sFeatures);

return bSubmit;” & vbCrlf _

n You have to use a different technique in a new browser window to get the selected value
back to the main window and then close the new window. You’ll see how this is achieved
in the following section.

As with the modal dialog window example, this chapter doesn’t list all the code for the page
you see displayed in the new window (the list of customers). However, this example uses server-
side (ASP.NET) data binding rather than the Internet Explorer–specific client-side data binding
approach used in the modal window in the previous example. This means that the dialog page
will work on non–Internet Explorer browsers as well as in Internet Explorer. You can use the
[view source] link at the bottom of the page in the dialog window to see this code if you wish.

Returning a Value from the New Window
When you open a new browser window to act as a dialog, there is no facility to specify an
optional arguments parameter when opening the window or for returning a value to the main
window directly (as is possible with the Internet Explorer showModalDialog method). Instead, you
expose two extra methods from this version of the user control, which are designed to be used
in the page that is displayed in the dialog window. Using these methods means that you have to
register the user control in the page that you show in the dialog window, as well as in the main
page.

Listing 7.26 shows the two methods. The GetWindowArgument method takes the ID of the control
that the script for opening the dialog or new window was attached to, and it simply extracts the
value from the Request.QueryString collection where it was placed by the client-side code that
opened the dialog or new window. Recall that you pass the value in the query string in all cases,

7
Design Issues for User Controls

292

10 0672326744 CH07 5/4/04 12:26 PM Page 292

293Browser-Adaptive Dialog Windows

even when using the showModalDialog method because it is the only obvious way to allow the
same page to work in the dialog window for all types of browsers.

LISTING 7.26 The GetWindowArgument and SetWindowResult Methods

Function GetWindowArgument(ControlID As String) As String

‘ get posted value from Request collection

Return Server.UrlDecode(Request.QueryString(“arg”))

End Function

Sub SetWindowResult(ControlID As String, ReturnValue As String)

‘ build hidden field name

Dim sHidFieldName As String = “AHHIEDlg$” & ControlID

‘ create client-side script

Dim sScript As String

sScript = “<script language=’javascript’>” & vbCrlf _

& “<!--” & vbCrlf _

& “if (opener != null) {“ & vbCrlf _

& “ var oHidden = window.opener.document.forms[0]” _

& “ .elements[‘“ & sHidFieldName & “‘];” & vbCrlf _

& “ if (oHidden != null)” & vbCrlf _

& “ oHidden.value = ‘“ & ReturnValue & “‘;” & vbCrlf _

& “ }” & vbCrlf _

& “else” & vbCrlf _

& “ window.returnValue = ‘“ & ReturnValue & “‘;” & vbCrlf _

& “window.close();” & vbCrlf _

& “//-->” & vbCrlf _

& “<” & “/script>” & vbCrlf

Page.RegisterStartupScript(“AHHDlgReturn”, sScript)

End Sub

The SetWindowResult method, called within the dialog or new window page, accepts the ID of
the control that the script to open the dialog or new window was attached to and the value to
be returned to the main page. You first check the opener property of the current window to see if
it contains a valid reference to the main page window that opened this window. If it does, this
provides a reference to the window object where the code that opened the new window was
located. You can reference the hidden control in that window and insert the return value into it.

If the opener property is null, you know that the current window is a modal dialog window that
was opened with the showModalDialog method. In this case, you can simply set the returnValue
property of the current window. This value will automatically be returned to the main window
and inserted into the hidden control by the code there that called the showModalDialog method.

Then, in either case, you just have to call the close method of this window. The result is that
the new window closes, and the value is available in the main page when the next postback

10 0672326744 CH07 5/4/04 12:26 PM Page 293

occurs. As with the earlier examples, it can be
extracted at this point, using the same
GetDialogResult function that is exposed by
all the versions of this user control.

The RegisterStartupScript Method
Notice that you build the script code as a
String in the SetWindowResult method and
then insert it into the page by using the
RegisterStartupScript method rather than the
RegisterClientScriptBlock method used in

other examples. The RegisterClientScriptBlock method is designed to insert complete functions
into a page so that they can be called from control event handler attributes (as is done in earlier
examples). The script section is inserted into the page at the start of the server-side form section,
immediately after the opening <form> element.

The RegisterStartupScript method is designed to inject into the page client-side code that is not
a function. If you refer to Listing 7.26, you’ll see that you inject inline code that will run as the
page loads, following the postback. This is how the code inserts the return value into the hidden
control on the main page and then closes the new window. This kind of code is often referred
to as a startup script, and hence the ASP.NET method is called RegisterStartupScript.

For the startup script to work properly, the best location is at the end of the page. The
RegisterStartupScript method actually injects it at the end of the server-side form section, just
before the closing <form> element. Because the controls it references are likely to be on the form,
this will work fine in most cases. The corresponding method named IsStartupScriptRegistered
can be used to check whether this script section has already been registered (that is, already
injected into the page).

Summary
This chapter concentrates on user controls and how you can take advantage of many of the
features they offer to build reusable content that can implement useful controls or methods in a
range of types of browsers.

This chapter starts by looking at how user controls affect the design and implementation of
your code and user interface. The main issue here is coping with the possibility that the control
may be used more than once in the same page, and there are techniques and features of
ASP.NET that help you to manage this. In particular, you can easily prevent duplicate script
sections from being injected into a page.

Then, to focus more closely on techniques for building user controls, this chapter shows how
you can convert the MaskedEdit control you created in Chapter 6 into a user control. Along the
way, this chapter looks at issues such as referencing separate script and image files and adding
client-side and server-side validation with the ASP.NET validation controls.

7
Design Issues for User Controls

294

Implementing AutoPostback when the
Dialog Window Closes
If you want to provide automatic postback
when the new window is closed, you can
achieve this by adding code to the script
injected by the SetWindowResult method. All
you need to do is call the submit method of
the form on the main page before you call
the close method of the new window.

10 0672326744 CH07 5/4/04 12:26 PM Page 294

295Summary

Next, this chapter shows how to build a new user control—a SpinBox control—from scratch.
While many of the techniques are the same as you used for the MaskedEdit control, this chapter
looks at things like checking property value settings, throwing exceptions, and implementing
AutoPostback from a composite control.

The remainder of this chapter concentrates on a series of examples that have no visible user
interface yet make it easy for you to add useful features to Web applications by taking advantage
of client-side dialog boxes and dialog windows. While some of the features are specific to
Internet Explorer, this chapter shows how you can quite easily build controls that adapt to
different types of browsers.

This last technique described in this chapter—providing graceful fallback for browsers that don’t
implement features you want to take advantage of—leads neatly in to Chapter 8. You’ve already
learned about and built a couple of these browser-adaptive controls, and you’ll see a lot more on
this topic in Chapter 8. In particular, you’ll extend the SpinBox control introduced in this
chapter into a full-fledged browser-adaptive server control.

10 0672326744 CH07 5/4/04 12:26 PM Page 295

10 0672326744 CH07 5/4/04 12:26 PM Page 296

8
Building
Adaptive
Controls

The previous three chapters discuss differ-
ent ways to provide useful reusable content
for Web sites and Web applications, while
taking advantage of the features of more
recent browser versions to achieve the best
in interactivity and performance. Those
chapters concentrate mainly on user
controls, which provide an ideal environ-
ment to achieve reusability while being rela-
tively quick and easy to build.

This chapter concentrates on an approach
mentioned a few times in this book—
building server controls. This is, in many
ways, the ultimate technique for reusable
content because it avoids the issues related
to user controls that can limit their useful-
ness.

This chapter looks at two different server
controls, both developed from user controls
built in previous chapters. You’ll see how
you can easily convert the MaskedEdit
control into a server control—effectively a
TextBox control with extra behavior added.

Then this chapter looks at the SpinBox
control, again taking it from the user
control stage shown in Chapter 7, “Design
Issues for User Controls,” to a full-fledged
server control. The SpinBox control is a

IN THIS CHAPTER
The Advantages of Server Controls 298

The Basics of Building Server Controls 298

Building a MaskedEdit Server Control 305

BEST PRACTICE:
Providing a Default Constructor for
a Class 307

BEST PRACTICE:
Specifying the Versions of Command-
Line Tools 312

Building a SpinBox Server Control 315

Making the SpinBox Control Adaptive 335

Installing a SpinBox Control
in the GAC 348

Summary 352

11 0672326744 CH08 5/4/04 12:24 PM Page 297

composite control in that it contains more than one element; it therefore requires some addi-
tional implementation. You’ll learn how to take this control beyond the first stage of being a
basic server control to make it adapt its output for different browsers. You’ll also install it in the
global assembly cache (GAC) to make it available machinewide to all applications.

The Advantages of Server Controls
Before we dive into implementation of server controls, it’s probably a good idea just to reiterate
the advantages they provide over other types of reusable content:

n Server controls hide their implementation from the user in a far more
comprehensive manner than user controls—The source file is compiled into
Intermediate Language (IL) code and does not have to be present in order for the control
to be used. User controls, on the other hand, are like ordinary ASPX pages in that they
have to be present on the machine. They can be opened and the source code viewed, just
like an ASPX page. (Code-behind files that are created by Visual Studio .NET are compiled.)

n Server controls raise events that can be handled in the hosting page—In fact,
this is often a major requirement for a control. Microsoft recommends that event handlers
for user controls should only be placed within the user control, which can limit their
usefulness in some scenarios.

n Server controls can be installed in the GAC—This means that they are available to
any application running on the machine. Remember that user controls can be used only
within the application where they reside, so they require you to maintain multiple copies
if you want to use them in more than one application.

These are three significant features and should convince you that it’s worth the extra effort
involved in building controls this way. It’s certainly not as quick or as easy as building a user
control, but you’ll find that as you build more, you’ll really start to appreciate the advantages.

This book doesn’t have room for a full reference or tutorial on building server controls. Besides,
you might have already started building your own controls. Therefore, the aim of this chapter is

to demonstrate how you can get the most
from the techniques involved in building
server controls. However, this chapter shows
how to get started, the basic features you
need to implement for a server control, and
how you can achieve the appearance and
behavior you want.

The Basics of Building Server Controls
The first step in building a control of any kind is to decide exactly what you want from it—just
as you have done with user controls in earlier chapters. You can even take advantage of the

8
Building Adaptive Controls

298

The ASP.NET QuickStart Server Control
Tutorial
A useful guide for starting to create server
controls is included in the QuickStart samples
provided with ASP.NET and is available online
at www.dotnetjunkies.com/quickstart/
aspplus/doc/webctrlauthoring.aspx.

11 0672326744 CH08 5/4/04 12:24 PM Page 298

299The Basics of Building Server Controls

same technique you sometimes use when building user controls. It’s not unusual to identify
sections of code or user interface in ASPX pages that you want to reuse, so you pull them out
and package them up as a user control. From there, you develop the code interface and the user
interface, often adapting the content as you go to achieve the result you want.

When you do this, you actually complete much of the design process for the equivalent server
control. For example, you already know how the user interface should be constructed (which
elements and attributes are required), which properties and methods must be exposed, and the
implementation of the code within the control.

Of course, you still need to consider how the move to a server control might change things. For
example, the ability to expose events might make some tasks much easier to perform in a server
control. You might want to raise an event when some values change, and you can then pass
those values to the hosting page as properties of an event object—in the same way that many of
the built-in ASP.NET controls do.

The Process of Building a Server Control
The following is a list of steps involved in building a server control:

n Design the user interface that the control will implement. This might be as simple as a
single control (such as the MaskedEdit control you’ll see shortly), or it might be a
compound control involving multiple elements (such as the SpinBox control covered later
in this chapter).

n Design the code interface that will be exposed by the control, including the properties,
methods, and events that you want the control to provide.

n Figure out which existing class to inherit from. This class can provide many of the features
and behavior that a server control must exhibit, and it saves you from having to imple-
ment all the basic features yourself. You just override existing features that you don’t want,
in order to remove them or change their behavior, and add any extra features you need.

n Plan where and how the control must handle the events raised by the ASP.NET page
framework so that you know when and where you need to interact with the framework
and the base class to create the required output in the page.

n Create the class file to implement the control, compile it, test it, and then deploy it.

In this chapter you’ll work through all these steps for two server controls. However, because
you’ve already built them both as user controls, you already roughly know what the code inter-
face, user interface, and implementation should look like.

The Life Cycle of ASP.NET Controls
When you build server controls, the life cycle (that is, the way that the controls are instantiated,
the events that they react to, and the point at which they are destroyed) is relatively simple. As
you have seen in earlier chapters, the ASP.NET page framework creates an instance of the user

11 0672326744 CH08 5/4/04 12:24 PM Page 299

control and inserts it into the control tree of the page. It raises the Init event for every user
control on the page before it raises the Init event for the page itself.

Then, after the complete control tree for the page and the controls it contains has been
constructed, ASP.NET retrieves the viewstate and any posted data from the form (if this is a post-
back) for all the controls, and it sets their values. Finally, when all the information is available,
it raises the Load event for the page, followed by the Load event for each user control.

In almost all cases, you only need to react to the Load event in a user control (through an event
handler for its Page_Load event). At that point, you know that the control tree for the complete

page is available, so you can access other
controls and their values, both within the
user control and in the hosting page.

Of course, user controls themselves are server
controls as well—in the sense that they
inherit from the base class System.Web.UI.
UserControl. Therefore, they receive several
other events, such as PreRender, Unload, and
Disposed. However, these events are rarely
useful for the common kinds of user controls
you will create.

The Life Cycle of a Server Control
An ASP.NET server control has a life cycle similar to that of user controls, which is to be
expected because both types of controls inherit from the base class for all ASP.NET controls—
System.Web.UI.Control. The Control class handles just six events, which are shown in Table 8.1 in
the order in which they occur.

TABLE 8.1
The Events Handled by the Control Class, in the Order in Which They Occur

Event Description

Init Occurs when the control instance is created and initialized.

Load Occurs when the control is loaded into the ASP.NET page as part of the control tree.

DataBinding Occurs when the control binds to a data source.

PreRender Occurs just before the control creates its output into the containing page.

Unload Occurs when the control is unloaded from memory.

Disposed Occurs when the control is released from memory.

As you can see from Table 8.1, there is little difference between the series of events in the life
cycle of a server control and that in the life cycle of a user control. However, the .NET
Framework provides another two base classes from which you can inherit; they provide far more
comprehensive support for building custom server controls.

8
Building Adaptive Controls

300

The Events for a User Control
The events that a user control can handle
mirror those that are available for an ASPX
page, such as DataBinding (which occurs
when the server control binds to a data
source), AbortTransaction (which occurs
when a user aborts a transaction), and
CommitTransaction (which occurs when a
transaction completes).

11 0672326744 CH08 5/4/04 12:24 PM Page 300

301The Basics of Building Server Controls

Recall that there are two types of server controls provided with ASP.NET: the HTML controls in
the System.Web.UI.HtmlControls namespace and the Web Forms controls in the System.Web.UI.
WebControls namespace. The latter type of control provides much more in the way of features
than the former, including automatic adaptability for different browsers (“up-level” and “down-
level”), provision of the AutoPostback feature, and a wide range of useful list controls.

The two types of controls are descended from two different base classes, HtmlControl and
WebControl. These classes provide the default behavior that is required by all the server controls
that are descended from them. For example, they provide support for viewstate by implementing
the IStateManager interface and for handling
postback values through the
IPostBackDataHandler and
IPostBackEventHandler interfaces.

You can override methods and handle events
that these interfaces expose, together with the
methods and events of the base classes, to
build server controls that plug into an ASPX
page and behave just like the “native” server
controls provided with ASP.NET.

Creating a Class for a Server Control
A server control is simply a .NET Class file that is compiled into an assembly and instantiated
within an ASP.NET page. Depending on which base class you inherit from, you must import the
namespaces that contain that base class and any other classes you use. For example, Listing 8.1
shows the minimum definition of a server control that inherits from the Control class.

LISTING 8.1 The Minimum Definition of a Server Control

Imports System

Imports System.Web

Imports System.Web.UI

Namespace Stonebroom

Public Class MyClassName

‘ specify base class to extend

Inherits Control

Overrides Protected Sub Render (oWriter As HtmlTextWriter)

‘generate the output required from the control

End Sub

End Class

End Namespace

Determining the Control Base Type
In the section “The AttachDialog Method” in
Chapter 7, you saw the use of the two differ-
ent base classes when you were binding
events to a control. In that example, you had
to determine whether a reference returned
from the FindControl method was to a
control that inherits from HtmlControl or
WebControl by using the statement If
TypeOf oCtrl Is HtmlControl.

11 0672326744 CH08 5/4/04 12:24 PM Page 301

The System.Web.UI namespace is required because this is where the Control and HtmlTextWriter
classes are defined. As you can see from Listing 8.1, you declare a namespace for the new class,
and it should be something specific to you or your organization because it will form part of the
fully qualified name of the class. You should not be tempted to use System, which is reserved for
the classes that are part of the .NET Framework.

You also specify the class you are inheriting from—in this case, Control. Then, to generate the
output from the control, you override the Render method of the base Control class. The output
you create here will be injected into the ASP.NET page that uses the control.

In some cases, you might need to import other namespaces as well. For example, if you decide
to inherit from HtmlControl or WebControl instead of Control, you must import the appropriate
namespace—either this:

Imports System.Web.UI.HtmlControls

or this:

Imports System.Web.UI.WebControls

And, as you’ll see later in this chapter, you often need to import other namespaces. For example,
if you want to work with the values sent in a postback to the current page, you need to use the
NameValueCollection class. This is defined in the namespace System.Collections.Specialized, so
you would have to import it, as shown here:

Imports System.Collections.Specialized

Choosing and Extending a Base Class
As discussed earlier in this chapter, one of the most important decisions when building a server
control involves which existing class to inherit from. Obviously, you want to get as much func-
tionality as you can for free, by inheriting a control that already does most of the things you
want, so you can just add to it the few extra features you require. On the other hand, you can
go too far and end up spending more time modifying the existing rich behavior of a class to
prevent it from doing things you don’t want or need.

In most cases, the obvious choice of base class is WebControl. This class implements features that
make it easy to hook into the viewstate and postback data architecture, while leaving you free to
implement the remainder of the public interface you want to provide to uses of the control.
This is what is done in the two examples described in this chapter.

However, if you don’t want to access viewstate and postback data—perhaps to provide a control
that is not interactive or just exposes methods and no user interface—you might decide to
inherit from the base class Control instead of WebControl.

8
Building Adaptive Controls

302

11 0672326744 CH08 5/4/04 12:24 PM Page 302

303The Basics of Building Server Controls

Inheriting from the Control Class
When you inherit from the Control class, the common approach is to handle just two events:

n Init—In this event, you initialize any variables you’ll need and possibly generate instances
of any other classes you want to use within the control.

n Render—In this event, you generate the complete output for the control. The Render event
handler receives a reference to the HtmlTextWriter class that will be used to generate the
output for the control, and you can call various methods of the HtmlTextWriter class to
create the output you want for the control. Some of the most commonly used methods are
shown in Table 8.2.

TABLE 8.2
Commonly Used Methods of the HtmlTextWriter Class for Generating Output from a Control

Method Description

Write, WriteLine, WriteLineNoTabs Write the string representation of a variable to output,
with or without a carriage return. The WriteLineNoTabs
method does not inject any prefix tab characters into the
output.

WriteBeginTag, WriteFullBeginTag, WriteEndTag Write the opening or closing tag of the element to output
and prefix the output with tabs to maintain output layout.
The WriteFullBeginTag method adds the closing >
character of the opening tag, and the WriteBeginTag
method omits it so that attributes can be added.

RenderBeginTag, RenderEndTag Write the opening or closing tag of the element to output
without prefixing them with tabs.

AddAttribute, WriteAttribute Add an HTML attribute and its value to the output.

AddStyleAttribute, WriteStyleAttribute Add an HTML style attribute and its value to the output
stream.

As an example of the use of the methods listed in Table 8.2, you can use the code shown in
Listing 8.2 to override the Render method and generate a element from a server control. It
creates the opening tag, but without the closing >, and then it adds class attributes to
this tag. Next, it closes the opening tag by using one of the predefined constant values exposed
by the HtmlTextWriter class. Then it outputs the content of the element. The last line
completes the element by adding the closing tag.

LISTING 8.2 Using the Render Method to Generate Output from a Server Control

Overrides Protected Sub Render (oWriter As HtmlTextWriter)

oWriter.WriteBeginTag(“span”)

oWriter.WriteAttribute(“class”, “large-text”)

oWriter.Write(HtmlTextWriter.TagRightChar)

oWriter.Write(“Welcome to my Web page”)

oWriter.WriteEndTag(“span”)

End Sub

11 0672326744 CH08 5/4/04 12:24 PM Page 303

Inheriting from the WebControl Class
For anything other than the most basic server control, it makes sense to inherit from the
WebControl or HtmlControl class. Usually the WebControl class is the choice because it supports
extra features that you might find useful.

The HtmlControl class provides very few properties that define the style or appearance of the
controls that descend from it because each one uses control-specific properties to define the
behavior of that control. On the other hand, the WebControl class has a host of properties for the
border, font, size, and color that are standard across all controls created from this base class.

One advantage of inheriting from the WebControl and HtmlControl base classes is that you can
override the various methods they expose to add specific sections of content to the output
generated by the control. For example, the CreateChildControls method of each WebControl
instance in a page is called when it’s time for the control to create any child control that it
requires. You just create the child controls you need and add them to the Controls collection of
the server control.

Then, when the Render method is called for the control, the child controls that are now part of
the control tree create their own output and inject it into the output of the control, in the
appropriate location. This approach is the one used to create the sample SpinBox server control
you’ll see later in this chapter.

The methods of the WebControl class that you commonly override to create custom output are
shown in Table 8.3. You’ll see several of these methods used in the examples in this chapter.

TABLE 8.3
Commonly Used Methods of the WebControl Class for Generating Output from a Control

Method Description

AddAttributesToRender Called when it’s time to add HTML attributes and styles for this control to the
HtmlTextWriter instance that is creating the output. The output to create these
attributes will be generated during the Render method.

CreateChildControls Called when it’s time for the control to create any child controls or other content
that is required to implement the control. The output to create these controls will be
generated during the Render method. This method is inherited from Control.

Render Called when it’s time to generate the output of the control. A reference to the
HtmlTextWriter instance that will create the output is passed to this method.

RenderChildren Called when it’s time for each child control to generate its output. This method is
inherited from Control.

RenderContents Called when it’s time for the control to render its content (the text between the
opening and closing tags).

Inheriting from Specific Control Classes
Besides inheriting from the WebControl class or the Control class, a third option for creating
custom controls is to inherit from an existing control that already provides most of the behavior
and appearance you need and simply add or override methods and properties to get the final
result you want.

8
Building Adaptive Controls

304

11 0672326744 CH08 5/4/04 12:24 PM Page 304

305Building a MaskedEdit Server Control

For example, if you want to implement a control that is basically just a text box but with a few
added features, you can inherit from the ASP.NET TextBox control. In this case, you don’t have
to do anything to implement the features that the TextBox control already provides, such as
generating an <input type=”text”> element, maintaining viewstate, handling postbacks to
update the value, or worrying about how to expose style properties.

You can override the methods of the TextBox control to modify the output that is generated, as
long as you call the equivalent method on the base class as well. For example, you could over-
ride the AddAttributesToRender method to add your own attributes to the <input> element that
the TextBox control generates. Then you just call the AddAttributesToRender method of the
TextBox control that you’re inheriting from to add the “standard” attributes, such as type=”text”,
id=”id-value”, and name=”control-name”. This is exactly what you’ll be doing next to create the
sample MaskedEdit server control.

Building a MaskedEdit Server Control
The MaskedEdit user control you created in Chapter 6, “Client-Side Script Integration,” is basi-
cally an ASP.NET TextBox control with extra features added. These extra features consist of attrib-
utes you add to the <input type=”text”> element that ASP.NET generates for you when you use a
TextBox control. The following are the extra attributes and features:

n A title attribute that displays the current mask and an explanation of the mask
characters.

n Four event handler attributes that connect the events in the control to the client-side
script. These event attributes are onkeydown, onkeypress, onkeyup, and onfocus.

n A client-side script file that you reference in the page through a <script> element and that
implements the event handlers for the four events of the text box. This script file is
located in the /aspnet_client/custom/ folder of the server.

n A style attribute that defines the font family, the font size, and the URL of the image that
is used to create the light gray representation of the mask for the text box background.

Figure 8.1 shows the MaskedEdit control demonstration page that uses the server control built in
this chapter. You can see the pop-up ToolTip that the title attribute generates, as well as the
underline characters of the light gray background mask.

The MaskedEdit Control Class File
Listing 8.3 shows the skeleton of the Class file that implements the MaskedEdit control. You have
to import the System, System.Web, and System.Web.UI namespaces to provide access to the
HtmlTextWriter class that appears as a parameter to the methods you are overriding and to
provide access to other features of the ASP.NET page architecture that you reference in the code.
You also need the System.Web.UI.WebControls namespace so that you can reference the TextBox
class you want to inherit from.

11 0672326744 CH08 5/4/04 12:24 PM Page 305

LISTING 8.3 The MaskedEdit Control Class File

Imports System

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Namespace Stonebroom

Public Class MaskEdit

‘ specify base class to extend

Inherits Textbox

‘ private internal member variables

...

‘ public constructor

...

‘ public property accessor declarations

...

‘ override AddAttributesToRender method

‘ called when its time to add attributes to control

OverRides Protected Sub AddAttributesToRender _

(writer As HtmlTextWriter)

...

End Sub

‘ override CreateChildControls method

‘ called when its time to create any child controls

8
Building Adaptive Controls

306

FIGURE 8.1
The MaskedEdit server control demonstra-
tion page.

11 0672326744 CH08 5/4/04 12:24 PM Page 306

307Building a MaskedEdit Server Control

OverRides Protected Sub CreateChildControls()

...

End Sub

End Class

End Namespace

After this come the namespace declaration and the class declaration. The first line of code
within the class declaration defines the class you want to inherit from—the standard ASP.NET
TextBox control. This is followed by the declaration of the private “internal” variables you’ll be
using in the code, the public constructor for the new class, and the property accessor declara-
tions.

Next come the overridden method declarations for the AddAttributesToRender method, where
you’ll add the extra attributes you need to the TextBox control, and the CreateChildControls
method, where you’ll generate the client-side script reference.

The Internal Variable Declarations for the MaskedEdit Control
There are three variables that you’ll need to access in more than one subroutine of the sample
class. Two of these represent the values of Public properties that are exposed from the class—
Mask and FontSize. You specify default values for all three of these internal variables. Remember
that you require a monospaced (fixed-pitch) font for the text box to maintain the alignment
between the text and the background mask image:

Private _font As String = “Courier New”

Private _mask As String = “”

Private _fontsize As Integer = 10

LISTING 8.3 Continued

Providing a Default Constructor for a Class
In order for a class to be created, it must expose a Public constructor. In fact, the compiler will auto-
matically add one to the class if you don’t provide any constructor routines; however, it’s always good
practice to include one. You can use the constructor to initialize variables and accept values passed
as parameters if required. However, there is no need for users of this component to provide any
values when they create an instance of the MaskedEdit control, so no parameters are required in
this example.

BEST PRACTICE

11 0672326744 CH08 5/4/04 12:24 PM Page 307

The Public Constructor for the MaskedEdit Control
Listing 8.4 shows the constructor for the sample class. Because it inherits from a base class that
implements its own functionality (as opposed to, say, inheriting from the root Object class), you
should consider calling the constructor of the base class first. Although the compiler will look
after this for you if you don’t call it explicitly, it will only be a call to the default constructor of
the base class. If you need to call any other constructor in the base class, perhaps to pass in
values, you must do so explicitly.

LISTING 8.4 The Constructor for the MaskEdit Class

Public Sub New()

‘ call constructor of base class

MyBase.New()

End Sub

The Public Property Declarations for the MaskedEdit Control
You need to expose just two properties from the MaskedEdit control: Mask and FontSize. You
aren’t validating the values applied to these properties in this example, so the property accessor

routines just update or return the value of the
corresponding internal variables—as shown
in Listing 8.5. As you can see, the syntax and
techniques for declaring properties is identical
to what you used in user controls in Chapters
5, 6, and 7.

LISTING 8.5 The Public Properties of the MaskEdit Class

Public Property Mask As String

Get

Return _mask

End Get

Set

_mask = value

End Set

End Property

Public Property FontSize As Integer

Get

Return _fontsize

End Get

Set

_fontsize = value

End Set

End Property

8
Building Adaptive Controls

308

Exposing Properties and Fields
Because this example does not validate or
process the values, they could be exposed as
fields or Public variables instead of using ac-
cessor routines, as demonstrated in Chapter 5.

11 0672326744 CH08 5/4/04 12:24 PM Page 308

309Building a MaskedEdit Server Control

The AddAttributesToRender Method for the MaskedEdit Control
The TextBox control exposes two methods that you need to override to add the specific behavior
you want for the MaskedEdit control. The AddAttributesToRender method of a control is called by
the ASP.NET page framework when it is time for the control to generate the attributes that will
be added to the element that implements the control.

Of course, the TextBox control generates an <input type=”text”> element and automatically adds
all the other attributes required to create a text box in the browser. The attributes it always adds
include id and name (which is the same as id). If there is a value in the Text property, the control
also adds the appropriate value attribute so that the text box displays the specified text content.

Of course, the control adds attributes for whatever other properties you specify values for—for
example, size (from the Columns property), style, maxlength, disabled, and so on. If you override
the AddAttributesToRender method in the custom control class, none of these attributes will
appear unless you call the AddAttributesToRender method of the TextBox control from which
you’re inheriting.

Listing 8.6 shows the AddAttributesToRender
method in the MaskEdit control class. You
have to declare it by using the Overrides
keyword to indicate to the compiler that you
want to override an existing method of the
base class. Notice that the method passes a
reference to the HtmlTextWriter class that will
be used to generate the output when the .NET
Framework calls the Render method of the
base class.

Within the AddAttributesToRender method,
you first call the AddAttributesToRender
method of the base class (TextBox) to force it
to generate the standard attributes it requires, and then you add your own custom attributes by
using the AddAttribute method of the HtmlTextWriter instance passed to the method.

LISTING 8.6 The AddAttributesToRender Method in the MaskEdit Class

OverRides Protected Sub AddAttributesToRender _

(writer As HtmlTextWriter)

‘ called when its time to add attributes to control

‘ call base class method to add standard attributes

MyBase.AddAttributesToRender(writer)

‘ create mask for display as Textbox background

Dim sQuery As String = _mask

sQuery = sQuery.Replace(“a”, “_”)

sQuery = sQuery.Replace(“A”, “_”)

sQuery = sQuery.Replace(“l”, “_”)

Non-overridden Methods of the TextBox
Class
Because you aren’t overriding the Render
method, the class will inherit it from the
TextBox class. So when the .NET Framework
calls Render on the class, the existing
Render method in the base class will be
executed. Because you don’t need to change
the way this behaves, you don’t need to over-
ride it. And, of course, the same applies to all
the other methods of the TextBox class that
you aren’t overriding in the sample class.

11 0672326744 CH08 5/4/04 12:24 PM Page 309

sQuery = sQuery.Replace(“L”, “_”)

sQuery = sQuery.Replace(“n”, “_”)

sQuery = sQuery.Replace(“?”, “_”)

‘ encode it for query string to pass to page

‘ mask-image.aspx that generates the image

sQuery = Context.Server.UrlEncode(sQuery)

‘ create Style attribute value string

Dim sStyle As String = “font-family:” & _font _

& “;font-size:” & _fontsize _

& “pt;background-image:url(mask-image.aspx?mask=” _

& sQuery & “&font=” & Context.Server.UrlEncode(_font) _

& “&size=” & _fontsize.ToString() _

& “&cols=” & Columns.ToString() & “)”

writer.AddAttribute(HtmlTextWriterAttribute.Style, sStyle)

‘ declare a carriage return character string

Dim vbCrlf As String = Convert.ToChar(13) _

& Convert.ToChar(10)

‘ create string to use as Tooltip for control

Dim sTip As String = Mask

sTip = sTip.Replace(“a”, “[a]”)

sTip = sTip.Replace(“A”, “[A]”)

sTip = sTip.Replace(“l”, “[l]”)

sTip = sTip.Replace(“L”, “[L]”)

sTip = sTip.Replace(“n”, “[n]”)

sTip = sTip.Replace(“?”, “[?]”)

sTip = “Mask: “ & sTip & vbCrlf & “ where:” _

& vbCrlf & “[a] = any alphanumeric character” _

& vbCrlf & “[A] = an uppercase alphanumeric character” _

& vbCrlf & “[l] = any letter character (A-Z, a-z)” _

& vbCrlf & “[L] = an uppercase letter character (A-Z)” _

& vbCrlf & “[n] = any numeric character (0-9)” _

& vbCrlf & “[?] = any character”

writer.AddAttribute(HtmlTextWriterAttribute.Title, sTip)

‘ add client-side event handler attributes

Dim sParams As String = “(event, this, ‘“ & _mask & “‘)”

writer.AddAttribute(“onkeydown”, _

“return doKeyDown” & sParams)

writer.AddAttribute(“onkeypress”, _

“return doKeyPress” & sParams)

8
Building Adaptive Controls

310

LISTING 8.6 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 310

311Building a MaskedEdit Server Control

writer.AddAttribute(“onkeyup”, “return doKeyUp” & sParams)

writer.AddAttribute(“onfocus”, “return doFocus” & sParams)

End Sub

You can see from Listing 8.6 that the implementation is virtually identical to what you used in
the user control version of the MaskedEdit control in Chapters 6 and 7. The major difference is
that you have to reference the built-in ASP.NET objects (such as Server, Request, and Session) via
the static Context object. For example, to URL-encode the query string for the page that creates
the background image for the text box, you use Context.Server.UrlEncode(value).

The other point to watch is that several namespaces are imported by default into ASP.NET pages,
whereas none are imported by default into a class file. This is why you have to import the
System, System.Web, and other namespaces into the class. It means that what you think are
obvious object types and constants—ones you use in ASP.NET pages all the time—are often not
available in a class file. An example of this is the predefined vbCrlf constant that represents a
carriage return. It lives in the Microsoft.VisualBasic namespace, which is imported by default
into ASP.NET pages written in Visual Basic.NET but not into a class file. You therefore have to
either import this namespace, which is useful if you want to use other Visual Basic .NET–specific
methods, or declare your own equivalent by using the following:

‘ declare a carriage return character string

Dim vbCrlf As String = Convert.ToChar(13) _

& Convert.ToChar(10)

The CreateChildControls Method for the MaskedEdit Control
The second method you override in the MaskEdit class is the CreateChildControls method. You
might wonder why, because you don’t need any child controls. This method is usually used
when building composite controls, and it is called at the point where the control should
construct the tree of child controls and add them to its Controls collection.

However, you still have to generate the <script> reference that will load the client-side script file
you need to make the control interactive. You can do it any time between when the control is
initialized and when the Render method is called. However, the call to CreateChildControls indi-
cates that ASP.NET is in the process of deciding exactly what the page will contain in the way of
controls and literal content, so it’s as good a place as any to register the client-side script.

Listing 8.7 shows the CreateChildControls
method in the MaskEdit class, which overrides
the method in the TextBox class from which
you’re inheriting. All you have to do is build
the <script> element and call the
RegisterClientScriptBlock method of the
hosting page to indicate that you want this
script injected into the output directly after

LISTING 8.6 Continued

The Page Property of a Server Control
All server controls expose the Page property.
This returns a reference to the page that is
hosting the control, regardless of the hierar-
chy of the page and the container (in this
case, the Controls collection) in which the
control resides. This property is inherited
from the base class Control.

11 0672326744 CH08 5/4/04 12:24 PM Page 311

the opening server-side <form> tag. So, again, the code in this method is exactly the same as
what is used in the user control version of the MaskedEdit control in Chapter 7.

LISTING 8.7 The CreateChildControls Method in the MaskEdit Class

OverRides Protected Sub CreateChildControls()

‘ called when its time to create any child controls

‘ just used here to add client-side script section

‘ see if previous instance of this control has already

‘ added the required JavaScript code reference to the page

If Not Page.IsClientScriptBlockRegistered(“StonebroomMaskEdit”) Then

Dim sPath As String = “/aspnet_client/custom/”

Dim sScript As String = “<script language=’javascript’ “ _

& “src=’” & sPath & “maskedit.js’><” & “/script>”

‘ add this JavaScript code to the page

Page.RegisterClientScriptBlock(“StonebroomMaskEdit”, sScript)

End If

End Sub

Compiling and Testing the MaskedEdit Control
After you create the class file and save it with the .vb file extension, you can compile it and
make sure it works. We provide a batch file named make.bat with the examples for this chapter
(see www.daveandal.net/books/6744/), which saves you from typing the complete command for
the compiler each time. This file contains just the following:

C:\WINNT\Microsoft.NET\Framework\v1.1.4322\vbc /t:library

➥ /out:..\..\bin\maskedit.dll /r:System.dll,System.Web.dll maskedit.vb

8
Building Adaptive Controls

312

Specifying the Versions of Command-Line Tools
When you use a command-line compiler (or any other command-line tools in the .NET Framework),
it’s a good idea to explicitly specify the path to the Visual Basic .NET compiler version to be used if
you have more than one version of the .NET Framework installed. If you just type vbc (or vbc.exe),
the version that comes first in your current Path environment variable will be used. This might not be
the correct version if you have multiple versions of the .NET Framework installed, so it’s a good idea
to include the full path.

BEST PRACTICE

An alternative to specifying the full path to the vbc.exe program (and, as you’ll see later, other
.NET Framework utilities) is to edit the Path variable for your machine to point to the version
you want to use. To do so, you select Start, Control Panel, System and open the Advanced page

11 0672326744 CH08 5/4/04 12:24 PM Page 312

313Building a MaskedEdit Server Control

in the System Properties dialog. Then you Click Environment Variables and then find the Path
entry in the System Variables portion of the Environment Variables dialog and click Edit (see
Figure 8.2).

FIGURE 8.2
Editing the Path environment
variable to point to the
correct .NET Framework
version.

The Parameters Required by the VBC Compiler
In this chapter you’re creating a .NET assembly, so the t(arget) parameter specifies that you
want a library (a DLL), and the out parameter specifies the path of the bin folder within the
root folder of the sample files and names the DLL maskedit.dll.

You also have to provide the names of all the
.NET Framework files that implement name-
spaces from which you use classes in the file.
This means that you must provide the values
System.dll and System.Web.dll for the
r(eferences) parameter. System.Web.dll imple-
ments the namespaces System.Web,
System.Web.UI, System.Web.UI.HtmlControls,
and System.Web.UI.WebControls, as well as
others based on System.Web. The final parame-
ter is the name of the source file (in this case,
maskedit.vb) in the current folder.

Of course, if you have Visual Studio .NET, you
can write your class files within the IDE and
compile them directly by using the Visual
Studio .NET menu commands.

Testing and Deploying the MaskedEdit Control
After you compile the class file into an assembly and place it into the bin folder, you can test it
in an ASP.NET page. The first step is to register the assembly with the page. You use a Register
directive, as you did with the user control version in Chapter 7, but this time you use the

Using the “Command Prompt Here” Utility
One of the easiest ways to use the command-
line compilers (both for Visual Basic .NET and
C#) is to install the TweakUI add-in or the
Power Toys add-in, which install a “Command
Prompt Here” link on the right-click menu for
a folder in Windows Explorer. Selecting this
link opens a command window on the current
folder, making it easy to use the make.bat
files provided with the examples for this book
or any that you create yourself. For more infor-
mation, see www.microsoft.com/
ntworkstation/downloads/PowerToys/
Networking/NTTweakUI.asp or
www.microsoft.com/technet/
ScriptCenter/other/

11 0672326744 CH08 5/4/04 12:24 PM Page 313

Assembly attribute to specify the name of the assembly without the .dll file extension (when
registering a user control, you use the Src attribute to specify the location of the .ascx file
instead):

<%@ Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”maskedit” %>

Then you can declare an instance of the
server control, just as you did with the user
control. However, this time you have an
event that you can handle in the hosting
page. You didn’t declare or implement this
event in the class file, but because you inher-
ited the TextBox class, all its events are

exposed from the custom control as well. You’ll react to the OnTextChanged event and handle it
with a routine named TextValueChanged:

<ahh:MaskEdit id=”oCtrl” runat=”server”

OnTextChanged=”TextValueChanged” />

Now you can add the server-side code that implements the event handlers to the ASPX page
that will use the MaskedEdit control. In the Page_Load event, you set three properties of the
control, including the two custom properties you added to it—the Mask and FontSize properties.
All three values come from the drop-down lists declared within the HTML section of the page
(as shown in Figure 8.3).

8
Building Adaptive Controls

314

Remember the Client-Side Script Files!
Remember to copy the client-side script file
maskedit.js provided with the examples
into a new subfolder named custom within
the aspnet_client folder of your Web site.

FIGURE 8.3 Displaying the property values
and detecting events in the
MaskedEdit server control
demonstration page.

There’s also a button on the page that has the caption Show Properties. When clicked, it
executes the ShowProperties event handler shown in Listing 8.8. This simply extracts the current
value of some properties—including the values of our two custom properties Mask and FontSize—
from the MaskedEdit control and displays them in a Label control on the page.

11 0672326744 CH08 5/4/04 12:24 PM Page 314

315Building a SpinBox Server Control

LISTING 8.8 The Event Handlers in the MaskedEdit Control Demonstration Page

Sub Page_Load()

oCtrl.Mask = selMask.SelectedValue

oCtrl.FontSize = selSize.SelectedValue

oCtrl.Columns = selCols.SelectedValue

End Sub

Sub ShowProperties(Sender As Object, Args As EventArgs)

lblResult.Text &= “Property values:” _

& “
 Mask: ‘“ & Server.HtmlEncode(oCtrl.Mask) _

& “
 FontSize: “ & oCtrl.FontSize _

& “
 Columns: “ & oCtrl.Columns _

& “
 Text: ‘“ & oCtrl.Text & “‘
”

End Sub

Sub TextValueChanged(Sender As Object, Args As EventArgs)

lblResult.Text &= “Detected TextChanged event for control “ _

& Sender.ID & “.
”

End Sub

The third event handler shown in Listing 8.8
displays a message whenever the TextChanged
event is raised by the MaskedEdit control.
You’ll see this appear whenever you change
the text in the MaskedEdit control and post
the page back to the server by clicking the
Show Properties button. Figure 8.3 shows the
results.

Building a SpinBox
Server Control
In Chapter 7 you built a composite control that generates a SpinBox control in the browser. This
neat and useful control allows users to easily enter or select a numeric value, and you built it so
that the up and down buttons could be used to change the value without requiring postback to
the server.

In this chapter, you’ll convert that control into a server control, to demonstrate how easy it is
to build even quite complex composite controls that react just like the standard Web Forms
controls provided with ASP.NET. Figure 8.4 shows the SpinBox control demonstration page, and
you can experiment with it to see how it works and the properties it exposes.

Clearing the Contents of the TextBox
Control
Not shown in Listing 8.8 but included in the
sample page is an event handler that simply
clears the contents of the text box whenever
you select a different mask in the first drop-
down list. The MaskedEdit control, because it
is based on the TextBox control, automati-
cally maintains its value through the view-
state of the page, so it must be cleared
whenever a different mask is selected.

11 0672326744 CH08 5/4/04 12:24 PM Page 315

The Standard SpinBox Control Class File
The SpinBox control shown in Figure 8.4 is implemented as a Class file, just like the MaskedEdit
control examined in the preceding sections of this chapter. Listing 8.9 shows the Imports state-
ments for the namespaces you’ll need and the declaration of the namespace and class for the
control.

Notice that you need to import an extra namespace that is not in the MaskedEdit example. You
need to be able to reference instances of the NameValueCollection type in one of the routines, as
you’ll see later, and that type is defined in the System.Collections.Specialized namespace.

LISTING 8.9 The Namespace and Class Declarations for the StandardSpinBox Class File

Imports System

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Collections.Specialized

Namespace Stonebroom

Public Class StandardSpinBox

‘ specify base class to extend

Inherits WebControl

‘ need to be able to handle postbacks

Implements IPostBackDataHandler

...

... code here to implement SpinBox control

...

8
Building Adaptive Controls

316

FIGURE 8.4 The SpinBox server control
demonstration page.

11 0672326744 CH08 5/4/04 12:24 PM Page 316

317Building a SpinBox Server Control

End Class

End Namespace

In addition, in this example, you’re inheriting the WebControl base class. The MaskedEdit control
you looked at previously in this chapter is basically just a text box, so it makes sense for it to
inherit from TextBox; then you can add the extra features you require. However, the SpinBox
control is a composite control, and it is in fact based on a element into which you insert
child controls. Figure 8.5 shows the components of the SpinBox control (this is the same struc-
ture you created in the user control example in Chapter 7).

LISTING 8.9 Continued

Textbox ImageButtons
position:absolute

 element position:relative FIGURE 8.5 The structure of the SpinBox
control.

The final part of Listing 8.9 also indicates that you have to do more work within the composite
control than you did in the simple MaskedEdit control example. Because you’re inheriting from
WebControl, you will have to add to the class code to handle postbacks and viewstate so that the
text box can maintain its value when the page is posted back to the server each time. You’ll
have to implement methods to handle all this, although it’s not actually that difficult to do. To
make it all work, the class must implement the IPostBackDataHandler interface that declares the
methods you’ll use to read and set values in the viewstate and the Request collections following
a postback. You’ll see the ramifications of this, and what the methods must accomplish, later in
this chapter.

The Public Property and Private Variable Declarations
The SpinBox control exposes eight Public properties, as shown in Table 8.4. These are the same
properties you implemented in the user control version of the SpinBox control in Chapter 7.

TABLE 8.4
The Properties Exposed by the Standard SpinBox Server Control

Property Description

AutoPostback A Boolean value that indicates whether clicking the up or down button will cause a postback to
the server.

Columns An Integer value that determines how wide the text box will be (approximately the number of
characters it will hold).

CssClass A String value that is the CSS style class to apply to the text box within the control.

Increment An Integer value that determines the increase or decrease in the value for the up and down
buttons and the up- and down-arrow keys.

11 0672326744 CH08 5/4/04 12:24 PM Page 317

MaximumValue An Integer value that indicates the maximum value the SpinBox control can be set to.

MinimumValue An Integer value that indicates the minimum value the SpinBox control can be set to.

Text A String value that represents the value displayed in the control.

Value An Integer that is equivalent to the value displayed in the control.

To support these Public properties, you also declare a series of Private internal variables that will
hold the values across the various routines in the class. Listing 8.10 shows the internal variable
and property accessor declarations in the class file. You can see that the property declarations
are identical to those in the SpinBox user control example in Chapter 7.

LISTING 8.10 The Private Internal Variables and Public Property Declarations of the
SpinBox Control

‘ private internal member variables

Private _autopostback As Boolean = False

Private _columns As Integer = 3

Private _cssclass As String = “”

Private _increment As Integer = 1

Private _maxvalue As Integer = 99

Private _minvalue As Integer = 0

Private _text As String = “”

‘ public property accessor declarations

Public Property AutoPostback As Boolean

Get

Return _autopostback

End Get

Set

_autopostback = value

End Set

End Property

Public Property Columns As Integer

Get

Return _columns

End Get

Set

If (value > 0) And (value < 1000) Then

_columns = value

Else

Throw New Exception(“Columns must be between 1 and 999”)

End If

8
Building Adaptive Controls

318

TABLE 8.4
Continued

Property Description

11 0672326744 CH08 5/4/04 12:24 PM Page 318

319Building a SpinBox Server Control

End Set

End Property

Public OverRides Property CssClass As String

Get

Return _cssclass

End Get

Set

_cssclass = value

End Set

End Property

Public Property Increment As Integer

Get

Return _increment

End Get

Set

If value > 0 Then

_increment = value

Else

Throw New Exception(“Increment must be greater than zero”)

End If

End Set

End Property

Public Property MaximumValue As Integer

Get

Return _maxvalue

End Get

Set

If value > _minvalue Then

_maxvalue = value

Else

Throw New Exception(“MaximumValue must be greater than “ _

& “the current MinimumValue”)

End If

End Set

End Property

Public Property MinimumValue As Integer

Get

Return _minvalue

End Get

Set

LISTING 8.10 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 319

If value < _maxvalue Then

_minvalue = value

Else

Throw New Exception(“MinimumValue must be less than “ _

& “the current MaximumValue”)

End If

End Set

End Property

Public Property Text As String

Get

Return _text

End Get

Set

Dim iValue As Integer

Try

iValue = Int32.Parse(value)

Catch

Throw New Exception(“Text property must represent “ _

& “a valid Integer value”)

End Try

If (value >= _minvalue) And (value <= _maxvalue)

_text = value

SetMaxMinValues()

Else

Throw New Exception(“Text property must be within” _

& “the current MinimumValue and MaximumValue”)

End If

End Set

End Property

Public Property Value As Integer

Get

Try

Return Int32.Parse(_text)

Catch

End Try

End Get

Set

If (value >= _minvalue) And (value <= _maxvalue)

_text = value.ToString()

Else

Throw New Exception(“Value property must be within the “ _

& “current MinimumValue and MaximumValue”)

8
Building Adaptive Controls

320

LISTING 8.10 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 320

321Building a SpinBox Server Control

End If

End Set

End Property

You also need a few variables to reference child controls within the class file, and you can
declare these outside any of the routines to make them available across the whole class file:

‘ to hold child control references

Private oTextBox As TextBox

Private oImageUp, oImageDown As ImageButton

You might recall from Chapter 7 that you used a separate routine named SetMaxMinValues in the
user control version of the SpinBox control to check whether the current value in the text box
(the Text property) is within the currently defined maximum and minimum values. You do the
same in the server control version, calling it from the Set section of the Text property accessor
(see Listing 8.10). The SetMaxMinValues routine is shown in Listing 8.11.

LISTING 8.11 The SetMaxMinValues Routine

‘ check if current value of Textbox (in _text member variable)

‘ is within current max and min limits, and reset if not

Private Sub SetMaxMinValues()

Dim iValue As Integer

Try

iValue = Int32.Parse(_text)

Catch

iValue = _minvalue

End Try

If iValue < _minvalue Then

iValue = _minvalue

End If

If iValue > _maxvalue Then

iValue = _maxvalue

End If

_text = iValue.ToString()

End Sub

The Public Constructor for the SpinBox Control
As with the MaskedEdit control, you include a default constructor (that is, a constructor that does
not accept any parameters) within the SpinBox control class file. However, this time there is one
important difference in the implementation. When you inherited from TextBox in the MaskedEdit
control example, you called the constructor of the base class with no parameters. This is because
the default and only constructor for the TextBox class does not accept any parameters.

LISTING 8.10 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 321

In the SpinBox control, you are inheriting from WebControl, which has no predefined element
type as a TextBox control does. You saw earlier in this chapter that you want to implement the
SpinBox control as a element that contains the text box and up and down buttons, so you
call the constructor of the WebControl base class with the name of the element (the tag name)
that you want to create.

Listing 8.12 shows the constructor for the server control, and as you can see, you specify “span”
as the parameter to the WebControl constructor.

LISTING 8.12 The Constructor for the Standard SpinBox Control

‘ public constructor

Public Sub New()

‘ call base method first with element type

‘ root element for control will be a SPAN

MyBase.New(“span”)

End Sub

The parameter to the base constructor is used to set the TagName property of the control. As an
alternative, you could use one of the predefined values in the HtmlTextWriterTag enumeration, as
in this example:

MyBase.New(HtmlTextWriterTag.Span)

You could even call the constructor of the WebControl class with no parameters. In that case, the
constructor defaults to creating a element anyway, so you could actually omit the param-
eter after all!

Overriding the CreateChildControls Method
The SpinBox control is a composite control, so you have to create the child controls it requires
and add them to the Controls collection of the element that forms the root of the
control. You do this by overriding the CreateChildControls method of the control. Because
the control (the base class) does not itself create any child controls, you don’t need to call
its CreateChildControls method.

The next several listings show the CreateChildControls method. We’ll look at the parts of the
method in the following sections to make it easier to see what’s going on. There is a lot of code,
but much of it is repetitive in that you need to generate the child controls, add all the attributes
you require to each one, and then add the attributes to the control tree of the root
control.

Listing 8.13 shows how you first build up a string for the prefix of the controls, taking into
account the ID of the root element that implements the control (as exposed by the
UniqueID property of the control). This value is set by the user when the control is inserted into a
page, or it is allocated automatically by ASP.NET if no ID is specified. You’ll use the control ID to
build up the unique IDs for the child controls you create so that, when the element is created
and inserted into the page, the child control IDs will be a combination of the root control ID,

8
Building Adaptive Controls

322

11 0672326744 CH08 5/4/04 12:24 PM Page 322

323Building a SpinBox Server Control

an underscore, and the ID of the child control. This key will be required when you create the
client-side event handlers later in the code.

LISTING 8.13 Setting Attributes for the Base Control in the CreateChildControls Method

OverRides Protected Sub CreateChildControls()

‘ called when its time to create the child controls

‘ create HTML elements and ASP.NET server controls

‘ set properties and add to Controls collection

‘ control ID prefix for contained controls

Dim sCID As String = Me.UniqueID & “_”

‘ check if value is within max and min limits

SetMaxMinValues()

‘ set properties (attributes) of root SPAN element

Me.Style(“position”) = “relative”

‘ save current value of Textbox in viewstate

ViewState(sCID & “textbox”) = _text

Context.Trace.Write(“CreateChildControls:” & Me.UniqueID, _

“Saved value ‘“ & _text & “‘ in viewstate”)

...

You also take this opportunity to call the SetMaxMinValues method (shown in Listing 8.11) to
ensure that the current value of the Text property is within the current maximum and
minimum values. Then you can add the position:relative style selector you need to the root
 element.

The final action in this part of the CreateChildControls method is to save the current value of
the text box in the viewstate of the page. Normally a TextBox control does this automatically
(in the MaskedEdit control, it does so when you call the CreateChildControls method of the base
TextBox class). However, you’re inheriting from WebControl this time to create the root
element—not calling its CreateChildControls method.

You also add a feature here that can help you
debug controls. This feature also makes it
easier to understand what’s happening inside
controls when they are instantiated and used.
You reference the Trace object of the hosting
ASP.NET page through the static Context
object and write a message to it—including
the current value of the control. As you’ll see
later, this appears in the output generated by
ASP.NET when tracing is enabled in the
hosting page.

Saving Control Values in the Viewstate
The sample control uses the complete ID
of the text box, including the prefix (made
up of the root element ID and an under-
score), when storing the value in the view-
state. This isn’t actually required because the
page framework automatically looks after
storing values for multiple instances of a
control. However, the full ID is required for
use when you create the client-side event
handlers, so it is used here as well.

11 0672326744 CH08 5/4/04 12:24 PM Page 323

Building a Tree of Child Controls
The section of the CreateChildControls method shown in Listing 8.14 creates the child controls
and adds them to the Controls collection of the root element. It’s simply a matter of
instantiating an instance of a TextBox control and two ImageButton controls and then setting the
appropriate attributes for them, including the unique IDs for the controls, the CSS position and
size selectors, and any other style selectors you need.

LISTING 8.14 Creating the Child Controls in the CreateChildControls Method

...

‘ create Textbox control, set properties

‘ and add to Controls collection

oTextBox = New TextBox()

With oTextBox

.id = sCID & “textbox”

If _cssclass <> “” Then

.CssClass = _cssclass

End If

.Columns = _columns

.Style(“top”) = “0”

.Style(“left”) = “0”

.Style(“width”) = _columns * 10

.Style(“text-align”) = “right”

.Text = _text

End With

Controls.Add(oTextBox)

‘ create “up” ImageButton control, set

‘ properties and add to Controls collection

oImageUp = New ImageButton()

With oImageUp

.id = sCID & “imageup”

.Style(“position”) = “absolute”

.Style(“top”) = “0”

.Style(“left”) = oTextBox.Style(“width”)

.Width = New Unit(16)

.Height = New Unit(10)

.ImageUrl = “~/images/spin-up.gif”

.AlternateText = “+” & _increment.ToString()

.BorderStyle = BorderStyle.None

.BorderWidth = New Unit(0)

.Attributes.Add(“border”, “0”)

End With

Controls.Add(oImageUp)

‘ create “down” ImageButton control, set

8
Building Adaptive Controls

324

11 0672326744 CH08 5/4/04 12:24 PM Page 324

325Building a SpinBox Server Control

‘ properties and add to Controls collection

oImageDown = New ImageButton()

With oImageDown

.id = sCID & “imagedown”

.Style(“position”) = “absolute”

.Style(“top”) = “10”

.Style(“left”) = oTextBox.Style(“width”)

.Width = New Unit(16)

.Height = New Unit(10)

.ImageUrl = “~/images/spin-down.gif”

.AlternateText = “-” & _increment.ToString()

.BorderStyle = BorderStyle.None

.BorderWidth = New Unit(0)

.Attributes.Add(“border”, “0”)

End With

Controls.Add(oImageDown)

...

For the TextBox control, you also set the
Columns and Value properties to the current
values of the internal _columns and _text vari-
ables. For the ImageButton controls, you set
the CSS absolute positions of each one, using
the width of the TextBox control. Note that if
you don’t set the value of a CSS style selector,
such as width or top, the selector returns null
when you try to read it.

You also set the Width and Height properties of
the two ImageButton controls. In browsers
other than Internet Explorer, the output
generated by an ImageButton control will
contain the HTML width and height attributes
rather than the equivalent style selectors. You
have to create new instances of the Unit class
to set these properties programmatically
because these (and some other) properties
expect a Unit type and not just simple integer
values. This allows them to be set, for
example, to values such as 20px or 15%.

Other features you set for the two ImageButton
controls are the URL of the up and down
button images (in the images subfolder of the

LISTING 8.14 Continued

Setting the Size and Position of the
Contained Controls
Notice that the code sets the top and left
positions of the text box, even though it is not
absolutely positioned, as well as the width.
The width is calculated by multiplying the
number of columns required by 10. As
discussed when looking at the MaskedEdit
control in Chapter 7, it’s extremely difficult to
equate the actual width with the number of
columns. The method used here gives a
reasonable result with the average font sizes
that are used in ASP.NET pages.

Removing Image Borders in All Browsers
Notice that you remove the border by setting
the BorderStyle and BorderWidth proper-
ties of the ImageButton controls, as well as
by specifically adding the border=”0” attrib-
ute to them. Some older browsers (in particu-
lar, Navigator 4.x) require this to be present
to prevent the border from appearing, and
the ImageButton control does not add it
automatically.

11 0672326744 CH08 5/4/04 12:24 PM Page 325

current virtual application) and the values for the alt attributes (to indicate what the button
does in the pop-up ToolTip, as is visible in Figure 8.4). You also remove the border from the
images.

All these property settings equate to those you applied in the user control version of the SpinBox
control in Chapter 7, although in that case you created the child controls declaratively within
the user interface section of the .ascx file and set the properties by using attributes. This time, of
course, you’ve had to do it all programmatically. And, as you create each child control, you add
it to the Controls collection of the root element by using the Add method.

Adding Client-Side Script and Event Attributes to the Control
Listing 8.15 shows how you generate the client-side event handler attributes needed for
the TextBox and ImageButton controls, and the reference to the client-side script file in the
/aspnet_client/custom/ folder that implements these event handlers. This is the same as you did
in the user control version of the SpinBox control in Chapter 7, and it follows the same logic as
the MaskedEdit server control you built earlier in this chapter. And, of course, the client-side code
file you use is the same as you used for the SpinBox control user control.

LISTING 8.15 Adding the Client-Side Code and Event Handlers in the CreateChildControls
Method

...

‘ create true/false string for JavaScript code

Dim sAutoPostback As String = “false”

If _autopostback Then

sAutoPostback = “true”

End If

‘ create JavaScript parameter string - used to set

‘ parameters for client-side control event handlers

Dim sParams As String = “‘“ & sCID & “textbox’, “ _

& _minvalue.ToString() & “, “ _

& _maxvalue.ToString() & “, “ _

& _increment.ToString() & “, “ _

& sAutoPostback

‘ see if previous instance of this control has already

‘ added the required JavaScript code reference to the page

If Not Page.IsClientScriptBlockRegistered(“StnbrmSpinBox”) Then

Dim sPath As String = “/aspnet_client/custom/”

Dim sScript As String = “<script language=’javascript’ “ _

& “src=’” & sPath & “spinbox.js’><” & “/script>”

‘ add this JavaScript code to the page

Page.RegisterClientScriptBlock(“StnbrmSpinBox”, sScript)

End If

8
Building Adaptive Controls

326

11 0672326744 CH08 5/4/04 12:24 PM Page 326

327Building a SpinBox Server Control

‘ set client-side event handlers for controls

oImageUp.Attributes.Add(“onclick”, _

“return incrementValue(“ & sParams & “)”)

oImageDown.Attributes.Add(“onclick”, _

“return decrementValue(“ & sParams & “)”)

oTextBox.Attributes.Add(“onblur”, _

“return checkValue(“ & sParams & “)”)

oTextBox.Attributes.Add(“onkeydown”, _

“return keyDown(event, “ & sParams & “)”)

...

Writing Trace Information in an ASP.NET Page
The final code in the CreateChildControls method, shown in Listing 8.16, is there simply to help
you understand and debug the control. It writes messages to the Trace object for display in the
hosting ASP.NET page. You did the same thing earlier, to display the value you save in the view-
state of the current page, and you use exactly the same approach here to display the values of
the eight Public properties of the SpinBox control.

LISTING 8.16 Displaying the Property Values in the CreateChildControls Method

...

‘ display control property values in Trace

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.AutoPostback = “ & Me.AutoPostback.ToString())

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.Columns = “ & Me.Columns.ToString())

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.CssClass = ‘“ & Me.CssClass & “‘“)

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.Increment = “ & Me.Increment.ToString())

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.MaximumValue = “ & Me.MaximumValue.ToString())

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.MinimumValue = “ & Me.MinimumValue.ToString())

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.Text = ‘“ & Me.Text & “‘“)

Context.Trace.Write(“Property Values”, Me.UniqueID _

& “.Value = “ & Me.Value.ToString())

End Sub

LISTING 8.15 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 327

Figure 8.6 shows the result when the page contains the Trace=”True” attribute in the Page direc-
tive. You can see the values for the CreateChildControls and Property Values categories in the
list. (The control ID used when you declared the control in the page is spnTest.)

8
Building Adaptive Controls

328

FIGURE 8.6
The trace information displayed in
the hosting ASP.NET page.

The other entries in the list (the category named aspx.page) are generated automatically by
ASP.NET. You can see from this the ordering of the events and the calls to the standard methods
of the page—such as the timing of the Init, PreRender, SaveViewState, and Render events—and
where the execution of the CreateChildControls method occurs.

Declaring and Implementing the ValueChanged Event
So far, you’ve implemented all the features of the SpinBox control, with one major exception. You
want to expose an event that is raised when the value of the control has changed between the
page being served and the subsequent postback. In effect, you want to provide the equivalent of
the TextChanged event that is exposed by a TextBox control. However, because the control is aimed
at handling numbers rather than text values, you’ll expose an event named ValueChanged.

Exposing events is probably the most complex topic related to building server controls, and it
usually involves writing several separate routines that interact with the page framework to
accomplish this. And although it’s relatively easy to expose an event that is raised when some-
thing like a button click occurs, it’s a little more difficult to expose change events because you
have to compare the current and previous values of the control to detect the change. However,
this section walks through the whole process.

To expose an event, you have to consider four aspects:

n You have to expose the event as a Public event and define the event type. For most events,
you can use an existing event (delegate) type such as the standard EventHandler type that is
exposed by most server controls for click and change events.

n If you want to be able to read the current values of the constituent controls during a post-
back or detect changes to the values, you must implement the IPostBackDataHandler inter-
face. (The Implements statement for this is shown in the declaration of the SpinBox control
class in Listing 8.9.)

11 0672326744 CH08 5/4/04 12:24 PM Page 328

329Building a SpinBox Server Control

n You must provide code that executes the RaiseEvent statement in Visual Basic .NET (in C#
you just use the event name) at the appropriate point and pass the parameters required for
the event. Usually these parameters are a reference to the current control (Me in Visual
Basic .NET or this in C#) and an instance of the appropriate EventArgs class.

n In some cases, you might also have to register for specific page framework events to be
passed to the control if you want to react to them. This depends on the type of control
you inherit and the event you want to raise.

In the following sections you’ll look at each stage of the process by adding code to the SpinBox
control class to detect changes to the value in the text box and raise a ValueChanged event.

Exposing the ValueChanged Event
The first step in declaring and implementing the ValueChanged event is to declare the event as a
Public event and specify the event object type (actually called a delegate). The ValueChanged event
is defined using the basic EventHandler type, which is the most standard ASP.NET control used
for click and change events:

Public Event ValueChanged As EventHandler

This allows users of the control to write standard event handler routines, such as the following:

Sub MyEventCode(ByVal sender As Object, ByVal e As EventArgs)

... code to handle event here ...

End Sub

However, you could equally well use a more complex event type, such as the
ImageClickEventHandler event that exposes the position of the mouse pointer as the X and
Y properties of the corresponding ImageClickEventArgs object. It all depends on what data you
want to pass to the user’s event handler routine when the event is raised.

Next, you must include code that raises the event at the appropriate time. A common approach
is to provide a separate, Protected routine that can be overridden, as shown in Listing 8.17. This
means that other developers can override the event themselves when they use the control as a
base class for their own controls.

LISTING 8.17 The OnValueChanged Routine for the SpinBox Control

Protected OverRidable Sub OnValueChanged(e As EventArgs)

‘ write message to Trace and raise the public ValueChanged

‘ event with appropriate EventArgs values

Context.Trace.Write(“OnValueChanged:” & Me.UniqueID, _

“Raising ValueChanged event”)

RaiseEvent ValueChanged(Me, e)

End Sub

11 0672326744 CH08 5/4/04 12:24 PM Page 329

Notice that you include code that writes to the Trace object in this example, as you did in previ-
ous routines. Then you simply raise the event and pass a reference to this control (Me) and what-
ever event object was passed to this routine. You can call the OnValueChanged routine yourself
from elsewhere in the code, when you want to raise the event.

