

ASP.NET 2.0 Beta Preview

Bill Evjen

00a_572865ffirs.qxd 7/7/04 9:48 PM Page iii

00a_572865ffirs.qxd 7/7/04 9:48 PM Page ii

ASP.NET 2.0 Beta Preview

00a_572865ffirs.qxd 7/7/04 9:48 PM Page i

00a_572865ffirs.qxd 7/7/04 9:48 PM Page ii

ASP.NET 2.0 Beta Preview

Bill Evjen

00a_572865ffirs.qxd 7/7/04 9:48 PM Page iii

ASP.NET 2.0 Beta Preview
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright  2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-7286-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/ST/QX/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, E-Mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOM-
MENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Evjen, Bill.
ASP.NET 2.0 Beta Preview / Bill Evjen.

p. cm.
Includes index.
ISBN 0-7645-7286-5 (paper/website)
1. Active server pages. 2. Web sites--Design. I. Title.
TK5105.8885.A26E95 2004
005.2’76--dc22

2004011609

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

00a_572865ffirs.qxd 7/7/04 9:48 PM Page iv

About the Author
Bill Evjen is an active proponent of .NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same
year, Bill founded the St. Louis .NET User Group (http://www.stlnet.org), one of the world’s first
.NET user groups. Bill is also the founder and executive director of the International .NET Association
(http://www.ineta.org), which represents more than 200,000 members worldwide.

Based in St. Louis, Missouri, USA, Bill is an acclaimed author and speaker on ASP.NET and XML Web ser-
vices. He has written or coauthored Professional C#, 3rd Edition and Professional VB.NET, 3rd Edition
(Wrox), XML Web Services for ASP.NET, Web Services Enhancements: Understanding the WSE for Enterprise
Applications, Visual Basic .NET Bible, and ASP.NET Professional Secrets (all published by Wiley). In addition
to writing, Bill is a speaker at numerous conferences including DevConnections, VSLive, and TechEd.

Bill is a Technical Director for Reuters, the international news and financial services company, and he
travels the world speaking to major financial institutions about the future of the IT industry. He gradu-
ated from Western Washington University in Bellingham, Washington, with a Russian language degree.
When he isn’t tinkering on the computer, he can usually be found at his summer house in Toivakka,
Finland. You can reach Bill at evjen@yahoo.com. He presently keeps his weblog at http://www.
geekswithblogs.net/evjen.

00a_572865ffirs.qxd 7/7/04 9:48 PM Page v

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editors
Brian Herrmann
Jodi Jensen

Production Editor
Gabrielle Nabi

Technical Editor
Devin Rader

Copy Editor
Mary Lagu

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Bill Ramsey

Graphics and Production Specialists
Sean Decker
Carrie Foster
Jennifer Heleine
Lynsey Osborn

Media Development Specialist
Travis Silvers

Proofreading
Kim Cofer

Indexing
Johnna VanHoose Dinse

00a_572865ffirs.qxd 7/7/04 9:48 PM Page vi

To Tuija

00a_572865ffirs.qxd 7/7/04 9:48 PM Page vii

00a_572865ffirs.qxd 7/7/04 9:48 PM Page viii

Contents

Introduction xvii
Acknowledgments xxv

Chapter 1: Introduction to ASP.NET 2.0 1

A Little Bit of History 2
The Goals of ASP.NET 2.0 2

Developer productivity 3
Administration and management 6
Performance and scalability 7
Device-specific code generation 8

Additional New Features of ASP.NET 2.0 9
New developer infrastructures 9
New compilation system 15
Additions to the page framework 15
New objects for accessing data 18
New server controls 18

A New IDE for Building ASP.NET 2.0 Pages 19
Summary 21

Chapter 2: Visual Studio 2005 23

The Document Window 23
Views in the Document Window 23
The tag navigator 25
Page tabs 25
Code change status notifications 26
Error notifications and assistance 27

The Toolbox 29
The Solution Explorer 31
The Server Explorer 33
The Properties Window 33
Lost Windows 34
Other Common Visual Studio Activities 34

Creating new projects 35
Making references to other objects 35

00b_572865ftoc.qxd 7/7/04 9:48 PM Page ix

x

Contents

Using smart tags 37
Saving and importing Visual Studio settings 38

Summary 40

Chapter 3: Application and Page Frameworks 41

Application Location Options 41
Built-in Web server 41
IIS 43
FTP 44
Web site requiring FrontPage Extensions 45

The ASP.NET Page Structure Options 45
Inline coding 47
New code-behind model 49

New Page Directives 51
New attributes 51
New directives 52

New Page Events 53
Cross-Page Posting 54
New Application Folders 61

\Code folder 61
\Themes folder 66
\Resources folder 66

Compilation 69
Summary 73

Chapter 4: New Ways to Handle Data 75

The New Data Source Controls 75
The Data-Bound Server Controls 76
The SqlDataSource and GridView Controls 77

Reading data 77
Applying paging in the GridView 79
Sorting rows in the GridView control 82
Defining bound columns in the GridView control 83
Enabling the editing of rows in the GridView control 87
Deleting data from the GridView 92
Dealing with other column types in the GridView 93

The AccessDataSource and DetailsView Controls 96
Selecting which fields to display in the DetailsView control 101
Using the GridView and DetailsView together 103
Updating, inserting, and deleting rows 105

00b_572865ftoc.qxd 7/7/04 9:48 PM Page x

xi

Contents

XmlDataSource Control 109
ObjectDataSource Control 114
SiteMapDataSource Control 116
DataSetDataSource Control 117
Visual Studio 2005 118
Connection Strings 123
Summary 124

Chapter 5: Site Navigation 127

Site Maps 128
SiteMapPath Server Control 130

The PathSeparator property 132
The PathDirection property 134
The ParentLevelsDisplayed property 134
The ShowToolTips property 135
The SiteMapPath control’s child elements 135

TreeView Server Control 136
Identifying the TreeView control’s built-in styles 138
Examining the parts of the TreeView control 139
Binding the TreeView control to an XML file 140
Selecting multiple options in a TreeView 142
Specifying custom icons in the TreeView control 145
Specifying lines used to connect nodes 147
Working with the TreeView control programmatically 150

Menu Server Control 156
Applying different styles to the Menu control 157
Menu Events 163
Binding the Menu control to an XML file 163

SiteMap Data Provider 165
SiteMapViewType 165
StartingNodeType 166

SiteMap API 168
Summary 171

Chapter 6: Working with Master Pages 173

Why Do You Need Master Pages? 173
The Basics of Master Pages 176
Coding a Master Page 177
Coding a Content Page 180

Mixing page types and languages 184
Specifying which master page to use 186

00b_572865ftoc.qxd 7/7/04 9:48 PM Page xi

xii

Contents

Working with the page title 186
Working with controls and properties from the master page 187

Specifying Default Content in the Master Page 194
Nesting Master Pages 196
Container-Specific Master Pages 199
Event Ordering 200
Caching with Master Pages 201
Summary 201

Chapter 7: Themes and Skins 203

Using ASP.NET 2.0 Packaged Themes 203
Applying a theme to a single ASP.NET page 204
Applying a theme to an entire application 205
Applying a theme to all applications on a server 206
Removing themes from server controls 206
Removing themes from Web pages 207
Removing themes from applications 208

Creating Your Own Themes 208
Creating the proper folder structure 208
Creating a skin 209
Including CSS files in your themes 211
Having your themes include images 214

Defining Multiple Skin Options 218
Programmatically Working with Themes 220

Assigning the page’s theme programmatically 220
Assigning a control’s SkinID programmatically 220

Themes and Custom Controls 221
Summary 223

Chapter 8: Membership and Role Management 225

Authentication 226
Authorization 226
ASP.NET 2.0 Authentication 226

Setting up your Web site for membership 226
Adding users 229
Asking for credentials 236
Working with authenticated users 240
Showing the number of users online 242
Dealing with passwords 244

00b_572865ftoc.qxd 7/7/04 9:48 PM Page xii

xiii

Contents

ASP.NET 2.0 Authorization 247
Using the LoginView server control 248
Setting up your Web site for role management 249
Adding and retrieving application roles 252
Deleting roles 255
Adding users to roles 256
Getting all the users of a particular role 256
Getting all the roles of a particular user 258
Removing users from roles 259
Checking users in roles 259

Using the Web Site Administration Tool 261
Summary 262

Chapter 9: Personalization 263

The Personalization Model 263
Creating Personalization Properties 264

Adding a simple personalization property 265
Using personalization properties 266
Adding a group of personalization properties 270
Using grouped personalization properties 271
Defining types for personalization properties 271
Using custom types 272
Providing default values 275
Making personalization properties read-only 275

Anonymous Personalization 275
Enabling anonymous identification of the end user 275
Working with anonymous identification events 278
Anonymous options for personalization properties 279

Migrating Anonymous Users 279
Personalization Providers 281

Working with the Access personalization provider 281
Working with the SQL Server personalization provider 282
Using multiple providers 289

Summary 290

Chapter 10: Portal Frameworks and Web Parts 291

Introducing Web Parts 291
Building Dynamic and Modular Web Sites 293

Introducing the WebPartManager control 293
Working with zone layouts 294

00b_572865ftoc.qxd 7/7/04 9:48 PM Page xiii

xiv

Contents

Understanding the WebPartZone control 298
Explaining the WebPartPageMenu control 301
Modifying zones 310

Working with Classes in the Portal Framework 317
Summary 322

Chapter 11: SQL Cache Invalidation 323

Caching in ASP.NET 1.0/1.1 323
Output caching 323
Partial page caching 324
Data caching using the Cache object 324
Cache dependencies 324
ASP.NET 2.0 unseals the CacheDependency class 325

Using the SQL Server Cache Dependency 325
Enabling databases for SQL Server cache invalidation 326
Enabling tables for SQL Server cache invalidation 327
Looking at SQL Server 327
Looking at the tables that are enabled 329
Disabling a table for SQL Server cache invalidation 329
Disabling a database for SQL Server cache invalidation 330

Configuring your ASP.NET Application 331
Testing SQL Server Cache Invalidation 332

Adding more than one table to a page 334
Attaching SQL Server cache dependencies to the Request object 334
Attaching SQL Server cache dependencies to the Cache object 335

Summary 339

Chapter 12: Additional New Controls 341

BulletedList Server Control 341
HiddenField Server Control 346
FileUpload Server Control 348
MultiView and View Server Controls 351
Wizard Server Control 355

Customizing the side navigation 357
Examining the AllowReturn attribute 357
Working with the StepType attribute 357
Adding a header to the Wizard control 358
Working with the Wizard’s navigation system 359
Utilizing Wizard control events 360

00b_572865ftoc.qxd 7/7/04 9:48 PM Page xiv

xv

Contents

DynamicImage Server Control 361
Working with images from disk 361
Resizing images 363
Displaying images from streams 364

ImageMap Server Control 366
Summary 368

Chapter 13: Changes to ASP.NET 1.0 Controls 369

Label Server Control 369
Button, LinkButton, and ImageButtonServer Controls 371
DropDownList, ListBox, CheckBoxList, and RadioButtonList Server Controls 372
Image Server Control 374
Table Server Control 374
Literal Server Control 376
AdRotator Server Control 376
Panel Server Control 380
Validation Server Controls 382
Summary 386

Chapter 14: Administration and Management 387

The MMC ASP.NET Snap-In 387
General 389
Custom Errors 390
Authorization 391
Authentication 393
Application 394
State Management 395
Advanced 397

ASP.NET Web Site Administration Tool 399
Home 401
Security 402
Profile 403
Application 404
Provider 405

Managing the Site Counter System 407
Summary 410

Chapter 15: Visual Basic 8.0 and C# 2.0 Language Enhancements 413

Overview of Changes 413
Generics 414

00b_572865ftoc.qxd 7/7/04 9:48 PM Page xv

xvi

Contents

Iterators 419
Anonymous Methods 421
Operator Overloading 422
Partial Classes 422
Visual Basic XML Documentation 425
New Visual Basic Keywords 426

Continue 426
Using 428
My 428
Global 429

Summary 429

Index 431

00b_572865ftoc.qxd 7/7/04 9:48 PM Page xvi

Introduction

Simply put, ASP.NET 2.0 is an amazing release! When ASP.NET 1.0 was first introduced in 2000, many
considered it a revolutionary leap forward in the area of Web application development. I believe
ASP.NET 2.0 is just as exciting and revolutionary. Although the foundation of ASP.NET was laid with the
release of ASP.NET 1.0, ASP.NET 2.0 builds upon this foundation by focusing on the area of developer
productivity.

ASP.NET 2.0 brings with it a staggering number of new technologies that have been built into the
ASP.NET framework. After reading this book, you will see just how busy the ASP.NET team has been in
the last few years. The number of classes inside ASP.NET has more than doubled, and this release con-
tains more than 40 new server controls!

This book covers these new built-in technologies; it not only introduces new topics, it also shows you
examples of these new technologies in action. So sit back, pull up that keyboard, and let’s have some fun!

What You Need for ASP.NET 2.0
You will probably install Visual Studio 2005 Beta 1 to work through the examples in this book. To work
through every example in this book, you need

❑ Windows Server 2003, Windows 2000, or Windows XP

❑ Visual Studio 2005 Beta 1

❑ SQL Server 2000

❑ Microsoft Access

The nice thing is that you are not required to have IIS in order to work with ASP.NET 2.0 because this
release of ASP.NET includes a built-in Web server. And if you don’t have SQL Server, don’t be alarmed.
Many of the examples that use this database can be altered to work with Microsoft Access.

Who Is This Book For?
This book was written to introduce you to the new features and capabilities that ASP.NET 2.0 offers.
This book is meant to be only an introduction to these new features. Therefore, I do not spend any time
explaining the basics of ASP.NET and any functionality or capabilities that haven’t changed between this
release and the last release of ASP.NET.

This book is meant for the user who understands or has worked with ASP.NET 1.0 or 1.1. If you are
brand new to Web application development, however, this book can help you get up to speed on the
new features included in the upcoming release of ASP.NET—as long as you understand that the basics

00c_572865fflast.qxd 7/7/04 9:48 PM Page xvii

xviii

Introduction

of ASP.NET and the underlying .NET Framework are not covered. If you are brand new to ASP.NET, be
sure to also check out Beginning ASP.NET 1.1 with VB .NET 2003 (ISBN: 0-7645-5707-6) or Beginning
ASP.NET 1.1 with Visual C# .NET 2003 (ISBN: 0-7645-5708-4), depending on your language of choice, to
help you understand the basics of ASP.NET.

Is this book for the Visual Basic developer or for the C# developer? I am happy to say—BOTH! This
book covers all examples in both VB and C# if the code differs considerably.

What This Book Covers
As I stated, this book spends its time reviewing the big changes that have occurred in the 2.0 release of
ASP.NET. After the introduction, each major new feature included in ASP.NET 2.0 is covered in more
detail. The following sections present the contents of each chapter.

Chapter 1: Introduction to ASP.NET 2.0
This first chapter gives a good grounding in the new features of ASP.NET 2.0. The chapter takes a look at
some of the major new features and capabilities included. It starts by giving you a little bit of history of
ASP.NET and, for those working with a beta for the first time, it explains what a beta build of a product
is and what to expect from it.

Chapter 2: Visual Studio 2005
This chapter takes a look at the next generation of the major IDE for developing .NET applications:
Visual Studio 2005. Previous releases of this IDE included Visual Studio .NET 2003 and Visual Studio
.NET 2002. This chapter focuses on the enhancements in the 2005 release and how you can use it to build
better ASP.NET applications more quickly than in the past.

Chapter 3: Application and Page Frameworks
The third chapter covers the frameworks of ASP.NET applications as well as the structure and frame-
works provided for single ASP.NET pages. This chapter shows you how to build ASP.NET applications
using IIS or the built-in Web server that now comes with Visual Studio 2005. This chapter also shows
you the new folders and files added to ASP.NET. It also covers new ways of compiling code and how to
perform cross-page posting.

Chapter 4: New Ways to Handle Data
ADO.NET incorporates some radical changes. This chapter takes a look at the new data model provided
by ASP.NET, which allows you to handle the retrieval, updating, and deleting of data quickly and logi-
cally. This new data model enables you to use one or two lines of code to get at data stored in everything
from SQL Server to XML files.

00c_572865fflast.qxd 7/7/04 9:48 PM Page xviii

xix

Introduction

Chapter 5: Site Navigation
It is quite apparent that many developers do not simply develop single pages. Developers build applica-
tions and, therefore, they need mechanics that deal with functionality throughout the entire application,
not just the pages. One of the new application capabilities provided by ASP.NET 2.0 is the site navigation
system covered in this chapter. The underlying navigation system enables you to define your applica-
tion’s navigation structure through an XML file. Finally, it introduces a whole series of new navigation
server controls that work with the data from these XML files.

Chapter 6: Working with Master Pages
In addition to the new site navigation system provided by ASP.NET 2.0—for working with the entire
application as opposed to working with singular pages—the ASP.NET team developed a way to create
templated pages. This chapter examines the creation of these templates (known as master pages) and
how to apply them to your content pages throughout an ASP.NET application.

Chapter 7: Themes and Skins
CSS files provided in ASP.NET 1.0/1.1 are simply not adequate, especially in the area of server controls.
The developer is never sure of the HTML output that is generated. This chapter takes a look at how to
deal with the styles that your applications require. I look closely at how to create themes and the skin
files that are part of a theme.

Chapter 8: Membership and Role Management
This chapter covers the new membership and role management system developed to simplify adding
authentication and authorization to your ASP.NET applications. These two new systems are extensive
and make some of the more complicated authentication and authorization implementations of the past a
distant memory. The chapter focuses on using the web.config file for controlling how these systems are
applied, as well as the new server controls that work with the underlying systems.

Chapter 9: Personalization
Developers are always looking for ways to store information pertinent to the end user. After it is stored,
this personalization data has to be persisted for future visits or for grabbing other pages within the same
application. The ASP.NET team developed a way to store this information—the ASP.NET personaliza-
tion system. The great thing about this system, like the other systems introduced before it, is that you
configure the entire behavior of the system from the web.config file.

Chapter 10: Portal Frameworks and Web Parts
This chapter looks at Web Parts—a new way of encapsulating pages into smaller and more manageable
objects. The great thing with Web Parts is that they can be made of a larger Portal Framework, which
then can enable end users to completely modify how the Web Parts are constructed on the page—includ-
ing the appearance and the layout of the Web Parts on the page.

00c_572865fflast.qxd 7/7/04 9:48 PM Page xix

xx

Introduction

Chapter 11: SQL Cache Invalidation
This chapter discusses the biggest change to the caching capabilities in ASP.NET—SQL cache invalida-
tion. This new caching capability allows you to invalidate cached items based on changes that occur in
the database. This new process ensures a new way of keeping your pages as fresh as possible, but use
the smallest number of resources to do so.

Chapter 12: Additional New Controls
ASP.NET 2.0 contains more than 40 new server controls. Many of the controls are covered in the other
chapters of the book, but this chapter looks at the new server controls still unexplained. Included in this
chapter are discussions of the BulletedList, HiddenField, FileUpload, MultiView, View, Wizard,
DynamicImage, and ImageMap server controls.

Chapter 13: Changes to ASP.NET 1.0 Controls
In addition to the new server controls that come with ASP.NET 2.0, you will find considerable changes
have been made to the server controls that we all know and love from ASP.NET 1.0. This chapter takes a
look at the traditional server controls that have changed.

Chapter 14: Administration and Management
Besides making it easier for the developer to be more productive in building ASP.NET applications, the
ASP.NET team also put considerable focus into making it easier to manage the application. In the past,
using ASP.NET 1.0/1.1, you managed the ASP.NET applications by changing values in an XML configu-
ration file. This chapter provides an overview of the new GUI tools that come with this latest release that
enable you to easily and effectively manage Web applications.

Chapter 15: Visual Basic 8.0 and C# 2.0
Language Enhancements

In addition to major changes to ASP.NET, considerable change has occurred in Visual Basic 8.0 and C#
2.0. The changes to these two languages, the primary languages used for ASP.NET development, are dis-
cussed in this chapter.

Conventions
I have used a number of different styles of text and layout in the book to help differentiate among vari-
ous types of information. Here are examples of the styles I use and an explanation of what they mean:

❑ New words that I’m defining are shown in italics.

❑ Keys that you press on the keyboard, like Ctrl and Enter, are shown in initial caps and spelled as
they appear on the keyboard.

00c_572865fflast.qxd 7/7/04 9:48 PM Page xx

xxi

Introduction

Code appears in a number of different ways. If I’m talking about a code word in paragraph text—for
example, when discussing the if...else loop—the code word is shown in this font. If it’s a block of
code that you can type as a program and run, it’s shown on separate lines, within a gray box, like this:

public static void Main()
{

AFunc(1,2,”abc”);
}

Sometimes you see code in a mixture of styles, like this:

// If we haven’t reached the end, return true, otherwise
// set the position to invalid, and return false.
pos++;
if (pos < 4)

return true;
else {

pos = -1;
return false;

}

The code with a white background represents code I’ve already presented and that you don’t need to
examine further. The code with the gray background is what I want you to focus on at this point.

I demonstrate the syntactical usage of methods, properties, and so on using the following format:

SqlDependency=”database:table”

Here, the italicized parts indicate placeholder text: object references, variables, or parameter values to be
inserted.