Detecting when the Value of a Control Changes
You now have a Public event and a routine that will raise that event. All you have to do is call
the OnValueChanged routine at the appropriate time. So, next, you need to figure out when the
appropriate time is. Usually, you’ll want to raise an event when the value of a control within the
composite control changes. If the user clicks a button within the control to submit the page, the
collection of values posted back to the server will include the values of that element’s name and
value attributes (equivalent in Web Forms controls to the ID and Text property values).

By implementing the IPostBackDataHandler
interface, you can get access to the values of
the control and its child controls within the
Request collections. You can also read (and
write) the viewstate for these controls. This
means that you can detect a change event by
comparing the value in the viewstate with the
value in the Request collections for this or any
of the constituent child controls. If the user
has changed the value in a control, these two
values will differ and you can raise the
ValueChanged event.

Implementing the IPostBackDataHandler
Interface
To be able to access the posted data, you must
implement the IPostBackDataHandler interface.
Implementing an interface in a class really just
means that you must fulfill the “contract” that
the interface defines. In other words, you must
expose all the properties, methods, and events
defined for that interface. If you do not, the
compiler will refuse to compile the class.

The IPostBackDataHandler interface defines just two methods. The first, LoadPostData, is executed
by the page framework when the data posted from a form is retrieved and made available to the
controls on the page. This is the signature:

Overridable Function LoadPostData(key As String, _

vals As NameValueCollection) _

As Boolean

A class that handles this event can use the key passed to it (which contains the equivalent of
the name attribute of the control on the page) to extract the value of this control and any

8
Building Adaptive Controls

330

The Value Could Be in the Form or the
QueryString Collection
In ASP.NET pages, values are usually posted
to the server and appear in the Request.
Form collection. However, it’s possible for the
user to set the action attribute (property) of
the form to “get” so that the values appear
in the Request.QueryString collection.

What Is an Interface?
You can think of an interface as being just a
list of properties, methods, and events. When
your class advertises that it implements a
specific interface, other classes can be sure
that you are exposing all of these properties,
methods, and events, without exception.
Interfaces also allow methods to define their
parameters in terms of interfaces, so that
different classes can be passed to a method,
as long as they implement the appropriate
interface(s).

11 0672326744 CH08 5/4/04 12:24 PM Page 330

331Building a SpinBox Server Control

constituent child controls. For example, you can get the value of the child TextBox control
within the SpinBox control (which has the ID “textbox”) by using the following:

Dim NewValue As String = vals(key & “_textbox”)

You cannot successfully raise an event from the control to indicate that the value has changed
during execution of the LoadPostData method. Instead, you must do it at the point when the
page framework calls the second method of the IPostBackDataHandler interface—the
RaisePostBackDataChangedEvent method. The signature of this method is as follows:

Overridable Sub RaisePostBackDataChangedEvent()

However, the page framework will not execute this method of the control by default. You have
to indicate that you want it to be called by returning the value True from the LoadPostData
method.

The SpinBox control class already contains the following statement:

Implements IPostBackDataHandler

Therefore, now you can add the two methods that are defined in this interface. Listing 8.18
shows these methods. Notice that you have to include an Implements statement in each of the
methods to define which method of the IPostBackDataHandler interface the methods are imple-
menting.

LISTING 8.18 Implementing the IPostBackDataHandler Interface

Overridable Function LoadPostData(key As String, _

vals As NameValueCollection) _

As Boolean _

Implements IPostBackDataHandler.LoadPostData

‘ occurs when data in postback is available to control

‘ get value from postback collection

Dim NewValue As String = vals(key & “_textbox”)

‘ get value from viewstate - i.e. when page was last created

Dim ExistingValue As String = ViewState(key & “_textbox”)

If NewValue <> ExistingValue Then

‘ value in control has been changed by user

‘ set internal member to posted value and write message

‘ return True so PostDataChangedEvent will be raised

_text = NewValue

Context.Trace.Write(“LoadPostData:” & key, _

“Loaded new value ‘“ & NewValue _

& “‘ from postback data”)

Return True

11 0672326744 CH08 5/4/04 12:24 PM Page 331

Else

‘ value in control has not changed

‘ set internal member to viewstate value and write message

‘ return False because no need to raise ValueChanged event

_text = ExistingValue

Context.Trace.Write(“LoadPostData:” & key, _

“Loaded existing value ‘“ & ExistingValue _

& “‘ from viewstate”)

Return False

End If

End Function

‘---

Overridable Sub RaisePostBackDataChangedEvent() _

Implements IPostBackDataHandler.RaisePostDataChangedEvent

‘ called after all controls have loaded postback data,

‘ but only if LoadPostData handler (above) returned True

‘ call event handler for ValueChanged event

OnValueChanged(EventArgs.Empty)

End Sub

In the LoadPostData method, you extract the current value of the TextBox control from the posted
values. You can see that this is exposed as a NameValueCollection type, which is why you had to
import the System.Collections.Specialized namespace into the class. Then you compare this
value with the value for the TextBox control in the viewstate of the page. (Recall that you save it
into the viewstate each time in the CreateChildControls method.)

If the two values are not the same, you want to raise the ValueChanged event, so you return
True from the LoadPostData routine to indicate that the page framework should call the
RaisePostBackDataChangedEvent routine when it’s time to raise events from the control. You also
set the value of the internal _text property to the posted value (it will be used later, in the
CreateChildControls method, to set the Text property of the TextBox control) and write a message
to the Trace object to indicate what’s happening within the control. If the values are the same,
you don’t want to raise the ValueChanged event—so you can return False. This time you set the
_text variable to the value held in the viewstate of the page (so that the TextBox control main-
tains its value between postbacks) and write a corresponding message to the Trace object as well.

8
Building Adaptive Controls

332

LISTING 8.18 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 332

333Building a SpinBox Server Control

Then, if the page framework does call the
RaisePostBackDataChangedEvent routine, all you
have to do is raise the ValueChanged event by
calling the OnValueChanged routine. Because
you don’t want to pass back any information
about the event, you specify the special value
EventArgs.Empty for the event argument
parameter. You don’t need to provide any
information because the value of the control
can always be obtained by code in the
hosting page from the Text or Value property
of the control.

Registering for Postbacks in a Control
The final issue you might face when raising events is a situation in which the LoadPostData
method is not actually called for your control by default. The page framework is clever enough
to realize that many control types do not usually allow users to post back changes to the data
they contain from a browser. For example, you can’t change the value of a <td> element in the
browser and have that value sent back in the Request.Form or Request.QueryString collections
unless you specifically write custom client-side code to do so.

For these noninteractive controls, the page framework does not call the LoadPostData method
automatically. This is the case with the sample SpinBox control because it is based on a
element. Therefore, you have to tell the framework that you do want it to call LoadPostData (and
subsequently the RaisePostBackDataChangedEvent method). You do this by registering for post-
backs.

Listing 8.19 shows the code you use. Notice that you override the Init event of the base class
because you have to register for events right at the start of the life cycle of the control. It’s no
good registering for events in the CreateChildControls method, for example, because the point
where LoadPostData is called will already have passed.

LISTING 8.19 Registering for Postbacks in the Init Event

OverRides Protected Sub OnInit(e As EventArgs)

‘ first event that control can handle

‘ must always call base method first

MyBase.OnInit(e)

‘ must register to receive postback events

‘ required because “root” control is a SPAN

‘ does not receive postback events by default

Page.RegisterRequiresPostBack(Me)

End Sub

Using a Custom Event Type
If you want to pass information back from an
event, you can create a custom event (dele-
gate) type or use one of the other existing
event types. Then, when you raise the event,
you can create an instance of the appropriate
argument’s class, fill in the properties, and
pass this as the second parameter when you
call RaiseEvent.

11 0672326744 CH08 5/4/04 12:24 PM Page 333

All you have to do is call the RegisterRequiresPostBack method of the hosting page and pass to it
a reference to the control you want to register—in this case, the current control (Me). And it’s
important that you remember to call the OnInit method of the base class first.

The Trace Information After a Postback
Putting all the preceding code together, Figure 8.7 shows the trace information that is displayed
in the hosting page following a postback where the value of the control has been changed (and
when the Page directive contains the attribute Trace=”True”).

8
Building Adaptive Controls

334

FIGURE 8.7
The trace information from the
SpinBox control after a postback
when the value has changed.

As well as the CreateChildControls and Property Values category entries you saw earlier (refer to
Figure 8.6), you can see entries for categories named LoadPostData and OnValueChanged. These
show the value that was extracted from the posted data sent back in the Request collection and
the ValueChanged event being raised. If you force a postback without changing the value of the
SpinBox control (by just clicking the Apply button in the page), you’ll see that the LoadPostData
category entry is “Loaded existing value ‘-9’ from viewstate.”

Using an Adaptive SpinBox Control
Using the SpinBox control simply involves registering it in the page and then declaring an
instance of it—just as you did with the MaskedEdit control earlier in this chapter. This is the
Register directive:

<%@ Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”std-spinbox” %>

11 0672326744 CH08 5/4/04 12:24 PM Page 334

335Making the SpinBox Control Adaptive

You can declare an instance of the control by using something like this:

My SpinBox Control:

<ahh:StandardSpinBox id=”spnTest” OnValueChanged=”SpinValueChanged”

AutoPostback=”False” Columns=”3” Increment=”10”

MinimumValue=”0” MaximumValue=”100” runat=”server” />

And, of course, you can handle the ValueChanged event as you would any other control. The
routine SpinValueChanged that is defined for the ValueChange event in the preceding code might
look like this:

Sub SpinValueChanged(sender As Object, e As EventArgs)

lblResult.Text &= “Detected ValueChanged event for control “ _

& sender.ID & “. New value is “ _

& sender.Text & “
”

End Sub

Making the SpinBox Control Adaptive
The SpinBox control works well in Internet Explorer, but what about in other browsers? Often,
you get a shock when you develop and test with just one browser and then view the results in a
different browser—and the SpinBox control is no exception. Figure 8.8 shows the result of using
this control in Opera 7.21, and you can see that it looks and works just as it does in Internet
Explorer (other than the lack of the pop-up ToolTips for the up and down buttons).

FIGURE 8.8 The SpinBox control demon-
stration page in Opera 7.21.

However, in Mozilla 1.5 you have a problem. The display looks fine, but the up and down
buttons don’t respond to mouse clicks at all. The cursor doesn’t even change to a hand when it’s
over these buttons (as shown in Figure 8.9). The text box works fine, and it reacts to keypress
events. However, there is obviously some major problem.

11 0672326744 CH08 5/4/04 12:24 PM Page 335

Trying an older browser is even worse. In Netscape Navigator 4.5, the text box doesn’t even
appear, and the up and down buttons aren’t properly aligned and cannot be clicked (see Figure
8.10). The control is useless here.

8
Building Adaptive Controls

336

FIGURE 8.9 The SpinBox control demon-
stration page in Mozilla 1.5.

FIGURE 8.10 The SpinBox control demon-
stration page in Netscape
Navigator 4.5.

As a final example, you can try the page in the W3C reference browser called Amaya. This is a
great way to see if your pages comply with the rules and recommendations of HTML and CSS.
In fact, Amaya reports only a couple minor errors in the page—for example, that the <input
type=”image”> element you use for the up and down buttons does not support the border=”0”
attribute. Remember that you had to force ASP.NET to add this to the ImageButton controls to
prevent some older browsers from displaying borders for them.

Figure 8.11 shows the page in Amaya. The font in the text boxes is wrong, causing them to
wrap, but everything seems to be there. However, because Amaya doesn’t support client-side
scripting, the up and down buttons and keypresses don’t work. However, you can change the
control’s value can if you type into the text box and click the Apply button.

11 0672326744 CH08 5/4/04 12:24 PM Page 336

337Making the SpinBox Control Adaptive

Coping with Older and Nonstandard Browsers
Before you can fix the problems that arise when the sample page is used in browsers other than
Internet Explorer, you need to figure out why the control doesn’t work in these problem
browsers. The main issue is that you’ve used CSS2 absolute positioning and DOM 2.0 scripting
techniques (such as the getElementById method) within the control. This means that it won’t
work properly on older browsers, such as Netscape 4.5, and browsers that don’t support client-
side scripting, such as Amaya.

The secondary issue concerns Mozilla (and later versions of Netscape that use the Mozilla
rendering engine). Some features of CSS2 are not fully defined in the W3C recommendations for
all possible scenarios. This means things might not work in one browser that work in another,
even though both browsers supposedly support current standards.

If you experimented with the ComboBox control built in Chapter 5, you might have found that it
doesn’t work quite as expected in Mozilla. The W3C CSS2 recommendations don’t define
exactly what should happen to the z-order of controls that are absolutely positioned when they
are shown or hidden dynamically. In Mozilla, this results in the drop-down list appearing
behind the existing text boxes (see Figure 8.12), whereas it appears in front of them in Internet
Explorer 6.0 (and they appear in front of each other, depending on the order in which they are
opened).

FIGURE 8.11 The SpinBox control demon-
stration page in Amaya.

FIGURE 8.12 Problems with the ComboBox
control in Mozilla 1.5.

11 0672326744 CH08 5/4/04 12:24 PM Page 337

The problem you have with Mozilla 1.5 and
the SpinBox control is also related to the speci-
fications of CSS2 not being totally compre-
hensive. Recall that the structure generated
for the SpinBox control (see Figure 8.13) is a
root element that is relatively posi-
tioned. The contained TextBox control is
not positioned (it simply appears in the flow

of the page within the control). However, the two ImageButton controls carry the
position:absolute selectors so that they will be located at the right side of the TextBox control.

8
Building Adaptive Controls

338

The Drop-Down Lists in Internet Explorer
Interestingly, in Internet Explorer 5.5, the
drop-down lists open on top of the text boxes,
but not always on top of each other in the
correct order—depending on the order in
which they are opened.

Textbox ImageButtons
position:absolute

 element position:relative FIGURE 8.13 The structure of the standard
SpinBox control.

What happens is that the ImageButton controls (which are rendered as <input type=”image”>
elements in the page) are removed from the flow of the page by the position:absolute selectors.
This means that the element is only sized to contain the TextBox control, so the two
ImageButton controls lie outside the element in terms of location—even though they are
still child controls.

Internet Explorer and Opera take into account the control hierarchy, and the buttons work fine.
However, Mozilla does not consider the buttons to be part of the rendered page as far as the
mouse pointer is concerned, and it ignores mouse clicks on them. But if you place the cursor on
the text box and press the Tab key, you do in fact move the focus to them and can click them
by pressing the Spacebar.

Creating an Alternative Structure for the SpinBox Control
One solution for the various problems with the SpinBox control is to offer an alternative struc-
ture for the controls that provides wider support for older browsers. The obvious approach is to
use an HTML table to locate the TextBox and ImageButton controls. But this leads to another
problem.

The reason you used a element in the first place was so that the control could be used
like a TextBox control or other standard controls within the flow layout of the page. For
example, the user should be able to place a text caption to the left and more content after it,
without causing the caption or the following content to wrap to a new line. If you use an HTML
table to locate the constituent controls, it will cause preceding and following content to wrap,
forcing the user to insert the whole lot into an HTML table (or use absolute positioning) to get
the layout desired.

Another possibility is to use a <div> element as the root control for the SpinBox control, but this
has the same problem as using an HTML table. In the end, this example uses the HTML table
but adds an extra cell to the left, where you insert a user-supplied value for the caption (see
Figure 8.14). It’s not ideal because preceding and following content will still wrap, but at least

11 0672326744 CH08 5/4/04 12:24 PM Page 338

339Making the SpinBox Control Adaptive

the caption will appear in the correct position. And it seems to be the only solution for older
browsers.

TextboxCaption ImageButtons
with

HTML <table> element

HTML <td> table cells

FIGURE 8.14
The structure of the adaptive SpinBox
control for older browsers.

To maintain the interface and behavior of the control across all browser types, you need to
support the caption in more recent browsers that work with the up-level version of the control.
You can expose the caption as a property of the control, and if the user sets this property, he or
she will expect to see it appear in all browsers. Figure 8.15 shows the updated structure of the
SpinBox control for these newer browser types.

TextboxCaption ImageButtons
position:absolute

 element

 element
position:relative

FIGURE 8.15
The structure of the adaptive SpinBox
control for more recent browsers.

Adaptability Changes to the SpinBox Control Class
The following sections briefly review the changes required in the SpinBox control to implement
the dual behavior for up-level and down-level clients. When you look at the CreateChildControls
method, you’ll see how you decide what output to send to each type of browser.

Changes to the Private and Public Declarations
You need to make a couple minor changes to the variable and property declarations of the
SpinBox control. You must import the System.Web.UI.HtmlControls namespace because you’re
using the HtmlGenericControl class that it defines to create the nested element for the up-
level version of the control. You also use a different class name this time (AdaptiveSpinBox).

You can add an enumeration to the control to define the “modes” it can run in. This allows a
user to specify, for example, down-level behavior, even if their browser supports the up-level
features:

‘ enumeration of target browser types

Public Enum ClientTargetType

AutoDetect = 0

11 0672326744 CH08 5/4/04 12:24 PM Page 339

UpLevel = 1

DownLevel = 2

End Enum

You also need a few more internal variables and the property declarations for the two new prop-
erties Caption and ClientTarget. The first two internal variables, _usetable and _usecss2, default
to False and are used in other routines within the control to manage the type of output you
send to the client. Notice that the ClientTarget property is read-only and is defined as a value
from the ClientTargetType enumeration. The internal _client variable that shadows the value of
the ClientTarget property sets the default to AutoDetect (see Listing 8.20).

LISTING 8.20 Registering for Postbacks in the Init Event

Private _usetable As Boolean = True

Private _usecss2 As Boolean = False

Private _caption As String = “”

Private _client As ClientTargetType = ClientTargetType.AutoDetect

Public Property Caption As String

Get

Return _caption

End Get

Set

_caption = value

End Set

End Property

Public WriteOnly Property ClientTarget As ClientTargetType

Set

_client = value

End Set

End Property

Changes to the CreateChildControls Method
The largest number of changes occur in the CreateChildControls method, where you
generate the control tree for the SpinBox control. In it, you add code that uses the ASP.NET
BrowserCapabilities object (which you met in Chapter 7) to detect the current browser type
and decide what features it supports.

Listing 8.21 assumes that the client is a down-level device and then checks whether it supports
JavaScript. If it does not, there’s no point in generating the interactive version of the control
that uses CSS2 scripting. If JavaScript is supported, you can use the browser name and major
version number to decide what to do next. Notice that for Internet Explorer 5 and higher, and
for Opera 6 and higher, you specify that it’s an up-level device and that you’ll use CSS2 script-
ing, but you will not generate an HTML table.

8
Building Adaptive Controls

340

11 0672326744 CH08 5/4/04 12:24 PM Page 340

341Making the SpinBox Control Adaptive

LISTING 8.21 Detecting the Browser Type and Capabilities

...

‘ check if the current browser supports features

‘ required for “smart” operation and if user specified

‘ the mode they want (Version6 or Downlevel)

If _client <> ClientTargetType.DownLevel Then

‘ start by assuming DownLevel

_client = ClientTargetType.DownLevel

‘ get reference to BrowserCapabilities object

Dim oBrowser As HttpBrowserCapabilities = Context.Request.Browser

‘ must support client-side JavaScript

If oBrowser(“JavaScript”) = True Then

‘ get browser type and version

Dim sUAType As String = oBrowser(“Browser”)

Dim sUAVer As String = oBrowser(“MajorVersion”)

‘ see if the current client is IE5 or above

If (sUAType = “IE”) And (sUAVer >= 5) Then

_client = ClientTargetType.UpLevel

_usetable = False

_usecss2 = True

End If

‘ see if the current client is Netscape 6.0/Mozilla 1.0

If (sUAType = “Netscape”) And (sUAVer >= 5) Then

_client = ClientTargetType.UpLevel

_usetable = True

_usecss2 = True

End If

‘ see if the current client is Opera 6.0

If (sUAType = “Opera” And sUAVer >= 6) Then

_client = ClientTargetType.UpLevel

_usetable = False

_usecss2 = True

End If

End If

End If

11 0672326744 CH08 5/4/04 12:24 PM Page 341

‘ save current value of _client in viewstate

ViewState(sCID & “target”) = _client.ToString()

‘ display detected client type value in Trace

Context.Trace.Write(“CreateChildControls:” & Me.UniqueID, _

“Saved target ‘“ & _client.ToString() & “‘ in viewstate”)

...

The odd ones out as far as browsers go are Netscape and Mozilla. If the current browser is
Netscape or Mozilla, with a version number of 5 or higher (which actually equates to Netscape
6.0 and Mozilla 1.0), it is up-level, and you can use CSS2 scripting. However, due to the problem
with the element and the absolute-positioned ImageButton controls shown earlier, you
have to generate the structure of the control as an HTML table. It will still be interactive because
you’ll inject the client-side script and add the client-side event handlers.

You also need to save the client target value (the value of the _client variable) in the viewstate
of the page so that you can extract it next time. This is a property of the control that users will
expect to be maintained across postbacks. If they have set it to DownLevel, they won’t expect the
code to perform the detection again after each postback and reset the value.

Creating Browser-Specific Output
Now you can build the control tree needed. To make it easier to manage, the tasks required to
create the control output have been separated into three routines:

n CreateCSS2Controls—This routine creates basically the same control tree as the standard
version of the SpinBox control you saw earlier in this chapter. The only differences are that
the root control is no longer relative positioned, and it contains the caption text
and the nested control that is relative positioned (refer to Figure 8.14 for more
details).

n CreateHTMLTable—This routine creates the control structure shown in Figure 8.13. This is
the HTML table version, consisting of three cells that contain the caption, the text box,
and the two image buttons. One interesting point here is that you have to use a
LiteralControl instance to create the
 element that is required to wrap the second
ImageButton under the first one in the right-hand cell. If you use an HtmlGenericControl
instance, you actually get the string “
</br>”, which causes most browsers to insert two
line breaks.

n InjectClientScript—This routine uses exactly the same code that is used in the standard
version of the SpinBox control to generate the <script> element that references the client-
side script file for the control (which must be located in the /aspnet_client/custom/ folder
of the Web site). It also adds the client-side event handler attributes to the TextBox control
and the two ImageButton controls.

We don’t describe the three routines in detail here because they are generally repetitive and do
not introduce anything new to the discussion. You can view the source code to see these

8
Building Adaptive Controls

342

LISTING 8.21 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 342

343Making the SpinBox Control Adaptive

routines. (Remember that each sample contains a [view source] link at the foot of the page. See
www.daveandal.net/books/6744/.)

Listing 8.22 shows the next section of the CreateChildControls method, where the _usetable and
_usecss2 variables are used to decide which of the three routines just described are executed. The
result is that the control generates output that is suitable for the current browser and provides
the best possible support it can, depending on the features of that browser. Next, although not
shown in Listing 8.22, the values of the properties are displayed in the Trace object in exactly
the same way as in the standard SpinBox control example.

LISTING 8.22 Creating the Appropriate Control Tree

...

‘ now ready to create the appropriate set of controls

If _usetable = False Then

‘ serving to version-6 client, use absolute positioning

‘ (but not for Netscape 6.x or Mozilla 1.x)

CreateCSS2Controls()

Else

‘ serving to down-level client, create HTML table

‘ (including Netscape 6.x or Mozilla 1.x)

CreateHTMLTable()

End If

If _usecss2 = True Then

‘ serving to client that supports CSS2 so inject script

InjectClientScript()

End If

...

Changes to the LoadPostData Method
For the SpinBox control example, the only other changes required to provide behavior that
adapts to different clients are to the code in the LoadPostData routine. You have to extract the
value from the postback and compare it to the existing value of the control, as stored in the
viewstate of the page. If these two values differ from one another, you raise the ValueChanged
event. If they are the same, you use the existing value from the viewstate to populate the
control.

The issue with the adaptive control is that, in down-level clients, clicking the up and down
buttons does not automatically change the value in the text box—because there is no client-side

11 0672326744 CH08 5/4/04 12:24 PM Page 343

script to do that. Such clicks will always cause postbacks to the server. So you have to check for
a click on either of the two ImageButton controls, and you have to see if the value in the text box
has been changed.

Listing 8.23 shows the LoadPostData method. After it extracts the value for the text box from the
postback collection, it gets the value when the page was originally created from the viewstate
and the value of the client target type. (Both of these values are saved in the viewstate in the
CreateChildControls method.)

LISTING 8.23 The LoadPostData Method in the Adaptive SpinBox Control

Overridable Function LoadPostData(key As String, _

vals As NameValueCollection) _

As Boolean _

Implements IPostBackDataHandler.LoadPostData

‘ occurs when data in postback is available to control

‘ get value of control from postback collection

Dim sNewValue As String = vals(key & “_textbox”)

Context.Trace.Write(“LoadPostData:” & key, _

“Loaded postback value ‘“ & sNewValue & “‘ from Request”)

‘ get value from viewstate - i.e. when page was last created

Dim sExistingValue As String = ViewState(key & “_textbox”)

Context.Trace.Write(“LoadPostData:” & key, _

“Loaded existing value ‘“ & sExistingValue & “‘ from viewstate”)

‘ get client target type from viewstate

Dim sClientType As String = ViewState(key & “_target”)

Context.Trace.Write(“LoadPostData:” & key, _

“Loaded target ‘“ & sClientType & “‘ from viewstate”)

If (sClientType = ClientTargetType.UpLevel.ToString()) _

Or (sNewValue <> sExistingValue) Then

‘ either client type is “UpLevel” and value was

‘ incremented by client-side script, or user typed

‘ new value in Textbox in “DownLevel” client

If sNewValue <> sExistingValue Then

‘ value in control has been changed by user

‘ set internal member to posted value and return True

‘ so that PostDataChangedEvent will be raised

_text = sNewValue

8
Building Adaptive Controls

344

11 0672326744 CH08 5/4/04 12:24 PM Page 344

345Making the SpinBox Control Adaptive

Return True

Else

‘ value in control has not changed

‘ set internal member to viewstate value and write message

‘ return False because no need to raise ValueChanged event

_text = sExistingValue

Return False

End If

Else

‘ client type may be “DownLevel” and value was not incremented

‘ so check if “up” or “down” button caused the postback

If vals(key & “_imageup.x”) <> “” Then

‘ “up” image button was clicked so increment value

‘ new value will be checked in CreateChildControls event

‘ to ensure its within maximum and minimum value limits

‘ use Try...Catch in case viewstate empty or text not a number

Try

_text = CType(Int32.Parse(sExistingValue) + _increment, _

String)

Context.Trace.Write(“LoadPostData:” & key, _

“Incremented value to ‘“ & _text)

Catch

Context.Trace.Write(“LoadPostData:” & key, _

“Error reading viewstate: “ & sExistingValue)

End Try

‘ return True so that PostDataChangedEvent will be raised

Return True

End If

If vals(key & “_imagedown.x”) <> “” Then

‘ “down” image button was clicked so decrement value

Try

_text = CType(Int32.Parse(sExistingValue) - _increment, _

String)

Context.Trace.Write(“LoadPostData:” & key, _

“Decremented value to ‘“ & _text)

LISTING 8.23 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 345

Catch

Context.Trace.Write(“LoadPostData:” & key, _

“Error reading viewstate: “ & sExistingValue)

End Try

‘ return True so that PostDataChangedEvent will be raised

Return True

End If

End If

End Function

Then you can see if this is an up-level client or if the value of the text box has been changed.
Remember that for down-level clients, the user could have typed a new value into the text
box and then submitted the page. If the value has changed, you save it in the internal _text
variable and return True to indicate that you want the page framework to call the
RaisePostBackDataChangedEvent method, where you’ll raise the ValueChanged event.

If the text box value has not changed, you must check whether the user submitted the page
from a down-level client by clicking the up or down button. You can detect whether one of
these buttons was clicked by looking for its value in the postback collection. ImageButton
controls send the x and y coordinates of the mouse pointer within the image when they are
clicked, or they send zero for both coordinates when the spacebar is used to click the image. All
you have to do is try to increment or decrement the current value (stored in the _text variable)
by the current value of the Increment property (stored in the _increment variable) and return True
to cause the ValueChanged event to be raised.

If you turn on tracing for the page and initiate a postback by clicking the up or down button,
you’ll see the messages that the code writes to the Trace object. In Figure 8.16, you can see
the values in the postback collection and the viewstate being loaded, and you can see the
ValueChanged event being raised. You can also see the points at which the value and the client
target type are saved back into the viewstate and the values of the other properties of the
control.

Testing and Using an Adaptive SpinBox Control
The demonstration page for the adaptive SpinBox control that is provided with the samples for
this book is just about identical to the one shown for the standard SpinBox control earlier in this
chapter. The page allows the new Caption property to be set and shows that caption next to the
control. Of course, the classname is different this time, so the Register directive looks like this:

<%@ Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”adaptive-spinbox” %>

8
Building Adaptive Controls

346

LISTING 8.23 Continued

11 0672326744 CH08 5/4/04 12:24 PM Page 346

347Making the SpinBox Control Adaptive

The adaptive version of the SpinBox control looks and behaves the same in Internet Explorer and
Opera as the standard version does. However, it now works in other browsers as well. For
example, Figure 8.17 shows it in Mozilla, where the up and down buttons now work as
expected.

FIGURE 8.16
The trace output from the adap-
tive SpinBox control following a
postback.

FIGURE 8.17 The adaptive SpinBox control
in Mozilla 1.5.

Figure 8.18 shows the adaptive SpinBox control demonstration page in Netscape Navigator 4.5.
The original version of the control fails to show the text box or position the up and down
buttons correctly in this browser—but the adaptive version works as it should.

11 0672326744 CH08 5/4/04 12:24 PM Page 347

Finally, in Amaya, the standard version of the SpinBox control fails to work at all, even though it
displays okay. The modifications in the adaptive version allow it to operate without requiring
client-side script, and the result (shown in Figure 8.19) is that it is completely usable in Amaya.

8
Building Adaptive Controls

348

FIGURE 8.18 The adaptive SpinBox control
in Netscape Navigator 4.5.

FIGURE 8.19 The adaptive SpinBox control
in Amaya.

Installing a SpinBox Control in the GAC
To end this chapter, you’ll adapt the SpinBox control so that it can be placed in the GAC, and
you’ll follow the steps required to achieve this. You need to make some minor changes to the
class file to allow it to be registered in the GAC. Then you just have to create a key pair for the
class file, compile it, and install it in the GAC.

11 0672326744 CH08 5/4/04 12:24 PM Page 348

349Installing a SpinBox Control in the GAC

Changes to the SpinBox Control Class File for GAC Installation
In order for the assembly that is generated when you compile the SpinBox control class to be
registered in the GAC, it has to contain version information. You achieve this by adding attrib-
utes that specify (at a minimum) the location of the key pair file that will be used to digitally
sign the assembly and the assembly version to the class. These attributes are defined in the
System.Reflection namespace, so you must import that namespace into the class first:

Imports System.Reflection

The following are the two required attributes, which are added before the Namespace declaration:

<assembly:AssemblyKeyFileAttribute(“GACSpinBox.snk”)>

<assembly:AssemblyVersionAttribute(“1.0.0.0”)>

Namespace Stonebroom

Public Class GACSpinBox

...

In this example, the key pair file is named
GACSpinBox.snk, and it is located in the same
folder as the class file. This class is also
declared as being version 1.0.0.0.

Compiling the SpinBox Control Class File
The remainder of the SpinBox control class file is identical to the adaptive SpinBox control you
just built. The only changes you have to make are those shown in the preceding section. The
next step is to create the key pair file referenced in AssemblyKeyFileAttribute. The sn.exe utility
provided with the .NET Framework does this for you. You can run a batch file named
createkey.bat (included in the samples you can download from www.daveandal.net/books/6744/)
in a command window when the current folder contains the source class file. The following
command is required:

“C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\sn” -k GACSpinBox.snk

Notice that you provide the full path to the sn.exe utility to make sure that you use the correct
version if you have more than one version of the .NET Framework installed. If all is well, you’ll
see the response “Key pair written to GACSpinBox.snk.”

Now you can compile the class file in the usual way. The batch file make.bat (also in the samples
you can download from www.daveandal.net/books/6744/) does this for you, by executing the
following command:

C:\WINNT\Microsoft.NET\Framework\v1.1.4322\vbc /t:library

➥ /out:GACSpinBox.dll /r:System.dll,System.Web.dll gac-spinbox.vb

Adding Other Attributes to a Class
You can add plenty of other attributes to an
assembly. You can specify your company
name, copyright statement, product name,
description, and culture information. Look at
the topic “System.Reflection Namespace” in
the Reference, Class Library section of the
SDK for a full list of attributes and a descrip-
tion of each one.

11 0672326744 CH08 5/4/04 12:24 PM Page 349

Installing the SpinBox Assembly into the GAC
After you compile the class file, you install the assembly into the GAC. The batch file named
addtogac.bat (in the samples you can download from www.daveandal.net/books/6744/) contains
the command required:

“C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\gacutil” /i GACSpinBox.dll

If all goes well, you’ll see the message “Assembly successfully added to the cache.”

The alternative to using the command-line
gacutil.exe utility is to run the .NET
Configuration program provided with the
.NET Framework. To do this, you select Start,
Programs, Administrative Tools and then
select Microsoft .NET Framework 1.1
Configuration. This useful program provides
access to many features of the .NET
Framework, including the GAC (shown as
Assembly Cache in the left tree-view window).

To add an assembly, you simply right-click the Assembly Cache entry in the left window of the
.NET Configuration tool and select Add; then you locate the assembly. In Figure 8.20, the assem-
bly DLL has been copied into the Framework\v1.1.4322 (version 1.1) folder of the Winnt\Microsoft.
NET\ folder tree.

8
Building Adaptive Controls

350

Listing and Removing the Assembly from
the GAC
The samples for this book, which you can
download from www.daveandal.net/books/
6744/, also contain batch files that remove
the assembly from the GAC (removefromgac.
bat) and list the contents of the GAC
(viewgac.bat).

FIGURE 8.20
Adding an assembly to the
GAC with the .NET
Configuration tool.

After the assembly is installed, either through the command-line utility or with the .NET
Configuration tool, you’ll see the assembly in the list of installed assemblies on the right. If you
right-click it and select Properties, as shown in Figure 8.21, you can see the assembly name and
version, the location, the public key token, any culture details, and other information. You can
also use the context menu to remove the assembly from the GAC.

11 0672326744 CH08 5/4/04 12:24 PM Page 350

351Installing a SpinBox Control in the GAC

Testing the GAC-Installed Control
After you have installed the assembly for the SpinBox control in the GAC, you can use it in an
ASP.NET page. The demonstration page provided for this is identical to the one for the adaptive
version of the control, with the exception of the Register directive. To register an assembly that
is in the GAC, you have to provide the fully qualified name rather than just the assembly name.
In other words, you have to specify the version, the culture details, and the public key token of
the assembly you want to use, as in the following example:

<%@Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”GACSpinBox,Version=1.0.0.0,Culture=neutral,

➥ PublicKeyToken=07745d8202680a03” %>

This is how the .NET Framework supports multiple versions and allows each application to
specify the version of the control or assembly it wants to use. And if the assembly has been
changed (perhaps a malicious or tampered version is installed), the public key token will not
match the hash value calculated for the assembly at runtime, and that will prevent the code
from running and protecting the application.

Instead of declaring the fully qualified name in every page, you can add the assembly to the
default set for ASP.NET by declaring it in the <assemblies> section of machine.config or
web.config:

<system.web>

<compilation>

<assemblies>

<add assembly=”GACSpinBox,Version=1.0.0.0,Culture=neutral,

➥ PublicKeyToken=744000b7e77ec1a6”/>

</assemblies>

<compilation debug=”false” explicit=”true” defaultLanguage=”vb”>

</system.web>

FIGURE 8.21
Viewing details of an assem-
bly in the GAC with the .NET
Configuration tool.

11 0672326744 CH08 5/4/04 12:24 PM Page 351

Then your ASP.NET pages can use the simple Register directive:

<%@Register TagPrefix=”ahh” Namespace=”Stonebroom”

Assembly=”GACSpinBox” %>

Now, if the version or public key token of the assembly is changed, you don’t have to update
every page. You only have to change the entry in the corresponding machine.config or
web.config file.

Summary
This chapter focuses on what is generally considered the best way to create reusable content, in
the form of controls that provide a user interface or methods you can use in multiple pages,
applications, and Web sites. Building server controls and compiling them into an assembly is
not nearly as simple as building user controls, but it does open up opportunities that aren’t
available with user controls. For example, with a server control you can do the following:

n Hide the implementation from the user in a far more comprehensive manner than with
user controls.

n Easily raise events that can be handled in the hosting page just like the events of the stan-
dard ASP.NET controls.

n Install the controls in the GAC so that they are available to any application running on
the machine.

This chapter looks at the basic issues involved in building server controls, including the choice
of base classes to inherit from and the different approaches to the design of simple and compos-
ite controls. Also covered are how you can generate output directly during the rendering phase
of a control’s life cycle and how you can build a control tree and allow the .NET Framework to
look after rendering it instead.

This chapter also demonstrates the building of two different server controls—the simple
MaskedEdit control and the composite SpinBox control. These two controls demonstrate the tech-
niques that are involved, the methods you can override to generate your own output, and the
way that events can be raised from a control.

In this chapter you have learned how custom controls might behave in a range of browsers, and
you discovered that in most cases it’s necessary to build in some kind of adaptive behavior so
that a control generates different output, depending on the current browser. You did this with
the SpinBox control and demonstrated it working in several quite different types of browsers.

To finish off, you looked at how you can adapt controls so that you can install them into the
GAC and use them in any application on the machine. As you have seen, this isn’t difficult to
do, and it does make it easier to maintain and update a control when (unlike with user controls)
you have only one copy installed.

8
Building Adaptive Controls

352

11 0672326744 CH08 5/4/04 12:24 PM Page 352

9
Page

Templates

This chapter is all about site design—not
in the “how to make it look good” way but
in the “how to make it consistent” way.
One of the problems you face when build-
ing a site is ensuring that all pages of the
site look and perform in a similar manner.
Consistency is a key goal in building any
application, and given that Web sites are far
reaching and liable to be used by people of
all abilities, consistency is especially impor-
tant here.

This chapter shows several solutions for
building consistency into a site. It focuses
on the solutions you can use to allow all
pages (if that’s what you require) to look the
same. The aim is to make Web site develop-
ment easier and more maintainable—not
only for adding features or fixing bugs but
also for site redesigns.

IN THIS CHAPTER
Designing for Consistency 354

Templating Solutions 355

A Simple Layout Server Control 355

BEST PRACTICE:
Creating Controls Versus Rendering 365

A Server Control That Uses Templates 365

Creating Default Content for Templates 371

Creating Dynamic Regions for Page
Content 372

Using a Custom Page Class for a Page
Template 373

Using Custom Controls in Visual
Studio .NET 380

Summary 381

12 0672326744 CH09 5/4/04 12:21 PM Page 353

Designing for Consistency
When you create a Web site, there are areas that often need to look the same across the whole
site: corporate logo, menus, areas for user login, and so on. The problem you face is how to
create this structure so that you gain consistency across pages without losing the ease of devel-
opment that ASP.NET brings. What you want is the master pages scenario that ASP.NET 2.0
provides, but for ASP.NET 1.1. Master pages give you the ability to use some sort of template to
define the content that should appear on all pages, and at runtime this content is combined
with the content on individual pages, as shown in Figure 9.1.

9
Page Templates

354

Page Header

Page Footer

Master Page

M
en

u

Page Header

Page Footer

M
en

u

Welcome to our wonderful
site. Here you’ll find lots of
really interesting things. And
perhaps a few dull things, too.
Actually there are quite a lot
of dull things. But then I’m
quite dull, so that’s only to be
expected.

Welcome to our wonderful
site. Here you’ll find lots of
really interesting things. And
perhaps a few dull things, too.
Actually there are quite a lot
of dull things. But then I’m
quite dull, so that’s only to be
expected.

Page Header

M
en

u

A product
description goes
here.

A product
description goes
here.

Page Footer

A product
description goes
here.

A product
description goes
here.

Default.aspx Products.aspx

FIGURE 9.1
Combining a master
template page with
content pages.

Unfortunately, ASP.NET 1.1 has no built-in support for master pages, so you have to build a
solution yourself. The simplest way is to define a site layout and simply enforce it—tell
your developers “this is what it must look like” and then check it when it’s done. It’s not a very

12 0672326744 CH09 5/4/04 12:21 PM Page 354

355A Simple Layout Server Control

high-tech solution, but it works. However, this method is rather labor intensive as well as error
prone—it’s easy to leave something out or make a simple mistake in the layout. It also means a
lot of work because the parts of the site that are the same have to be coded onto each page.

To get around this repetitive use of code and content, some form of template is needed. It’s easy
enough to create a template ASP.NET page that becomes the starting point for all other pages:
You just copy it and rename it for the new page and implement the new content. However, this
method still leaves lots of repeated content, which is particularly bad if you need to redesign the
site. A common way around this is to use include files or user controls to define the regions of a
page that should be the same. This way, you have reusable content that can be simply included
on every page. You still need to ensure that the include files or user controls are actually
included on the page, and it’s possible for different controls to be placed on the page or in
different areas of the page.

Templating Solutions
The two best ways to provide reusable content and consistency are to use a custom server
control or a custom page class. With a custom server control, you still face the drawback of a
control being required on each page, but you can use that control to provide all the mandatory
content. A custom server control is easy for developers to use because all they need to do is drop
it onto a page. However, it lacks really good designer support—you can create a custom designer,
but there are issues, which we’ll look at later in this chapter in the section “Using Custom
Controls in Visual Studio .NET.”

Using a custom page class is similar to using a custom control, but it doesn’t require the addi-
tion of a custom control to the page; the underlying class provides the mandatory content. This
isn’t a perfect solution—again, it lacks designer support, and it requires a few changes to page
classes created by Visual Studio .NET.

The following sections look at how you can implement custom user controls and custom page
classes. In the process, you’ll see how to add support in Visual Studio .NET.

A Simple Layout Server Control
Using a server control as a template is fairly easy. The process of creating custom server controls
seems very scary to many developers, but it’s actually a fairly simple process. The aim is to have
a control that outputs all the mandatory content but that has an area where customized content
can be added. Such a control might look something like this:

<sams:MasterPageControl runat=”server” id=”tctl1”>

Server controls and page content can go here

</sams:MasterPageControl>

You can simply drop this control onto every page and add the controls for the page within the
MasterPageControl tags. MasterPageControl will output all the default content for the page.

12 0672326744 CH09 5/4/04 12:21 PM Page 355

Before you create a control like this, you first have to understand a bit about the control life
cycle, and Figure 9.2 shows the methods called during the various phases of the life of a control.

9
Page Templates

356

Constructor

Onlnit and Init

TrackViewState

OnLoad and Load

PreRender

SaveViewState

Render

Unload

Dispose

CreateChildControls

LoadViewState

LoadPostData

RaisePostDataChangedEvent

RaisePostBackEvent

FIGURE 9.2
A control’s life cycle.

Because this chapter isn’t explicitly about control creation, it doesn’t go into detail about all the
methods shown in Figure 9.2, but it’s worth seeing a quick description of them all before you
begin coding:

12 0672326744 CH09 5/4/04 12:21 PM Page 356

357A Simple Layout Server Control

n Constructor—This method is called
when the control is added to the
control tree.

n OnInit and Init—At the stage at which
these methods are called, all properties
of the control have been set, and all
child controls have been instantiated.

n TrackViewState—This method is automatically invoked by the page to ensure that property
changes are saved with the viewstate of the control.

n LoadViewState—This method is called only during postback, allowing you to restore the
control to its state at the end of processing the previous request.

n LoadPostData—This method is called only during postback and only if the control partici-
pates in postback, and it allows you to update its state from the posted data.

n OnLoad and Load—At the stage at which these methods are called, all controls have been
initialized.

n RaisePostDataChangedEvent—This method is called only on postback and only if the control
participates in postback. It allows you to indicate that the control has changed its state
because of postback.

n RaisePostBackEvent—This method is called only on postback and only if the control partici-
pates in postback. It allows you to map client events to the server.

n CreateChildControls—This method allows you to create child controls and add them to the
control tree.

n PreRender—This method allows you to perform any processing before the control is
rendered to the page, such as registering for postback.

n SaveViewState—This method allows you to perform any custom viewstate management.

n Render—This method writes the markup to the client and by default calls child controls to
allow them to render their contents.

n Unload—This method is called when the control is to be unloaded.

n Dispose—This method is raised to enable you to clean up and dispose of any resources
used by the control, such as database connections.

In creating a custom template control in this chapter, you aren’t going to use all these methods
because the base implementation is more than adequate, but knowing the order in which the
events are called is useful.

Custom Layout Control Output
The layout of the sample pages in this chapter is tabular in format, as shown in Figure 9.3, so
the layout control must output HTML that generates this structure.

For More Information
For more information on creating custom
controls, see Developing Microsoft ASP.NET
Server Controls and Components, from
Microsoft Press.

12 0672326744 CH09 5/4/04 12:21 PM Page 357

To get this structure, you can use an HTML table, with four cells; the header and footer cells
each span two columns and the menu cell is narrow, leaving plenty of room for the content
cell. The controls need to create the following HTML:

<table>

<tr>

<td colspan=”2”> header </td>

</tr>

<tr>

<td> menu </td>

<td> content </td>

</tr>

<tr>

<td colspan=”2”> footer </td>

</tr>

</table>

With the header, footer, and menu cells, you can also output any required HTML.

Creating Content from a
Custom Control
There are two ways a custom control can
create content: It can override the
CreateChildControls method and add controls
to the control tree, or it can override the
Render method to directly render output
(HTML, in this case). Both techniques are
easy to implement, but which you use
depends on what the control is going to do.
For example, CreateChildControls would be
used like this:

9
Page Templates

358

Page Header

Page Footer

M
en

u
FIGURE 9.3
The layout created by the Custom Layout
Control.

CSS Versus Table Layout
There are plenty of opponents to the use of
tables for layout; these folks say that CSS
should be used instead. While this is a valid
point and CSS is just as easy to implement
as HTML tables, for the purposes of this
example, the table approach is best. It’s
simple to understand, and there’s one fewer
file (the CSS file) to worry about. Also, CSS
support is not full across all browsers, so the
table approach is guaranteed to work for all
viewers of your page.

12 0672326744 CH09 5/4/04 12:21 PM Page 358

359A Simple Layout Server Control

Protected Overrides Sub CreateChildControls()

Dim tch As New TableCell()

tch.Attributes.Add(“colspan”, “2”)

tch.Controls.Add(New LiteralControl(“heading”))

‘ create more controls

‘ ...

Dim tbl As New Table()

Me.Controls.Add(tbl)

End Sub

In this case, a table cell is created and then is added to the Controls collection. (Other controls
would also be created, but they are not shown to reduce the amount of code shown here.) When
the control is rendered, the child controls are also rendered because they are part of the control
tree.

The other way to output content is to override the Render method and render the actual contents
yourself (as opposed to the preceding example, where the child controls render themselves). For
example, the Render method might look like this:

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)

writer.RenderBeginTag(HtmlTextWriterTag.Table)

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “2”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

writer.WriteLine(“header content”)

writer.RenderEndTag()

writer.RenderEndTag()

The ASP.NET page framework passes an HtmlTextWriter instance to the Render method. This
provides a way to write HTML content directly to the output stream. Instead of creating controls
(for example, Table, TableCell), you actually write out the actual HTML elements.

Using Controls Versus Rendering
The method you use to create the content for a control depends on a few factors:

n Using controls allows you to reuse the functionality of existing controls. Consider trying to
render a DataGrid control, for instance.

n Controls are instantiated and added to the control tree, which incurs a performance
penalty.

n Controls are easier to use than rendering if you need child controls to take part in postback.

n Rendering is quicker than using controls, but it’s harder to implement things such as post-
back handling and validation with rendering.

12 0672326744 CH09 5/4/04 12:21 PM Page 359

Ultimately, the choice between using controls and rendering is a trade-off—speed and size
against ease of programming. The example in this chapter uses rendering because the rendered
contents of the control itself (not the children) require no postback or validation; the contents
simply provide a structure for other controls. Using server controls would bring the overhead of
additional controls to be rendered, and those controls also increase the page size due to their
requirements (such as setting attributes that might not be required).

Creating a Custom Layout Control
Creating the custom control is simply a matter of creating a new class—a Web control library, if
you’re using Visual Studio .NET. At the very minimum, the control must output the table struc-
ture, along with any controls that are contained within the control. For example, consider the
control being used like so:

<sams:MasterPageControl runat=”server” id=”tctl1”>

<h1>Welcome to our site</h1>

Please enter your email to subscribe:

<asp:TextBox id=”email” runat=”server” />

<asp:Button id=”btnSubscribe” Text=”Subscribe” runat=”server”

onClick=”btnSubscribe_Click” />

</sams:MasterPageControl>

The contained content must be displayed within the content region of the table. Therefore,
when the custom control is instantiated, it must grab the child controls as they are added to its
Controls collection. You make this happen by overriding another method (AddParsedSubObject)—
so instead of the ASP.NET page framework adding these controls to the collection, you can inter-
cept them and keep your own store. Then, when rendering the page, you can output the
controls in the desired location. The code for the MasterPageControl custom control is shown in
Listing 9.1.

LISTING 9.1 The MasterPageControl Custom Control

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class MasterPageControl

Inherits System.Web.UI.Control

‘ add client page objects to our own collection

Protected _controlBin As ControlCollection

Protected Overrides Sub AddParsedSubObject(ByVal obj As Object)

If IsNothing(_controlBin) Then

_controlBin = New ControlCollection(Me)

End If

9
Page Templates

360

12 0672326744 CH09 5/4/04 12:21 PM Page 360

361A Simple Layout Server Control

Me._controlBin.Add(CType(obj, System.Web.UI.Control))

End Sub

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “100%”)

writer.AddAttribute(HtmlTextWriterAttribute.Border, “1”)

writer.RenderBeginTag(HtmlTextWriterTag.Table)

‘ header

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “2”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

writer.WriteLine(“header content”)

writer.RenderEndTag() ‘ td

writer.RenderEndTag() ‘ tr

‘ menu

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “15%”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

writer.WriteLine(“menu”)

writer.WriteLine(“menu”)

writer.RenderEndTag() ‘ td

‘ content

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

‘ render the client controls

Dim i As Integer

For i = 0 To _controlBin.Count - 1

_controlBin(i).RenderControl(writer)

Next

writer.RenderEndTag() ‘ td

writer.RenderEndTag() ‘ tr

‘ footer

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “2”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

LISTING 9.1 Continued

12 0672326744 CH09 5/4/04 12:21 PM Page 361

writer.WriteLine(“footer content”)

writer.RenderEndTag() ‘ td

writer.RenderEndTag() ‘ tr

writer.RenderEndTag() ‘ table

End Sub

End Class

The output from Listing 9.1 is shown in Figure 9.4.

9
Page Templates

362

LISTING 9.1 Continued

FIGURE 9.4
A custom layout control
in use.

Capturing contained controls as they are added to the page involves only two overridden
methods, the first of which is AddParsedSubObject:

Protected _controlBin As ControlCollection

Protected Overrides Sub AddParsedSubObject(ByVal obj As Object)

If IsNothing(_controlBin) Then

_controlBin = New ControlCollection(Me)

End If

Me._controlBin.Add(CType(obj, System.Web.UI.Control))

End Sub

The ASP.NET page framework calls AddParsedSubObject for each control to be added to the page,
and the control to be added is passed in as a parameter. The MasterPageControl control simply
has a ControlCollection object (_controlBin) into which the control passed in as a parameter is
stored for later use.

12 0672326744 CH09 5/4/04 12:21 PM Page 362

363A Simple Layout Server Control

To render the contents of the structural table and the child controls, the Render method is over-
ridden. Here the HtmlTextWriter instance (writer) is used to write HTML tags and attributes
(AddAttribute is called before the tag to which the attributes apply). Here’s an example:

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “100%”)

writer.AddAttribute(HtmlTextWriterAttribute.Border, “1”)

writer.RenderBeginTag(HtmlTextWriterTag.Table)

The child controls (that is, those that are the content of the page) are added by looping through
controls in _controlBin and calling the RenderControl method on each control. This tells the
control to render itself. The child controls are rendered within a table cell, as shown here:

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

‘ render the client controls

Dim i As Integer

For i = 0 To _controlBin.Count - 1

_controlBin(i).RenderControl(writer)

Next

writer.RenderEndTag() ‘ td

That’s all there is to the control. You simply need to compile it and place it into the applica-
tion’s bin directory.

This template control does several things that wouldn’t be useful in reality. First, it uses a border
for the table, which would look pretty dreadful for a site design. It is included here to make it
easy to see what is being output. Second, the actual mandatory content (header, menu, and
footer) is simply text, just to illustrate how simple the control can be. For a real Web site, the
content would include a logo, a menu control, and so on. Rather than render these yourself,
you would probably want to use the same technique as for contained controls—call the
RenderControl method on a control instance. The control instance can be created in the
CreateChildControls method, using a global variable. For example, Listing 9.2 shows how the
MasterPageControl custom control could be implemented to accommodate this.

LISTING 9.2 Creating and Rendering Child Controls

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class MasterPageControl

Inherits System.Web.UI.Control

12 0672326744 CH09 5/4/04 12:21 PM Page 363

Protected _logo As Image

Protected _ads As AdRotator

‘ add client page objects to our own collection

Protected _controlBin As ControlCollection

Protected Overrides Sub AddParsedSubObject(ByVal obj As Object)

If IsNothing(_controlBin) Then

_controlBin = New ControlCollection(Me)

End If

Me._controlBin.Add(CType(obj, System.Web.UI.Control))

End Sub

Protected Overrides Sub CreateChildControls()

Controls.Clear()

_logo = New Image

_logo.ImageUrl = “images/logo.gif”

_logo.BorderStyle = BorderStyle.None

Me.Controls.Add(_logo)

_ads = New AdRotator

_ads.AdvertisementFile = “adverts.xml”

_ads.BorderStyle = BorderStyle.None

Me.Controls.Add(_ads)

End Sub

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “100%”)

writer.AddAttribute(HtmlTextWriterAttribute.Border, “1”)

writer.RenderBeginTag(HtmlTextWriterTag.Table)

‘ header

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

_logo.RenderControl(writer)

writer.RenderEndTag() ‘ td

writer.AddAttribute(HtmlTextWriterAttribute.Align, “right”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

_ads.RenderControl(writer)

9
Page Templates

364

LISTING 9.2 Continued

12 0672326744 CH09 5/4/04 12:21 PM Page 364

365A Server Control That Uses Templates

writer.RenderEndTag() ‘ td

writer.RenderEndTag() ‘ tr

. . . rest of rendering

End Sub

The preceding version of the control hasn’t changed much. There are two global variables, for
Image and AdRotator controls. In the CreateChildControls method, the current Controls collection
is first cleared, to ensure that duplicate controls aren’t added to the control tree (this can
happen if your control, or one that derives from it, calls CreateChildControls multiple times).
The properties for these controls are set, and they are added to the control tree.

The Render method also changes, converting the page header to two table cells: one for the logo
and one for the advertisements. Within each of these cells, the RenderControl method is called
on the appropriate control, telling the control to render itself. The same technique could be
used for other mandatory content, such as the menu.

LISTING 9.2 Continued

Creating Controls Versus Rendering
There is a natural overhead involved in using the CreateChildControls method, but that doesn’t
mean you should never use it. The example in this chapter is an excellent case for its use, where
using a nontrivial control such as AdRotator is easier done by simply creating the control and adding
it to the control tree than by re-creating the rotator logic and rendering the HTML. Generally, it’s best
to use CreateChildControls if you need postback handling or if the content you are creating is
complex and already encapsulated by a server control.

BEST PRACTICE

A Server Control That Uses Templates
The MasterPageControl custom control example shows how simple a control can be, but it suffers
from allowing page content to be placed in only a single area. What if, for example, you wanted to
allow a content region but also allow the menu region to be replaced—or even added to? That isn’t
possible with the current MasterPageControl control because there is no way to determine which of
the contained controls is intended for the content region and which for the menu region.

To solve this problem, you can build a templated control that is similar to the data bound
controls (DataList, DataGrid, and Repeater controls) that have templates. The control could
implement two templates, called MenuTemplate and ContentTemplate, providing a way to clearly
differentiate the areas for contained controls. For example, a MasterPageControlTemplated control
could be used like this:

<sams:MasterPageControlTemplated runat=”server” id=”tctl2”>

<MenuTemplate>

12 0672326744 CH09 5/4/04 12:21 PM Page 365

menu 1

menu 2

</MenuTemplate>

<ContentTemplate>

<h1>Welcome to our site</h1>

Please enter your email to subscribe:

<asp:TextBox id=”email” runat=”server” />

<asp:Button id=”btnSubscribe” Text=”Subscribe” runat=”server”

onClick=”btnSubscribe_Click” />

</ContentTemplate>

</sams:MasterPageControlTemplated>

Because the control will prove its own menu, the MenuTemplate element can be omitted. This
provides the flexibility of templates but still allows for standardized content.

Creating a Templated Server Control
Many of the techniques used to create the MasterPageControl custom control also come into play
when you create the templated server control in this example. The layout is the same, using a
table, and both the CreateChildControls and Render methods are used.

The templated server control should inherit from WebControl to allow the use of templates, and
it should implement the INamingContainer interface to ensure that any added child controls have
unique names:

Public Class MasterPageControlTemplated

Inherits System.Web.UI.WebControls.WebControl

Implements INamingContainer

Because the control has two regions into which content can be put, there need to be two places
to store those controls. In the previous example, the AddParsedSubObject method placed controls
into a ControlCollection instance, from which they were later rendered. Because the templated
server control uses templates, AddParsedSubObject isn’t required; instead, you use a TableCell
object for each of the storage areas (or placeholders, as they actually are in this case):

Protected _menuCell As TableCell

Protected _contentCell As TableCell

Then the templates need to be defined, and this is done as properties:

Dim _menuTemplate As ITemplate

Public Property MenuTemplate() As ITemplate

Get

Return _menuTemplate

End Get

Set(ByVal Value As ITemplate)

_menuTemplate = Value

9
Page Templates

366

12 0672326744 CH09 5/4/04 12:21 PM Page 366

367A Server Control That Uses Templates

End Set

End Property

There is one property for MenuTemplate and one for ContentTemplate—they are simple read/write
properties of type ITemplate.

To enable controls within the templates to be rendered, the template needs to be created. You
create the template by calling the InstatiateIn method of the template and passing in the
container into which the content of the template is to be placed. This causes the ASP.NET page
framework to read the controls from within the template and add them to the Controls collec-
tion of the container control. In this case, the container controls are the TableCell objects
defined as global variables:

_menuCell = New TableCell

If Not (_menuTemplate Is Nothing) Then

_menuTemplate.InstantiateIn(_menuCell)

End If

Me.Controls.Add(_menuCell)

_contentCell = New TableCell

If Not (_contentTemplate Is Nothing) Then

_contentTemplate.InstantiateIn(_contentCell)

End If

Me.Controls.Add(_contentCell)

At this stage, the content from the templates has been parsed and added to the control tree. All
that needs to happen is for the content to be rendered. Most of the rendering is the same as for
the MasterPageControl server control, but there are changes for the menu and content regions.
For both of these regions, there is no longer the need to manually render the table cells because
the container control for the templates is a TableCell object. Therefore, they will automatically
render the correct content.

For the menu, you need to supply default content if content is not supplied on the page. To do
that, you first check the _menuTemplate object to see if it is Nothing; if it is, that means there is
not a MenuTemplate element on the page. If it isn’t Nothing (that is, there is a MenuTemplate element
on the page), you check the _menuCell control—first to see if it has child controls and then to
see if it has any text. Literal content will show up as text, whereas ASP.NET controls will show
up as child controls. If no content has been supplied, the default content can be added to the
content table cell before being rendered. The following code shows this in practice, checking
that the contents of the menu template are empty before rendering default content:

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “15%”)

If _menuTemplate Is Nothing _

OrElse _menuCell.HasControls = False _

And _menuCell.Text.Trim = “” Then

12 0672326744 CH09 5/4/04 12:21 PM Page 367

‘ either the template hasn’t been supplied, or it has been

‘ supplied but with no contained controls. So add default content.

_menuCell.Controls.Add(New LiteralControl(“menu
”))

_menuCell.Controls.Add(New LiteralControl(“menu
”))

End If

_menuCell.RenderControl(writer)

For the content template, there is no default content, so the control can be rendered directly,
regardless of whether the template has been defined or has content:

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

_contentCell.RenderControl(writer)

writer.RenderEndTag() ‘ tr

The full code for the new control is shown in Listing 9.3.

LISTING 9.3 A Templated Master Page Control

Public Class MasterPageControlTemplated

Inherits System.Web.UI.WebControls.WebControl

Implements INamingContainer

Protected _logo As Image

Protected _ads As AdRotator

Protected _menuCell As TableCell

Protected _contentCell As TableCell

‘ The template used for the menu

Dim _menuTemplate As ITemplate

Public Property MenuTemplate() As ITemplate

Get

Return _menuTemplate

End Get

Set(ByVal Value As ITemplate)

_menuTemplate = Value

End Set

End Property

‘ The template used for the content

Dim _contentTemplate As ITemplate

Public Property ContentTemplate() As ITemplate

Get

Return _contentTemplate

End Get

Set(ByVal Value As ITemplate)

_contentTemplate = Value

9
Page Templates

368

12 0672326744 CH09 5/4/04 12:21 PM Page 368

369A Server Control That Uses Templates

End Set

End Property

Protected Overrides Sub CreateChildControls()

Controls.Clear()

_logo = New Image

_logo.ImageUrl = “images/logo.gif”

_logo.BorderStyle = BorderStyle.None

Me.Controls.Add(_logo)

_ads = New AdRotator

_ads.AdvertisementFile = “adverts.xml”

_ads.BorderStyle = BorderStyle.None

Me.Controls.Add(_ads)

‘ create the table cell for the menu and

‘ instantiate the controls within the template

_menuCell = New TableCell

If Not (_menuTemplate Is Nothing) Then

_menuTemplate.InstantiateIn(_menuCell)

End If

Me.Controls.Add(_menuCell)

‘ create the table cell for the content and

‘ instantiate the controls within the template

_contentCell = New TableCell

If Not (_contentTemplate Is Nothing) Then

_contentTemplate.InstantiateIn(_contentCell)

End If

Me.Controls.Add(_contentCell)

End Sub

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “100%”)

writer.AddAttribute(HtmlTextWriterAttribute.Border, “1”)

writer.RenderBeginTag(HtmlTextWriterTag.Table)

‘ header

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

LISTING 9.3 Continued

12 0672326744 CH09 5/4/04 12:21 PM Page 369

_logo.RenderControl(writer)

writer.RenderEndTag() ‘ td

writer.AddAttribute(HtmlTextWriterAttribute.Align, “right”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

_ads.RenderControl(writer)

writer.RenderEndTag() ‘ td

writer.RenderEndTag() ‘ tr

‘ menu

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

writer.AddAttribute(HtmlTextWriterAttribute.Width, “15%”)

If _menuTemplate Is Nothing _

OrElse _menuCell.HasControls = False _

And _menuCell.Text.Trim = “” Then

‘ either the template hasn’t been supplied, or it has been

‘ supplied but with no contained controls. So add default content.

_menuCell.Controls.Add(New LiteralControl(“menu
”))

_menuCell.Controls.Add(New LiteralControl(“menu
”))

End If

_menuCell.RenderControl(writer)

‘ content

writer.AddAttribute(HtmlTextWriterAttribute.Valign, “top”)

_contentCell.RenderControl(writer)

writer.RenderEndTag() ‘ tr

‘ footer

writer.RenderBeginTag(HtmlTextWriterTag.Tr)

writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “2”)

writer.RenderBeginTag(HtmlTextWriterTag.Td)

writer.WriteLine(“footer content”)

writer.RenderEndTag() ‘ td

writer.RenderEndTag() ‘ tr

writer.RenderEndTag() ‘ table

End Sub

End Class

9
Page Templates

370

LISTING 9.3 Continued

12 0672326744 CH09 5/4/04 12:21 PM Page 370

371Creating Default Content for Templates

Creating Default Content for Templates
Both of the examples described in the preceding sections have one major drawback: The default
content is hard-coded within the control. A good way to avoid this is to store the default
content outside the control, such as in a user control. When you do this, not only can you
easily change the content, but you can also design the content within a design tool. Reading the
content from the user control is simple because the page has a LoadControl method:

Dim uc As UserControl

uc = LoadControl(“HeaderTemplate.ascx”)

The loaded user control can then be added to the Controls collection. The custom server control
has to change to load the content dynamically. For a start, there are three global variables to
hold the user controls:

Protected _headerContent As UserControl

Protected _menuContent As UserControl

Protected _footerContent As UserControl

The Image and AdRotator controls are no longer required because they will be stored in the user
control.

The CreateChildControls method is modified to load the user controls and add them to the
control tree. They need to be added to the control tree to ensure that they take part in the event
life cycle. You can see this in the following code example, where the templates are stored as user
controls and loaded dynamically as the custom control is created:

_headerContent = Page.LoadControl(“Templates\HeaderTemplate.ascx”)

_footerContent = Page.LoadControl(“Templates\FooterTemplate.ascx”)

Me.Controls.Add(_headerContent)

Me.Controls.Add(_footerContent)

The Render method also changes, simply to render the loaded user control:

writer.RenderBeginTag(HtmlTextWriterTag.Td)

_headerContent.RenderControl(writer)

writer.RenderEndTag() ‘ td

This solution provides an enforceable structure with the added benefit of easily maintainable
content for the mandatory areas of the page. Of course the disadvantage is that the layout is
almost too rigid—it’s baked into the custom server control, so if it ever needs to be changed, the
code has to be edited and compiled, and the assembly has to be redistributed. Also, the design
of the layout is based on creating controls and rendering—which is not as simple as just design-
ing pages. You can further extend this architecture by having properties of the custom server
control that allow the definition of where the default content comes from. If these properties
aren’t set, the content can be fetched from a default location.

12 0672326744 CH09 5/4/04 12:21 PM Page 371

Creating Dynamic Regions for Page Content
If the design of the MasterPageControlTemplated example is too rigid, what’s the best way of
adding flexibility? One way is to take some ideas from the ASP.NET 2.0 implementation, which
uses a master page and a content page. Each contains special server controls with matching ID
attributes, and when the page is generated, the ID attributes are used to match content to the
area where the content should go. For example, in the master page there is a ContentPlaceHolder
control that indicates the area where content can be placed (a bit like a template). The master
page (site.master) might look like this:

<table width=”100%” border=”1”>

<tr>

<td></td>

<td align=”right”><asp: AdRotator id=”AdRotator1”

runat=”server” AdvertisementFile=”../adverts.xml”></td>

</tr>

<tr>

<td valign=”top” width=”15%”>

<asp:ContentPlaceHolder id=”MenuContent” runat=”server” />

</td>

<td valign=”top”>

<asp:ContentPlaceHolder id=”PageContent” runat=”server” />

</td>

</tr>

<tr>

<td colspan=”2”>footer content</td>

</tr>

</table>

In this example, the two ContentPlaceHolder controls identify the regions where page content
can go. The actual content page might then look like this:

<%@ Page MasterPageFile=”site.master” %>

<asp:Content id=”MenuContent” runat=”server”>

The menu content goes here

</asp:Content>

<asp:Content id=”PageContent” runat=”server”>

<h1>Welcome to our site</h1>

Please enter your email to subscribe:

<asp:TextBox id=”email” runat=”server” />

<asp:Button id=”btnSubscribe” Text=”Subscribe” runat=”server”

onClick=”btnSubscribe_Click” />

</asp:Content>

All that the content page needs to include is the Content controls, with the same ID values as
the ContentPlaceHolder controls in the master page. The master page is identified by the

9
Page Templates

372

12 0672326744 CH09 5/4/04 12:21 PM Page 372

373Using a Custom Page Class for a Page Template

MasterPageFile attribute on the Page directive. When the page is compiled, the following steps
take place:

1. The page content is initially made up from the content of the master page.

2. The content page is checked for Content controls, and for each one, a ContentPlaceHolder
control with a matching ID value in the master page is located.

3. The content from within the Content control is placed into the page, replacing any content
that the master page defined.

4. If no Content control is found in the content page, the default content from the
ContentPlaceHolder control is used.

This process is easy to re-create in ASP.NET 1.1, with one major exception: It’s not part of the
ASP.NET Page Framework. Therefore, you can’t use a MasterPageFile attribute on the page direc-
tive, and you don’t have automatic support for master pages. However, you can write your own
page class that provides much of the same functionality.

Using a Custom Page Class for a Page Template
Creating a custom page class is in many ways the same as creating custom server controls: You
need to parse the controls and add them to a control tree. For the master page implementation,
though, you need to take this a bit further, by loading a master page (a user control), finding the
ContentPlaceHolder controls, and copying content from the appropriate Content control.

Creating the Content and ContentPlaceHolder Controls
Both the Content and ContentPlaceHolder controls are simply placeholders—ways of defining a
region into which controls are placed. Therefore, they can simply inherit from the Panel class,
but no output needs to be rendered, so the RenderBeginTag and RenderEndTag methods are overrid-
den. This means that when the page is rendered, it doesn’t matter if these controls remain on
the page because they don’t actually render anything. The ContentPlaceHolder control looks as
follows (and the Content control implementation is the same):

Public Class ContentPlaceHolder

Inherits System.Web.UI.WebControls.Panel

Public Sub New()

End Sub

Public Overrides Sub RenderBeginTag(ByVal writer As HtmlTextWriter)

End Sub

Public Overrides Sub RenderEndTag(ByVal writer As HtmlTextWriter)

End Sub

End Class

12 0672326744 CH09 5/4/04 12:21 PM Page 373

Creating a Custom Page Class
The custom page class needs to take several steps:

1. The class inherits from System.Web.UI.Page, which provides all the default page processing.

2. Next, the class overrides AddParsedSubObjects, as demonstrated in previous examples in this
chapter, to add the page controls to the private control collection. Figure 9.5 shows how
each Content control is added to the internal controls collection.

9
Page Templates

374

menu 1
menu 2
menu 3
menu 4

Welcome to our wonderful
site. Here you’ll find lots of
really interesting things. And
perhaps a few dull things, too.
Actually there are quite a lot
of dull things. But then I’m
quite dull, so that’s only to be
expected.

_contents.Add(menuContentControl)

_contents.Add(pageContentControl)

_contents
 menuContentControl
 pageContentControl

ContentPage.aspx

<sams:Content
 id=“PageContent”
 runat=“server” />

<sams:Content
 id=“MenuContent”
 runat=“server”>

</sams:Content>

</sams:Content>

FIGURE 9.5
Adding controls to the inter-
nal controls collection from
the content page.

At this stage, the private control collection (_contents) contains the contents of the page.
This is only the two Content controls; any controls defined within the Content control are
children and therefore don’t show up as top-level controls.

3. The class parses the master page, adding its controls to the control tree (as shown in Figure
9.6), thus making the page look like the master.

Page Header

Page Footer

default page content

<asp:Image …/>

<asp:AdRotator …/>

<sams:ContentPlaceHolder
 id=“PageContent”
 runat=“server” />

Controls.Add(Image)
Controls.Add(AdRotator)

Controls.Add(menuContentPlaceHolderControl)

Controls.Add(pageContentPlaceHolderControl)

MasterPage.ascx

M
en

u

<sams:ContentPlaceHolder
 id=“MenuContent”
 runat=“server” />

FIGURE 9.6
Adding controls to the
controls collection from
the master page.

12 0672326744 CH09 5/4/04 12:21 PM Page 374

375Using a Custom Page Class for a Page Template

At this stage, the Controls collection for the page contains all the controls from the master
page. This includes all content, such as the table for layout, the Image and AdRotator
controls in the header, and the ContentPlaceHolder controls (and any children).

4. The class loops through the private control collection and matches the ID values to those
on the page (which were copied from the master page). For each control that is found, the
class adds the contents, thus replacing any default content from the master page with the
actual required content, as shown in Figure 9.7.

_contents

<asp:Image …/>
<asp:AdRotater …/>

<sams:ContentPlaceHolder
 id=“MenuContent” …/>

<sams:ContentPlaceHolder
 id=“PageContent” …/>

<sams:Content id=“MenuContent” …>
 menu 1< br />
 menu 2< br />
 menu 3< br />
 menu 4< br />
</sams:Content>

<sams:Content id=“PageContent” …>
 <h1>Welcome to our site</h1>
 Please enter your email to subscribe:
 <asp:TextBox id=“email” runat=“server”></asp:TextBox>
 <asp:Button id=“btnSubscribe” runat=“server”
 Text=“Subscribe”></asp:Button>
</sams:Content>

FIGURE 9.7
Replacing the
ContentPlaceHolder
controls with actual
content.

After step 4, all content from the actual page is placed into the placeholders rather than into its
default location (that is, at the end of the page—controls are added in the order in which they
are defined).

To implement the process described in the preceding steps, one additional piece of information
needs to be known—the name of the master page file. This is defined as a public property of the
custom page class. Listing 9.4 shows the full code for the MasterPage custom page class.

LISTING 9.4 The MasterPage Custom Page Class

Public Class MasterPage

Inherits System.Web.UI.Page

Private Const ErrOnlyContent As String = _

“Content page can only contain <sams:Content /> controls: {0}”

Private Const ErrNoMaster As String = _

“MasterPageFile property not set”

Private Const ErrNoHolder As String = _

“<sams:ContentPlaceHolder id=’{0}’/> must be defined in {1}”

Private _contents As New ArrayList

Private _template As Control

Private _masterPageFile As String = String.Empty

12 0672326744 CH09 5/4/04 12:21 PM Page 375

Public Property MasterPageFile() As String
Get
Return _masterPageFile

End Get
Set(ByVal Value As String)
_masterPageFile = Value

End Set
End Property

Protected Overrides Sub OnInit(ByVal e As EventArgs)

MyBase.OnInit(e)

Me.BuildMasterPage()
Me.BuildContents()

End Sub

Protected Overrides Sub AddParsedSubObject(ByVal obj As Object)

If TypeOf (obj) Is Content Then
‘ add it to the internal controls collection
_contents.Add(obj)

Else
‘ Should only allow controls of type Content
If TypeOf (obj) Is LiteralControl Then
Dim ctl As LiteralControl = CType(obj, LiteralControl)
If ctl.Text.Trim <> “” Then
Throw New Exception(String.Format(ErrOnlyContent, ctl.Text))

End If
ElseIf Not (TypeOf (obj) Is LiteralControl) Then
Throw New Exception(String.Format(ErrOnlyContent, obj.ToString))

End If
End If

End Sub

‘ add the controls from the master file
Private Sub BuildMasterPage()

If _masterPageFile = String.Empty Then
‘ if not set at the page level check for being set at the config level
_masterPageFile = ConfigurationSettings.AppSettings(“MasterPageFile”)
If _masterPageFile = String.Empty Then
Throw New Exception(ErrNoMaster)

9
Page Templates

376

LISTING 9.4 Continued

12 0672326744 CH09 5/4/04 12:21 PM Page 376

377Using a Custom Page Class for a Page Template

End If
End If

‘ load the master file
Me._template = Me.Page.LoadControl(Me._masterPageFile)

‘ iterate through the controls of the master file, adding
‘ them to the internal controls collection
Dim index As Integer
For index = 0 To Me._template.Controls.Count - 1
Dim ctl As Control = Me._template.Controls(0)
Me._template.Controls.Remove(ctl)
If (ctl.Visible) Then
Me.Controls.Add(ctl)

End If
Next
Me.Controls.AddAt(0, Me._template)

End Sub

‘ add the controls from the content page
Private Sub BuildContents()
Dim ct As Content
For Each ct In Me._contents
Dim holder As Control = Me.FindControl(ct.ID)

‘ control with same name must be of type ContentPlaceHolder
If holder Is Nothing Or Not (TypeOf (holder) Is ContentPlaceHolder) Then
Throw New Exception(String.Format(ErrNoHolder, ct.ID, _masterPageFile))

End If

‘ only clear default content if the Content control actually has content
If ct.HasControls Then
holder.Controls.Clear()

End If

‘ add the individual controls from the current page
Dim index As Integer
For index = 0 To ct.Controls.Count - 1
holder.Controls.Add(ct.Controls(0))

Next
Next

End Sub
End Class

LISTING 9.4 Continued

12 0672326744 CH09 5/4/04 12:21 PM Page 377

Creating a Master Page
A master page itself is simply a user control for which all replaceable content must be placed
within ContentPlaceHolder controls. For example, the master page used in the MasterPage custom
page class example would look like this:

<%@ Control Language=”vb” AutoEventWireup=”false”

Codebehind=”siteMaster.ascx.vb” Inherits=”.siteMaster”

TargetSchema=”http://schemas.microsoft.com/intellisense/ie5” %>

<%@ Register TagPrefix=”sams” Namespace=”SAMS.PageTemplates”

Assembly=”MasterPageControls” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>

<table border=”1” width=”100%”>

<tr>

<td><asp:Image ImageUrl=”~/images/logo.gif”

Runat=”server” id=”Image1” /></td>

<td align=”right”>

<asp:AdRotator id=”AdRotator1” runat=”server”

AdvertisementFile=”~/adverts.xml”></asp:AdRotator>

</td>

</tr>

<tr>

<td width=”15%” valign=”top”>

<sams:ContentPlaceHolder id=”MenuContent” runat=”server”>

menu

menu

</sams:ContentPlaceHolder>

</td>

<td valign=”top”>

<sams:ContentPlaceHolder id=”PageContent” runat=”server”>

Default Content

</sams:ContentPlaceHolder>

</td>

</tr>

<tr>

<td colspan=”2”>

<p>Copyright (c) SAMS</p>

</td>

</tr>

</table>

</form>

</body>

</HTML>

9
Page Templates

378

12 0672326744 CH09 5/4/04 12:21 PM Page 378

379Using a Custom Page Class for a Page Template

You can see that this is a standard page, using the same table layout you’ve seen before in this
chapter. The content that can be replaced is defined by ContentPlaceHolder controls.

Using a Custom Page Class
To use the custom page class created in the preceding section, you have to do a little work, but
it’s not much. First, you have to make sure your page inherits from the custom class rather than
from System.Web.UI.Page. You then have to set the MasterPageFile property so that the page
knows which master page to use. Then you need to put the content into Content controls.

For the first of the Content controls, you need to use code-behind files, where you’d normally see
something like this:

Public Class default

Inherits System.Web.UI.Page

You must change this code to the following:

Public Class UsingMasterPage

Inherits SAMS.PageTemplates.MasterPage

Now when the page loads, the custom class will be run. To enable the custom class to work,
though, you need to set the MasterPageFile attribute, which you can do in a number of ways.
The first is to set it in the Page_Init event procedure—usually in a region full of scary warnings:

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer

‘Do not modify it using the code editor.

InitializeComponent()

MasterPageFile = “siteMaster.ascx”

End Sub

Don’t worry, though; it’s perfectly safe to add
code to this procedure, as long as you don’t
delete anything that’s already there. You can’t
use the Page_Load event because it occurs too
late in the event life cycle—after the controls
have already been added to the page.

Another way to set the master page file is to
use the Web configuration file, web.config,
where you can have a custom appSetting
element to define the master file:

<configuration>

<appSettings>

<add key=”MasterPageFile” value=”siteMaster.ascx” />

</appSettings>

Using a Custom Event for Setting the
Master Page
Another way of setting the master page file,
besides using the Page_Init event, could be
to have a custom event that is raised by the
custom class. This event could be handled in
the page where you set the master page. The
advantage of this method is that it makes it
explicitly clear what the event is for. The down-
loadable sample code (see www.daveandal.
net/books/6744/) has this method imple-
mented so you can see how it could be done.

12 0672326744 CH09 5/4/04 12:21 PM Page 379

The advantage of this method is that you don’t have to modify each page; the master page file
can be set automatically for each page that needs it. This also allows you to change the entire
site design in one simple step.

After you have changed the page inheritance and set the master, you can design the page. This
is simply a matter of adding Content controls with ID attributes that match those of the
ContentPlaceHolder controls from the master. Within those Content controls you place the actual
content. Here’s an example:

<%@ Page trace=”false” Language=”vb” AutoEventWireup=”false”

Codebehind=”UsingMasterPage.aspx.vb” Inherits=”.UsingMasterPage”%>

<%@ Register TagPrefix=”sams” Namespace=”SAMS.PageTemplates”

Assembly=”MasterPageControls” %>

<sams:Content id=”MenuContent” runat=”server”>

menu 1

menu 2

menu 3

menu 4

</sams:Content>

<sams:Content id=”PageContent” runat=”server”>

<h1>Welcome to our site</h1>

Please enter your email to subscribe:

<asp:TextBox id=”email” runat=”server”></asp:TextBox>

<asp:Button id=”btnSubscribe” runat=”server” Text=”Subscribe”></asp:Button>

</sams:Content>

The page cannot contain anything other than Content controls at the top level (blank space is
allowed to aid readability, though). This is because all other content is supplied by the master
page. If you don’t want to override the default content from the master page, you can simply
leave out the Content control.

This method is a little more involved than the MasterPageControl or MasterPageControlTemplated
methods, especially for the design of content pages, but it offers the best flexibility. It is also
very similar to the ASP.NET 2.0 approach, which means that migrating applications to ASP.NET
2.0 will be a simple matter; all you’ll need to do is change the base class inheritance and modify
the setting of the MasterPageFile attribute (either to set the attribute on the page directive or
globally in web.config).

Using Custom Controls in Visual Studio .NET
The one real problem that all the examples described in this chapter have is lack of designer
support. When you’re using Visual Studio .NET, most controls look the same in the designer as
they do on the page. This is because the designer renders HTML to the design surface. It’s fairly
easy to write a designer for custom controls. However, the designer architecture in ASP.NET 1.1

9
Page Templates

380

12 0672326744 CH09 5/4/04 12:21 PM Page 380

381Summary

is limited and doesn’t provide any easy support for what you are trying to do in this chapter:
display some static content (the master content) while allowing editing of the page content.

Designers are limited to three modes of working:

n A read-only designer that displays the required HTML but that doesn’t allow drag and
drop.

n A read/writer designer that displays an editable region (that is, one that allows drag and
drop).

n A designer for templated controls that can show static content but that allows editing of
templates. However, the templates cannot be edited in situ, and a template editor replaces
the control design to allow editing.

This means that for composite controls, which the template controls described in this chapter
are, you cannot have some regions that are read-only and some that are read/write. You can
have editable regions with a template, but that doesn’t allow you to edit the controls within the
look of the custom control. You can have the layout but without editing.

The choice you therefore have is whether to have no designer (and rely on using HTML view for
editing your page) or whether to use a designer that doesn’t really do one thing or the other. We
think it’s better to stick with no designer because at least that way it’s clear that there is no
design support, whereas with a designer, you’re never quite sure what features it provides.

Summary
Although this chapter shows how to create custom controls, it is actually about how to provide
support for master pages, which lead to more consistent and maintainable sites. In ASP.NET 1.1,
using custom controls and using custom page classes are the only ways to achieve this function-
ality.

In this chapter you’ve seen that it’s extremely easy to create custom controls in a variety of
ways, from a simple control that renders a table and within the table the user content to a
custom page class that allows specification of the rendering regions. The latter approach gives
the best flexibility and is closest to the ASP.NET 2.0 implementation of master pages, thus
providing an easy migration path.

12 0672326744 CH09 5/4/04 12:21 PM Page 381

12 0672326744 CH09 5/4/04 12:21 PM Page 382

PART III

Data Techniques

10 Relational Data-Handling Techniques

11 Working with XML Data

13 0672326744 Pt 3 5/4/04 12:25 PM Page 383

13 0672326744 Pt 3 5/4/04 12:25 PM Page 384

10
Relational

Data-Handling
Techniques

Chapter 4, “Working with Nested List
Controls,” is devoted to working with
ASP.NET list controls, primarily nested
DataGrid controls. You’ll see the DataGrid
control in use again elsewhere in this book;
however, this chapter focuses on a range of
issues that you might come up against when
working with relational data.

This chapter starts with three topics related
to SQL statements and stored procedures.
The first of these is really a call to action, to
make sure that you are not risking exposing
your data or applications to damage or
misuse by visitors with malicious intent. The
other two topics are concerned with getting
the most from stored procedures and under-
standing a particular issue with the SQL
Server Tabular Data Service (TDS) provider
(SqlClient) in the .NET Framework.

Next, this chapter covers getting the results
you expect with filling a DataSet instance
and writing code that can easily be
converted to use any of the .NET Framework
data providers. Finally, this chapter discusses
an approach to editing data in a DataGrid
control that allows multiple changes to be
submitted to the server for updating in one
go, rather than the individual postback
approach that is used by default.

IN THIS CHAPTER
Using Parameters with SQL Statements
and Stored Procedures 386

BEST PRACTICE:
Using Optional Parameters in a Stored
Procedure 394

Filling a DataSet Instance With and
Without a Schema 400

BEST PRACTICE:
Using a DataReader Object when You
Don’t Need a DataSet Object 410

Writing Provider-Independent Data
Access Code 410

Updating Multiple Rows by Using
Changed Events 415

Summary 427

14 0672326744 CH10 5/4/04 12:23 PM Page 385

Using Parameters with SQL Statements and
Stored Procedures
Despite the fact that it’s usually best to use stored procedures when accessing a relational data-
base such as SQL Server, many people find that they occasionally still need to use declarative
SQL statements. Although stored procedures are usually more efficient than declarative SQL
statements (stored procedures are compiled and can be reused) and offer better security and hide
the database structure, there are cases in which creating a SQL statement dynamically at
runtime is the obvious solution.

Moreover, when you’re testing and developing Web pages that display data (as opposed to an
application that has a separate data tier), SQL statements make it easy to get preview or test
code working. Also, when you face situations in which the number of parameters or the number
of columns you need to extract is not identifiable at design time, constructing a SQL statement
dynamically may be the only solution.

Using Submitted Values in a SQL Statement
The issue that we’re concerned with in this section comes about when you allow users to submit
values that you subsequently use in a SQL statement. The sample page we provide, shown in
Figure 10.1, demonstrates this quite neatly. The page provides two text boxes into which you
can enter search strings for customer ID values in the Northwind sample database. The first text
box uses the value you enter to build up a literal SQL statement that contains the string. When
you click the first Go button, you see the result of the execution of this SQL statement, and the
statement itself is displayed as well. This seems to work fine, and it returns the rows you would
expect.

10
Relational Data-Handling Techniques

386

FIGURE 10.1 Entering a text string that is
used to build a SQL state-
ment.

If you enter the same search string into the second text box and click the second Go button, the
set of rows that are returned is the same as the set returned when you enter that string in the
first text box (see Figure 10.2). However, you can see that the SQL statement uses a parameter
named @CustomerID this time. This parameter is populated by code in the page, before the SQL
statement is executed (you’ll see how later in this chapter).

14 0672326744 CH10 5/4/04 12:23 PM Page 386

387Using Parameters with SQL Statements and Stored Procedures

The Effects of Malicious Input
There appears to be no difference in behavior when using stored procedures and when using
declarative SQL statements when accessing a relational database. However, try the example from
the preceding section again, this time using a different search string: ‘ or ‘1’=’1. Figure 10.3
shows quite clearly that there is a problem. You can see that now all the rows are returned.
Normally you would expect to see all the rows only by entering % into the text box in this
example, but entering ‘ or ‘1’=’1 clearly demonstrates that you get something other than the
expected result.

FIGURE 10.2 Entering a text string that is
used to populate a parameter
in the SQL statement.

FIGURE 10.3 The result of entering a mali-
cious string for the SQL state-
ment.

The SQL statement is shown in the page, although it’s not visible in Figure 10.3. If you scrolled
down to the bottom of the page, you’d see the statement that was executed:

SELECT CustomerID, CompanyName, City, Country

FROM Customers WHERE CustomerID LIKE ‘’ or ‘1’ = ‘1’

14 0672326744 CH10 5/4/04 12:23 PM Page 387

The text entered into the text box has added an extra test to the WHERE clause, and this test will
be true for every row in the table; therefore, all the rows are returned. If, for example, you were
collecting a username and password from a visitor and creating a SQL statement this way, you
could find that your system is open to attack from this type of value entered by a user. For
example, you might construct the SQL statement for such a process by using code like this:

sSQL = “SELECT UserID FROM Users WHERE UserID = ‘“ & txtUser.Text

& “‘ AND Password = ‘“ & txtPassword.Text & “‘“

In theory, this will return a row only when the user ID and password match the entries in the
database. However, by using the technique just demonstrated, a visitor could contrive to have
the following SQL statement executed:

SELECT UserID FROM Users WHERE UserID = ‘johndoe’

AND Password = ‘secret’ or ‘1’ = ‘1’

This would return a non-empty rowset, and if you only check whether there are any rows
returned, you might find that your security has been breached.

However, if you enter the same text into the second text box in the sample page and click the
second Go button to execute the SQL string with the value as a parameter, you’ll see that no
rows are returned (see Figure 10.4).

10
Relational Data-Handling Techniques

388

FIGURE 10.4 The result of entering a mali-
cious string for the parameter
to a SQL statement.

To understand why no rows are returned in this example, you can open the Profiler utility (by
selecting Start, Microsoft SQL Server, Profiler) and trace the actions taken in the database. In this
case, this is the instruction that SQL Server executes:

exec sp_executesql N’SELECT CustomerID, CompanyName, City, Country

FROM Customers WHERE CustomerID LIKE @CustomerID’,

N’@CustomerID nvarchar(4000)’, @CustomerID = N’’’ or ‘’1’’=’’1’

In other words, SQL Server is passing the SQL statement and the parameter separately to the
system stored procedure named sp_executesql, and it is specifying that the parameter is a

14 0672326744 CH10 5/4/04 12:23 PM Page 388

389Using Parameters with SQL Statements and Stored Procedures

character string (nvarchar). This string does
not match the value in the CustomerID column
of any row, so no rows are returned.

It Gets Even Worse…
The problem with the literal construction of
the SQL statement described in the preceding
section actually leaves you open to risks that
are even more serious than you might think.
For example, if you enter the following text
into the first text box and execute it, you’ll
see that the SQL statement shown in Figure
10.5 is used:

‘; update customers set city=’here!’ where customerID like ‘BOLID

In fact, this is a batch statement that contains two separate SQL statements. The first one fails to
find any rows that match the empty string in the WHERE clause, but then the second one is
executed, and it updates the table.

How to Use SQL Profiler
To use SQL Profiler, open it from the Start
menu or the Tools menu in Enterprise
Manager and select File, New Trace to
connect to your database. In the Trace
Properties dialog that appears, select the
Events tab and make sure that the complete
set of actions for the Stored Procedure entry
in the list of available TSQL event classes
(displayed in the right-hand list) is selected.
Then click Run, and you’ll see the statements
that are being executed appear in the main
Profiler window.

FIGURE 10.5 A malicious value that
updates the source table in
the database.

If you now change the value in the first text box and display the rows for customers whose IDs
start with BO, you’ll see that the first one has been updated (see Figure 10.6). However, if you try
this with the second text box, you’ll find that—as before—the process has no effect on the origi-
nal data. The value that is entered and passed to SQL Server as a parameter simply fails to match
any existing rows in the table, and nothing is changed or returned.

One consolation is that the attack could be worse. For example, your malicious visitor could
have entered this instead:

‘; drop database Northwind --

This deletes the database altogether. (The double hyphen at the end is a rem or comment marker
that forces SQL Server to ignore the final apostrophe that gets added to the statement batch.)

So if you construct SQL statements dynamically in your code and there’s any risk at all that the
values you use might contain something other than you expect, you should always use parame-
ters to build the SQL statement. In fact, it’s not a bad idea to do it every time!

14 0672326744 CH10 5/4/04 12:23 PM Page 389

The Code for Adding Parameters
The code used in the sample page shown in Figures 10.1 through 10.6 contains two routines—
one for each of the two Go buttons in the page. The first one builds the SQL statement in literal
fashion, using the following:

Dim sSQL As String = “SELECT CustomerID, CompanyName, City, “ _

& “Country FROM Customers “ _

& “WHERE CustomerID LIKE ‘“ & sParam & “‘“

In this case, sParam is the value extracted from the first text box on the page. This SQL statement
is then executed and the result is assigned to the DataSource property of the DataGrid control on
the page in the usual way.

The second routine, which runs when the second Go button is clicked, works a little differently
from the first. Listing 10.1 shows the complete routine. After collecting the value from the
second text box, the routine declares the SQL statement. However, this time, the WHERE clause
contains a parameter named @CustomerID:

... “WHERE CustomerID LIKE @CustomerID”

LISTING 10.1 A Routine to Execute a SQL Statement with a Parameter

Sub UseParamValue(sender As Object, e As EventArgs)

‘ get input value from TextBox

Dim sParam As String = txtParam.Text

‘ declare SQL statement containing parameter

Dim sSQL As String = “SELECT CustomerID, CompanyName, City, “ _

& “Country FROM Customers “ _

& “WHERE CustomerID LIKE @CustomerID”

‘ get connection string, create connection and command

Dim sConnect As String = _

ConfigurationSettings.AppSettings(“NorthwindSqlClientConnectString”)

10
Relational Data-Handling Techniques

390

FIGURE 10.6 The result of executing the
batch command shown in
Figure 10.5.

14 0672326744 CH10 5/4/04 12:23 PM Page 390

391Using Parameters with SQL Statements and Stored Procedures

Dim oCon As New SqlConnection(sConnect)

Dim oCmd As New SqlCommand(sSQL, oCon)

Try

‘ specify query type, add parameter and open connection

oCmd.Parameters.Add(“@CustomerID”, sParam)

oCmd.CommandType = CommandType.Text

oCon.Open()

‘ execute query and assign result to DataGrid

dgr1.DataSource = oCmd.ExecuteReader()

dgr1.DataBind()

‘close connection afterwards

oCon.Close()

‘ display SQL statement in page and show hint

lblResult.Text = “Executed: “ & sSQL

lblHint.Visible = True

Catch oErr As Exception

‘ be sure to close connection if error occurs

‘ can call Close more than once if required - no exception

‘ is generated if Connection is already closed

oCon.Close()

lblResult.Text = “ERROR: ” _

& oErr.Message & “”

End Try

End Sub

Next, you create the Connection instance and Command instance as usual. Before executing the SQL
statement, however, you have to add a parameter to the Command instance to match the parame-
ter declared within the SQL statement. The sample code uses the simplest override of the Add
method for the Parameters collection of the Command instance and specifies the name and value of
the parameter. The data type of the variable is automatically used to set the data type of the
parameter—in this case, a String data type, which means that the parameter will be treated as
being of type nvarchar (System.Data.SqlDbType.NVarChar) when SQL Server processes it.

LISTING 10.1 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 391

Notice also that you still have to use the value
Text for the CommandType property of the Command
instance because this is still a SQL statement
and not a stored procedure. (Text is the default,
so you could, in fact, omit it altogether.)

Ordering of Stored Procedures
and Query Parameters
A parameter-related issue can cause problems
if you are not aware of it. It concerns the way
that the different .NET Framework data
providers handle parameters when you specify
them by name. The sample page shown in
Figure 10.7 helps illustrate this issue.

10
Relational Data-Handling Techniques

392

Parameter Name Prefixes in SQL Server
In databases other than SQL Server or Sybase
databases, you use just a question mark (?)
as the parameter placeholder. If there is more
than one parameter, you use multiple ques-
tion mark placeholders and you must add the
parameters to the Parameters collection of
the Command instance in the same order that
the placeholders appear in the SQL state-
ment. The names of the parameters are
ignored in this case. You can use this same
syntax with SQL Server and Sybase as well,
although the named parameter technique is
usually more readable and less error prone.

FIGURE 10.7
The ordering of stored proce-
dure parameters that are
specified by name.

The sample page uses two stored procedures—one in SQL Server and one in an Access
database—and executes them by using the various data providers that are part of the .NET
Framework. The SQL Server stored procedure is as follows:

CREATE PROCEDURE ParamOrderProc

@Param1 varchar (10) = ‘Default1’,

@Default varchar (10) = ‘Default2’,

@Param2 varchar (10) = ‘Default3’,

@Param3 varchar (10) = ‘Default4’

AS

SELECT @Param1 + ‘, ‘ + @Default + ‘, ‘ + @Param2 + ‘, ‘ + @Param3

14 0672326744 CH10 5/4/04 12:23 PM Page 392

393Using Parameters with SQL Statements and Stored Procedures

This SQL Server stored procedure simply
collects the values of the four parameters you
provide when the stored procedure is
executed, and it returns a character string
that concatenates their values together.
However, the point here is that they are all
optional parameters, which means that not
all of them must be specified when you
execute the stored procedure. If the code that
executes the procedure does not provide a
value for one of the parameters, the default
value specified within the stored procedure is
used instead.

Unfortunately, however, Access doesn’t
support optional parameters, so the Access
query used in the sample page has only three
parameters and no default values:

PARAMETERS Param1 Text(10), Param2 Text(10), Param3 Text(10);

SELECT [Param1] + ‘, ‘ + [Param2] + ‘, ‘ + [Param3] AS Expr1;

The strange effects shown in Figure 10.7 come about because when you call the stored proce-
dure, you add the parameters in a different order from which they are defined in the stored
procedures:

oCmd.Parameters.Add(“@Param1”, “Value1”)

oCmd.Parameters.Add(“@Param3”, “Value3”)

oCmd.Parameters.Add(“@Param2”, “Value2”)

The result shown in Figure 10.7 proves that with the exception of the SqlClient classes, the
names you provide for parameters have no effect. They are ignored, and the parameters are
passed to the stored procedure by position and not by name. You get back the three values in
the same order as you specified them, even though the parameters’ names don’t match.

However, with the SqlClient classes, the result is different. With these classes, parameters are
passed by name, so you get back the values in an order that matches the order within the
Parameters collection. The order in which you add them to the Parameters collection doesn’t
matter; each one will match up with the corresponding named parameter in the stored
procedure.

Using Default Values in a Stored Procedure
The previous example uses a stored procedure containing optional parameters. When you declare
a parameter in a stored procedure in SQL Server and most other enterprise-level database
systems, you can provide a default value for the parameter. In fact, it is required because this is
how the database knows that it is an optional parameter. Without a default value, you’ll get an
error if you call the procedure without providing a value for that parameter.

Installing the Stored Procedure for
This Example
A SQL script named ParamOrderProc.sql is
provided in the databases subfolder of the
samples you can download for this book (see
www.daveandal.net/books/6744/). You can
use this script to create the stored procedure
for the example. For SQL Server, you open
Query Analyzer from the SQL Server section of
your Start menu, select the Northwind data-
base, and then open the script file and execute
it. You must have owner or administrator
permission to create the stored procedure.

14 0672326744 CH10 5/4/04 12:23 PM Page 393

By taking advantage of sensible defaults for your parameters, you can simplify the data access
code you have to write in your ASP.NET pages and data access components. Listing 10.2 shows
the stored procedure used in the sample page for this section of the chapter. It is designed to
update rows in the Orders table of the Northwind sample database, and you can see that it takes
12 parameters.

LISTING 10.2 A Stored Procedure That Provides Sensible Default Values

CREATE PROCEDURE ParamDefaultProc

@OrderID int, @CustomerID nchar(5),

@OrderDate datetime = NULL, @RequiredDate datetime = NULL,

@ShippedDate datetime = NULL, @ShipVia int = 1,

@Freight money = 25, @ShipName nvarchar(40) = NULL,

@ShipAddress nvarchar(60) = NULL, @ShipCity nvarchar(15) = NULL,

@ShipPostalCode nvarchar(10) = NULL, @ShipCountry nvarchar(15) = NULL

AS

IF @OrderDate IS NULL

BEGIN

SET @OrderDate = GETDATE()

END

IF @RequiredDate IS NULL

BEGIN

RAISERROR(‘Procedure ParamDefaultProc: you must

provide a value for the RequiredDate’,

1, 1) WITH LOG

RETURN

END

IF @ShipName IS NULL

BEGIN

SELECT @ShipName = CompanyName, @ShipAddress = Address,

@ShipCity = City, @ShipPostalCode = PostalCode,

@ShipCountry = Country

FROM Customers

WHERE CustomerID = @CustomerID

END

10
Relational Data-Handling Techniques

394

Using Optional Parameters in a Stored Procedure
Optional parameters will only work really successfully when you use the SqlClient data provider
because none of the other data providers (as discussed earlier in this chapter) pass parameters by
name. To use other data providers, which pass parameters by position, you would have to make sure
that the optional parameters are located at the end of the list and provide values for all the parame-
ters up to the ones that you want to use the default values.

BEST PRACTICE

14 0672326744 CH10 5/4/04 12:23 PM Page 394

395Using Parameters with SQL Statements and Stored Procedures

UPDATE Orders SET

OrderDate = @OrderDate, RequiredDate = @RequiredDate,

ShippedDate = @ShippedDate, ShipVia = @ShipVia,

Freight = @Freight, ShipName = @ShipName,

ShipAddress = @ShipAddress, ShipCity = @ShipCity,

ShipPostalCode = @ShipPostalCode, ShipCountry = @ShipCountry

WHERE

OrderID = @OrderID

The first 2 parameters, the order ID and the customer ID, are required. They are used to select
the correct rows in the Orders and Customers tables within the stored procedure. However, the
remaining 10 parameters are all optional. Notice that a couple of them are set to sensible default
values (the freight cost and shipper ID), but the remainder are set to NULL by default.

Inside the stored procedure, the code can figure out what to do if the user doesn’t provide
values for some of the parameters. For example, if the order date is not specified, the obvious
value to use is the current date, which is provided by the GETDATE function in SQL Server. All you
have to do is test for the parameter being NULL (IF @OrderDate IS NULL).

Writing to the Event Log from SQL Server
If the user doesn’t provide a value for the RequiredDate parameter when he or she executes the
stored procedure, you want to prevent the update and flag this as an invalid operation. You can
do this by calling the RAISERROR method in SQL Server and providing the error message that will
be returned to the user. By adding the WITH LOG suffix, you force SQL Server to write a message to
its own error log file and into the Application section of Windows Event Log as well.

The values used for the RAISERROR method are the message to write to the error and event logs,
the severity level (which should be between 0 and 18 for non-system-critical messages), and an
arbitrary state value that must be between 1 and 127. It’s also possible to use the RAISERROR
method to raise system-defined messages or custom messages stored in the SQL Server
sysmessages table. SQL Server’s Books Online contains more details.

After executing the RAISERROR method, the sample page’s code simply returns from the stored
procedure without updating the database row.

Providing a Default Shipping Address
The sample database contains details of the existing customers in the Customers table, so it
would seem sensible that when a new order is added, the customer’s address details are used by
default. In this case, you’re updating order rows rather than adding them, but the code still
demonstrates a technique you could use when inserting rows.

If the user does not provide a value for the @ShipName parameter (the name of the order recipi-
ent), the stored procedure collects the values for all the address columns from the Customer table,
using the CustomerID value provided in the mandatory second parameter to the stored proce-
dure.

LISTING 10.2 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 395

Then, finally, the stored procedure executes a SQL statement with a combination of the values
that were specified for the parameters, specified as defaults, or calculated within the stored
procedure code.

The sample page shown in Figure 10.8 uses this stored procedure. It contains a series of controls
where you can enter the values for the parameters and specify whether they are to be set. If a
check box is not set, that parameter will not be added to the Parameters collection of the Command
instance, so the default parameter value will be used within the stored procedure.

10
Relational Data-Handling Techniques

396

FIGURE 10.8
The sample page that uses the stored
procedure with optional parameters.

The right-hand column of the page shows the
values currently in the row in the database
(for columns that can be edited). When you
first load the page, this column is empty.
You’ll see that it is populated after you execute
the stored procedure, so you can tell what
effects your settings have had on the row.

The Code for the Stored Procedure Default
Values Sample Page
The code used for the sample page contains
an event handler routine named ExecuteSproc

that runs when the Execute button is clicked. Listing 10.3 shows the relevant sections of this
code. After you create the Connection and Command instances and specify that you’re working with
a stored procedure, you add the two mandatory parameters (the values for which are specified
in page-level variables).

The Sample Page Sets Some of the Values
to Sensible Defaults
By default, the sample page sets the check
box for the RequiredDate parameter and fills
in some suggested values for this and the
other parameters. Even though RequiredDate
is an optional parameter, a value must be
provided to prevent an error from being
reported within the procedure. You can click
the Show button on the page to view the
stored procedure code.

14 0672326744 CH10 5/4/04 12:23 PM Page 396

397Using Parameters with SQL Statements and Stored Procedures

Then you test each check box to see if it’s set. If it is set, you add a parameter to the Command
instance with the value collected from the appropriate text box or drop-down list. After you’ve
added all the parameters, you execute the stored procedure and then check whether any rows
were updated. If no rows were updated, you display an error message in the page.

LISTING 10.3 The ExecuteSproc Routine That Executes the Stored Procedure

Sub ExecuteSproc(sender As Object, args As EventArgs)

‘ get connection string, create connection and command

Dim sConnect As String = ConfigurationSettings.AppSettings(_

“NorthwindSqlClientConnectString”)

Dim oCon As New SqlConnection(sConnect)

Dim oCmd As New SqlCommand(“ParamDefaultProc”, oCon)

Dim iRows As Integer

Try

‘ specify query type, add parameters and execute query

oCmd.Parameters.Add(“@OrderID”, iOrderID)

oCmd.CommandType = CommandType.StoredProcedure

oCmd.Parameters.Add(“@CustomerID”, sCustomerID)

If chkOrderDate.Checked Then

oCmd.Parameters.Add(“@OrderDate”, _

DateTime.Parse(txtOrderDate.Text))

End If

If chkRequiredDate.Checked Then

oCmd.Parameters.Add(“@RequiredDate”, _

DateTime.Parse(txtRequiredDate.Text))

End If

If chkShippedDate.Checked Then

oCmd.Parameters.Add(“@ShippedDate”, _

DateTime.Parse(txtShippedDate.Text))

End If

If chkShipVia.Checked Then

oCmd.Parameters.Add(“@ShipVia”, _

Integer.Parse(lstShipVia.SelectedValue))

End If

If chkFreight.Checked Then

oCmd.Parameters.Add(“@Freight”, _

Decimal.Parse(txtFreight.Text))

End If

If chkShipName.Checked Then

oCmd.Parameters.Add(“@ShipName”, txtShipName.Text)

End If

If chkShipAddress.Checked Then

14 0672326744 CH10 5/4/04 12:23 PM Page 397

oCmd.Parameters.Add(“@ShipAddress”, txtShipAddress.Text)

End If

If chkShipCity.Checked Then

oCmd.Parameters.Add(“@ShipCity”, txtShipCity.Text)

End If

If chkShipPostalCode.Checked Then

oCmd.Parameters.Add(“@ShipPostalCode”, txtShipPostalCode.Text)

End If

If chkShipCountry.Checked Then

oCmd.Parameters.Add(“@ShipCountry”, txtShipCountry.Text)

End If

‘ execute procedure and see how many rows were affected

oCon.Open()

iRows = oCmd.ExecuteNonQuery()

‘close connection afterwards

oCon.Close()

‘ display confirmation or error message. If RequiredDate value

‘ not specified the error will be recorded in Windows Event Log

If iRows > 0 Then

lblResult.Text = “Updated “ & iRows.ToString() & “ row(s).”

Else

lblResult.Text = “ERROR: No “ _

& “rows were updated - see the “ _

& “Application Log in Event Viewer”

End If

Catch oErr As Exception

‘ be sure to close connection if error occurs

‘ can call Close more than once if required - no exception

‘ is generated if Connection is already closed

oCon.Close()

lblResult.Text = “ERROR: ” & oErr.Message

End Try

‘ now collect values from table and display them in the page

‘ ... code not shown here ...

End Sub

10
Relational Data-Handling Techniques

398

LISTING 10.3 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 398

399Using Parameters with SQL Statements and Stored Procedures

Experimenting with the Stored Procedure Default Values Sample Page
To check that the sample page’s code works as expected, you can try entering values for the
various columns in the row and setting the check boxes to force a parameter to be supplied for
that column. For example, if you set the order date, shipper ID, and address details check boxes,
you’ll see that these columns are updated within the row (see Figure 10.9).

FIGURE 10.9
Updating the order date, shipper, and
address columns.

However, if you then clear the check box for the customer name (@ShipName) and execute the
stored procedure again, you’ll see that the values in the Customers table for this customer are
collected and used to update the row (see Figure 10.10).

FIGURE 10.10
Using the default address details if they
are not specified as parameters.

Finally, you can try clearing the check box for the @RequiredDate parameter and executing the
stored procedure again. You’ll see an error message displayed at the foot of the page. If you
select Start, Programs, Administrative Tools; open Event Viewer; and look in the Application Log
section, you’ll see the entry that the stored procedure creates (see Figure 10.11).

14 0672326744 CH10 5/4/04 12:23 PM Page 399

Filling a DataSet Instance With and Without a
Schema
ADO.NET developers take for granted the ease with which they can fill a DataSet instance from a
database. To do this, you simply create an empty DataSet instance, create a Connection instance,
and specify a SQL statement or stored procedure. Then you create a DataAdapter instance from
these and call its Fill method to pull the data from the database and push it into the data set.

However, when you think about it, there’s a lot going on here. The internal DataSet code has to
figure out the schema of the database table(s) and build this structure. And what happens if the
table has a primary key defined or if there are relationships between the tables in the database?
What about if there are NULL values in some rows or orphan rows in a child table?

The same questions apply when you fill a DataSet instance from an XML document. Where does
the primary key come from, if there is one? And because XML documents are often hierarchical
in nature, how does the internal DataSet code know what tables and columns to create, and
what does it do when values are missing for some of the columns?

Loading the Schema for a DataSet Instance
In response to most of the concerns described in the preceding section, many developers load a
schema first, before they attempt to load either relational data (via a DataAdapter instance) or an
XML document. The schema causes the DataSet instance to create the required tables(s), with
columns that are of the required data type, size, and precision. The schema can also force the
internal DataSet code to create the primary keys and foreign keys for the tables, establishing the
DataRelation objects that reference the relationships between the tables.

10
Relational Data-Handling Techniques

400

FIGURE 10.11
The message written to the event log
when no RequiredDate value is
provided.

14 0672326744 CH10 5/4/04 12:23 PM Page 400

401Filling a DataSet Instance With and Without a Schema

What is the most efficient way to do this? The internal DataSet code seems to cope perfectly well
without a schema in most cases; the only common exception is irregularly structured XML
documents. The following sections look at an example that gives you a chance to compare the
performance on your system.

The DataAdapter.MissingSchemaAction Property
Do you usually specify a value for the
MissingSchemaAction property of the
DataAdapter instance when you fill a data set?
If you create the structure from a schema,
what happens if the data you load subse-
quently doesn’t match the schema? For
example, there may be extra columns in the
tables that are returned by the SQL statement
or stored procedure, or there may be extra
nested elements in an XML document that
you use to load your DataSet instance.

By default, the internal DataSet code will
automatically add to its tables any extra
columns it requires, and it populates these
from the data that is used to fill or load the
DataSet instance (regardless of whether you
use the Fill method for relational data or load an XML document). However, you can control
this process yourself by setting the MissingSchemaAction property of the DataAdapter instance to
one of the values shown in Table 10.1.

TABLE 10.1
The Values from the MissingSchemaAction Enumeration

Value Description

Add This is the default. Tables and columns that occur in the source data are added to the DataSet
instance. Only the data type of the column is set automatically. Other metadata, such as the
primary key, column size, and precision, is not set.

AddWithKey Tables and columns that occur in the source data are added to the DataSet instance. All meta-
data about the columns is loaded, including the primary key, column size, and precision.

Ignore Any tables or columns not already in the DataSet instance are ignored and are not added. Using
this value is a good way to prevent the contents of the DataSet instance from varying from a
predefined structure.

Error An exception is raised if a table or column is found in the source data that does not already exist
in this DataSet instance. Using this value is a good way to detect when the source data varies
from the predefined structure.

The Sample Page for Filling a DataSet Instance
You can use the sample page discussed in this section in several ways. It contains a function
named FillDataSet that generates a DataSet instance containing three related tables. This is

Filling a Data Set when the Data Contains
Extra Column Elements
It’s possible for an irregularly structured XML
document to have extra nested elements that
do not match the schema you use. In this
case, the default behavior of the DataSet
instance is to add any columns (and tables)
required to load all the data—just as if there
were extra columns in relational data. However,
it’s also possible that an XML document has
nested elements missing (that is, omitted) so
that there is no data available to fill some of
the columns in some of the rows in a table in
the DataSet instance. In that case, the values
in these columns are all set to NULL.

14 0672326744 CH10 5/4/04 12:23 PM Page 401

much the same code as is used several times in Chapter 4. The data is extracted from the
Customers, Orders, and Order Details tables in the Northwind database, and the code adds two
relationships, named CustOrders and OrdersODetails, to the DataSet instance (see Figure 10.12).

10
Relational Data-Handling Techniques

402

DataSet
Customers

Orders

DataRelation
CustOrders

OrderDetails

DataRelation
OrdersODetails

FIGURE 10.12
The structure of the
DataSet instance for
an example of filling a
data set.

Your major aim for the routine that generates the DataSet instance in this example is that you
want to be able to compare the performance and results when you load a schema first and when
you do not. You also want to be able to compare the results when you use different values for
the MissingSchemaAction property of the DataAdapter instance. After you create a new empty
DataSet instance, you test the value of a parameter named bLoadSchema. If this value is True, you
load a schema from disk into the DataSet instance:

If bLoadSchema = True Then

Dim sSchemaFile As String _

= Request.MapPath(Request.ApplicationPath) _

& “\dataaccess\datasetschema.xsd”

oDataSet.ReadXmlSchema(sSchemaFile)

End If

After you create the Connection, you can create the DataAdapter instance and set the
MissingSchemaAction property. The value of this property is taken from a drop-down list control
named lstMissingSchema in the page:

Dim oDA As New OleDbDataAdapter(sCustSQL, oConnect)

oDA.MissingSchemaAction = lstMissingSchema.SelectedValue

Then you can fill that DataSet instance with the three tables you want. Afterward, you add the
two relationships named CustOrders and OrdersODetails to the DataSet instance:

If bLoadSchema = False Then

‘ create relations between the tables

‘ ... as in previous examples ...

End If

14 0672326744 CH10 5/4/04 12:23 PM Page 402

403Filling a DataSet Instance With and Without a Schema

However, you do this only if you didn’t load a schema first because the schema declares, and
will have created, the relationships.

Viewing the Schema
The sample page provided with the samples for this book contains a routine named ShowSchema.
This routine uses the FillDataSet function to create and populate a DataSet instance and then
displays the schema in the page so that you can see the result. The FillDataSet function is called
with the bLoadSchema parameter set to False so that the internal schema generated within the
DataSet instance is based on the data it loads and the current setting of the MissingSchemaAction
property.

Listing 10.4 shows the ShowSchema routine. You can see the routine displays the schema only if
the MissingSchemaAction property (as specified in the drop-down list named lstMissingSchema) has
the value 1 (Add) or 4 (AddWithKey). If you use any other value for the MissingSchemaAction prop-
erty and don’t load a schema first, you won’t get any tables generated in the DataSet instance.
(Look back at Table 10.1 if you’re not sure why this should be the case.)

The routine named CreateSQLStatements that is called in Listing 10.4 simply creates the SQL
statements that the FillDataSet function uses; the CreateSQLStatements routine isn’t shown in
Listing 10.4. After the routine fills the DataSet instance, the GetXmlSchema method is called to get
the schema as a String value, and the code HTML encodes it and inserts it into a Label control
on the page.

LISTING 10.4 The ShowSchema Routine That Displays a Schema

Sub ShowSchema(sender As Object, e As EventArgs)

If lstMissingSchema.SelectedValue = 1 _

Or lstMissingSchema.SelectedValue = 4 Then

CreateSQLStatements()

Dim oDS As DataSet = FillDataSet(False)

lblSchema.Text = “<pre>” _

& Server.HtmlEncode(oDS.GetXmlSchema()) & “</pre>”

Else

lblSchema.Text = “Cannot create schema dynamically “ _

& “for Ignore or Error values”

End If

End Sub

Figure 10.13 shows the sample page in action. Clicking the View Schema button calls the
ShowSchema routine and shows the result in the page.

14 0672326744 CH10 5/4/04 12:23 PM Page 403

The Schema for MissingSchemaAction.Add
Listing 10.5 contains two extracts from the schema displayed in Figure 10.13, when
MissingSchemaAction is set to Add. The first section shows the definition of the Customers table in
the DataSet instance, and it’s obvious that the only information it provides is the column name
and the data type. The minOccurs attribute indicates that values for all the columns are optional.
In other words, they could be NULL in the database table, and the equivalent elements could be
omitted from an XML representation of the data.

LISTING 10.5 The Schema Generated when MissingSchemaAction Is Set to Add

<xs:element name=”Customers”>

<xs:complexType>

<xs:sequence>

<xs:element name=”CustomerID” type=”xs:string” minOccurs=”0” />

<xs:element name=”CompanyName” type=”xs:string” minOccurs=”0” />

<xs:element name=”City” type=”xs:string” minOccurs=”0” />

<xs:element name=”Country” type=”xs:string” minOccurs=”0” />

</xs:sequence>

</xs:complexType>

</xs:element>

...

... Orders and Order Details tables here ...

...

<xs:unique name=”Constraint1”>

<xs:selector xpath=”.//Customers” />

10
Relational Data-Handling Techniques

404

FIGURE 10.13
Viewing the schema for the
DataSet instance when
MissingSchemaAction is
set to Add.

14 0672326744 CH10 5/4/04 12:23 PM Page 404

405Filling a DataSet Instance With and Without a Schema

<xs:field xpath=”CustomerID” />

</xs:unique>

<xs:unique name=”Orders_Constraint1”

msdata:ConstraintName=”Constraint1”>

<xs:selector xpath=”.//Orders” />

<xs:field xpath=”OrderID” />

</xs:unique>

<xs:keyref name=”OrdersODetails” refer=”Orders_Constraint1”>

<xs:selector xpath=”.//OrderDetails” />

<xs:field xpath=”OrderID” />

</xs:keyref>

<xs:keyref name=”CustOrders” refer=”Constraint1”>

<xs:selector xpath=”.//Orders” />

<xs:field xpath=”CustomerID” />

</xs:keyref>

The FillDataSet function creates the two relationships within the DataSet instance that link the
three tables. At the end of the schema are the xs:unique and xs:keyref elements, which represent
these relationships. To allow the relationships to exist, there must be a unique constraint on the
parent column, and such constraints are specified for the Customers and Orders tables by the
xs:unique elements, which specify the path (the table name) and the name of the column for
each constraint.

The xs:keyref elements can then specify the name of the relationship, a reference to the unique
constraint that identifies the parent column, and the path and name of the child column. Bear
in mind that these constraints are created by the relationships added to the DataSet instance and
are not implemented by the Fill method. If you didn’t create the relationships, there would be
no xs:unique and xs:keyref elements. In other words, if you don’t create the relationships, all
the columns in the table will be optional and not forced to contain unique values.

The Schema for MissingSchemaAction.AddWithKey
Listing 10.6 shows the definition of the Customers table in the schema when MissingSchemaAction
is set to AddWithKey. This time, the declaration of each column contains an xs:restriction
element that defines the data type and the size of the column. (For the string values shown
here, the size of the column is the number of characters.)

LISTING 10.6 The Customers Table Definition Generated when MissingSchemaAction Is Set to
AddWithKey

<xs:element name=”Customers”>

<xs:complexType>

<xs:sequence>

<xs:element name=”CustomerID”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

LISTING 10.5 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 405

<xs:maxLength value=”5” />

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”CompanyName”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:maxLength value=”40” />

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”City” minOccurs=”0”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:maxLength value=”15” />

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”Country” minOccurs=”0”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:maxLength value=”15” />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

For the Orders and OrderDetails tables, the schema also contains information about the IDENTITY
columns. For example, the definition of the OrderID column in the Orders table specifies it to be
an auto-increment or IDENTITY column, of type int (Integer) and specifies it to be read-only:

<xs:element name=”OrderID” msdata:ReadOnly=”true”

msdata:AutoIncrement=”true” type=”xs:int” />

When you use MissingSchemaAction.Add, there is no indication at all of the primary keys for the
tables—just the specification of the unique column constraints generated by the relationships
added to the DataSet instance. However, with MissingSchemaAction.AddWithKey, the final section of
the schema specifies the primary keys of the Customers and Orders tables, using the msdata:
PrimaryKey attribute. You can see these constraints in Listing 10.7.

10
Relational Data-Handling Techniques

406

LISTING 10.6 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 406

407Filling a DataSet Instance With and Without a Schema

LISTING 10.7 The DataSet Instance Constraints Generated when MissingSchemaAction Is
Set to AddWithKey

<xs:unique name=”Constraint1” msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//Customers” />

<xs:field xpath=”CustomerID” />

</xs:unique>

<xs:unique name=”Orders_Constraint1”

msdata:ConstraintName=”Constraint1”

msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//Orders” />

<xs:field xpath=”OrderID” />

</xs:unique>

<xs:keyref name=”OrdersODetails” refer=”Orders_Constraint1”>

<xs:selector xpath=”.//OrderDetails” />

<xs:field xpath=”OrderID” />

</xs:keyref>

<xs:keyref name=”CustOrders” refer=”Constraint1”>

<xs:selector xpath=”.//Orders” />

<xs:field xpath=”CustomerID” />

</xs:keyref>

Comparing Performance With and Without a Schema
The final section of code in the sample page is a routine named DoTest that runs when the
Compare button is clicked. Listing 10.8 shows this routine, which declares some variables you’ll
need and calls the CreateSQLStatements routine used earlier in this chapter to create the SQL
statements for the FillDataSet routine. Then the code calls the FillDataSet method a number of
times, with and without a schema, and times each set of operations to see how they compare.

LISTING 10.8 The DoTest Routine to Compare Performance With and Without a Schema

Sub DoTest(sender As Object, e As EventArgs)

‘ declare local variables

Dim iCount As Integer = 100

Dim iLoop As Integer

Dim oDS As DataSet

Dim dStart As DateTime

Dim dDiff1, dDiff2 As TimeSpan

CreateSQLStatements()

‘ load DataSet with schema

Trace.Write(“With Schema”, “Start”)

dStart = DateTime.Now

For iLoop = 1 To iCount

14 0672326744 CH10 5/4/04 12:23 PM Page 407

oDS = FillDataSet(True)

Next

dDiff1 = DateTime.Now.Subtract(dStart)

Trace.Write(“With Schema”, “End”)

lblResult.Text &= “Loaded DataSet with schema “ _

& iCount.ToString() & “ times in “ _

& dDiff1.TotalMilliseconds.ToString() & “ ms.
”

‘ load DataSet without schema - can’t do it

‘ when MissingSchemaAction is Ignore or Error

If lstMissingSchema.SelectedValue = 1 _

Or lstMissingSchema.SelectedValue = 4 Then

Trace.Write(“Without Schema”, “Start”)

dStart = DateTime.Now

For iLoop = 1 To iCount

oDS = FillDataSet(False)

Next

dDiff2 = DateTime.Now.Subtract(dStart)

Trace.Write(“Without Schema”, “End”)

lblResult.Text &= “Loaded DataSet without schema “ _

& iCount.ToString() & “ times in “ _

& dDiff2.TotalMilliseconds.ToString() & “ ms.
”

‘ calculate difference

Dim fRatio As Decimal = (dDiff1.TotalMilliseconds _

- dDiff2.TotalMilliseconds) / dDiff2.TotalMilliseconds

lblResult.Text &= “With schema is “ & Math.Abs(fRatio).ToString(“p”)

If dDiff1.TotalMilliseconds > dDiff2.TotalMilliseconds Then

lblResult.Text &= “ slower.”

Else

lblResult.Text &= “ faster.”

End If

End If

End Sub

You save the current system time in a variable; execute the FillDataSet routine iCount number of
times, specifying that it should load the schema first; and then calculate the number of millisec-
onds that have elapsed. As well as displaying this in a Label control on the page, you also write
start and end messages to the Trace object. You’ll see these in the trace output if you turn on
tracing for the page (by adding Trace=”True” to the Page directive).

10
Relational Data-Handling Techniques

408

LISTING 10.8 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 408

409Filling a DataSet Instance With and Without a Schema

You then repeat the process, but this time you instruct the FillDataSet routine to not load a
schema first. And, of course, you can do this only when the MissingSchemaAction property is set
to Add or AddWithKey. If it is set to Error or Ignore, there will be no data in the DataSet instance if
no schema was loaded first. After all this, you calculate the percentage difference in the times
taken and display this in the page.

The Results of Comparing Performance With and Without a Schema
Figure 10.14 shows the result of comparing performance with and without a schema on one of
our (rather aging) test servers. You can see that when MissingSchemaAction is set to Add, loading a
schema turns out to be on average around 25% slower than simply loading the data into an
empty DataSet instance. When you set MissingSchemaAction to AddWithKey, loading a schema first
is around 15% slower on average.

FIGURE 10.14 The results of comparing
load times with and without
a schema.

This isn’t quite what you would expect, espe-
cially because the general opinion seems to be
that loading a schema first gives better
performance. Of course, performance will
vary wildly, depending on a whole raft of
factors such as disk access times for loading
the schema, memory and resources availabil-
ity on the server, and where the database is
located and the network connection speed.
However, we repeated the test on two other
machines, including one with SCSI rather
than IDE disks, and the results were broadly
similar.

Remember that loading the schema first always sets the primary keys and the size and precision
of the columns, whereas that information is not added to the DataSet instance when
MissingSchemaAction is set to Add and no schema is loaded. It is possible to add the primary key
information, set the size and precision of the columns, and add extra columns, if required, after
the data has been loaded into the DataSet instance.

Let Us Know the Result on Your Servers
You can use the code and techniques shown
in this chapter to repeat the test on your own
systems, and you might get very different
results. We’d be pleased to hear what you
discover. You can post your comments and
results at our Web site: www.daveandal.net.

14 0672326744 CH10 5/4/04 12:23 PM Page 409

Writing Provider-Independent Data Access Code
A regular inquiry from ADO.NET developers is how you go about writing code that can easily be
converted to use a different data provider. For example, you might have built your pages to
access a range of database types, using the OLE DB provider and the classes from the System.
Data.OleDb namespace. However, if you subsequently decide to use SQL Server as your data
source, you can benefit from using the System.Data.SqlClient classes with the native TDS
provider for SQL Server. But this means changing all the references and classnames in your code.
To do that, you could do a search-and-replace operation. However, you could instead write code
that is provider independent. The only downside of this is that it is marginally less efficient
because you have to use dynamic linking to the classes at runtime, rather than the static linking
approach that is used when you specify the classname directly.

The sample page shown in Figure 10.15 demonstrates the use of provider-independent data
access code. The drop-down list allows you to select any of the three provider types (SqlClient,
OleDb, or Odbc) and then execute a SQL statement that extracts some values from the database.
As long as you are running the page on your local server (http://localhost), you’ll see the
connection string displayed as well.

Dynamically Instantiating a .NET Framework Class
To instantiate classes dynamically at runtime, as you need to do in this example, you can take
advantage of the remoting technology that is built into the .NET Framework. Remoting allows
you to call the CreateInstance method of the static Activator object that is exposed by the
remoting system. You specify as parameters the fully qualified namespace name and the name
of the class you want; the remoting system returns a handle to a wrapped instance of that class.

10
Relational Data-Handling Techniques

410

Using a DataReader Object when You Don’t Need a DataSet Object
It’s easy to get into the habit of using DataSet objects for all your projects. However, remember that
in many cases you don’t actually need all the extra features that this object has compared to the
DataReader object. The times when you absolutely require a DataSet instance include the following:

n When you want to remote the data to another server or client

n When you need to store multiple tables and perhaps the relationships between them

n When you need to preserve the full metadata for each column, such as primary keys, default
values, and constraints

n When you intend to perform a subsequent update to the source data

n When you are using sorting or paging in an ASP.NET DataGrid control

For other tasks, especially simple server-side data binding, the subsequently lower processing and
memory overhead of the DataReader class can substantially improve performance.

BEST PRACTICE

14 0672326744 CH10 5/4/04 12:23 PM Page 410

411Writing Provider-Independent Data Access Code

When the object handle is returned, you then
call its Unwrap method. This instantiates the
class and returns a reference to the resulting
object instance. To use these methods, you
have to import the System.Runtime.Remoting
namespace into your ASP.NET page, along
with any namespaces for other classes that
you use through static binding. However, you
don’t have to import the namespaces for the
classes that you instantiate dynamically
through the remoting system.

This example uses a DataReader instance to
extract the data rows and populate the
DataGrid control on the page, so you need to
create a Connection instance and a Command instance from the namespace selected in the drop-
down list. However, exactly the same principle applies if you want to use a DataSet instance, in
which case you’d create a DataAdapter instance from the appropriate namespace. Plus, of course,
you might need to create Parameter objects or objects of other types as well.

The Code in the Provider-Independent Data Access Sample Page
The code in the sample page is broken into several routines and a page-level variable that holds
the fully qualified name of the System.Data assembly. This assembly contains the SqlClient,
OleDb, and Odbc namespaces, from where you create Connection and Command objects. Listing 10.9
shows the Import directives, the page-level variable, the Page_Load event handler, and the
ShowData routine.

FIGURE 10.15 A demonstration page for
provider-independent data
access code.

Why Remoted Instances Are Wrapped
The instance is wrapped (yes, this is the
correct technical term) so that it is not instan-
tiated automatically. Remember that the
remoting system is designed to allow objects
to be passed from one application domain to
another (for example, from one application,
across the network, to a remote client appli-
cation). The reference to the class may have
to pass through intermediate application
domains on its way to the client, and this
means it can avoid being instantiated within
those domains.

14 0672326744 CH10 5/4/04 12:23 PM Page 411

LISTING 10.9 The Code for the Provider-Independent Data Access Example

<%@Import Namespace=”System.Data” %>

<%@Import Namespace=”System.Runtime.Remoting” %>

<script runat=”server”>

‘ assembly details for System.Data in version 1.1

Dim sFQName As String = “System.Data, Version=1.0.5000.0, “ _

& “Culture=neutral, PublicKeyToken=b77a5c561934e089”

Sub Page_Load()

‘ display data using SqlClient classes first time

If Not Page.IsPostback Then

ShowData(“Sql”)

End If

End Sub

Sub ShowData(sTypePrefix As String)

‘ set values of namespace and class prefix

Dim sNameSpace As String = sTypePrefix

If sNameSpace = “Sql” Then

sNameSpace = “SqlClient”

End If

‘ bind result to DataGrid to display data

dgr1.DataSource = GetDataReader(sNameSpace, sTypePrefix)

dgr1.DataBind()

End Sub

Notice that the fully qualified name of the assembly contains not only the assembly name (the
DLL name without the file extension) but also the version, culture, and public key token values.
You can obtain these values from the .NET Configuration Wizard that is installed with the .NET
Framework. You simply select Start, Programs, Administrative Tools, Microsoft .NET Framework
1.1 Configuration and open the Assembly Cache section by clicking the link in the left pane of
the window. All the installed assemblies are listed in the right pane (see Figure 10.16).

10
Relational Data-Handling Techniques

412

14 0672326744 CH10 5/4/04 12:23 PM Page 412

413Writing Provider-Independent Data Access Code

The Page_Load event handler simply calls the ShowData routine and passes the parameter value
“Sql” to it the first time the page is loaded. The ShowData routine uses this value as the type
prefix and the class prefix, with the exception that it has to change the value “Sql” for the
namespace prefix to “SqlClient”. It uses these two values when it calls another routine named
GetDataReader. This routine returns a DataReader instance open against the Categories table in the
Northwind database, which is then used to populate a DataGrid control located elsewhere in the
sample page.

Listing 10.10 shows the GetDataReader routine. This is a function, and it returns an Object type
because you don’t know at design time what type of DataReader instance you’ll be creating. After
declaring the SQL statement you’ll be using, you collect the connection string from the
web.config file. Of course, this string needs to be specific to the type of data access provider
you’re using. The web.config file for this book’s examples contains all three connection strings,
and you can create the key for the appropriate one by using the namespace prefix passed to the
GetDataReader routine.