Most of the code examples throughout the book are presented as numbered listings with descriptive
titles, like this:

Listing 1-3: Targeting WML devices in your ASP.NET pages

Each listing is numbered as 1-3, where the first number represents the chapter number, and the number
following the hyphen represents the sequential number for where that listing falls within the chapter.
Downloadable code from the Wrox Web site (www.wrox.com) also uses this numbering system, so you
can easily locate the examples you are looking for.

All code is shown in both VB and C# if warranted. The exception is for code in which the only difference
is, for example, the value given to the Language attribute in the Page directive. In such situations, I
don’t repeat the code for the C# version; so the code is shown only once, as in the following example:

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title>DataSetDataSource</title>
</head>

00c_572865fflast.qxd 7/7/04 9:48 PM Page xxi

xxii

Introduction

<body>
<form id=”form1” runat=”server”>

<asp:DropDownList ID=”Dropdownlist1” Runat=”server” DataTextField=”name”
DataSourceID=”DataSetDataSource1”>

</asp:DropDownList>

<asp:DataSetDataSource ID=”DataSetDataSource1” Runat=”server”
DataFile=”~/Painters.xml”>

</asp:DataSetDataSource>
</form>

</body>
</html>

Source Code
As you work through the examples in this book, you may choose either to type all the code manually or
use the source code files that accompany the book. All the source code used in this book is available for
download at http://www.wrox.com. When you get to the site, simply locate the book’s title (either by
using the Search box or one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-7286-5.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books. Remember, you can easily find
the code you are looking for by referencing the listing number of the code example from the book, such
as Listing 1-3. I use these listing numbers when naming the downloadable code files.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful if you would tell us about it. By sending in errata, you may
save another reader hours of frustration; at the same time, you are helping us provide even higher qual-
ity information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at http://www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error already on the Book Errata page, go to http://www.wrox.com/con-
tact/techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

00c_572865fflast.qxd 7/7/04 9:48 PM Page xxii

xxiii

Introduction

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and technologies and to interact with other readers
and technology users. The forums offer a subscription feature that enables you to receive e-mail on top-
ics of interest when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are represented in these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Supply the information required to join, as well as any optional information you want to pro-
vide, and click Submit.

You will receive an e-mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but you must join in order to post messages.

After you join, you can post new messages and respond to other users’ posts. You can read messages at
any time on the Web. If you would like to have new messages from a particular forum e-mailed to you,
click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how the forum software works, as well as answers to many common ques-
tions specific to P2P and Wrox books, be sure to read the P2P FAQs. Simply click the FAQ link on any
P2P page.

The Challenge of Writing a Beta Book
This book, ASP.NET 2.0 Beta Preview, was my seventh book, and it was quite a different experience from
other books I’ve written. I started writing this book at the end of 2003 when ASP.NET 2.0 was literally in
pieces, and there wasn’t an IDE to work with. Throughout the writing process, I received many new
builds—some on CD, some on DVD, some for which I could log on to a remote server and work only
remotely with the builds. With each new build I received, I uninstalled previous builds and installed the
new one. Sometimes I had to completely rebuild my machine.

The look and feel of the IDE—Visual Studio 2005—changed considerably from one build to the next, as
well as names of classes, methods, and properties. I say I wrote this book, but I probably wrote it at least
two times during the process. I tell this story because it is important for you to understand that I wrote
this book using numerous ASP.NET builds. In order to get this book to you in a timely fashion, the end
product, which is in your hands, was retested and changed for the last build I received during the writ-
ing process. That particular build was one that was also received by more than 10,000 people at TechEd
2004 in San Diego, California—the May 2004 Technology Preview of Visual Studio 2005.

00c_572865fflast.qxd 7/7/04 9:48 PM Page xxiii

xxiv

Introduction

Therefore, the code and the screen shots of the IDE you see throughout this book may be slightly differ-
ent than the build (whether it is Beta 1 or Beta 2 of ASP.NET) you are working with. I don’t expect the
look and the feel of the IDE or the names of classes, methods, and properties to change again—but I can
never be completely sure. Just be aware that you may encounter some slight differences between what
you see on your screen and what I show in the book.

00c_572865fflast.qxd 7/7/04 9:48 PM Page xxiv

Acknowledgments

I have said it before and I’ll say it again: Writing a book may seem like the greatest of solo endeavors,
but it requires a large team of people working together to get technical books out the door—and this
book is no exception. Wrox put together a top-notch team to bring information on this outstanding new
technology to you as quickly as possible, as well as to ensure the highest quality content. I would first
like to thank Jim Minatel, the senior acquisitions editor on the book. Thanks for letting me take on this
wonderful project.

One of the biggest thanks goes to Jodi Jensen, the book’s development editor. I have worked with Jodi
on numerous books, and she is by far the best development editor out there. At the start of the project, I
knew how tough it was going to be and wanted the best DE I know to work with me. Jodi is simply the
best there is (I even tried to get a clause added to my contract stating that she would be the DE)!

Huge thanks go to Devin Rader for his work as the book’s technical editor. Devin had to deal with the
issue of the ever-changing builds, just as I did. Our conversations concerning chapters usually began
“What build did you write that with?” Devin is an outstanding technical editor and has edited a bunch
of my books before this one. I am indebted to him for his hard work on this project and all the projects
before this. Devin, who is getting married (finally!) this fall, also works with me on INETA.

Peter Lanoie was gracious enough to donate his time to providing technical and usability feedback on
several chapters, which was greatly appreciated.

Additional thanks go to Joe Wikert (Wrox publisher), Mary Lagu (copy editor extraordinaire), Jennifer
Webb (marketing manager), and Brian Herrmann (development editor).

I would also like to thank Kent Sharkey, Rob Howard, Shawn Nandi, Scott Guthrie, and Brian
Goldfarb—all from the ASP.NET team—for their help with all the questions I posed throughout the writ-
ing process. Thanks guys, I really do appreciate it!

I travel quite a bit for my job, and I wrote much of this manuscript during late nights in various hotels. I
find it interesting to note that I started this project somewhere over the Atlantic Ocean on my way to
London and finished writing it sitting on the third floor of the New York Public Library at 7 p.m. on June
10, 2004 (which is also my 10th wedding anniversary).

Unfortunately, writing takes time away from the family. I am lucky that I have the most loving and
understanding wife in the world. Therefore, I thank my wife, Tuija, for putting up with my perpetual
writing habit and helping me with all the loose ends that I lose track of but still need to tie up. My work
would not be possible without her help and love. I also want to thank my kids—Henri Oskari and Sofia
Amanda. Many times during this project, they would bustle in early on a Saturday morning and ask
what I was doing. “Writing a book,” I would answer. “Ohhhhh nooooo, not another book,” they would
wail. These kids kept me sane by convincing me that I had to step away from the desk and play games
with them—something I wish I could do every day of the week!

00c_572865fflast.qxd 7/7/04 9:48 PM Page xxv

00c_572865fflast.qxd 7/7/04 9:48 PM Page xxvi

Introduction to ASP.NET 2.0

The evolution of ASP.NET continues! The progression from Active Server Pages 3.0 to ASP.NET 1.0
was revolutionary, to say the least — and I am here to tell you that the evolution from ASP.NET
1.0/1.1 to ASP.NET 2.0 is just as exciting and dramatic.

The introduction of ASP.NET 1.0 changed the Web programming model, but ASP.NET 2.0 is just as
revolutionary in the area of productivity. The primary goal of ASP.NET 2.0 is to enable you to
build powerful, secure, and dynamic applications using the least possible amount of code. This
book focuses on the astounding new capabilities that are built into ASP.NET 2.0.

This book focuses on the Beta 1 release of ASP.NET 2.0. A beta release is a software release that
comes out prior to the final release of the product (the final release is often referred to as the RTM
or Release to Manufacturer version). Software companies sometimes release products early as betas
in hopes that the programming community will demand the features and capabilities that the
release offers. The vendors also hope that the beta version will reveal any bugs in the product
prior to the release of the RTM version. Therefore, be aware that you might encounter errors or
bugs as you code your applications in the ASP.NET 2.0 beta release. Also be aware that the
method or parameter names might change between the beta version and the RTM version. You
may have to rework any ASP.NET applications built using the ASP.NET 2.0 beta when the RTM
version is released. A beta, however, gives you an outstanding opportunity to gain early insight
into the direction a new technology is going and to get up to speed on its use, even before it is
released.

In writing this book, I assume that you are already familiar with ASP.NET 1.0 or 1.1.
I do not cover the basic functionality of ASP.NET provided by those releases.

01_572865 ch01.qxd 7/7/04 9:49 PM Page 1

A Little Bit of History
ASP.NET 2.0 has its roots in an older Web technology from Microsoft, which was called Active Server
Pages — or ASP for short. ASP was a quick and easy way to develop Web pages. ASP pages consisted of
a single page that contained a mix of languages. The power of ASP was that you could use VBScript or
JScript code instructions in the pages that would then be executed on the Web server prior to the page
being sent to the end user’s Web browser. This was an easy way to create dynamic Web pages that could
be customized based on parameters dictated by the developer.

ASP 2.0 and 3.0 were quite popular because this technology made it relatively straightforward and easy
to create Web pages. Also, ASP 2.0 and 3.0 appeared in the late ‘90s, just as the dotcom era was born.
During this time, a mountain of new Web pages and portals were developed. ASP was one of the leading
technologies that individuals and companies used to build them. In fact, even today, you can still find a
lot of .asp pages on the Internet — including some of Microsoft’s own Web pages.

But even at the time of the final release of Active Server Pages, in late 1998, Microsoft employees Marc
Anders and Scott Guthrie had other ideas. Their ideas generated what they called XSP (which was an
acronym with no meaning) — a new way of creating Web applications in an object-oriented manner
instead of the interpreted manner of ASP 3.0. They showed their idea to many different groups within
Microsoft, and it was quite well received. In the summer of 2000, the beta of what then was called ASP+
was released at Microsoft’s Professional Developers Conference where the attendees eagerly started
working with it. When the technology became available (with the final release of the .NET Framework
1.0), it was renamed ASP.NET — receiving the .NET moniker that most of Microsoft’s new products
were receiving at that time.

In the summer of 2000, and throughout the entire beta program for ASP+, this outstanding new technol-
ogy created excitement. At this point, the entire .NET Framework was rather immature. The code for the
entire Framework came on a single CD. No IDE came with it to enable development of ASP+ pages. To
create your pages and code-behind classes, you had to use Microsoft’s Notepad and the command-line
compilers contained on the CD. I am happy to say that even today — in ASP.NET 2.0 — you can still
use this simple approach to code your applications if you want!

Just working with the first ASP.NET beta was exciting; it is no different with the beta this time around.
Nothing is better than getting your hands on a new technology and seeing what is possible. The follow-
ing section discusses the goals of ASP.NET 2.0. See what you can expect from this new beta.

The Goals of ASP.NET 2.0
ASP.NET 2.0 is a major release of the product and is a built-in part of the .NET Framework 2.0. This
release of the Framework is code-named Whidbey. You might hear others referring to this release of
ASP.NET as ASP.NET Whidbey. ASP.NET 2.0 heralds a new wave of development that should eliminate
any of the remaining barriers to adopting this new way of coding Web applications.

When the ASP.NET team started working on ASP.NET 2.0, it had specific goals to achieve. These goals
focused around developer productivity, administration and management, performance and scalability,
and the capability to target any device. They were completely achieved with this milestone product
release. The next sections take a look at each of these goals.

2

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 2

Developer productivity
Much of the focus of ASP.NET 2.0 is on productivity. Huge productivity gains were made in going from
ASP 3.0 to ASP.NET — could there possibly be much more left to gain?

One goal the development team had for ASP.NET 2.0 was to eliminate much of the intense coding that
ASP.NET required and to make ASP.NET tasks easier. The ASP.NET team developing ASP.NET 2.0 had
the goal of reducing by two-thirds the number of lines of code required for an ASP.NET application! It
succeeded in this release, and you will find it literally amazing how quickly you can create an applica-
tion in ASP.NET.

The new developer productivity capabilities are the focus of much of the book, so you can find examples
on almost every page. But first, take a look at the older technology. In Listing 1-1, you use ASP.NET 1.0
to build a table in a Web page that includes simple paging of the data.

Listing 1-1: Showing data in a DataGrid server control with paging enabled (VB only)

<%@ Page Language=”VB” AutoEventWireup=”True” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<script runat=”server”>

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
BindData()

End If
End Sub

Private Sub BindData()
Dim conn As SqlConnection = New SqlConnection(“server=’localhost’;

trusted_connection=true; Database=’Northwind’”)
Dim cmd As SqlCommand = New SqlCommand(“Select * From Customers”, conn)
conn.Open()

Dim da As SqlDataAdapter = New SqlDataAdapter(cmd)
Dim ds As New DataSet

da.Fill(ds, “Customers”)

DataGrid1.DataSource = ds
DataGrid1.DataBind()

End Sub

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)

DataGrid1.CurrentPageIndex = e.NewPageIndex
BindData()

End Sub

</script>
<html>

(continued)

3

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 3

Listing 1-1: (continued)

<head>
</head>
<body>

<form runat=”server”>
<asp:DataGrid id=”DataGrid1” runat=”server” AllowPaging=”True”
OnPageIndexChanged=”DataGrid1_PageIndexChanged”></asp:DataGrid>

</form>
</body>
</html>

Although quite a bit of code is used here, this is a dramatic improvement over what was required to
accomplish this task using Active Server Pages 3.0. I won’t go into the details of the code; I just want to
demonstrate that in order to add additional common functionality (such as paging) for the data shown
in a table, the developer had to create custom code.

This is one area where the new developer productivity gains are most evident. ASP.NET 2.0 now pro-
vides a new control called the GridView server control. This control is much like the DataGrid server
control that you may already know and love, but the GridView server control contains the built-in capa-
bility to apply paging, sorting, and editing of data with relatively little work on your part (besides offer-
ing many more new features). Look at an example of the GridView server control in Listing 1-2. This
example builds a similar table of data from the Customers table in the Northwind database that now
includes paging.

Listing 1-2: Viewing a paged dataset with the new GridView server control

<%@ page language=”VB” %>

<script runat=”server”>

</script>

<head id=”Head1” runat=”server”>
<head runat=”server”>

<title>GridView Demo</title>
</head>
<body>

<form runat=”server”>
<asp:GridView ID=”GridView1” Runat=”server” AllowPaging=”True”
DataSourceId=”Sqldatasource1” />

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
ProviderName=”System.Data.OleDb”
ConnectionString=”Provider=SQLOLEDB;Server=localhost;uid=sa;
pwd=password;database=Northwind” />

</form>
</body>
</html>

4

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 4

That’s it! You can apply paging by using a couple of new server controls. You turn on this capability
using a server control attribute, the AllowPaging attribute of the GridView control:

<asp:GridView ID=”GridView1” Runat=”server” AllowPaging=”True”
DataSourceId=”Sqldatasource1” />

The other interesting event occurs in the code section of the document:

<script runat=”server”>

</script>

These two lines of code aren’t actually needed to run the file, but I include them here to make a point —
you don’t need to write any server-side code to make this all work! You only have to include some server con-
trols: one control to get the data and one control to display the data. The controls are then wired
together. Running this page produces the results shown in Figure 1-1.

Figure 1-1

5

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 5

This is just one of thousands of possible examples, so at this point you can’t possibly grasp how much
more productive you can be with ASP.NET 2.0. As you work through the book, however, you will see
plenty of examples that demonstrate this new level of productivity.

Administration and management
The initial release of ASP.NET focused on the developer, and little was geared toward the people who
had to administer and manage all the ASP.NET applications that were built. Instead of working with
consoles and wizards as they did in the past, administrators and managers of these new applications
now had to work with XML configuration files such as machine.config and web.config.

To remedy this situation, ASP.NET 2.0 now includes a Microsoft Management Console (MMC) snap-in
that enables Web application administrators to easily edit configuration settings on the fly. Figure 1-2
shows the ASP.NET Configuration Settings dialog open on one of the available tabs.

Figure 1-2

This dialog allows system administrators to edit the contents of the machine.config and the web.
config files directly from the dialog instead of having to examine the contents of an XML file.

In addition to this dialog, Web or system administrators have another way to administer their ASP.NET
2.0 applications — using the new Web Administration Tool shown in Figure 1-3.

You might be asking yourself how you can access these new tools. Well, that is the exciting part. These
tools are built off new APIs that are now part of the .NET Framework 2.0 and which are open to you as a
developer. These new APIs give you programmatic access to many of the configurations of your Web
applications. You now have programmatic access to reading and writing to .config files, enabling you
to create similar tools or even deployment and management scripts.

6

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 6

Figure 1-3

In addition to these new capabilities, you now also have the capability to easily encrypt sections of your
configuration files. In the past, many programmers stored vital details — such as usernames, pass-
words, or even their SQL connection strings — directly in the web.config file. With the capability to
easily encrypt sections of these files, you can now store these items in a more secure manner.

Performance and scalability
One of the goals for ASP.NET 2.0 was to provide the world’s fastest Web application server. ASP.NET 2.0
includes a number of performance enhancements that are addressed throughout this book.

One of the most exciting performance enhancements is the new caching capability aimed at Microsoft’s SQL
Server. ASP.NET 2.0 now includes a feature called SQL cache invalidation. Before ASP.NET 2.0, it was possible
to cache the results that came from SQL Server and to update the cache based upon a time interval — for
example, every 15 seconds or so. This meant that the end user might see stale data if the result set changed
sometime during that 15-second period.

In some cases, this time interval result set is unacceptable. In an ideal situation, the result set stored in
the cache is destroyed if any underlying change occurred in the source from which the result set was
retrieved — in this case, SQL Server. With ASP.NET 2.0, you can make this happen with the use of SQL
cache invalidation. This means that when the result set from SQL Server changes, the output cache is
triggered to change, and the end user always sees the latest result set. The data presented is never stale.

7

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 7

Another big area of change in ASP.NET is in the area of performance and scalability. ASP.NET 2.0 now
provides 64-bit support. This means that you can now run your ASP.NET applications on 64-bit Intel or
AMD processors.

Because ASP.NET 2.0 is fully backward compatible with ASP.NET 1.0 and 1.1, you can now take any for-
mer ASP.NET application, recompile the application on the .NET Framework 2.0, and run it on a 64-bit
processor.

Device-specific code generation
If you thought that building device applications with ASP.NET 1.0 or 1.1 was easy in the past, wait until
you see how you accomplish this in ASP.NET 2.0. ASP.NET 1.0 gave you the capability to build mobile
applications through the additional download of the Microsoft Mobile Internet Toolkit (MMIT). With
ASP.NET 1.1, this was included by default and, therefore, didn’t require the download. It did, however,
still require the use of <mobile:> server controls instead of the standard <asp:> server controls that
ASP.NET provided.

With ASP.NET 2.0, you no longer use the <mobile:> server controls. All the <asp:> server controls now
have the capability to output to various devices and not just the big browsers, such as Microsoft Internet
Explorer or Opera. The <asp:> server controls can now output not only in HTML, but also in XHTML,
CHTML, or WML (see Figure 1-4).

Figure 1-4

8

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 8

ASP.NET 2.0 determines the output based on the target, or you can apply any number of filters to fine-
tune the output based on the device targeting your pages. For example, to have ASP.NET produce spe-
cific output for any WML device that calls the page, you do something similar to what is shown in
Listing 1-3.

Listing 1-3: Targeting WML devices in your ASP.NET pages

<asp:DynamicImage ID=”Dynamicimage1” Runat=”server” ImageFile=”header-1.gif”
wml:ImageFile=”header-2.gif”>

</asp:DynamicImage>

In the end, by the use of ASP.NET 2.0, you can better target devices that come to your site or application
without building a separate portal.

Additional New Features of ASP.NET 2.0
You just learned some of the main goals of the ASP.NET team who built ASP.NET 2.0. To achieve these
goals, it built a mountain of new features into ASP.NET. I describe a few of them here.

New developer infrastructures
An exciting advancement in ASP.NET 2.0 is that new infrastructures are in place for you to use in your
applications. The ASP.NET team determined some of the most common programming operations that
users were performing with ASP.NET 1.0 and decided to build a few of these operations directly into
ASP.NET itself. The fact that these infrastructures are now built directly into the .NET Framework saves
you considerable time and coding.

Membership and role management
In earlier versions, if you were developing a portal that required users to log in to the application to gain
privileged access, invariably you had to create it yourself. It can be tricky to create applications with
areas that are accessible only to select individuals.

With ASP.NET 2.0, this capability is now built in. You can now validate users as shown in Listing 1-4.

Listing 1-4: Validating a user in code

VB
If (Membership.ValidateUser (Username.Text, Password.Text)) Then

‘ Allow access code here
End If

C#
If (Membership.ValidateUser (Username.Text, Password.Text)) {

// Allow access code here
}

9

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 9

A new series of APIs in ASP.NET 2.0 enable you to control an application’s user membership and role
management. Using these APIs, you can easily manage users and their complex roles — creating, delet-
ing, and editing them. You get all this capability by using the APIs or a built-in Web tool called the Web
Site Administration Tool.