Next, you create the full class path and prefix for the classname as a String (for example
“System.Data.SqlClient.Sql”). Then you can call the CreateInstance method of the Activator
object, specifying the fully qualified name-
space name (from the page-level variable
sFQName) and the full classname. (In the first
instance you want a Connection object.)

The ObjectHandle you get back references the
wrapped Connection object from the relevant
namespace, so you call the Unwrap method of
the handle to get back the instantiated object
you want. Note that, again, this has to be
declared as an Object type. Then you repeat
the process to get a Command object from the
same namespace.

FIGURE 10.16
Using the .NET Framework 1.1
Configuration utility.

Error Messages when Creating Class
Instances Dynamically
One side effect of creating class instances
dynamically is that you often lose the precise
error messages that the classes would return.
Because the variables that reference the
Connection and Command instances returned
by the remoting system have to be declared as
Object types, any error will most likely return
the generic error message “ERROR: Exception
has been thrown by the target of an invocation.”

14 0672326744 CH10 5/4/04 12:23 PM Page 413

LISTING 10.10 The Provider-Independent GetDataReader Routine

Function GetDataReader(sNameSpace As String, _

sTypePrefix As String) As Object

Dim sSQL As String = “SELECT * FROM Categories”

Dim sCon As String = _

ConfigurationSettings.AppSettings(“Northwind” & sNameSpace _

& “ConnectString”)

‘ create class prefix, e.g. “System.Data.SqlClient.Sql”

Dim sClassPrefix As String = “System.Data.” & sNameSpace _

& “.” & sTypePrefix

‘ create instance of provider-specific Connection class

‘ uses default constructor and returns a handle to

‘ the “wrapped” object instance via remoting

‘ requires import of System.Runtime.Remoting namespace

Dim oHandle As ObjectHandle

oHandle = Activator.CreateInstance(sFQName, _

sClassPrefix & “Connection”)

‘ unwrap object and assign to local variable

Dim oCon As Object = oHandle.Unwrap()

‘ create instance of provider-specific Command class

oHandle = Activator.CreateInstance(sFQName, _

sClassPrefix & “Command”)

‘ unwrap object and assign to local variable

Dim oCmd As Object = oHandle.Unwrap()

Try

‘ assign values to properties of new objects and execute

oCon.ConnectionString = sCon

oCmd.Connection = oCon

oCmd.CommandText = sSQL

oCon.Open()

Return oCmd.ExecuteReader(CommandBehavior.CloseConnection)

Catch oErr As Exception

‘ be sure to close connection if error occurs

oCon.Close()

lblResult.Text &= “ERROR: “ & oErr.Message & “
”

10
Relational Data-Handling Techniques

414

14 0672326744 CH10 5/4/04 12:23 PM Page 414

415Updating Multiple Rows by Using Changed Events

End Try

End Function

When you have the Connection and Command objects, you can open the connection and
return the DataReader instance that you get back from executing the command. You use the
CommandBehavior.CloseConnection parameter to ensure that the Connection instance is closed when
the DataReader instance goes out of scope after being bound to the DataGrid control in the page.

Updating Multiple Rows by Using Changed Events
The rest of this chapter looks at an interesting situation with regard to updating data with a
DataGrid control (or, in fact, any other list control that supports templates—such as the Repeater
and DataList controls). We include this example after seeing a question on the ASP.NET groups
as to whether it is possible to handle the changed events for controls located within the output
of a DataGrid control and do anything useful with them.

When you use a DataGrid control or DataList control for inline editing of the data rows in
ASP.NET, as demonstrated in Chapter 4, the usual technique for updating the data source is to
fire off individual SQL statements (or execute stored procedures) on each postback. This means
that only one row can be edited at a time because a postback is required to change the
EditItemIndex property of the DataGrid control to show a different row in edit mode, and the
values in the controls in the previous row are lost.

However, the change event for a control such as the TextBox control does not cause a postback
(unless you set the AutoPostback property to True). All the TextChanged events for all the
constituent members of the DataGrid control are raised one after the other when the next post-
back occurs. This means that you can take advantage of this feature to allow users to edit multi-
ple rows in a DataGrid control or DataList control and then perform all the updates in one go on
the server afterward.

Figure 10.17 shows the sample page we provide with the samples for this book (which you can
find at www.daveandal.net/books/6744/). It displays six rows from the Products table in the
Northwind sample database. Each value except the row key is displayed in an edit control. There
are text boxes for the product name and price, and there is a check box for the Discontinued
column.

Figure 10.18 shows what happens after some of the values are changed and the Update button is
clicked. You can see that the reduced-sugar aniseed syrup is more expensive than the standard
variety, that Chai is now discontinued, that Chang has suffered more than usual price inflation
(perhaps due to a bad harvest in Indonesia), and that Chef Anton has really gone to town in
naming his latest gumbo mix flavor.

LISTING 10.10 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 415

At the bottom of the page, you can see that the single postback resulted in five SQL UPDATE state-
ments being generated and executed against the database—one for each change to the controls
in the page. These updates occur in response to the four TextChanged events for the text boxes
that were edited and the single CheckedChanged event for the check box in the Discontinued
column.

10
Relational Data-Handling Techniques

416

FIGURE 10.17 A sample page that demon-
strates editing multiple rows
in a DataGrid control.

FIGURE 10.18
Highlighting the control where
an error occurred after a post-
back.

14 0672326744 CH10 5/4/04 12:23 PM Page 416

417Updating Multiple Rows by Using Changed Events

The important point to note is that the last of these statements failed because the value
provided for the ProductName column was too long for the column in the database. Also note—
and here’s the clever part—that the control containing the error is selected (that is, receives the
input focus). Moreover, if this book were in color, you’d be able to see that the text within the
text box is now colored red; if there is more than one error, the focus moves to the first one, but
all the fields that generated errors are highlighted in red.

If an error is detected during an update, a Cancel button appears on the page (refer to Figure
10.18). You can use the Cancel button to abandon the changes that resulted in an error and that
were not applied. All it does is repopulate the DataGrid control from the database to restore the
current values and remove any highlighting and color changes from the controls.

The declaration of the DataGrid control is reasonably simple. You need to handle the
ItemDataBound event for every row, as you’ll see later in this chapter, so you specify a routine that
will be executed when the event is raised. You obviously don’t want the DataGrid control to
autogenerate the columns either because you’ll declare them yourself so that you get edit
controls in every row:

OnItemDataBound=”BindRowData”

AutoGenerateColumns=”False”

Listing 10.11 shows the <Columns> section of the DataGrid control, which contains just an
<ItemTemplate> section for each column. You won’t be switching into edit mode, so this is all
you need. The first column is the product ID, and it is read-only, so it’s just displayed as text.
Each of the next two columns contains a TextBox control, with the Text property bound to the
value in the source data row. The third column contains a CheckBox control, with its Checked
property bound to the value in the source data row.

Notice that you specify event handlers for the TextChanged events of the TextBox controls and the
CheckedChanged event of the CheckBox control. These event handlers will push the changed values
into the database following a postback.

LISTING 10.11 The Column Declarations for the DataGrid Control

<Columns>

<asp:TemplateColumn HeaderText=”ID”

HeaderStyle-HorizontalAlign=”Center”

ItemStyle-HorizontalAlign=”Center”>

<ItemTemplate>

<%# Container.DataItem(“ProductID”) %>

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Product”

HeaderStyle-HorizontalAlign=”Center”

ItemStyle-HorizontalAlign=”Right”>

<ItemTemplate>

14 0672326744 CH10 5/4/04 12:23 PM Page 417

<asp:Textbox id=”txtProductName” Columns=”40”

Text=’<%# Container.DataItem(“ProductName”) %>’

OnTextChanged=”ProductNameChanged”

runat=”server” />

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Price”

HeaderStyle-HorizontalAlign=”Center”

ItemStyle-HorizontalAlign=”Right”>

<ItemTemplate>

<asp:Textbox id=”txtPrice” Columns=”6”

Text=’<%# DataBinder.Eval(Container.DataItem, _

“UnitPrice”, “${0:F2}”) %>’

OnTextChanged=”PriceChanged”

runat=”server” />

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText=”Discontinued”

ItemStyle-HorizontalAlign=”Center”>

<ItemTemplate>

<asp:Checkbox id=”chkDiscontinued”

Checked=’<%# Container.DataItem(“Discontinued”) %>’

OnCheckedChanged=”DiscontinuedChanged”

runat=”server” />

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

The Edit and Cancel Buttons
No buttons or links are required within the DataGrid control to initiate postbacks. Normally,
you’d use an EditCommandColumn column or a ButtonColumn column that adds an edit link or
button to each row to switch that row into edit mode. However, all the rows are already effec-
tively in edit mode in this example, and you just need a single button that will cause a
postback—whereupon you perform all the updates in one go. So you just add an ordinary Button
control to the foot of the page:

<asp:Button Text=”Update” id=”btnUpdate” runat=”server” />

10
Relational Data-Handling Techniques

418

LISTING 10.11 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 418

419Updating Multiple Rows by Using Changed Events

The Cancel button shown in Figure 10.18 is visible only when an update error is detected. This
is another Button control, with its Visible property set to False so that it does not appear in the
page by default. If you turn off viewstate for the button, it will appear only when you set its
Visible property to True during a postback, and then it will automatically disappear again on
the next postback:

<asp:Button Text=”Cancel” id=”btnRefresh” Visible=”False”

OnClick=”DoRefresh” EnableViewState=”False” runat=”server” />

Populating the DataGrid Control
The data to populate the DataGrid control is extracted from the database by using a simple SQL
statement (you would, of course, use a stored procedure here in the real world), stored in a
DataSet instance, and then bound to the DataGrid control. However, you could equally well use
the DataReader class to populate the control instead.

In this example, the data access code is in a routine named BindDataGrid, which you call from
the Page_Load event the first time the page is loaded. You also call this routine from the Cancel
button via an event handler named DoRefresh. The BindDataGrid routine simply repopulates the
DataGrid control with the values in the underlying table in the database. Listing 10.12 shows the
Page_Load and DoRefresh event handlers and the BindDataGrid routine.

LISTING 10.12 Populating the DataGrid Control

Sub Page_Load()

If Not Page.IsPostback Then

BindDataGrid()

End If

End Sub

Sub DoRefresh(sender As Object, e As EventArgs)

‘ refill grid from original data source

BindDataGrid()

End Sub

Sub BindDataGrid()

‘ declare SQL statement to fill table

Dim sProducts As String _

= “SELECT ProductID, ProductName, UnitPrice, Discontinued “ _

14 0672326744 CH10 5/4/04 12:23 PM Page 419

& “FROM Products “ _

& “WHERE ProductID <= 6 ORDER BY ProductName”

Dim sConnect As String = ConfigurationSettings.AppSettings(_

“NorthwindOleDbConnectString”)

Dim oConnect As New OleDbConnection(sConnect)

‘ create new DataSet and fill from database

Dim oDS As New DataSet()

Try

Dim oDA As New OleDbDataAdapter(sProducts, oConnect)

oDA.Fill(oDS, “Products”)

Catch oErr As Exception

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text &= oErr.Message & “
”

End Try

‘ bind DataGrid to Products table

dgr1.DataSource = oDS

dgr1.DataMember = “Products”

dgr1.DataBind()

End Sub

Handling the ItemDataBound Event
You include the attribute OnItemDataBound=”BindRowData” in the declaration of the DataGrid
control so that the event handler named BindRowData will be executed for each row in the
DataGrid control as it is bound to the source data. You do this because you need to store the
primary key value of the current row someplace where you can retrieve it following a postback.

When you use the DataGrid control in its default manner, a postback occurs whenever you put a
row into edit mode, and another postback is initiated by the update link. So when you update

10
Relational Data-Handling Techniques

420

LISTING 10.12 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 420

421Updating Multiple Rows by Using Changed Events

the data source in response to the update postback, you can access the data in the current row
and get the primary key of the row from the DataKeys collection. You used this technique in
most of the examples in Chapter 4.

However, in this example, you only get a postback after the user has completed all of his or her edits,
at which point there is no “current” row. You have to be able to discover the primary key value for
each row because you need to handle the changed events and perform the updates for each row.

One of the great things about HTML is that it
ignores anything it doesn’t understand.
Therefore, you can hide the row key within
the style attribute of every control in each
row as a selector that the browser will not
recognize (and therefore will ignore). But
because it is part of the style attribute of the
HTML element, it is also part of the Style
property of the ASP.NET control that imple-
ments the element. You can set and read this
value in your server-side code and have it
persisted in the page, and it will be available
following a postback.

Listing 10.13 shows the BindRowData event handler. You must check that the current row is an
Item row or an AlternatingItem row to prevent runtime errors. Then you can get a reference to
each of the edit controls in the current row in turn and add the new style selector to the Style
property of each one. In this example, you use “rowval” as the selector name and the product ID
from the current row as the selector value.

LISTING 10.13 Handling the ItemDataBound Event to Add the Style Selectors

Sub BindRowData(sender As Object, e As DataGridItemEventArgs)

‘ see what type of row (header, footer, item, etc.) caused event

Dim oType As ListItemType = CType(e.Item.ItemType, ListItemType)

If oType = ListItemType.Item _

Or oType = ListItemType.AlternatingItem Then

‘ add primary key of current row to each control in row

‘ required to perform multiple-row updates after a postback

‘ hide it in the style attribute as “rowval:key”

Dim oTextbox As Textbox _

= CType(e.Item.FindControl(“txtProductName”), Textbox)

oTextbox.Style(“rowval”) = e.Item.DataItem(“ProductID”)

oTextbox = CType(e.Item.FindControl(“txtPrice”), Textbox)

oTextbox.Style(“rowval”) = e.Item.DataItem(“ProductID”)

An Alternative Approach to Storing
Key Values
An alternative approach would be to generate
a control-specific key (probably the full
control ID, including the prefix generated by
the DataGrid control—as available from the
control’s UniqueID property) and use that to
store the value in the viewstate of the page
or in the user’s session. However, the tech-
nique used in this chapter demonstrates an
interesting approach that might be useful in
other applications and pages you build.

14 0672326744 CH10 5/4/04 12:23 PM Page 421

Dim oCheckbox As Checkbox _

= CType(e.Item.FindControl(“chkDiscontinued”), Checkbox)

oCheckbox.Style(“rowval”) = e.Item.DataItem(“ProductID”)

End If

End Sub

Handling the Changed Events
When the user changes the value in any of the edit controls within the DataGrid control and
clicks the Update button to submit the page, a changed event occurs on the server for every
control where the value has changed since the page was created. A separate event handler is
attached to each of the three controls, which appear in every row in the DataGrid control. The
three event handlers are shown in Listing 10.14.

LISTING 10.14 The Event Handlers for the Changed Events

Sub ProductNameChanged(sender As Object, e As EventArgs)

‘ remove any previous formatting

sender.Style.Remove(“color”)

‘ execute update against data store

‘ DoItemUpdate returns false if update is not performed

If Not DoItemUpdate(sender.Style(“rowval”), “ProductName”, _

“‘“ & sender.Text.Replace(“‘“, “‘’”) & “‘“) Then

‘ change text to red

sender.Style.Add(“color”, “Red”)

WriteClientScript(sender.UniqueID)

End If

End Sub

Sub PriceChanged(sender As Object, e As EventArgs)

sender.Style.Remove(“color”)

If Not DoItemUpdate(sender.Style(“rowval”), “UnitPrice”, _

sender.Text.Replace(“‘“, “‘’”)) Then

sender.Style.Add(“color”, “Red”)

WriteClientScript(sender.UniqueID)

10
Relational Data-Handling Techniques

422

LISTING 10.13 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 422

423Updating Multiple Rows by Using Changed Events

End If

End Sub

Sub DiscontinuedChanged(sender As Object, e As EventArgs)

‘ remove any previous formatting

sender.Style.Remove(“background-color”)

‘ get value of Checkbox as an integer (not True/False)

Dim iChecked As Integer = (sender.Checked = True)

‘ for demonstration only, cause an update error if

‘ ProductID is 6 by applying invalid value

Dim sForceError As String = “”

If sender.Style(“rowval”) = “6” Then

sForceError = “*NaN*”

End If

If Not DoItemUpdate(sender.Style(“rowval”), “Discontinued”, _

iChecked.ToString() & sForceError) Then

‘ change background to red

sender.Style.Add(“background-color”, “Red”)

WriteClientScript(sender.UniqueID)

End If

End Sub

The ProductNameChanged event handler runs for each TextBox control in the Product column of
the DataGrid control (which displays the product name) where the value has been changed. It
first removes any color style selector from this element. (It will still contain background-color:Red
if there was an error last time.) Next, the code calls a separate routine named DoItemUpdate,
passing it three parameters: the primary key value for this row, the name of the column in the
source table, and the new value for that column in this row. You can see that the primary key is
extracted from the Style property of the text box where it was stored in the BindRowData routine
when the page was created. Any single quotes in the new value for the column are replaced
with two single quotes, and then the value is wrapped in single quotes. This is required to
conform to the syntax of a SQL statement. The resulting call to the DoItemUpdate routine could
look something like this:

DoItemUpdate(3, “ProductName”, “‘Grandma’’s Boysenberry Spread’”)

LISTING 10.14 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 423

The DoItemUpdate routine returns True if it can perform the update or False if there is an error of
any kind. If it returns False, you change the foreground color of the text box to red and call the
WriteClientScript routine. You pass the value of the UniqueID property of the control that raised
the event (the text box) to this routine, which (as you’ll see later in this chapter) is responsible
for highlighting the control and making the Cancel button visible.

The other two event handlers shown in Listing 10.14 work in much the same way as the ones
just described. In fact, the PriceChanged event handler for the TextBox controls in the Price
column is identical except for the second parameter to the DoItemUpdate method (the column
name).

The DiscontinuedChanged event handler is slightly different from the other event handlers in that
you set the background color to red to indicate an error because setting the foreground color for
a CheckBox control has no visible effect. You also have to convert the Boolean value of a CheckBox
control to an Integer value to match the column type in the database.

The other issue here is that it’s not easy to demonstrate the result of an update error where a
check box is used because the only possible values are True and False, and they are both
valid in the database. Therefore, the sample code adds an artificial constraint: Changing the
Discontinued value for the row with the product ID of 6 will be classified as an error. To achieve
this, you add the string “*NaN*” to the value of the control when you call the DoItemUpdate
method, which will subsequently fail to apply the update. If you try to update the Discontinued
columns for this row, you’ll see an error reported, the background of the check box turn red,
and the focus move to the check box (see Figure 10.19).

10
Relational Data-Handling Techniques

424

FIGURE 10.19 Highlighting the check
box for the product with an
ID of 6.

Updating the Source Data
You’ve just seen how the three event handlers in Listing 10.14 call a routine named DoItemUpdate
to push the changed values back into the database. Listing 10.15 shows this routine in full.
There is nothing really unusual here; you just generate a suitable SQL statement and then
execute it against the database. You return True if one row is updated or False otherwise.

LISTING 10.15 A Routine That Performs Updates to the Data Source

Function DoItemUpdate(sRowKey As String, _

sColumnName As String, _

sValue As String) As Boolean

‘ create a suitable SQL statement and execute it

Dim sSQL As String

sSQL = “UPDATE Products SET “ & sColumnName & “=” _

& sValue & “ WHERE ProductID=” & sRowKey

lblErr.Text &= “Executing SQL statement: “ & sSQL & “
”

14 0672326744 CH10 5/4/04 12:23 PM Page 424

425Updating Multiple Rows by Using Changed Events

Dim sConnect As String = ConfigurationSettings.AppSettings(_

“NorthwindOleDbConnectString”)

Dim oConnect As New OleDbConnection(sConnect)

Try

oConnect.Open()

Dim oCommand As New OleDbCommand(sSQL, oConnect)

If oCommand.ExecuteNonQuery() <> 1 Then

lblErr.Text &= “ERROR: Could not update the selected row”

Return False

Else

Return True

End If

oConnect.Close()

Catch oErr As Exception

‘ be sure to close connection if error occurs

If oConnect.State <> ConnectionState.Closed Then

oConnect.Close()

End If

‘ display error message in page

lblErr.Text &= “ERROR: “ & oErr.Message & “
”

Return False

End Try

End Function

One thing you aren’t doing here is managing
concurrency errors (in which more than one
person tries to update the database at the
same time). You can protect against these
errors by saving the existing values of the
source data rows in the page and then check-
ing that they haven’t changed in the database
when you perform the update.

One way to do this would be to store the
current values for columns that the user can
edit in hidden controls in each row of the
DataGrid control. Then you could extract

LISTING 10.15 Continued

Remember to Use Parameters in Your
SQL Statement
Notice that in Listing 10.15 we have broken
the rule we suggested earlier in this chapter
about protecting your pages from malicious
users: We have built our SQL statements as
literal text rather than by including parame-
ters. We’ve done that here only so that you
can see the actual SQL statement that is
executed. If we used replaceable parameters
in the SQL statement, you wouldn’t see the
values and the full syntax. You would only see
the parameter names within the statements.

14 0672326744 CH10 5/4/04 12:23 PM Page 425

them after a postback and use them in the
WHERE clause of the SQL statement so that it
becomes the following:

UPDATE Products SET ProductName=’New Chai’

WHERE ProductID=1 AND ProductName=’Chai’

AND UnitPrice=18.00 AND Discontinued=0

Creating the Client-Side Script to
Highlight a Control
The final part of the code in this example
demonstrates how you can interact with the
controls on the page by using client-side
script. Chapters 5, “Creating Reusable
Content,” and 6, “Client-Side Script
Integration,” show plenty of this kind of
code. All you do is create some client-side

JavaScript that runs as the page loads (instead of being located within an event handler), and
then you insert it at the end of the <form> section of the page, using the RegisterStartupScript
method of the Page object. (This method is described and used at the end of Chapter 7, “Design
Issues for User Controls.”) The code required for this simply has to move the input focus to the
required control on the page and select any text it might contain:

var ctrl = document.getElementById(‘control-id’);

ctrl.focus();

ctrl.select();

When the WriteClientScript routine (shown in Listing 10.16) is called, the full ID of the control
that caused the error (its UniqueID property) is passed as a parameter. This is used in the client-
side script to get a reference to the appropriate element. And because you test whether the script
block has been inserted already, this block will be added to the page only once. This means that
the focus will move to the first element within the DataGrid control that contains an error—just
what you want!

LISTING 10.16 Creating a Client-Side Script Block to Highlight Input Errors

Sub WriteClientScript(sCtrlID As String)

‘ create script to set focus to first control with error

‘ see if previous instance of this control has already

‘ added the required JavaScript code to the page

If Not Page.IsClientScriptBlockRegistered(“AHHGridFocus”) Then

Dim sScript As String = vbCrlf _

& “<script language=’javascript’>” & vbCrlf _

10
Relational Data-Handling Techniques

426

Using SQL Statements That Update More
Than One Column
As shown in the code in Listing 10.15, if the
user edits more than one control value in the
same row, you actually end up executing a
separate UPDATE action on the database for
each edited control. Following a postback, the
changed events are raised on the server in
the order in which the controls are declared
on the page. This means they will occur in
turn for all the controls in each row that have
been changed. You could, therefore, use the
control names or their UniqueID values to
determine whether they came from the same
row, and if so build compound UPDATE state-
ments, but the code required for that is
certainly not trivial.

14 0672326744 CH10 5/4/04 12:23 PM Page 426

427Summary

& “<!--” & VbCrlf _

& “var ctrl = document.getElementById(‘“ & sCtrlID & “‘);” _

& vbCrlf _

& “ctrl.focus();” & vbCrlf _

& “ctrl.select();” & vbCrlf _

& “// -->” & vbCrlf _

& “<” & “/script>” & vbCrlf

‘ add this JavaScript code to the page

Page.RegisterStartupScript(“AHHGridFocus”, sScript)

End If

‘ make Cancel button visible. Will disappear again on

‘ next postback because EnableViewState in False

btnRefresh.Visible = True

End Sub

As you can see, you now have a responsive and intuitive page that allows multiple row updates
to be performed without requiring intermediate postbacks. Although it might not suit your
requirements in every way, you could easily adapt the techniques for use in other situations.

Summary
This chapter is concerned with issues that can arise when you have to manage and interact with
data using ADO.NET. It also looks at a nonstandard approach to using the ASP.NET list controls.
(Some useful techniques with XML data are described in Chapter 11, “Working with XML
Data.”)

This chapter starts by looking at the risks you face when accepting input from users and
constructing SQL statements from it. You have seen the problem demonstrated in a simple
sample page and know that, to protect your pages and data, you should consider using parame-
ters in all cases.

This chapter then looks at how you can use stored procedures that contain default parameter
values and how this approach can make it easier to write data access code. The example in this
chapter shows how you can create sensible default values for data rows and how you can report
errors via the Windows event log. This chapter also investigates the passing of parameters by
name for the SqlClient data provider (whereas other providers pass parameters by position and
ignore parameter names).

LISTING 10.16 Continued

14 0672326744 CH10 5/4/04 12:23 PM Page 427

This chapter also examines how the structure of tables, columns, and other metadata can be
generated from a schema or by simply filling the DataSet instance from a database. You have
seen how the schema affects the result and how the values for the MissingSchemaAction property
of the DataAdapter instance affect the outcome. This chapter also looks at a performance compar-
ison involving loading a schema into a DataSet instance to create the internal structure first,
before loading the data.

Finally, this chapter shows an alternative approach to editing data in an ASP.NET list control—in
this case a DataGrid control. By handling the changed events for the controls within the DataGrid
control, you can allow the user to perform multiple changes and submit them all to the server
for updating in one go, rather than using the default individual postback approach.

10
Relational Data-Handling Techniques

428

14 0672326744 CH10 5/4/04 12:23 PM Page 428

11
Working with

XML Data

In today’s distributed world, data comes in a
wide variety of shapes and sizes. As a result,
exchanging data between different entities is
often a challenging task. Although several
different data exchange formats have been
created—such as flat files, binary structures,
and electronic data interchange (EDI)—few
have proven to be as versatile and easy to use
as Extensible Markup Language (XML). XML
has the advantage of being readable by both
humans and computers, plus it has support
for validation, parsing, and transformation.
These strengths have made it one of the
most popular technologies for exchanging,
storing, and manipulating data.

This chapter discusses several different ways
that XML data can be integrated into ASP.NET
applications and demonstrates how native
.NET Framework XML-parsing application
programming interfaces (APIs) can be used to
read, write, and manipulate both relational
and XML data. The chapter starts off with a
quick refresher on how XML can be used in
ASP.NET applications and then moves into a
discussion of the pros and cons of different
.NET Framework XML APIs. The chapter then
covers topics such as transforming data with
the XmlTextReader and XmlTextWriter classes,
searching XML documents, working with
default and local namespaces, converting rela-
tional data to XML, leveraging XML serializa-
tion, and much more.

IN THIS CHAPTER
The Role of XML in ASP.NET 430

XML API Pros and Cons 430

Combining the XmlTextReader and
XmlTextWriter Classes 433

Parsing XML Strings 437

Accessing XML Resources by Using the
XmlResolver Class 438

Searching, Filtering, and Sorting
XML Data 442

Creating a Reusable XML Validation
Class 456

Converting Relational Data to XML 460

Simplifying Configuration by Using XML 466

Summary 474

15 0672326744 CH11 5/4/04 12:27 PM Page 429

The Role of XML in ASP.NET
One of the most popular ways XML data has been used in Web applications over the past
few years has been to transform it into HTML by using Extensible Stylesheet Language
Transformations (XSLT). People with a variety of programming skills can use XML and XSLT to
quickly and easily build dynamic applications capable of targeting multiple devices. You can
easily skin and personalize Web sites by changing the XSLT stylesheet used to transform XML
data and generate the HTML output.

With the release of the .NET Framework in 2002, a new way of developing Web applications was
introduced that allowed developers to build object-oriented pages capable of utilizing specialized
HTML generators known as server controls. As a result of this substantial shift in Microsoft’s Web
technology, one could argue that the need for XML and XSLT has been minimized. After all,
ASP.NET allows data to be bound to many different types of controls with a minimal amount of
code.

Although it’s true that ASP.NET makes the display of data much more straightforward than in
the past, there are still many ways that XML (and other XML technologies, such as XSLT) can be
used productively in ASP.NET applications. Examples include grabbing XML/RSS news feeds
from remote sites, blending relational and XML data together for reporting purposes, generating
read-only output, exchanging data between disparate applications, aggregating data from XML
Web services, and transforming relational data into hierarchical structures (to name only a few).
Because the .NET Framework has built-in support for validation, parsing, and transforming
XML, as well as mapping relational data to XML, the possibilities of leveraging XML in ASP.NET
applications are virtually endless.

The bottom line is that XML provides a platform-neutral way to work with data that doesn’t
require a specific database, programming language, or operating system. As more and more
products support XML and as new XML technologies continue to be released (such as the
upcoming XQuery language), it becomes easier and easier for different types of data stored in
distributed locations to be integrated into ASP.NET Web applications.

XML API Pros and Cons
Understanding the different ways that XML can be used in ASP.NET applications is important,
but when you’re ready to design and build an application, it’s crucial that you know the pros
and cons associated with the .NET Framework’s XML-parsing APIs up front. Not knowing the
pros and cons can lead to the creation of inefficient and nonscalable applications because some
APIs are better suited for specific activities than others. Table 11.1 shows the classes that provide
functionality for the four main XML-parsing APIs found in the .NET Framework.

11
Working with XML Data

430

15 0672326744 CH11 5/4/04 12:27 PM Page 430

431XML API Pros and Cons

TABLE 11.1
The .NET Framework’s XML-Parsing API Classes

Class API Functionality

XmlTextReader A forward-only, noncached XML reader that is capable of reading large XML documents
quickly and efficiently.

XmlDocument An editable in-memory object model, referred to as the Document Object Model (DOM), that
allows for node selection using the XPath language.

XPathNavigator A non-editable, in-memory, random movement, cursor-style model. Like the DOM, this API
allows nodes to be selected by using XPath.

XmlSerializer A serialization/deserialization API that converts objects to XML and back.

Some of the XML APIs listed in Table 11.1 provide flexible object models that are more memory
intensive; others aren’t as flexible but provide the ultimate in speed and performance. Although
you likely have experience working with one or more of the XML APIs available in the .NET
Framework, it’s worthwhile to examine the pros and cons, starting with the forward-only API
exposed by the XmlTextReader class.

The Forward-Only API: XmlTextReader
The pros of forward-only API include the following:

n The XmlTextReader class provides a forward-only, noncached reader that is memory efficient
and works well when XML data needs to be read quickly and efficiently.

n XML tokens in the stream created by the XmlTextReader class can be pulled out and
analyzed as desired. Unwanted tokens can be skipped.

n The XmlTextReader class is the fastest and most efficient API in the .NET Framework for
parsing XML documents.

The cons of forward-only API include the following:

n The XmlTextReader class does not contain any editing functionality.

n The XML parsing process is forward only.

n The XmlTextReader class can arguably be more difficult to use than other XML-parsing APIs,
such as the DOM API.

The DOM API: XmlDocument
The pros of the DOM API include the following:

n When you use the DOM API, nodes (elements, attributes, text nodes, and so on) can be
updated, deleted, inserted, and moved.

n XPath expressions can be used to query an XML document and locate specific nodes.
Unwanted nodes can be ignored.

15 0672326744 CH11 5/4/04 12:27 PM Page 431

n Recursion techniques can be used to walk through the DOM structure, which can result in
less code.

n The DOM structure can be traversed in any direction, from parent to ancestor to siblings.

The cons of the DOM API include the following:

n The DOM API works by loading the entire XML document into memory. This may cause
performance or scalability problems when working with large XML documents.

n The DOM API uses the forward-only API exposed by the XmlTextReader class behind the
scenes to initially read the XML document and load it into memory. Although this is not a
con in and of itself, this extra loading step causes the performance of the DOM API to be
slower than the parsing speed of the XmlTextReader class.

The Cursor-Style API: XPathNavigator
The pros of the cursor-style API include the following:

n XML can be navigated randomly, using a more efficient mechanism than that associated
with DOM objects in the .NET Framework.

n XPath expressions can be used to query an XML document and access specific nodes.
XPath expressions can be compiled in order to add additional functionality, such as
sorting.

n Recursion techniques can be used to walk through the XML tree in a cursor-style manner,
which can result in less code.

n XML data can be traversed in any direction, from parent to ancestor to siblings.

n Non-XML data stores that expose the IXPathNavigable interface—including INI files, direc-
tory structures, and more—can be navigated by using XPathNavigator.

The cons of the cursor-style API include the following:

n The XPathNavigator class does not allow nodes to be edited (this will change in version 2 of
the .NET Framework, which adds new editing classes, such as XPathEditor).

n Although more efficient than the DOM API, XPathNavigator still involves working with
XML documents that have been loaded into memory and is therefore not as fast or effi-
cient as the forward-only, noncached API found in the XmlTextReader class.

The XML Serialization API: XmlSerializer
The pros of the XML serialization API include the following:

n XML documents can be manipulated without an in-depth knowledge of different XML-
parsing APIs.

11
Working with XML Data

432

15 0672326744 CH11 5/4/04 12:27 PM Page 432

433Combining the XmlTextReader and XmlTextWriter Classes

n XML documents can be created and edited by using real-world objects rather than DOM-
specific classes.

n An object’s state can be stored (serialized) and restored (deserialized) by using XML.

n XML schema definition (XSD) schemas can be converted to .NET Framework classes by
using the xsd.exe tool.

The cons of the XML serialization API include the following:

n When done by hand, XML serialization/deserialization may involve more up-front devel-
opment work than using other APIs, such as the one exposed by the XPathNavigator class.

n Although it is very convenient, XML serialization is not as efficient as the forward-only,
noncached API exposed by the XmlTextReader class.

n The XmlSerializer class serializes only public properties/fields of an object. Private
members are ignored.

Combining the XmlTextReader and XmlTextWriter
Classes
There are a variety of ways that you can convert XML data into HTML by using the .NET
Framework and ASP.NET. Although using XSLT is a popular way to transform XML into HTML,
XSLT is memory intensive and doesn’t always perform well when large amounts of data are
involved. When maximum performance is needed, you should consider combining functional-
ity found in the XmlTextReader and XmlTextWriter classes instead of using XSLT. If you use these
two classes, you’ll see better performance, especially when data changes frequently and can’t be
cached.

To illustrate one of the many ways you can
use the XmlTextReader class along with the
XmlTextWriter class to generate HTML,
let’s examine a simple XML document
published by MoreOver.com, found at
http://p.moreover.com/cgi-local/

page?c=XML%20and%20metadata%20news&o=xml.
(As with any hyperlink on the Web, the
MoreOver.com link listed here is subject to
change.) Listing 11.1 shows a portion of the
XML document that contains news articles.
Each news article is marked up by using an
article element that has several children.
Two of the children (url and headline_text)
are used in the examples that follow to dyna-
mically add news headlines to an ASP.NET page.

Tips for Enhancing XSLT Performance
Although the XmlTextReader and
XmlTextWriter classes are being highlighted
in this section, XSLT is still a viable solution
for transforming XML into different output
structures. However, if you use XSLT in the
.NET Framework version 1.1, it is highly
recommended that you do not use the
XmlDataDocument class when performing a
transformation due to performance issues.
Instead, you should use the XPathDocument
class located in the System.Xml.XPath
namespace.

15 0672326744 CH11 5/4/04 12:27 PM Page 433

LISTING 11.1 MoreOver.com XML News Feed

<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE moreovernews

SYSTEM “http://p.moreover.com/xml_dtds/moreovernews.dtd”>

<moreovernews>

<article id=”_116273395”>

<url>http://c.moreover.com/click/here.pl?x116273395</url>

<headline_text>oXygen XML Editor 3.0 released</headline_text>

<source>MacMinute</source>

<media_type>text</media_type>

<cluster>XML and metadata news</cluster>

<tagline></tagline>

<document_url>http://www.macminute.com</document_url>

<harvest_time>Jan 14 2004 8:57PM</harvest_time>

<access_registration></access_registration>

<access_status></access_status>

</article>

<!-- More article nodes follow -->

</moreovernews>

Because the XmlTextReader class creates a stream of XML tokens, the MoreOver.com news feed
can be parsed quickly and efficiently, without tying up a lot of memory. Listing 11.2 shows how
to parse data from the XML document by using the XmlTextReader class and generate HTML
output by using the XmlTextWriter class.

LISTING 11.2 Parsing XML with XmlTextReader and Creating HTML with XmlTextWriter

Dim url As String = _

“http://p.moreover.com/cgi-local/page?” + _

“c=XML%20and%20metadata%20news&o=xml”

‘Create backing store where XmlWriter will write to

Dim sw As New StringWriter

Dim writer As New XmlTextWriter(sw)

writer.Formatting = Formatting.Indented

Dim reader As XmlTextReader = Nothing

Try

writer.WriteStartElement(“ul”)

‘Parse XML using the XmlReader stream API

reader = New XmlTextReader(url)

reader.XmlResolver = Nothing ‘Prevent DTD resolution

Dim headline_url As String = Nothing

While reader.Read()

‘Locate only start elements

If reader.NodeType = XmlNodeType.Element Then

Select Case reader.Name

11
Working with XML Data

434

15 0672326744 CH11 5/4/04 12:27 PM Page 434

435Combining the XmlTextReader and XmlTextWriter Classes

Case “url”

headline_url = _

reader.ReadString() ‘Store URL

Case “headline_text”

Dim headline As String = reader.ReadString()

‘Filter out headlines that don’t have xml

‘keyword in them

If headline.ToLower().IndexOf(“xml”) <> -1 Then

writer.WriteStartElement(“li”)

writer.WriteStartElement(“a”)

writer.WriteAttributeString(“href”, headline_url)

writer.WriteAttributeString(“target”, “_blank”)

writer.WriteString(headline)

writer.WriteEndElement() ‘

writer.WriteEndElement() ‘

End If

End Select

End If

End While

writer.WriteEndElement() ‘ tag

‘Update Label

Me.lblNews.Text = sw.ToString()

Catch exp As Exception

Me.lblNews.Text = exp.Message

Finally

reader.Close()

writer.Close()

End Try

The code in Listing 11.2 starts out by creating a new StringWriter instance (which internally
creates a StringBuilder instance) that is passed into the XmlTextWriter class’s constructor. Because
the output will ultimately be written to an ASP.NET Label control, the StringWriter instance
provides a convenient way to capture the data generated by the writer. Next, the XmlTextReader
class is instantiated and used to parse the remote XML document. As the stream of XML
tokens begins flowing, node types are checked, and element names are inspected, using the
XmlTextReader class’s NodeType and Name properties, respectively. When the url and headline_text
nodes are found, their text nodes are read, using ReadString(), and are passed to the
XmlTextWriter class’s WriteString() method for inclusion in the output. Headlines that do not
contain the text xml are filtered out and do not show up in the output data. Finally, the
StringWriter class’s ToString() method is called to access the output data and assign it to the
Label control.

Although the XmlTextWriter class isn’t absolutely necessary in this situation, using it prevents
messy HTML string concatenations from being added to the code. The XmlTextWriter class also

LISTING 11.2 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 435

has the added benefit of making the output more human readable by setting its Formatting prop-
erty to Formatting.Indented and generating well-formed HTML.

Although not shown in Listing 11.2, the XmlTextWriter class has a nice convenience method that
can be used in situations where attributes encountered by the XmlTextReader class need to be
automatically added to the output generated by the writer. This is accomplished using the
XmlTextWriter class’s WriteAttributes() method, which accepts an XmlReader instance as a param-
eter. WriteAttributes() automatically walks through all attributes on the current element and
positions the reader back on the element when it finishes writing the last attribute. Although it’s
easy enough to write this functionality by hand, knowing how methods such as
WriteAttributes() can be used results in less coding.

To this point, you’ve seen that the XmlTextReader and XmlTextWriter classes work well together.
However, after looking through the code in Listing 11.2, you might be wondering if it’s worth
the effort. After all, other .NET Framework classes, such as DataSet, can be utilized to parse and
bind XML data to ASP.NET Web server controls such as the DataList control with a minimal
amount of code, as shown in Listing 11.3.

LISTING 11.3 Parsing and Binding XML Data with the DataSet Class

Dim url As String = _

“http://p.moreover.com/cgi-local/page?” + _

“c=XML%20and%20metadata%20news&o=xml”

Dim ds As New DataSet

Try

ds.ReadXml(url) ‘Load XML into DataSet

Dim dv As DataView = ds.Tables(0).DefaultView

dv.RowFilter = “headline_text LIKE ‘%xml%’”

Me.dlNews.DataSource = dv

Me.dlNews.DataBind()

Catch exp As Exception

Me.lblError.Text = exp.Message

End Try

Using the DataSet instance’s ReadXml() method, the MoreOver.com XML document can be
loaded and parsed with a single line of code. The data can then be filtered and bound to a
DataList control with only four more lines of code; this is quite impressive. Given the minimal
amount of code in Listing 11.3, it may be tempting to always use the DataSet class and ignore
some of the other XML parsing options in the .NET Framework.

The important factor to take into consideration when deciding between using the XmlTextReader
and XmlTextWriter classes and the DataSet class is memory. Although both solutions can filter out
undesirable data (such as headlines that don’t have the text xml in them), the DataSet class loads
the entire XML document into memory, whereas the XmlTextReader class streams the XML data
and has a small memory footprint.

11
Working with XML Data

436

15 0672326744 CH11 5/4/04 12:27 PM Page 436

437Parsing XML Strings

With the DataSet class, small to medium-sized XML documents may not present a problem.
Large documents will likely cause available memory to decrease, depending on how often the
data is loaded. ASP.NET caching can be used to prevent loading the XML document for each
request to the server, but caching may not be practical in cases where the XML data changes
frequently. Such cases may warrant the more streamlined XmlTextReader and XmlTextWriter
approach.

Parsing XML Strings
A question that shows up quite frequently in different .NET Framework XML newsgroups and
listservs is “How do I parse XML data within a string?” Many people find it easy to parse XML
strings by using the XmlDocument class’s LoadXml() method but have a harder time figuring out
how to parse XML strings by using the XmlTextReader class. The answer to this question is
surprisingly simple, but it involves one extra step in order to work properly. If you look at the
.NET Framework Software Developer’s Kit (SDK), you’ll see that the XmlTextReader class has the
following overloaded constructor that accepts a TextReader instance:

Public Sub New(TextReader)

The StringReader class (located in the System.IO namespace) derives from the abstract TextReader
class and reads strings that are passed into its constructor. As a result, it can be passed into the
XmlTextReader class’s constructor, as shown in Listing 11.4.

LISTING 11.4 Parsing an XML String with the XmlTextReader Class

Dim sb As New StringBuilder

Dim xml As String = _

“<customers><customer id=””2”” “ + _

“name=””John Doe”” /></customers>”

Dim reader As XmlTextReader = New XmlTextReader(New StringReader(xml))

While (reader.Read())

If (reader.Name = “customer” And _

reader.NodeType = XmlNodeType.Element) Then

While (reader.MoveToNextAttribute())

sb.Append(reader.Name)

sb.Append(“ = “)

sb.Append(reader.Value)

sb.Append(“
”)

End While

End If

Me.lblOutput.Text = sb.ToString()

End While

reader.Close()

15 0672326744 CH11 5/4/04 12:27 PM Page 437

When the XML within the string is loaded into the StringReader instance (which is in turn
passed to the XmlTextReader constructor), it can be parsed like any other XML data. Because the
XmlTextReader instance is closed, the StringReader will automatically be closed as well.

Accessing XML Resources by Using the
XmlResolver Class
The System.Xml namespace contains an abstract class named XmlResolver that is responsible for
resolving external resources, including items such as document type definitions (DTDs) and
schemas. Although a concrete instance of the XmlResolver class can’t be created, XmlResolver has
two child classes that derive from it—XmlUrlResolver and XmlSecureResolver—that can be instan-
tiated and used. These classes are used under the covers by different .NET Framework classes,
such as XmlDocument, XmlDataDocument, and XmlTextReader, and they can be accessed through their
respective XmlResolver properties.

XmlUrlResolver is typically used when an external resource such as a DTD needs to be ignored,
when security credentials need to be passed to a remote resource, or with XSLT stylesheets.
Ignoring external resources is accomplished by setting the XmlResolver property of XML classes
such as XmlTextReader and XmlDocument to Nothing (null in C#). This can be useful when the XML
data needs to be parsed but a referenced DTD or schema doesn’t need to be resolved.

An example of setting the XmlResolver property to Nothing is shown in Listing 11.2, where the
MoreOver.com news feed is parsed to extract news headlines. Because the DTD referenced in the
document isn’t of use to the application, the XmlTextReader class’s XmlResolver property is set to
Nothing. If the XmlResolver property were left in its default state, the DTD uniform resource iden-
tifier (URI) would be resolved by an underlying XmlResolver property, assuming that access to the
Internet is available. However, if a proxy server blocked outside access to the DTD or if the
network were temporarily unavailable, the following error would occur:

The underlying connection was closed:

The remote name could not be resolved.

You can also use the XmlUrlResolver class to pass security credentials to a remote resource that
requires authentication by using its Credentials property. Credentials represents a write-only
property of type ICredentials. Listing 11.5 shows how you can create an XmlUrlResolver instance
and assign it authentication credentials by using the NetworkCredential class (found in the
System.Net namespace). After you define the necessary credentials, you assign the XmlUrlResolver
instance to the XmlTextReader class’s XmlResolver property so that the secured XML document can
be parsed.

LISTING 11.5 Passing Security Credentials to a Remotely Secured XML Document

Dim reader As XmlTextReader = Nothing

Dim xmlUri As String = “http://localhost/XMLChapterVB/Listing1.xml”

‘Get login credentials

Dim uid As String = ConfigurationSettings.AppSettings(“UID”)

11
Working with XML Data

438

15 0672326744 CH11 5/4/04 12:27 PM Page 438

439Accessing XML Resources by Using the XmlResolver Class

Dim pwd As String = ConfigurationSettings.AppSettings(“Password”)

Dim domain As String = ConfigurationSettings.AppSettings(“Domain”)

Dim resolver As New XmlUrlResolver

resolver.Credentials = New NetworkCredential(uid, pwd, domain)

Try

reader = New XmlTextReader(xmlUri)

‘Hook resolver to XmlTextReader

reader.XmlResolver = resolver

While reader.Read() ‘Try to parse document

End While

Me.lblOutput.Text = “Parsed secured document.”

Catch exp As Exception

Me.lblOutput.Text = “Did NOT parse secured document: “ + exp.Message

Finally

If Not (reader Is Nothing) Then

reader.Close()

End If

End Try

XmlResolver, Evidence, and XslTransform
Version 1.1 of the .NET Framework enhances security in the XslTransform class by marking
several overloaded versions of the XslTransform class’s Load() and Transform() methods as obso-
lete while adding new, more secure overloaded methods. The XslTransform class’s XmlResolver
property has also been made obsolete in version 1.1. These changes prohibit XSLT scripts and
extension objects, xsl:import and xsl:include statements, and XSLT document() functions from
being processed without supplying security evidence and/or an XmlResolver instance when
calling the Load() and Transform() methods. The following sections analyze changes to the
XslTransform class and explain the roles of the XmlResolver and Evidence classes.

The Load() Method
The XslTransform class’s Load() method found
in version 1.1 of the .NET Framework has
several overloads that allow fine-grained
control over whether XSLT scripts, extension
objects, and xsl:import/xsl:include state-
ments are ignored during an XSLT transfor-
mation. When local XSLT stylesheets are used
in a transformation, the Load() method still
has an overload that accepts a String-type
parameter containing the path to the
stylesheet. Using this overload is the easiest
way to transform XML documents via XSLT because it automatically handles included or
imported stylesheets as well as compiling embedded script within the stylesheet.

LISTING 11.5 Continued

Loading Local XSLT Stylesheets
Using the overloaded Load() method and
passing the physical location of the XSLT
stylesheet is fairly straightforward:

Dim xslPath as String = _

Server.MapPath(“XSLT/Output.xslt”)

Dim trans as New XslTransform

trans.Load(xslPath)

‘Perform transformation

‘with Transform() method

15 0672326744 CH11 5/4/04 12:27 PM Page 439

In addition to the overload mentioned previously, there are several new overloads for the Load()
method in version 1.1 of the .NET Framework. The following is one example:

Overloads Public Sub Load(_

ByVal stylesheet As IXPathNavigable, _

ByVal resolver As XmlResolver, _

ByVal evidence As Evidence _

)

The IXPathNavigable parameter represents the XSLT stylesheet used in the transformation. This
parameter accepts any object that implements the IXPathNavigable interface, such as XmlDocument,
XPathNavigator, or XPathDocument.

The XmlResolver parameter is used to resolve XSLT documents imported into or included in a
master stylesheet. When the parameter value is Nothing, imported or included documents are
ignored. When a new XmlUrlResolver instance is passed into the Load() method, documents
referenced by xsl:import or xsl:include statements are resolved and used in the transformation.
The XmlUrlResolver class’s Credentials property can be used in cases where included or imported
stylesheets require authentication in order to be accessed. (Refer to Listing 11.5 for an example
of using the Credentials property.)

The evidence parameter determines whether XSLT script blocks and extension objects are
processed based on whether they are from trusted sources. The parameter is based on the
Evidence type, located in the System.Security.Policy namespace. The .NET Framework SDK
provides the following insight into how Evidence is used:

Security policy is composed of code groups; a particular assembly (the basic unit of
code for granting security permissions) is a member of a code group if it satisfies the
code group’s membership condition. Evidence is the set of inputs to policy that
membership conditions use to determine to which code groups an assembly belongs.

That is, by supplying a proper Evidence object to the Load() method, script code contained
within potentially untrusted XSLT stylesheets can be compiled and used in an XML document
transformation because the assembly that is generated can be assigned to the proper .NET
Framework code group. If no Evidence type is supplied, assemblies created during the compila-
tion of XSLT script code cannot be used successfully due to their inherit security risks. For
example, when Nothing is passed for the Evidence parameter, XSLT scripting, extension objects,
and document() functions are ignored.

In cases where a local XSLT stylesheet has embedded script, uses extension objects, or references
the document() function, the following code can be used to create the proper Evidence object for
the assembly:

Me.GetType().Assembly.Evidence

When a remote XSLT stylesheet containing script or extension object references is used in a
transformation, the caller of the Load() method must supply evidence in order for script or

11
Working with XML Data

440

15 0672326744 CH11 5/4/04 12:27 PM Page 440

441Accessing XML Resources by Using the XmlResolver Class

extension objects to be executed properly. To supply evidence, the XmlSecureResolver class’s
CreateEvidenceForUrl() method can be used. The CreateEvidenceForUrl() method accepts a single
String-type parameter that contains the URL for which to create evidence, as shown here:

Dim uri as String = “some uri”

Dim xslDoc as new XPathDocument(uri)

‘Create Evidence

Dim e as Evidence = _

XmlSecureResolver.CreateEvidenceForUrl(uri)

Dim trans as new XslTransform

trans.Load(xslDoc,new XmlUrlResolver(),e)

‘XSLT script, extension objects, etc. can be used

‘since evidence was supplied

The Transform() Method
In addition to new overloaded Load() methods, the Transform() method has several new over-
loads that expect an instance of an XmlResolver to be passed as a parameter. The following is an
example of one of these overloads:

public void Transform(XPathNavigator, XsltArgumentList, _

TextWriter, XmlResolver);

In cases where simple XSLT transformations (that is, transformations that involve a single XML
document and a single XSLT stylesheet stored locally) are performed, Nothing (null in C#) can be
passed for the XmlResolver parameter:

Dim writer as new StringWriter

Dim xsl As New XslTransform

xsl.Load(xslPath)

xsl.Transform(doc, Nothing, writer, Nothing)

Passing Nothing for the XmlResolver parameter when more than one XML document is involved
in the transformation presents a problem. For example, when the document() function is used
within the XSLT stylesheet to transform multiple XML documents simultaneously, passing
Nothing causes any additional XML documents to be ignored. In order to perform this type of
transformation successfully, a new XmlUrlResolver instance must be passed to the Transform()
method. Listing 11.6 shows how this is done and highlights how evidence can be passed to the
Load() method in cases where a local XSLT stylesheet is used.

LISTING 11.6 Using the XslTransform Class’s Load() and Transform() Methods

Dim sw As New StringWriter

‘Load XML Doc and master XSLT Stylesheet

Dim xmlDoc As New XPathDocument(Server.MapPath(“XML/Form.xml”))

Dim xslDoc As New XPathDocument(Server.MapPath(“XSLT/Form.xslt”))

15 0672326744 CH11 5/4/04 12:27 PM Page 441

‘Create XslTransform and load stylesheet

Dim trans1 As New XslTransform

Dim resolver As New XmlUrlResolver

trans1.Load(xslDoc, resolver, Me.GetType().Assembly.Evidence)

‘Transform XML

trans1.Transform(xmlDoc, Nothing, sw, resolver)

Response.Write(sw.ToString())

sw.Close()

Searching, Filtering, and Sorting XML Data
A little over a year after the XML 1.0 specification was released by the World Wide Web
Consortium (W3C), the XPath language emerged on the scene to fill a void created by the
inability to effectively search and filter XML data. Since its release, XPath has become increas-
ingly important in the world of XML and is used in DOM APIs, XSLT stylesheets, XSD schemas,
and other XML-specific languages.

XPath is a path-based language (it resembles DOS paths in some regards) that allows specialized
statements capable of searching and filtering nodes to be executed against XML documents. This
chapter does not provide a complete explanation of the XPath language; for more details on the
XPath language, see the book XML for ASP.NET Developers from Sams Publishing. The following
is a sample XPath statement that uses axes, node tests, and a predicate:

/customers/customer[@id=’ALFKI’]

This XPath statement uses the Child and
Attribute axes, along with node tests and a
predicate (the text within the square brackets)
to search for an element named customer that
has an id attribute value equal to ALFKI.
When the statement is executed, unwanted
nodes are automatically filtered out, and the
desired node is returned (assuming that it is
found). Although quite simple, this XPath
statement demonstrates the power of search-
ing and filtering data located in an XML

document. The following sections show how different .NET Framework classes can be used
along with XPath to search, filter, and sort data.

Searching and Filtering XML Data
The .NET Framework contains several classes that are capable of searching and filtering XML
data using the XPath language. Each class has unique pros and cons, as outlined earlier in this

11
Working with XML Data

442

LISTING 11.6 Continued

Using ADO.NET to Search, Filter, and Sort
XML Data
You can also search, filter, and sort XML data
by using the DataSet class and its related
classes. After loading XML data into a
DataSet instance by using the ReadXml()
method, you can use properties and methods
of the DataTable and DataView classes to
accomplish tasks similar to those that the
XPath language handles.

15 0672326744 CH11 5/4/04 12:27 PM Page 442

443Searching, Filtering, and Sorting XML Data

chapter, and offers different levels of efficiency. The XPathNavigator class is designed to work
hand-in-hand with the XPath language to provide a read-only cursor-style model for navigating
XML nodes. Other classes, such as XmlDocument and XmlNode, provide XPath support through their
SelectNodes() and SelectSingleNode() methods.

When designing applications that consume XML data, you should first look to the
XPathNavigator class (located in the System.Xml.XPath namespace) when you need to search XML
data. Although XPathNavigator isn’t as fast as the forward-only API provided by the XmlTextReader
class and doesn’t provide the editing capabilities found in the DOM API (this will change in
version 2.0 of the .NET Framework when classes such as XPathEditor are introduced), it can be
useful in applications that need the ability to traverse an XML document’s hierarchy along a
variety of axes. The XPathNavigator class offers numerous benefits, such as compiled XPath state-
ments and the ability to leverage the IXPathNavigable interface to search non-XML data stores.

The XPathNavigator class is abstract, so it can’t be created directly. However, you can use classes
that implement the IXPathNavigable interface (XmlDocument, XmlDataDocument, XmlNode, and
XPathDocument) to create a concrete instance of the XPathNavigator class by using
CreateNavigator(). After the XPathNavigator instance is created, you can navigate through the
XML document one node at a time. When you are positioned on a node, you can reach other
nodes located before or after the current node by calling a variety of methods, such as
MoveToNext(), MoveToParent(), and MoveToFirstChild().

You can also use XPathNavigator to search and filter nodes within an XML document by using
XPath statements. By leveraging XPath, you can greatly reduce the amount of code that needs
to be written to gather data, thus making applications easier to maintain. Nodes returned from
executing an XPath statement are placed in an XPathNodeIterator instance that can be iterated
through easily. Before looking at an example of using XPathNavigator’s methods, you should
examine the XML document in Listing 11.7, which contains book and author data.

LISTING 11.7 An XML Document That Contains Book and Author Data

<?xml version=”1.0”?>

<bookstore>

<book genre=”novel” style=”hardcover”>

<title>The Handmaid’s Tale</title>

<author>

<first-name>Margaret</first-name>

<last-name>Atwood</last-name>

</author>

<price>19.95</price>

</book>

<book genre=”novel” style=”hardcover”>

<title>The Worker’s Tale</title>

<author>

<first-name>Margaret</first-name>

<last-name>Atwood</last-name>

</author>

15 0672326744 CH11 5/4/04 12:27 PM Page 443

<price>49.95</price>

</book>

<!-- Additional book nodes removed for brevity -->

</bookstore>

Listing 11.8 demonstrates how to walk through the XML data shown in Listing 11.7 and write
out book and author details. The code in Listing 11.8 uses different methods to navigate from
node to node, such as MoveToFirstChild(), MoveToNext(), and SelectChildren(). The code also
searches for other books that a specific author has written by passing an XPath statement to the
Select() method. Several comments have been added to the code in Listing 11.8 to provide
additional details about what it is doing. Figure 11.1 shows the output generated by executing
the code.

LISTING 11.8 Navigating XML Data by Using XPathNavigator

Dim sb as New StringBuilder

Private Sub NavigateBooks()

Dim xmlPath As String = Server.MapPath(“Listing7.xml”)

‘Load XML into a non-editable structure

‘This is more efficient than the DOM

Dim doc As New XPathDocument(xmlPath)

‘Create XPathNavigator by calling CreateNavigator() method

Dim nav As XPathNavigator = doc.CreateNavigator()

‘Move to document

nav.MoveToRoot()

‘Move to root element - bookstore

nav.MoveToFirstChild()

‘Move to first book child element

If nav.MoveToFirstChild() Then

Do ‘Walk through book elements

WalkSiblings(nav)

Loop While nav.MoveToNext()

End If

‘Write out data found while navigating doc

lblOutput.Text = sb.ToString()

End Sub

Private Sub WalkSiblings(ByVal nav As XPathNavigator)

‘Move to “title” element and get value

Dim firstName As String = String.Empty

11
Working with XML Data

444

LISTING 11.7 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 444

445Searching, Filtering, and Sorting XML Data

Dim lastName As String = String.Empty

nav.MoveToFirstChild()

Dim title As String = nav.Value

sb.Append((title + “
”))

‘Move back to book element

nav.MoveToParent()

‘access author element under book

Dim authorNode As XPathNodeIterator = _

nav.SelectChildren(“author”, “”)

While authorNode.MoveNext()

‘Move to first-name element

authorNode.Current.MoveToFirstChild()

firstName = authorNode.Current.Value

‘Move to last-name element

authorNode.Current.MoveToNext()

lastName = authorNode.Current.Value

sb.Append((firstName + “ “ + lastName + “
”))

End While

‘Now move to price element

Dim priceNode As XPathNodeIterator = _

nav.SelectChildren(“price”, “”)

priceNode.MoveNext()

‘Write out value of price element

sb.Append((“$” + priceNode.Current.Value + “
”))

‘Search books by author and filter out unwanted books

Dim otherBookNodes As XPathNodeIterator = _

nav.Select((“//book[author/first-name=’” + firstName + _

“‘ and author/last-name=’” + lastName + _

“‘ and title != “”” + title + “””]/title”))

sb.Append(“<i>Other Books:</i>
”)

‘Add other books to output

If otherBookNodes.Count > 0 Then

While otherBookNodes.MoveNext()

sb.Append((otherBookNodes.Current.Value + “
”))

End While

Else

sb.Append(“None”)

End If

sb.Append(“<p />”)

End Sub

LISTING 11.8 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 445

Sorting XML Data
In the past, applications that required XML
data to be sorted have typically relied on
XSLT and the xsl:sort element due to
XPath’s lack of native support for sorting
data. Although using XSLT to sort can get
the job done, writing stylesheets and
templates is often overkill and doesn’t work

for all types of data sorts. In fact, the XSLT 1.0 specification only supports text and numeric
sorts “out of the box.”

Fortunately, the reliance on XSLT to sort XML data is minimized in the .NET Framework due to
native XML sorting capabilities found in the XPathExpression and DataView classes. In addition to
being able to perform textual and numeric sorts, you can use the XPathExpression class to
perform custom sorts, using objects that implement the IComparer interface. You can also use the
DataView class to sort data loaded into a DataTable instance. The following sections demonstrate
how to sort XML data by using the XPathNavigator and XPathExpression classes and provide
details on how to leverage the IComparer interface. They also demonstrate how to sort XML data
by using XSD schemas, along with DataTable and DataView instances.

Sorting with the XPathExpression Class
You can sort XML nodes by first compiling an XPath statement into an XPathExpression object.
This is accomplished by calling the XPathNavigator class’s Compile() method. Then you can add a
text or numeric sort to the XPathExpression object by calling its AddSort() method. AddSort() has
two overloads:

11
Working with XML Data

446

FIGURE 11.1 Accessing book and author
nodes by using the
XPathNavigator API.

Alternatives to XPathNavigator
The XmlDocument and DataSet classes could
also be used to search and filter the XML
document shown in Listing 11.7. However,
because no editing operations were performed,
the XPathDocument and XPathNavigator
combination provides a more efficient solution.

15 0672326744 CH11 5/4/04 12:27 PM Page 446

447Searching, Filtering, and Sorting XML Data

Overloads Public MustOverride Sub AddSort(_

ByVal expr As Object, _

ByVal comparer As IComparer _

)

Overloads Public MustOverride Sub AddSort(_

ByVal expr As Object, _

ByVal order As XmlSortOrder, _

ByVal caseOrder As XmlCaseOrder, _

ByVal lang As String, _

ByVal dataType As XmlDataType _

)

The first of these overloads allows a custom object implementing IComparer to be used to
perform sorts. This is useful when more advanced sorts need to take place. The second overload
accepts a sort key, the sort order (ascending or descending), a value indicating how to sort
uppercase and lowercase text, a language value, and the type of sort to perform (text or
numeric). Listing 11.9 shows how to use the Compile() and AddSort() methods to sort the news
headlines shown in Listing 11.1. The code sorts the headlines based on the title element, in
ascending order.

LISTING 11.9 Sorting XML Data by Using the XPathNavigator and XPathExpression Classes

Dim sorted As New StringBuilder

‘XPath statement

Dim xpath As String = “/moreovernews/article/headline_text”

‘Create XPathDocument class so we can get a navigator

Dim doc As New XPathDocument(Server.MapPath(“Listing1.xml”))

Dim nav As XPathNavigator = doc.CreateNavigator()

‘Compile xpath expression

Dim exp As XPathExpression = nav.Compile(xpath)

‘Add a sort based upon the headline_text child text node

exp.AddSort(“text()”, XmlSortOrder.Ascending, XmlCaseOrder.None, _

“”, XmlDataType.Text)

‘select nodes so we can see the sort

Dim it As XPathNodeIterator = nav.Select(exp)

While it.MoveNext()

‘Grab headline_text value

Dim headline As String = it.Current.Value

‘Move to article

it.Current.MoveToParent()

‘Move to url

it.Current.MoveToFirstChild()

15 0672326744 CH11 5/4/04 12:27 PM Page 447

‘Grab url

Dim url As String = it.Current.Value

sorted.Append(“<tr><td><a href=”””)

sorted.Append(url)

sorted.Append(“””>”)

sorted.Append(headline)

sorted.Append(“</td></tr>”)

End While

Me.lblNews.Text = sorted.ToString()

Although this type of sorting works well for basic text or numeric sorts, what if you need to sort
a set of nodes based on a Date data type? Fortunately, one of the AddSort() overloads shown
earlier in this section allows a custom object that implements the IComparer interface to be
passed to it. IComparer has a single method, named Compare(), that you can use to perform a
variety of object comparisons. Listing 11.10 shows a simple class named DateComparer that
implements the Compare() method.

LISTING 11.10 Creating a Custom Sort Class That Implements IComparer

Imports System.Collections

Public Class DateComparer : Implements IComparer

Public Function Compare(ByVal date1 As Object, _

ByVal date2 As Object) As Integer Implements IComparer.Compare

Dim intResult As Integer

Dim d1 As DateTime = Convert.ToDateTime(date1)

Dim d2 As DateTime = Convert.ToDateTime(date2)

intResult = DateTime.Compare(d1, d2)

Return intResult * -1

End Function

End Class

The DateComparer class works by accepting two objects that are converted to DateTime types.
Upon conversion, the objects are compared to each other, using the DateTime object’s Compare()
method. Compare() returns an integer value from -1 to 1, depending on how the dates compare.
A value of 0 means that the two dates are equal, and a value of -1 or 1 means that one of the
dates is greater than the other. (See the .NET Framework SDK for more details.) The integer
created by calling DateTime.Compare() is returned from the DateComparer class’s Compare() method
and used by the XPathExpression class to perform the sorting. Listing 11.11 shows an example of
using DateComparer in conjunction with the XPathExpression class.

11
Working with XML Data

448

LISTING 11.9 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 448

449Searching, Filtering, and Sorting XML Data

LISTING 11.11 Performing Custom Sorts with the XPathExpression Class

Dim sorted As New StringBuilder

Dim xpath As String = “/moreovernews/article/harvest_time”

‘Create XPathDocument class so we can get a navigator

Dim doc As New XPathDocument(Server.MapPath(“Listing1.xml”))

Dim nav As XPathNavigator = doc.CreateNavigator()

‘Compile xpath expression so we can add a sort to it

Dim exp As XPathExpression = nav.Compile(xpath)

‘Create IComparer object

Dim dc As New DateComparer

‘Pass IComparer object to AddSort()

exp.AddSort(“text()”, dc)

‘select nodes so we can see the sort

Dim it As XPathNodeIterator = nav.Select(exp)

While it.MoveNext()

‘Grab harvest_time value

Dim [date] As String = it.Current.Value

‘Move to article parent

it.Current.MoveToParent()

‘Move to url

it.Current.MoveToFirstChild()

‘Grab url

Dim url As String = it.Current.Value

‘Move to headline

it.Current.MoveToParent()

Dim headlineIt As XPathNodeIterator = _

it.Current.SelectChildren(“headline_text”, String.Empty)

headlineIt.MoveNext()

Dim headline As String = headlineIt.Current.Value

sorted.Append(“<tr><td><a href=”””)

sorted.Append(url)

sorted.Append(“””>”)

sorted.Append(headline)

sorted.Append(“</td><td>”)

sorted.Append([date])

sorted.Append(“</td></tr>”)

End While

‘Add data to a PlaceHolder server control named phNews

Me.phNews.Controls.Add(New LiteralControl(sorted.ToString()))

15 0672326744 CH11 5/4/04 12:27 PM Page 449

Figure 11.2 shows the HTML output generated after running the code shown in Listing 11.11.
Notice that the news headlines are properly sorted by date and time.

11
Working with XML Data

450

FIGURE 11.2
The result of sorting XML nodes
based on date and time.

Sorting with the DataView Class
You can use ADO.NET’s DataView class in combination with the DataSet and DataTable classes to
sort XML data. Using the DataView class to sort XML is generally attractive to ASP.NET developers
because they can use it to bind views to a variety of ASP.NET controls, including the DataGrid
control. When you set it up properly, you can even use the DataView class to sort dates found
within XML data, without resorting to using a custom class that implements the IComparer inter-
face discussed earlier.

To sort by using the DataView class, you must first load the XML data into a DataSet instance by
calling the ReadXml() method. You can then create a DataView object based on the appropriate
DataTable within the DataSet instance. To sort based on a specific column, you assign the
DataColumn name to the DataView object’s Sort property. You can then assign the DataView object
to the DataSource property of a variety of ASP.NET Web controls.

Following these steps works well for text-based sorts, but what happens if you want to sort
numerically or by date? To sort based on dates contained within an XML document, the column
representing the date data must be defined as a DateTime type within the DataTable object.
Although you can do this programmatically, a more flexible solution is to preload an XSD
schema that describes the XML document structure and its types into the DataSet object. The
XSD schema can be loaded by calling the DataSet object’s ReadXmlSchema() method. When you
load the schema into the DataSet instance, all the DataColumn instances will be properly typed so
that sorting can occur on different types (such as DateTime) by using the DataView object.

Before showing the code to sort XML data by date using a DataView instance, we need to
mention a gotcha. XSD schema date types format dates differently than do Common Language

15 0672326744 CH11 5/4/04 12:27 PM Page 450

451Searching, Filtering, and Sorting XML Data

Runtime (CLR) DateTime types. For example, you can load the harvest_time element shown in
Listing 11.1 into a DateTime structure by using its Parse() method:

Dim date as DateTime = DateTime.Parse(“Jan 14 2004 8:57PM”)

However, this date is not valid, according to the XSD schema specification. As a result, it will
cause an error when it is loaded into a DataSet instance that has been preloaded with an XSD
schema defining the harvest_time element as a Date data type. To make the data conform to the
Date data type defined in the schema specification, you need to change it to the following
format:

2004-01-14T20:57:00.0000000-07:00

Although you could potentially do this conversion by hand, the XmlConvert class can handle it
with a single line of code (see Listing 11.12). Failure to properly perform this conversion will
result in an error when the XML is loaded into the DataSet instance:

String was not recognized as a valid DateTime.

Although this gotcha causes a minor inconvenience when you’re trying to sort the news data in
Listing 11.1 by harvest_time, you can easily overcome it by using the XmlDocument and XmlConvert
classes to manipulate the date values. The code in Listing 11.12 shows how to use these classes
as well as perform several other tasks, including the following:

n Loading the news XML data into the DOM

n Converting all harvest_time text node values to valid schema Date data types by using the
XmlConvert class’s ToString() method

n Serializing the DOM structure to a MemoryStream object

n Loading the MemoryStream object into a DataSet instance that is preloaded with an XSD
schema to properly type the different DataTable columns

n Creating a DataView object based on the DataSet object’s first DataTable

n Identifying a sort column by using the DataView object’s Sort property

n Binding the DataView to an ASP.NET DataGrid server control

LISTING 11.12 Sorting XML Data by Using the DataView Class

‘Fix Listing1.xml dates to be schema “compatible” using DOM

Dim doc As New XmlDocument

doc.Load(Server.MapPath(“Listing1.xml”))

‘Find all harvest_time nodes

Dim dateNodes As XmlNodeList = doc.SelectNodes(“//harvest_time”)

For Each dateNode as XmlNode In dateNodes

Dim newDate As DateTime = DateTime.Parse(dateNode.InnerText)

‘Convert harvest_time string to XSD Schema data type string

15 0672326744 CH11 5/4/04 12:27 PM Page 451

dateNode.InnerText = XmlConvert.ToString(newDate)

Next dateNode

‘Save updated harvest_time XML to a Stream

Dim ms As New MemoryStream

doc.Save(ms)

ms.Position = 0

Dim ds As New DataSet

‘Load schema

ds.ReadXmlSchema(Server.MapPath(“Listing12.xsd”))

‘Load XML data into DataSet

ds.ReadXml(ms)

‘Create DataView

Dim view As DataView = ds.Tables(0).DefaultView

‘Sort on date column

view.Sort = “harvest_time DESC”

Me.dgNews.DataSource = view

Me.dgNews.DataBind()

ms.Close()

Figure 11.3 shows the result of sorting the XML headlines based on harvest_time.

11
Working with XML Data

452

LISTING 11.12 Continued

FIGURE 11.3
The result of sorting XML nodes
based on date and time with a
DataView instance.

Searching Namespace Qualified Nodes
The .NET Framework prevents naming collisions by logically organizing classes into namespaces.
XML documents also prevent naming collisions by using namespaces, although the way they

15 0672326744 CH11 5/4/04 12:27 PM Page 452

453Searching, Filtering, and Sorting XML Data

are defined is quite different. Namespace qualified nodes are logically separated from other
nodes (think of XML nodes as being organized into different rooms in a building based on their
namespace URIs) to make them easy to locate and to avoid collisions. Two different types of
XML namespaces exist: default and local.

The following is an example of defining a default namespace:

<?xml version=”1.0”?>

<moreovernews xmlns=”http://www.moreover.com”>

<!-- Article nodes go here -->

</moreovernews>

Because the default namespace shown here is defined at the root level, all children of the
moreovernews element are members of this namespace.

You create a local namespace by defining a namespace prefix along with a unique URI, as in this
example:

<?xml version=”1.0” ?>

<news:moreovernews xmlns:news=”http://www.moreover.com”>

<!-- Article nodes go here -->

</news:moreovernews>

Nodes that have the news prefix prepended to their names are placed in the local
www.moreover.com namespace. Nodes that do not have this prefix are in a separate namespace.

When XML namespaces are added to an XML document, you must take them into account
when searching or filtering nodes by using XPath. Failure to account for namespaces results in
no matches being returned. You search for nodes in a default or local namespace by using the
XmlNamespaceManager class. XmlNamespaceManager has an AddNamespace() method that accepts a
namespace prefix and URI, as in this example:

Public Overridable Sub AddNamespace(_

ByVal prefix As String, _

ByVal uri As String _

)

Although XmlNamespaceManager is often used when namespaces need to be dynamically added
into XML fragments, it can also be used when executing XPath statements. To query article
nodes located in a default namespace (such as the one shown earlier in this section), you
can add the default namespace to the XmlNamespaceManager instance and then use it in the
XPath statement. The code shown in Listing 11.13 illustrates this process. Adding the
XmlNamespaceManager namespace data into the context of the XPath statement is accomplished
by using the XPathExpression class’s SetContext() method.

15 0672326744 CH11 5/4/04 12:27 PM Page 453

LISTING 11.13 Searching for Nodes in a Default Namespace by Using XpathNavigator

Dim xmlPath As String = Server.MapPath(“Listing13.xml”)

‘Load XML

Dim doc As New XPathDocument(xmlPath)

‘Create navigator

Dim nav As XPathNavigator = doc.CreateNavigator()

Dim ns As New XmlNamespaceManager(nav.NameTable)

‘Define default namespace. Prefix can be any valid XML namespace

‘prefix value

ns.AddNamespace(“ns”, “http://www.moreover.com”)

‘Add default prefix into xpath statement to account for

‘default namespace

Dim xpath As String = “/ns:moreovernews/ns:article/” + “ns:headline_text”

‘Create a compiled xpath statement and set context to include

‘the namespace manager data.

Dim exp As XPathExpression = nav.Compile(xpath)

exp.SetContext(ns)

‘Select nodes and write out the headlines

Dim it As XPathNodeIterator = nav.Select(exp)

While it.MoveNext()

lblOutput.Text += it.Current.Value + “
”

End While

Querying local namespace nodes involves the same process shown in Listing 11.13, although
the prefix value passed to the AddNamespace() method must match the namespace prefix defined
in the XML document. Listing 11.14 demonstrates how to use XPath to query nodes in a local
namespace.

LISTING 11.14 Searching for Nodes in a Local Namespace by Using XPathNavigator

Dim xmlPath As String = Server.MapPath(“Listing14.xml”)

‘Load XML

Dim doc As New XPathDocument(xmlPath)

‘Create navigator

Dim nav As XPathNavigator = doc.CreateNavigator()

Dim ns As New XmlNamespaceManager(nav.NameTable)

‘Define news namespace prefix and URK.

ns.AddNamespace(“news”, “http://www.moreover.com”)

‘Add news prefix into xpath statement

Dim xpathNS As String = “/moreovernews/news:article/headline_text”

‘Create a compiled xpath statement and set context to include

‘the namespace manager data.

11
Working with XML Data

454

15 0672326744 CH11 5/4/04 12:27 PM Page 454

455Searching, Filtering, and Sorting XML Data

Dim exp As XPathExpression = nav.Compile(xpathNS)

exp.SetContext(ns)

‘Select nodes and write out the headlines

Dim it As XPathNodeIterator = nav.Select(exp)

While it.MoveNext()

Me.lblLocalNS.Text += it.Current.Value + “
”

End While

‘Locate articles not in the http://www.moreover.com namespace

Dim xpathDefault As String = “/moreovernews/article/headline_text”

Dim expDefault As XPathExpression = nav.Compile(xpathDefault)

expDefault.SetContext(ns)

‘Select nodes and write out the headlines

Dim it2 As XPathNodeIterator = nav.Select(expDefault)

While it2.MoveNext()

Me.lblNoNamespace.Text += it2.Current.Value + “
”

End While

You can also use the XmlNamespaceManager object to search for namespace qualified nodes, using
the XmlDocument class, as shown in Listing 11.15. The XmlDocument class’s SelectNodes() method
(which is inherited from XmlNode) contains an overload that accepts an XmlNamespaceManager
object as a parameter.

LISTING 11.15 Searching for Nodes in a Local Namespace by Using XmlDocument

Dim xmlPath As String = Server.MapPath(“Listing14.xml”)

Dim doc As New XmlDocument

doc.Load(xmlPath)

Dim ns As New XmlNamespaceManager(doc.NameTable)

ns.AddNamespace(“news”, “http://www.moreover.com”)

Dim xpathLocal As String = “/moreovernews/news:article/headline_text”

Dim newsNodes As XmlNodeList = doc.SelectNodes(xpathLocal, ns)

For Each newsNode As XmlNode In newsNodes

Me.lblLocalNS.Text += newsNode.InnerText + “
”

Next newsNode

‘Select nodes not in http://www.moreover.com namespace

Dim xpathDefault As String = “/moreovernews/article/headline_text”

Dim nonNSNodes As XmlNodeList = doc.SelectNodes(xpathDefault)

For Each newsNode As XmlNode In nonNSNodes

Me.lblNoNamespace.Text += newsNode.InnerText + “
”

Next newsNode

LISTING 11.14 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 455

Creating a Reusable XML Validation Class
In addition to creating Web form front-end code, ASP.NET programmers are often charged with
developing a variety of back-end processes, such as those that access remote XML data and store
it in a database for later retrieval. These types of processes may involve validating the XML data
to ensure that it is structured properly and contains valid data types that properly match up
with database fields. By validating XML data first, you can catch potential errors ahead of time,
before any SQL statements are executed in the database.

The .NET Framework supports validating XML documents using several different types of docu-
ments including DTDs, XML Data-Reduced (XDR) schemas, and XSD schemas. XSD schemas
offer the most power and flexibility of the three choices, through their support for validating a
document’s structure as well as the data types it contains. You can find more information about
XSD schemas at the W3C Web site: www.w3.org.

XML documents can be programmatically validated by using the XmlValidatingReader class
located in the .NET Framework’s System.Xml namespace. You can use this class to validate docu-
ments against DTD, XDR, or XSD schema documents. Like the XmlTextReader class, it provides a
fast, forward-only API that can handle large XML documents quickly and efficiently.
XmlValidatingReader exposes a ValidationHandler event that is called when the validation process
errors, such as when incorrect element nesting or invalid data types are encountered.

Although you can write validation code from scratch each time you need to validate an XML
document, encapsulating validation code into a wrapper class brings many object-oriented
coding benefits, including encapsulation and code reuse. If you write a wrapper class, developers
with different skill levels can perform XML document validation more easily; also, validation
code can be simplified when multiple applications share the same code base.

Listing 11.16 contains the skeleton for a reusable XML validation component that uses the
XmlValidatingReader class. The XmlValidator class relies on a helper structure named
XmlValidationStatus to report if XML documents are valid to calling applications.

LISTING 11.16 A Skeleton for a Reusable XML Validator Class and Helper Structure

Public Class XmlValidator

Public Function Validate(ByVal xml As Object, _

ByVal schemaCol As XmlSchemaCollection, _

ByVal dtdInfo() As String, ByVal logError As Boolean, _

ByVal logFile As String) As XmlValidationStatus

End Function

Private Sub ValidationCallBack(ByVal sender As Object, _

ByVal args As ValidationEventArgs)

End Sub

11
Working with XML Data

456

15 0672326744 CH11 5/4/04 12:27 PM Page 456

457Creating a Reusable XML Validation Class

End Class

Public Structure XmlValidationStatus

Public Status As Boolean

Public ErrorMessages As String

End Structure

The XmlValidator class has a single public method named Validate() that accepts the XML data
source to be validated, an XmlSchemaCollection object, a String array containing DTD informa-
tion (used when validating against DTDs), a Boolean parameter used to turn logging on and off,
and the path to the log file that is used when logging is enabled.

The logError and logFile parameters are self-explanatory, but the others need further explana-
tion. The xml parameter is typed as Object to allow different types of XML data sources to be
validated. Valid XML data source types include StringReader, String, and Stream. Passing any
other types for the xml parameter value will cause an ApplicationException error to be thrown.
The schemaCol parameter accepts an XmlSchemaCollection instance (XmlSchemaCollection is located
in the System.Xml.Schema namespace) that contains one or more schemas used to validate the
XML data source. When DTDs are used for validation, the DTD DocTypeName (the root element of
the XML document) is passed as the first item in the String array, followed by the physical path
to the DTD document. Listing 11.17 shows the complete code for the Validate() method.

LISTING 11.17 The Validate() and ValidationCallBack() Methods

Private _valid As Boolean

Private _logError As Boolean

Private _logFile As String

Private _validationErrors As String = String.Empty

Private xmlReader As XmlTextReader = Nothing

Private vReader As XmlValidatingReader = Nothing

Public Function Validate(ByVal xml As Object, _

ByVal schemaCol As XmlSchemaCollection, _

ByVal dtdInfo() As String, ByVal logError As Boolean, _

ByVal logFile As String) As XmlValidationStatus

_logError = logError

_logFile = logFile

_valid = True

Try

‘Check what type of XML data source was passed

If TypeOf xml Is StringReader Then

xmlReader = New XmlTextReader(CType(xml, StringReader))

ElseIf TypeOf xml Is String Then

xmlReader = New XmlTextReader(CType(xml, String))

LISTING 11.16 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 457

ElseIf TypeOf xml Is Stream Then

xmlReader = New XmlTextReader(CType(xml, Stream))

Else

Throw New ApplicationException(“Invalid XML data “ + _

“source passed.”)

End If

‘Hookup DTD or Schemas

If Not (dtdInfo Is Nothing) Then

If dtdInfo.Length > 0 Then

Dim context As New XmlParserContext(Nothing, Nothing, _

dtdInfo(0), “”, dtdInfo(1), “”, dtdInfo(1), “”, _

XmlSpace.Default)

xmlReader.MoveToContent()

vReader = _

New XmlValidatingReader(xmlReader.ReadOuterXml(), _

XmlNodeType.Element, context)

vReader.ValidationType = ValidationType.DTD

End If

Else

vReader = New XmlValidatingReader(xmlReader)

vReader.ValidationType = ValidationType.Auto

If Not (schemaCol Is Nothing) Then

vReader.Schemas.Add(schemaCol)

End If

End If

‘Associate validating reader with callback method

‘to handle any validation errors

AddHandler vReader.ValidationEventHandler, _

AddressOf Me.ValidationCallBack

‘ Parse through XML document

While vReader.Read()

End While

Catch

_valid = False

Finally ‘Close validating reader

If Not (vReader Is Nothing) Then

vReader.Close()

End If

End Try

‘Report back to calling application

11
Working with XML Data

458

LISTING 11.17 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 458

459Creating a Reusable XML Validation Class

Dim status As New XmlValidationStatus

status.Status = _valid

status.ErrorMessages = _validationErrors

Return status

End Function

Private Sub ValidationCallBack(ByVal sender As Object, _

ByVal args As ValidationEventArgs)

_valid = False ‘hit callback so document has a problem

Dim today As DateTime = DateTime.Now

Dim writer As StreamWriter = Nothing

Try

If _logError Then ‘Handle logging to logfile

writer = New StreamWriter(_logFile, True, Encoding.ASCII)

writer.WriteLine(“Validation error in XML: “)

writer.WriteLine()

writer.WriteLine((args.Message + “ “ + today.ToString()))

writer.WriteLine()

If xmlReader.LineNumber > 0 Then

writer.WriteLine((“Line: “ + xmlReader.LineNumber + _

“ Position: “ + xmlReader.LinePosition))

End If

writer.WriteLine()

writer.Flush()

Else ‘Track error messages

_validationErrors = args.Message + “ Line: “ + _

xmlReader.LineNumber.ToString() + _

“ Column:” + xmlReader.LinePosition.ToString() + _

ControlChars.Lf + ControlChars.Lf

End If

Catch

Finally ‘Ensure StreamWriter gets closed

If Not (writer Is Nothing) Then

writer.Close()

End If

End Try

End Sub

Validate() starts by loading the XML data source into an XmlTextReader instance, hooking
up schemas or DTDs, and then instantiating the XmlValidatingReader instance. Any errors

LISTING 11.17 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 459

encountered during the XML validation
process cause the ValidationCallBack method
to be called; this method handles tracking
and logging errors. Upon completion,
the Validate() method creates an
XmlValidationStatus structure and assigns
appropriate values to its fields.

Listing 11.18 provides an example of putting
the XmlValidator class to use. Any errors
found during the validation operation are
written back to the page in this example, but
they could instead be logged to a file.

LISTING 11.18 Using the XmlValidator Class to Validate XML Data

‘Define logging folder to use when logging is turned on

Dim logFile As String = Server.MapPath(“Log.txt”)

Dim xmlFilePath As String = Server.MapPath(“Listing18.xml”)

‘Create schema collection object and add schema to it

Dim schemaCol As New XmlSchemaCollection

schemaCol.Add(String.Empty, Server.MapPath(“Listing18.xsd”))

‘Create XmlValidator and call Validate() method

Dim validator As New XmlValidator

Dim valStatus As XmlValidationStatus = _

validator.Validate(xmlFilePath, schemaCol, Nothing, _

False, logFile)

If valStatus.Status = True Then

Me.lblOutput.Text = “Validation was SUCCESSFUL!”

‘Call method to process XML document for backend process

Else

Me.lblOutput.Text = “Validation failed!<p />”

Me.lblOutput.Text += valStatus.ErrorMessages

End If

Converting Relational Data to XML
Web applications have come a long way since the early days of the Internet. Many of the first
applications relied on data stored in local databases or flat files and provided little to no flexibil-
ity for accessing data from distributed sources. As the Internet has evolved, more advanced data
access technologies have come about that allow data from a variety of locations and sources to
be used in Web applications. This has resulted in companies automating business processes and
ultimately cutting operational costs.

11
Working with XML Data

460

Other Uses for the XmlValidator Class
Although the example in Listing 11.18 uses
the XmlValidator class from within an
ASP.NET page, a more realistic and useful
approach might be to have a Windows
service that automatically grabs XML docu-
ments from a variety of locations and vali-
dates them. Valid XML documents could then
be moved into a database or stored on the
file system for later retrieval. You can find an
example of creating a Windows service for
this purpose at www.xmlforasp.net/
codeSection.aspx?csID=77.

15 0672326744 CH11 5/4/04 12:27 PM Page 460

461Converting Relational Data to XML

ADO.NET represents one of the most powerful technologies to have evolved out of the old tech-
nologies of the Internet. When you use ADO.NET, only a few lines of code are required to load
data from a relational database and convert it to XML for transport between different business
entities, binding to hierarchical controls, transformation with XSLT, and many other purposes.
The following sections provide several pure .NET Framework techniques for converting rela-
tional data to XML and show how you can customize the structure of an XML document.

Customizing XML by Using the DataSet Class
The DataSet class exposes two methods named GetXml() and WriteXml() that can be used to easily
convert relational data into XML. GetXml() returns a string that contains the XML data, and
WriteXml() can write XML data to a file or to a TextWriter, Stream, or XmlWriter instance. Both
methods generate XML documents that are element-centric. The root node of the generated
XML is named after the DataSet instance, and each child of the root is named based on
DataTable instances in the DataSet instance.

Although the default XML structure generated by the DataSet instance might be fine for some
applications, others might require the structure to be customized so that the data can be inte-
grated into another application or matched up with a schema. You can customize the XML
structure by using the DataColumn and DataRelation classes. You can use the DataColumn class to
control whether data is mapped to elements or attributes, and you can use the DataRelation class
to control nesting.

After a DataSet instance is filled with data from a database, each DataColumn instance (within the
respective DataTable instances) can have its ColumnMapping property set to one of several
MappingType enumeration values. Table 11.2 lists these values.

TABLE 11.2
MappingType Enumeration Values

MappingType Value Functionality

Element Data is mapped to an element. This is the default behavior.

Attribute Data is mapped to an attribute.

Hidden Data is not output in the generated XML.

SimpleContent Data is mapped to an XmlText node.

Changing the MappingType value allows you to shape the XML data as desired. Listing 11.19
demonstrates how to load data from the Northwind database’s Customers table into a DataSet
instance and use the ColumnMapping property of the DataColumn class to associate primary key data
with an attribute.

LISTING 11.19 Shaping XML Data by Using the ColumnMapping Property

Dim connStr As String = ConfigurationSettings.AppSettings(“ConnStr”)

Dim sql As String = “SELECT * FROM Customers “ + _

“WHERE CustomerID = ‘ALFKI’”

Dim conn As New SqlConnection(connStr)

15 0672326744 CH11 5/4/04 12:27 PM Page 461

Dim da As New SqlDataAdapter(sql, conn)

‘Provide root name for XML document

Dim ds As New DataSet(“Customers”)

‘Provide name for each child element of root

da.Fill(ds, “Customer”)

‘Map CustomerID field to an attribute

ds.Tables(0).Columns(“CustomerID”).ColumnMapping = _

MappingType.Attribute

Me.txtXml.Text = ds.GetXml()

conn.Close()

The following XML is generated after running the code in Listing 11.19 (notice that the docu-
ment’s root node is named after the DataSet instance and that the CustomerID data is defined as
an attribute):

<Customers>

<Customer CustomerID=”ALFKI”>

<CompanyName>Alfreds Futterkiste</CompanyName>

<ContactName>Maria Anders</ContactName>

<ContactTitle>Sales Representative</ContactTitle>

<Address>Obere Str. 57</Address>

<City>Berlin</City>

<PostalCode>12209</PostalCode>

<Country>Germany</Country>

<Phone>030-0074321</Phone>

<Fax>030-0076545</Fax>

</Customer>

</Customers>

In cases in which relational tables have primary and foreign-key relationships, you can further
customize XML data to reflect the relationships. For example, all orders placed by a customer
can be nested under the proper Customer element in the XML document. Listing 11.20 shows
how you can programmatically define relationships by using the DataRelation class and how you
can nest those relationships by using its Boolean Nested property. After you define a relationship,
you can add it to the DataSet object instance through its Relations collection.

LISTING 11.20 Nesting XML Based on Primary/Foreign-Key Relationships

Dim connStr As String = ConfigurationSettings.AppSettings(“ConnStr”)

Dim sql As String = “SELECT * FROM “ + _

“Customers WHERE CustomerID = ‘ALFKI’;”

sql += “SELECT * FROM Orders WHERE CustomerID = ‘ALFKI’”

11
Working with XML Data

462

LISTING 11.19 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 462

463Converting Relational Data to XML

Dim conn As New SqlConnection(connStr)

Dim da As New SqlDataAdapter(sql, conn)

‘Provide root name for XML document

Dim ds As New DataSet(“CustomersOrders”)

‘Fill DataSet with 2 tables worth of data

da.Fill(ds)

‘Provide names for DataTables

ds.Tables(0).TableName = “Customer” ‘

ds.Tables(1).TableName = “Order” ‘

‘Create primary/foreign-key relationships

Dim pk As DataColumn = ds.Tables(0).Columns(“CustomerID”)

pk.ColumnMapping = MappingType.Attribute

Dim fk As DataColumn = ds.Tables(1).Columns(“CustomerID”)

Dim r As New DataRelation(“CustOrders”, pk, fk)

r.Nested = True

‘Add relationship to DataSet

ds.Relations.Add(r)

Me.txtXml.Text = ds.GetXml()

conn.Close()

Listing 11.21 shows a portion of the XML
data created after you run the code in Listing
11.20.

LISTING 11.21 Nested XML Data

<CustomersOrders>

<Customer CustomerID=”ALFKI”>

<!-- Children omitted for brevity -->

<Order>

<OrderID>10643</OrderID>

<CustomerID>ALFKI</CustomerID>

<EmployeeID>6</EmployeeID>

<OrderDate>1997-08-25T00:00:00.0000000-07:00</OrderDate>

<RequiredDate>1997-09-22T00:00:00.0000000-07:00</RequiredDate>

<ShippedDate>1997-09-02T00:00:00.0000000-07:00</ShippedDate>

<ShipVia>1</ShipVia>

<Freight>29.4600</Freight>

<ShipName>Alfreds Futterkiste</ShipName>

<ShipAddress>Obere Str. 57</ShipAddress>

LISTING 11.20 Continued

Defining Relationships in an XSD Schema
You can automatically load relationships
between DataTable objects into a DataSet
(as opposed to programmatically defining
them) by defining them in an XSD schema. You
can then load the schema into the DataSet
instance by calling its ReadXmlSchema()
method. Schemas define relationships by using
the key and keyref elements.

15 0672326744 CH11 5/4/04 12:27 PM Page 463

<ShipCity>Berlin</ShipCity>

<ShipPostalCode>12209</ShipPostalCode>

<ShipCountry>Germany</ShipCountry> </Order>

<!-- Other Order nodes omitted for brevity -->

</Customer>

</CustomersOrders>

Adding CDATA Sections into XML Documents
The DataSet class makes it extremely easy to shape XML data in a variety of ways. However,
when data retrieved from a database needs to be wrapped with a CDATA section (<![CDATA[data
goes here]]>) so that an XML parser does not parse the data, the DataSet instance provides no
native CDATA MappingType enumeration value. CDATA sections may be necessary when data
retrieved from a relational database contains HTML code or script blocks, as is often the case
when you’re working with different content management systems.

Although no native CDATA MappingType enumeration value exists, you can add CDATA sections to
XML data by taking advantage of native .NET Framework XML APIs. Listing 11.22 shows a
custom class named CDataSet that derives from DataSet and overloads the GetXml() method to
handle adding CDATA sections.

LISTING 11.22 Extending the DataSet Class to Support CDATA Sections

Public Class CDataSet : Inherits DataSet

Public Overloads Function GetXml(ByVal cdataSections() _

As String) As String

Return InsertCDATASections(cdataSections)

End Function

Private Function InsertCDATASections(ByVal cdataSections() _

As String) As String

‘Convert to XML with expanded general entities and CDATA sections

‘as appropriate

Dim reader As XmlValidatingReader = Nothing

Dim writer As XmlTextWriter = Nothing

Dim sw As StringWriter = Nothing

Array.Sort(cdataSections)

Try

reader = New XmlValidatingReader(Me.GetXml(), _

XmlNodeType.Document, Nothing)

sw = New StringWriter

writer = New XmlTextWriter(sw)

writer.Formatting = Formatting.Indented

11
Working with XML Data

464

LISTING 11.21 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 464

465Converting Relational Data to XML

reader.ValidationType = ValidationType.None

‘Expand character entities that will be in CDATA sections

‘so that characters such as <script> change to <script>

reader.EntityHandling = EntityHandling.ExpandCharEntities

Dim currentElement As String = String.Empty

While reader.Read()

Select Case reader.NodeType

Case XmlNodeType.Element

currentElement = reader.Name

writer.WriteStartElement(currentElement)

writer.WriteAttributes(reader, False)

Case XmlNodeType.Text

If Array.BinarySearch(cdataSections, _

currentElement) < 0 Then

writer.WriteString(reader.Value)

Else ‘Found CDATA DataColumn

writer.WriteCData(reader.Value)

End If

Case XmlNodeType.EndElement

writer.WriteEndElement()

Case Else

End Select

End While

Catch exp As Exception

Return exp.Message

Finally

reader.Close()

writer.Close()

End Try

Return sw.ToString()

End Function

End Class

The GetXml() overload shown in Listing 11.22 accepts a string array that contains the names of
DataColumn instances that need to have their data wrapped in CDATA sections when converted to
XML. GetXml() relies on a private method named InsertCDATASections() that uses the
XmlValidatingReader class to read the XML data created by calling the base class’s GetXml()
method. The XmlTextWriter class is then used to write the specialized CDATA XML data by calling
the writer’s WriteCData() method. XmlValidatingReader is used in this scenario because it is fast,
like XmlTextReader, and it allows character entities such as < and > to be expanded by
setting its EntityHandling property to EntityHandling.ExpandCharEntities.

LISTING 11.22 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 465

Listing 11.23 provides an example of using the CDataSet class, and Figure 11.4 shows the differ-
ent XML documents generated by calling the DataSet instance’s GetXml() method versus calling
the CDataSet instance’s overloaded GetXml() method.

LISTING 11.23 Using the CDataSet Class to Generate CDATA Sections

‘Identify elements that need to be wrapped with CDATA sections

Dim cdataArray As String() = {“headElement”, “bodyElement”}

Dim ds As New CDataSet

‘Code to fill CDataSet goes here

‘Call normal GetXml() method

Me.txtXml.Text = ds.GetXml()

‘Call overloaded GetXml() method and pass

‘CDATA element names

Me.txtCdataXml.Text = ds.GetXml(cdataArray)

11
Working with XML Data

466

FIGURE 11.4
A comparison of the DataSet class’s
GetXml() method and the CDataSet
class’s overloaded GetXml() method.

Simplifying Configuration by Using XML
XML provides a convenient format for storing configuration settings due to its inherent support
for data retrieval through XML APIs and the XPath language. Many .NET Framework files,
including web.config and machine.config, use XML for storing different types of configuration
settings, such as security information, type definitions, and assembly details. These files rely on
XML because it is both human and machine readable and can be accessed and updated using a
variety of programming techniques.

15 0672326744 CH11 5/4/04 12:27 PM Page 466

467Simplifying Configuration by Using XML

You can easily store custom ASP.NET configuration data such as database connection strings in files
such as web.config and access them by using the ConfigurationSettings class. In cases where more
complex data structures need to be stored, you can use section handlers and name/value pairs. You
can also write configuration reader classes that implement the IConfigurationSectionHandler
interface and use XPath (see http://support.microsoft.com/default.aspx?scid=kb;EN-US;318457).
Although these customizations to web.config work well, they may require more work than they’re
worth as the configuration structure becomes more complex and more customized. In some cases,
it’s more straightforward to create a new XML configuration document that is separate from
web.config and store application-specific configuration data in that file.

Separating custom configuration data from the web.config file is certainly not necessary and
obviously causes an additional file to be moved when the ASP.NET application is deployed.
However, creating a separate XML configuration file when more complex settings need to be
stored can have a positive side effect that surfaces when changes to the configuration data must
be made. ASP.NET has an in-memory cache that contains web.config data, and in the .NET
Framework version 1.1, this cache is updated any time the web.config file is saved. This update
routine causes the Web application to pause momentarily. When you store configuration
settings in a separate file, you can avoid this pause when the settings are updated.

Accessing Configuration Settings by Using XPathNavigator
You can access data stored in a custom configuration file in several different ways. One of the
most straightforward ways is to use the XPathNavigator class along with XPath to find nodes.
When combined with caching and file dependencies, this approach offers good performance
and requires a small amount of code to be written. Listing 11.24 contains an XML configuration
document that marks up data related to different types of servers.

LISTING 11.24 A Custom XML Configuration Document with Server Settings

<?xml version=”1.0” ?>

<ServerConfig>

<ProxyServer Name=”proxy.domain.com” Port=”8080”

UserName=”jdoe” Password=”password” Domain=”myDomain” />

<SmtpServer Name=”localhost” />

<SqlServer>

<Prod ConnString=”server=prod;uid=uid;pwd=pass;database=db;”>

<Servers>

<Server>www.xmlforasp.net</Server>

<Server>www.xml4asp.net</Server>

</Servers>

</Prod>

<Dev ConnString=”server=dev;uid=uid;pwd=pass;database=db;”>

<Servers>

<Server>localhost</Server>

<Server>127.0.0.1</Server>

</Servers>

15 0672326744 CH11 5/4/04 12:27 PM Page 467

</Dev>

</SqlServer>

</ServerConfig>

You can simplify the configuration data in Listing 11.24 by writing a configuration reader class
that wraps functionality exposed by the XPathDocument and XPathNavigator classes. This class
(named ConfigReader in the following listings) has several Shared methods (static methods, in
C#) that rely on XPath to locate nodes. Listing 11.25 shows the complete code for the
ConfigReader class.

LISTING 11.25 The ConfigReader Class

Public Class ConfigReader

Public Shared Function GetConfigValue(ByVal xpath As String) _

As String

Dim doc As XPathDocument = GetConfigDocument()

Dim nav As XPathNavigator = doc.CreateNavigator()

nav.MoveToRoot()

nav.MoveToFirstChild()

Dim it As XPathNodeIterator = nav.Select(xpath)

If Not (it Is Nothing) Then

it.MoveNext()

Return it.Current.Value

Else

Return Nothing

End If

End Function

Public Shared Function GetConnectionString(ByVal server _

As String) As String

Return GetConfigValue((“SqlServer/” + _

GetServerType(server).ToString() + “/@ConnString”))

End Function

Public Shared Function GetServerType(ByVal server As String) _

As ServerType

Dim currServer As String = server.ToLower()

Dim doc As XPathDocument = GetConfigDocument()

Dim nav As XPathNavigator = doc.CreateNavigator()

nav.MoveToRoot()

nav.MoveToFirstChild()

Dim xpath As String = “//Servers/Server”

Dim it As XPathNodeIterator = nav.Select(xpath)

11
Working with XML Data

468

LISTING 11.24 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 468

469Simplifying Configuration by Using XML

While it.MoveNext()

If it.Current.Value.ToLower() = currServer Then

it.Current.MoveToParent() ‘Move to ServerNames

it.Current.MoveToParent() ‘Move to server type

Return CType([Enum].Parse(GetType(ServerType), _

it.Current.Name, True), ServerType)

End If

End While

‘Default to dev server

Return ServerType.Dev

End Function

Private Shared Function GetConfigDocument() As XPathDocument

Dim context As HttpContext = HttpContext.Current

‘Check if config is already loaded into cache

If context.Cache.Get(“ServerConfig”) Is Nothing Then

Try

Dim configPath As String = _

context.Server.MapPath(_

ConfigurationSettings.AppSettings(“ServerConfig”))

Dim doc As New XPathDocument(configPath)

‘Create file dependency for cache

Dim cd As New CacheDependency(New String() {configPath})

‘Cache XPathDocument instance

context.Cache.Insert(“ServerConfig”, doc, cd)

Return doc

Catch

End Try

Else

‘Return XPathDocument already in cache

Return CType(context.Cache.Get(“ServerConfig”), XPathDocument)

End If

End Function

End Class _

Public Enum ServerType

Prod

Dev

End Enum

You can retrieve a configuration value (such as the SMTP server name used to send email) via
the ConfigReader class by calling the GetConfigValue() method. This method accepts an XPath
statement as a parameter and executes it by using the XPathNavigator class’s Select() method. If
the XPath statement finds a node, the value (or text node, in the case of elements) is returned.

LISTING 11.25 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 469

If no nodes are found, the method returns Nothing. Although the passwords in Listing 11.24 are
shown in clear text, they can be encrypted and decrypted during this process for additional
security.

The GetConfigValue() method relies on a private method named GetConfigDocument() that
accesses the configuration file. ASP.NET caching is used in the GetConfigDocument() method to
minimize the number of times the configuration file is accessed from disk. Any time the config-
uration file changes, the in-memory cache is invalidated and the configuration settings are
reloaded into an XPathDocument instance.

The ConfigReader class can also be used to access different database connection strings based on
the type of Web server calling the database. The GetConnectionString() and GetServerType()
methods make it possible to retrieve development or production database connection strings
with only a minimal amount of code:

Dim connStr As String = _

ConfigReader.GetConnectionString(Request.UserHostName)

Although using the XPathNavigator API to access configuration data doesn’t require you to write
a lot of code, this combination of technologies can present a potential maintenance problem
when the configuration structure changes or when node names change. These types of changes
require updates to the XPath statements in the code, which means you must perform a search
and replace. Because XPath statements are quoted, the compiler will never catch errors in the
statements. Wouldn’t it be nice if the compiler could automatically identify every line of code
where a change or update needed to occur? Fortunately, this type of behavior is a reality, as the
next section demonstrates.

Using XML Serialization
The .NET Framework contains a handy command-line tool named xsd.exe that you can use to
perform a variety of tasks, such as converting XSD schemas to classes and vice versa. Although
xsd.exe is best known for its ability to generate strongly typed DataSet classes, you can also use it
to generate standard C# or Visual Basic .NET classes. You can then use these classes to access an
XML document, using object-oriented techniques, as opposed to using .NET Framework XML
APIs. Listing 11.26 shows an XSD schema that describes the XML configuration document
shown in Listing 11.24.

LISTING 11.26 An XSD Schema That Describes the XML Configuration Document in Listing 11.24

<?xml version=”1.0” encoding=”utf-8” ?>

<xsd:schema attributeFormDefault=”unqualified”

elementFormDefault=”qualified” version=”1.0”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”ServerConfig”>

<xsd:complexType>

11
Working with XML Data

470

15 0672326744 CH11 5/4/04 12:27 PM Page 470

471Simplifying Configuration by Using XML

<xsd:sequence>

<xsd:element name=”ProxyServer”>

<xsd:complexType>

<xsd:attribute name=”Name” type=”xsd:string” />

<xsd:attribute name=”Port” type=”xsd:string” />

<xsd:attribute name=”UserName” type=”xsd:string” />

<xsd:attribute name=”Password” type=”xsd:string” />

<xsd:attribute name=”Domain” type=”xsd:string” />

</xsd:complexType>

</xsd:element>

<xsd:element name=”SmtpServer”>

<xsd:complexType>

<xsd:attribute name=”Name” type=”xsd:string” />

</xsd:complexType>

</xsd:element>

<xsd:element name=”SqlServer”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”Prod”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”Servers”>

<xsd:complexType>

<xsd:sequence>

<xsd:element maxOccurs=”unbounded”

name=”Server” type=”xsd:string” />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”ConnString”

type=”xsd:string” />

</xsd:complexType>

</xsd:element>

<xsd:element name=”Dev”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”Servers”>

<xsd:complexType>

<xsd:sequence>

<xsd:element maxOccurs=”unbounded”

name=”Server” type=”xsd:string” />

</xsd:sequence>

</xsd:complexType>

LISTING 11.26 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 471

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”ConnString”

type=”xsd:string” />

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

You can convert this schema into Visual Basic .NET classes by running the following code at the
command prompt:

xsd.exe /classes /namespace:Configuration

/language:VB Listing26.xsd

After you run this code, a Visual Basic .NET file named Listing26.vb that contains the following
classes will be created:

n ServerConfig

n ServerConfigProxyServer

n ServerConfigSqlServer

n ServerConfigSqlServerDev

n ServerConfigSqlServerProd

n ServerConfigSmtpServer

To use these classes, you can put the XmlSerializer class (located in the System.Xml.Serialization
namespace) to work. A call to the XmlSerializer class’s Deserialize() method causes XML config-
uration data to be loaded into instances of the classes shown earlier. When instantiated, data
within the classes can be accessed by using standard object-oriented techniques. Listing 11.27
shows an updated version of the ConfigReader class that uses the XmlSerializer class. This new
class (named ConfigFileReader) deserializes the XML data into objects as opposed to relying on
XPathNavigator to parse and extract configuration data.

11
Working with XML Data

472

LISTING 11.26 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 472

473Simplifying Configuration by Using XML

LISTING 11.27 The ConfigFileReader Class

Public Class ConfigFileReader

Public Shared Function GetConnectionString(ByVal server _

As String) As String

Dim config As ServerConfig = GetConfig()

‘Check if Web server matches with dev server name or not

Array.Sort(config.SqlServer.Dev.Servers)

If Array.BinarySearch(config.SqlServer.Dev.Servers, _

server) > -1 Then

Return config.SqlServer.Dev.ConnString

End If

‘Check if Web server matches with prod server name or not

Array.Sort(config.SqlServer.Prod.Servers)

If Array.BinarySearch(config.SqlServer.Prod.Servers, _

server) > -1 Then

Return config.SqlServer.Prod.ConnString

End If

‘Default is Nothing

Return Nothing

End Function

Public Shared Function GetConfig() As ServerConfig

Dim context As HttpContext = HttpContext.Current

‘Check if config is already loaded into cache

If context.Cache.Get(“ServerConfig”) Is Nothing Then

Dim reader As XmlTextReader = Nothing

Try

Dim configPath As String = _

context.Server.MapPath(_

ConfigurationSettings.AppSettings(“ServerConfig”))

reader = New XmlTextReader(configPath)

‘Deserialize XML configuration data

Dim s As New XmlSerializer(GetType(ServerConfig))

Dim config As ServerConfig = CType(s.Deserialize(reader), _

ServerConfig)

‘Create file dependency for cache

Dim cd As New CacheDependency(New String() {configPath})

context.Cache.Insert(“ServerConfig”, config, cd)

Return config

Catch

Throw New ApplicationException(“Unable to find config file.”)

Finally

15 0672326744 CH11 5/4/04 12:27 PM Page 473

If Not (reader Is Nothing) Then

reader.Close()

End If

End Try

Else

Return CType(context.Cache.Get(“ServerConfig”), ServerConfig)

End If

End Function

End Class

When you use the ConfigFileReader class, you can quickly and easily access configuration data
by using object-oriented code rather than XPath statements:

Dim config As ServerConfig = ConfigFileReader.GetConfig()

Dim connStr As String = _

ConfigFileReader.GetConnectionString(Request.UserHostName)

Me.lblOutput.Text = connStr + “
”

Me.lblOutput.Text += “SMTP Server: “ + config.SmtpServer.Name + “
”

Me.lblOutput.Text += “Proxy Server: “ + config.ProxyServer.Name

XML serialization really shines when structural or naming changes are made to the XML config-
uration document. Although you must run the xsd.exe utility against an updated version of the
document’s XSD schema, any code that contains invalid object references to old configuration
classes or properties will be instantly identified by the compiler. This makes it easier to ensure
that changes made in the code mirror configuration file changes.

Summary
This chapter focuses on several ways that you can use XML data in ASP.NET applications. XML’s
support for marking up data in a platform-neutral manner makes it an excellent choice for
sending data between distributed systems and applications. XML is also useful for more basic
duties, such as storing configuration settings.

The chapter discusses the pros and cons of the different XML APIs in the .NET Framework.
Knowing when and where different APIs should be used is important to ensuring that an
ASP.NET application is scalable and efficient. This is especially true as the size of XML docu-
ments increases.

This chapter also discusses techniques for combining functionality offered by the XmlTextReader
and XmlTextWriter classes. Using these classes provides a fast and efficient way to parse and
generate XML documents. You can also use the XmlTextWriter class to format XML data.

11
Working with XML Data

474

LISTING 11.27 Continued

15 0672326744 CH11 5/4/04 12:27 PM Page 474

475Summary

Additional topics discussed include the role of XmlResolver in accessing XML resource URIs. You
can use XmlResolver instances to access secured XML resources, and they also play an important
role in helping to determine whether specific functions such as document() are available to be
used securely with XSLT stylesheets.

This chapter also provides information about searching and filtering XML data. As this chapter
shows, you can use the XPath language or ADO.NET-specific classes such as DataView to perform
similar tasks.

The remaining sections of this chapter discuss how to create a reusable XML validation compo-
nent, shape the structure of XML data emitted from the DataSet class, and work with custom
XML configuration files by using XPath and XML serialization.

15 0672326744 CH11 5/4/04 12:27 PM Page 475

15 0672326744 CH11 5/4/04 12:27 PM Page 476

PART IV

Hosting and
Security

12 Side-by-Side Execution in ASP.NET

13 Taking Advantage of Forms Authentication

14 Customizing Security

16 0672326744 Pt 4 5/4/04 12:23 PM Page 477

16 0672326744 Pt 4 5/4/04 12:23 PM Page 478

12
Side-by-Side
Execution in

ASP.NET

One of the major advantages envisioned
for the .NET Framework when it was under
development was the ability to run multiple
versions concurrently on the same machine
and allow applications to execute under
whichever version is appropriate. In other
words, in terms of ASP.NET, different Web
applications, Web services, and Web sites
can be running concurrently under different
versions of the .NET Framework without
interfering with each other.

This also means that components and other
resources that are tied to one version of the
.NET Framework can continue to be used
with the appropriate applications, and
installing updated versions will not interfere
with existing ones. These components and
other resources run side-by-side as separate
processes and do not share any resources,
assemblies, or other .NET Framework class
files.

In Windows Server 2003 the new version of
Internet Information Services (IIS)—version
6.0—provides a different core-processing
model for Web applications and Web serv-
ices. Although this isn’t the topic of this
chapter, it means that Windows Server 2003

IN THIS CHAPTER
How Version 1.1 of the .NET Framework
Is Distributed 480

How Installing a New Version of the
.NET Framework Affects Existing
Applications 481

How ASP.NET Selects the Runtime
Version 488

How to Specify the ASP.NET Version for
Individual Applications 489

ASP.NET and IIS 6.0 on Windows
Server 2003 492

Summary 497

17 0672326744 CH12 5/4/04 12:25 PM Page 479

can provide better performance, better process separation, and more robust management of
errors and deadlocks.

Windows Server 2003 achieves these advantages through the use of a new kernel-level module
called http.sys, which redirects incoming requests to the appropriate one of multiple separate
instances of the Web service. It also handles output caching directly, providing another useful
(and considerable) performance boost.

Version 1.1 of the .NET Framework fully supports side-by-side execution, allowing you to run
both version 1.0 and version 1.1 of the .NET Framework on the same machine. You can also run
the current beta version of the .NET Framework, code-named “Whidbey” and the forthcoming
final version 2.0 alongside both version 1.0 and 1.1 installations. You can configure applications
to run under any of the installed .NET Framework versions.

However, by default, all applications will run under the most recent version (the highest version
number) of the .NET Framework. You have to configure applications and other resources
(such as Web services) to force them to run under a specific version. This chapter looks at the
following:

n How version 1.1 of the .NET Framework is distributed

n How installing a new version of the .NET Framework affects existing applications

n How ASP.NET selects the .NET Framework version to use at runtime

n How to specify the version that each application will run under

n Web service extensions and application pools in IIS 6.0

How Version 1.1 of the .NET Framework
Is Distributed
ASP.NET 1.1 is installed by default on Windows Server 2003, which does not provide version
1.0. You can also install version 1.1 in three other ways:

n By installing Visual Studio .NET 2003. Version 1.0 of the .NET Framework is a prerequisite
for this.

n By installing the version 1.1 redistributable file named Dotnetfx.exe, which you can
download from the Microsoft Web site, at http://msdn.microsoft.com/netframework/
technologyinfo/howtoget/default.aspx. Alternatively, you can install it from the Windows
Update site, using the link on your Start menu.

n By installing an application that itself contains the .NET Framework redistributable file. To
check whether version 1.1 of the .NET Framework is already installed, you can select Start,
Control Panel, Add/Remove Programs and then look for the entry “Microsoft .NET
Framework [language] 1.1.”

12
Side-by-Side Execution in ASP.NET

480

17 0672326744 CH12 5/4/04 12:25 PM Page 480

481How Installing a New Version of the .NET Framework Affects Existing Applications

How Installing a New Version of the .NET Framework
Affects Existing Applications
If you install a version of the .NET Framework that is compatible with and more recent than
those already installed, the setup program will automatically update IIS so that all applications
run under the new version. When you create new applications, they will also run under the new
version of the .NET Framework by default—as long the new version is compatible. Compatible,
in this case, is defined as having the same major version number (for example, versions 1.0 and
1.1 are compatible). However, the final release of version 2.0 will not be compatible with
versions 1.0 and 1.1.

What happens when you remove a version of ASP.NET that is currently installed depends on the
version you are removing and the other versions (if any) present on the server. If you remove
(that is, uninstall) the latest version, all the applications that use this version are automatically
converted to run under the next most recent compatible version that is installed. For example, if
you remove version 1.1 and have version 1.0 installed, all applications will revert to running
under version 1.0.

However, if you uninstall one of the versions that is not the most recent, the applications that
run under it will be converted to run under the most recent compatible version. If there are no
other compatible versions installed, ASP.NET pages will be served as simple text files. Therefore,
it’s important to ensure that existing applications are correctly mapped to the new version to
prevent users from being able to view the source code of your ASP.NET pages and configuration
files.

Configuration Settings in machine.config
One important point to note is that installing another version of the .NET Framework will
install the default version of machine.config and the other policy and security files. If you have
modified these files for the existing version and want the same configuration and policies to
apply to the new version, you must copy the settings to the newly installed files.

The ASP.NET State Service and SQL Server State Service
If you configure the ASP.NET State Service or SQL Server State Service to handle session state
(rather than the default in-process state storage mechanism), all state for all ASP.NET applica-
tions is managed by a single instance of the service. This approach is often used in Web farms or
multiple server installations, and you may use a separate dedicated server just for this purpose.

When you run applications under different versions of the .NET Framework, all state is held in
the same single instance of the ASP.NET State Service or SQL Server State Service—the one
installed with the most recent version of the .NET Framework. If you uninstall a version of the
.NET Framework, the previous most recent version is used instead.

17 0672326744 CH12 5/4/04 12:25 PM Page 481

The ASP.NET Process Account
ASP.NET pages and resources are executed under the context of an account named ASPNET by
default. Unless you specify otherwise, all access for all pages and resources, regardless of the
version of the .NET Framework they are running under, will use this single account. It will be,
by default, the account installed by the most recent version of the .NET Framework. If you unin-
stall a version of the .NET Framework, the previous most recent version is used instead.

Windows Performance Counters
Each version of the .NET Framework installs its own pair of performance counters, named
ASP.NET [version] and ASP.NET Apps [version]. The name of each of these counters contains the
version number, which allows you to view the data for each version of the .NET Framework
separately. However, the most recent version of the .NET Framework also installs counters that
aggregate performance for ASP.NET over all versions of the .NET Framework that are installed.
These two counters are named ASP.NET and ASP.NET Applications (see Figure 12.1).

12
Side-by-Side Execution in ASP.NET

482

FIGURE 12.1 The ASP.NET performance
counters, when multiple
versions of ASP.NET are
installed.

Running Version 1.0 Applications on Version 1.1 of the
.NET Framework
In general, any application that is running on version 1.0 of the .NET Framework will run
without modification on version 1.1. There are, however, five changes to the .NET Framework
in version 1.1 that might affect your applications:

n Automatic input validation

n The SelectedValue property for ASP.NET list controls

n The ODBC provider for .NET

n Changes to forms authentication

n The Microsoft Mobile Internet Toolkit controls

17 0672326744 CH12 5/4/04 12:25 PM Page 482

483How Installing a New Version of the .NET Framework Affects Existing Applications

Automatic Input Validation
A major addition to ASP.NET in version 1.1 of the .NET Framework is the implementation of a
new feature that helps to reduce the risk of attacks that use cross-site scripting or SQL injection
techniques being successful. By default, all input to a page within the Request collections
(QueryString, Form, and Cookies) is checked against a hard-coded list of undocumented, but
potentially dangerous, data strings.

If your existing version 1.0 pages depend on accepting this kind of data, they may fail to work
correctly under version 1.1. However, you should always validate input to protect your pages
against this type of attack, even in version 1.1, where there is some built-in protection.

The example in Listing 12.1 demonstrates the automatic validation feature. It provides a text
box into which a value can be entered and a button to submit the form.

LISTING 12.1 An Example That Demonstrates Automatic Input Validation

<%@Page Language=”VB” Debug=”True” %>

<script runat=”server”>

Sub ShowInput(Source As Object, E As EventArgs)

lblResult.Text = txtTest.Text

End Sub

</script>

<html>

<body>

<form runat=”server”>

<asp:TextBox id=”txtTest” runat=”server” />

<asp:button Text=”Submit” onClick=”ShowInput” runat=”server” />

<asp:Label id=”lblResult” runat=”server” />

</form>

</body>

</html>

When a potentially dangerous value, such as <script>, is submitted, an exception is raised and
the standard ASP.NET error page is displayed (see Figure 12.2).

Of course, in an application, you’ll probably want to trap this error and display a more suitable
message or just ignore the input. You can experiment with this feature by turning off input vali-
dation. Automatic input validation is controlled by an addition to the Page directive in ASP.NET,
a new addition to the web.config and machine.config files, and a new property of the HttpRequest
class (which implements the Request object in ASP.NET), named ValidateInput.

17 0672326744 CH12 5/4/04 12:25 PM Page 483

The ValidateRequest Page and web.config Directive
In version 1.1 of ASP.NET, adding an attribute to the Page directive allows you to turn off auto-
matic input validation (the default, if this value is omitted, is “true”, and input validation is
carried out):

<%@Page Language=”VB” ValidateRequest=”false” %>

You can also control input validation by adding an attribute to the <pages> element of the
web.config file or changing the existing attribute in the machine.config file. This is the default
machine.config file for version 1.1:

<pages buffer=”true”

enableSessionState=”true”

enableViewState=”true”

enableViewStateMac=”true”

autoEventWireup=”true”

validateRequest=”true”

/>

If the input is invalid, an HttpRequestValidationException error is raised.

The HttpRequest.ValidateInput Method
If you disable automatic input validation in the web.config file or the machine.config file, you
can still validate the input to a specific page by using the new ValidateInput method of the
HttpRequest class:

Request.ValidateInput()

Again, if the input is invalid, an HttpRequestValidationException error is raised.

12
Side-by-Side Execution in ASP.NET

484

FIGURE 12.2
The resulting error page when poten-
tially dangerous input is detected.

17 0672326744 CH12 5/4/04 12:25 PM Page 484

485How Installing a New Version of the .NET Framework Affects Existing Applications

The SelectedValue Property for ASP.NET List Controls
The ASP.NET list controls expose several properties that you can use to extract the selected
value(s) from them. For a DropDownList, CheckBoxList, RadioButtonList, or ListBox control, you
can access the SelectedIndex property after a postback to get the index of the ListItem instance
(within the List collection of the control) that was selected. If the list allows more than one
item to be selected, this property returns the index of the first item selected in the list.

You can also access the SelectedItem property to get a reference to the first item selected in the
control, and then you can query the Text or Value property of that ListItem object to get the
currently selected text or value of the control.

In version 1.1 of ASP.NET, the DropDownList, CheckBoxList, RadioButtonList, and ListBox controls
gain a new property, named SelectedValue. Following a postback, this property is automatically
set to the value of the Value property for the first selected ListItem object in the list.

For example, the following code populates one of each of the four list controls that expose this
property, and the button at the bottom of the page causes a postback during which the
SelectedValue property of each control is extracted and displayed:

lblResult.Text = “DropDownList.SelectedValue = ’” _

& MyDropDown.SelectedValue & “‘
”

lblResult.Text &= “ListBox.SelectedValue = ’” _

& MyListBox.SelectedValue & “‘
”

lblResult.Text &= “CheckBoxList.SelectedValue = ’” _

& MyCheckBoxList.SelectedValue & “‘
”

lblResult.Text &= “RadioButtonList.SelectedValue = ’” _

& MyRadioButtonList.SelectedValue & “‘
”

Figure 12.3 shows the result of running this code. You can see that only the first selection in the
CheckBoxList control is returned by the SelectedValue property.

When you have a list control that allows multiple selection—in other words, a CheckBoxList
control or a ListBox control with the SelectionMode=”Multiple” attribute—you still have to iterate
through the Items collection, checking the Selected property of each ListItem object.

You can also use the SelectedValue property to select an item in these four list controls, by
assigning the required String value to the property. In the sample page, the following code is
executed when the Set to ‘Sun’ button is clicked:

MyDropDown.SelectedValue = “Sun”

MyListBox.SelectedValue = “Sun”

MyCheckBoxList.SelectedValue = “Sun”

MyRadioButtonList.SelectedValue = “Sun”

This sets the current selection to the entry for “Sun” in all the controls. If the value you specify
is not in the list, an exception is raised.

17 0672326744 CH12 5/4/04 12:25 PM Page 485

System.Data Namespace Changes
In version 1.1 of the .NET Framework, there have been several changes in the classes from the
System.Data namespace and its subsidiary namespaces. These are the classes that implement
ADO.NET. The changes fall into several categories:

n Two new data-related namespaces that have been added to the .NET Framework.
System.Data.Odbc implements the ODBC data provider (which was originally available in
beta form for use with version 1.0). System.Data.OracleClient implements the .NET
Framework data provider for Oracle. An important point to note is that the namespace
name for the ODBC data provider has changed between version 1.0 and version 1.1 of the
.NET Framework. The namespace for the (beta) version 1.0 is Microsoft.Data.Odbc, whereas
for version 1.1 it is System.Data.Odbc. This means that you must change any Import direc-
tives that specify the namespace when you move your pages or components to version 1.1.

n The new property HasRows, which is added to the DataReader classes, returns True if there
are one or more rows in the result set to which the DataReader instance is attached, follow-
ing a call to the Execute method of the Command object that provides the result set. If the
SQL statement or stored procedure executed by the Command object does not return any
rows, the HasRows property returns False.

n A new method named EnlistDistributedTransaction for the Connection classes, which
allows Connection instances to manually enlist into the current transaction if auto-enlist is
disabled.

n Fixes for bugs or security issues in the existing classes. Some of these may affect your exist-
ing code. For example, see www.daveandal.net/alshed/datasetkludges/default.asp for details

12
Side-by-Side Execution in ASP.NET

486

FIGURE 12.3 The SelectedValue property
for the ASP.NET version 1.1
list controls.

17 0672326744 CH12 5/4/04 12:25 PM Page 486

487How Installing a New Version of the .NET Framework Affects Existing Applications

on some of the changes to the workings of the DataSet class. For details of other changes
between versions 1.0 and 1.1, see the GotDotNet pages, at www.gotdotnet.com/team/
changeinfo/default.aspx.

Changes to Forms Authentication
When forms authentication is used, an encrypted cookie is stored on the client machine and
sent with each request for a secured page. This encryption uses the value of the <machineKey>
element within the <system.web> section of the machine.config file or the web.config file. The
<machineKey> element also specifies the value used for encrypting and validating the viewstate in
a page that contains a server-side <form> element.

In version 1.1 of the .NET Framework, by default, the validationKey and encryptionKey attribute
values within the <machineKey> element contain a new modifier, named IsolateApps:

<machineKey validationKey=”AutoGenerate,IsolateApps”

decryptionKey=”AutoGenerate,IsolateApps”

validation=”SHA1”/>

When this is present, the auto-generated keys include details of the ASP.NET application, so
different applications running on the same machine will each generate different keys for secur-
ing their cookies or viewstate. This improves security and application isolation, especially where
a server is hosting multiple sites or applications. In version 1.0 of the .NET Framework, where
this modifier is not supported, the same key is used for all applications on the server.

This new behavior will cause a problem if you rely on shared authentication cookies, perhaps
where you have a nested application (that is, an application within a subfolder of another appli-
cation, with the path of the cookie set to / in the local web.config file) or if you are passing the
viewstate from a page to a different application through a customized form post.

To retain the version 1.0 behavior when running under version 1.1 of the .NET Framework, you
can do the following:

n Remove the IsolateApps modifiers from machine.config or (better) use a local web.config file
that does not contain the IsolateApps modifiers.

n Change the validationKey and decryptionKey attribute values to specify an explicit key
rather than auto-generating it. If you are using a Web farm or another shared server setup,
you will be using a specific key that is the same on all the servers anyway.

There are also two new properties for the FormsAuthentication class—RequireSSL and
SlidingExpiration. When the RequireSSL property is True, all requests must be made under the
secure HTTPS protocol rather than the more usual HTTP.

The SlidingExpiration property specifies whether the timeout for forms authentication (as speci-
fied in the machine.config or web.config file) is absolute, or starts again on each request. In other
words, when the SlidingExpiration property is True, the timer effectively restarts on each
request. When it is False, authentication expires after the prescribed period, regardless of how
many requests the user has made.

17 0672326744 CH12 5/4/04 12:25 PM Page 487

The MMIT Mobile Controls
In version 1.1 of the .NET Framework, the ASP.NET mobile controls from the MMIT are inte-
grated into the class library and can be used directly, without requiring a separate installation.
The two namespaces System.Web.Mobile (the core classes and authentication and error-handling
features) and System.Web.UI.MobileControls (the controls themselves) are now an integral part of
the .NET Framework. There is also a namespace System.Web.UI.MobileControls.Adapters, which
contains the core control adapter classes that you can use to build you own mobile controls.

By default, ASP.NET does not create pages that are suitable for use with the mobile controls, and
you still have to add the same “extra information” to the page to use these controls. This
involves specifying that the page itself should be an instance of the MobilePage type, which
allows multiple forms to exist on a page and provides integration with the core mobile capabili-
ties:

<%@Page Inherits=”System.Web.UI.MobileControls.MobilePage” Language=”VB”%>

You must also continue to specify the tag prefix and the assembly that contains the mobile
controls by using a Register directive, so that the controls can be identified. The usual prefix is
“mobile”, as in this example:

<%@Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”

Assembly=”System.Web.Mobile”%>

This means that existing version 1.0 pages that use the MMIT will function just the same on
version 1.1, with no changes required to the code except where it uses other classes (for
example, classes from the System.Data namespaces) that have changed in version 1.1.

Running Version 1.1 Applications on Version 1.0
If you write an application to run on version 1.1 of the .NET Framework and avoid using any
features that are new or changed in version 1.1, you will be able to run that application on
version 1.0. However, unless you are strictly limited to using only version 1.0 on the server that
will host the application, you should consider always running on the latest version of the .NET
Framework to benefit from the latest security fixes and performance enhancements.

How ASP.NET Selects the Runtime Version
IIS uses the concept of mappings (sometimes called script mappings or application mappings) to
decide how to process a file or resource when it is requested through the WWW Service. You can
view and change the mappings for a Web site or a virtual Web application in the Mappings tab
of the Application Configuration dialog for a Web site. To open the Application Configuration
dialog, you open the Properties dialog for the Web site, select the Home Directory tab, and click
the Configuration button (see Figure 12.4).

12
Side-by-Side Execution in ASP.NET

488

17 0672326744 CH12 5/4/04 12:25 PM Page 488

489How to Specify the ASP.NET Version for Individual Applications

The mappings for ASP.NET pages and resources point to the file aspnet_isapi.dll, which is
responsible for processing these pages and resources. If you have more than one version of the
.NET Framework installed, the mapping will point to the version of aspnet_isapi.dll that will be
used, and this determines which version of the .NET Framework classes and ASP.NET runtime
will process the resources. In Figure 12.4, you can see that version 1.1 will be used (the full
version number is 1.1.4322).

How to Specify the ASP.NET Version for Individual
Applications
As you have seen in the preceding section, all you have to do to force ASP.NET resources to be
executed under a different version of the .NET Framework is change the mapping to point to
aspnet_isapi.dll in the appropriate [version] folder of the .NET Framework. One way to do this
is to manually edit the entries; however, you have to repeat this process for several file types (all
the extensions for ASP.NET, such as .aspx, .asmx, .asax, and .ascx).

A far easier way to force ASP.NET resources to be executed under a different version of the .NET
Framework is to use the aspnet_regiis.exe application registration utility that is provided with
every version of the .NET Framework. This utility can be used for several tasks related to script
mappings in IIS, including updating the mappings for some or all of the Web sites and Web
applications configured within IIS.

Installing ASP.NET Without Updating Script Mappings
The Dotnetfx.exe setup program executes the aspnet_regiis.exe utility automatically when
you install the .NET Framework and when you uninstall it. However, you can prevent
aspnet_regiis.exe from being executed, and hence maintain the existing script mappings, by

FIGURE 12.4
Viewing the script
mappings in Internet
Information Services
Manager.