As far as storing users and their roles, ASP.NET 2.0 is geared to work with Microsoft Access, SQL Server,
or Active Directory out of the box. By default, ASP.NET uses an .mdb file (Access) for storing all users
and roles. You are in no way limited to just one of these three data stores, however. You can expand
everything offered to you by ASP.NET and build your own providers using whatever you fancy as a
data store. For example, if you want to build your user store in LDAP or within an Oracle database, you
can do so quite easily.

Personalization
One advanced feature that portals love to offer their membership base is the capability to personalize
their offerings so that end users can make the site look and function however they want. The capability
to personalize an application and store the personalization settings is now completely built into the
ASP.NET framework.

Because personalization usually revolves around a user and possibly a role that this user participates in,
the personalization architecture can be closely tied to the membership and role infrastructures. You have
a couple of options as to where you can store the created personalization settings. The capability to store
these settings in either Microsoft Access or in SQL Server is built into ASP.NET 2.0. As with the capabili-
ties of the membership and role APIs, you can use the flexible provider model that is offered, and then
either change how the built-in provider uses the available data store or build your own custom data
provider to work with a completely new data store. The personalization API also supports a union of
data stores, meaning that you can use more than one data store if you want.

Because it is so easy to create a site for customization using these new APIs, this feature is quite a value-
add for any application you build.

The ASP.NET Portal Framework
During the days of ASP.NET 1.0, developers could go to the ASP.NET team’s site (found at http://www
.asp.net) and download some Web application demos called IBuySpy. Known as Developer Solution
Kits, these demos were used as the basis for many of the Web sites on the Internet today.

The nice thing about IBuySpy was that you could use the code that it provided as a basis to build either
a Web store or a portal. You simply took the base code and extended it. For example, you could change
the look and feel of the presentation part of the code or introduce advanced functionality into its modu-
lar architecture. Developer Solution Kits were quite popular because they made performing these types
of operations so easy. Figure 1-5 shows the INETA (International .NET Association) Web site, which is
built on the IBuySpy framework.

10

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 10

Figure 1-5

Because of the popularity of frameworks such as IBuySpy, ASP.NET 2.0 offers built-in capability for
using Web Parts to easily build portals. The possibilities of what you can build using the new Portal
Framework is astounding. The power of building using Web Parts is that it easily enables end-users to
completely customize the portal for their own preferences. Figure 1-6 shows an example application
built using Web Parts.

Site navigation
The ASP.NET team members realize that end users want to navigate through applications with ease. The
mechanics to make this work in a logical manner is sometimes hard to code. The team solved the prob-
lem in ASP.NET 2.0 with a series of navigation-based server controls.

First, you can build a site map for your application in an XML file that specific controls can inherently
work from. Listing 1-5 shows a sample site map file.

11

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 11

Figure 1-6

Listing 1-5: An example of a site map file

<?xml version=”1.0” encoding=”utf-8” ?>

<siteMap>
<siteMapNode title=”Home” description=”Home Page” url=”default.aspx”>

<siteMapNode title=”News” description=”The Latest News” url=”News.aspx”>
<siteMapNode title=”U.S.” description=”U.S. News”
url=”News.aspx?cat=us” />

<siteMapNode title=”World” description=”World News”
url=”News.aspx?cat=world” />

<siteMapNode title=”Technology” description=”Technology News”
url=”News.aspx?cat=tech” />

<siteMapNode title=”Sports” description=”Sports News”
url=”News.aspx?cat=sport” />

</siteMapNode>
<siteMapNode title=”Finance” description=”The Latest Financial Information”

url=”Finance.aspx”>
<siteMapNode title=”Quotes” description=”Get the Latest Quotes”
url=”Quotes.aspx” />

<siteMapNode title=”Markets” description=”The Latest Market Information”

12

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 12

url=”Markets.aspx”>
<siteMapNode title=”U.S. Market Report”
description=”Looking at the U.S. Market” url=”MarketsUS.aspx” />

<siteMapNode title=”NYSE”
description=”The New York Stock Exchange” url=”NYSE.aspx” />

</siteMapNode>
<siteMapNode title=”Funds” description=”Mutual Funds”
url=”Funds.aspx” />

</siteMapNode>
<siteMapNode title=”Weather” description=”The Latest Weather”
url=”Weather.aspx” />

</siteMapNode>
</siteMap>

After you have a site map in place, you can use this file as the data source behind a couple of new site
navigation server controls, such as the TreeView and the SiteMapPath server controls. The TreeView
server control enables you to place an expandable site navigation system in your application. Figure 1-7
shows you an example of one of the many looks you can give the TreeView server control.

Figure 1-7

The SiteMapPath is a control that provides the capability to place what some call navigation bread-
crumbs in your application so that the end user can see the path that he has taken in the application and
can easily navigate to higher levels in the tree. Figure 1-8 shows you an example of the SiteMapPath
server control at work.

Figure 1-8

These new site navigation capabilities provide a great way to get programmatic access to the site layout
and even to take into account things like end-user roles to determine which parts of the site to show.

13

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 13

Image generation
The DynamicImage server control is another exciting new control. Similar to the Image server control in
ASP.NET 1.0, the DynamicImage control changes the image type based upon the container (browser or
device type) of the end user. Not only does ASP.NET change its page output (HTML or WML, and so on)
based upon the requester, but it also changes the file types of the images that are embedded in page output.

Figure 1-9 shows an image generated for a browser requesting the page. The file output is the same type
as the file saved in the file system — a .gif file.

Figure 1-9

If a mobile device requests the same page, however, the file type is changed upon the request, and the
output file is now suitable for the receiving device (a .wbmp file). This is shown in Figure 1-10.

Figure 1-10
14

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 14

New compilation system
In ASP.NET 2.0, the code is constructed and compiled in a new way. Compilation in ASP.NET 1.0 was
always a tricky scenario. With ASP.NET 1.0, you could build an application using ASP.NET, deploy it,
and then watch as it was compiled page by page as each page was requested. If you made any changes
to the code-behind file in ASP.NET 1.0, it was not reflected in your application until the entire applica-
tion was rebuilt. That meant that the same page-by-page request had to be done again before the entire
application was recompiled.

Everything about how ASP.NET 1.0 worked with classes and compilation is changed with the release of
ASP.NET 2.0. The mechanics of the new compilation system actually begin with how a page is struc-
tured in ASP.NET 2.0. In ASP.NET 1.0, you either constructed your pages using the code-behind model
or by placing all the server code inline between <script> tags on your .aspx page. Most pages were
constructed using the code-behind model because this was the default when using Visual Studio .NET
2002 or 2003. It was quite difficult to create your page using the inline style in these IDEs. If you did, you
were then deprived of the use of IntelliSense, which can be quite the lifesaver when working with the
tremendously large collection of classes that the .NET Framework offers.

ASP.NET 2.0 offers a new code-behind model mostly because the .NET Framework now offers the capa-
bility to work with partial classes (also called partial types). Upon compilation, the separate class files
are combined into a single offering. This gives you much cleaner code-behind pages. The code that was
part of the Web Form Designer Generated section of your classes is now separated from the code-
behind classes that you create yourself.

ASP.NET 2.0 applications can include a \Code directory where you place your classes. Any class placed
here is dynamically compiled and reflected in the application. You do not use a separate build process
when you make changes as you did with ASP.NET 1.0. This is a “just save and hit” deployment model
like the one in ASP 3.0. Visual Studio Web Developer also automatically provides IntelliSense for any
objects that are placed in the \Code directory, whether you are working with the code-behind model or
are coding inline.

ASP.NET 2.0 also provides you with tools that enable you to precompile your ASP.NET applications so
that no page within your application has latency when it is retrieved for the first time. It is also a great
way to figure out if you have made any errors in the pages without invoking every page yourself.

Precompiling your ASP.NET 2.0 applications is as simple as calling the precompile.axd imaginary file
in the application root of your application after it has been deployed. This one call causes your entire
application to be precompiled. You receive an error notification if any errors are found anywhere within
your application. It is also possible to precompile your application and only deliver the created assembly
to the deployment server, thereby protecting your code. You see examples of both of these scenarios later
in this book.

Additions to the page framework
The ASP.NET page framework has some dramatic new additions that you can include in your applica-
tions. One of the most dramatic ones is the capability to build ASP.NET pages based upon visual inheri-
tance. This was possible in the Windows Forms world, but it was harder to achieve with ASP.NET. You
also gain the capability to easily apply a consistent look and feel to the pages of your application by
using themes. Many of the difficulties in working with ADO.NET in the past have now been removed

15

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 15

with the addition of a new series of data source controls that take care of accessing and retrieving data
from a large collection of data stores. Although these are not the only new controls, the great number of
new server controls create a larger ASP.NET page framework.

Master pages
With the introduction of master pages in ASP.NET 2.0, you can now use visual inheritance within your
ASP.NET applications. Because many ASP.NET applications have a similar structure throughout their
pages, it is logical to build a page template once and use that same template throughout the application.

In ASP.NET 2.0, you do this by creating a .master page, as shown in Figure 1-11.

Figure 1-11

An example master page might include a header, footer, and any other elements that all the pages will
share. Besides these core elements, which you might want on every page that inherits and uses this tem-
plate, you can place <asp:ContentPlaceHolder> server controls within the master page itself for the
subpages to use in order to change specific regions of the master page template. The editing of the sub-
page is shown in Figure 1-12.

16

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 16

Figure 1-12

When an end user invokes one of the subpages, he is actually looking at a single page compiled from
both the subpage and the master page that the particular subpage inherited from. This also means that
the server and client code from both pages are enabled on the new single page.

The nice thing about master pages is that you now have a single place to make any changes that affect
the entire site. This eliminates making changes to each and every page within an application.

Themes
The introduction of themes in ASP.NET 2.0 has made it quite simple to provide a consistent look and feel
across your entire site. Themes are simple text files where you define the appearance of server controls
that can be applied across the site, to a single page, or to a specific server control. You can also easily
incorporate graphics and Cascading Style Sheets, in addition to server control definitions.

Themes are stored either on the server for all applications to use or in the /Theme directory within the
application root for use within that particular application. The server-wide, pre-installed themes can be
found at: C:\WINDOWS\Microsoft.NET\Framework\v2.0.xxxxx\ASP.NETClientFiles\Themes.

17

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 17

One cool capability of themes is that you can dynamically apply them based on settings that use the new
personalization service provided by ASP.NET 2.0. Each unique user of your portal or application can
have her own personalized look and feel that she has set from your offerings.

New objects for accessing data
One of the more code-intensive tasks in ASP.NET 1.0 was in the retrieval of data. In many cases, this
meant working with a number of objects. If you have been working with ASP.NET for a while, you know
that it was an involved process to display data from a Microsoft SQL Server table within a DataGrid
server control. For instance, you first had to create a number of new objects. They included a
SqlConnection object followed by a SqlCommand object. When those objects were in place, you then
created a SqlDataReader to populate your DataGrid by binding the result to the DataGrid. In the end, a
table appeared containing the contents of the data you were retrieving (such as the Customers table from
the Northwind database).

ASP.NET 2.0 eliminates this intensive procedure with the introduction of a new set of objects that work
specifically with data access and retrieval. These new data controls are so easy to use that you access and
retrieve data to populate your ASP.NET server controls without writing any code. You saw an example
of this in Listing 1-2, where an <asp:SqlDataSource> server control retrieved rows of data from the
Customers table in the Northwind database from SQL Server. This SqlDataSource server control was
then bound to the new GridView server control via the use of simple attributes within the GridView
control itself. It really couldn’t be any easier!

The great news about this new functionality is that it is not limited to just Microsoft’s SQL Server. In fact,
a good number of data source server controls are at your disposal. You also have the capability to create
your own. In addition to the SqlDataSource server control, ASP.NET 2.0 introduces AccessDataSource,
XmlDataSource, ObjectDataSource, DataSetDataSource, and SiteMapDataSource server controls. You use
all these new data controls later in this book.

New server controls
So far, you have seen a number of new server controls that you can use when building your ASP.NET 2.0
pages. For instance, I just spoke of all the new data source server controls that you can use to access dif-
ferent kinds of data stores. You also saw the use of the new GridView server control, which is an
enhanced version of the previous DataGrid control that you used in ASP.NET 1.0.

Besides the controls presented thus far in this chapter, ASP.NET 2.0 provides more than 40 additional
new server controls! In fact, so many new server controls have been introduced that the next IDE for
building ASP.NET applications, Visual Studio 2005, had to reorganize the Toolbox where all the server
controls are stored. They are now separated into categories instead of being displayed in a straight list-
ing as they were in Visual Studio .NET or the ASP.NET Web Matrix. The new Visual Studio 2005 Toolbox
is shown in Figure 1-13.

18

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 18

Figure 1-13

A New IDE for Building ASP.NET 2.0 Pages
With ASP.NET 1.0/1.1, you can build your ASP.NET application using Notepad, Visual Studio .NET
2002 and 2003, as well as the ASP.NET Web Matrix. ASP.NET 2.0 also introduces another IDE to the
Visual Studio family — Visual Studio 2005.

Visual Studio 2005 offers some dramatic enhancements that completely change the way in which you
build your ASP.NET applications. Figure 1-14 shows you a screen shot of the new Visual Studio 2005.

The most exciting change to the IDE is that Visual Studio 2005 builds applications using a file-based sys-
tem, not the project-based system used by Visual Studio .NET. When using Visual Studio .NET, you had
to create new projects (for example, an ASP.NET Web Application project). This process created a num-
ber of project files in your application. Because everything was based on a singular project, it became
very difficult to develop applications in a team environment.

19

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 19

Figure 1-14

Visual Studio 2005, on the other hand, is based on a file system approach. No project files are included in
your project, and this makes it very easy for multiple developers to work on a single application
together without bumping into each other. Other changes are those to the compilation system, which I
discussed earlier. You can now build your ASP.NET pages using the inline model or the new code-
behind model. Whether you build pages inline or with the new code-behind model, you have full
IntelliSense capabilities no matter what model you use. This, in itself, is powerful and innovative.
Figure 1-15 shows IntelliSense running from an ASP.NET page being built using the inline model.

Another feature of Visual Studio 2005 that has come over from the ASP.NET Web Matrix is that you
don’t need ISS on your development machine. Visual Studio 2005 has a built-in Web server that enables
you to launch pages from any folder in your system with relative ease. Chapter 2 discusses the new
Visual Studio 2005 in detail.

20

Chapter 1

01_572865 ch01.qxd 7/7/04 9:49 PM Page 20

Figure 1-15

Summary
This chapter briefly introduced what is new in ASP.NET 2.0. This release offers so much that I didn’t
even come close to covering it all in this chapter. You will find the new ways of working with data, pre-
sentation, and the new infrastructures effective means to create powerful and secure applications. Even
though ASP.NET 2.0 is presently only in a beta format, this is a great time to learn where the product is
heading and how to use it.

ASP.NET 2.0 is so powerful and has so much capability built-in that its tremendous benefits to produc-
tivity really shine through.

21

Introduction to ASP.NET 2.0

01_572865 ch01.qxd 7/7/04 9:49 PM Page 21

01_572865 ch01.qxd 7/7/04 9:49 PM Page 22

Visual Studio 2005

Using the ASP.NET 2.0 beta requires that you also work with the beta of Visual Studio 2005 — the
latest IDE from Microsoft to facilitate building .NET components and applications. Visual Studio
2005, building on Visual Studio .NET 2003, provides one of the best development environments
for coding your ASP.NET applications.

Visual Studio 2005 enables you to build any type of .NET component or application. When you
use this tool, you can choose any of the Microsoft .NET-compliant languages for building your
applications, plus it allows you to create Windows Forms, XML Web services, .NET components,
mobile applications, ASP.NET applications, and more. Included in this round are a large number
of new wizards and smart tags that simplify the development process for you.

When you pull up Visual Studio 2005 for the first time on your computer, you select the environ-
ment in which you wish the IDE to open. This chapter assumes that you have selected Web
because that environment is the focus of this book.

The next sections provides a quick tour of this new IDE.

The Document Window
The Document Window is where you create your ASP.NET pages. This section of the IDE enables
you to create ASP.NET pages either by dragging and dropping elements onto a design surface or
by directly coding them yourself.

Views in the Document Window
Visual Studio .NET 2002 and 2003 both had a Design view and an HTML view of the ASP.NET
page. Visual Studio 2005 offers two views of a page: Design and Source. Figure 2-1 shows the
Document Window in Visual Studio 2005.

02_572865 ch02.qxd 7/7/04 9:50 PM Page 23

Figure 2-1

The Document Window contains two tabs at the bottom that enable you to switch the view of your page:
Design and Source. The Design tab enables you to view your ASP.NET page as it would appear in the
browser. You use Design view to create your ASP.NET page visually in a WYSIWYG fashion. Dragging
and dropping controls onto the design surface causes Visual Studio to generate code in the page. This is
not very different from older versions of Visual Studio. The Source tab shows the complete source of the
file and is the default view used by Visual Studio 2005.

You can change the default view that Visual Studio uses when a page is opened for the first time from
the Options dialog. Choose Tools ➪ Options and then navigate to the General section of the HTML
Designer section. Here, you see the option to open pages in either the Design or Source view. Select the
view you want and click OK. If you really dislike the Design view, you can actually lock it out by check-
ing the Lock Design View check box found in the same location.

Although the Document Window is basically the same as it has always been, this section of the IDE does
have some new functionality, which I describe in the following sections.

24

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 24

The tag navigator
When working visually with an ASP.NET page, notice that a list of the elements appears on your page
at the bottom of the Document Window. This list of elements is called the tag navigator and is illustrated
in Figure 2-2.

Figure 2-2

Instead of requiring you to select the element from the design surface or from within Code view, the tag
navigator enables you to right-click on an element to select it and display the properties for that control
in the Properties Window (discussed shortly). You can also select the content of the element by using this
approach (see Figure 2-3).

Figure 2-3

When you have many elements on your page, the addition of the tag navigator is quite helpful. To use
its capabilities, simply place your cursor in the Document Window and use the arrow buttons associated
with the display to quickly scroll through elements to find what you are looking for. The tag navigator
will show all the controls from the one you selected as well as all the selected control’s child controls.
When working in the Code view, you can, using the same mechanics, jump quickly to the content of the
control. This new functionality is a quick and powerful way of navigating your page. You can also use
this new functionality to highlight specific sections of code. For instance, to highlight everything inside
a table, select the <asp:Table> element from the tag navigator, right-click the option, and select the
content of the control. All the code between the opening <asp:Table> and the closing </asp:Table>
elements is highlighted.

Page tabs
Another new and interesting feature of the Document Window is in how the page tabs work. Whenever
you have a page open in the Document Window, a tab for that page appears at the top of the Document
Window. When you have multiple documents open, this tabbed view of the pages enables you to switch
quickly from one page to another simply by clicking the tab of the page you want to view. Although
page tabs are not new to the IDE, the functionality that these tabs provide is certainly new. The following
paragraphs explain this new functionality.

Right-clicking the page tab gives you the new options illustrated in Figure 2-4.

25

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 25

Figure 2-4

By right-clicking the page tab, you can save the file, close the file, close every open document but the one
selected, display the full path of the file (such as C:\WebSites\myWebApplication\Default.aspx),
and open the file in Windows Explorer (shown in Figure 2-5).

Figure 2-5

Code change status notifications
Some other changes to the Document Window include a new code-change notification system. When
you work with code on your pages, notice that line numbers are now included by default. Clicking any
number highlights that line of code. Next to the line numbers is a changing color bar, illustrated in
Figure 2-6.

This color bar notifies you of code changes that have occurred on your ASP.NET pages. If no color bar
appears on a particular line of code, you have not yet made any changes to that particular line. After
you make a change to a particular line of code, a yellow bar appears at the head of that line. After the file
is saved, this line changes to green. Yellow code lines indicate that changes have been made but not yet
saved to the file. Although you can’t see the yellow bar next to lines 12 and 13 in the black-and-white
screen shot shown in Figure 2-6, you may be able to see the shading difference at that point. The color
difference indicates that these lines have recently been changed, as opposed to the green bar next to the
rest of the lines of code.

26

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 26

Figure 2-6

Error notifications and assistance
In previous versions of Visual Studio, design-time error checking was a great feature of the IDE. As you
typed your code, Visual Studio checked the code for errors. For instance, if you wrote an If Then state-
ment (in Visual Basic) that didn’t include an End If statement, the IDE would underline the If Then
statement to remind you that the block of code was not complete. The line disappeared after you cor-
rected the error. With Visual Studio 2005, if you make any design-time errors, a small square appears to
the right of the underline (as shown under the n in Then in Figure 2-7).

Figure 2-7

Hovering your cursor over the square causes an error sign to appear. Clicking the error sign opens up a
dialog that gives you options for fixing the error. For example, if you are using an If Then statement
without the closing End If statement in Visual Basic, clicking the error notification button provides you
with a fix from the IDE, as shown in Figure 2-8.

27

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 27

Figure 2-8

This pop-up dialog first states the issue. In this case, it says that any opening If statement must include
a closing End If statement. Below this error notification is a link that enables you to apply the fix. Below
the link is a code sample showing how the fix will affect your code.

Sometimes, more than one option exists for fixing a design-time error. For example, you might have the
following code in your ASP.NET page:

Dim x As Integr

In this case, Integr is spelled incorrectly; the correct spelling, of course, is Integer. The IDE notifies
you of this error and opens up the associated error dialog. You have three options for fixing the error
(shown in Figure 2-9). To fix it, you simply scroll to the appropriate fix and click that link.

Figure 2-9

28

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 28

The Toolbox
One of the first changes you notice when you open this latest release of Visual Studio is a change in the
Toolbox. The controls in the IDE are now presented in a hierarchical manner. This change was made
because of the tremendous number of new controls in ASP.NET 2.0. The Toolbox is shown in Figure 2-10.

Figure 2-10

Because of the number of new controls (somewhere around 50), they have been organized into sections
in the Toolbox. The new control sections include those shown in the following table.

29

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 29

Control Section Controls the Section Contains

Core This main control section contains the standard <asp:> controls,
such as TextBox, Button, and other core controls.

Data Includes all the controls that deal with the retrieval and display of data
that comes from a data store of some kind. Therefore, this section
includes all the data source controls (SqlDataSource, AccessDataSource,
and more), as well as the data display controls, such as GridView and
DetailsView.

Personalization Includes all the controls that deal with the new personalization fea-
tures provided by ASP.NET 2.0, including all the WebPart controls
such as WebPartManager and WebPartZone.

Security Contains all controls that deal with adding user login and password
capabilities to your ASP.NET applications, such as Login, LoginView,
and LoginStatus.

Validation Includes all the validation controls that have always been a part of
ASP.NET, such as RequiredFieldValidator and RegularExpression-
Validator.

Navigation Includes controls that enable end users to work through a collection
of ASP.NET pages, including SiteMapPath, Menu, and TreeView.

Crystal Reports Includes all controls that enable users to work with Crystal Reports.

HTML Includes the HTML server controls that have been a part of ASP.NET
since the beginning. The names of these controls, however, have
changed.

General Contains only a pointer, although you are free to use this section for
your own custom developed controls. (You can also create a com-
pletely new control section if you choose.)

One feature that has always been present in Visual Studio, but makes more sense now that so many new
controls have been added, enables you to turn off the List View of the controls. Doing this causes the
Toolbox to show the controls simply as icons (see Figure 2-11).

Right-click in the section of the Toolbox you want to change and deselect List View. This changes the
view only for those controls in the section where you right-clicked. Each section in the Toolbox main-
tains its own settings.

30

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 30

Figure 2-11

The Solution Explorer
The Solution Explorer is still located where it was in previous versions of Visual Studio. The Solution
Explorer, shown in Figure 2-12, provides you with an organized view of the projects in your application.

Figure 2-12

The toolbar at the top of the Solution Explorer still enables you to do many of the same tasks that you
could perform in previous versions of Visual Studio, but this latest release of Visual Studio has some
additional buttons on the toolbar. Figure 2-13 shows you the toolbar with a description of the items it
contains.

31

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 31

Figure 2-13

The Un-nest Related Files button is a new feature in the Solution Explorer that enables you to undo the
nesting found in ASP.NET pages that are developed using code-behind files. By default when working
with code-behind files, you click the plus sign next to the .aspx page to expose the code-behind file
(.aspx.vb or .aspx.cs). Un-nesting these files puts them all on the same hierarchical level.

Another new button in the Solution Explorer is the Copy Web Site button. This opens up a new dialog in
the Document Window that enables you to copy your application from one point to another. This dialog
is shown in Figure 2-14.

Figure 2-14

Add New Solution Folder

Refresh

View Code

Copy Web Site

Un–nest Related Files

View Designer

ASP.NET ConfigurationUnhide All

32

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 32

Using this dialog, you can copy your projects to a different place on the same server or to an entirely dif-
ferent server. You can now enjoy easy file movements and synchronization between two projects.

A final new button in the toolbar is the ASP.NET Configuration button that pulls up the ASP.NET config-
uration page for your selected application within the Document Window. This configuration system is
discussed in detail in Chapter 14.

The Server Explorer
The Server Explorer is one of the more valuable windows within Visual Studio. This window can now
be found on a separate tab next to the Solution Explorer. The Server Explorer (shown in Figure 2-15)
enables you to perform a number of functions, such as working with database connectivity and perfor-
mance monitoring and interacting with event logs.

Figure 2-15

The Properties Window
The Properties Window is also relatively unchanged from the previous versions of Visual Studio. This
window (shown in Figure 2-16) enables you to work with and control the properties of any item that is
part of your application. After an item is selected, or if the cursor is focused on an item in the Code view
of your ASP.NET page, the properties of that particular item are shown in the Properties Window.

33

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 33

Figure 2-16

Lost Windows
You may not be able to find some familiar windows in the Visual Studio 2005 release. For instance, when
you open one of your ASP.NET applications in Visual Studio 2005, you do not see the Class View and
Dynamic Help windows. Although not apparent in the default view when the IDE first opens, these
windows are still available for use with your applications.

You can find the Class View by choosing View ➪ Other Windows ➪ Class View from the Visual Studio
menu. The Class View window opens directly next to the Server Explorer. You can move the window
wherever you want within the IDE.

You can find the Dynamic Help window by choosing Help ➪ Dynamic Help. Selecting this option opens
the Dynamic Help window next to the Properties Window.

Other Common Visual Studio Activities
Visual Studio 2005 is so packed with functionality that it deserves a book of its own. This IDE is mam-
moth and enables you to do almost anything in the construction and management of your ASP.NET
applications. This section takes a look at some of the common tasks that are done somewhat differently
or in an altogether new manner in this latest release of Visual Studio.

34

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 34

Creating new projects
The process of creating new files and projects within Visual Studio 2005 is different than it was in Visual
Studio 2002 or 2003. In this latest release of Visual Studio, the focus on project-based applications is
gone. Now projects are created in a page-based manner. This means that when you create an ASP.NET
application in Visual Studio, you don’t find solution or project files. In fact, when you first create the
application, the only items created for you by the IDE include the project folder and a single .aspx file.
If you are creating an ASP.NET page using the code-behind model, you also have an .aspx.vb or
.aspx.cs file.

One of the big changes you notice when opening the IDE is that no Start Page appears. You are pre-
sented with a blank IDE. You can create either a new single .aspx page or a Web site. To create a single
page, simply go to the menu and choose File ➪ New File. To work on a previous file, choose File ➪ Open
File. To create a new ASP.NET application, choose File ➪ New Web Site. You can see the dialog of options
in Figure 2-17.

Figure 2-17

In most cases, you select the first option — ASP.NET Web Site. This creates a single folder for your
application and a default .aspx page.

Making references to other objects
When you look at the Solution Explorer of your ASP.NET application, notice that the References and Web
References folders are not present. How do you add these references to your file-based applications?

You can add them in a couple of ways, and both ways bring you to the same dialog within the IDE. The
first way of adding references to your application is to highlight the solution in the Solution Explorer
and then choose Web Site ➪ References from the Visual Studio menu. The second option is to right-click
the solution in the Solution Explorer and select Property Pages from the list of options. Both methods
bring up the Property Pages dialog shown in Figure 2-18.

35

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 35

Figure 2-18

The Property Pages dialog allows you to make many modifications to your ASP.NET applications. For
now, however, focus only on the first tab within the dialog — the References tab. When you have the
References tab open, two enabled buttons appear at the bottom of the dialog — Add Reference and Add
Web Reference.

The Add Reference button invokes the Add Reference dialog so that you can make a reference to a DLL
to use in your project. Again in this version of Visual Studio, the objects are divided into categories such
as .NET, COM, and others, as shown in Figure 2-19.

Figure 2-19

36

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 36

The Add Web References button invokes the Add Web Reference dialog (shown in Figure 2-20). Here
you can make references to other Web services or .wsdl files found either in the same solution, on the
same server, or on some remote server.

Figure 2-20

Be aware that these buttons have been added because no References or Web References folder appears in
the Solution Explorer, which shows the referenced objects.

Using smart tags
The visual designer of Visual Studio now includes smart tags. Smart tags are a great enhancement to the
development experience because they enable you to quickly program common tasks. Each smart tag is
different and depends on the server control that it works with. For instance, the smart tag that appears
for the GridView server control enables you to quickly apply paging and sorting of the data that the
GridView displays. Other controls, however, may have different capabilities exposed through their
respective smart tags.

Not every server control has a smart tag associated with it. If a server control does have this extra capa-
bility, you notice it after you drag and drop the control onto the design surface. After it is on the design
surface, an arrow appears in the upper-right-hand corner of the control if a smart tag exists for that par-
ticular control. Clicking the arrow opens up the smart tag and all the options that the smart tag contains.
This is illustrated in the GridView server control shown in Figure 2-21.

From the smart tag, you can select items either to add or alter by clicking one of the available links or by
checking one of the available check boxes. When you have completed either of these actions, Visual
Studio changes the code in the background — adding the capabilities that you want. You can also see
the additions and modifications to the IDE if you change your view to the Code view of the page.

37

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 37

Figure 2-21

Saving and importing Visual Studio settings
Visual Studio 2005 allows for a tremendous number of customizations and modifications to the develop-
ment environment and the development experience. You can do a lot to change Visual Studio either by
dragging elements and components to new locations within the IDE, or by choosing Tools ➪ Options in
the Visual Studio menu bar to bring up the Options dialog shown in Figure 2-22.

The number of options that you can work with from this dialog are staggering and impossible to cover
completely in this chapter. You have many of the same options that you worked with in the past, plus
some new ones.

After you have Visual Studio set up as you want, you should save these settings so that they can be used
again if you rebuild your computer, if you are working with a different instance of Visual Studio elsewhere,
or if you want to share your settings with others. To save your settings, chooseTools ➪ Import/Export
Settings in the IDE. This pulls up the Import/Export Settings dialog shown in Figure 2-23.

38

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 38

Figure 2-22

Figure 2-23

39

Visual Studio 2005

02_572865 ch02.qxd 7/7/04 9:50 PM Page 39

From this dialog, you can either save your settings to a file that can be used elsewhere or you can import
settings that are stored in the same type of file. You can also just reset Visual Studio to return the settings
to the default that existed when Visual Studio was first installed and run.

If you are going to export your settings, select Export IDE Settings to a File. This shows a list of
exportable settings in the left-hand pane of the dialog. By default, almost everything is selected. Feel free
to uncheck the settings that you don’t want to export. When this is set as you want, choose the name of
the file and the location where you want to save the file. The file has a .vssettings extension. If you go
back and look at the file, notice that Visual Studio saves the settings as an XML file.

Importing the settings is simply the process of making reference through the Import/Export Settings
dialog to a file of the same type.

Summary
This chapter took a quick look at the best possible tool for creating ASP.NET 2.0 applications — Visual
Studio 2005. This tool is unquestionably packed with functionality and makes you a more productive
developer.

Included in this IDE are a number of wizards that make quick work of common programming tasks and
allow you to concentrate on getting your applications live as soon as possible. Visual Studio 2005
expands on allowing developers to code to the database, to classes, and to the presentation layer — all
from the same IDE.

This chapter was in no way meant to fully explain this IDE; my intention was to show you some of the
newer features that you might utilize when building your applications. Delve more deeply into what is
shown in the chapter, and you will find new features around every corner.

40

Chapter 2

02_572865 ch02.qxd 7/7/04 9:50 PM Page 40

Application and Page
Frameworks

When you first look at what is new in ASP.NET 2.0, you may be amazed by all the wonderful new
server controls that it provides. You may marvel at how it enables you to work with data more
effectively using the new data providers. You may be impressed at how easily you can build in
security and personalization.

Its great capabilities don’t end there, however. The application and ASP.NET pages as a whole also
have some exciting new capabilities that you might overlook. This chapter takes a look at plenty of
these new additions for working with ASP.NET pages and applications. One of the first steps you,
the developer, should take when starting a project is to become familiar with the foundation you
are building on and the options available for customizing this foundation.

Application Location Options
With ASP.NET 2.0, you now have the option — using Visual Studio 2005 — to create an applica-
tion with a virtual directory mapped to IIS or a standalone application outside the confines of IIS.
Whereas Visual Studio .NET forced developers to use IIS for all Web applications, Visual Studio
2005 includes a built-in Web server that you can use for development, much like you used the
ASP.NET Web Matrix.

The following section shows you how to use this new built-in Web server that comes with
ASP.NET 2.0.

Built-in Web server
By default, Visual Studio 2005 builds applications without the use of IIS. You can see this when
you select New Web Site in the IDE. By default, the location provided for your application is in
C:\Websites\ (shown in Figure 3-1). It is not in C:\Inetpub\wwwroot\ as it would have been in

03_572865 ch03.qxd 7/7/04 9:50 PM Page 41

Visual Studio .NET. Any site that you build and host inside C:\Websites\ (or any other folder you
might create) uses the built-in Web server by default that is part of Visual Studio 2005. If you use the
built-in Web server from Visual Studio 2005, you are not locked into the Websites folder; you can create
any folder in your system that you want.

Figure 3-1

To change from this default, you have a handful of options. Click the Browse button in the New Web Site
dialog. This brings up the Choose Location dialog, shown in Figure 3-2.

Figure 3-2

42

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 42

From this dialog, you can choose a new location for your Web application if you continue to use the
built-in Web server that Visual Studio 2005 provides. To choose a new location, select a new folder and
save your .aspx pages and any other associated files to this directory. When using Visual Studio 2005,
you can run your application completely from this location. This new way of working with the ASP.NET
pages you create is ideal for developers without access to a Web server, as it enables you to build appli-
cations that don’t reside on a machine with IIS. This means that you can even develop ASP.NET applica-
tions on operating systems such as Windows XP Home Edition.

IIS
From the Choose Location dialog, you can also change where your application is saved and which type
of Web server your application employs. To use IIS (as you probably did when you used Visual Studio
.NET), select the Local IIS button in the dialog. This changes the results in the text area to show you a list
of all the virtual application roots on your machine.

To create a new virtual root for your application, highlight Default Web Site. Two accessible buttons
appear at the top of the dialog (see Figure 3-3). Looking from left to right, the first button in the upper-
right corner of the dialog is for creating a new Web application — or a virtual root. This button is shown
as a globe inside a box. The second button enables you to create virtual roots for any of the virtual direc-
tories you created. The third button is a Delete button, which allows you to delete any selected virtual
directories or virtual roots on the server.

Figure 3-3

Create New Web Application

Create New Virtual Directory

Delete

43

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 43

After you have created the virtual directory you want, click the Open button. Visual Studio 2005 then
goes through the standard process to create your application. Now, however, instead of depending on
the built-in Web server from ASP.NET 2.0, your application uses IIS. When you invoke your application,
the URL now contains something like http://localhost/myweb/default.aspx — meaning that it is
using IIS.

FTP
Not only can you decide on the type of Web server for your Web application when you create it using
the Choose Location dialog, but you can also decide where your application is going to be located. With
the previous options, you built applications that resided on your local server. The FTP option enables
you to actually store and even code your applications while they reside on a server somewhere else in
your enterprise — or on the other side of the planet. You can also use the FTP capabilities to work on
different locations within the same server. Using this new capability provides a wide range of possible
options.

The built-in capability giving FTP access to your applications is a major enhancement to the IDE.
Although formerly difficult to achieve, this is now quite simple, as you can see from Figure 3-4.

Figure 3-4

To create your application on a remote server using FTP, simply provide the server name, port to use,
and the directory — as well as any required credentials. If the correct information is provided, Visual
Studio 2005 reaches out to the remote server and creates the appropriate files for the start of your appli-
cation, just as if it were doing the job locally. From this point on, you can open your project and connect
to the remote server using FTP.

44

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 44

Web site requiring FrontPage Extensions
The last option in the Choose Location dialog is the Remote Sites option. Clicking this button provides a
dialog that enables you to connect to a remote or local server that utilizes FrontPage Extensions. This
option is displayed in Figure 3-5.

Figure 3-5

The ASP.NET Page Structure Options
One of the major complaints about Visual Studio .NET 2002 and 2003 is that it forced you to use the
code-behind model when developing your ASP.NET pages. The code-behind model in ASP.NET was
introduced as a new way to separate the presentation code and business logic. Listing 3-1 shows a typi-
cal .aspx page generated using Visual Studio .NET 2002 or 2003.

Listing 3-1: A typical .aspx page from ASP.NET 1.0/1.1

<%@ Page Language=”vb” AutoEventWireup=”false” Codebehind=”WebForm1.aspx.vb”
Inherits=”WebApplication.WebForm1”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HTML>
<HEAD>

<title>WebForm1</title>
<meta name=”GENERATOR” content=”Microsoft Visual Studio .NET 7.1”>
<meta name=”CODE_LANGUAGE” content=”Visual Basic .NET 7.1”>
<meta name=”vs_defaultClientScript” content=”JavaScript”>
<meta name=”vs_targetSchema”

(continued)

45

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 45

Listing 3-1: (continued)

content=”http://schemas.microsoft.com/intellisense/ie5”>
</HEAD>
<body>

<form id=”Form1” method=”post” runat=”server”>
<P>What is your name?

<asp:TextBox id=”TextBox1” runat=”server”></asp:TextBox>

<asp:Button id=”Button1” runat=”server” Text=”Submit”></asp:Button></P>
<P><asp:Label id=”Label1” runat=”server”></asp:Label></P>

</form>
</body>

</HTML>

The code-behind file created within Visual Studio .NET 2002/2003 for the .aspx page is shown in
Listing 3-2.

Listing 3-2: A typical .aspx.vb / .aspx.cs page from ASP.NET 1.0/1.1

Public Class WebForm1
Inherits System.Web.UI.Page

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

End Sub
Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
Protected WithEvents Button1 As System.Web.UI.WebControls.Button
Protected WithEvents Label1 As System.Web.UI.WebControls.Label

‘NOTE: The following placeholder declaration is required by the Web Form
Designer.

‘Do not delete or move it.
Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer
‘Do not modify it using the code editor.
InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Label1.Text = “Hello “ & TextBox1.Text
End Sub

End Class

46

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 46

In this code-behind page from ASP.NET 1.0/1.1, you can see that a lot of code developers never have to
deal with is hidden in the Region section of the page. Because ASP.NET 2.0 is built on top of .NET 2.0, it
can now take advantage of the new .NET Framework capability of partial classes. Partial classes enable
you to separate your classes into multiple class files, which are then combined into a single class when
the application is compiled. Because ASP.NET 2.0 combines all this page code for you behind the scenes
when the application is compiled, the code-behind files you work with in ASP.NET 2.0 are simpler in
appearance and the model is easier to use. You are presented with only the pieces of the class that you
need. Now take a look at both the inline and code-behind models from ASP.NET 2.0.

Inline coding
In the past, many developers chose to develop against Visual Studio .NET and built their ASP.NET
pages inline. Now Visual Studio 2005 allows you to build using this coding style. To build an ASP.NET
page inline instead of using the code-behind model, you simply select the page type from the Add
New Item dialog (see Figure 3-6) and uncheck the Place Code in Separate File check box. You can get at
this dialog by right-clicking on the project or the solution in the Solution Explorer and selecting Add
New Item.

Figure 3-6

From here, you can see the check box you need to unselect if you want to build your ASP.NET pages
inline. In fact, many page types have options for both inline and code-behind styles. The following table
shows your inline options when selecting files from this dialog.

File Options Using Inline Coding Option Creates

Web Form .aspx file

Master Page .master file

Web User Control .ascx file

Web Service .asmx file

47

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 47

By using the Web Form option with a few controls, you get a page that encapsulates not only the presen-
tation logic, but the business logic as well. This is illustrated in Listing 3-3.

Listing 3-3: A simple page that uses the inline coding model

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Simple Page</title>
</head>
<body>

<form runat=”server”>
What is your name?

<asp:Textbox ID=”Textbox1” Runat=”server”></asp:Textbox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<p><asp:Label ID=”Label1” Runat=”server”></asp:Label></p>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + Textbox1.Text;
}

</script>

From this example, you can see that all the business logic is encapsulated in between <script> tags.
The nice feature of the inline model is that the business logic and the presentation logic are contained
within the same file. Some developers find that having everything in a single viewable instance makes
working with the ASP.NET page easier. The other great thing about the inline coding model and
ASP.NET 2.0 is that Visual Studio 2005 now provides IntelliSense when working with these types of files.
In the past, this capability didn’t exist. Visual Studio forced you to use the code-behind model and, even
if you rigged it so your pages were using the inline model, you lost all IntelliSense capabilities.

48

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 48

New code-behind model
The other option for constructing your ASP.NET 2.0 pages is to build your files using the new code-
behind model. I say new because, even though the idea of the code-behind model is the same as it was in
previous versions of ASP.NET, the way in which the code-behind model is used in ASP.NET 2.0 is quite a
bit different.

To create a new page in your ASP.NET solution that uses the code-behind model, select the page type
you want from the Add New Item dialog. Just as many of the pages options have inline options, there
also are code-behind file options in this dialog. To build a page using the code-behind model, you have
to select the page in the Add New Item dialog and check the Place Code in Separate File check box. The
following table shows you the options for pages that use the code-behind model.