17 0672326744 CH12 5/4/04 12:25 PM Page 489

running the Dotnetfx.exe setup program from a command window and specifying the special
parameter sequence, as shown here:

Dotnetfx.exe /c:”install /noaspupgrade”

This means that you can install the latest version of ASP.NET without disturbing any existing
applications and then update individual applications as and when required by using the
aspnet_regiis.exe utility. When you create a new Web application, the version currently set up
for the default Web site within which the new application is created is used for the new applica-
tion until you specifically change it. Again, you can use the aspnet_regiis.exe utility for this.

Remember that if the version of ASP.NET you are installing is older than the most recent version
already installed, the setup program does not automatically execute aspnet_regiis.exe—and so
the existing script mappings are not updated.

Using the aspnet_regiis.exe Tool to Configure Runtime Versions
The aspnet_regiis.exe tool is supplied with each version of the .NET Framework and is located
in the %windir%/Microsoft.NET/Framework/[version]/ folder. The version of the tool is different for
each version of the .NET Framework, so you must use the correct one, depending on what
configuration changes you want to make. For example, to configure an application to use
version 1.0 of the .NET Framework, you must run the version of aspnet_regiis.exe from the
folder %windir%/Microsoft.NET/Framework/v1.0.3705/.

You run the aspnet_regiis.exe utility from a command window. As shown in Table 12.1,
aspnet_regiis.exe accepts a range of parameters that determine the configuration changes it
makes. Note that you can use this tool to create the aspnet_client folder for your Web sites and
populate it with the required client-side script files, and you can also use it to set the script
mappings or display information about the versions of ASP.NET that are installed.

In Windows Server 2003, with IIS 6.0, you must also manage the Web service extensions to
allow ASP.NET to serve pages. You’ll learn more on this topic later, but you can see in Table 12.1
that the aspnet_regiis.exe utility can set these for you as well.

TABLE 12.1
The Command-Line Parameters for the aspnet_regiis.exe Utility

Parameter Description

-i Registers this version of ASP.NET, adds the matching Web service extension to IIS 6.0, and
updates the mappings for all Web sites and Web applications to point to this version of
aspnet_isapi.dll.

-ir Registers this version of ASP.NET but does not update Web site and Web application mappings.

-enable Is used with the -i or -ir parameters to set the status to Allowed for the Web service exten-
sion it installs for ASP.NET (version 1.1 and above with IIS 6.0 and above only).

-s <path> Updates the mappings for all Web sites and Web applications at the specified path and updates
any applications nested within this path to point to this version of aspnet_isapi.dll (for
example, aspnet_regiis.exe -s W3SVC/1/ROOT/ProAspNet).

-sn <path> Updates the mappings for all Web sites and Web applications at the specified path, but not
those nested within this path, to point to this version of aspnet_isapi.dll.

12
Side-by-Side Execution in ASP.NET

490

17 0672326744 CH12 5/4/04 12:25 PM Page 490

491How to Specify the ASP.NET Version for Individual Applications

-r Updates the mappings for all Web sites and Web applications configured within IIS to point to
this version of aspnet_isapi.dll. Does not register this version of ASP.NET or add a Web
service extension.

-u Unregisters this version of ASP.NET and removes the Web service extension. Any existing
mappings for this version are remapped to the highest remaining version of ASP.NET that is
installed on the machine.

-ua Unregisters all versions of ASP.NET on the machine.

-k <path> Removes all mappings to all versions of ASP.NET for all Web sites and Web applications at the
specified path and any applications nested within this path (for example, aspnet_regiis.exe
-k W3SVC/1/ROOT/ProAspNet).

-kn <path> Removes all mappings to all versions of ASP.NET from the specified path but does not remove
those nested within this path.

-lv Lists all versions of ASP.NET that are installed on the machine, along with the current status
(Valid or Invalid) and path to aspnet_isapi.dll for that version (when the status is Valid).

-lk Lists the paths of all the IIS metabase keys that contain ASP.NET mappings, together with the
version each one is mapped to. Does not include any keys that inherit ASP.NET mappings from a
parent key.

-c Installs the client-side scripts for this version into the aspnet_client subfolder of every IIS Web
site directory.

-e Removes the client-side scripts for this version from the aspnet_client subfolder of every IIS
Web site directory.

-ea Removes the client-side scripts for all versions of ASP.NET from the aspnet_client subfolder of
every IIS Web site directory.

-? Prints the help text in the command window.

One issue to be aware of is that installing the .NET Framework adds to your PATH environment
variable the path to the utilities folder. Therefore, depending on the order in which you
installed the .NET Framework versions, you might find that typing just aspnet_regiis will not
run the version you expect or require. To get around this, you need to enter the full path to the
version of aspnet_regiis.exe that you want or edit your PATH environment variable to change the
order of the paths or add the one you need.

To edit your PATH environment variable, you open the System applet by selecting Start, Settings,
Control Panel; then you click the Environment Variables button in the Advanced tab of the
System Properties dialog.

Listing Versions, Web Sites, and Application Roots
As an example of using aspnet_regiis, the following command uses the -lv (list versions) param-
eter to list the versions of the .NET Framework that are installed on the machine by printing the
path to the aspnet_isapi.dll file for each version and showing which is the default (root) entry
in IIS:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322>aspnet_regiis -lv

1.0.3705.0 Valid

TABLE 12.1
Continued

Parameter Description

17 0672326744 CH12 5/4/04 12:25 PM Page 491

➥ C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\aspnet_isapi.dll

1.1.4322.0 Valid (Root)

➥ C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\aspnet_isapi.dll

To get a list of the Web sites and virtual Web applications, together with the version that each
one is currently mapped to, you can use the -lk (list keys) parameter:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322>aspnet_regiis -lk

W3SVC/ 1.1.4322.0

W3SVC/1/ROOT/ 1.1.4322.0

W3SVC/1/ROOT/MSMQ/ 1.1.4322.0

W3SVC/1/ROOT/Printers/ 1.1.4322.0

W3SVC/1/ROOT/ASPNETInsiders/ 1.1.4322.0

Updating the ASP.NET Runtime Configuration
To demonstrate how to change the mappings for Web sites and Web applications, the following
command shows how you can use the -s (script-map) parameter (the path can be obtained
using the -lk parameter as shown in the preceding section):

C:\WINDOWS\...\v1.0.3705>aspnet_regiis -s W3SVC/1/ROOT/ASPNETInsiders

Start installing ASP.NET DLL (1.0.3705.0)

➥ recursively at W3SVC/1/ROOT/ASPNETInsiders

Finished installing ASP.NET DLL (1.0.3705.0)

➥ recursively at W3SVC/1/ROOT/ASPNETInsiders

Now the mappings for the virtual application root named ASPNETInsiders and all nested virtual
applications are configured so that they will execute under version 1.0 of the .NET Framework.
One point to watch here is that because IIS 6.0 was not available when version 1.0 of the .NET
Framework was created, the aspnet_regiis tool does not install ASP.NET 1.0 in the Web service
extensions section of IIS 6.0. You have to create this entry manually (as shown in the following
section) and set the status to Allowed.

Installing the ASP.NET Client-Side Script Folder
When you create a new Web site, the aspnet_client subfolder that contains the client-side
scripts required by some ASP.NET server controls is not automatically added to that Web site.
You can ensure that it is present and correctly populated with the required scripts for all Web
sites by using the -c option of aspnet_regiis.exe:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322>aspnet_regiis -c

ASP.NET and IIS 6.0 on Windows Server 2003
IIS 6.0 on Windows Server 2003 contains a new extra layer of security for the Web service, in
the form of Web service extensions. Basically, Web service extensions are subsets of the script

12
Side-by-Side Execution in ASP.NET

492

17 0672326744 CH12 5/4/04 12:25 PM Page 492

493ASP.NET and IIS 6.0 on Windows Server 2003

mappings that are installed on the machine, with the option to block requests for files that have
the file extension specified in that mapping set.

You have to ensure that the status for the Web service extension that specifies the version of
ASP.NET you are using for your applications is set to Allowed. If it isn’t, the client will simply
receive a “Page not found” response—even though the page exists and the user has requested
the correct URL.

IIS 6.0 Web Service Extensions
To configure Web service extension settings in IIS 6.0, you open Internet Information Services
Manager and select the Web Service Extensions folder. You can see in Figure 12.5 that the Web
service extension for version 1.1 of ASP.NET is configured within the list and has its status set to
Allowed so that it can handle requests. This is because this machine was specified as an applica-
tion server when the Windows Server 2003 operating system was installed.

FIGURE 12.5
Managing the Web service
extensions in IIS 6.0 on
Windows Server 2003.

To add a new extension for a different version of the .NET Framework, you click the Add a New
Web Service Extension link. Then you type the name of the extension in the New Web Service
Extension dialog, check the option Set Extension Status to Allowed, and click the Add button.
In the Add File dialog that appears, you navigate to the appropriate .NET Framework version
folder and select the aspnet_isapi.dll file (see Figure 12.6).

After you click OK twice, the new Web service extension appears in the list. Now any ASP.NET
pages or resources that are configured to use this version of the .NET Framework—in other
words, applications that specify this version of aspnet_isapi.dll in their script mappings—will
run (see Figure 12.7).

17 0672326744 CH12 5/4/04 12:25 PM Page 493

IIS 6.0 Application Pools
If you try to run ASP.NET applications that are configured to use different versions of the .NET
Framework on the same machine under Windows 2003 and IIS 6.0, you must either segregate
them by version in different application pools or disable application pooling altogether and run
in IIS 5.0 isolation mode (described later in this chapter, in the section “Using IIS 5.0 Isolation
Mode in IIS 6.0”). By default, IIS 6.0 uses a common process for all the applications running in
the same application pool. If applications in the same application pool try to use different
versions of ASP.NET, you’ll see the Server Application Unavailable page and the error message
shown in Figure 12.8 appears in the Application section of the event log.

To get around this, you can create a new application pool and then assign the applications that
require different versions of the .NET Framework to different pools. You can run all the applica-
tions that use the same version of the .NET Framework in the same application pool, or you can
create multiple application pools and allocate your applications between them.

12
Side-by-Side Execution in ASP.NET

494

FIGURE 12.6
Adding a new Web service
extension.

FIGURE 12.7
A new Web service extension
in Internet Information
Services Manager.

17 0672326744 CH12 5/4/04 12:25 PM Page 494

495ASP.NET and IIS 6.0 on Windows Server 2003

Creating a New Application Pool
To create a new application pool, you right-click the Application Pools folder in Internet
Information Services Manager and select New; then you select Application Pool. Next, you enter
the name for the new application pool in the Add New Application Pool dialog that appears,
and you select the first option button to use the default settings. Alternatively, if you have
created a template for application pools, you can base the new one on that by selecting the
second option button (see Figure 12.9).

FIGURE 12.8
The error messages
when multiple versions
of ASP.NET are not
configured in separate
application pools.

FIGURE 12.9
Creating a new application pool in IIS 6.0.

Allocating ASP.NET Applications to an Application Pool
To assign a Web site or virtual Web application to an existing application pool, you just have to
select it in the Properties dialog for the site or application. In the Home Directory tab or the
Virtual Directory tab of the Properties dialog, you use the drop-down Application Pool list at the
bottom of the dialog to specify which application pool you require (see Figure 12.10).

17 0672326744 CH12 5/4/04 12:25 PM Page 495

Using IIS 5.0 Isolation Mode in IIS 6.0
You can configure IIS 6.0 to run in IIS 5.0 isolation mode. In this mode, the application-pooling
feature that is turned on by default in IIS 6.0 is disabled, and applications run under the same
process isolation model as in IIS 5.0. If you enable IIS 5.0 isolation mode, you can run ASP.NET
applications that execute under different versions of the .NET Framework without having to
create separate application pools.

To enable IIS 5.0 isolation mode, you open the Properties dialog for the Web Sites folder and
check the Run WWW Service in IIS 5.0 Isolation Mode option (see Figure 12.11). When you close
the Properties dialog, IIS prompts you to restart the service to put the new setting into effect.

12
Side-by-Side Execution in ASP.NET

496

FIGURE 12.10
Selecting the application pool for an ASP.NET
Web application.

FIGURE 12.11
Specifying IIS 5.0 isolation mode
in IIS 6.0.

17 0672326744 CH12 5/4/04 12:25 PM Page 496

497Summary

However, in IIS 5.0 isolation mode you do not benefit from many of the improvements in IIS
6.0, including better process management and deadlock detection. You should avoid using IIS
5.0 isolation mode unless it is absolutely necessary.

Summary
This chapter looks at how the .NET Framework allows you to run multiple versions side-by-side
and select which version each application should run under. This is a huge advance over previ-
ous versions of ASP, where you had to perform a full server upgrade and shift all your applica-
tions to the newly installed version.

Along with the fundamental changes that the .NET Framework provides, such as freedom from
reliance on COM components and “DLL hell,” ASP.NET side-by-side execution also solves many
issues you had to cope with in the past. In particular, running and testing different versions of
your Web sites and Web applications are now much easier and much more controllable. You can
move an application from one version of the .NET Framework to another quickly and easily.

As well as side-by-side execution, this chapter also looks at the changes to the namespaces in the
.NET Framework that are relevant to ASP.NET and Web applications. There are many minor
changes between versions 1.0 and 1.1, and there are quite a lot of bug fixes, but only a few of
these affect applications when you migrate from one version to another. This chapter summa-
rizes the changes that are most likely to affect your applications and how you can get around
the issues these changes raise.

Finally, this chapter looks at the latest version of the Windows operating system, Windows
Server 2003, and the way it affects ASP.NET applications. The better performance and robustness
of IIS version 6.0 certainly make it worth considering an upgrade to Windows Server 2003.

17 0672326744 CH12 5/4/04 12:25 PM Page 497

17 0672326744 CH12 5/4/04 12:25 PM Page 498

13
Taking

Advantage of
Forms

Authentication

Using forms authentication is a great way
to create ASP.NET applications that require
users to sign in to perform certain opera-
tions. The features provided by forms
authentication make it quick and easy to
create a secure authentication system and to
make checks against that system in code.

Sometimes, though, you want an authenti-
cation system that you have built on forms
authentication to do things that the basic
forms authentication implementation does
not. Fortunately, the ASP.NET developers at
Microsoft anticipated this and built the
entire system in a way that makes it easy to
customize to your particular needs.

This chapter looks at lots of situations in
which you need to use forms authentication
in ways that are different from the standard
approach.

This chapter assumes that you are already
familiar with the basics of forms authentica-
tion, setting up the web.config file, and
creating a sign-in form. If you have not used
forms authentication before at all, it would

IN THIS CHAPTER
Building a Reusable Sign-in Control 500

BEST PRACTICE:
Validating User Input 504

Hashing Passwords 506

Helping Users Who Forget Their
Passwords 508

Persistent Authentication Cookies 514

Using Forms Authentication in
Web Farms 516

Cookieless Forms Authentication 519

Protecting Non-ASP.NET Content 523

Supporting Role-Based Authorization
with Forms Authentication 526

Using Multiple Sign-in Pages 528

Dealing with Failed Authorization 530

Listing Signed-in Users 531

Forcibly Signing a User Out 533

Summary 535

18 0672326744 CH13 5/4/04 12:22 PM Page 499

be worth working through a basic example (there are loads available online and in other books)
before reading this chapter.

One basic piece of advice that you should keep in mind while reading this chapter is to use SSL
for your sign-in page. Forms authentication protects the authentication ticket that is used to
identify signed-in users by encrypting it and testing for tampering, but that is useless if you
allow your users’ passwords to be stolen by having them submitted to your sign-in page in plain
text.

The Internet Information Services online help (available by browsing to http://localhost/
iishelp on a default installation of IIS) includes details of how to get a server certificate and
then use it to set up SSL.

Note that provided that your users are not entering or viewing any confidential information
through your application, you only need to protect the sign-in page with SSL. Once the user has
signed in, the encryption provided by ASP.NET by default will protect the user’s subsequent
requests. Of course, if you include a sign-in control on several pages, you will need to protect all
those pages.

Building a Reusable Sign-in Control
The standard way to do sign-in in ASP.NET applications that use forms authentication is to
provide a sign-in Web form to which users are redirected when they attempt to access a page
that they are not authorized to view (based on the settings in the <Authorization> section of the
configuration file). However, many Web applications do not divide features for authenticated
and anonymous (non-authenticated) users into separate Web forms; instead, they display addi-
tional features for authenticated users on the same Web forms that all users see. For example, a
forum application might allow all users to view posts but allow only authenticated users to reply
to posts or start new threads.

In situations like this, it makes a lot of sense to include sign-in controls as part of the overall
page structure of the application. This section shows an example of a user control you can build
to show sign-in controls for anonymous users and other controls for authenticated users. This
example simply shows a welcome message and a sign-out link, but you could use the ideas
presented in this example for all sorts of application-specific options.

When the user is not signed in, the control looks as shown in Figure 13.1. When the user is
signed in, the control looks as shown in Figure 13.2.

13
Taking Advantage of Forms Authentication

500

18 0672326744 CH13 5/4/04 12:22 PM Page 500

501Building a Reusable Sign-in Control

FIGURE 13.1
A sample sign-in control,
when the user is not
signed in.

FIGURE 13.2
A sample sign-in user
control, when the user is
signed in.

18 0672326744 CH13 5/4/04 12:22 PM Page 501

Listing 13.1 shows the code for the .ascx file of a simple sign-in control.

LISTING 13.1 .ascx Code for the Sample Sign-in Control

<%@ Control Language=”vb” AutoEventWireup=”false”

Codebehind=”SignIn.ascx.vb” Inherits=”SignInControl.SignIn”

TargetSchema=”http://schemas.microsoft.com/intellisense/ie5” %>

<table id=”AnonymousControls” width=”100%” runat=”server”>

<tr>

<td style=”WIDTH: 73px”>Username:

</td>

<td>

<asp:textbox id=”UsernameTextBox” runat=”server” Width=”88px” />

<asp:regularexpressionvalidator id=”UsernameValidator”

runat=”server”

Display=”None”

ControlToValidate=”UsernameTextBox”

ValidationExpression=”[a-z|A-Z|0-9|]{5,20}”

/>

</td>

</tr>

<tr>

<td style=”WIDTH: 73px”>Password:

</td>

<td>

<asp:textbox id=”PasswordTextBox” runat=”server” Width=”88px” TextMode=”Password” />

<asp:regularexpressionvalidator id=”PasswordValidator”

runat=”server”

Display=”None”

ControlToValidate=”PasswordTextBox”

ValidationExpression=”[a-z|A-Z|0-9|]{5,20}”

/>

</td>

</tr>

<tr>

<td colSpan=”2”>

<asp:linkbutton id=”SignInButton”

runat=”server”

CausesValidation=”False”>

Sign In

</asp:linkbutton>

</td>

</tr>

13
Taking Advantage of Forms Authentication

502

18 0672326744 CH13 5/4/04 12:22 PM Page 502

503Building a Reusable Sign-in Control

</table>

<table id=”AuthenticatedControls” runat=”server”>

<tr>

<td>

Welcome back,

<asp:label id=”UsernameLabel” runat=”server”>[username]</asp:label>

</td>

</tr>

<tr>

<td>

<asp:LinkButton id=”SignOutButton” runat=”server”

CausesValidation=”False”>

Sign Out

</asp:LinkButton>

</td>

</tr>

</table>

The control is composed of two <table> elements, which are set to runat=”server” so that you
can make them visible or invisible, depending on whether the user is signed in.

Standard <table> elements are used rather than <asp:Table> controls because server-side access is
only required in order to set the visibility. Using the Web control table would mean creating
server-side table row and table cell controls and would require extra overhead.

Note that you include RegularExpressionValidator controls for both the username and the pass-
word input controls. In both cases, you set up the regular expression to accept only alphanu-
meric characters and require the input to
consist of between 5 and 20 characters.

The regular expression used here,
[a-z|A-Z|0-9|]{5,20}, has a group (marked by
[]) which will match to a character that falls
into any of the three ranges defined within it,
followed by the minimum and maximum
number of characters (marked by {}). If you
wanted to allow any number of characters,
you would replace the {5,20} with *.

The CausesValidation attribute of each
LinkButton control is set to False. This might
seem strange, considering that you have
included validators, but it will become clear
shortly.

LISTING 13.1 Continued

RegularExpressionValidator as a
Validation Tool
If you are not familiar with regular expression
syntax, you really should learn it.
RegularExpressionValidator is an excel-
lent validation tool, and it is just the tip of the
iceberg for using regular expressions—they
are great for all kinds of text matching and
processing tasks.

There is lots of information in the .NET
Framework documentation. For some reason,
the JScript .NET section of the documentation
has a particularly good guide to the syntax
and usage of this powerful pseudo-language.
A search for “regular expressions” will provide
links to all the relevant sections.

18 0672326744 CH13 5/4/04 12:22 PM Page 503

The code-behind file shown in Listing 13.1 includes declarations for the two server-side <table>
elements that are used:

Public Class SignIn

Inherits System.Web.UI.UserControl

Protected WithEvents AnonymousControls As System.Web.UI.HtmlControls.HtmlTable

Protected WithEvents AuthenticatedControls As System.Web.UI.HtmlControls.HtmlTable

The control is initialized with a simple Page_Load event handler:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

‘check whether the user is authenticated

If Request.IsAuthenticated Then

‘the user is authenticated, so display the authenticated controls

AnonymousControls.Visible = False

AuthenticatedControls.Visible = True

‘populate the username display

UsernameLabel.Text = Context.User.Identity.Name

Else

‘the user is not authenticated, so display the anonymous controls

AnonymousControls.Visible = True

AuthenticatedControls.Visible = False

End If

End Sub

13
Taking Advantage of Forms Authentication

504

Validating User Input
You should always validate users’ input to your application to ensure that it contains what you expect
it to contain. Getting into the habit of validating every input is a great way to prevent problems due
to unexpected inputs.

A couple common attacks are made against Web applications that are best prevented through vali-
dation of all input. Script injection (the addition of malicious JavaScript code in an attempt to get it
displayed by the application and thus run by your visitors’ browsers) is stopped dead by the preven-
tion of the characters it needs from being entered. Similarly, SQL injection, where malicious SQL code
is entered in an attempt to have your database execute it, is prevented by good validation.

Both script injection and SQL injection can be prevented in other ways (indeed, ASP.NET now has a
default defense against the inputting of harmful code), but it is always wise to defend in depth—that
is, to protect your application at every stage rather that rely on a single defense.

Good validation across the board has other advantages, too. Providing users with feedback on what
they are doing wrong is a great way to help them with any difficulties they may have.

BEST PRACTICE

18 0672326744 CH13 5/4/04 12:22 PM Page 504

505Building a Reusable Sign-in Control

The interesting stuff happens in the event handler for the Click event of the SignInLinkButton
control:

Private Sub SignInButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles SignInButton.Click

Dim valid As Boolean = True

Dim c As Control

Dim v As BaseValidator

‘loop through all validators on the page

For Each v In Page.Validators

‘check whether the validator is attached to this user control

If Not Me.FindControl(v.ControlToValidate) Is Nothing Then

‘validate the control

v.Validate()

‘check whether the control validated successfully

If Not v.IsValid Then

Response.Write(v.ID)

‘if it did not validate, set valid to false

valid = False

End If

End If

Next

‘only proceed with sign in if the controls on this user control are valid

If valid Then

‘authenticate the user against the credentials stored in the web.config

‘if you use a different credentials store, check against that here

If FormsAuthentication.Authenticate(UsernameTextBox.Text, _

PasswordTextBox.Text) Then

‘set the authentication cookie

FormsAuthentication.SetAuthCookie(UsernameTextBox.Text, False)

‘refresh the page

Response.Redirect(Request.Url.PathAndQuery)

End If

End If

End Sub

Note that this code assumes that the System.Web.Security namespace has been specified using an
Imports statement (in C#) at the top of the code file.

18 0672326744 CH13 5/4/04 12:22 PM Page 505

The first part of this code performs validation for all the validators that are attached to controls
that are in this user control. This is why the CausesValidation property of the SignInButton
control was set to False: You are calling the Validate methods of the validators rather than
having ASP.NET do it automatically when the LinkButton controls are clicked.

You call the Validate methods of the validators because you do not want the sign-in control to
be affected by the validation states of controls that are outside the user control. If you used the
standard approach, a failed validation anywhere on the page would prevent the sign-in control
from signing the user in, even if the username and password TextBox controls were valid. This is
a problem for any user control that you want to operate independently of other parts of the
page because ASP.NET groups all validators into a single collection under the Page object.

You could explicitly call the Validate methods on the two validators, but we thought it would
be worth showing some general code that can be added to any user control to perform limited
validation for the controls it contains. This approach will have a very slight performance impli-
cation, but it also means that any changes to the validation controls will be automatically
reflected in the validation code.

After performing validation, you check the valid variable to ensure that no validators failed vali-
dation and, if everything is fine, you check the user’s credentials. For simplicity, the standard
web.config file credentials store is used in this example, but you can insert your own credentials
check code to check against whatever store you like.

If the credentials are okay, you set the authentication cookie with the following code:

FormsAuthentication.SetAuthCookie(UsernameTextBox.Text, False)

At this point, this code differs from the standard forms authentication login page code. Rather
than use the FormsAuthentication.RedirectFromLoginPage method, it uses the SetAuthCookie
method, which sets the authentication cookie but does not do a redirection.

You want to refresh the page after setting the cookie, so you redirect the user back to the same
page and query string:

Response.Redirect(Request.Url.PathAndQuery)

Hashing Passwords
These days, most decent applications do not store their users’ passwords as plain text. You have
to assume that because nothing is 100% secure, there is a chance that an application will be
compromised and the credentials, however they are stored, may be stolen.

In a small application, this might not be a huge problem in comparison to other issues that
arise when security is breached; the users’ passwords can be reset in order to render the stolen
passwords useless. But imagine trying to do this for an application with more than a handful of
users—it would be a nightmare!

13
Taking Advantage of Forms Authentication

506

18 0672326744 CH13 5/4/04 12:22 PM Page 506

507Hashing Passwords

There is way to mitigate the risk of passwords being stolen. By using a technique called hashing,
you can store encrypted passwords, rather than plain-text passwords, in your credentials store.
Hashing is also known as one-way encryption because after you have created a hash from a pass-
word, it is not practical to work back the other way and recover the password. If someone steals
the hashed passwords, they will be of no use in further compromising the system.

Another advantage of using hashed passwords is that, with the passwords hashed, it is a lot
harder for an administrator to pretend to be another user; he or she cannot simply read the
password from the database and use it to sign in. This helps to ensure that actions apparently
carried out by a particular user really were done by that user.

Forms authentication has support for password hashing built in, through the FormsAuthentication.
HashPasswordForStoringInPasswordFile method and the passwordFormat attribute of the
<credentials> section of the web.config file.

In order to use hashed credentials in the web.config file, you need a way to generate the hashes.
The following is the button click event from the code-behind file for a simple Web form that
has a text box, a button, and two labels on it to accept a password and generate hashes in the
two formats that ASP.NET can use:

Private Sub GenerateHashes_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles GenerateHashes.Click

MD5Label.Text = “MD5: “ + _

FormsAuthentication.HashPasswordForStoringInConfigFile _

(PasswordTextBox.Text, “MD5”)

SHA1Label.Text = “SHA1: “ + _

FormsAuthentication.HashPasswordForStoringInConfigFile _

(PasswordTextBox.Text, “SHA1”)

End Sub

Note that if you do not use the Visual Studio .NET designer to create the form, you need to add
declarations to the code-behind file for the GenerateHashes control (a Button control) and the
MD5Label and SHA1Label controls (both Label controls).

When you have a hashed password, you simply need to include it in the web.config file’s
<credentials> section and set the passwordFormat attribute. The following example uses an SHA1
hash:

<credentials passwordFormat=”SHA1”>

<user name=”zoetrope” password=”C983A1F054842D9220847ED5628E7038887138A7” />

</credentials>

With this hash in place, the FormsAuthentication.Authenticate method will now automatically
hash the password the user has entered before comparing it to the value stored in the configura-
tion file.

18 0672326744 CH13 5/4/04 12:22 PM Page 507

Remember, this hashing will only protect the password while it is stored on the server; it will
not in any way protect the password as it is being transferred from the user’s browser to the
server that the application runs on. In order to be secure, you really need to use SSL to protect
sign-in.

web.config is not very often used as the credentials store in serious applications. It is just not
designed to hold application-updatable data. It is much more common to use a separate XML
file or, more commonly, a database to hold the credentials.

If you want to use a different credentials store, you need to use the
HashPasswordForStroringInConfigFile method to hash passwords when they are set by users and
to hash the password that a user enters when he or she signs in before comparing it to the
stored hash in the credentials store.

Helping Users Who Forget Their Passwords
There is one big problem with password hashing. As mentioned in the previous section, hashing
is a one-way operation; after you have created a hash, it is not practical to return to the plain-
text password. This causes a problem if a user forgets his or her password: How can you tell the
user what his or her password is? The answer is that you cannot, but there are other ways in
which you can help them.

We could provide a “forgot my password” page in the application that provides an option to
reset the password to a random value and email it to the user’s registered email address. The
problem with this is that malicious users could continually reset other users’ passwords, causing
them a lot of inconvenience.

Another possibility is to store the answer to a secret question that must be answered in order to
reset the password. The problem with this is that users who forget their password are also liable
to forget the answers to their secret questions (unless they make the answers really obvious, in
which case they will be insecure).

A good solution is to provide a “forgot my password” page that emails the user a special email
message, containing another link that, when clicked, takes the user back to the “forgot my pass-
word” page, with a code that allows the user to reset his or her password. They key to making
this work in a secure way is through another use of hashing.

With hashing, when a user requests a password change, he or she receives an email message that
contains a special link back to the “forgot my password” page. The link contains the following
things in its URL parameters:

n The username of the user who is requesting the password change

n The current date and time (in ticks [100-nanosecond intervals since January 1, 0001])

n A hash generated from the username, ticks, and a configured hash password

When the user clicks the link, the application creates a new hash from the username, the date
and time in the link, and the hash password. This ensures that only links generated by the

13
Taking Advantage of Forms Authentication

508

18 0672326744 CH13 5/4/04 12:22 PM Page 508

509Helping Users Who Forget Their Passwords

application are allowed (no one else will have access to the hash password, so no one else will
be able to generate a hash that will match).

The date and time in the link are also compared to the current date and time to ensure that the
link is not too old. This is important because you do not want change-password emails to be
valid forever.

If both checks are passed, the user sees controls that he or she can use to set a new password.

The HTML code for such a Web form is shown in Listing 13.2.

LISTING 13.2 .aspx Code for a “Forgot My Password” Web Form

<body>

<form id=”Form1” method=”post” runat=”server”>

<div id=”RequestControls” runat=”server”>

Enter your username to receive an email

with instructions for changing your password

<div>

<asp:textbox id=”UsernameTextBox” runat=”server” />

<asp:button id=”RequestButton”

runat=”server”

Text=”Request a password change” />

</div>

</div>

<div id=”RequestMadeControls” runat=”server”>

You will now receive an email with

instructions for changing your password.

</div>

<div id=”ChangePasswordControls” runat=”server”>

<div>Enter a new password

<asp:textbox id=”Password1TextBox” runat=”server”/>

</div>

<div>Enter the password again

<asp:textbox id=”Password2TextBox” runat=”server” />

</div>

<div>

<asp:button id=”ChangePasswordButton”

runat=”server”

Text=”Change My Password” />

</div>

</div>

</form>

</body>

18 0672326744 CH13 5/4/04 12:22 PM Page 509

There are three parts to the page, each contained in a server-side <div> element so that you can
display them one at a time:

n RequestControls—Controls that allow the user to request a password change

n RequestMadeControls—Controls that are displayed after a request is made

n ChangePasswordControls—Controls that allow the user to change his or her password

The Page_Load event in the code-behind file (see Listing 13.3) determines which to display.

LISTING 13.3 Code-Behind Code for a “Forgot My Password” Web Form

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

If Not Page.IsPostBack Then

If Request.QueryString(“Username”) Is Nothing Then

RequestControls.Visible = True

RequestMadeControls.Visible = False

ChangePasswordControls.Visible = False

Else

Dim username As String = Request.QueryString(“Username”)

Dim ticks As String = Request.QueryString(“Date”)

Dim UrlHash As String = Request.QueryString(“Check”)

Dim stringtohash As String = username & ticks & _

ConfigurationSettings.AppSettings(“PasswordRequestHashPassword”)

Dim dt As DateTime = New DateTime(Long.Parse(ticks))

If dt.AddHours(ConfigurationSettings.AppSettings(“PasswordRequestTimeout”)) _

> DateTime.Now Then

Dim computedHash = _

FormsAuthentication.HashPasswordForStoringInConfigFile(stringtohash, “sha1”)

If UrlHash = computedHash Then

RequestControls.Visible = False

RequestMadeControls.Visible = False

ChangePasswordControls.Visible = True

Else

RequestControls.Visible = True

RequestMadeControls.Visible = True

ChangePasswordControls.Visible = False

RequestMadeControls.InnerText = _

“There was a problem with your request, please request another email”

End If

13
Taking Advantage of Forms Authentication

510

18 0672326744 CH13 5/4/04 12:22 PM Page 510

511Helping Users Who Forget Their Passwords

Else

RequestControls.Visible = True

RequestMadeControls.Visible = True

ChangePasswordControls.Visible = False

RequestMadeControls.InnerText = _

“Your request email has timed out, please request another email”

End If

End If

End If

End Sub

Note that error-handling code has been omitted from this example for simplicity. Normally, it
would be wise to include code to deal with an error from the call to ConfigurationSettings.
AppSettings, in case the setting is not available.

If the UserID parameter does not appear in the URL, you simply display the RequestControls
controls.

If the UserID parameter is present, you need to process the URL parameters to determine
whether the page has been linked to from a valid change-password email.

First, you extract the username, tick value, and hash from the URL parameters:

Dim username As String = Request.QueryString(“Username”)

Dim ticks As String = Request.QueryString(“Date”)

Dim UrlHash As String = Request.QueryString(“Check”)

You can then generate the hash value, using the username and tick value from the URL and the
configured hash password:

Dim stringtohash As String = username & ticks & _

ConfigurationSettings.AppSettings(“PasswordRequestHashPassword”)

Before proceeding any further, you check that the tick value does not correspond to a date and
time that is too old:

Dim dt As DateTime = New DateTime(Long.Parse(ticks))

If dt.AddHours(ConfigurationSettings.AppSettings(“PasswordRequestTimeout”)) _

> DateTime.Now Then

If the date and time are not too old, you compute the hash value:

Dim computedHash = _

FormsAuthentication.HashPasswordForStoringInConfigFile(stringtohash, “sha1”)

LISTING 13.3 Continued

18 0672326744 CH13 5/4/04 12:22 PM Page 511

You can then compare the computed hash to the hash included in the URL, to ensure that they
match:

If UrlHash = computedHash Then

RequestControls.Visible = False

RequestMadeControls.Visible = False

ChangePasswordControls.Visible = True

Else

RequestControls.Visible = True

RequestMadeControls.Visible = True

ChangePasswordControls.Visible = False

RequestMadeControls.InnerText = “There was a problem

➥ with your request, please request another email”

End If

If the computed hash and the hash included in the URL match, you display the change-
password controls. If they do not match, you display an error message.

The code in Listing 13.4 shows how a change-password email is created and sent.

LISTING 13.4 The Click Event Handler for the Request Button

Private Sub RequestButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles RequestButton.Click

Dim username as string = UsernameTextBox.Text

If BusinessLogic.UsernameExists(username) Then

Dim dateTimeTicks As Long = DateTime.Now.Ticks

Dim stringToHash As String = username & dateTimeTicks &

ConfigurationSettings.AppSettings(“PasswordRequestHashPassword”)

Dim hash As String = _

FormsAuthentication.HashPasswordForStoringInConfigFile(stringToHash, “sha1”)

Dim email As New MailMessage

email.To = BusinessLogic.GetEmailAddress(username)

email.From = ConfigurationSettings.AppSettings(“AdminEmail”)

email.Subject = “Your password change request for “ & _

ConfigurationSettings.AppSettings(“CommunityName”)

Dim body As New StringBuilder

Body.Append(“Navigate to the following link to change your password: “)

body.Append(“http://”)

body.Append(Request.Url.Authority)

body.Append(Request.Url.AbsolutePath)

13
Taking Advantage of Forms Authentication

512

18 0672326744 CH13 5/4/04 12:22 PM Page 512

513Helping Users Who Forget Their Passwords

body.Append(“?MemberID=”)

body.Append(member.PrimaryKey1)

body.Append(“&Date=”)

body.Append(dateTimeTicks)

body.Append(“&Check=”)

body.Append(hash)

email.Body = body.ToString

RequestMadeControls.InnerText = _

“You will now receive an email with instructions for changing your password.”

RequestMadeControls.Visible = True

RequestControls.Visible = False

Try

SmtpMail.SmtpServer = ConfigurationSettings.AppSettings(“SMTPServer”)

SmtpMail.Send(email)

Catch ex As Exception

RequestMadeControls.InnerText = _

“The email could not be sent - please contact the site admin”

RequestMadeControls.Visible = True

End Try

Else

RequestMadeControls.InnerText = “Username not recognised - did you mistype it?”

RequestMadeControls.Visible = True

End If

End Sub

The important part of this code is the following section, which computes the hash that should
be included in the link in the email:

Dim dateTimeTicks As Long = DateTime.Now.Ticks

Dim stringToHash As String = username & dateTimeTicks &

ConfigurationSettings.AppSettings(“PasswordRequestHashPassword”)

Dim hash As String = _

FormsAuthentication.HashPasswordForStoringInConfigFile(stringToHash, “sha1”)

Also of interest is the section that adds the link to the email:

Dim body As New StringBuilder

Body.Append(“Navigate to the following link to change your password: “)

body.Append(“http://”)

body.Append(Request.Url.Authority)

body.Append(Request.Url.AbsolutePath)

LISTING 13.4 Continued

18 0672326744 CH13 5/4/04 12:22 PM Page 513

body.Append(“?MemberID=”)

body.Append(member.PrimaryKey1)

body.Append(“&Date=”)

body.Append(dateTimeTicks)

body.Append(“&Check=”)

body.Append(hash)

email.Body = body.ToString

Persistent Authentication Cookies
By default, each user will be able to continue to use an ASP.NET application that is configured
with the default forms authentication settings after logging in until one of two things occurs:
The user does not make a request for a period of time set by the timeout attribute of the <forms>
configuration, or the user closes his or her browser. The mechanism for this is provided by the
cookie that is used to persist the authentication token between requests. When the forms
authentication module sends the cookie to the client, the cookie is set to expire at a particular
time and is set to be nonpersistent; browsers should store it in memory so that it is removed
when the browser is closed. By default, the expiration time is updated with each new request
(although a new cookie is not set with every request); you can have the cookie fixed to expire a
configuration time after sign-in by setting the slidingExpiration attribute of the <forms> element
to False.

But what if you want to remember the user between visits? It is common to give users the
option to be signed in automatically if they visit the application again from the same browser
on the same machine.

It is very easy to have forms authentication create a persistent cookie to persist the authentica-
tion ticket. You simply set the second parameter of FormsAuthentication.RedirectFromLoginPage,
FormsAuthentication.SetAuthCookie, or FormsAuthentication.GetAuthCookie to True. For example, to
have the sign-in control discussed earlier in this chapter create a persistent cookie, you would
use the following line of code:

FormsAuthentication.SetAuthCookie(UsernameTextBox.Text, True)

We do not recommend that you create a persistent cookie by default: It is insecure for any users
who are connecting to your application from a shared computer. Instead, we suggest that you
default to a nonpersistent cookie and provide a CheckBox control that allows the user to specify
that the application should remember him or her when he or she connects from that machine.

Using persistent cookies raises a couple issues that are rather complex to address: How do you
have a persistent cookie timeout, and how can you enforce a timeout, even if users are willing
to manipulate their cookies? The following sections describe the possibilities.

13
Taking Advantage of Forms Authentication

514

18 0672326744 CH13 5/4/04 12:22 PM Page 514

515Persistent Authentication Cookies

Setting a Timeout
The problem with setting a timeout for a persistent cookie is that, when forms authentication is
set to use a persistent cookie, the forms authentication module will ignore the timeout setting
in the configuration file.

In order to use timeouts with persistent cookies, you need to get a little more hands-on with the
authentication cookie.

Rather than use the call to FormsAuthentication.SetAuthCookie, you need to use the following
code:

Dim cookie As HttpCookie = _

FormsAuthentication.GetAuthCookie(UsernameTextBox.Text, True)

cookie.Expires = DateTime.Now.AddDays(7)

Response.Cookies.Add(cookie)

You create a new cookie object and use FormsAuthentication.GetAuthCookie to store a valid
authentication ticket for the username in it. Then you set the expiration date and time of the
cookie to the current date and time plus a week. Finally, you add the cookie to the response.

Mandatory Expiration
Setting a cookie expiration date and time is all very well if you are not too worried about mali-
cious users stealing and modifying cookies, but it does not help you if you want to enforce a
limit on how long the authentication cookie is persisted. Cookies are stored on the user’s
machine as text files and, with a little information about the cookie format that the browser
uses, any user could make changes to the expiration date and time.

In order to enforce a timeout that the user cannot tamper with, you need to store the timeout
in the cookie, in encrypted form. Fortunately, the authentication ticket, which is by default
encrypted, stores its own timeout value, independently of the cookie expiration.

The following changes to the sign-in code enforce expiration in the encrypted authentication
ticket itself:

If FormsAuthentication.Authenticate(UsernameTextBox.Text, _

PasswordTextBox.Text) Then

‘set the authentication cookie

Dim ticket As New FormsAuthenticationTicket(1, _

UsernameTextBox.Text, _

DateTime.Now, _

DateTime.Now.AddDays(7), _

True, “”)

18 0672326744 CH13 5/4/04 12:22 PM Page 515

Dim encrypted As String = FormsAuthentication.Encrypt(ticket)

Dim cookie As New HttpCookie(FormsAuthentication.FormsCookieName, _

encrypted)

cookie.Expires = DateTime.Now.AddDays(7)

Response.Cookies.Add(cookie)

‘refresh the page

Response.Redirect(Request.Url.PathAndQuery)

End If

Now, you can create a FormsAuthenticationTicket
object and use the constructor to specify the
version number (in case future versions of forms
authentication support different options), the
username, the issue date and time, the expira-
tion date and time, whether you want a persist-
ent cookie, and some custom data (an empty
string, in this case).

Using Forms
Authentication in
Web Farms
Because forms authentication uses the ticket
stored in an authentication cookie (or, as you
will see later in this chapter, the URL) to
persist the user’s authentication details
between requests, the system very easily scales

to Web farms. Provided that each server in the farm is set up to accept the same authentication
ticket, users can connect to any server in the farm without any authentication problems.

There are two things you need to do to ensure that each server will accept the tickets issued by
the others. First, you need to ensure that the <forms> elements of the servers’ configurations
match. Second, you need to ensure that all the servers use the same keys for encrypting and vali-
dating authentication tickets.

By default, ASP.NET auto-generates these keys at random, which obviously does not lead to the
servers in a Web farm having matching keys. You therefore need to explicitly set the values. You
do this through the <machineKey> configuration element, which looks like this when it is filled
with some suitable keys:

13
Taking Advantage of Forms Authentication

516

Confusion in the .NET Framework
Documentation
The .NET Framework is somewhat
confusing when it comes to the
FormsAuthenticationTicket object.
It implies that the IssueDate and
ExpirationDate properties are tied to the
settings of the cookie that stores the authentica-
tion ticket. In fact, they are not: The properties
of the ticket are used by the forms authentica-
tion module when authenticating users and are
separate from the cookie settings.

Worse, the documentation suggests that the
ExpirationDate property of the
FormsAuthenticationTicket object should
be set to the DateTime value when the ticket
is issued. This is a very bad idea! Such tickets
expire as soon as they are issued and are no
use to anybody.

18 0672326744 CH13 5/4/04 12:22 PM Page 516

517Using Forms Authentication in Web Farms

<machineKey

decryptionKey=” BA753FA48201BF29D4691149E33191F72A5D449F5847891F63101B4FF011475084”

validationKey=”51A7C24620AFC1BD27E37867EB5D57C83A92CC886C9612318B1348C868F91E8670

➥ DF332B63222CD9345A73BD9295D113BDC5824E18FFD76B0A536C0461DE9C93B4”

validation=”SHA1” />

This element should go inside the <system.web> element of the web.config file or (if you want to
use the same keys for the whole machine) in the machine.config file. We don’t recommend that
you put this element in the machine.config file. It is usually best to keep the Web applications on
a machine separate unless you explicitly want them to use the same key.

The decryption key can be either 16 hexadecimal characters (for DES encryption) or 48 charac-
ters (for Triple DES [3DES] encryption). We strongly recommend that you use the more secure
3DES option.

The validation key can contain between 40 and 128 characters. The longer the key, the more
secure it is. Again, we suggest that you use the strongest option possible.

How do you get the keys to enter into the configuration file? Well, you can enter them by hand,
but that is both time-consuming and somewhat insecure; no matter how random you think
your typing is, it is almost certainly not as random as a random number generator. Therefore,
you need a tool to generate the keys for you.

A small Windows Forms application is included with the code for this chapter (see www.
daveandal.net/books/6744/). Its interface looks as shown in Figure 13.3.

FIGURE 13.3 A key-generator application.

Clicking the Generate Random Keys button causes the application to generate a new random
decryption key and validation key. The copy links then copy the relevant key to the Clipboard,
so that they are ready to be pasted into the web.config file.

The important part of the code for this application is the following GenerateKey method:

Private Function GenerateKey(ByVal length As Integer) As String

Dim randomBytes(length / 2) As Byte

Dim randomNumberGenerator As New RNGCryptoServiceProvider

randomNumberGenerator.GetBytes(randomBytes)

Dim sb As New StringBuilder(length)

Dim b As Byte

18 0672326744 CH13 5/4/04 12:22 PM Page 517

For Each b In randomBytes

sb.Append(String.Format(“{0:X2}”, b))

Next

Return sb.ToString()

End Function

Note that the code file imports the System.Security.Cryptography and System.Text namespaces.

The GenerateKey method creates a new array of Byte objects, which are half the length of the
required key. (Each randomly generated byte generates two hexadecimal characters in the
output.)

The array is then filled with random bytes from an RNGCryptoServiceProvider class—a random
number generator that is designed to be random enough for cryptographic purposes (much
more random that the Random class).

Then you loop through the array and add each byte to a StringBuilder instance as two hexadeci-
mal characters. Finally, the completed string is returned. The Windows Forms application uses
the GenerateKey method to generate both of the keys.

When the <machineKey> elements are set up with matching keys in all the servers of a Web farm,
each machine will accept authentication tickets issued by the other servers, so users will have no
problem if they move between servers during a session.

Using <machineKey> Elements to Implement Single Sign-in Systems
There is no reason you cannot use the technique described in the preceding section for match-
ing <machineKey> elements to get different applications to accept each other’s authentication
tickets. You could have several applications on the same server accept the same tickets and thus
recognize the same users. You could even have different applications hosted on different servers
recognize the same set of signed-in users.

The big limitation to this technique has to do with the use of cookies to carry the authentica-
tion ticket. Browsers only send cookies to the domain for which they are defined, and they
accept cookies from a Web application only if the application is part of the domain that the
cookie is defined for. This means that if I want to share forms authentication tickets between
www.syzygy-visuals.co.uk and www.zoetrope.org.uk, I have a problem.

There are some solutions, though. If you use cookieless forms authentication, which is described
later in this chapter, in the section “Cookieless Forms Authentication,” the problem disappears
because the authentication ticket will be carried in the URL rather than in a cookie. There are
other approaches, but they are all very much more complex.

13
Taking Advantage of Forms Authentication

518

18 0672326744 CH13 5/4/04 12:22 PM Page 518

519Cookieless Forms Authentication

Cookieless Forms Authentication
Forms authentication usually uses a cookie to carry the user’s authentication ticket between
requests. This is not the only way to do this, though, and using a cookie imposes some limita-
tions that you might want to avoid. As previously mentioned, using a cookie causes problems if
you want to share authentication tickets between applications hosted in different domains.
Another problem is a more general one: Some clients might not be set up to support cookies.
Users whose client does not accept cookies will not be able to sign in to an application that
relies on cookies to persist the authentication ticket.

The ASP.NET development team realized that this could be a problem and built the forms
authentication system so that it is not limited to using cookies. If a cookie with the correct
name is not found, the forms authentication module looks for a URL parameter with the same
name and attempts to decrypt the parameter as an authentication cookie. This makes imple-
menting cookieless forms authentication both very easy and very hard, depending on how you
look at it. On one hand, you don’t have to make any configuration changes; you just need to
ensure that the authentication ticket is present in the URL parameters for any links that you
make back to the application. On the other hand, ensuring that the authentication ticket is
maintained from page to page could be problematic if you have lots of internal links in the
application.

You need to make some changes to the login code in the sample application in order to support
cookieless forms authentication: You need to add the authentication ticket to the URL after a
user successfully signs in.

Listing 13.5 shows the sign-in code from the login control discussed earlier in this chapter,
adapted to add the ticket to the URL.

LISTING 13.5 Sign-in Code Adapted for Cookieless Forms Authentication

If FormsAuthentication.Authenticate(UsernameTextBox.Text, _

PasswordTextBox.Text) Then

‘set the authentication cookie

FormsAuthentication.SetAuthCookie(UsernameTextBox.Text, True)

‘get an authentication ticket

Dim ticket As New FormsAuthenticationTicket(UsernameTextBox.Text, _

False, 30)

‘encrypt the ticket

Dim encryptedTicket As String = FormsAuthentication.Encrypt(ticket)

‘refresh the page with the authentication ticket added

Dim currentUrl As New StringBuilder(Request.Url.PathAndQuery)

‘check whether there is already a query string

If currentUrl.ToString.IndexOf(“?”) = -1 Then

18 0672326744 CH13 5/4/04 12:22 PM Page 519

‘there is not a query string, so add one

currentUrl.Append(“?”)

Else

‘there is a query string, so add the parameter to it

currentUrl.Append(“&”)

End If

currentUrl.Append(FormsAuthentication.FormsCookieName)

currentUrl.Append(“=”)

currentUrl.Append(encryptedTicket)

Response.Redirect(currentUrl.ToString)

End If

You create a new FormsAuthenticationTicket object with the properties that you require. You then
use the FormsAuthentication.Encrypt method to create an encrypted string that contains the
ticket.

Note that you do not simply add the encrypted ticket string to the URL string; you have to
check whether there are already URL parameters so that you can decide whether to use the ? or
the & before the parameter name.

The sign-in code still includes the line that sets the authentication cookie. This code is set up to
do both cookie and cookieless authentication.

You need to make some changes to the sign-out code in order to remove the ticket from
the URL:

Private Sub SignOutButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles SignOutButton.Click

‘remove the authentication cookie

FormsAuthentication.SignOut()

‘now we need to ensure the ticket is removed from the URL...

‘get current URL without query string parameters

Dim currentUrl As New StringBuilder(Request.Url.LocalPath)

‘we now need to add each query string parameter except the auth ticket

‘back onto the URL

Dim parameterName As String

Dim firstParameter As Boolean = True

For Each parameterName In Request.QueryString.AllKeys

‘check that this is not the ticket

13
Taking Advantage of Forms Authentication

520

LISTING 13.5 Continued

18 0672326744 CH13 5/4/04 12:22 PM Page 520

521Cookieless Forms Authentication

If Not parameterName = FormsAuthentication.FormsCookieName Then

‘if this is the first parameter start a query string

If firstParameter Then

currentUrl.Append(“?”)

Else

‘this is not the first parameter, so continue the query string

currentUrl.Append(“&”)

End If

‘add the parameter

currentUrl.Append(parameterName)

currentUrl.Append(“=”)

currentUrl.Append(Request.QueryString.Item(parameterName))

End If

Next

‘redirect to the URL with the ticket removed

Response.Redirect(currentUrl.ToString)

End Sub

You run the standard FormsAuthentication.SignOut method to remove the cookie. Then you get
the current URL, without the query string, and loop through the query string parameters in
Request.QueryString, adding them to the URL. If the parameter is the forms authentication ticket
parameter, you do not add it.

The user can then sign in, regardless of whether his or her browser sends and receives the
authentication ticket cookie. The user will also be able to sign out. Both signing in and signing
out will respect and preserve any existing URL parameters.

You hit a problem as soon as you want the user to be able to link to another page in the applica-
tion, though. The authentication ticket URL parameter will not be carried along with the link
unless you explicitly include it.

You could add code to every page in the application to append the ticket to every link it creates,
but that would be a huge duplication of effort and code. There are a couple ways to avoid this.
You can create a reusable hyperlink control that you can add to pages wherever you need a
hyperlink, or you can add to the application some code that will automatically add the ticket to
any local URLs on each page that it sends to the users. The following sections describe these two
options.

Creating a Hyperlink Control to Add the Authentication Ticket
Thanks to ASP.NET’s ability to inherit from existing controls, it is actually very easy to create a
hyperlink control that will maintain the authentication ticket.

Listing 13.6 shows a control that inherits from System.Web.UI.WebControls.HyperLink.

18 0672326744 CH13 5/4/04 12:22 PM Page 521

LISTING 13.6 A Hyperlink Control That Automatically Includes the Authentication Ticket

Imports System.Web.UI

Imports System.Web.Security

Imports System.Text

Public Class LinkWithTicket

Inherits WebControls.HyperLink

Protected Overrides Sub Render(ByVal writer As HtmlTextWriter)

Dim cookieName As String = FormsAuthentication.FormsCookieName

‘check that the request is authenticated

If Not Page.Request.QueryString.Item(cookieName) Is Nothing Then

Dim UrlBuilder As New StringBuilder(NavigateUrl)

‘check whether there is already a query string in the link

If NavigateUrl.IndexOf(“?”) = -1 Then

‘there is no query string, so start one

UrlBuilder.Append(“?”)

Else

‘there is a query string, so add to it

UrlBuilder.Append(“&”)

End If

‘add the parameter

UrlBuilder.Append(cookieName)

UrlBuilder.Append(“=”)

UrlBuilder.Append(Page.Request.QueryString.Item(cookieName))

‘set the Url to the new one, including the ticket

NavigateUrl = UrlBuilder.ToString()

End If

‘pass the rest of the rendering work on to the base class

MyBase.Render(writer)

End Sub

End Class

You override the Render method in order to add the authentication ticket to the URL just before
the control is rendered. The code that adds the ticket is much the same as the code that you
used in the sign-in control earlier in this chapter, in the section “Building a Reusable Sign-in
Control.”

13
Taking Advantage of Forms Authentication

522

18 0672326744 CH13 5/4/04 12:22 PM Page 522

523Protecting Non-ASP.NET Content

If you now use this control wherever you want an internal hyperlink in the application, the
authentication ticket parameter will be added to the query string of the link.

Protecting Non-ASP.NET Content
You usually use forms authentication to control access to a Web application itself—mainly the
.aspx files that users must request in order to view the Web forms of the application. However,
you can use forms authentication with any kind of files, provided that those files are served by
ASP.NET.

In order to bring a file type under the control of ASP.NET—and thus forms authentication—you
need to do two things:

n Map the file type to ASP.NET in Internet Information Services (IIS)

n Define which HttpHandler implementation you would like ASP.NET to use to handle
requests for that file type

To map the file type to ASP.NET, you select Control Panel, Administrative Tools, Internet
Information Services. Then you right-click the Web application to configure and select
Properties. Finally, you click the Configuration button in the Application Settings section of the
Directory tab. You should see something like what is shown in Figure 13.4.

FIGURE 13.4 The Application Configuration
window in IIS.

The list in Figure 13.4 shows each file type, along with the executable it is mapped to (note that
not all these are actually executables—many, including ASP.NET, are DLLs). Double-clicking any
of them brings up a window like the one shown in Figure 13.5.

18 0672326744 CH13 5/4/04 12:22 PM Page 523

In order to map a new file type to ASP.NET, you simply need to copy the executable path from
one of the file types already mapped to ASP.NET and create a new mapping. (You need to right-
click and then select Copy because the keyboard shortcut does not work in the Mappings tab of
the Application Configuration dialog). In this way, you can specify whatever file types you’d like
to be sent to ASP.NET for processing when users request them from IIS.

The second part of the process is to tell ASP.NET what it should do with the file types you map
to it. You can get away with not doing this step if you simply want ASP.NET to perform authori-
zation and then pass the file to the user; this is the default option. However, it is best, especially
when it comes to security, to explicitly define what you want to happen.

You tell ASP.NET what to do with each file type by associating the types with HttpHandler imple-
mentations in the configuration file. The machinewide defaults are stored in Windows/Microsoft
.NET/Framework/[version]/Config/Machine.Config:

<httpHandlers>

<add verb=”*” path=”*.vjsproj” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.java” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.jsl” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”trace.axd” type=”System.Web.Handlers.TraceHandler”/>

<add verb=”*” path=”*.aspx” type=”System.Web.UI.PageHandlerFactory”/>

<add verb=”*” path=”*.ashx” type=”System.Web.UI.SimpleHandlerFactory”/>

<add verb=”*” path=”*.asmx” type=”System.Web.Services.Protocols.WebServiceHandlerFactory,

➥ System.Web.Services, Version=1.0.5000.0, Culture=neutral,

➥ PublicKeyToken=b03f5f7f11d50a3a” validate=”false”/>

<add verb=”*” path=”*.rem” type=”System.Runtime.

➥ Remoting.Channels.Http.HttpRemotingHandlerFactory,

➥ System.Runtime.Remoting, Version=1.0.5000.0,

➥ Culture=neutral, PublicKeyToken=b77a5c561934e089”

➥ validate=”false”/>

<add verb=”*” path=”*.soap” type=”System.Runtime.

➥ Remoting.Channels.Http.HttpRemotingHandlerFactory,

➥ System.Runtime.Remoting, Version=1.0.5000.0,

➥ Culture=neutral, PublicKeyToken=b77a5c561934e089”

➥ validate=”false”/>

<add verb=”*” path=”*.asax” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.ascx” type=”System.Web.HttpForbiddenHandler”/>

13
Taking Advantage of Forms Authentication

524

FIGURE 13.5 The file type settings window.

18 0672326744 CH13 5/4/04 12:22 PM Page 524

525Protecting Non-ASP.NET Content

<add verb=”GET,HEAD” path=”*.dll.config” type=”System.Web.StaticFileHandler”/>

<add verb=”GET,HEAD” path=”*.exe.config” type=”System.Web.StaticFileHandler”/>

<add verb=”*” path=”*.config” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.cs” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.csproj” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.vb” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.vbproj” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.webinfo” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.asp” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.licx” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.resx” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”*” path=”*.resources” type=”System.Web.HttpForbiddenHandler”/>

<add verb=”GET,HEAD” path=”*” type=”System.Web.StaticFileHandler”/>

<add verb=”*” path=”*” type=”System.Web.HttpMethodNotAllowedHandler”/>

</httpHandlers>

Lots of file types are mapped to HttpForbiddenHandler, which is used to prevent those file types
from being downloaded and to display an error message if an attempt is made to download one.

The system works by using the first handler in the list that matches with the file type and verb
of the request. Therefore, the defaults are found at the bottom of the file. The default when a
GET or HEAD verb is used is StaticFileHandler:

<add verb=”GET,HEAD” path=”*” type=”System.Web.StaticFileHandler”/>

This handler simply reads the file and streams it to IIS for delivery to the client.

If you want to explicitly set the handler for a file type, you add an <add> element to the
<httpHandlers> element of the configuration file. (You can do this either in the machine.config
file or in a web.config file if you want to add the handler for a specific application.) For example,
if you have mapped PDF files to ASP.NET in IIS, you can then specify that you want ASP.NET to
treat them as static files by adding the following <add> element:

<add verb=”GET,HEAD” path=”*.pdf” type=”System.Web.StaticFileHandler”/>

After you have mapped file types to ASP.NET, they fall under the protection of the ASP.NET secu-
rity framework. Requests for these file types will be subject to authorization against the rules in
the <authorization> section of the configuration file. In addition, ASP.NET will only be able to
access files that that ASPNET user is configured with access for, so it will only be able to serve
those files.

Mapping additional file types to ASP.NET causes a very slight performance hit. It is not too great
if the StaticFileHandler handler is used, but still, you should map only the file types that need
authorization by ASP.NET.

There seems to a problem with using the redirection technique that Response.Redirect (and
FormsAuthentication.RedirectFromLoginPage) employs when redirecting to certain file types. For
some reason, redirecting in this way causes the browser to report a corrupt file or simply not

18 0672326744 CH13 5/4/04 12:23 PM Page 525

display the file. An example of this is Adobe Acrobat files (PDF files). These files will load fine
when they’re linked to directly, but when they’re redirected to (for example, after a successful
sign-in), they will not display properly.

There is a way around this problem. The refresh HTTP header works fine with these file types, so
you can use it to do the redirection. On a forms authentication sign-in page, you can use the
following code in place of the call to RedirectFromLoginPage:

FormsAuthentication.SetAuthCookie(UsernameTextBox.Text, false)

Dim url as String = FormsAuthentication.GetRedirectUrl(UsernameTextBox.Text, false)

Response.AppendHeader(“refresh”, “0;url=” + url)

You set the authentication cookie, get the URL that you need to redirect to, and then add the
refresh header, with a time of 0 so that the redirection happens immediately.

Supporting Role-Based Authorization with
Forms Authentication
Role-based authorization is a common requirement for Web applications. In order for role-based
authorization to be able to work, the authentication system has to provide it with the roles that
the current user belongs to. By default, forms authentication does not do this, so it does not
support role-based authorization. However, it is very easy to implement roles with forms
authentication because most of the work has already been done. You just need to add a little
more code to persist each user’s roles in his or her authentication ticket and bind the roles to
the context of the user’s requests.

In the sign-in method, you need to create an authentication ticket from scratch in order to store
the roles in the UserData property of the ticket (see Listing 13.7).

LISTING 13.7 Sign-in Code with Support for Roles

If FormsAuthentication.Authenticate(UsernameTextBox.Text, PasswordTextBox.Text) Then

‘get the roles

Dim roles() As String = BusinessLogic.GetRoles(UsernameTextBox.Text)

‘create a semicolon delimited string of roles

Dim rolesBuilder As New StringBuilder

For Each role As String In roles

rolesBuilder.Append(role)

rolesBuilder.Append(“;”)

Next

‘create the auth ticket

13
Taking Advantage of Forms Authentication

526

18 0672326744 CH13 5/4/04 12:23 PM Page 526

527Supporting Role-Based Authorization with Forms Authentication

Dim ticket As New FormsAuthenticationTicket(1, _

UsernameTextBox.Text, _

DateTime.Now, _

DateTime.Now.AddDays(7), _

True, _

rolesBuilder.ToString)

‘encrypt the ticket

Dim ticketString As String = FormsAuthentication.Encrypt(ticket)

‘put the ticket in a cookie

Dim cookie As New HttpCookie(FormsAuthentication.FormsCookieName, _

ticketString)

‘add the cookie to the response

Response.Cookies.Add(cookie)

‘refresh the page

Response.Redirect(Request.Url.PathAndQuery)

End If

You extract the roles for the user from the business logic, create a semicolon-delimited string
that contains them, and then store that in the ticket.

You then persist each user’s roles in his or her authentication ticket. There is one more thing
you need to do in order for role-based authorization to work: At the start of each page
request, you need to store the roles from the ticket in the Context.User object, where the
authorization module expects to find them. You can do this by adding the following method
to the Global.Asax code-behind file:

Sub Application_AuthenticateRequest(ByVal sender As Object, ByVal e As EventArgs)

If Request.IsAuthenticated Then

Dim identity As FormsIdentity = CType(Context.User.Identity, _

FormsIdentity)

Dim roles() As String = identity.Ticket.UserData.Split(“;”)

Dim principal As New GenericPrincipal(Context.User.Identity, roles)

Context.User = principal

End If

End Sub

LISTING 13.7 Continued

18 0672326744 CH13 5/4/04 12:23 PM Page 527

This method handles the AuthenticateRequest event, which fires after authentication is carried
out on each request. You therefore need to check that authentication was successful before you
bind roles.

If the request is authenticated, you extract the roles from the authentication ticket (which is
now found in the FormsIdentity object in Context.User.Identity). Next, you create a new
GenericPrincipal object with the existing identity and the roles you have extracted. Finally, you
replace the existing principal in Context.User with the new GenericPrincipal object.

Now the authorization module will be able to find the roles where it expects them, so you can
use the standard role-based authorization configuration in the web.config file exactly as you
would if you were using Windows authentication.

Using Multiple Sign-in Pages
Standard forms authentication provides one sign-in page that is used to deal with all users who
require authentication. But what if you want different parts of the application to use a different
sign-in page?

You could set up the different parts of the application as separate Web applications so that each
could have its own configured sign-in page, but you might want to share session state, caching,
or other features between the parts of the application, which would not be possible if you set up
separate applications.

The solution is to set up the main sign-in page so that it will look for a sign-in page in the
folder of the originally requested file. If one is found, the main sign-in page will redirect to that
sign-in page. If one is not found, the sign-in page will display as it usually does.

You can use the following Page_Load event handler to set up the main sign-in page in this way:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘get the original request URL

Dim originalUrl As String = FormsAuthentication.GetRedirectUrl(“”, True)

‘regex to match everything after the final /

Dim filenameRegEx As New Regex(“/([^/]*)$”)

‘get the path by removing the filename and querystring

Dim path As String = filenameRegEx.Replace(originalUrl, “”)

‘create an OS filesystem path to a signin page in the folder of the request

Dim signinFile = Server.MapPath(path + “/signin.aspx”)

‘check whether the signin page exists

If File.Exists(signinFile) Then

13
Taking Advantage of Forms Authentication

528

18 0672326744 CH13 5/4/04 12:23 PM Page 528

529Using Multiple Sign-in Pages

Dim redirectUrl As New StringBuilder

redirectUrl.Append(path)

redirectUrl.Append(“/signin.aspx?ReturnUrl=”)

redirectUrl.Append(Server.UrlEncode(originalUrl))

Response.Redirect(redirectUrl.ToString)

End If

End Sub

Note that this code requires several Imports statements:

Imports System.IO

Imports System.Text

Imports System.Text.RegularExpressions

Imports System.Security

Imports System.Web.Security

You also need to ensure that each sign-in page in a subfolder is configured so that anonymous
users can access it. (This is done automatically for the main sign-in page, but you have to do it
yourself for any other sign-in pages.) You need to add a <location> element to the web.config file
for each sign-in page:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<location path=”trade/signin.aspx”>

<system.web>

<authorization>

<allow users=”?” />

</authorization>

</system.web>

</location>

<location path=”partners/signin.aspx”>

<system.web>

<authorization>

<allow users=”?”

</authorization>

</system.web>

</location>

<location path=”suppliers/signin.aspx”>

<system.web>

<authorization>

<allow users=”?”

</authorization>

</system.web>

</location>

18 0672326744 CH13 5/4/04 12:23 PM Page 529

You can now customize each sign-in page as you want to. You can even have the authentication
code check against different sets of credentials if it makes sense to do so.

Dealing with Failed Authorization
A situation in which you might like a sign-in page to behave a little more intelligently is when a
signed-in user attempts to access a file that he or she is not authorized to see.

In the standard forms authentication setup, such users are forwarded to the sign-in page in the
same way as users who are not signed in. It would be much better if you could display a
message to let these users know that they tried to access a resource they are not authorized to
view rather than simply showing them the sign-in controls.

This is actually very easy to do. All you have to do is to check whether a user is already signed
in before displaying the sign-in page:

‘check whether there is a user signed in

If Request.IsAuthenticated Then

‘there is a user signed in, so they must have failed authorization

Response.Redirect(“NotAuthorized.aspx”)

Else

‘no user signed in, so redirect to a sign in page if one exists for

‘the folder of the original request

‘get the original request URL

Dim originalUrl As String = FormsAuthentication.GetRedirectUrl(“”, True)

‘regex to match everything after the final /

Dim filenameRegEx As New Regex(“/([^/]*)$”)

‘get the path by removing the filename and querystring

Dim path As String = filenameRegEx.Replace(originalUrl, “”)

‘create an OS filesystem path to a signin page in the folder of the request

Dim signinFile = Server.MapPath(path + “/signin.aspx”)

‘check whether the signin page exists

If File.Exists(signinFile) Then

Dim redirectUrl As New StringBuilder

redirectUrl.Append(path)

redirectUrl.Append(“/signin.aspx?ReturnUrl=”)

redirectUrl.Append(Server.UrlEncode(originalUrl))

13
Taking Advantage of Forms Authentication

530

18 0672326744 CH13 5/4/04 12:23 PM Page 530

531Listing Signed-in Users

Response.Redirect(redirectUrl.ToString)

End If

End If

End Sub

If Request.IsAuthenticated returns true, there must be a user signed in, and therefore the user
must have failed authorization.

Listing Signed-in Users
It is common for modern multiuser applications to show their users which other users are
currently signed in. It is also useful for the administrators to know which users are actively
using an application at a particular time.

Standard forms authentication is not set up to provide this functionality. Forms authentication
uses a cookie or the URL to persist the authentication ticket between requests, so it does not
remember the user between one request and the next. In order to provide a list of signed-in
users, you have to do a little extra work to build the infrastructure that the feature requires.

You can create a data structure to hold the names of the signed-in users when the application
starts, by adding code to the Application_Start event in the global .asax code-behind file:

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘hashtable for sessionIDs and names of all signed in users

Application.Item(“SignedInUsers”) = New Hashtable

‘counter for number of anonymous sessions

Application.Item(“AnonymousUsers”) = CInt(0)

End Sub

You can add each user’s session ID and username to the hash table when that user signs in.
Before the user signs in (and after he or she signs out), you can track the user’s presence on the
application as an anonymous user by incrementing and decrementing the count of anonymous
user sessions (that is, sessions that are not associated with a signed-in user).

You need to increment the counter of anonymous users when a new user session is started:

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

Application.Item(“AnonymousUsers”) = _

CInt(Application.Item(“AnonymousUsers”)) + 1

End Sub

18 0672326744 CH13 5/4/04 12:23 PM Page 531

When a session ends, you need to remove the user from the hash table (if there is a user signed
in) or decrement the count of anonymous users (if there is not a user signed in):

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

Dim userList As Hashtable = _

CType(Application.Item(“SignedInUsers”), Hashtable)

If userList.Contains(Session.SessionID) Then

userList.Remove(Session.SessionID)

Else

Application.Item(“AnonymousUsers”) = _

CInt(Application.Item(“AnonymousUsers”)) - 1

End If

End Sub

When a user signs in, you need to decrement the count of anonymous users and add the user to
the hash table:

If FormsAuthentication.Authenticate(UsernameTextBox.Text, _

PasswordTextBox.Text) Then

‘add the user to the list of sign-in users

Dim userList As Hashtable = _

CType(Application.Item(“SignedInUsers”), Hashtable)

If Not userList.ContainsValue(UsernameTextBox.Text) Then

userList.Add(Session.SessionID, UsernameTextBox.Text)

‘decrement the number of anonymous sessions

Application.Item(“AnonymousUsers”) = _

CInt(Application.Item(“AnonymousUsers”)) - 1

End If

‘set the authentication cookie

FormsAuthentication.SetAuthCookie(UsernameTextBox.Text, False)

‘refresh the page

Response.Redirect(Request.Url.PathAndQuery)

End If

Note that you check to ensure that the user is not already in the hash table before adding the
user. This guards against the possibility of a user signing in again when he or she is already
signed in once.

13
Taking Advantage of Forms Authentication

532

18 0672326744 CH13 5/4/04 12:23 PM Page 532

533Forcibly Signing Out a User

When a user signs out, you do the reverse:

Private Sub SignOutButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles SignOutButton.Click

Dim userList As Hashtable = _

CType(Application.Item(“SignedInUsers”), Hashtable)

If userList.Contains(Session.SessionID) Then

userList.Remove(Session.SessionID)

Application.Item(“AnonymousUsers”) = _

CInt(Application.Item(“AnonymousUsers”)) + 1

End If

FormsAuthentication.SignOut()

Response.Redirect(Request.Url.PathAndQuery)

End Sub

You check that the user is in the hash table before proceeding, for the same reasons that you
carry out the check when the user signs in.

You now have a hash table that contains all the signed-in users stored in the Application object,
along with an integer value that counts the anonymous user sessions. You can very easily use
these to create a control to display the users to either all other users of the application or just
the administrators.

Forcibly Signing Out a User
Standard forms authentication is not set up to kick a user out of an application. You can easily
prevent a banned user from signing in; you simply update the credentials store that the sign-in
code uses. The problem comes when you want to eject a user who is already signed in.

The forms authentication module will accept any valid authentication ticket in order to allow
access to the application, so after you have issued a ticket to the user, you cannot simply invali-
date it without changing the encryption and validation keys and invalidating the authentica-
tion tickets of all users. You don’t want to check against the credentials store with every page
request to see if the user has been banned; that would cause an additional database access for
every page request that is made to the application, so you need to find another approach.

The solution is to maintain a list of recently ejected users (hopefully, this list won’t be too big)
and check the current user against this list at the start of each page request.

18 0672326744 CH13 5/4/04 12:23 PM Page 533

You can use an array list stored in the Application object to hold the username of each banned user:

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘create arraylist to hold banned usernames

Application.Item(“BannedUsers”) = New ArrayList

End Sub

You need to check the user against this list every time a user is successfully authenticated:

Sub Application_AuthenticateRequest(ByVal sender As Object, ByVal e As EventArgs)

Dim bannedUsers As ArrayList = _

CType(Application.Item(“BannedUsers”), ArrayList)

‘check whether the user is banned

If bannedUsers.Contains(User.Identity.Name) Then

‘the user is banned so replace their principal with an anonymous one

‘create an anonymous identity

Dim identity As New System.Security.Principal.GenericIdentity(“”)

‘create an anonymous principal

Dim principal As New System.Security.Principal.GenericPrincipal(_

identity, New String() {})

‘bind the anonymous principal to the context

Context.User = principal

Else

‘the user is not banned - proceed as normal

End If

End Sub

You can then add a user to the banned list in the admin system, using the following simple
code:

Private Sub BanUser(ByVal username As String)

Dim bannedUsers As ArrayList = _

CType(Application.Item(“BannedUsers”), ArrayList)

If Not bannedUsers.Contains(username) Then

‘add user to the list of banned users in memory

bannedUsers.Add(username)

‘add more code here to set the user as banned in the credentials store

End If

End Sub

13
Taking Advantage of Forms Authentication

534

18 0672326744 CH13 5/4/04 12:23 PM Page 534

535Summary

If the user is on the banned list, his or her principal object is replaced with a GenericPrincipal
instance that contains an anonymous GenericIdentity object (that is, it contains an empty user-
name). The user will then be treated as an anonymous user.

You might want to add additional code that logs attempts by banned users to access the applica-
tion. You might also want to add to the Application_Start event handler code that loads the list
of banned users from a persistent credentials store such as a database. If you don’t do this, the
list will be wiped each time you restart the application. This might not be a problem because
auto-generated encryption and validation keys are regenerated with each application restart, but
if you have defined explicit values for the <machineKey> element, authentication tickets will
remain valid between restarts, and you will need to ensure that you persist the list of banned
users.

Summary
This chapter covers one specific type of authentication, but it is the type of authentication that
is likely to be encountered most often in ASP.NET applications. It is also, as you have seen,
extremely flexible.

This chapter shows a wide variety of ways to customize forms authentication. The chapter starts
by showing how to provide the sign-in feature in a reusable control rather than in a sign-in
form.

This chapter discusses protection of passwords with one-way encryption (hashing), along with a
way to help users who forget their passwords for systems that cannot recover them due to
hashing protection.

Some methods for gaining additional control over the cookie that is used to persist the authenti-
cation ticket are presented, along with techniques for doing without cookies altogether.

This chapter shows the ease with which forms authentication can be applied across multiple
servers. The difficulties of using this approach with multiple domains is explained, and cookie-
less authentication is suggested as one solution to the problem.

This chapter shows the influence of ASP.NET forms authentication by describing how to use it
to protect content other than files directly related to ASP.NET.

Because role-based authorization is a very popular way to control access in Web applications,
this chapter shows how to have forms authentication support roles in a way that allows it to
interact transparently with the authorization system.

The chapter finishes by providing techniques for listing all the users who are signed into the
application and for forcibly signing out particular users.

18 0672326744 CH13 5/4/04 12:23 PM Page 535

18 0672326744 CH13 5/4/04 12:23 PM Page 536

14
Customizing

Security

Chapter 13, “Taking Advantage of Forms
Authentication,” shows how you can use
the forms authentication module in a wide
variety of ways. However, forms authentica-
tion is not the solution to all security needs.
Sometimes you face security needs that
require more customized solutions.

The event-based architecture of ASP.NET
applications makes it easy for you to plug in
to the same hooks that the authentication
and authorization modules provided by
Microsoft use. The first part of this chapter
shows how you can build your own authen-
tication and authorization modules to fulfill
specific requirements. The second part of
the chapter looks at the options presented
by ASP.NET security configuration, particu-
larly how you can configure ASP.NET appli-
cations to run at less than full trust.

IN THIS CHAPTER
Building a Custom Authentication
Module 538

Building a Custom Authorization
Module 543

Trust Levels 546

Summary 559

19 0672326744 CH14 5/4/04 12:27 PM Page 537

Building a Custom Authentication Module
Authentication is the process of identifying users. Authentication modules use evidence in each
request made to the application to identify which user is making the request. The authentica-
tion modules that ship with ASP.NET use as their evidence encrypted cookies in the request
(forms authentication and Passport authentication) and evidence provided by IIS (Windows
authentication).

What Is an Authentication Module?
In code terms, an authentication module is an HTTP module that handles the AuthenticateRequest
event of the HttpApplication object. When the event fires, the authentication module checks the
evidence associated with the request and populates the Context.User intrinsic object with an
appropriate IPrincipal object (that is, an object of a class that implements the IPrincipal inter-
face). The authorization module then uses Context.User as the basis for deciding whether the
request should be authorized. The rest of the application code is then able to access whatever
data is stored in the IPrincipal object.

It is actually pretty rare that you need to replace the standard authentication modules with a
custom solution. Usually you can solve your problems by customizing one of the existing
modules. Forms authentication, as you saw in Chapter 13, is particularly suitable for such
manipulation.

One situation in which a custom authentication module is useful is when you want to identify
access to an application according to which machine is trying to access the application rather
than according to which specific user is making the request. For example, if you have an
intranet application running on a closed network in a shopping mall, you might want to iden-
tify which client machines are used to make requests in order for the application to behave
differently. (For example, the application might show special offers appropriate to stores near
the client machine that is being used, or the map might be able to show a “you are here” label.)

There are all sorts of ways you can solve this problem. One clean way is to implement a custom
authentication module that uses the IP address of the client machine as the evidence for
authentication. The following sections show how to build a simple HTTP module that provides
this functionality.

Building a Custom Identity Class
Before you build the HTTP module itself, you need to think about the IPrincipal object that it
will use to populate Context.User. The principal represents the security context of the user. The
interface has the following members:

Member Return Type
Identity IIdentity

IsInRole (String) Boolean

14
Customizing Security

538

19 0672326744 CH14 5/4/04 12:27 PM Page 538

539Building a Custom Authentication Module

Every IPrincipal object will store an IIdentity object that represents the identity of the authen-
ticated user and will allow you to check whether the user is in a particular role.

You can build a custom class that implements IPrincipal, but there is rarely any need to do so;
System.Security.Principal.GenericPrincipal does the job in the vast majority of cases.
GenericPrincipal provides a constructor that takes an IIdentity object and an array of strings for
the roles. It simply stores the roles internally and checks against them when IsInRole is called.

Most authentication approaches can use GenericPrincipal. The exception is Windows authenti-
cation, which needs to check roles against the user’s Windows roles rather than against a set of
roles stored by the principal object. It therefore defines a different IPrincipal implementation,
WindowsPrincipal. In the IP authentication example, GenericPrincipal will do just fine. However,
you should create a custom identity class that implements IIdentity. The reason becomes clear
when you look at the members required by the IIdentity interface:

Member Return Type
AuthenticationType String

IsAuthenticated Boolean

Name String

The identity needs to return the type of authentication used to create it, so a new identity class
is needed for each authentication module.

The following is the code for an identity class for the IP authentication module:

Public Class IPIdentity

Implements System.Security.Principal.IIdentity

Private _IP As String = Nothing

Public Sub New(ByVal ip As String)

_IP = ip

End Sub

‘do not allow an IPIdentity to be created without an IP address

Private Sub New()

End Sub

Public ReadOnly Property AuthenticationType() As String _

Implements System.Security.Principal.IIdentity.AuthenticationType

Get

Return “IP”

End Get

End Property

Public ReadOnly Property IsAuthenticated() As Boolean _

Implements System.Security.Principal.IIdentity.IsAuthenticated

19 0672326744 CH14 5/4/04 12:27 PM Page 539

Get

‘An IP Identity will only be used when authentication is successful

Return True

End Get

End Property

Public ReadOnly Property Name() As String _

Implements System.Security.Principal.IIdentity.Name

Get

Return _IP

End Get

End Property

End Class

You store the IP address of the machine that is making the request in a private field. A construc-
tor is provided to allow a new IPIdentity object to be created from an IP address, but you mark
the default constructor as private so it cannot be used.

The members required by IIdentity are each provided. AuthenticationType returns “IP”.
IsAuthenticated returns true; you will be using IPIdenity only with authenticated requests. Name
returns the IP address string.

This is a pretty minimal IIdenity implementation. You can add other data to the identity class.
For example, FormsIdentity provides access to the forms authentication ticket.

Building the HTTP Module
Now that you know what the IP authentication module is going to populate Context.User with,
you can press on and build the HTTP module that will implement it (see Listing 14.1).

LISTING 14.1 An HTTP Module Implementation for IP-Based Authentication

Imports System.Security.Principal

Public Class IPAuthenticationModule

Implements IHttpModule

Public Sub Dispose() Implements System.Web.IHttpModule.Dispose

‘we have no resources to dispose of

End Sub

Public Sub Init(ByVal context As System.Web.HttpApplication) _

Implements System.Web.IHttpModule.Init

‘handle the AuthenticateRequest of the application

AddHandler context.AuthenticateRequest, AddressOf Me.Authenticate

End Sub

14
Customizing Security

540

19 0672326744 CH14 5/4/04 12:27 PM Page 540

541Building a Custom Authentication Module

Public Sub Authenticate(ByVal sender As Object, ByVal e As EventArgs)

Dim application As HttpApplication = CType(sender, HttpApplication)

‘create identity and principal objects

Dim identity As New IPIdentity(application.Request.UserHostAddress)

Dim principal As New GenericPrincipal(identity, New String() {})

‘attach the principal to the application context

application.Context.User = principal

End Sub

End Class

You don’t need to do anything in the Dispose method because you use no resources that require
disposal. You have to include it, though, because it is required by the IHttpModule interface.

In the Init method, you bind the Authenticate method of this class to the AuthenticateRequest
event of the application. In the Authenticate method, you simply use the IP address of the
request (Request.UserHostAddress) to create an IPIdentity object, which is then used to construct
a GenericPrincipal instance that is stored in Context.User.

Before the module can be used, you need to ensure that no other authentication modules are
active by setting the <Authentication> element of the web.config file appropriately:

<authentication mode=”None” />

You also need to add an <httpModules> section to the web.config file to add the module to the
application:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.web>

<httpModules>

<add type=”CustomAuthentication.IPAuthenticationModule,

➥ CustomAuthentication” name=”IPAuthentication” />

</httpModules>

After you have done this, you can access the IP address of the client through Context.User.
Identity.Name. (This is not very impressive, admittedly, because you can access it through
Request.UserHostAddress anyway.) More interestingly, you can use URL authorization by specify-
ing the IP addresses as the usernames:

<authorization>

<allow users=”127.0.0.1” />

LISTING 14.1 Continued

19 0672326744 CH14 5/4/04 12:27 PM Page 541

<allow users=”56.43.43.1” />

<allow users=”56.43.43.2” />

<allow users=”56.43.43.3” />

<deny users=”*” />

</authorization>

You could also have the IPAuthenticationModule implementation create the GenericPrincipal
object with roles that reflect what sort of information should be displayed to that client. You
would then be able to use Context.User.IsInRole or any of the other programmatic authorization
techniques to access this information.

Running Authentication Modules in Tandem
The built-in authentication modules in ASP.NET can only be used one at a time, but there is no
reason you cannot have additional custom authentication modules running on top of the built-
in modules.

For example, you might want to use forms authentication to allow administrators to sign in to
the system but use the IPAuthenticationModule implementation that you built in the previous
section to identify the client machine for users who are not authenticated by the forms authen-
tication module.

The important thing to do if you want to use more than one module together is to ensure that
they do not clash with each other. You can change the IPAuthenticationModule implementation
so that it will populate the Context.User object only if it has not already been populated by
another authentication module (see Listing 14.2).

LISTING 14.2 Adapting IPAuthenticationModule to Allow It to Work with Other Modules

Public Sub Authenticate(ByVal sender As Object, ByVal e As EventArgs)

Dim application As HttpApplication = CType(sender, HttpApplication)

‘check that the user has not been created or is not authenticated

If application.Context.User Is Nothing _

OrElse Not application.Context.User.Identity.IsAuthenticated Then

‘create identity and principal objects

Dim identity As New IPIdentity(application.Request.UserHostAddress)

Dim principal As New GenericPrincipal(identity, New String() {})

‘attach the principal to the application context

application.Context.User = principal

End If

End Sub

14
Customizing Security

542

19 0672326744 CH14 5/4/04 12:27 PM Page 542

543Building a Custom Authorization Module

The IPAuthenticationModule implementation will then happily coexist with the forms
authentication module. When forms authentication does not authenticate the user, the
IPAuthenticationModule implementation will populate the Context.User object. When forms
authentication does pick up a ticket and authenticate the user, the IPAuthenticationModule imple-
mentation will do nothing.

This system will work best when forms authentication is set up to support role-based authoriza-
tion, so that the administrators or other privileged users can be placed in a role.

The example shown here is very simple, but it shows all the features that are required from an
authentication module. If you have some authentication requirements that are not served by
the default modules, you should be able to build a custom module to do the job.

Building a Custom Authorization Module
Authorization is the process of deciding whether the current user has permission to access the
resource that he or she requested. The authorization modules that ship with ASP.NET decide
whether the resource can be accessed by either checking Windows access control lists (file
authorization) or checking the <authorization> element of the configuration file (URL authoriza-
tion).

There are lots of other possibilities for authorizing the requests of users. For example, you might
allow access only at certain times, you might require users to have been registered with the
application for a certain amount of time before accessing some content, or you might assign
each user credits that he or she can use to access pay-per-view content. Or you might use a
single-page application architecture and want to authorize based on the URL parameters of the
request.

The best way to implement custom authorization behavior is by creating an authorization
module. Like authentication modules, authorization modules are HTTP modules (although they
hook into the AuthorizeRequest event rather than the AuthenticateRequest event).

Listing 14.3 shows a simple authorization module that checks the expiration date in a custom
identity against the current date.

LISTING 14.3 A Custom Authorization Module

Public Class ExpirationAuthorizationModule

Implements System.Web.IHttpModule

Public Sub Dispose() Implements System.Web.IHttpModule.Dispose

‘nothing to dispose of

End Sub

Public Sub Init(ByVal context As System.Web.HttpApplication)

➥ Implements System.Web.IHttpModule.Init

AddHandler context.AuthorizeRequest, AddressOf Me.Authorize

19 0672326744 CH14 5/4/04 12:27 PM Page 543

End Sub

Private Sub Authorize(ByVal sender As Object, ByVal e As EventArgs)

Dim application As HttpApplication = CType(sender, HttpApplication)

If application.Context.Request.IsAuthenticated Then

If Not application.Context.User.IsInRole(“NonExpiring”) Then

Dim identity As ExpiringIdentity = _

CType(application.Context.User.Identity, ExpiringIdentity)

If identity.Expires < DateTime.Now Then

‘the users registration has expired

application.Context.Response.Redirect(“RegistrationExpired.aspx”)

End If

End If

End If

End Sub

End Class

The infrastructure of this authorization module is very similar to that of the custom authentica-
tion module discussed earlier in this chapter in the section, “What Is an Authentication
Module?”

In the Authorize event handler, you check whether the user is authenticated. (This module is
designed to only check for expired membership; it does not deny authorization to anonymous
users. It is assumed that URL authorization would be used to do that.)

Next, you check that the user is not in the NonExpiring role. If he or she is, you do nothing
more, and the user is allowed to view the resource he or she requested. If the user is not in the
NonExpiring role, you check the current date and time against the user’s expiration date and time
from the ExpiringIdentity object in Context.User.Identitiy. If the user has expired, you redirect
the response to the “registration expired” page.

You may be wondering what the ExpiringIdentity class looks like. It is shown in Listing 14.4.

LISTING 14.4 The ExpiringIdentity Class

Public Class ExpiringIdentity

Implements System.Security.Principal.IIdentity

Private _Username As String

Private _MembershipExpires As DateTime

Public Sub New(ByVal username As String, ByVal expires As DateTime)

14
Customizing Security

544

LISTING 14.3 Continued

19 0672326744 CH14 5/4/04 12:27 PM Page 544

545Building a Custom Authorization Module

_Username = username

_MembershipExpires = expires

End Sub

Private Sub New()

End Sub

Public ReadOnly Property AuthenticationType() As String _

Implements System.Security.Principal.IIdentity.AuthenticationType

Get

Return “Custom”

End Get

End Property

Public ReadOnly Property IsAuthenticated() As Boolean _

Implements System.Security.Principal.IIdentity.IsAuthenticated

Get

Return True

End Get

End Property

Public ReadOnly Property Name() As String _

Implements System.Security.Principal.IIdentity.Name

Get

Return _Username

End Get

End Property

Public ReadOnly Property Expires() As DateTime

Get

Return _MemberShipExpires

End Get

End Property

End Class

Running Authorization Modules in Tandem
As with authentication modules, you can run multiple authorization modules at the same time.
You do not have to worry about clashing authorization modules as you do with authentication
modules. If any of the authorization modules in the chain results in failed authorization, it will
take action ahead of any other modules. This is as it should be; when it comes to security, you
should always pay attention to the test that fails rather than to the test that passes.

LISTING 14.4 Continued

19 0672326744 CH14 5/4/04 12:27 PM Page 545

The example shown in Listing 14.4 is designed to work in tandem with URL authorization. URL
authorization would be used to keep anonymous users from using the application, whereas
ExpirationAuthorizationModule implementation would be used to deal with users whose registra-
tions have expired.

Trust Levels
By default, ASP.NET applications run at full trust. This means that the .NET Framework places
no limitations on what they can do, aside from the limitations imposed by the operating system
on the account that ASP.NET runs under. This is not a huge problem if you trust all the develop-
ers who write code for all the ASP.NET applications that run on your server, but what if you
do not?

Also, running all applications at full trust breaks the principle of least privilege—the idea that
for the best possible security, code should be allowed only the permissions that it absolutely
needs.

The solution is to force applications to run at less than full trust. ASP.NET ships with four differ-
ent levels of trust and allows you to configure your own trust levels if you need to specify a
particular set of permissions.

Using One of the Preconfigured Trust Levels
In addition to the full-trust mode that places no restrictions, four trust levels are provided with
ASP.NET (see Table 14.1).

TABLE 14.1
The Four Trust Levels Provided with ASP.NET

Trust Level Main Permissions

Minimal Only the bare minimum that are required for ASP.NET to function

Low Very limited access to the file system

Medium Limited read/write access to the file system; some other permissions

High Full access to the file system; most other permissions

Remember that the permissions granted by these trust levels do not allow the ASP.NET user
account to access anything that it does not have operating system permissions for. Trust levels
can only impose additional restrictions; they can never remove existing operating system restric-
tions.

Let’s look at each trust level in more detail to see what permissions the levels provide.

The Minimal Preconfigured Trust Level
The minimal trust level only grants the permissions that are absolutely required for an ASP.NET
application to run.

14
Customizing Security

546

19 0672326744 CH14 5/4/04 12:27 PM Page 546

547Trust Levels

An ASP.NET application running at this trust level will not be able to do a lot. It can’t do any
file system input/output work, can’t do any data access, can’t access isolated storage, can’t access
the registry, and can’t execute any code that requires reflection. In fact, applications at this trust
level can’t really do anything apart from read the HTTP request and write to the HTTP response.

Another restriction when running at this trust level (and low trust) is that it does not allow
debugging. Attempting to run an application that is configured for debugging at this trust level
will result in an error message. For this reason, you have to appropriately set the <compilation>
element in the web.config file for applications that will run at minimal or low trust:

<compilation defaultLanguage=”vb” debug=”false” />

The Low Preconfigured Trust Level
The low trust level does not allow very many more permissions than minimal trust. At this
level, the application can read (but not write) files that are within its application directory, and
it can read and write isolated storage with a quota of 1MB.

Note that the low trust level has the same limitation on debugging that the minimal trust level
has: If you configure an application with low trust for debugging, you will get an error.

The Medium Preconfigured Trust Level
Compared to the minimal and low trust levels, quite a few additional permissions are added at
the medium trust level. Debugging is now allowed. You can read and write files within the
application directory. You also have access to isolated storage with an effectively unlimited
quota. An application can access a SQL Server database through the SqlClient classes and can
even print to the default printer.

At this level, an application also gets read access to the following environment variables:

n TEMP

n TMP

n USERNAME

n OS

n COMPUTERNAME

Finally, at medium trust, an application gets more control over threads, the principal object, and
remoting.

The medium trust level contains the permissions that most ASP.NET applications need to run.

The High Preconfigured Trust Level
At high trust, an application gets unrestricted access to most resources, including the file system,
isolated storage, environment variables, the registry, and sockets. An application also gains the
ability to generate dynamic assemblies by using Reflection.Emit.

19 0672326744 CH14 5/4/04 12:27 PM Page 547

Remember, though, that ASP.NET is still limited by the permissions that the account under
which it runs has been given.

Forcing an Application to Use a Trust Level
As mentioned earlier in this chapter, the default trust level for ASP.NET applications is full trust.
You can see this by finding the appropriate section of the machine.config file:

<location allowOverride=”true”>

<system.web>

<securityPolicy>

<trustLevel name=”Full” policyFile=”internal”/>

<trustLevel name=”High” policyFile=”web_hightrust.config”/>

<trustLevel name=”Medium” policyFile=”web_mediumtrust.config”/>

<trustLevel name=”Low” policyFile=”web_lowtrust.config”/>

<trustLevel name=”Minimal” policyFile=”web_minimaltrust.config”/>

</securityPolicy>

<!-- level=”[Full|High|Medium|Low|Minimal]” -->

<trust level=”Full” originUrl=””/>

</system.web>

</location>

A <location> element without a path is used to apply the settings to all Web applications. The
five trust levels are defined, with the filenames of the files that hold their policies. The trust
level full is then configured. This will be the default for all applications running on the server.

You can change the default trust level by changing this configuration. If you do, you should
change the allowOverride attribute of the <location> element to false, or individual applications
will simply be able to define their own trust levels in their web.config files.

Often, though, you want to configure different trust levels for different applications. This is
especially true if you want to follow the principle of least privilege and want to have each appli-
cation run with only the permissions it needs.

You can take a number of approaches to this. You could remove the <trust> element from the
machinewide <location> element and instead include a <location> element for each application.
If you do this, you have to be careful to include one for each application, or you will get errors.
(Every application must have a <trust> element at some level of its configuration.)

You can’t simply define a default in the machinewide <location> element and then include addi-
tional <location> elements in the machine.config file to specify the trust levels for individual
applications. You are not allowed to include the <trust> element twice in a single configuration
file.

If you want to configure a default and then define different trust levels for certain applications,
you have to use multiple configuration files. If you can’t define the settings in the machine.
config file, along with the machinewide default, and you can’t define it in the web.config file for
the specific application, you have to use a web.config file at the Web site level.

14
Customizing Security

548

19 0672326744 CH14 5/4/04 12:27 PM Page 548

549Trust Levels

The following web.config file will, when added to the root folder of the Web server (usually
wwwroot), specify that the application called UntrustedApp that is in the InsiderSolutions folder
should be run at low trust:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<!--configure a lower trust level for one application -->

<location allowOverride=”false” path=”InsiderSolutions/UntrustedApp”>

<system.web>

<trust level=”Low” originUrl=”http://www.UntrustedApp.com”>

</system.web>

</location>

</configuration>

The originUrl attribute is used to specify the URL that should be used for the WebPermission
permission, which allows code to make web requests (although note that in this case, it will not
do anything, as the low trust level does not include the WebPermission permission).

You could also specify a trust level for all applications in the InsiderSolutions folder as follows:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<!--configure a lower trust level for one application -->

<location allowOverride=”false” path=”InsiderSolutions “>

<system.web>

<trust level=”Low” originUrl=””/>

</system.web>

</location>

</configuration>

Creating Custom Trust Levels
The trust levels that ship with ASP.NET provide a pretty good spread of permission sets, but if
you want to have complete control over what applications are doing on your server, you need
to define your own trust levels.

The best way to go about this is to start from one of the existing trust levels and use it as the
basis for your new trust level. By copying its policy file and making changes, you can construct
a new trust level with just the permissions you want. With this in mind, let’s take a look at the
policy file for the medium trust level to see how the policy files are structured.

The policy file for the medium trust level can be found in Windows/Microsoft .NET/Framework/
[version]Config/Web_MediumTrust.config. The file has an overall structure like this:

<configuration>

<mscorlib>

<security>

19 0672326744 CH14 5/4/04 12:27 PM Page 549

<policy>

<policyLevel>

<securityClasses>

a <securityClass> for each permission,

code group and condition class used by the file

</securityClasses>

<namedPermissionSets>

a <permissionSet> for each permission set used in the policy:

<permissionSet>

a set of 0 or more <IPermission>

elements to define the permissions in the set

</permissionSet>

</namedPermissionSets>

<codeGroup>

nested <codeGroup> elements that link code

to permission sets based on conditions:

<codeGroup>

0 or more nested <codeGroup> elements and one <IMembershipCondition>

</codeGroup>

</codeGroup>

</policyLevel>

</policy>

</security>

</mscorlib>

</configuration>

This file contains three main things: definitions of the security classes that will be used, some
permission sets, and some nested code groups that link code to the permission set that it should
run with.

For the purposes of changing the permissions that ASP.NET applications run with, you do not
need to change the <codeGroup> elements; you just need to add or remove permissions from the
<permissionSet> element that holds the permissions that are granted to the ASP.NET application.

The Web_MediumTrust.config file contains three permission sets: a full access set that grants unre-
stricted privileges, a set that grants no privileges, and a set with the permissions that are actually
granted to the ASP.NET application.

The unrestricted privileges are granted to assemblies signed with either the Microsoft or the
ECMA strong name (that is, code that Microsoft or ECMA says should be trusted).

The permission set that grants no permissions is used as the default for code that is not matched
to any other permission set.

14
Customizing Security

550

19 0672326744 CH14 5/4/04 12:27 PM Page 550

551Trust Levels

Listing 14.5 shows the <permissionSet> element from Web_MediumTrust.config that is granted to
the code of the ASP.NET application itself.

LISTING 14.5 Permissions from the Medium Trust Level Configuration File

<PermissionSet

class=”NamedPermissionSet”

version=”1”

Name=”ASP.Net”>

<IPermission

class=”AspNetHostingPermission”

version=”1”

Level=”Medium”

/>

<IPermission

class=”DnsPermission”

version=”1”

Unrestricted=”true”

/>

<IPermission

class=”EnvironmentPermission”

version=”1”

Read=”TEMP;TMP;USERNAME;OS;COMPUTERNAME”

/>

<IPermission

class=”FileIOPermission”

version=”1”

Read=”$AppDir$”

Write=”$AppDir$”

Append=”$AppDir$”

PathDiscovery=”$AppDir$”

/>

<IPermission

class=”IsolatedStorageFilePermission”

version=”1”

Allowed=”AssemblyIsolationByUser”

UserQuota=”9223372036854775807”

/>

<IPermission

class=”PrintingPermission”

version=”1”

Level=”DefaultPrinting”

/>

<IPermission

class=”SecurityPermission”

19 0672326744 CH14 5/4/04 12:27 PM Page 551

version=”1”

Flags=”Assertion, Execution, ControlThread, ControlPrincipal,

➥ RemotingConfiguration”

/>

<IPermission

class=”SqlClientPermission”

version=”1”

Unrestricted=”true”

/>

<IPermission

class=”WebPermission”

version=”1”>

<ConnectAccess>

<URI uri=”$OriginHost$”/>

</ConnectAccess>

</IPermission>

</PermissionSet>

The permission set named “ASP.NET” is assigned to the code of the application in all the trust
level files. It is quite easy to read the various permissions from the file, to see what the applica-
tion will be allowed to do.

Removing permissions from the trust level is easy: You simply need to delete the IPermission
element for the permission you want to remove. For example, if you do not want applications
running at this trust level to have access to isolated storage, you would remove the element that
sets that permission:

<IPermission

class=”IsolatedStorageFilePermission”

version=”1”

Allowed=”AssemblyIsolationByUser”

UserQuota=”9223372036854775807”

/>

Adding a permission is slightly more complicated. As well as working out what IPermission
element you need to add, you have to add an appropriate <securityClass> element for the
permission class you want to use.

Looking at a <SecurityClass> element from the file, you can see that you have to provide the full
namespace and classname for the class, the assembly it is in, the version, the culture, and a
public key token:

<SecurityClass Name=”AllMembershipCondition” Description=

➥ ”System.Security.Policy.AllMembershipCondition, mscorlib,

➥ Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”/>

14
Customizing Security

552

LISTING 14.5 Continued

19 0672326744 CH14 5/4/04 12:27 PM Page 552

553Trust Levels

Fortunately, there is a way to generate the <SecurityClass> elements you need—by using the
.NET Framework Configuration tool. The tool does not allow you to edit the ASP.Net trust level
policy files directly, but you can add permissions to a permission set in one of the files that the
tool can edit and then copy them across to the trust level file.

To use the .NET Framework Configuration tool, you select Start, Control Panel, Administrative
Tools, .NET Configuration. Then you open Runtime Security Policy and then the User branch of
the tree-view and click the Permission Sets branch. You can then click the New Permission Set
link in the main window to create a permission set, as shown in Figure 14.1.

FIGURE 14.1
Creating a permission set
in the .NET Framework
Configuration tool.

Next, you enter a name (it doesn’t really matter what name you use—you won’t be using this
permission set for anything). It would be best to give it a name and description that make it
clear that this is a temporary set that you are using to create permissions and classes to copy
across to ASP.NET configuration. Then you can click Next, and you will see the window where
you can add permissions to the set (see Figure 14.2).

FIGURE 14.2
Adding permissions to a permission set.

19 0672326744 CH14 5/4/04 12:27 PM Page 553

On the Create Permission Set window, you simply move the permissions that you want to add
over to the Assigned Permissions box on the right side. When a permission is added, a new
window will open, with the relevant options for that permission. This is a great way to learn
what permissions are available and what options are available for each one.

For example, if you add the OLE DB permission, which allows access to OLE DB modules, you
see the options shown in Figure 14.3.

14
Customizing Security

554

FIGURE 14.3 Options for the OLE DB
permission.

After you set the settings you want, the file will be located in Documents and settings/
[username]/Application Data/Microsoft/CLR Security Config/[version]/security.config. In this
file, you will find the permission set that you have added:

<PermissionSet class=”NamedPermissionSet”

version=”1”

Name=”tempForASPNET”>

<IPermission class=”OleDbPermission”

version=”1”

Unrestricted=”true”/>

</PermissionSet>

You can simply copy the <IPermission> element from here into the Web trust level policy file
that you want to add it to.

You also need to copy the matching SecurityClass element:

<SecurityClass Name=”OleDbPermission”

Description=”System.Data.OleDb.OleDbPermission,

➥ System.Data, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”/>

19 0672326744 CH14 5/4/04 12:27 PM Page 554

555Trust Levels

After you have created a new trust level policy file, you need to add it to the set that is available
for use, by editing the <securityPolicy> element of the machine.config file:

<location allowOverride=”true”>

<system.web>

<securityPolicy>

<trustLevel name=”Custom” policyFile=”web_customTrust.config”/>

<trustLevel name=”Full” policyFile=”internal”/>

<trustLevel name=”High” policyFile=”web_hightrust.config”/>

<trustLevel name=”Medium” policyFile=”web_mediumtrust.config”/>

<trustLevel name=”Low” policyFile=”web_lowtrust.config”/>

<trustLevel name=”Minimal” policyFile=”web_minimaltrust.config”/>

</securityPolicy>

<!-- level=”[Full|High|Medium|Low|Minimal]” -->

<trust level=”Full” originUrl=””/>

</system.web>

</location>

You can then specify this trust level as the default for the machine or for specific applications, as
described earlier in this chapter.

You can use in the trust level policy files some special pieces of text that are not included in the
.NET Configuration tool. These deal with situations in which each Web application needs to
have a different setting for a particular permission. For example, you usually want to restrict the
FileIOPermission permission to the application folder. The FileIOPermission permission from the
Web_MediumTrust.config file shows how you do this:

<IPermission

class=”FileIOPermission”

version=”1”

Read=”$AppDir$”

Write=”$AppDir$”

Append=”$AppDir$”

PathDiscovery=”$AppDir$”

/>

The string $AppDir$ is converted to the path to the application folder at runtime.

You can also use the following substitutions:

$OriginHost$ - the address of the client that made a request to the application

$AppDirUrl$ - the URL of the application

$CodeGen$ - The folder where ASP.NET stores dynamically generated assemblies

Gac - the Global Assembly Cache folder

Note that the last three substitutions are usually used in code groups rather than in permissions.

19 0672326744 CH14 5/4/04 12:27 PM Page 555

Recommended Use of Permissions
Table 14.2 shows all the permissions that can be used, along with some recommendations for
how to apply them.

TABLE 14.2
The Allowed Permissions

Permission Recommendations

DirectoryServicesPermission You should grant this permission if the application needs to access Active
Directory or LDAP data.

DnsPermission You should grant this permission if the application needs to resolve domain
names to IP addresses. This is a pretty safe permission to grant.

EventLogPermission You should grant this permission if the application needs to read or write to
event logs (on the machine it is running on or another machine). Note that
the ASP.NET account will need permission to access the event log as well.

EnvironmentPermission You should grant this permission if the application needs to access environ-
ment variables. It is usually advisable to grant read access only; it is very
rare that a Web application should need to set environment variables.

FileIOPermission You should use this permission to allow access to files. It is usually used
with the $AppDir substitution to allow access to the application’s own
folder, but it can also be used to allow access to other specific locations.

FileDialogPermission This permission is not really relevant to Web applications and so should not
be granted to them. It allows Windows Forms applications to create open
and save dialogs.

IsolatedStoragePermission You should grant this permission if the application needs to use isolated
storage. The AssemblyIsolatedByUser option will allow access to the data
from different applications (provided that they do it through the same
assembly), whereas DomainIsolatedByUser will allow access only from the
application that created the data.

MessageQueuePermission You should grant this permission if the application needs to interact with
message queues.

OleDbPermission You should grant this permission if the application needs to use OLE DB
data sources. You can grant access to all data modules or list specific
modules. This is a common permission to grant.

PerformanceCounterPermission You should grant this permission if the application needs to read (browse)
or write (instrument) performance counters. You can specify permissions for
counters on specific machines and also for specific categories of counters
on a machine.

PrintingPermission It is unlikely that a Web application will need to access printers, so it is
best not to grant this permission.

RegistryPermission This can be a highly dangerous permission to grant, so treat it with caution.
(However, the risks are mitigated by the limitations that the operating
system places on the ASP.NET account.)

ReflectionPermission You should grant this permission if the application needs to be able to
perform reflection-based operations on other assemblies. Quite a lot of .NET
Framework applications now make use of reflection, so this permission is
likely to be in demand. However, this permission is not required for reflec-
tion within an assembly.

14
Customizing Security

556

19 0672326744 CH14 5/4/04 12:27 PM Page 556

557Trust Levels

SecurityPermission This permission has a myriad of options. Think carefully before granting any
of these because many of them can allow code to circumvent code access
security checks in one way or another.

ServiceControllerPermission You should grant this permission if the application needs to connect to
Windows services in order to work. The Browse option is sufficient to
connect to services. If the application needs the ability to start and stop
services, it will need the Control option.

SocketAccessPermission You should grant this permission if the application needs to perform low-
level networking tasks.

SQLClientPermission You should grant this permission if the application needs to access SQL
Server data. This is a common permission to grant.

WebPermission You should grant this permission if the application needs to make Web
requests of its own. This is actually quite rare (most Web applications respond
to requests rather than make their own requests) but can be useful sometimes.

UserInterfacePermission This permission is typically not granted to Web applications because it is
really only relevant to Windows Forms applications.

A Permission Set for Normal Use
For most ASP.NET applications, the medium built-in trust level is ideal. If you want to run things
with the least privileges (which you should where possible), you will probably want to remove
some of the permissions that your application does not require.

If your application does not need access to environment variables, you can safely get rid of
EnvironmentPermission.

You can get rid of IsolatedStoragePermission if your application does not use isolated storage.

Most Web applications can dispense with PrintingPermission.

If the application does not need to make Web requests of its own, you can remove WebPermission.

Implementing all these changes in a custom trust level would leave something like the permis-
sion set shown in Listing 14.6.

LISTING 14.6 A Permission Set Based on the Medium Trust Level, with Unnecessary
Permissions Removed

<PermissionSet

class=”NamedPermissionSet”

version=”1”

Name=”ASP.Net”>

<IPermission

class=”AspNetHostingPermission”

version=”1”

Level=”Medium”

/>

TABLE 14.2
Continued

Permission Recommendations

19 0672326744 CH14 5/4/04 12:27 PM Page 557

<IPermission

class=”DnsPermission”

version=”1”

Unrestricted=”true”

/>

<IPermission

class=”FileIOPermission”

version=”1”

Read=”$AppDir$”

Write=”$AppDir$”

Append=”$AppDir$”

PathDiscovery=”$AppDir$”

/>

<IPermission

<IPermission

class=”SecurityPermission”

version=”1”

Flags=”Assertion, Execution, ControlThread, ControlPrincipal,

➥ RemotingConfiguration”

/>

<IPermission

class=”SqlClientPermission”

version=”1”

Unrestricted=”true”

/>

</PermissionSet>

You might also want to make some changes to the settings of FileIOPermission. If you do not
need to read or write any data to the file system, you can remove it completely. (The ASP.NET
infrastructure code in the .NET Framework will still be able to work because it is signed by the
Microsoft strong name and therefore gets full trust.)

You can probably remove the ability for the application to discover paths because browsing the
file system is not usually a requirement for Web applications.

If your application only reads data (for example, an XML configuration file), you can remove the
Write and Append attributes, too:

<IPermission

class=”FileIOPermission”

version=”1”

Read=”$AppDir$”

/>

If your application only needs to read and write data within a specific subfolder of your applica-
tion, you can specify the folder:

14
Customizing Security

558

LISTING 14.6 Continued

19 0672326744 CH14 5/4/04 12:27 PM Page 558

559Summary

<IPermission

class=”FileIOPermission”

version=”1”

Read=”$AppDir$/data”

Write=”$AppDir$/data”

Append=”$AppDir$/data”

/>

You can also configure a folder that is not under the application folder if that is where you store
your data:

<IPermission

class=”FileIOPermission”

version=”1”

Read=”d:\webdata”

Write=”d:\webdata”

Append=”d:\webdata”

/>

If you need to specify more than one path, you can use semicolons to separate the paths in each
attribute where you want them:

<IPermission

class=”FileIOPermission”

version=”1”

Read=”$AppDir$/data;d:\sharedData”

Write=”$AppDir$/data”

Append=”$AppDir$/data”

/>

This example would allow read and write access to the application folder but only read access to
d:\sharedData.

Summary
ASP.NET provides a high degree of flexibility in the way that security is managed. This chapter
looks at some things you can do, both with code and with configuration, when the security
behavior of ASP.NET is not exactly what you require.

The chapter shows how to build custom authentication modules when the modules provided by
Microsoft do not provide the features you need. A sample module is presented and explained.
Custom authorization modules are also covered.

Finally, the chapter looks at how .NET Framework code access security can be applied to
ASP.NET, through trust levels. The standard trust levels are explained, and the process of build-
ing custom trust levels is shown.

19 0672326744 CH14 5/4/04 12:27 PM Page 559

19 0672326744 CH14 5/4/04 12:27 PM Page 560

Index

A

absolute positioning, 203

access codes (provider-independent data), 410

dynamically instantiating classes, 410-411

sample page code, 411-415

accessing

customer ID values, 96

keypress information, 202-203

page elements, 201-202

XML configuration settings, 467-470

XML resources, 438-439

Evidence class, 439

Load() method, 439-441

Transform() method, 441-442

XmlResolver class, 439

XslTransform class, 439

accessor routines

ComboBox user control property, 176-178

declaring in C#, 178

IsDropDown property, 179

Items property, 180

Rows property, 179

SelectedIndex property, 181

SelectedItem property, 180-181

SelectedValue property, 182-183

Width property, 178

declaring in C#, 177-178

exposing, 175

20 0672326744 INDEX 5/4/04 12:21 PM Page 561

adaptive SpinBox server control, 334, 339

browser-specific output, 342-343

CreateChildControls() method, 340-342

internal variables, 339-340

LoadPostData() method, 343-346

properties, 339-340

testing, 346-348

Add value, 401

AddAttribute() method, 303

AddAttributesToRender() method, 304, 309-311

adding

controls, 40-41

permissions, 552-553

AddNamespace() method, 454

AddParsedSubObject() method, 362

AddStyleAttribute() method, 303

AddTable routine, 96

AddWithKey value, 401

allocating applications, 495

allowed permissions, 556-557

Amaya, 336-337

animated GIFs (progress bars), 86

apartment-threaded COM components, 168

APIs (Application Program Interfaces), XML

advantages/disadvantages, 430-431

cursor-style, 432

DOM, 431-432

forward-only, 431

serialization, 432-433

appearance properties, 257-258

applications. See also utilities

ASP.NET versions, specifying, 489

installing without updating mappings,
489-490

runtime versions, configuring, 490-492

key-generator, 517

mappings, 488-489

pools (IIS 6.0), 494-496

version 1.0 running, 482, 488

automatic input validation, 483-484

forms authentication, 487

list control properties, 485

MMIT mobile controls, 488

System.Data namespaces, 486-487

virtual Web

listing, 492

mappings, 488-489

ASPNET account, 482

ASP.NET State Service, 481

aspnet_client folder, 251

aspnet_regiis.exe utility

applications, updating, 490

client-side script folder, installing, 492

.NET Framework versions, listing, 491

parameters, 490-491

runtime, 490-492

Web sites, listing, 492

assemblies

machinewide installation, 164-165

SpinBox, 350

asynchronous loading, 88

AttachDialog() method, 269

browser-adaptive script dialogs, 277-278

client-side script dialogs, 270-272

modal dialog windows, 287-290

attributes

adding, 349

DataKeyField, 120

encyrptionKey, 487

MasterPageFile, 379-380

OnItemDataBound, 120

TabIndex, 215

validationKey, 487

width, 33

adaptive SpinBox server control

20 0672326744 INDEX 5/4/04 12:21 PM Page 562

attributes property, 122

Authenticate() method, 541

authentication

forms. See forms authentication

modules, 538

custom identity classes, 538-540

HTTP module, 540-542

multiple, running, 542-543

Authentication element (web.config file), 541

authorization

failed, 530-531

modules, 543-545

role-based, 526-528

Authorize handler, 544

automatic input validation, 483-484

AutoPostback property, 257, 317

B

background mask images, 228-230

bandwidth, saving, 111

base classes, 302

batch statements, 389

behavior properties, 257-258

binding list controls

declarative, 125-128

dynamic, 119

DataGrid control, declaring, 119-120

DataSet instance population, 120

ItemDataBound events. See ItemDataBound
events

nesting, 110-111

DataGrid control declaration, 111, 114

DataRelation instances, 118

DataSet instances, populating, 115-118

DataSource property, 114-115

relationships, adding, 115-118

BindOrderItemsGrid handler, 124-125

BindOrdersGrid handler

DataGrid control population, 143

ItemDataBound events, 121-124

BindRowData handler, 26

borders (images), 325

browser-adaptive dialogs, 274-276, 290-292

AttachDialog() method, 277-278

client-side scripts, 280-283

DialogType enumeration, 276

nonmodal dialog page, 291

RegisterStartupScript() method, 294

sample page, 291

types, 278-280

values, returning, 292-294

BrowserCapabilities object, 201

browser-specific output, 342-343

browsers

client-side scripting, 199

ComboBox user control, 203-207

CSS, 199

Dynamic HTML, 199

targets, selecting, 200-201

version 6 browser-compatible code, 201-203

latest versions, 200

nonstandard, 337-339

version 6, 200

bugs

DataSet class, 487

staged page loading, 106-107

Button controls, 17

ButtonClick handler, 218, 233-235

How can we make this index more useful? Email us at indexes@samspublishing.com

ButtonClick handler

20 0672326744 INDEX 5/4/04 12:21 PM Page 563

buttons

Cancel, 418

client-side scripting, 208-209

DataGrid control, declaring, 209-210

WireUpDeleteButton handler, 210-211

Edit, 418

one-click

buttonClick handler, 233-235

click, 235-237

code, 231

creating, 230-231

disabled property, 232-233

postbacks, 237-240

Show Orders, 105

C

c parameter, 491

C#, property accessors, 178

caching output, 161

CalculateTotal routine, 97

Calendar control, 13-14

Cancel buttons, 418

CancelCommand event, 30-31

capturing controls, 362

Cascading Style Sheets (CSS), 199, 358

Category columns, 20-22

CDATA sections, 464-466

CDataSet class, 466

cells property, 122

change events, handling, 415-418, 422-424

controls

highlighting, 426-427

populating, 419-420

Edit/Cancel buttons, 418

ItemDataBound event, 420-422

source data updates, 424-425

CheckBoxList control, 11-13

checkValue function, 266

child controls, 363

child controls tree, 324-326

Class file

MaskedEdit server control, 305-307

AddAttributesToRender() method, 309-311

constructor, 308

CreateChildControls() method, 311-312

internal variables, 307

properties, 308

SpinBox server control, 316-317

child controls tree, 324-326

client-side script, 326-327

constructor, 321-322

control changes values, 330

CreateChildControls() method, 322-323

GAC installation, 349

event handlers, 326-327

internal variables, 318-321

IPostBackDataHandler interface, 330-333

postbacks, registering, 333-334

properties, 317-321

trace information, 327-328

ValueChanged event, 328-330

classes

attributes, 349

base, 302

CDataSet, 466

ConfigFileReader, 473

ConfigReader, 468

ConfigurationSettings, 467

Control, 300, 303

custom page, 373

buttons

20 0672326744 INDEX 5/4/04 12:21 PM Page 564

content, 373, 380

creating, 374-377

default content, replacing, 375

internal controls collection, 374

master pages, 378-380

MasterPage example, 375-377

page inheritance, 379

DataColumn, 461

DataReader, 129-130

DataRelation, 461

DataSet

bugs/security issues, 487

CDATA section support, 464

DataReader class, compared, 129-130

XML customizations, 461-464

XML parsing, 436

DataView, 450-452

DateComparer, 448

dynamically instantiating, 410-411

ExpiringIdentity, 544-545

FormsAuthentication, 487

HtmlControl, 301

HtmlGenericControl

DataGrid control, 37-38

please wait pages, 82

HtmlTextWriter, 303

HttpRequest, 484

identity, 538-540

names, 168

reusable XML validation, 456-457, 460

server controls

base, selecting, 302

Control inheritance, 303

creating, 301-302

custom inheritance, 304

WebControl inheritance, 304

SqlClient, 393

StringReader, 437

UserControl, 46

WebControl, 301, 304

XmlConvert, 451

XmlDocument, 431

advantages/disadvantages, 431-432

local namespace nodes, searching, 455

XmlNamespaceManager, 453

XmlResolver

Transform() method, 441-442

XML resources, accessing, 438-439

XmlSerializer, 431-433, 472

XmlTextReader, 431

advantages/disadvantages, 431

XML strings, parsing, 437

XmlTextWriter class combination, 433-437

XmlTextWriter, 433-437

XmlValidatingReader, 456-457

XmlValidator, 460

XPathExpression, 446-450

XPathNavigator, 431, 445

advantages/disadvantages, 432

local namespace nodes, searching, 454

XML configuration settings, accessing,
467-470

XML data searching/filtering, 442-444

XslTransform, 439-441

click events

forgot my password page, 512-513

one-click buttons, 235

SignInLinkButton handler, 505

client-side redirection, 61-62

client-side scripting

browsers, 199

buttons/grids, 208-209

DataGrid control, declaring, 209-210

WireUpDeleteButton handler, 210-211

How can we make this index more useful? Email us at indexes@samspublishing.com

client-side scripting

20 0672326744 INDEX 5/4/04 12:21 PM Page 565

ComboBox user control, 203-207

alternative client support, 205

element positioning, 206-207

keypress events, 206

list controls, 207

controls, highlighting, 426-427

CSS, 199

dialogs, 267-269

AttachDialog() method, 270-272

browser-adaptive script, 280-283

client-side JavaScript code, 273-274

clientdialog.ascx user control, 269

DialogType enumeration, 270

GetDialogResult() method, 274

target controls, 272-273

Dynamic HTML, 199

folders, 492

keypress events

detecting, 211-213

key codes, 213-215

return keys, trapping, 215-218

trapping, 212-213

MaskedEdit controls, 218, 248-250

background mask images, 228-230

disadvantages, 230

HTML declarations, 224-225

keypress events, 218-223

Page_Load handler, 225-227

one-click buttons, 230-231

buttonClick handler, 233-235

click events, 235

codes, 231

disabled property, 232-233

postbacks, 237-240

submit event, 236-237

SpinBox control, 264-266, 326-327

targets, selecting, 200-201

version 6 browser-compatible code, 201

dynamic/absolute element positioning, 203

keypress information, 202-203

page elements, accessing, 201-202

client-side validation, 12

clientdialog.ascx user control, 269

code-behind files

forgot my password page, 510-511

signed-in users, listing, 531

collapsible master/detail display pages

creating, 134

DataGrid controls, 135-138

declaring, 139-140

populating, 143

rows, editing, 145-149

DataList controls, 135-138

declaring, 138-139

populating, 141-142

rows, selecting, 143-145

ExecuteSQLStatement routine, 149-150

collections

internal controls, 374

Request, 67

ColumnMapping property, 461

columns

DataGrid control

Category/Price, 20-22

Discontinued/EditCommand, 22-23

product key/name/supplier, 18-20

declaring, 417

extra, 401

multiple edit controls, 33-35

width, 32-36

Columns property, 317

COM Interop, 166

client-side scripting

20 0672326744 INDEX 5/4/04 12:21 PM Page 566

COM/COM+ components, 166

apartment-threaded, 168

tlbimp utility, 167-168

wrappers, creating, 166

ComboBox user control, 169

client-side script, 203-207

alternative client support, 205

element positioning, 206-207

keypress events, 206

list controls, 207

declaring, 190-191

demonstration page, 189

design, 169

details, viewing, 192-193

example, 159

HTML, 170-171, 175-176

interface, 171-173

members, viewing, 192

nonstandard browsers, 337

outline, 173-174

Page_Load handler, 183

client script blocks, 185

client-side scripts, 183-186

code, 186-189

populating, 191-196

properties, 174-175, 193

property accessor routines, 176-178

declaring in C#, 178

IsDropDown property, 179

Items property, 180

Rows property, 179

SelectedIndex property, 181

SelectedItem property, 180-181

SelectedValue property, 182-183

Width property, 178

ShowMembers() method, 176

style properties, 172

user interface, 175

comment markers, 389

Compare() method, 448

compiling

MaskedEdit server control, 312-313

SpinBox server control GAC installation, 349

components, COM/COM+, 166

apartment-threaded, 168

tlbimp utility, 167-168

wrappers, creating, 166

concurrent update error checking, 149

ConfigFileReader class, 473

ConfigReader class, 468

configuration settings

.NET Framework, 481

XML, 466-467

accessing, 467-470

serialization, 470-474

ConfigurationSettings class, 467

ConfirmDelete function, 208

constituent controls, 247

Constructor() method, 357

constructors

MaskedEdit server control, 308

SpinBox server control, 321-322

content

controls, 359, 379

customizing

layout control, 358-360

page classes, 380

default

replacing, 375

templates, 371

dynamic regions, 372-373

rendering, 367

How can we make this index more useful? Email us at indexes@samspublishing.com

content

20 0672326744 INDEX 5/4/04 12:21 PM Page 567

reusable

COM/COM+ components, 166-168

master pages, 162-163

server controls, 163-166

server-side include files, 156-158

user controls, 158-162

scrollable, 36-37

structural tables, rendering, 363

template controls, 366

user controls, 160-161, 246

ContentPlaceHolder control, 372-373

Control class

events, 300

inheritance, 303

ControlCollection object, 39-40

controls

adding

control trees, 40-41

internal controls collection, 374

Button, 17

Calendar, 13-14

capturing, 362

change event handling, 415-418

Edit/Cancel buttons, 418

highlighting controls, 426-427

ItemDataBound event, 420-422

populating controls, 419-420

source data updates, 424-425

changes, 330

CheckBoxList, 11-13

child, 363

ComboBox, 159, 337

constituent, 247

content

creating, 359

page inheritance, 379

ContentPlaceHolder, 372-373

custom layout, 355-357

child controls, 363-365

content, creating, 358-360

controls, capturing, 362

creating, 360-365

MasterPageControl example, 360-362

output, 357

customizing, 380-381

CustomValidator, 11, 23-24

DataGrid control. See DataGrid control

DataList

declaring, 135-139

populating, 141-142

rows, selecting, 143-145

dynamically creating at runtime, 41-42

DataGrid control example, 43-44

events, attaching, 44-45

populating, 45

properties, 42-43

edit, 33-35

events, selecting, 42

hidden, 13, 239

HTML, 301

hyperlinks, 521-523

instances, loading, 48

life cycles, 356

list. See list controls

MaskedEdit. See MaskedEdit control

MasterPageControl

child controls, 363

listing, 360

mobile, 488

PlaceHolder, 40

properties, 65

RangeValidator, 9

content

20 0672326744 INDEX 5/4/04 12:21 PM Page 568

RegularExpressionValidator, 253-254, 503

server. See server controls

sign-in, 500

authentication cookies, 506

Click event handler, 505

initializing, 504

RegularExpressionValidator controls, 503

sample code, 502-503

user sign in, 500

validators, 506

SpinBox, 48

tab order, 215

target, 272-273

template, 365

container controls, 367

content, 366-367

creating, 366-370

master page example listing, 368-370

templates, 366-367

TextBox, 13, 262

tree, 38-41, 343

adding controls, 40-41

ControlCollection object, 39-40

hierarchy, 39

user. See user controls

validation

adding to MaskedEdit control, 251-253

Calendar control, 13-14

check boxes, 11-13

client-side, 12

DataGrid control. See DataGrid control

drop-down lists, 8

empty values, 252

option button lists, 9-10

properties, 10

regular expressions, creating, 253-254

server-side, 12

ValidationSummary, 252

values, 323

Web Forms, 301

controls property, 122

converting

MaskedEdit controls to user controls, 245

client-side script, 248-250

handler attributes, 251

interface, 245-247

Page_Load handler, 247-248

relational data to XML, 460

CDATA sections, 464-466

DataSet class, 461-464

cookies

authentication, 506

cookieless forms authentication, 519-521

cookies, deleting, 521

encrypted ticket strings, 520

hyperlink controls, 521-523

listing, 519

cookieless sessions, 17, 239

deleting, 521

disabling, 96

persistent authentication, 514-516

counters (performance), 482

CreateChildControls() method

adaptive SpinBox server control, 340-342

controls, 357

custom layout control content, 358

MaskedEdit server control, 311-312

SpinBox server control, 322-323

WebControl class, 304

CreateCSS2Controls routine, 342

CreateHTMLTable routine, 342

How can we make this index more useful? Email us at indexes@samspublishing.com

CreateHTMLTable routine

20 0672326744 INDEX 5/4/04 12:21 PM Page 569

credentials

hashed, 507

security, 438

cross-page posting, 52

action attribute, 53-54

client-side redirection, 61-62

method property, 55-56

page references, 62-63

main page public properties, 64-65

Request collections, clearing, 67

target pages, 65-67

Transfer() method event handlers, 63

postbacks, redirecting, 57-60

intermediate pages, 58

Redirect() method, 57

query strings, 60

request values, accessing, 52-53

server-side redirection, 61-62

viewstate validation, 55

CSS (Cascading Style Sheets)