File Options Using Code-Behind Option Creates

Web Form .aspx file
.aspx.vb or .aspx.cs file

Master Page .master file
.master.vb or .master.cs file

Web User Control .ascx file
.ascx.vb or .ascx.cs file

Web Service .asmx file
.asmx.vb or .asmx.cs file

The idea of using the code-behind model is to separate the business logic and presentation logic into
separate files. Doing this makes it easier to work with your pages, especially if you are working in a
team environment where visual designers work on the UI of the page and coders work on the business
logic that sits behind the presentation pieces. In the earlier Listings 3-1 and 3-2, you saw how pages
using the code-behind model in ASP.NET 1.0/1.1 were constructed. To see the difference in ASP.NET 2.0,
take a look at how its code-behind pages are constructed. This is illustrated in Listing 3-4 for the presen-
tation piece and Listing 3-5 for the code-behind piece.

Listing 3-4: An .aspx page that uses the ASP.NET 2.0 code-behind model

VB
<%@ Page Language=”VB” AutoEventWireup=”false” CompileWith=”Default.aspx.vb”

ClassName=”Default_aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Simple Page</title>
</head>
<body>

(continued)

49

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 49

Listing 3-4: (continued)

<form runat=”server”>
What is your name?

<asp:Textbox ID=”Textbox1” Runat=”server”></asp:Textbox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<p><asp:Label ID=”Label1” Runat=”server”></asp:Label></p>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” CompileWith=”Default.aspx.cs” ClassName=”Default_aspx” %>

Listing 3-5: A code-behind page

VB
Imports Microsoft.VisualBasic

Partial Class Default_aspx

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = “Hello “ & TextBox1.Text

End Sub
End Class

C#
using System;
using System.Configuration;
using System.Web;
using System.Web.Caching;
using System.Web.SessionState;
using System.Web.Security;
using System.Web.Profile;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Default_aspx
{

void Button1_Click(object sender, EventArgs e)
{

Label1.Text = “Hello “ + Textbox1.Text;
}

}

The .aspx page using this new ASP.NET 2.0 code-behind model has some attributes in the Page direc-
tive different from those you are used to. The first is the CompileWith attribute. This is a new attribute
in the Page directive and is meant to point to the code-behind page that is used with this presentation

50

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 50

page. In this case, the value assigned is Default.aspx.vb or Default.aspx.cs. The second attribute
needed is the ClassName attribute. This attribute was available in previous versions of ASP.NET, but
was little used. This attribute specifies the name of the class that is bound to the page when the page is
compiled. The directives are simple enough in ASP.NET 2.0. Take a look at the code-behind page from
Listing 3-5.

The code-behind page is rather simple in appearance now using the partial class capabilities that .NET
2.0 provides. You can see that the class created in the code-behind file uses partial classes, employing the
new Partial keyword in Visual Basic 8.0 and the partial keyword from C#. This enables you to sim-
ply place the methods that you need in your page class. In this case, you have a button-click event and
nothing else.

New Page Directives
ASP.NET directives are something that is a part of every ASP.NET page. You can control the behavior of
your ASP.NET pages by using these directives. Here’s an example of the Page directive:

<%@ Page Language=”VB” AutoEventWireup=”false” CompileWith=”Default.aspx.vb”
ClassName=”Default_aspx” %>

New attributes
These page directives are commands for the compiler to use as the page is compiled. A large number of
attributes have always been available to the Page directive itself, but with the introduction of ASP.NET
2.0, some additional attributes are available. These six important new attributes are explained in the
following table.

New Attribute Description

CompileWith Takes a String value which points to the code-behind
file used.

EnablePersonalization Boolean value that specifies whether the new ASP.NET
2.0 personalization features are used with the page.

LinePragmas Boolean value that specifies whether line pragmas are
used with the resulting assembly.

Master Takes a String value that points to the location of the
master page used with the page. This attribute is used
with content pages.

PersonalizationProvider Takes a String value that specifies the name of the per-
sonalization provider used in applying personalization
to the page.

Theme String value that specifies the theme used with the page.

51

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 51

New directives
In addition to the new attributes used with the Page directive, two new directives can be also be used
for the pages you create. These new directives include the following:

❑ Master: This directive is used in the creation of master pages — the main templates used by
any subpages within your applications. Master pages are explained in Chapter 6.

❑ PreviousPage: This directive is used to specify the page from which any cross-postings origi-
nate. Cross-posting ASP.NET pages are explained later in this chapter.

The Master page directive is similar to the Page directive, but you specify properties of the templated
page that you will be using in conjunction with any number of content pages in your site. Any content
pages (built using the Page directive) you might have can then inherit from the master page all the
master content (defined in the master page using the Master directive). Although they are similar, the
Master directive has fewer attributes available to it than the Page directive. The available attributes for
the Master directive include:

❑ AutoEventWireUp ❑ Explicit

❑ ClassName ❑ Inherits

❑ CodeBehind ❑ Language

❑ CompilerOptions ❑ LinePragmas

❑ CompileWith ❑ Master

❑ Debug ❑ Src

❑ Description ❑ Strict

❑ EnablePersonalization ❑ Theme

❑ EnableViewState

These attributes need not be defined because they are the same as those for the Page directive, except
that they apply to the master page that is used in templating your pages.

The PreviousPage directive is a new directive that works with the new cross-page posting capability
that ASP.NET 2.0 provides. This simple directive contains only two possible attributes: TypeName and
VirtualPath. The following table describes these two new attributes.

New Attribute Description

TypeName Specifies the strong type used in the previous page.

VirtualPath String value specifying the relative path of the page that is
cross-posting to the working page.

52

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 52

New Page Events
ASP.NET developers consistently work with various events in their server-side code. Many of the events
that they work with pertain to specific server controls. For instance, if you want to initiate some action
when the end-user clicks a button on your Web page, you create a button-click event in your server-side
code, as shown in Listing 3-6.

Listing 3-6: A sample button-click event shown in VB

Sub Button1_Click(sender As Object, e As EventArgs)
Label1.Text = TextBox1.Text

End Sub

In addition to the server controls, developers also want to initiate actions at specific moments when the
ASP.NET page is being either created or destroyed. The ASP.NET page itself has always had a number of
events that you could work with for these instances. The following list shows you all the page events
you could have used in ASP.NET 1.0/1.1:

❑ AbortTransaction ❑ Init

❑ CommitTransaction ❑ Load

❑ DataBinding ❑ PreRender

❑ Disposed ❑ Unload

❑ Error

One of the more popular page events from this list is the Load event, which is used in VB as shown in
Listing 3-7.

Listing 3-7: Using the Page_Load event

Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyBase.Init

Response.Write(“This is the Page_Load event”)
End Sub

Besides the page events just shown, ASP.NET 2.0 adds the following new events:

❑ InitComplete: For when the initialization of the page is completed.

❑ LoadComplete: For when the page has been completely loaded into memory.

❑ PreInit: For the moment directly before a page has been initialized.

❑ PreLoad: For the moment before a page has been loaded into memory.

❑ PreRenderComplete: For the moment directly before a page has been rendered in the browser.

You construct these new page events just as you did the previously shown page events. For example,
you use the PreInit event as shown in Listing 3-8.

53

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 53

Listing 3-8: Using the new page events

VB
<script runat=”server” language=”vb”>

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString(“ThemeChange”)

End Sub
</script>

C#
<script runat=”server”>

void Page_PreInit(object sender, System.EventArgs e)
{

Page.Theme = Request.QueryString[“ThemeChange”];
}

</script>

If you create an ASP.NET 2.0 page and turn on tracing, you can see the order in which the main page
events are initiated. They are fired in the following order:

❑ PreInit

❑ Init

❑ InitComplete

❑ PreLoad

❑ Load

❑ LoadComplete

❑ PreRender

❑ PreRenderComplete

With the addition of these new choices, you can now work with the page and the controls on the page at
many different points in the page-compilation process. You see these useful new page events in code
examples throughout the book.

Cross-Page Posting
One common feature in ASP 3.0 that is difficult to achieve in ASP.NET 1.0/1.1 is the capability to do
cross-page posting. Cross-page posting enables you to submit a form (say, Page1.aspx) and have this
form and all the control values post themselves to another page (Page2.aspx).

Traditionally, any page created in ASP.NET 1.0/1.1 simply posted to itself, and you handled the control
values within this page instance. You could differentiate between the page’s first request and any post-
backs by using the Page.IsPostBack property, as shown here:

If Page.IsPostBack Then
‘ deal with control values

End If

54

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 54

Even with this capability, many developers still wanted to be able to post to another page and deal with
the first page’s control values on that page. This is now possible in ASP.NET 2.0, and it is quite simple to
achieve as well.

For an example, create a page called Page1.aspx that contains a simple form. This page is shown in
Listing 3-9.

Listing 3-9: Page1.aspx

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & TextBox1.Text & “
” & _
“Date Selected: “ & Calendar1.SelectedDate.ToShortDateString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>First Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server”>
</asp:Textbox>
<p>
When do you want to fly?

<asp:Calendar ID=”Calendar1” Runat=”server”></asp:Calendar></p>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit page to itself”
OnClick=”Button1_Click” />

<asp:Button ID=”Button2” Runat=”server” Text=”Submit page to Page2.aspx”
PostBackUrl=”Page2.aspx” />

<p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</form>
</body>
</html>

C#
<%@ page language=”C#” %>

<script runat=”server”>
void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “
” +
“Date Selected: “ + Calendar1.SelectedDate.ToShortDateString();

}
</script>

55

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 55

The code from Page1.aspx, as shown in Listing 3-9, is quite interesting. First, two buttons are shown on
the page. Both buttons submit the form, but each submits the form to a different location. The first but-
ton submits the form to itself. This is the behavior that has been the default for ASP.NET 1.0/1.1. In fact,
there is nothing different about Button1. It submits to Page1.aspx as a postback because of the use of
the OnClick property in the button control. A Button1_Click event on Page1.aspx handles the
values that are contained within the server controls on the page.

The second button, Button2, works quite differently. This button does not contain an OnClick event as
the first button did. Instead, it uses the PostBackUrl property. This property takes a string value that
points to the location of the file that this page should post to. In this case, it is Page2.aspx. This means
that Page2.aspx now receives the postback and all the values contained in the Page1.aspx controls.
Look at the code for Page2.aspx, shown in Listing 3-10.

Listing 3-10: Page2.aspx

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim pp_Textbox1 As TextBox
Dim pp_Calendar1 As Calendar

pp_Textbox1 = CType(PreviousPage.FindControl(“Textbox1”), TextBox)
pp_Calendar1 = CType(PreviousPage.FindControl(“Calendar1”), Calendar)

Label1.Text = “Hello “ & pp_Textbox1.Text & “
” & _
“Date Selected: “ & pp_Calendar1.SelectedDate.ToShortDateString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Second Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:label id=”Label1” runat=”server”></asp:label>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

56

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 56

TextBox pp_Textbox1;
Calendar pp_Calendar1;

pp_Textbox1 = (TextBox)PreviousPage.FindControl(“Textbox1”);
pp_Calendar1 = (Calendar)PreviousPage.FindControl(“Calendar1”);

Label1.Text = “Hello “ + pp_Textbox1.Text + “
” + “Date Selected: “ +
pp_Calendar1.SelectedDate.ToShortDateString();

}
</script>

You have a couple of ways of getting at the values of the controls that are exposed from Page1.aspx
from the second page. The first option is displayed in Listing 3-10. To get at a particular control’s value
that is carried over from the previous page, you simply create an instance of that control type and popu-
late this instance using the FindControl method from the PreviousPage property. The String value
assigned to the FindControl method is the Id value, which is used for the server control from the pre-
vious page. After this is assigned, you can work with the server control and its carried-over values as if
it resided on the current page to begin with. You can see from the example that you can extract the Text
and SelectedDate properties from the controls without any problems.

Another way of exposing the control values from the first page (Page1.aspx) is to create a Property
for the control. This is shown in Listing 3-11.

Listing 3-11: Exposing the values of the control from a Property

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Public ReadOnly Property pp_TextBox1() As TextBox

Get
Return TextBox1

End Get
End Property

Public ReadOnly Property pp_Calendar1() As Calendar
Get

Return Calendar1
End Get

End Property

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = “Hello “ & TextBox1.Text & “
” & _

“Date Selected: “ & Calendar1.SelectedDate.ToShortDateString()
End Sub

</script>

(continued)

57

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 57

Listing 3-11: (continued)

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
public TextBox pp_TextBox1
{

get
{

return TextBox1;
}

}

public Calendar pp_Calendar1
{

get
{

return Calendar1;
}

}

void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “
” +
“Date Selected: “ + Calendar1.SelectedDate.ToShortDateString();

}
</script>

Now that these properties are exposed on the posting page, the second page (Page2.aspx) can work
with the server control properties that are exposed from the first page in an easier fashion. Listing 3-12
shows you how Page2.aspx works with these exposed properties.

Listing 3-12: Consuming the exposed properties from the first page

VB
<%@ Page Language=”VB” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & PreviousPage.pp_Textbox1.Text & “
” & _
“Date Selected: “ & _
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()

End Sub
</script>

58

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 58

C#
<%@ Page Language=”C#” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + PreviousPage.pp_TextBox1.Text + “
” +
“Date Selected: “ +
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();

}
</script>

In order to be able to work with the properties that Page1.aspx exposes, you have to strongly type the
PreviousPage property to Page1.aspx. To do this, you use the PreviousPageType directive. This
new directive allows you to specifically point to Page1.aspx with the use of the VirtualPath attribute.
When that is in place, notice that you can see the properties that Page1.aspx exposes through
IntelliSense from the PreviousPage property. This is illustrated in Figure 3-7.

Figure 3-7

59

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 59

As you can see, working with cross-page posting is pretty straightforward. One last point is that when
you are cross-posting from one page to another, you don’t need to work with the postback on the second
page only. In fact, you can still create methods on Page1.aspx that work with postback before moving
onto Page2.aspx. To do this, you simply add an OnClick event for the button in Page1.aspx and a
method along with assigning a value for the PostBackUrl property. You can then work with the post-
back on Page1.aspx and then again on Page2.aspx.

What happens if someone requests Page2.aspx before working through Page1.aspx? It is actually
quite easy to work with the request to see if it is coming from Page1.aspx or if someone just hit
Page2.aspx directly. You can work with the request through the use of the IsCrossPagePostBack
property. Quite similar to the IsPostBack property that you are used to from ASP.NET 1.0/1.1, the
IsCrossPagePostBack property enables you to check whether the request is from Page1.aspx. Listing
3-13 shows an example of this.

Listing 3-13: Using the IsCrossPagePostBack property

VB
<%@ Page Language=”VB” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Page.IsCrossPagePostBack Then
Label1.Text = “Hello “ & PreviousPage.pp_Textbox1.Text & “
” & _

“Date Selected: “ & _
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()

Else
Response.Redirect(“Page1.aspx”)

End If
End Sub

</script>

C#
<%@ Page Language=”C#” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

if (Page.IsCrossPagePostBack) {
Label1.Text = “Hello “ + PreviousPage.pp_Textbox1.Text + “
” +

“Date Selected: “ +
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();

}
else
{

Response.Redirect(“Page1.aspx”);
}

}
</script>

60

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 60

New Application Folders
When you create ASP.NET applications, notice that ASP.NET 2.0 now uses a file-based approach. When
working with ASP.NET 2.0, you can have as many files and folders within your application as you can
build without recompiling the application each and every time a new file is added to the overall solu-
tion. ASP.NET 2.0 now includes the capability to automatically precompile your ASP.NET applications
dynamically.

ASP.NET 1.0/1.1 compiled everything in your solution into a DLL. This is no longer necessary because
ASP.NET 2.0 applications have a defined folder structure. By using the ASP.NET 2.0 defined folders, you
can have your code automatically compiled for you, your application themes accessible throughout your
application, and your globalization resources available whenever you need them. Take a look at each of
these defined folders to see how they work. The first is the \Code folder.

\Code folder
The \Code folder is meant to store your classes, .wsdl files, and typed datasets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the \Code folder is that when you place something inside this folder, Visual Studio 2005 automati-
cally detects this and compiles it if it is a class (.vb or .cs), automatically creates your XML Web service
proxy class (from the .wsdl file), or automatically creates a typed dataset for you from your .xsd files.
After the files are automatically compiled, these items are then instantaneously available to use in any of
your ASP.NET pages that are in the same solution. Look at how to employ a simple class in your solu-
tion using the \Code folder.

The first step is to create a \Code folder. To do this, simply right-click the solution and select New Folder.
Name the folder Code. Right away you notice that Visual Studio 2005 treats this folder differently from
the other folders in your solution. The Code folder is shown in a different color (gray) with a document
pictured next to the folder icon. See Figure 3-8.

Figure 3-8

After the \Code folder is in place, right-click the folder and select Add New Item. The Add New Item
dialog that appears doesn’t give you many options for the types of files that you can place within this
folder. The available options include a Class file, an XML Schema, and an Assembly Resource File. For
this first example, select Class and name the class Calculator.vb or Calculator.cs. Listing 3-13
shows how the Calculator class should appear.

61

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 61

Listing 3-13: The Calculator class

VB
Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

End Class

C#
using System;

public class Calculator
{

public int Add(int a, int b)
{

return (a + b);
}

}

What’s next? Just save this file, and it is now available to use in any pages that are in your solution. To
see this in action, create a simple .aspx page that has just a single Label server control. Listing 3-14
shows you the code to place within the Page_Load event to use this new class available to the page.

Listing 3-14: An .aspx page that uses the Calculator class

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myCalc As New Calculator
Label1.Text = myCalc.Add(12, 12)

End Sub
</script>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

Calculator myCalc = new Calculator();
Label1.Text = myCalc.Add(12, 12).ToString();

}
</script>

62

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 62

When you run this .aspx page, notice that it utilizes the Calculator class without any problem, with
no need to compile the class before use. In fact, right after saving the Calculator class in your solution
or moving the class to the \Code folder, you also instantaneously receive IntelliSense capability on the
methods that the class exposes (as illustrated in Figure 3-9).

Figure 3-9

To see Visual Studio 2005 works with the \Code folder, open the Calculator class again in the IDE and
add a Subtract method. Your class should now appear as shown in Listing 3-15.

Listing 3-15: Adding a Subtract method to the Calculator class

VB
Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

(continued)

63

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 63

Listing 3-15: (continued)

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer
Return (a - b)

End Function
End Class

C#
using System;

public class Calculator
{

public int Add(int a, int b)
{

return (a + b);
}

public int Subtract(int a, int b)
{

return (a - b);
}

}

After you have added the Subtract method to the Calculator class, save the file and go back to your
.aspx page. Notice that the class has been recompiled by the IDE and the new method is now available
to your page. You see this directly in IntelliSense. Figure 3-10 shows this in action.

Everything placed in the \Code folder is compiled into a single assembly. The class files placed within
the \Code folder are also not required to use a specific language. This means that even if all the pages of
the solution are in Visual Basic 8.0, the Calculator class in the \Code folder of the solution could be
built in C# (Calculator.cs).

Because all the classes contained in this folder are built into a single assembly, you cannot have classes of
different languages sitting in the root \Code folder, as in the following:

\Code
Calculator.cs
AdvancedMath.vb

Having two classes made up of different languages in the \Code folder (as shown here) causes an error
to be thrown. It is impossible for the assigned compiler to work with two different languages. Therefore,
in order to be able to work with multiple languages in your \Code folder, you must make some changes
to the folder structure and to the web.config file.

The first step is to add two new subfolders to the \Code folder — a \vb folder and a \cs folder. This
gives you the following folder structure:

\Code
\VB

Add.vb
\CS

Subtract.cs

64

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 64

Figure 3-10

This still won’t correctly compile these class files into separate assemblies, not until you make some
additions to the web.config file. Most likely, you don’t have a web.config file in your solution at this
moment, so add one through the Solution Explorer. After it is added, change the <compilation> node
so that it is structured as shown in Listing 3-16.

Listing 3-16: Fixing the web.config file so that you can have classes made up of
different languages in the \Code folder

<compilation>
<codeSubDirectories>

<add directoryName=”VB”></add>
<add directoryName=”CS”></add>

</codeSubDirectories>
</compilation>

Now that this is in place in your web.config file, you can work with each of the classes in your
ASP.NET pages. Also, any C# class placed in the CS folder is now automatically compiled just like any of
the classes placed in the VB folder. It is also important to note that because of the ability to add these
directories yourself in the web.config file, you are not required to name them VB and CS as I did; you
can use whatever name tickles your fancy.

65

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 65

\Themes folder
Themes are a new way of providing a common look and feel to your site across every page. You imple-
ment a theme by using .skin file, CSS files, and images used by the server controls of your site. All
these elements can make a Theme, which is then stored in the \Themes folder of your solution. By stor-
ing these elements within the \Themes folder, you ensure that all the pages within the solution can take
advantage of the theme and easily apply its elements to the controls and markup of the page. Themes
are discussed in great detail in Chapter 7 of this book.

\Resources folder
Resource files are string tables that can serve as data dictionaries for your applications when these appli-
cations require changes to content based on things such as changes in culture. You can add Assembly
Resource Files (.resx) to this folder, and they are dynamically compiled and made part of the solution
for use by your .aspx pages. When using ASP.NET 1.0/1.1, you were required to use the resgen.exe tool
and to compile your resource files to a DLL or EXE for use within your solution. Now it is considerably
easier to deal with resource files in ASP.NET 2.0.