client-side scripting, 199

table layout, compared, 358

CssClass property

ComboBox user control, 171

SpinBox server control, 317

currency symbols, 21

cursor-style APIs, 432

customer ID values, 96

customizing

authentication modules, 538

custom identity classes, 538-540

HTTP modules, 540-542

multiple, running, 542-543

authorization modules, 543-545

identity classes, 538-540

layout controls, 355-357

child controls, 363-365

content, creating, 358-360

controls, capturing, 362

MasterPageControl example, 360-362

output, 357

page classes, 373

content, 373, 380

creating, 374-377

default content, replacing, 375

internal controls collection, 374

master pages, 378-380

MasterPage example, 375-378

page inheritance, 379

trust levels, 553-555

file structure, 549

permissions, 550-553

selecting, 555

XML, 461-464

CustomValidator control, 11, 23-24

D

data

access codes (provider-independent), 410

dynamically instantiating classes, 410-411

sample page code, 411-415

relational, converting to XML, 460

CDATA sections, 464-466

DataSet class, 461-464

source, 424-425

stores, updating, 30

transfer volumes, 68

XML

nesting, 463

searching/filtering, 442-445

credentials

20 0672326744 INDEX 5/4/04 12:21 PM Page 570

shaping, 461

sorting. See sorting XML data

validating, 460

DataAdapter instance, 401

database updates, 149-150

DataBinding event, 300

DataColumn class, 461

DataGrid control, 14

binding to custom functions, 128

change event handling, 415-418

Edit/Cancel buttons, 418

ItemDataBound event, 420-422

highlighting controls, 426-427

populating controls, 419-420

source data updates, 424-425

client-side scripting, 208

column declarations, 417

column width, 32-36

DataReader instances, 128-130

DataSet objects, storing, 16-17

declaring, 17

CancelCommand event, 30-31

Category/Price columns, 20-22

client-side scripts, 209-210

custom validation functions, 23-24

DataReader instances, 130

declarative binding, 111-114

Discontinued/EditCommand columns, 22-23

dynamic binding, 119-120

edits, 27-28

ItemDataBound event, 26-27

master/detail display pages, 135-140

outline, 17-18

Page_Load, 24-25

product key/name/supplier columns, 18-20

server-side code, 131-132

session data, deleting, 31

UpdateCommand event, 28-30

dynamically creating, 41-43

code listing, 43-44

events, attaching, 44-45

populating, 45

properties, 42-43

highlighting, 426-427

HtmlGenericControl class, 37-38

ItemDataBound event, 420-422

multiple edit controls, 33-35

multiple rows, editing, 415

nesting

declarative binding, 110-111

references, 146

populating, 143, 419-420

postback errors, 415

rows, editing, 145-149

scrollable content, 36-37

UpdateCommand event, 147-148

validation sample page, 15

DataGridItem object, 122

DataItem property, 122

DataKeyField attribute, 120

DataList controls

declaring, 135-139

populating, 141-142

rows, selecting, 143-145

DataReader class, 129-130

DataReader instances, 128

creating, 132

custom functions, 130

DataReader class vs. DataSet class, 129-130

DataRelation classes, 461

DataRelation instances, 118

How can we make this index more useful? Email us at indexes@samspublishing.com

DataRelation instances

20 0672326744 INDEX 5/4/04 12:21 PM Page 571

DataSet class

bugs/security issues, 487

CDATA section support, 464

DataReader class, compared, 129-130

XML

customizations, 461-464

parsing, 436

DataSet instances

DataGrid controls, filling, 119

extra columns, 401

filling, 401-403

MissingSchemaAction.Add schema, 404-405

MissingSchemaAction.AddWithKey schema,
405-407

performance, 407-410

schemas, viewing, 403-407

populating, 115-120

schemas, 400-401

tables, adding, 96-97

DataSet objects, 16-17, 410

DataSetIndex property, 122

DataSource property

ComboBox user control, 171

declaring, 114-115

DataTextField property, 171

DataTextFormatString property, 171

DataView class, 450-452

DateComparer class, 448

declaring

ComboBox control, 190-191

DataGrid control, 17

CancelCommand event, 30-31

Category/Price columns, 20-22

client-side scripts, 209-210

custom validation functions, 23-24

DataReader instances, 130

declarative binding, 111-114

Discontinued/EditCommand columns, 22-23

dynamic binding, 119-120

edits, 27-28

ItemDataBound event, 26-27

master/detail display pages, 135-140

outline, 17-18

Page_Load event, 24-25

product key/name/supplier columns, 18-20

server-side code, 131-132

session data, deleting, 31

UpdateCommand event, 28-30

DataList controls, 135-139

DataSource property, 114-115

nested binding, list controls, 110-111

custom functions, 125-128

DataGrid control declaration, 111, 114

DataRelation instances, 118

DataSet instances, populating, 115-118

DataSource property, 114-115

relationships, adding, 115-118

decrementValue function, 264

decryption keys, 516

default content (templates), 371

deleting

borders (images), 325

cookies, 521

permissions, 552

session data, 31

demonstration pages, 315

Deserialize() method, 472

detecting keypress events, 211-213

DialogMode enumerations, 276

dialogs

browser-adaptive, 274-276

AttachDialog() method, 277-278

client-side scripts, 280-283

DataSet class

20 0672326744 INDEX 5/4/04 12:21 PM Page 572

DialogMode enumeration, 276

nonmodal dialog page, 291

RegisterStartupScript() method, 294

sample page, 291

types, 278-280

values, returning, 292-294

client-side script, 267-269

AttachDialog() method, 270-272

clientdialog.ascx user control, 269

DialogType enumeration, 270

GetDialogResult() method, 274

JavaScript code, 273-274

target controls, 272-273

Internet Explorer, 283-285

modal, 285

AttachDialog() method, 287-290

hyperlinks, 284

showModalDialog() method, 285-286

values, returning, 290

modeless, 283

DialogType enumeration, 270

DirectoryServicesPermission permission, 556

disabled property, 232-233

disabling

cookies, 96

viewstate, 111

Discontinued columns, 22-23

Dispose() method, 357

Disposed event, 300

DnsPermission permission, 556

DoItemCancel handler, 31

DoItemEdit handler, 28

DoItemSelect handler, 144

DoItemUpdate handler, 28

DOM APIs, 431-432

DoRedirect handler, 57

DoTest routine, 407

Dotnetfx.exe utility, 480, 489

Dynamic HTML, 199

dynamic positioning, 203

dynamic regions, 372-373

E

e parameter, 491

ea parameter, 491

Edit buttons, 418

edit controls, 33-35

edit mode, 145-146

EditCommand event, 22-23, 28

editing

DataGrid control data, 27-28

multiple rows, 415

rows, 145-149

elements

Authentication, 541

IPermission, 552

location, 548

machineKey, 518

pages

accessing, 201-202

dynamic/absolute positioning, 203

positioning, 206-207

SecurityClass, 553

enable parameter, 490

EnableViewState property, 122

Encrypt() method, 520

encrypted strings, 520

encryption keys, 516

encryptionKey attribute, 487

EnlistDistributedTransaction() method, 486

How can we make this index more useful? Email us at indexes@samspublishing.com

EnlistDistributedTransaction() method

20 0672326744 INDEX 5/4/04 12:21 PM Page 573

enumerations

DialogMode, 276

DialogType, 270

EnvironmentPermission permission, 556

Error value, 401

errors

checking, 149

DataSet class, 487

messages, 9

staged page loading, 106-107

EventLogPermission permission, 556

events

attaching dynamic controls, 44-45

CancelCommand, 30-31

click, 512-513

one-click buttons, 235

SignInLinkButton handler, 505

Control class, 300

controls, 42

DataBinding, 300

Disposed, 300

EditCommand, 28

Init

Control class, 300

postbacks, registering, 333

ItemDataBound

DataGrid controls, 26-27

handling. See ItemDataBound events,
handling

row type testing, 122

keydown, 213

keypress

ComboBox user control, 206

detecting, 211-213

focus, handling, 223

key codes, 213-215

keydown, 220

keypress, 220-222

keyup, handling, 222-223

return keys, trapping, 215-218

trapping, 212-213, 218-220

keyup, 213

Load, 300

logs, 395

Page_Init, 379

Page_Load, 24-25

PreRender, 300

readystatechange, 103-104

submit, 236-237

Unload, 300

UpdateCommand, 28-30, 147-148

user controls, 300

ValueChanged

exposing, 329-330

implementing, 328

SpinBox server control, 329

evidence, defined, 440

Evidence class, 439

Evidence object, 440

evidence parameter, 440

examples download Web site, 17

Execute() method, 68-69

output, capturing, 69-70

target pages, 70-71

Transfer() method, compared, 68

ExecuteSproc routine, 397-398

ExecuteSQLStatement routine

database updates, 149-150

UpdateCommand event, 28

executing

default stored procedure values, 396-398

operation pages, 101-104

existing pages, viewing, 80

enumerations

20 0672326744 INDEX 5/4/04 12:21 PM Page 574

ExpiringIdentity class, 544-545

expressions, regular, 253-254

Extensible Markup Language. See XML

Extensible Stylesheet Language Transformations. See
XSLT

extensions (Web service), 493

F

failed authorizations, 530-531

fetchData function, 102

FileDialogPermission permission, 556

FileIOPermission permission, 556

files

Class. See Class file

code-behind

forgot my password page, 510-511

signed-in users, listing, 531

Dotnetfx.exe, 480

HttpHandler implementation associations, 524

machine.config, 481

mapping, 524-525

master pages, 379-380

non-ASP.NET, 523-526

redirecting, 525

server-side include, 156-158

web.config

Authentication element, 541

hashed credentials, 507

master page files, setting, 379

FillDataSet function, 405

FillDataSet routine, 116

filling DataSet instances, 401-403

MissingSchemaAction.Add schema, 404-405

MissingSchemaAction.AddWithKey schema,
405-407

performance, comparing, 407-410

schemas, viewing, 403-407

filtering XML data, 442-445

FindControl() method, 122

focus events, 223

folders

Application Pools, 495

aspnet_client, 251

client-side script, 492

Web Service Extensions, 493

forgot my password pages, 508

code-behind file, 510-511

email link, 513

HTML code, 509

password change email, 512-513

UserID parameter, 511

forms authentication

cookieless, 519-521

cookies, deleting, 521

encrypted ticket strings, 520

hyperlink controls, 521-523

listing, 519

failed authorizations, 530-531

forgot my password page, 508

code-behind file, 510-511

email link, 513

HTML code, 509

password change email, 512-513

UserID parameter, 511

multiple sign-in pages, 528-530

.NET Framework 1.1, 487

non-ASP.NET content, 523-526

passwords, hashing, 506-508

persistent authentication cookies, 514-516

role-based authorization, 526-528

sign-in control, 500

How can we make this index more useful? Email us at indexes@samspublishing.com

forms authentication

20 0672326744 INDEX 5/4/04 12:21 PM Page 575

authentication cookie, 506

Click event handler, 505

initializing, 504

RegularExpressionValidator controls, 503

sample code, 502-503

user sign in, 500

validators, 506

signing in/out, users, 531-535

Web farms, 516-518

decryption/encryption keys, 516

key-generator application, 517

single sign-in systems, 518

FormsAuthentication class, 487

FormsAuthenticationTicket object, 516

formSubmit function, 236

forward-only APIs, 431

full trust levels, 548

functions. See also methods

checkValue, 266

client-side, 186

ConfirmDelete, 208

DataGrid controls, 128

DataReader instances, 130

decrementValue, 264

fetchData, 102

FillDataSet, 405

formSubmit, 236

GetOrdersGridRows, 128

getResults, 102

IEDlgEvent, 290

incrementValue, 264

openList, 185

row sets, returning, 126-127

scrollList

keypress events, 206

Page_Load handler, 184

showKeycode, 215

G

GAC (SpinBox server control installation), 348

assembly, installing, 350

Class file, 349

compiling, 349

testing, 351-352

gacutil.exe utility, 350

GenerateKey() method, 517

GetConfigValue() method, 470

GetDataReader routine, 414

GetDialogResult() method, 269, 274

getElementsByTagname() method, 201

GetOrdersGridRows function, 128

getResults function, 102

GetWindowArgument() method, 293

GetXml() method, 461, 465

GIFs (Graphic Interchange Format), animated, 86

GotDotNet Web site, 487

graphics. See images

grids, client-side scripting, 208-209

DataGrid control, declaring, 209-210

WireUpDeleteButton handler, 210-211

H

handlers

Authorize, 544

BindOrdersGrid

DataGrid control population, 143

ItemDataBound events, 121-124

BindOrderItemsGrid, 124-125

BindRowData, 26

ButtonClick, 218, 233-235

forms authentication

20 0672326744 INDEX 5/4/04 12:21 PM Page 576

Click event

forgot my password page, 512-513

SignInLinkButton, 505

DoItemCancel, 31

DoItemEdit, 28

DoItemSelect, 144

DoItemUpdate, 28

DoRedirect, 57

edit mode, 145-146

Page_Load. See Page_Load handler

ShowOrders, 106

SpinBox server control, 326-327

Transfer() method, 63

WireUpDeleteButton, 210-211

handling

change events, 415-418

Edit/Cancel buttons, 418

highlighting controls, 426-427

ItemDataBound event, 420-422

populating controls, 419-420

source data updates, 424-425

ItemDataBound events, 120

BindOrderItemsGrid routine, 124-125

BindOrdersGrid routine, 121-124

keypress events, 218-220

focus events, 223

keydown events, 220

keypress events, 220-222

keyup events, 222-223

readystatechange events, 103-104

HasControls() method, 122

hashing

credentials, 507

passwords, 506-508

HashPasswordForStoringInConfigFile() method, 508

HasRows property, 486

hiding

controls, 13, 207, 239

user control content, 246

high preconfigured trust levels, 547

HTML (Hypertext Markup Language)

ComboBox user control, 170-171, 175-176

controls, 301

declarations, 90-91

Dynamic HTML, 199

MaskedEdit control declarations, 224-225

output, 434

HtmlControl class, 301

HtmlGenericControl class

DataGrid control, 37-38

please wait pages, 82

HtmlTextWriter class, 303

HTTP modules, 540-542

HttpHandler implementations, 524

HttpRequest class, 484

hyperlinks

creating, 521-523

modal dialog windows, 284

Hypertext Markup Language. See HTML

I

i parameter, 490

IComparer interface, 448

IConfigurationSectionHandler interface, 467

identity classes, 538-540

IEDlgEvent function, 290

Ignore value, 401

IHttpModule interface, 541

IIdentity interface, 539

IIS 5.0 isolation mode, 496

How can we make this index more useful? Email us at indexes@samspublishing.com

IIS 5.0 isolation mode

20 0672326744 INDEX 5/4/04 12:21 PM Page 577

IIS 6.0

application pools, 494

applications, allocating, 495

creating, 495

IIS 5.0 isolation mode, 496

Web service extensions, 493

images

animated GIFs, 86

background mask, 228-230

borders, 325

implementing

IPostBackDataHandler interface, 330-333

staged page loading, 92-93

browser compatibility, 107

errors, 106-107

main page, 98-100

operation pages, 94-98, 101-103

operation progress, 100-101

order list, 105

readystatechange events, 103-104

server-side code, 106

status codes, 94

progress bars, 85-86

alternative page loading, 87-88

animated graphic files, 86

asynchronous page loading, 88

HTML declarations, 90-91

server control declarations, 90-91

viewing, 87

XMLHTTP object example, 89-90

ValueChanged event, 328

include files server-side, 156-157

code, 156

disadvantages, 157-158

dynamic text, 157

support, 158

Increment property, 317

incrementValue function, 264

inheritance

Control class, 303

custom control classes, 304

pages, 379

WebControl class, 304

Init events

Control class, 300

postbacks, registering, 333

Init() method, 357

InjectClientScript routine, 342

input

automatic validation, 483-484

malicious input, 387-389

validating, 259, 504

InsertCDATASections() method, 465

installing

ASP.NET, 489-490

assemblies, 164-165

.NET Framework, 481

applications, running, 488

ASPNET account, 482

ASP.NET State Service, 481

automatic input validation, 483-484

configuration settings, 481

forms authentication, 487

list control properties, 485

MMIT mobile controls, 488

performance counters, 482

SQL Server State Service, 481

System.Data namespaces, 486-487

version 1.1, 482

SpinBox assembly, 350

IIS 6.0

20 0672326744 INDEX 5/4/04 12:21 PM Page 578

SpinBox server control in GAC, 348

assembly, installing, 350

Class file, 349

compiling, 349

testing, 351-352

instances

controls, 48

DataAdapter, 401

DataReader, 128

creating, 132

custom functions, 130

DataReader class vs. DataSet class, 129-130

DataRelation, 118

DataSet. See DataSet instances

wrapped, 411

InstatiateIn() method, 367

interfaces

ComboBox user control, 171-173

IComparer, 448

IConfigurationSectionHandler, 467

IHttpModule, 541

IIdentity, 539

IPostBackDataHandler, 330-333

IStateManager, 301

SpinBox user control, 255-256

user control, 245-247

internal controls collection, 374

internal variables

adaptive SpinBox server control, 339-340

MaskedEdit server control, 307

SpinBox server control, 318-321

Internet Explorer

alternative page loading, 87-90

asynchronous page loading, 88

dialogs, 283-285

versions, checking, 91

IP addresses, 540

IPermission element, 552

IPostBackDataHandler interface, 330-333

IPrincipal objects, 539

ir parameter, 490

IsDropDown property, 179

IsDropDownCombo property, 171

IsolatedStoragePermission permission, 556

IStateManager interface, 301

ItemDataBound event

DataGrid controls, 26-27

handling, 133-134, 420-422

BindOrderItemsGrid routine, 124-125

BindOrdersGrid routine, 121-124

row type testing, 122

ItemIndex property, 122

Items property

ComboBox user control, 171

property accessors, 180

ItemType property, 122

IXPathNavigable parameter, 440

J-K

JavaScript code, client-side script dialogs, 273-274

k parameter, 491

key codes, 213-215

keydown events, 213, 220

keypress events

accessing, 202-203

ComboBox user control, 206

detecting, 211-213

focus, 223

handling, 220-222

How can we make this index more useful? Email us at indexes@samspublishing.com

keypress events

20 0672326744 INDEX 5/4/04 12:21 PM Page 579

key codes, 213-215

keydown, 220

keypress, 220-222

keyup, 222-223

nonnumeric characters, 266

return keys, trapping, 215-218

trapping, 212-213, 218-220

keys

decryption, 516

encryption, 516

key-generator application, 517

keyup events, 213, 222-223

kn parameter, 491

L

life cycles, 299-300

controls, 356

server controls, 300-301

list controls

DataGrid control. See DataGrid control

error messages, 9

nested, 110

DataGrid control declaration, 111, 114

DataReader instances, 128-132

DataRelation instances, 118

DataSet instances, populating, 115-118

DataSource property declaration, 114-115

declarative binding, 110-111, 125-128

dynamic binding, 119-120

ItemDataBound events, 133-134

relationships, adding, 115-118

nesting, 27

numeric values, 10

properties, 485

validating, 9-10

viewing/hiding, 207

listings

adaptive SpinBox server control

browser type, detecting, 341

control trees, 343

LoadPostData() method, 344

postbacks, 340

AddAttributesToRender() method, 309-311

AddTable routine, 96

AttachDialog() method, 270-287

authentication modules

ExpiringIdentity class, 545

running, 542

authorization modules, 543

automatic input validation, 483

BindOrderItemsGrid handler, 124

BindOrdersGrid handler, 121

browser-adaptive script dialogs

client-side scripts, 280

dialog types, 279

DialogType enumeration, 276

language-specific variables, 278

buttonclick handler, 234

CalculateTotal routine, 97

Calendar control validation, 14

CDATA sections, 464-466

changed events, handling, 422

child controls, creating/rendering, 363

client-side scripts

adding to pages, 250

dialogs, 273

sample form, 59

support, detecting, 201

keypress events

20 0672326744 INDEX 5/4/04 12:21 PM Page 580

ComboBox user control

alternative client support, 205

client-side script, 204

declaring, 190

details, viewing, 193

elements, positioning, 206

implementing, 169

list controls, 207

members, viewing, 192

outline, 173

Page_Load handler client-side script, 184

populating, 191, 194-196

ShowMembers() method, implementing, 176

user interface, 175

ConfigFileReader class, 473

ConfigReader class, 468

ConfirmDelete function, 208

controls, highlighting, 426

cookieless forms authentication, 519

data sources, updating, 424

DataGrid control

CancelCommand event, 31

Category/Price columns, 20-22

column declarations, 417

custom validation functions, 23-24

declaration outline, 17-18

declaring, 112-113, 135-138, 209

Discontinued/EditCommand columns, 23

dynamically creating, 43-44

edits, 27

events, matching, 45

ItemDataBound event, 26-27

KillSession handler, 31

multiple edit controls, 34

Page_Load event, 24-25

populating, 143, 419

product key/name/supplier columns, 18-20

scrollable content, 37

UpdateCommand event, 28

DataList control

declaring, 135-138

populating, 141-142

row selection, 144

DataReader instances, creating, 132

DataSet class, 436

DataSet instances, 116

default namespace nodes, searching, 454

DialogType enumeration, 270

Execute() method, 70

ExecuteSproc routine, 397-398

ExpiringIdentity class, 544

focus event, 224

forgot my password page

Click event handler, 512-513

code-behind file, 510-511

HTML code, 509

formSubmit function, 236

GetDialogResult() method, 274

GetWindowArgument() method, 293

hyperlink controls, creating, 522

IP-based authentication HTTP modules, 540

ItemDataBound event handling, 133, 421

keydown events, 219

keypress events, 220

accessing, 202

detecting, 212

key codes, 213, 217-218

return keys, trapping, 215

keyup event, 222

local namespace nodes, searching, 454-455

log files, 157

mask images, creating, 228

How can we make this index more useful? Email us at indexes@samspublishing.com

listings

20 0672326744 INDEX 5/4/04 12:21 PM Page 581

MaskedEdit control

HTML declarations, 224

output code, 227

Page_Load handler, 225

validation controls, adding, 252

MaskedEdit server control

Class file, 306

constructor, 308

CreateChildControls() method, 312

demonstration page, 315

properties, 308

MasterPage custom page class, 375, 377

MasterPageControl custom control, 360

medium trust level permissions, 551-552, 557

MissingSchemaAction schema

Add setting, 404

AddWithKey setting, 405-407

modal dialog windows

client-side script, 288

IEDlgEvent function, 290

property declarations, 286

nesting XML based on primary/foreign key rela-
tionships, 462

one-click button code, 231

Page_Load handler, 187

forms, 54

intermediate posting page, 59

MaskedEdit user control, 247

please wait pages, 84

please wait messages, viewing, 81

results, 82

postbacks, counting, 238

progress bars, 90

row sets, returning, 131-132

SpinBox control, 263

staged page loading example, 95

target pages, 66

passing security credentials to remote resources,
438

performance, comparing, 407

please wait pages, 78

property accessor routines, 177

declaring in C#, 178

IsDropDown property, 179

Items property, 180

read-only/write-only, 177

Rows property, 179

SelectedIndex property, 181

SelectedItem property, 180

SelectedValue property, 182

TheNewValue variable, 177

Width property, 178

provider-independent data access example

code, 412

GetDataReader routine, 414

public properties (main pages), 64

Redirect() method handler, 58

reusable validation classes

data validation, 460

Validate()/ValidationCallBack() methods, 457-
459

reusable XML validator classes, 456-457

role based authorization, 526

row sets, returning, 126

server controls, 164

definition, 301

output generating, 303

server-side include files

properties, 158

server controls, 157

SetColumns routines, 261

SetMaxMinValues routines, 261

SetWindowResult() method, 293

ShowMembers() method, implementing, 176

listings

20 0672326744 INDEX 5/4/04 12:21 PM Page 582

ShowSchema routine, 403

sign-in controls, 502-503

SpinBox controls, 48

SpinBox server controls

child controls tree, 324

Class file, 316

client-side scripting, 326

constructor, 322

CreateChildControls() method, 323

internal variables/properties, 318

IPostBackDataHandler interface, 331

OnValueChanged routine, 329

postbacks, registering, 333

SetMaxMinValues routine, 321

trace information, 327

SpinBox user controls

behavior/appearance properties, 257

client-side scripting, 265-266

interface, declaring, 255

Private members, 256

SQL statements, 390

staged page loading example

HTML declarations, 98

operation pages, 101

operation progress, 100

readystatechange event handling, 103

server-side scripting, 106

stored procedures, 394

templated master page control, 368-370

Text property declaration, 260

Transfer() method event handlers, 64

UpdateCommand event, 147-148

user controls

constituent controls, exposing, 247

properties/methods, accessing, 160

registering, 159

Value property declarations, 260

VBScript client-side functions, 281

WireUpDeleteButton handler, 210

XML custom configuration settings document,
467

XML data

custom sorts, 448-449

navigating, 444

searching/filtering, 443

shaping, 461

nesting, 463

sorting, 447, 451

XML strings, parsing, 437

XMLHTTP object example, 89

XmlTextReader/XmlTextWriter classes
combination, 434

XSD schema, 470

XslTransform class, 441

XslTransform COM component, 167

lk parameter, 491

Load event, 300

Load() method

controls, 357

XslTransform class, 439-441

load times, 409

loading

control instances, 48

schemas, 400-401

user controls, 46-49

XSLT stylesheets, 439

LoadPostData() method

adaptive SpinBox server control, 343, 346

controls, 357

LoadViewState() method, 357

location elements, 548

logError parameter, 457

logFile parameter, 457

How can we make this index more useful? Email us at indexes@samspublishing.com

logFile parameter

20 0672326744 INDEX 5/4/04 12:21 PM Page 583

logs (event), 395

low preconfigured trust levels, 547

lv parameter, 491

M

machine.config file, 481

machineKey elements, 518

main pages (staged page loading), 98-100

errors, 106-107

operation pages, 101-103

operation progress, 100-101

order list, 105

readystatechange events, 103-104

server-side code, 106

malicious input, 387-389

mappings, 488-489

MappingType enumeration values, 461

MaskedEdit controls

background mask images, 228-230

converting to user controls, 245

client-side script, 248-250

handler attributes, 251

interface, 245-247

Page_Load handler, 247-248

disadvantages, 230

HTML declarations, 224-225

keypress events, 218-223

Page_Load handler, 225-227

validation controls, 251-254

MaskedEdit server control, 305

Class file, 305-307

AddAttributesToRender() method, 309-311

constructor, 308

CreateChildControls() method, 311-312

internal variables, 307

properties, 308

compiling, 312-313

demonstration page, 315

deploying, 313-315

testing, 313-315

master pages, 162-163, 379-380

files, setting, 379-380

support, 354

master/detail display pages

creating, 134

DataGrid controls, 135

declaring, 139-140

populating, 143

rows, editing, 145-149

DataList controls, 135

declaring, 138-139

populating, 141-142

rows, selecting, 143-145

ExecuteSQLStatement routine, 149-150

MasterPage custom page class

code listing, 375-377

master page, 378

MasterPageControl custom control

child controls, 363

listing, 360

MasterPageFile attribute, 379-380

MaximumValue property

SpinBox control, 262

SpinBox server control, 318

medium preconfigured trust levels, 547

members

ComboBox control, 192

Private, 256

Public, 256

MessageQueuePermission permission, 556

logs (event)

20 0672326744 INDEX 5/4/04 12:21 PM Page 584

metacharacters, 253

methods. See also functions

AddAttribute(), 303

AddAttributesToRender()

MaskedEdit server control, 309-311

WebControl class, 304

AddNamespace(), 454

AddParsedSubObject(), 362

AddStyleAttribute(), 303

AttachDialog(), 269

browser-adaptive script dialogs, 277-278

client-side script dialogs, 270-272

modal dialog windows, 287-290

Authenticate(), 541

Compare(), 448

Constructor(), 357

ControlCollection object, 39-40

CreateChildControls()

adaptive SpinBox server control, 340-342

controls, 357

custom layout control content, 358

MaskedEdit server control, 311-312

SpinBox server control, 322-323

WebControl class, 304

DataGridItem object, 122

Deserialize(), 472

Dispose(), 357

Encrypt(), 520

EnlistDistributedTransaction(), 486

Execute(), 68-69

output, capturing, 69-70

target pages, 70-71

Transfer() method, compared, 68

FindControl(), 122

GenerateKey(), 517

GetConfigValue(), 470

GetDialogResult(), 269, 274

getElementsByTagname(), 201

GetWindowArgument(), 293

GetXml(), 461, 465

HasControls(), 122

HashPasswordForStoringInConfigFile(), 508

HtmlTextWriter class, 303

Init(), 357

InsertCDATASections(), 465

InstatiateIn(), 367

Load()

controls, 357

XslTransform class, 439-441

LoadPostData()

adaptive SpinBox server control, 343, 346

controls, 357

LoadViewState(), 357

OnInit(), 357

OnLoad(), 357

PreRender(), 357

RaisePostBackEvent(), 357

RaisePostDataChangeEvent(), 357

RAISERROR(), 395

ReadXml(), 450

ReadXmlSchema(), 450

Redirect()

client-side redirection, 61

limitations, 61

overloads, 57

RegisterStartupScript(), 294

Render()

controls, 357

structural table contents, rendering, 363

WebControl class, 304

RenderBeginTag(), 303

RenderChildren(), 304

How can we make this index more useful? Email us at indexes@samspublishing.com

methods

20 0672326744 INDEX 5/4/04 12:21 PM Page 585

RenderContents(), 304

RenderControl(), 363

RenderEndTag(), 303

SaveViewState(), 357

SetWindowResult(), 293

Showmembers(), 172, 176

showModalDialog(), 285-286

SignOut(), 521

TrackViewState(), 357

Transfer()

data transfer volumes, reducing, 68

event handlers, 63

target pages, 65-67

Transform(), 441-442

Unload(), 357

user controls, 160

Validate(), 457-459

ValidationCallBack(), 457-459

WebControl class, 304

Write(), 303

WriteAttribute(), 303

WriteBeginTag(), 303

WriteEndTag(), 303

WriteFullBeginTag(), 303

WriteLine(), 303

WriteLineNoTabs(), 303

WriteStyleAttribute(), 303

WriteXml(), 461

minimal preconfigured trust levels, 546

Minimum property, 262

MinimumValue property, 318

MissingSchemaAction property, 401

MMIT mobile controls, 488

mobile controls, 488

modal dialogs, 285

AttachDialog() method, 287-290

hyperlinks, 284

showModalDialog() method, 285-286

values, returning, 290

modeless dialogs, 283

modules

authentication, 538

custom identity classes, 538-540

HTTP modules, 540-542

multiple, running, 542-543

authorization, 543-545

HTTP, 540-542

MoreOver.com XML document, 433

Mozilla 1.5, 335

MSN Expedia Web site, 86

multiple sign-in pages, 528-530

N

names

classnames, 168

parameters, 392

namespaces

qualified nodes, 453-455

System.Data, 486-487

System.Data.Odbc, 486

System.DataOracleClient, 486

System.Web.Mobile, 488

System.Web.UI.MobileControls, 488

nested list controls, 110

DataReader instances, 128

DataGrid controls, declaring, 130

DataReader class vs. DataSet class, 129-130

methods

20 0672326744 INDEX 5/4/04 12:21 PM Page 586

ItemDataBound events, handling, 133-134

server-side code, 131-132

declarative binding, 110-111

DataGrid control declaration, 111, 114

DataRelation instances, 118

DataSet instances, populating, 115-118

DataSource property declaration, 114-115

relationships, adding, 115-118

declarative binding to custom functions, 125-128

DataGrid controls, binding, 128

row sets, returning, 126-127

dynamic binding, 119

DataGrid controls, declaring, 119-120

DataSet instance population, 120

ItemDataBound events. See ItemDataBound
events, handling

nesting

DataGrid controls, 146

list controls, 27

user controls, 160

XML data, 463

.NET Framework

1.1 Configuration utility, 412

ASPNET account, 482

ASP.NET State Service, 481

configuration settings, 481

Configuration tool, 553

dynamically instantiating classes, 410-411

Forms AuthenticationTicket object, 516

installing, 481

performance counters, 482

SQL Server State Service, 481

version 1.1, 480-482

applications, running, 488

automatic input validation, 483-484

forms authentication, 487

list control properties, 485

MMIT mobile controls, 488

System.Data namespaces, 486-487

versions, listing, 491

XML APIs

advantages/disadvantages, 430-431

cursor-style, 432

DOM, 431-432

forward-only, 431

XML serialization, 432-433

Netscape Navigator 4.5, SpinBox server control, 336

non-ASP.NET content, 523-526

nonnumeric characters (keypresses), 266

nonstandard browsers, 337-339

numeric values (option button lists), 10

O

objects

BrowserCapabilities, 201

ControlCollection, 39-40

DataGridItem, 122

DataSet, 16-17, 410

Evidence, 440

FormsAuthenticationTicket, 516

IPrincipal, 539

Trace, 327-328

XMLHTTP

asynchronous loading, 88

example, 89-90

pages, loading, 88

readystatechange events, 103-104

status-related properties, 94

OLE DB permission, 554

OleDbPermission permission, 556

How can we make this index more useful? Email us at indexes@samspublishing.com

OleDbPermission permission

20 0672326744 INDEX 5/4/04 12:21 PM Page 587

one-click buttons

buttonClick handler, 233-235

click event, 235

code, 231

creating, 230-231

disabled property, 232-233

postbacks, 237-240

submit event, 236-237

one-way encryption

credentials, 507

passwords, 506-508

OnInit() method, 357

OnItemDataBound attribute, 120

OnLoad() method, 357

OnValueChanged routine, 329

openList function, 185

Opera 7.21, 335

operation pages

executing, 101-103

staged page loading, 94-98

order values, calculating, 97

Page_Load handler, 94-96

tables, adding, 96-97

operation progress, 100-101

option button lists, 9-10

optional parameters, 394

orders

list, 105

values, 97

output

browser-specific, 342-343

caching, 161

custom layout control, 357

Execute() method, capturing, 69-70

HTML, 434

server controls, 303

OutputCache directive, 161

overloads, 57

P

pages

collapsible master/detail display

creating, 134

DataGrid/DataList controls, 135-138

content. See content

cross-page posting, 52

action attribute, 53-54

client-side redirection, 61-62

method property, 55-56

page references. See references, pages

postbacks, redirecting, 57-60

query strings, 60

request values, accessing, 52-53

server-side redirection, 61-62

viewstate validation, 55

custom page classes, 373

content, 373, 380

creating, 374-377

default content, replacing, 375

internal controls collection, 374

master pages, 378-380

MasterPage example, 375-377

page inheritance, 379

elements

accessing, 201-202

dynamic/absolute positioning, 203

positioning, 206-207

existing, 80

one-click buttons

20 0672326744 INDEX 5/4/04 12:21 PM Page 588

forgot my password, 508

code-behind file, 510-511

email link, 513

HTML code, 509

password change email, 512-513

UserID parameter, 511

inheritance, 379

loading status displays, 86

main pages, 98-100

errors, 106-107

operation pages, 101-103

operation progress, 100-101

order list, 105

readystatechange events, 103-104

server-side code, 106

master, 162-163, 354

multiple sign-in, 528-530

operation

executing, 101-103

staged page loading, 94-98

progress bars, 85-86

alternative page loading, 87-88

animated GIFs, 86

asynchronous page loading, 88

HTML declarations, 90-91

server control declarations, 90-91

viewing, 87

XMLHTTP object example, 89-90

references, 62-63

main page public properties, 64-65

Request collections, clearing, 67

target pages, 65-67

Transfer() method event handlers, 63

staged page loading

browser compatibility, 107

errors, 106-107

implementing, 92-93

main page, 98-100

operation pages, 94-98, 101-103

operation progress, 100-101

order list, 105

order server-side code, 106

readystatechange events, 103-104

status codes, 94

target

Execute() method, 70-71

Transfer() method, 65-67

templates, 355

Page_Init events, 379

Page_Load events, 24-25

Page_Load handlers

ComboBox control, 183

client-side scripts, 183-186

code, 186-189

control instances, loading, 48

DataList control, populating, 141-142

forms, 54

MaskedEdit control, 225-227

MaskedEdit user control, 247-248

please wait pages, 84

postbacks, counting, 237-239

progress bars, 90

provider-independent data access example, 413

row sets, returning, 131-132

SpinBox control, 262-264

staged page loading, 94-96, 106

target pages, 66

parameters

?, 491

aspnet_regiis.exe utility, 490-491

c, 491

client-side functions, 186

How can we make this index more useful? Email us at indexes@samspublishing.com

parameters

20 0672326744 INDEX 5/4/04 12:21 PM Page 589

e, 491

ea, 491

enable, 490

evidence, 440

i, 490

ir, 490

IXPathNavigable, 440

k, 491

kn, 491

lk, 491

logError, 457

logFile, 457

lv, 491

names, 392

optional, 394

r, 491

s, 490

sn, 490

SQL statements, 390-392

stored procedures, 392-393

u, 491

ua, 491

UserID, 511

XmlResolver, 440

ParamOrderProc.sql download, 393

parsing XML

DataSet class, 436

strings, 437-438

XmlTextReader class, 434

passwords

forgot my password page, 508

code-behind file, 510-511

email link, 513

HTML code, 509

password change email, 512-513

UserID parameter, 511

hashing, 506-508

performance

comparing, 407-410

counters, 482

XSLT, 433

PerformanceCounterPermission permission, 556

permissions

adding, 552-553

allowed, 556-557

deleting, 552

DirectoryServicesPermission, 556

DnsPermission, 556

EnvironmentPermission, 556

EventLogPermission, 556

FileDialogPermission, 556

FileIOPermission, 556

IsolatedStoragePermission, 556

medium trust level example, 557-559

MessageQueuePermission, 556

OLE DB, 554

OleDbPermission, 556

PerformanceCounterPermission, 556

PrintingPermission, 556

ReflectionPermission, 556

RegistryPermission, 556

SecurityPermission, 557

ServiceControllPermission, 557

sets, 550-553

SocketAccessPermission, 557

SQLClientPermission, 557

trust levels, 551-552

UserInterfacePermission, 557

WebPermission, 557

persistent authentication cookies, 514-516

PlaceHolder control, 40

parameters

20 0672326744 INDEX 5/4/04 12:21 PM Page 590

pools (application), 494-496

populating

ComboBox control, 191-196

DataGrid control, 45, 143, 419-420

DataList controls, 141-142

DataSet instances, 115-120

positioning

dynamic/absolute, 203

elements, 206-207

postbacks

control errors, 415

counter values, 239-240

counting, 237-239

registering, 333-334

preconfigured trust levels, 546-547

PreRender event, 300

PreRender() method, 357

PrintingPermission permission, 556

Private members, 256

product key columns, 18-20

product name columns, 18-20

Profiler (SQL), 389

progress bars, 85-86

alternative page loading, 87-90

animated GIFs, 86

asynchronous page loading, 88

HTML declarations, 90-91

server control declarations, 90-91

viewing, 87

properties

adaptive SpinBox server control, 339-340

attributes, 122

AutoPostback, 257, 317

cells, 122

ColumnMapping, 461

Columns, 317

ComboBox control, 193

control, 65

ControlCollection object, 39-40

controls, 122

CssClass

ComboBox user control, 171

SpinBox server control, 317

DataGridItem object, 122

DataItem, 122

DataSetIndex, 122

DataSource

ComboBox user control, 171

declaring, 114-115

DataTextField, 171

DataTextFormatString, 171

disabled, 232-233

dynamically creating, 42-43

EnableViewState, 122

exposing, 174-175

HasRows, 486

Increment, 317

IsDropDown, 179

IsDropDownCombo, 171

ItemIndex, 122

Items

ComboBox user control, 171

property accessors, 180

ItemType, 122

list controls, 485

MaskedEdit server control, 308

MaximumValue

SpinBox control, 262

SpinBox server control, 318

Minimum, 262

MinimumValue, 318

MissingSchemaAction, 401

How can we make this index more useful? Email us at indexes@samspublishing.com

properties

20 0672326744 INDEX 5/4/04 12:21 PM Page 591

public, 64-65

RequireSSL, 487

Rows

ComboBox user control, 171

property accessors, 179

SelectedIndex, 485

ComboBox user control, 171

property accessors, 181

SelectedItem, 485

ComboBox user control, 171

property accessors, 180-181

SelectedValue

ASP.NET version 1.1, 485

ComboBox user control, 172

property accessors, 182-183

SlidingExpiration, 487

SpinBox server control, 317-321

SpinBox user control, 256-257

behavior/appearance, 257-258

Text/Value, 260-261

values, 259

Status, 94

status-related, 94

StatusCode, 94

StatusDescription, 94

style, 172

templates, defining, 366

Text

implementing, 260-261

SpinBox server control, 318

user controls, 160

validation controls, 10

Value

implementing, 260-261

SpinBox server control, 318

Width

ComboBox user control, 172

property accessors, 178

property accessor routines

ComboBox user control, 176-178

declaring in C#, 178

IsDropDown property, 179

Items property, 180

Rows property, 179

SelectedIndex property, 181

SelectedItem property, 180-181

SelectedValue property, 182-183

Width property, 178

read-only/write-only, 177

provider-independent data access codes, 410

dynamically instantiating classes, 410-411

sample page code, 411-415

Public members, 256

public properties, 64-65

Public variables, 174

Q-R

QuickStart templates, 298

r parameter, 491

RaisePostBackDataChangedEvent routine, 332

RaisePostBackEvent() method, 357

RaisePostDataChangedEvent() method, 357

RAISERROR() method, 395

RangeValidator control, 9

read-only property accessors, 177

ReadXml() method, 450

ReadXmlSchema() method, 450

readystatechange events, 103-104

properties

20 0672326744 INDEX 5/4/04 12:21 PM Page 592

real page-loading status displays, 86

Redirect() method, 57, 61

redirection

client-side, 61-62

files, 525

server-side, 61-62

references

nested DataGrid controls, 146

pages, 62-63

main page public properties, 64-65

Request collections, clearing, 67

target pages, 65-67

Transfer() method event handlers, 63

ReflectionPermission permission, 556

regions (dynamic), 372-373

registering

postbacks, 333-334

user controls, 159

RegisterStartupScript() method, 294

RegistryPermission permission, 556

regular expressions, 253-254

RegularExpressionValidator controls, 253-254, 503

relational data, converting to XML, 460

CDATA sections, 464-466

DataSet class, 461-464

relational tables, 462

Render() method

controls, 357

structural table contents, rendering, 363

WebControl class, 304

RenderBeginTag() method, 303

RenderChildren() method, 304

RenderContents() method, 304

RenderControl() method, 363

RenderEndTag() method, 303

rendering

child controls, 363

content, 367

structural table contents, 363

Request collections, 67

RequireSSL property, 487

results

key code tests, 216-218

performance comparisons, 409

return keys, trapping, 215-218

returning

row sets, 126-127

values

browser-adaptive dialog windows, 292-294

modal dialog windows, 290

reusable content

COM/COM+ components, 166

apartment-threaded, 168

tlbimp utility, 167-168

wrappers, creating, 166

master pages, 162-163

server controls, 163-164

disadvantages, 166

machinewide assembly installations, 164-165

server-side include files, 156-157

code, 156

disadvantages, 157-158

dynamic text, 157

support, 158

user controls, 158

contents, 160-161

disadvantages, 161-162

output caching, 161

registering, 159

XML validation classes, 456-460

role-based authorization, 526-528

How can we make this index more useful? Email us at indexes@samspublishing.com

role-based authorization

20 0672326744 INDEX 5/4/04 12:21 PM Page 593

routines

accessor, 175

accessor property. See property accessor routines

AddTable, 96

CalculateTotal, 97

CreateCSS2Controls, 342

CreateHTMLTable, 342

DoTest, 407

ExecuteSproc, 397-398

ExecuteSQLStatement

database updates, 149-150

UpdateCommand event, 28

FillDataSet, 116

GetDataReader, 414

InjectClientScript, 342

OnValueChanged, 329

RaisePostBackDataChangedEvent, 332

SetColumns, 261

SetMaxMinValues, 261, 321

ShowData, 413

ShowSchema, 403

ShowSelected, 193

WriteClientScript, 426

rows

DataList controls, 145

editing, 145-149

multiple, 415

selecting, 143-144

sets, returning, 126-127

Rows property

ComboBox user control, 171

property accessors, 179

runtime

configurations, 492

multiple authentication modules, 542-543

multiple authorization modules, 545

versions, 490-492

S

s parameter, 490

SaveViewState() method, 357

saving

bandwidth, 111

control values, 323

schemas

DataSet instances, 400-401

MissingSchemaAction.Add, 404-405

MissingSchemaAction.AddWithKey, 405-407

viewing, 403-407

XSD, 470

script mappings, 488-489

scrollable content, 36-37

scrollList function

keypress events, 206

Page_Load handler, 184

searching

namespace qualified nodes, 453-455

XML data, 442-445

sections (CDATA), 464-466

security

authentication modules, 538-540

authorization modules, 543-545

credentials, 438

DataSet class, 487

trust levels, 546

allowed permissions, 556-557

customizing, 549-550, 553-555

folders, 558-559

full trusts, 548

routines

20 0672326744 INDEX 5/4/04 12:21 PM Page 594

medium trust level example, 557-559

paths, 559

preconfigured, 546-547

read only date, 558

selecting, 548-549

SecurityClass elements, 553

SecurityPermission permission, 557

SelectedIndex property, 485

ComboBox user control, 171

property accessors, 181

SelectedItem property, 485

ComboBox user control, 171

property accessors, 180-181

SelectedValue property

ASP.NET version 1.1, 485

ComboBox user control, 172

property accessors, 182-183

selecting

base classes, 302

rows, 143-145

targets, 200-201

trust levels, 548-549, 555

serialization (XML), 470-474

server controls, 163-164

advantages, 298

building, 299

classes

base, selecting, 302

Control inheritance, 303

creating, 301-302

custom inheritance, 304

WebControl inheritance, 304

custom layout, 355-357

child controls, 363-365

content, creating, 358-360

controls, capturing, 362

creating, 360-365

MasterPageControl example, 360-362

output, 357

declarations, 90-91

disadvantages, 166

HTML controls, 301

life cycle, 300-301

machinewide assembly installation, 164-165

MaskedEdit, 305

AddAttributesToRender() method, 309-311

Class file, 305-307

compiling, 312-313

constructor, 308

CreateChildControls() method, 311-312

demonstration page, 315

deploying, 313-315

internal variables, 307

properties, 308

testing, 313-315

output, generating, 303

QuickStart templates, 298

SpinBox, 315

adaptive. See adaptive SpinBox server control

Amaya, 336-337

child controls tree, 324-326

Class file, 316-317

client-side script, 326-327

constructor, 321-322

control changes values, 330

CreateChildControls() method, overriding,
322-323

event handlers, 326-327

internal variables, 318-321

IPostBackDataHandler interface, 330-333

Mozilla 1.5, 335

Netscape Navigator 4.5, 336

nonstandard browsers, 337-339

How can we make this index more useful? Email us at indexes@samspublishing.com

server controls

20 0672326744 INDEX 5/4/04 12:21 PM Page 595

Opera 7.21, 335

postbacks, registering, 333-334

properties, 317-321

trace information, 327-328, 334

ValueChanged event, 328-330

template, 365

container controls, 367

content, 366-367

creating, 366-370

master page example listing, 368-370

templates, 366-367

Web Forms controls, 301

server-side include files, 156-157

code, 156

disadvantages, 157-158

dynamic text, 157

support, 158

server-side redirection, 61-62

server-side scripting

SpinBox control, 261

maximum/minimum values, 262

Page_Load handler, 262-264

SetColumns/SetMaxMinValues routines, 261

text box width, 262

staged page loading main page, 106

server-side validation, 12

ServiceControllerPermission permission, 557

sessions

cookieless, 17, 239

data, deleting, 31

SetColumns routines, 261

SetMaxMinValues routine, 261, 321

SetWindowResult() method, 293

sharing user controls, 250

shipping addresses, 395-396

Show Orders button, 105

ShowData routine, 413

showKeycode function, 215

ShowMembers() method, 172, 176

showModalDialog() method, 285-286

ShowOrders handler, 106

ShowSchema routine, 403

ShowSelected routine, 193

sign-in controls, 500

authentication cookie, 506

Click event handler, 505

initializing, 504

RegularExpressionValidator controls, 503

sample code, 502-503

user sign in, 500

validators, 506

sign-in pages, 528-530

signing in/out, 531-535

SignOut() method, 521

SlidingExpiration property, 487

sn parameter, 490

SocketAccessPermission permission, 557

sorting XML data, 446

DataView class, 450-452

namespace qualified nodes, 453-455

text-based sorts, 450

XPathExpression class, 446-450

XSD schema date types, 451

source data, 424-425

SpinBox control, 48

SpinBox server control, 315

adaptive, 334, 339

browser-specific output, 342-343

CreateChildControls() method, 340-342

internal variables, 339-340

LoadPostData() method, 343, 346

server controls

20 0672326744 INDEX 5/4/04 12:21 PM Page 596

properties, 339-340

testing, 346-348

Amaya, 336-337

Class file, 316-317

child controls tree, 324-326

client-side script, 326-327

constructor, 321-322

control changes values, 330

CreateChildControls() method, overriding, 322-
323

event handlers, 326-327

internal variables, 318-321

IPostBackDataHandler interface, 330-333

Mozilla 1.5, 335

postbacks, registering, 333-334

properties, 317-318, 320-321

trace information, 327-328, 334

ValueChanged event, 328-330

GAC installation, 348

assembly, installing, 350

Class file, 349

compiling, 349

testing, 351-352

Netscape Navigator 4.5, 336

nonstandard browsers, 337-339

Opera 7.21, 335

SpinBox user control, 254

client-side code, 264-266

interface, 255-256

Private/Public members, 256

properties, 256-257

behavior/appearance, 257-258

Text/Value, 260-261

values, 259

server-side scripting, 261

maximum/minimum values, 262

Page_Load handler, 262-264

SetColumns/SetMaxMinValues routines, 261

text box width, 262

SQL Profiler, 389

SQL Server State Service, 481

SqlClient classes, 393

SQLClientPermission permission, 557

staged process page loading

browser compatibility, 107

errors, 106-107

implementing, 92-93

main page, 98-100

operation pages, 94-98

executing, 101-103

order values, calculating, 97

Page_Load handler, 94-96

tables, adding, 96-97

operation progress, 100-101

order list, 105

readystatechange events, 103-104

server-side code, 106

status codes, 94

statements (SQL)

stored procedure default values, 393-395

event log, writing, 395

executing, 396-398

shipping addresses, 395-396

testing, 399

stored procedure parameters, ordering, 392-393

submitted values, 386

batch statements, 389

comment markers, 389

malicious input, 387-389

parameters, adding, 390-392

status codes, 94

Status property, 94

StatusCode property, 94

How can we make this index more useful? Email us at indexes@samspublishing.com

StatusCode property

20 0672326744 INDEX 5/4/04 12:21 PM Page 597

StatusDescription property, 94

stored procedures

data store updates, 30

default values, 393-395

event log, writing, 395

executing, 396-398

shipping addresses, 395-396

testing, 399

parameters, 392-394

storing

DataSet objects, 16-17

IP addresses, 540

key code test results, 216-218

XML configuration settings, 466

StringReader class, 437

strings

encrypted, 520

XML, 437-438

structural tables, 363

style properties, 172

stylesheets (XSLT), 439

submit events, 236-237

submitted values (SQL statements), 386

batch statements, 389

comment markers, 389

malicious input, 387-389

parameters, adding, 390-392

supplier columns, 18-20

System.Data namespaces, 486-487

System.Data.Odbc namespace, 486

System.DataOracleClient namespace, 486

System.Web.Mobile namespace, 488

System.Web.UI.MobileControls namespace, 488

T

tab order, 215

TabIndex attribute, 215

tables

adding to DataSet instances, 96-97

layout, 358

relational, 462

structural, 363

Tabular Data Control (TDC), 284

targets

controls, 272-273

pages

Execute() method, 70-71

Transfer() method, 65-67

selecting, 200-201

<td> tag, 33

TDC (Tabular Data Control), 284

templates, 355

controls, 365

content, rendering, 367

creating, 366-370

master page example listing, 368-370

templates, 366-367

creating, 367

custom page classes, 373

content, 373, 380

creating, 374-377

default content, replacing, 375

internal controls collection, 374

master pages, 378-380

MasterPage example, 375-377

page inheritance, 379

default content, 371

page content dynamic regions, 372-373

QuickStart, 298

StatusDescription property

20 0672326744 INDEX 5/4/04 12:21 PM Page 598

testing

adaptive SpinBox server control, 346-348

default stored procedure values, 399

MaskedEdit server control, 313-315

SpinBox server control GAC installation, 351-352

text

background mask images, 229

dynamic, 157

text boxes, 262

Text property

implementing, 260-261

SpinBox server control, 318

TextBox control, 13, 262

TheNewValue variable, 177

threading, 168

timeouts, 515

tlbimp utility, 167-168

tools. See also utilities

command-line, 312

.NET Framework Configuration, 553

trace information, 334

Trace object, 327-328

TrackViewState() method, 357

Transfer() method

data transfer volumes, reducing, 68

event handlers, 63

target pages, 65-67

Transform() method, 441-442

trapping

keypress events, 212-213, 218-220

return keys, 215-218

submit events, 236-237

trees

child controls, 324-326

control, 38-41

adaptive SpinBox server control, 343

adding controls, 40-41

ControlCollection object, 39-40

hierarchy, 39

trust levels, 546

allowed permissions, 556-557

customizing, 549-550, 553-555

file structure, 549

permissions, 550-553

selecting, 555

folders, 558-559

full trusts, 548

medium trust level example, 557-559

paths, 559

preconfiguring, 546-547

read only data, 558

selecting, 548-549

Type Library Import utility, 167

U

u parameter, 491

ua parameter, 491

Unload event, 300

Unload() method, 357

UpdateCommand event, 28-30, 147-148

updating

data stores, 30

runtime configurations, 492

source data, 424-425

user controls, 158

clientdialog.ascx, 269

ComboBox, 169

client-side script, 203-207

declaring, 190-191

demonstration page, 189

design, 169

How can we make this index more useful? Email us at indexes@samspublishing.com

user controls

20 0672326744 INDEX 5/4/04 12:21 PM Page 599

details, viewing, 192-193

HTML, 170-171, 175-176

interface, 171-173

members, viewing, 192

outline, 173-174

Page_Load handler, 183-189

populating, 191-196

properties, 174-175, 193

property accessor routines, 176-183

ShowMembers() method, 176

style properties, 172

user interface, 175

constituent controls, exposing, 247

content, 160-161, 246

disadvantages, 161-162

dynamically loading, 46-49

events, 300

MaskedEdit control conversion, 245

client-side script, 248-250

handler attributes, 251

interface, 245-247

Page_Load handler, 247-248

methods, 160

nesting, 160

output caching, 161

properties, 160

registering, 159

sharing, 250

SpinBox, 254

behavior/appearance properties, 257-258

client-side code, 264-266

interface, 255-256

Private/Public members, 256

properties, 256-257

property values, 259

server-side scripting, 261-264

Text/Value properties, 260-261

UserControl class, 46

UserID parameter, 511

UserInterfacePermission permission, 557

users

input

automatic validation, 483-484

malicious input, 387-389

validating, 259, 504

signing in/out, 531-535

utilities. See also applications

aspnet_regiis.exe

client-side script folder, installing, 492

.NET Framework versions, listing, 491

parameters, 490-491

runtime, 490-492

Web sites, listing, 492

aspnet_regiss.exe, 490

Dotnetfx.exe, 489

gacutil.exe, 350

.NET Framework 1.1 Configuration, 412

Type Library Import, 167

V

Validate() method, 457-459

validating

automatic input, 483-484

input, 259

user input, 504

XML data, 460

validation controls

adding, 251-253

Calendar control, 13-14

check boxes, 11-13

client-side, 12

user controls

20 0672326744 INDEX 5/4/04 12:21 PM Page 600

DataGrid control. See DataGrid control

drop-down lists, 8

empty values, 252

option button lists, 9-10

properties, 10

regular expressions, creating, 253-254

server-side, 12

ValidationCallBack() method, 457-459

validationKey attribute, 487

ValidationSummary control, 252

Value property

implementing, 260-261

SpinBox server control, 318

ValueChanged event

exposing, 329-330

implementing, 328

SpinBox server control, 329

values

Add, 401

AddWithKey, 401

browser-adaptive dialogs, 292-294

controls, 323, 330

customer IDs, 96

Error, 401

Ignore, 401

MappingType enumeration, 461

modal dialog windows, 290

numeric, 10

properties, 259

stored procedure default, 393-395

event logs, writing, 395

executing, 396-398

shipping addresses, 395-396

testing, 399

submitted (SQL), 386

batch statements, 389

comment markers, 389

malicious input, 387-389

parameters, adding, 390-392

variables

internal

adaptive SpinBox server control, 339-340

SpinBox server control, 318-321

MaskedEdit server control, 307

Public, 174

TheNewValue, 177

VBC compiler, 313

VBScript, 281-283

versions

applications 1.0

automatic input validation, 483-484

forms authentication, 487

list control properties, 485

MMIT mobile controls, 488

running, 482, 488

System.Data namespaces, 486-487

browsers, 200

command-line tools, 312

individual applications, specifying, 489

installing without updating mappings,
489-490

runtime versions, configuring, 490-492

Internet Explorer, 91

.NET Framework 1.1, 480-482

applications, running, 488

automatic input validation, 483-484

forms authentication, 487

list control properties, 485

listing, 491

How can we make this index more useful? Email us at indexes@samspublishing.com

versions

20 0672326744 INDEX 5/4/04 12:21 PM Page 601

MMIT mobile controls, 488

System.Data namespaces, 486-487

runtime, 490-492

viewing

ComboBox controls, 192-193

errors, 106-107

existing pages, 80

list controls, 207

mappings, 488-489

operation progress, 100-101

order list, 105

progress bars, 85-87

alternative page loading, 87-88

animated GIFs, 86

asynchronous page loading, 88

HTML declarations, 90-91

server control declarations, 90-91

XMLHTTP object example, 89-90

schemas, 403-407

viewstates, 141

viewstates

disabling, 111

viewing, 141

virtual Web applications

listing, 492

mappings, 488-489

Visual Studio .NET, 380-381

volumes (data transfer), 68

W

Web applications (virtual), 488, 492

Web farms, forms authentication, 516-518

decryption/encryption keys, 516

key-generator application, 517

single sign-in systems, 518

Web Forms controls, 301

Web service extensions, 493

Web sites

ComboBox control example, 159

Dotnetfx.exe, 480

examples downloads, 17

GotDotNet, 487

listing, 492

mappings, 488-489

MoreOver.com XML document, 433

MSN Expedia, 86

ParamOrderProc.sql download, 393

QuickStart templates, 298

web.config files

Authentication element, 541

hashed credentials, 507

master page files, setting, 379

WebControl class, 301, 304

WebPermission permission, 557

width

columns, 32-36

text boxes, 262

width attribute, 33

Width property

ComboBox user control, 172

property accessors, 178

windows

browser-adaptive, 274-276

AttachDialog() method, 277-278

client-side scripts, 280-283

DialogMode enumeration, 276

nonmodal dialog page, 291

RegisterStartupScript() method, 294

sample page, 291

types, 278-280

values, returning, 292-294

versions

20 0672326744 INDEX 5/4/04 12:21 PM Page 602

client-side script dialogs, 267-269

AttachDialog() method, 270-272

clientdialog.ascx user control, 269

DialogType enumeration, 270

GetDialogResult() method, 274

JavaScript code, 273-274

target controls, 272-273

Internet Explorer, 283-285

modal, 285

AttachDialog() method, 287-290

hyperlinks, 284

showModalDialog() method, 285-286

values, returning, 290

modeless, 283

WireUpDeleteButton handlers, 210-211

wrappers

creating, 166

instances, 411

Write() method, 303

write-only property accessors, 177

WriteAttribute() method, 303

WriteClientScript routine, 426

WriteEndTag() method, 303

WriteFullBeginTag() method, 303

WriteLine() method, 303

WriteLineNoTabs() method, 303

WriteStyleAttribute() method, 303

WriteXml() method, 461

X-Y-Z

XML (Extensible Markup Language)

APIs

advantages/disadvantages, 430-431

cursor-style, 432

DOM, 431-432

forward-only, 431

serialization, 432-433

configuration settings, 466-467

accessing, 467-470

serialization, 470-474

customizing, 461-464

data

nesting, 463

searching/filtering, 442-445

shaping, 461

sorting. See sorting, XML data

validating, 460

parsing

DataSet class, 436

XmlTextReader class, 434

relational data conversations, 460

CDATA sections, 464-466

DataSet class, 461-464

resources, accessing, 438-439

Evidence class, 439

Load() method, 439-441

Transform() method, 441-442

XmlResolver class, 439

XslTransform class, 439

reusable validation classes, 456-457, 460

serialization, 470-474

strings, 437-438

XPath. See XPath

XmlConvert class, 451

XmlDocument class, 431

advantages/disadvantages, 431-432

local namespace nodes, searching, 455

XMLHTTP objects

asynchronous loading, 88

readystatechange events, 103-104

How can we make this index more useful? Email us at indexes@samspublishing.com

XMLHTTP objects

20 0672326744 INDEX 5/4/04 12:21 PM Page 603

example, 89-90

pages, loading, 88

status-related properties, 94

XmlNamespaceManager class, 453

XmlResolver class

Transform() method, 441-442

XML resources, accessing, 438-439

XmlResolver parameter, 440

XmlSerializer class, 431-433, 472

XmlTextReader class, 431

advantages/disadvantages, 431

XML strings, parsing, 437

XmlTextWriter class combination, 433-437

XmlTextWriter class, 433-437

XmlValidatingReader class, 456-457

XmlValidator class, 460

XPath, 442

data searching/filtering, 442-445

data sorting, 446

DataView class, 450-452

namespace qualified nodes, 453-455

text-based sorts, 450

XPathExpression class, 446-450

XSD schema date types, 451

XPathExpression class, 446-450

XPathNavigator class, 431, 445

advantages/disadvantages, 432

local namespace nodes, searching, 454

XML

configuration settings, accessing, 467-470

data searching/filtering, 442-444

XSD schemas

date types, sorting, 451

XML configuration documents, 470

XSLT (Extensible Stylesheet Language
Transformations), 430

performance, 433

stylesheets, 439

XslTransform class

Load() method, 439-441

XML resources, accessing, 439

XMLHTTP objects

20 0672326744 INDEX 5/4/04 12:21 PM Page 604

	cover.pdf
	page_r1.pdf
	page_r2.pdf
	page_r3.pdf
	page_r4.pdf
	page_r5.pdf
	page_r6.pdf
	page_r7.pdf
	page_r8.pdf
	page_r9.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf
	page_299.pdf
	page_300.pdf
	page_301.pdf
	page_302.pdf
	page_303.pdf
	page_304.pdf
	page_305.pdf
	page_306.pdf
	page_307.pdf
	page_308.pdf
	page_309.pdf
	page_310.pdf
	page_311.pdf
	page_312.pdf
	page_313.pdf
	page_314.pdf
	page_315.pdf
	page_316.pdf
	page_317.pdf
	page_318.pdf
	page_319.pdf
	page_320.pdf
	page_321.pdf
	page_322.pdf
	page_323.pdf
	page_324.pdf
	page_325.pdf
	page_326.pdf
	page_327.pdf
	page_328.pdf
	page_329.pdf
	page_330.pdf
	page_331.pdf
	page_332.pdf
	page_333.pdf
	page_334.pdf
	page_335.pdf
	page_336.pdf
	page_337.pdf
	page_338.pdf
	page_339.pdf
	page_340.pdf
	page_341.pdf
	page_342.pdf
	page_343.pdf
	page_344.pdf
	page_345.pdf
	page_346.pdf
	page_347.pdf
	page_348.pdf
	page_349.pdf
	page_350.pdf
	page_351.pdf
	page_352.pdf
	page_353.pdf
	page_354.pdf
	page_355.pdf
	page_356.pdf
	page_357.pdf
	page_358.pdf
	page_359.pdf
	page_360.pdf
	page_361.pdf
	page_362.pdf
	page_363.pdf
	page_364.pdf
	page_365.pdf
	page_366.pdf
	page_367.pdf
	page_368.pdf
	page_369.pdf
	page_370.pdf
	page_371.pdf
	page_372.pdf
	page_373.pdf
	page_374.pdf
	page_375.pdf
	page_376.pdf
	page_377.pdf
	page_378.pdf
	page_379.pdf
	page_380.pdf
	page_381.pdf
	page_382.pdf
	page_383.pdf
	page_384.pdf
	page_385.pdf
	page_386.pdf
	page_387.pdf
	page_388.pdf
	page_389.pdf
	page_390.pdf
	page_391.pdf
	page_392.pdf
	page_393.pdf
	page_394.pdf
	page_395.pdf
	page_396.pdf
	page_397.pdf
	page_398.pdf
	page_399.pdf
	page_400.pdf
	page_401.pdf
	page_402.pdf
	page_403.pdf
	page_404.pdf
	page_405.pdf
	page_406.pdf
	page_407.pdf
	page_408.pdf
	page_409.pdf
	page_410.pdf
	page_411.pdf
	page_412.pdf
	page_413.pdf
	page_414.pdf
	page_415.pdf
	page_416.pdf
	page_417.pdf
	page_418.pdf
	page_419.pdf
	page_420.pdf
	page_421.pdf
	page_422.pdf
	page_423.pdf
	page_424.pdf
	page_425.pdf
	page_426.pdf
	page_427.pdf
	page_428.pdf
	page_429.pdf
	page_430.pdf
	page_431.pdf
	page_432.pdf
	page_433.pdf
	page_434.pdf
	page_435.pdf
	page_436.pdf
	page_437.pdf
	page_438.pdf
	page_439.pdf
	page_440.pdf
	page_441.pdf
	page_442.pdf
	page_443.pdf
	page_444.pdf
	page_445.pdf
	page_446.pdf
	page_447.pdf
	page_448.pdf
	page_449.pdf
	page_450.pdf
	page_451.pdf
	page_452.pdf
	page_453.pdf
	page_454.pdf
	page_455.pdf
	page_456.pdf
	page_457.pdf
	page_458.pdf
	page_459.pdf
	page_460.pdf
	page_461.pdf
	page_462.pdf
	page_463.pdf
	page_464.pdf
	page_465.pdf
	page_466.pdf
	page_467.pdf
	page_468.pdf
	page_469.pdf
	page_470.pdf
	page_471.pdf
	page_472.pdf
	page_473.pdf
	page_474.pdf
	page_475.pdf
	page_476.pdf
	page_477.pdf
	page_478.pdf
	page_479.pdf
	page_480.pdf
	page_481.pdf
	page_482.pdf
	page_483.pdf
	page_484.pdf
	page_485.pdf
	page_486.pdf
	page_487.pdf
	page_488.pdf
	page_489.pdf
	page_490.pdf
	page_491.pdf
	page_492.pdf
	page_493.pdf
	page_494.pdf
	page_495.pdf
	page_496.pdf
	page_497.pdf
	page_498.pdf
	page_499.pdf
	page_500.pdf
	page_501.pdf
	page_502.pdf
	page_503.pdf
	page_504.pdf
	page_505.pdf
	page_506.pdf
	page_507.pdf
	page_508.pdf
	page_509.pdf
	page_510.pdf
	page_511.pdf
	page_512.pdf
	page_513.pdf
	page_514.pdf
	page_515.pdf
	page_516.pdf
	page_517.pdf
	page_518.pdf
	page_519.pdf
	page_520.pdf
	page_521.pdf
	page_522.pdf
	page_523.pdf
	page_524.pdf
	page_525.pdf
	page_526.pdf
	page_527.pdf
	page_528.pdf
	page_529.pdf
	page_530.pdf
	page_531.pdf
	page_532.pdf
	page_533.pdf
	page_534.pdf
	page_535.pdf
	page_536.pdf
	page_537.pdf
	page_538.pdf
	page_539.pdf
	page_540.pdf
	page_541.pdf
	page_542.pdf
	page_543.pdf
	page_544.pdf
	page_545.pdf
	page_546.pdf
	page_547.pdf
	page_548.pdf
	page_549.pdf
	page_550.pdf
	page_551.pdf
	page_552.pdf
	page_553.pdf
	page_554.pdf
	page_555.pdf
	page_556.pdf
	page_557.pdf
	page_558.pdf
	page_559.pdf
	page_560.pdf
	page_561.pdf
	page_562.pdf
	page_563.pdf
	page_564.pdf
	page_565.pdf
	page_566.pdf
	page_567.pdf
	page_568.pdf
	page_569.pdf
	page_570.pdf
	page_571.pdf
	page_572.pdf
	page_573.pdf
	page_574.pdf
	page_575.pdf
	page_576.pdf
	page_577.pdf
	page_578.pdf
	page_579.pdf
	page_580.pdf
	page_581.pdf
	page_582.pdf
	page_583.pdf
	page_584.pdf
	page_585.pdf
	page_586.pdf
	page_587.pdf
	page_588.pdf
	page_589.pdf
	page_590.pdf
	page_591.pdf
	page_592.pdf
	page_593.pdf
	page_594.pdf
	page_595.pdf
	page_596.pdf
	page_597.pdf
	page_598.pdf
	page_599.pdf
	page_600.pdf
	page_601.pdf
	page_602.pdf
	page_603.pdf
	page_604.pdf