In addition to strings, you can also add images and other files to your resource files. For an example of
how to use resource files to create a multilingual ASP.NET 2.0 application, first create the \Resources
folder in your application. For this example, create two resource files in this folder — Resource.resx
and Resource.fi-FI.resx. The first file, Resource.resx is the default language file using American
English. The second file is for the same text, but in the Finnish language. Hence, this file uses fi-FI in
its name. When someone with a browser culture of fi-FI invokes the page, he sees the information that
comes from this file (Resource.fi-FI.resx). Everyone else who comes to the site gets the information
that comes from the other file (Resource.resx).

Notice (as shown in Figure 3-11) that you can actually do a lot with .resx files. The idea is to create a
table of the items that need to be localized (such as text, images, and files). For this example, you can
stick to text.

The Resource.resx file should have the following structure:

Name Value

Answer Hello there
PageTitle Sample Page
Question What is your name?

For the Resource.fi-FI.resx file, you should use the following structure:

Name Value

Answer Hei
PageTitle Näytesivu
Question Mikä sinun nimi on?

66

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 66

Figure 3-11

To use these files, create a simple .aspx page using the code from Listing 3-16.

Listing 3-16: A simple ASP.NET page that uses resource files

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Page.Title = Resources.Resource.PageTitle
End Sub

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = Resources.Resource.Answer & “ “ & Textbox1.Text

End Sub
</script>

(continued)

67

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 67

Listing 3-16: (continued)

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title></title>
</head>
<body>

<form id=”Form1” runat=”server”>
<p><%= Resources.Resource.Question %></p>

<asp:textbox id=”Textbox1” runat=”server”></asp:textbox>

<asp:button id=”Button1” runat=”server” text=”Submit”
onclick=”Button1_Click” />

<p><asp:label id=”Label1” runat=”server”></asp:label></p>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

Page.Title = Resources.Resource.PageTitle;
}

void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = Resources.Resource.Answer + “ “ + Textbox1.Text;
}

</script>

When this is run, you get the appropriate text based upon the culture setting in your browser. If this set-
ting is not fi-FI, you get the American English text. The page output is shown in Figure 3-12.

Figure 3-12

68

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 68

In order to see the Finnish text, add the following Page directive:

uiculture=”fi-FI”

After this is in place, run the page. You see the Finnish language output shown in Figure 3-13.

Figure 3-13

Compilation
You already saw how Visual Studio 2005 compiles pieces of your application as you work with them
(for instance, by placing a class in the \Code folder). The rest of the application, such as the .aspx pages
themselves can be compiled just as in ASP.NET 1.0/1.1 by referencing the pages in the browser.

When an ASP.NET page is referenced in the browser for the first time, the request is passed to the
ASP.NET parser that creates the class file in the language of the page. After the class file has been cre-
ated, the class file is compiled into a DLL and then written to the disk of the Web server. This is detailed
in Figure 3-14.

On the next request, great things happen. Instead of going through the entire process again for the sec-
ond and respective requests, the request simply causes an instantiation of the already-created DLL,
which sends out a response to the requester. This is illustrated in Figure 3-15.

Because of the mechanics of this process, if you made changes to your .aspx code-behind pages, you
found it necessary to recompile your application. This can be quite a pain if you have a larger site and
don’t want your end users to experience the extreme lag that occurs when an .aspx page is referenced
for the first time after compilation. Many developers, consequently, began to develop their own tools
that would automatically go out and hit every single page within their application to remove this first-
time lag hit from the end user’s browsing experience.

69

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 69

Figure 3-14

Figure 3-15

ASP.NET 2.0 introduces the technology to precompile your entire application with a single command that
you can issue directly in the browser. This type of compilation is referred to as in-place precompilation. In
order to precompile your entire ASP.NET application, pull up one of the pages in the browser and replace
the page name with precompile.axd. So, if you are working with the Web server that is built into Visual
Studio 2005, your request is structured in the following format:

Request

Response

Parse Generate

Compile

Instantiate,
process, and
render

ASP.NET
Engine

Page
Class

Code-
Behind
Class

Generated
Page
Class

.ASPX
File

2nd Request
Instantiation

2nd Request

Request

Response

Parse Generate

Compile

Instantiate,
process, and
render

ASP.NET
Engine

Page
Class

Code-
Behind
Class

Generated
Page
Class

.ASPX
File

70

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 70

http://[host]:[port]/[Application Name]/precompile.axd

If you are using IIS as the Web server, your request is structured in the following format:

http://[host]/[Application Name]/precompile.axd

If it is successful, you get a message that states the precompilation was successful. The other great thing
about this precompilation capability is that you can also use it to find any errors on any of the ASP.NET
pages in your application. Because it hits each and every page, if one of the pages contains an error
that won’t be triggered until runtime, you get notification of the error immediately as you invoke
precompile.axd.

The next precompilation option is commonly referred to as precompilation for deployment. This is an out-
standing new addition to ASP.NET that enables you to compile your application down to some DLLs,
which can then be deployed to customers, partners, or elsewhere for your own use. Not only are mini-
mal steps required to do this, but after your application is compiled, you only have to move around the
DLL and some placeholder files for the site to work. This means that your Web site code is completely
removed and placed in the DLL when deployed.

To precompile your application for deployment, you must use the aspnet_compiler.exe tool that now
comes with ASP.NET 2.0. You navigate to the tool using the Command window. Open the Command
window and navigate to C:\Windows\Microsoft.NET\Framework\v2.0.xxxxx\. When you are
there, you can work with the aspnet_compiler tool.

Before you do, however, create a folder in your root drive called, for example, Wrox. This folder is the
one you ask the compiler to output to. When it is in place, you can return to the compiler tool and give it
the following command:

aspnet_compiler -v [Application Name] –p [Physical Location] [Target]

So, if you had an application called INETA located at C:\Websites\INETA, you would use the following
commands:

aspnet_compiler –v /INETA –p C:\Websites\INETA C:\Wrox

Press Return and the compiler either tells you that it has a problem with one of the command parame-
ters, or that it was successful (shown in Figure 3-16). If it was successful, you can see the output that was
placed in the target directory.

Figure 3-16

71

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 71

In the example just shown, -v is a command for the virtual path of the application — which is provided
by using /INETA. The next command is –p, which is pointing to the physical path of the application. In
this case, it is C:\Websites\INETA. Finally, the last bit, C:\Wrox, is the location of the compiler output.
The following table describes the possible commands for the aspnet_compiler.exe tool.

Command Description

-m Specifies the full IIS metabase path of the application. If you use the -m
command, you cannot use the -v or -p commands.

-v Specifies the virtual path of the application that is going to be compiled.
If you also use the -p command, the physical path is used to find the
location of the application.

-p Specifies the physical path of the application that is going to be compiled.
If this is not specified, the IIS metabase is used to find the application.

targetDir Specifies the target directory where the compiled files should be placed. If
this is not specified, the files output are placed in the application directory.

After compiling the application, you can go to C:\Wrox to see the output. Here you see all the files and
the file structure that was in the original application. But if you look at the contents of one of the files,
notice that the file is simply a placeholder. In the actual file you find the comment:

This is a marker file generated by the precompilation tool,
and should not be deleted!

In fact, you find a Code.dll file in the bin folder where all the page code is located. Because it is in a
DLL file, is provides great code obfuscation as well. From here on, all you do is move these files to
another server using FTP or Windows Explorer and you can run the entire Web application from these
files. When you have an update to the application, you simply provide a new set of compiled files. A
sample output is displayed in Figure 3-17.

Figure 3-17

72

Chapter 3

03_572865 ch03.qxd 7/7/04 9:50 PM Page 72

Note that this compilation process doesn’t compile every type of Web file. In fact, it compiles only the
ASP.NET-specific file types and leaves out of the compilation process files such as

❑ HTML files

❑ XML files

❑ XSD files

❑ Web.Config files

❑ Text files

You can’t do much to get around this, except in the case of the HTML files and the text files. For these
file types, just change the file extension to .aspx and they are then compiled into the Code.dll like all
the other ASP.NET files.

Summary
This chapter covered a lot of ground. I discussed some of the issues concerning ASP.NET applications as
a whole and the choices you have when building and deploying these new applications. With the help of
Visual Studio 2005, you now have options about which Web server to use when building your applica-
tion and whether to work locally or remotely through the new built-in FTP capabilities.

ASP.NET 2.0 and Visual Studio 2005 make it easy to build your pages using an inline coding model or to
select a new and better code-behind model that is simpler to use and easier to deploy. You also took a
look at the new cross-posting capabilities and the new fixed folders that ASP.NET 2.0 has incorporated
to make your life easier. These folders make their resources available dynamically with no work on your
part. Finally, you saw some of the outstanding new compilation options that you have at your disposal.

As you worked through some of the examples, you may have been thinking, “WOW!” But wait . . .
there’s plenty more to come!

73

Application and Page Frameworks

03_572865 ch03.qxd 7/7/04 9:50 PM Page 73

03_572865 ch03.qxd 7/7/04 9:50 PM Page 74

New Ways to Handle Data

ASP.NET 1.0 introduced some revolutionary ways to retrieve and manipulate data. ADO.NET
(introduced in .NET 1.0) enabled you to grab data from data stores in an intuitive manner and
then store the retrieved data in objects like the new DataSet object. Although the process was revo-
lutionary, it was complicated and contained numerous possible pitfalls.

ASP.NET 2.0 introduces data source controls to bridge the gap between your data stores and the
data-bound controls at your disposal. These new data controls not only enable you to retrieve data
from various data stores, but they also let you easily manipulate the data (using paging, sorting,
editing, and filtering) before the data is bound to an ASP.NET server control.

This chapter presents the new data source controls as well as some of the new data-bound controls
that you can use to display retrieved data.

The New Data Source Controls
Before the introduction of the new data source controls, just retrieving data from a data store and
displaying it in a DataGrid control was a multistep process. This is illustrated in Listing 4-1.

Listing 4-1: Binding a DataGrid control in ASP.NET 1.0/1.1 (VB only)

Dim conn As SqlConnection = New SqlConnection(“server=’localhost’;
trusted_connection=true; Database=’Northwind’”)

Dim cmd As SqlCommand = New SqlCommand(“Select * From Customers”, conn)
conn.Open()

Dim da As SqlDataAdapter = New SqlDataAdapter(cmd)
Dim ds As New DataSet

da.Fill(ds, “Customers”)

DataGrid1.DataSource = ds
DataGrid1.DataBind()

04_572865 ch04.qxd 7/7/04 9:51 PM Page 75

In this example, you can see the many steps required just to retrieve the Customers table from SQL
Server. First, a SqlConnection object is created to connect to SQL Server. Next, a SqlCommand object is
created to pass in the command to the database from which data is to be retrieved. After the connection
is opened, SqlDataAdapter is used to get the data and then fill the DataSet object that is created. After
the DataSet object is in place and filled with the data from the Customers table, the DataSet object is
bound to the DataGrid control with a DataBind() command.

Because ASP.NET 2.0 is backward compatible, the example shown in Listing 4-1 works just the same as
it did in earlier versions of ASP.NET. Now, however, you can use one of the six new data source controls
that have been introduced in ASP.NET 2.0. These controls provide a declarative way to connect to data
stores and retrieve specific data. Working with the new data source controls is considerably easier than
any previous methods. In most cases, you simply need a single line of code to get at the data you want
and, in some cases, zero lines of code are required.

The new data source controls include some specifically designed to work with Microsoft SQL Server,
Microsoft Access, and many other types of data stores. The following table details the new data source
controls available in ASP.NET 2.0.

Data Source Control Description

SqlDataSource Enables you to work with any SQL-based database, such as Microsoft
SQL Server or Oracle.

AccessDataSource Enables you to work with a Microsoft Access file (.mbd).

ObjectDataSource Enables you to work with a business object or a Visual Studio 2005 data
component.

XmlDataSource Enables you to work with the information from an XML file or an XML
source (for example an RSS feed).

SiteMapDataSource Enables you to work with the hierarchical data represented in the site
map file (.sitemap). These files and how to bind to them are discussed
in Chapter 5.

DataSetDataSource Enables you to work with data that is represented in a DataSet object.

These data source controls connect to the assigned data store, retrieve the data, and perform any manip-
ulations on the data that you specify using control attributes. The data source control does all the sort-
ing, paging, and editing of the data. It also works with any data-bound controls such as the new
GridView control to perform automatic databinding without any work on your part.

The Data-Bound Server Controls
ASP.NET 2.0 provides a large collection of new data-bound server controls that can be used in conjunc-
tion with the new data source controls to display retrieved data in the browser. Although you probably
recognize many controls from ASP.NET 1.0/1.1, you also meet some new server controls — such as the

76

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 76

GridView control. Throughout this chapter, I show you how to use data-bound server controls with
these new data source controls. Remember the principles I describe can be easily applied to the other
data-bound controls as well.

The data-bound controls in ASP.NET 2.0 include

77

New Ways to Handle Data

❑ <asp:GridView>

❑ <asp:DataGrid>

❑ <asp:DetailsView>

❑ <asp:TreeView>

❑ <asp:Menu>

❑ <asp:DataList>

❑ <asp:Repeater>

❑ <asp:DropDownList>

❑ <asp:BulletedList>

❑ <asp:CheckBoxList>

❑ <asp:RadioButtonList>

❑ <asp:ListBox>

❑ <asp:AdRotator>

The next section shows you how to use some of these controls with the new data source controls.

The SqlDataSource and GridView Controls
The SqlDataSource control can be used with one of the newest data-bound controls in ASP.NET 2.0 —
the GridView control. The SqlDataSource control is not only for use with Microsoft’s SQL Server, you
can also use it for any SQL-capable server. For example, you can use this data source control to connect
to any OleDb- or ODBC-based data store or you can use it to work with Oracle.

Reading data
You can use this data source control to read data from a Microsoft SQL Server database. In this case, you
can use the sample Northwind database that comes with SQL Server. To start, place a new GridView
control on your page. This is the new tabular control that replaces the DataGrid control from ASP.NET
1.0/1.1. I discuss this control in detail throughout this chapter.

After the GridView is in place, change the look and feel of the control by clicking the Auto Format link in
the smart tag and choosing Black & Blue 1. Next, drag and drop a SqlDataSource control onto the design
surface. Because this control is not visual, it appears as a simple gray box on the design surface. Go to
the page source code by clicking the Source tab in Visual Web Developer. Modify the SqlDataSource con-
trol so that it appears as shown in Listing 4-2.

Listing 4-2: Reading data from a SqlDataSource control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SqlDataSource Control Page</title>
</head>

(continued)

04_572865 ch04.qxd 7/7/04 9:51 PM Page 77

Listing 4-2: (continued)

<body>
<form id=”form1” runat=”server”>

<asp:Gridview ID=”GridView1” Runat=”server” DataSourceId=”SqlDataSource1”
BackColor=”White” GridLines=”Vertical”
BorderStyle=”Solid” Cellpadding=”3” ForeColor=”Black”
BorderColor=”#999999” BorderWidth=”1px”>

<FooterStyle BackColor=”#CCCCCC”>
</FooterStyle>
<SelectedRowStyle ForeColor=”White” BackColor=”#000099”
Font-Bold=”True”>

</SelectedRowStyle>
<PagerStyle ForeColor=”Black” HorizontalAlign=”Center”
BackColor=”#999999”>

</PagerStyle>
<HeaderStyle ForeColor=”White” BackColor=”Black” Font-Bold=”True”>
</HeaderStyle>
<AlternatingRowStyle BackColor=”#CCCCCC”>
</AlternatingRowStyle>

</asp:GridView>

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
ProviderName=”System.Data.OleDb”
ConnectionString=”Provider=SQLOLEDB;Server=localhost;uid=sa;pwd=password;
database=Northwind” />

</form>
</body>
</html>

In this example, you can see that you need only a couple of attributes in the SqlDataSource control to
read data from SQL Server. The first is the SelectCommand attribute. This takes a String value that is
the SQL command you want the SqlDataSource control to use. In this example, you simply select every-
thing that is in the Customers table of the Northwind database. The next important attribute is the
ConnectionString attribute. This attribute takes a String value. The connection string must be the
kind of string that the provider expects, which is defined in the ProviderName attribute. In this case, it
is the OleDb provider.

After your SqlDataSource control is in place, you can attach any of the data-bound controls to this data
source control. To do this, the GridView control on the page uses the DataSourceId attribute. The
DataSourceId attribute takes a String value of the control ID of the SqlDataSource control —
SqlDataSource1.

When this table is generated in the browser, you see all the information from the Customers table in the
Northwind database, as shown in Figure 4-1.

78

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 78

Figure 4-1

Applying paging in the GridView
Another formerly cumbersome task for the DataGrid control was paging. With ASP.NET 2.0, the new
GridView control can easily work with any of the data source controls to apply paging to the data you
are working with. To apply paging to the GridView, simply use the AllowPaging attribute set to True.
By default, its value is False. The use of the AllowPaging attribute is shown in Listing 4-3.

Listing 4-3: Turning on paging in the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceId=”SqlDataSource1”
BackColor=”White” GridLines=”Vertical” AllowPaging=”True”
BorderStyle=”Solid” CellPadding=”3” ForeColor=”Black”
BorderColor=”#999999” BorderWidth=”1px”>

...
<PagerStyle ForeColor=”Black” HorizontalAlign=”Center” BackColor=”#999999”>
</PagerStyle>
...

</asp:GridView>

It really is as simple as that. You don’t need to make any changes to the SqlDataSource control for this to
work. After the AllowPaging attribute is changed to True, the GridView appears as shown in Figure 4-2.

79

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 79

Figure 4-2

In the figure, you can also see that the numbers at the bottom of the page have a style applied to them.
This style is defined in the GridView control with the use of the <PagerStyle> element. Besides the
<PagerStyle> element, a number of additional style elements can be utilized within the GridView
control.

As you can see from the screen shot in Figure 4-2, the page numbers are shown at the bottom of the
table. You can completely customize the appearance of these numbers. You can, for example, use short-
cuts to change the navigation among pages in the table.

In IntelliSense, you see a collection of attributes that start with the term PagerSettings-. The
PagerSettings-mode attribute , for example, can take NextPrevious, NextPreviousFirstLast,
Numeric, or NumericFirstLast as possible values. The default value is Numeric.

Figure 4-3 shows a GridView control using NextPrevious.

80

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 80

Figure 4-3

Figure 4-4 shows the use of NextPreviousFirstLast.

Figure 4-4

The PagerSettings-PageButtonCount is an interesting attribute that can be used with the two
numeric settings for the PagerSettings-Mode attribute (one of which is the default setting). This
attribute takes an Integer value and, when this value is set, only the specified number of page options
in the list of pages is shown. Listing 4-4 is an example of this.

Listing 4-4: Showing only a specific number of page options

<asp:GridView ID=”GridView1” Runat=”server” DataSourceId=”SqlDataSource1”
BackColor=”White” GridLines=”Vertical” AllowPaging=”True”
PagerSettings-Mode=”Numeric” PagerSettings-PageButtonCount=”3”
BorderStyle=”Solid” CellPadding=”3” ForeColor=”Black”
BorderColor=”#999999” BorderWidth=”1px”>

...
<PagerStyle ForeColor=”Black” HorizontalAlign=”Center” BackColor=”#999999”>
</PagerStyle>
...

</asp:GridView>

Using these attribute combinations causes the pager at the bottom of the table to appear as shown in
Figure 4-5.

Figure 4-5

81

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 81

I won’t go through examples of the other attributes and how they relate to the paging capabilities of the
GridView. Some of these cool attributes, however, include the PagerSettings-FirstPageImageUrl,
PagerSettings-FirstPageText, PagerSettings-LastPageImageUrl, and the PagerSettings-
LastPageText attributes. When these are used with the PagerSettings-mode attribute set to one of
the NextPrevious styles, you can have images or custom text appear in place of the greater-than/
less-than signs, as illustrated in Figure 4-6.

Figure 4-6

Sorting rows in the GridView control
Using the same GridView control from the previous examples, you can enable the end user to sort rows
as easily as he can paginate them. This is quite useful when dealing with a large collection of data in the
GridView. If you can sort the data by clicking the column heading you can easily view the data in a logi-
cal manner. How to apply sorting to the data in the GridView control is shown in Listing 4-5.

Listing 4-5: Turning on sorting in the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceId=”SqlDataSource1”
BackColor=”White” GridLines=”Vertical” AllowSorting=”True”
BorderStyle=”Solid” CellPadding=”3” ForeColor=”Black”
BorderColor=”#999999” BorderWidth=”1px”>

...
</asp:GridView>

If you set the value of the AllowSorting attribute to True, the end user can click a column heading to
sort the entire list based on that selected column. Clicking the same column again sorts the list in the
reverse direction. Figure 4-7 shows the GridView sorted by Country.

82

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 82

Figure 4-7

Defining bound columns in the GridView control
In many instances, you want to display only select columns from the table of data being retrieved. One
way to do this is to modify your select statement so that it retrieves only the columns you want to dis-
play. For instance, your Select statement might resemble the following:

Select CustomerId, CompanyName From Customers

This code determines that only these two columns are displayed in the GridView control. At times, you
may want to retrieve certain columns in order to act upon the information they contain, but not display
these columns to the end user. For example, you may want to retrieve the CustomerId column from the
Customers table, but not display this column to the end user. You see how you can do this in Listing 4-6.

Listing 4-6: Building columns in the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceId=”SqlDataSource1”
AllowSorting=”True” BackColor=”White” GridLines=”Vertical”
BorderStyle=”Solid” CellPadding=”3” ForeColor=”Black” BorderColor=”#999999”
BorderWidth=”1px” AutoGenerateColumns=”False”>

<Columns>
<asp:BoundField Visible=”False” DataField=”CustomerID”>
</asp:BoundField>
<asp:BoundField SortExpression=”CompanyName” HeaderText=”Company Name”
DataField=”CompanyName”>

</asp:BoundField>
<asp:BoundField SortExpression=”Country” HeaderText=”Country”
DataField=”Country”>

</asp:BoundField>
</Columns>
...

</asp:GridView>

83

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 83

For the example in Listing 4-6, I changed the SQL statement in the SqlDataSource control to Select *
From Customers just to show that you can pick and choose which items to display in the GridView
control. The attribute AutoGenerateColumns is added to the main <asp:GridView> node and set to
False. By default, this attribute is set to True causing the GridView control to automatically generate
each and every column that comes from the dataset retrieved by the SqlDataSource control. When the
attribute is set to False, you must specify which columns the GridView control generates.

You can also use the <Columns> section to specify how the columns are displayed in the GridView con-
trol. The < Columns > section of the GridView control can take any number of <asp:BoundField>
elements. The <asp:BoundField> elements are what you use to associate a column displayed in the
GridView control to a column of data from the Customers table in the Northwind database. You can see
that each of the three <asp:BoundField> elements in this GridView control example is used in a differ-
ent manner. The first <asp:BoundField> element grabs the CustomerId field. This is specified in the
<asp:BoundField > element by the DataField attribute. The String value assigned to the
DataField element must be the column name used in the Customers table. The other important
attribute used in the <asp:BoundField> is the Visible attribute. By default, the Visible attribute is
set to True — meaning that the column is displayed in the GridView control; but in this case, you set
it to False. Why? Because when the end user is acting on a row of data, you may want to associate
that row of data with an identifier (such as a primary key value). You may not, however, want to show
that data item to the end user. This is illustrated later in the chapter in the example where users edit
rows of data.

The second <asp:BoundField> element is associated with the CompanyName column in the Customers
table via the use of the DataField attribute. This <asp:BoundField> element also has a few additional
items contained within it. The first is the HeaderText attribute. Column names contained with
databases are not the prettiest things in the world, nor are they always that descriptive. For this reason,
you often change the column header names in the GridView control to make them a little more user-
friendly. You make this change using the HeaderText attribute. The String value placed here is used
by the GridView control at the top of the column. In this case, you change the default display of
CompanyName to Company Name. The second attribute used in the second <asp:BoundField> element
is the SortExpression attribute. This attribute points to the column name used in the Customers table.
When sorting is enabled, the GridView knows on which column to sort the data.

In the third <asp:BoundField>, you don’t use the HeaderText attribute because Country is a good
heading listing. The result of Listing 4-6 is illustrated in Figure 4-8.

When you use the <asp:BoundField> elements, the columns appear from left to right in the order in
which they are used in the <Columns> section of the GridView control. Therefore, you can easily change
the order in which they appear in the GridView control just by changing their order in the <Columns>
section.

84

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 84

Figure 4-8

Another cool feature of the GridView control is that you can use images in the headings instead of text.
This is shown in Listing 4-7.

Listing 4-7: Using images in the column headings

<asp:BoundField SortExpression=”Country” DataField=”Country”
HeaderImageUrl=”~/iconGlobe.gif”>

</asp:BoundField>

This is a partial code listing. The <asp:BoundField> element associated with the Country heading is
changed so that it now displays an image instead of text. The HeaderText attribute and value is
removed and replaced with the HeaderImageUrl attribute. The value for this attribute points to the
location of the image. This kind of construct gives you something similar to Figure 4-9.

85

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 85

Figure 4-9

Another nice feature is that end users can click the image to sort the column (just as they clicked text col-
umn headers). An interesting feature associated with column generation is the capability to specify what
the GridView should display when it encounters Null values within a column. For an example of this,
add a column using an additional <asp:BoundField>, as illustrated in Listing 4-8.

Listing 4-8: Working with Null values in a column

<asp:BoundField SortExpression=”Region” NullDisplayText=”NO REGION”
HeaderText=”Region” DataField=”Region”>

</asp:BoundField>

For this example, add an <asp:BoundField> element to display the Region column from the
Customers table. As you look through the data in the Region section, notice that not every row has a
value in it. What if you didn’t want just a blank box to show an empty value, but you wanted to show
some text in place of the empty items in the column. To do this, you utilize the NullDisplayText
attribute. The String value it provides is used for each and every row that doesn’t have a Region value.
This construct produces the results illustrated in Figure 4-10.

86

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 86

Figure 4-10

A Null value is different from an empty string value. In the example from Listing 4-8, any empty strings
encountered do not receive the NO REGION text. To get around this (if you want to), you can use the
TreatEmptyStringAsNull attribute, which takes a Boolean value. If set to True, all empty values are
treated as if they are Null values — meaning that they receive the NO REGION text. If the attribute is set
to False (the default), all empty values are treated as something other than Null and do not receive the
NO REGION text.

Enabling the editing of rows in the GridView control
Not only do developers want to display tabular data within a browser, they also want to give end users
the capability to edit and send the changes made back to the data store. Adding an editing capability to
the DataGrid control in ASP.NET 1.0/1.1 was always difficult. But it was important enough that devel-
opers often felt the need to add it to their pages.

ASP.NET 2.0’s new GridView server control allows for easy editing of the content it contains. For an
example of this, enable the end user to edit the contents contained in the GridView control, as shown in
Listing 4-9.

87

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 87

Listing 4-9: Editing data in the GridView control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SqlDataSource Control Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:GridView ID=”GridView1” Runat=”server” Datasourceid=”SqlDataSource1”
AutoGenerateColumns=”False” DataKeyNames=”CustomerID”
BackColor=”White” GridLines=”Vertical”
BorderStyle=”Solid” CellPadding=”3” ForeColor=”Black”
BorderColor=”#999999” BorderWidth=”1px”>

<Columns>
<asp:CommandField ShowEditButton=”True”>
</asp:CommandField>
<asp:BoundField SortExpression=”CustomerID” HeaderText=”CustomerID”
ReadOnly=”True” DataField=”CustomerID”>

</asp:BoundField>
<asp:BoundField SortExpression=”CompanyName”
HeaderText=”Company Name” DataField=”CompanyName”>

</asp:BoundField>
<asp:BoundField SortExpression=”Country” HeaderText=”Country”
DataField=”Country”>

</asp:BoundField>
<asp:BoundField SortExpression=”Region” NullDisplayText=”NO REGION”
HeaderText=”Region” DataField=”Region”>

</asp:BoundField>
</Columns>
<FooterStyle BackColor=”#CCCCCC”>
</FooterStyle>
<SelectedRowStyle ForeColor=”White” BackColor=”#000099”
Font-Bold=”True”>

</SelectedRowStyle>
<PagerStyle ForeColor=”Black” HorizontalAlign=”Center”
BackColor=”#999999”>

</PagerStyle>
<HeaderStyle ForeColor=”White” BackColor=”Black” Font-Bold=”True”>
</HeaderStyle>
<AlternatingRowStyle BackColor=”#CCCCCC”>
</AlternatingRowStyle>

</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
UpdateCommand=”UPDATE Customers SET CompanyName = @CompanyName,

Country = @Country, Region = @Region WHERE (CustomerID = @CustomerID)”
ConnectionString=”Server=(local);Trusted_Connection=True;Integrated

Security=SSPI;Persist Security Info=True;Database=Northwind”
ProviderName=”System.Data.SqlClient”>

<UpdateParameters>
<asp:Parameter Name=”CustomerID” Type=”String”>

88

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 88

</asp:Parameter>
<asp:Parameter Name=”CompanyName” Type=”String”>
</asp:parameter>
<asp:parameter Name=”Country” Type=”String”>
</asp:parameter>
<asp:parameter Name=”Region” Type=”String”>
</asp:parameter>

</UpdateParameters>
</asp:SqlDataSource>

</form>
</body>
</html>

When you run the table produced by the GridView, it displays the contents as specified in the earlier
examples in this chapter. The new addition is the Edit column that appears in the leftmost column in
the table. Clicking any Edit link enables the end user to edit the content of the selected row. This is illus-
trated in Figure 4-11.

Figure 4-11

Looking at the code in this example, note that you have picked the columns from the Customers table to
be displayed. In this case, the columns displayed are the CustomerID, CompanyName, Country, and
Region columns. In the listings contained within the <Columns> section of the GridView, notice that
the leftmost column in the GridView is the Edit link, which enables the end user to edit a selected row:

<asp:CommandField ShowEditButton=”True”>
</asp:CommandField>

To create the Edit column in the table, you use the <asp:CommandField> element, which enables you to
place actions like Cancel, Delete, Edit, Insert, and Select as buttons in your tables. In this case, you show
the Edit button by setting the ShowEditButton attribute to True. Just like the <asp:BoundField>
element, the <asp:CommandField> element can be modified with a large number of different style
attributes, as well as with attributes such as the HeaderText and the HeaderImageUrl.

89

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 89

If you have worked through this example, you can see that all the buttons in the Edit column (Edit,
Update, Cancel) are shown as links. This is the default setting, but you can change it so that these
items appear either as buttons or custom images. To show these items as buttons, you simply set the
ButtonType attribute to Button:

<asp:CommandField ShowEditButton=”True” ButtonType=”Button”>
</asp:CommandField>

The results of this are illustrated in Figure 4-12.

Figure 4-12

You can also use custom images for these actions. To do this, you specify Image as the ButtonType:

<asp:CommandField ShowEditButton=”True” ButtonType=”Image”
EditImageUrl=”~/edit.gif” UpdateImageUrl=”~/fix.gif”
CancelImageUrl=”~/cancel.gif”>

</asp:CommandField>

If you instruct the ButtonType to use images, you also use the EditImageUrl, UpdateImageUrl, and
the CancelImageUrl attributes to give the location of the images you want in the table. Doing this pro-
duces the following results, as illustrated in Figure 4-13.

In the example in Listing 4-9, another change made to the columns and their appearance in the table
involves the CustomerID column. The data elements contained within this column uniquely identify the
customer and, in this case, it is actually the primary key for the entry in the database. Because of this,
you don’t want the end user to edit this entry. Turning off the edit capability is easy to do by using the
ReadOnly attribute for the column definition:

<asp:BoundField SortExpression=”CustomerID” HeaderText=”CustomerID”
ReadOnly=”True” DataField=”CustomerID”>

</asp:BoundField>

90

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 90

Figure 4-13

Specifying the ReadOnly attribute as True means that although the end user can edit some rows in the
table, he can’t edit the CustomerID field. This is shown in the previous screen shots of this table.

Now that the columns specified in the <Columns> section of the GridView control are in place, you must
associate the primary key to identify a row when it is sent back to the server for an update or deletion.
This is done in the main <asp:GridView> element:

<asp:gridview id=”GridView1” Runat=”server” DataSourceId=”SqlDataSource1”
AutoGenerateColumns=”False” DataKeyNames=”CustomerID”
BackColor=”White” GridLines=”Vertical”
BorderStyle=”Solid” CellPadding=”3” ForeColor=”Black”
BorderColor=”#999999” BorderWidth=”1px”>

You make this association with the DataKeyNames attribute (shown in bold). You can see that the value
assigned to this attribute in the example points to the CustomerID field. Without this specification, the
selected row is not updated. After this is in place, the GridView control is ready. Now turn your atten-
tion to the SqlDataSource control used by the GridView control.

You want the table not only to display data (using the SelectCommand attribute), but also to enable the
end user to push updates of the data to SQL Server. You do this by adding an UpdateCommand attribute
to the SqlDataSource control:

<asp:SqlDataSource Id=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
UpdateCommand=”UPDATE Customers SET CompanyName = @CompanyName,

Country = @Country, Region = @Region WHERE (CustomerID = @CustomerID)”
ConnectionString=”Server=(local);Trusted_Connection=True;Integrated

Security=SSPI;Persist Security Info=True;Database=Northwind”
ProviderName=”System.Data.SqlClient”>

91

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 91

The UpdateCommand attribute takes a String value, which is the SQL command to update the
database. A number of named parameters, such as @CompanyName, @Country, @Region, and
@CustomerID, are placeholders for the corresponding information that is going to come from the
selected row. Now that you are using named parameters in the update command, however, you must
define the parameters. This is where the <UpdateParameters> section of the SqlDataSource control
comes into play:

<UpdateParameters>
<asp:Parameter Name=”CustomerID” Type=”String”>
</asp:Parameter>
<asp:Parameter Name=”CompanyName” Type=”String”>
</asp:parameter>
<asp:parameter Name=”Country” Type=”String”>
</asp:parameter>
<asp:parameter Name=”Region” Type=”String”>
</asp:parameter>

</UpdateParameters>

Within the <UpdateParameters> section of the GridView control, each named parameter is defined using
the <asp:Parameter> element. The <asp:Parameter> element here uses two attributes that define the
name and data type of the parameter (in this case, all parameters are of type String). In addition to an
<UpdateParameters> section for the GridView control, you can also use the <DeleteParameters>,
<FilterParameters>, <InsertParameters>, and <SelectParameters> sections to provide parame-
ters for other operations.

Deleting data from the GridView
Deleting data from the table produced by the GridView is even easier than editing data. Just a few addi-
tions to the code enable you to delete an entire row of data from the table. As you saw in the previous
example (Listing 4-9), you simply add the Delete button to the <asp:CommandField> element of the
GridView by setting the value of the ShowDeleteButton attribute to True (see Listing 4-10).

Listing 4-10: Adding a Delete link (partial code)

<asp:CommandField ShowEditButton=”True” ShowDeleteButton=”True”>
</asp:CommandField>

The addition of the ShowDeleteButton to the GridView is the only change you make to this control.
Now look at the SqlDataSource control. Listing 4-11 shows you the root element of this control.

Listing 4-11: Adding delete functionality to the SqlDataSource control

<asp:SqlDataSource Id=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
UpdateCommand=”UPDATE Customers SET CompanyName = @CompanyName,

Country = @Country, Region = @Region WHERE (CustomerID = @CustomerID)”
DeleteCommand=”DELETE From Customers WHERE (CustomerID = @CustomerID)”
ConnectionString=”Server=(local);Trusted_Connection=True;Integrated

Security=SSPI;Persist Security Info=True;Database=Northwind”
ProviderName=”System.Data.SqlClient”>

92

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 92

In addition to the SelectCommand and UpdateCommand attributes, you also add the DeleteCommand
attribute to the SqlDataSource server control and provide the SQL command that deletes the specified
row. Just like the UpdateCommand attribute, the DeleteCommand attribute uses a named parameter.
Because of this, you define what this parameter is from within the SqlDataSource control. To do this,
add a <DeleteParameters> section to the SqlDataSource control, as shown in Listing 4-12.

Listing 4-12: Adding a <DeleteParameters> section to the SqlDataSource control

<DeleteParameters>
<asp:Parameters Name=”CustomerID” Type=”String”>
</asp:Parameters>

</DeleteParameters>

This is the only parameter definition needed for the <DeleteParameters> section because the SQL
command for this deletion requires only the CustomerID from the row to delete the entire row.

When you run the example with this code in place, you see a Delete link next to the Edit link. Clicking
the Delete link completely deletes the selected row.

Dealing with other column types in the GridView
So far in this chapter, you have looked at only two types of columns in the GridView control: the
BoundField and the CommandField columns. Although these are the column types that you most com-
monly use, additional column types are at your disposal (such as the CheckBoxField, HyperLinkField,
and the TemplateField columns). Take a quick look at each of these column types.

<asp:CheckBoxField>
An example of the CheckBoxField column is the Discontinued column, shown in Figure 4-14. In it,
the GridView control displays the contents of the Products table in the Northwind database of SQL
Server.

Figure 4-14

93

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 93

The GridView automatically converts a column type to a CheckBoxField if the data store’s column type
is using a Boolean or a bit value. To specify which columns should be displayed using the <Columns>
section of the GridView, use the method shown in Listing 4-13.

Listing 4-13: Showing check boxes in the GridView control

<Columns>
<asp:CheckBoxField SortExpression=”Discontinued” DataField=”Discontinued”
HeaderText=”Discontinued”>

</asp:CheckBoxField>
</Columns>

<asp:HyperLinkField>
You can also just as easily create columns in your tables that include hyperlinks by using the
HyperLinkField column. You can use the HyperLinkField column to enable end users to see related
information on another page that you can link to from each row in the table. Each row might need a dis-
tinct URL, requiring you to put this type of column in the GridView. Listing 4-14 shows an example of
using the <asp:HyperLinkField> element to link to more information about the customer represented
in the Customers table from the Northwind database of SQL Server.

Listing 4-14: Showing hyperlinks in the GridView control

<Columns>
<asp:HyperLinkField SortExpression=”CompanyName” DataTextField=”CompanyName”
HeaderText=”Company Name” DataNavigateUrlFields=”CustomerID”
DataNavigateUrlFormatString=”http://www.reuters.com/mycustomers?custid={0}”>

</asp:HyperLinkField>
</Columns>

This code gives you the results illustrated in Figure 4-15.

Figure 4-15

94

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 94

You can see that each of the company names is a hyperlink in the table. If you hover your mouse over
the links, note that each one has a different hyperlink destination. The <asp:HyperLinkField> element
contains some attributes that differ from the other items in the <Columns> section of the GridView con-
trol. Instead of a DataField attribute, the HyperLinkField column uses a DataTextField attribute.
This attribute specifies the text used for the hyperlink — in this case, the information found in the
CompanyName column from the data store.

Using the DataNavigateUrlFormatString attribute, you specify the link destination to be used for
the hyperlink. In this case, it is http://www.reuters.com/mycustomers?custid={0}. Looking at the
link itself, you see that every customer link goes to the same page, but the page can be customized for
the customer selected in the table because of the querystring used with the link (custid={0}). The
querystring itself does not contain a value for custid. This is generated dynamically and is unique
for each and every row in the table. You show the dynamic part of a hyperlink with the use of {0}.

After the DataNavigateUrlFormatString attribute is in place, you specify what takes the place of
the {0} in each hyperlink that is created. For this, you use the DataNavigateUrlFields attribute.
This attribute can take one or more fields to be used in the hyperlink. For this example, refer to the
CustomerID column from the data store. When you refer to CustomerID, a link like this appears:
http://www.reuters.com/mycustomers?custid=WARTH.

By the way, if you have to create a hyperlink such as http://www.reuters.com/mycustomers?
custid=WARTH&country=Finland, you give the DataNavigateUrlFormatString a value of
http://www.reuters.com/mycustomers?custid={0}&country={1}. Because this hyperlink
contains two dynamic parts, you construct the DataNavigateUrlFields attribute as follows:

DataNavigateUrlFields=”CustomerID, Country”

<asp:TemplateField>
The final column type is the TemplateField column. This column enables you to completely customize the
appearance and the structure of the generated column in the GridView control. You can place pretty much
anything you want in the cells of your table. For instance, you could put any of the other <asp:> controls
in the templates used for the cells — this would be easy to achieve using the <asp:TemplateField. For
example, if you want a cell that contains both the CustomerID and CompanyName items from the Customers
table in the Northwind database, you use the code illustrated in Listing 4-15.

Listing 4-15: Working with the TemplateField column

<asp:TemplateField SortExpression=”CustomerID” HeaderText=”Our Customers”>
<itemtemplate>

<asp:Label Runat=”server” Text=’<%# Eval(“CustomerID”) %>’
Font-Bold=”True” BackColor=”Red” />

<asp:Label Runat=”Server” Text=’<%# Eval(“CompanyName”) %>’ />
</itemtemplate>
<alternatingitemtemplate>

<asp:Label Runat=”server” Text=’<%# Eval(“CustomerID”) %>’
Font-Bold=”True” BackColor=”Yellow” />

<asp:Label ID=”Label1” Runat=”Server” Text=’<%# Eval(“CompanyName”) %>’ />
</alternatingitemtemplate>

</asp:TemplateField>

95

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 95

In this example, both the CustomerID data item and the CompanyName data item are shown in the same
cell. By using the <ItemTemplate> and the <AlternatingItemTemplate> elements, you can change
the background color used for the CustomerID data item, as shown in Figure 4-16 (it’s not easy to tell
in this black-and-white screen shot, but red and yellow have been used as background colors for the
customer ID).

Figure 4-16

The AccessDataSource and
DetailsView Controls

Not only can you easily connect to Microsoft SQL Server using the new SqlDataSource control, you can
also connect to any Microsoft Access database (an .mdb file) just as easily by using the AccessDataSource
control provided with ASP.NET 2.0. Microsoft Access is a great database to use in smaller sites or appli-
cations. It is especially useful when you are working with an application hosted on a third-party server
that doesn’t provide or allow you to work with a SQL Server database. You can use this data source
control with any of the data-bound server controls. Previous examples of using the GridView control
can be done just as easily using the AccessDataSource control in place of the SqlDataSource control.
Instead of showing more examples using just the GridView control, this section focuses on using the
AccessDataSource control with another new data-bound control — the DetailsView control.

96

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 96

You won’t find that much difference between the AccessDataSource control and the previously viewed
SqlDataSource control (besides the fact that they connect to different types of data stores). You can work
with the AccessDataSource control in much the same manner as you worked with the SqlDataSource
control.

Microsoft Access, just like SQL Server, comes with a sample database called Northwind. For this chapter,
I use the sample Northwind database found at C:\Program Files\Microsoft Office\OFFICE11
\SAMPLES\Northwind.mdb from the Microsoft Access product that is part of Office 11. You can get to
the sample Northwind database within Microsoft Access by choosing Help ➪ Sample Databases ➪

Northwind Sample Database. If you do not have the database installed, you are prompted at this time
to install it.

After the sample database is in place, you can use this sample .mdb file (titled Northwind.mdb) and the
AccessDataSource control to work with the samples in this chapter.

The DetailsView control is a new data-bound control that enables you to view a single record at a time.
Although the GridView control is an excellent control for viewing a collection of data that consists of
multiple rows, you might also want to drill down into one of those individual records. The DetailsView
control lets you do this.

This control has a lot of the same types of behaviors and functionality found in the GridView control.
You can use the DetailsView control to do things like paging, updating, inserting, and deleting data.

For an example of using the new AccessDataSource control with the new DetailsView control, follow
these steps to get at the Customers table from the Northwind database in the sample .mdb file:

1. Create a new ASP.NET page using either Visual Basic or C#.

2. Drag and drop a DetailsView server control onto the design surface.

3. Change the style of the DetailsView to something more interesting by clicking the AutoFormat
link in control’s smart tag (for this example, I selected Brown Sugar).

4. Add the Northwind.mdb file to your solution by right-clicking the solution and selecting Add
Existing Item. You can find the sample .mdb file at C:\Program Files\Microsoft
Office\OFFICE11\SAMPLES\Northwind.mdb. It is best to place this and all .mdb files within
the Data folder included with your solution.

5. Drag and drop an AccessDataSource control onto the design surface.

Just like the SqlDataSource control, the AccessDataSource control is represented on the Design surface as
a gray box. Highlight the gray box and turn your attention to the Properties Window.

The first item to change here is the DataFile property. This property should point to the Northwind.mdb
file. You can do this by simply giving the DataFile property a value of Northwind.mdb.

Next, change the SelectQuery property by clicking the button next to this property. This launches the
Command and Parameter Editor dialog, as shown in Figure 4-17.

97

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 97

Figure 4-17

Place the value Select * From Customers in the SELECT Command text box. Click OK. The
AccessDataSource control is now ready to use.

Next, locate DetailsView on the Design surface, highlight the DetailsView1 control on the page, and give
the DataSourceId property the value of AccessDataSource1. If you run the page at this point, the
DetailsView control displays only a single result (the first result) and won’t allow you to see anything else. If
that is the functionality you are looking for, you probably want a different SQL statement, such as Select *
From Customers Where CustomerID=ALFKI, so that you don’t grab every record from the table.

To enable the end user to scroll through the records one at a time, you enable paging in the DetailsView
control. This is done either by adding AllowPaging=”True” or by checking the Enable Paging check
box in the smart tag of the DetailsView control (shown in Figure 4-18).

Figure 4-18

98

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 98

After all this is complete, your code should resemble Listing 4-16.

Listing 4-16: Looking at a single record at a time

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>DetailsView Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DetailsView ID=”DetailsView1” Runat=”server”

DataSourceId=”AccessDataSource1”
AllowPaging=”True” BorderColor=”#DEBA84” BorderStyle=”None”
BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”>
<PagerStyle ForeColor=”#8C4510” HorizontalAlign=”Center”>
</PagerStyle>
<EditRowStyle ForeColor=”White” BackColor=”#738A9C” Font-Bold=”True”>
</EditRowStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”>
</RowStyle>
<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”>
</FooterStyle>
<HeaderStyle ForeColor=”White” BackColor=”#A55129” Font-Bold=”True”>
</HeaderStyle>

</asp:DetailsView>
<asp:AccessDataSource ID=”AccessDataSource1” Runat=”server”

SelectCommand=”Select * From Customers”
DataFile=”Data/Northwind.mdb”>

</asp:AccessDataSource>
</form>

</body>
</html>

After it is run, your page should look like Figure 4-19.

The DetailsView control associates itself with the AccessDataSource control via the use of the
DataSourceId attribute. This attribute takes a String value and points to a particular data source con-
trol by using the data source control’s control ID as a value. In this case, it is AccessDataSource1.

The AccessDataSource control, shown previously, uses the typical ID and Runat attributes as well as the
SelectCommand attribute. The SelectCommand attribute takes a String value. Later when you begin
inserting, updating, and deleting data from a data store using the DetailsView control, you use the other
InsertCommand, UpdateCommand, and DeleteCommand attributes. The last important attribute from
Listing 4-16 is the DataFile attribute. This attribute takes a String value that points to the location of
the Access data file used by the control. In this case, because the Northwind.mdb file is located with the
.aspx file itself, the value of this attribute is simply Northwind.mdb.

99

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 99

Figure 4-19

Looking at the figure, you can see that, by default, the DetailsView control performs its paging capability
in a numeric fashion. You can, however, change this behavior just as you can change the behavior of the
GridView control. Just add the following attribute to the root <asp:DetailsView> element in the
DetailsView control:

PagerSettings-Mode=”NextPrevious”

This gives you logical arrows that enable the end user to move up or down the row collection, as illus-
trated in Figure 4-20.

Also, just as with the GridView control, you can completely customize not only the appearance of the
pager functionality (including the use of images), but also the appearance of the entire control.

100

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 100

Figure 4-20

Selecting which fields to display
in the DetailsView control

You can customize the appearance of the DetailsView control by picking and choosing which fields the
control displays. By default, the control displays each and every column from the table it is working
with. Much like the GridView control, however, the DetailsView control enables you to specify that only
certain selected columns be displayed. This is illustrated in Listing 4-17.

Listing 4-17: Choosing the fields to display in the DetailsView control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>DetailsView Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DetailsView ID=”DetailsView1” Runat=”server”

(continued)

101

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 101

Listing 4-17: (continued)

DataSourceId=”AccessDataSource1”
AllowPaging=”True” BorderColor=”#DEBA84” BorderStyle=”None”
BorderWidth=”1px” BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
PagerSettings-Mode=”NextPrevious” AutoGenerateRows=”False”>
<Fields>

<asp:BoundField HeaderText=”Customer ID” DataField=”CustomerID”>
</asp:BoundField>
<asp:BoundField HeaderText=”Company Name” DataField=”CompanyName”>
</asp:BoundField>
<asp:BoundField HeaderText=”Country” DataField=”Country”>
</asp:BoundField>
<asp:BoundField NullDisplayText=”NO REGION” HeaderText=”Region”
DataField=”Region”>

</asp:BoundField>
</Fields>
<PagerStyle ForeColor=”#8C4510” HorizontalAlign=”Center”>
</PagerStyle>
<EditRowStyle ForeColor=”White” BackColor=”#738A9C” Font-Bold=”True”>
</EditRowStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”>
</RowStyle>
<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”>
</FooterStyle>
<HeaderStyle ForeColor=”White” BackColor=”#A55129” Font-Bold=”True”>
</HeaderStyle>

</asp:DetailsView>
<asp:AccessDataSource ID=”AccessDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
DataFile=”Data/Northwind.mdb”>

</asp:AccessDataSource>
</form>

</body>
</html>

When this page is run, you see that the DetailsView control now displays only four values for each of the
rows (as shown in Figure 4-21).

Figure 4-21
102

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 102

You select columns exactly as you did when using the GridView control. The big difference is that instead
of using the <Columns> element to define the columns to bind to, the DetailsView control uses the
<Fields> element. Notice that the columns are bound to the DetailsView control using the same
ASP.NET controls you used for the GridView control: <asp:BoundField>, <asp:ButtonField>,
<asp:CheckBoxField>, <asp:CommandField>, <asp:HyperLinkField>, and <asp:TemplateField>.
In fact, you use these field declaration controls just as you did with the GridView control shown earlier in
the chapter.

Using the GridView and DetailsView together
Now for an interesting and useful example, look at how you would use the GridView and the DetailsView
controls together. You can use the GridView to show a master view of the data (in this case, the Customers
table from the sample Northwind.mdb file), whereas you can use the DetailsView control to show the
details of any selected rows in the main GridView control (see Listing 4-18).

Listing 4-18: Enabling the GridView and DetailsView controls to work together

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>GridView & DetailsView Controls</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:GridView ID=”GridView1” Runat=”server”
DataSourceId=”AccessDataSource1” AllowPaging=”True”
BorderColor=”#DEBA84” BorderStyle=”None” BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
DataKeyNames=”CustomerID” AutoGenerateSelectButton=”true”
AutoGenerateColumns=”False” PageSize=”5”>

<Columns>
<asp:BoundField HeaderText=”Customer ID”
DataField=”CustomerID”>

</asp:BoundField>
<asp:BoundField HeaderText=”Company Name”
DataField=”CompanyName”>

</asp:BoundField>
</Columns>
<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”>
</FooterStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”>
</RowStyle>
<SelectedRowStyle ForeColor=”White” BackColor=”#738A9C”
Font-Bold=”True”>

</SelectedRowStyle>
<Pagerstyle ForeColor=”#8C4510” HorizontalAlign=”Center”>
</PagerStyle>
<HeaderStyle ForeColor=”White” BackColor=”#A55129”
Font-Bold=”True”>

</HeaderStyle>

(continued)

103

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 103

Listing 4-18: (continued)

</asp:GridView>
</p>
<p>Customer Details:</p>
<asp:DetailsView ID=”DetailsView1” Runat=”server”
DataSourceId=”AccessDataSource2”
BorderColor=”#DEBA84” BorderStyle=”None” BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
AutoGenerateRows=”True”>

<PagerStyle ForeColor=”#8C4510” HorizontalAlign=”Center”>
</PagerStyle>
<EditRowStyle ForeColor=”White” BackColor=”#738A9C” Font-Bold=”True”>
</EditRowStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”>
</RowStyle>
<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”>
</FooterStyle>
<HeaderStyle ForeColor=”White” BackColor=”#A55129” Font-Bold=”True”>
</HeaderStyle>

</asp:DetailsView>
<asp:AccessDataSource ID=”AccessDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
DataFile=”~/Northwind.mdb” />

<asp:AccessDataSource ID=”AccessDataSource2” Runat=”server”
SelectCommand=”Select * From Customers”
DataFile=”~/Northwind.mdb” FilterExpression=”CustomerID=’@CustID’”>

<FilterParameters>
<asp:ControlParameter Name=”CustID” ControlId=”GridView1”
PropertyName=”SelectedValue”>

</asp:ControlParameter>
</FilterParameters>

</asp:AccessDataSource>
</form>

</body>
</html>

When this page is run in the browser, you get the results illustrated in Figure 4-22.

In this figure, one of the rows in the GridView has been selected (noticeable by the color change). The
details of this selected row are shown in the DetailsView control directly below the GridView control.

To see how this works, look at the changes made to the second AccessDataSource control, Access
DataSource2. The only change made to the main <asp:AccessDataSource> element here is the
addition of the FilterExpression attribute. The FilterExpression attribute is used to modify the
SelectCommand attribute when filtering is applied. The String value given to the FilterExpression
attribute expresses how you want the AccessDataSource control to filter the select command. In this
case, the value of the FilterExpression is CustomerID=@CustomerID. If filtering is utilized, the
AccessDataSource control filters the records that are retrieved from the Select * From Customers
command so that the command resembles Select * From Customers Where CustomerID=@
CustomerID. The parameter specified in the FilterExpression attribute, @CustomerID, is defined
within the AccessDataSource control itself through the use of the <FilterParameters> element.

104

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 104

Figure 4-22

Using the <FilterParameters> element within the AccessDataSource control is the same as using it
with the SqlDataSource control. In this case, the AccessDataSource control in Listing 4-18 uses an
<asp:ControlParameter> to specify the name of the parameter, the control that the parameter value
is coming from (the GridView1 control), and the property name from the control that is used to popu-
late the parameters value.

In the GridView1 control, be sure to include the DataKeyNames attribute. This control gives this
attribute a value of CustomerID — meaning that when the end user selects one of the rows in the table,
the CustomerID value for that chosen row becomes what is provided via the SelectedValue property.

Updating, inserting, and deleting rows
Updating rows in the DetailsView control is quite similar to updating rows in the GridView — but with a
few little twists that you should be aware of. The process for inserting and deleting rows is very similar to
that for updating rows (shown here). First, to update data being displayed by the DetailsView control,
you modify the <asp:AccessDataSource> control so that it allows for the editing of the data to which it
is connected. The main node of the <asp:AccessDataSource> element is shown in Listing 4-19.

105

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 105

Listing 4-19: The <asp:AccessDataSource> element

<asp:AccessDataSource ID=”AccessDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
UpdateCommand=”UPDATE [Customers] SET [CompanyName] = ?, [ContactName] = ?,

[ContactTitle] = ?, [Address] = ?, [City] = ?, [Region] = ?, [PostalCode] = ?,
[Country] = ?, [Phone] = ?, [Fax] = ? WHERE [CustomerID] = ?”

DataFile=”Data/Northwind.mdb” FilterExpression=”CustomerID=’@CustID’”>
...

</asp:AccessDataSource>

A few things have been added to the AccessDataSource control to enable it to edit the data from the
Northwind.mdb file. The first addition is that the UpdateCommand attribute has been added with a SQL
command that updates the data store based upon a large collection of parameters that I define shortly.

The next required change to the AccessDataSource control is the addition of the update parameter defi-
nitions. You do this by using the <UpdateParameters> element within the AccessDataSource control
itself. This is illustrated in Listing 4-20.

Listing 4-20: Adding the Update parameters to the AccessDataSource control

<UpdateParameters>
<asp:Parameter Type=”String” Name=”CompanyName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactTitle”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Address”></asp:Parameter>
<asp:Parameter Type=”String” Name=”City”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Region”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PostalCode”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Country”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Phone”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Fax”></asp:Parameter>
<asp:Parameter Type=”String Name=”CustomerID”></asp:Parameter>

</UpdateParameters>

Each of these parameters defines what is used in the UpdateCommand string. Now that the
AccessDataSource control is ready, turn your attention to the DetailsView control.

You need to make only a few changes to the DetailsView control. First, you add the Edit button to the
control just as you added it to the GridView control. This is illustrated in Listing 4-21.

Listing 4-21: Adding an Edit button to the DetailsView control

<asp:DetailsView ID=”DetailsView1” Runat=”server”
DataSourceId=”AccessDataSource1” DataKeyNames=”CustomerID”
AllowPaging=”True” BorderColor=”#DEBA84” BorderStyle=”None”
BorderWidth=”1px” PagerSettings-Mode=”NextPrevious”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
AutoGenerateRows=”True” AutoGenerateEditButton=”True”>
...

</asp:DetailsView>

106

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 106

You add an Edit button to the DetailsView control via the use of the AutoGenereateEditButton
attribute, which you set to True. You should also add a DataKeyNames attribute, which points to the
IDENTITY field that should be utilized for the update. In this case, it is the CustomerID field. After this
is in place and running, the DetailsView control appears with an Edit link at the bottom of the control
(as shown in Figure 4-23).

Figure 4-23

If the end user clicks on the Edit hyperlink, most of the fields within the DetailsView control are changed
to allow for editing, and the Edit hyperlink is replaced with an Update and Cancel hyperlink, as shown
in Figure 4-24.

Adding the capability to insert or delete rows using the AccessDataSource control is the same as using
the SqlDataSource control as shown earlier in the chapter.

The DetailsView control also works like GridView control in regard to inserting and deleting data. To
insert additional rows into the Access file using the DetailsView control, simply add the
AutoGenerateInsert attribute to the control:

AutoGenerateInsertButton=”True”

After this is in place, you find a New hyperlink next to the Edit hyperlink, as illustrated in Figure 4-25.

107

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 107

Figure 4-24

Figure 4-25

108

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 108

Clicking the New hyperlink provides a table that enables you to enter a new customer after you add an
INSERT command to the AccessDataSource control just as was done with the UPDATE command. This is
shown in Figure 4-26.

Figure 4-26

Be sure that if you enable the inserting of data into your data store, that you define the
<InsertParameters> using the <asp:Parameter> control — just as was done in the updating
of the data.

XmlDataSource Control
So far, you have been looking at using the data source controls that work with traditional data stores
such as Microsoft SQL Server and Microsoft Access. Today, however, a considerable amount of data is
stored in XML format, so a specific data source control has been added to ASP.NET 2.0 just for retrieving
and working with XML data.

The XmlDataSource control enables you to connect to your XML data and to use this data with any of
the ASP.NET data-bound controls. Just like the SqlDataSource and the AccessDataSource controls, the
XmlDataSource control also enables you to not only retrieve data, but also to insert, delete, and update
data items. With the world turning more and more to XML data formats, such as Web services, RSS
feeds, and more, this control is a valuable resource for your applications.

To show the XmlDataSource control in action, first create a simple XML file and include this file in your
application. Listing 4-22 shows a simple XML file of Russian painters that we can use.

109

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 109

Listing 4-22: Painters.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<Artists>
<Painter name=”Vasily Kandinsky”>

<Painting>
<Title>Composition No. 218</Title>
<Year>1919</Year>

</Painting>
</Painter>
<Painter name=”Pavel Filonov”>

<Painting>
<Title>Formula of Spring</Title>
<Year>1929</Year>

</Painting>
</Painter>
<Painter name=”Pyotr Konchalovsky”>

<Painting>
<Title>Sorrento Garden</Title>
<Year>1924</Year>

</Painting>
</Painter>

</Artists>

Now that the Painters.xml file is in place, the next step is to use a DataList control and connect this
DataList control to an <asp:XmlDataSource> control. This is illustrated in Listing 4-23.

Listing 4-23: Using a DataList control to display XML content

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>XmlDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DataList ID=”DataList1” Runat=”server” DataSourceID=”XmlDataSource1”>

<ItemTemplate>
<p><%# XPath(“@name”) %>

<i><%# XPath(“Painting/Title”) %></i>

<%# XPath(“Painting/Year”) %></p>

</ItemTemplate>
</asp:DataList>

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”~/Painters.xml” XPath=”Artists/Painter”>

</asp:XmlDataSource>
</form>

</body>
</html>

110

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 110

This is a simple example, but it shows you the power and ease of using the XmlDataSource control. You
should pay attention to only two attributes in this example. The first is the DataFile attribute. This
attribute points to the location of the XML file. Because the file resides in the root directory of the appli-
cation, it is simply ~/Painters.xml. The next attribute included in the XmlDataSource control is the
XPath attribute. The XmlDataSource control uses XPath for the filtering of XML data. In this case,
the XmlDataSource control is taking everything within the <Painter> set of elements. The value
Artists/Painter means that the XmlDataSource control navigates to the <Artists> element and
then to the <Painter> element within the specified XML file.

The DataList control next must specify the DataSourceID as the XmlDataSource control. In the
<ItemTemplate> section of the DataList control, you can retrieve specific values from the XML file by
using XPath commands. The XPath commands filter the data from the XML file. The first value retrieved
is an element attribute (name) that is contained in the <Painter> element. If you are retrieving an
attribute of an element, you preface the name of the attribute with an @ symbol. In this case then, you
simply specify @name to get at the painter’s name. The next two XPath commands go deeper into the
XML file and get the specific painting and the year of the painting. Remember to separate nodes with a
/. When run in the browser, this code produces the results illustrated in Figure 4-27.

Figure 4-27

Besides working from static XML files like the Painters.xml file shown earlier, the XmlDataSource file
has the capability to work from dynamic, URL-accessible XML files. One popular XML format that is
pervasive on the Internet today is blogs or weblogs. Blogs, or personal diaries, can be viewed either in
the browser, through an RSS-aggregator, or just as pure XML.

As you look at my blog in Figure 4-28, you can see the XML it produces directly in the browser. (You can
find a lot of blogs to play with for this example at weblogs.asp.net.)

111

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 111

Figure 4-28

Now that you know the location of the XML from the blog, you can use this XML with the
XmlDataSource control and display some of the results in a DataList control. The code for this
example is shown in Listing 4-24.

Listing 4-24: Working with an RSS feed

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>XmlDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DataList ID=”DataList1” Runat=”server” DataSourceID=”XmlDataSource1”>

<HeaderTemplate>
<table border=”1” cellpadding=”3”>

</HeaderTemplate>
<ItemTemplate>

<tr><td><%# XPath(“title”) %>

<i><%# XPath(“pubDate”) %></i>

<%# XPath(“description”) %></td></tr>

</ItemTemplate>
<AlternatingItemTemplate>

<tr bgcolor=”LightGrey”><td><%# XPath(“title”) %>

<i><%# XPath(“pubDate”) %></i>

<%# XPath(“description”) %></td></tr>

112

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 112

</AlternatingItemTemplate>

<FooterTemplate>
</table>

</FooterTemplate>
</asp:DataList>

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”http://geekswithblogs.net/evjen/Rss.aspx”
XPath=”rss/channel/item”>

</asp:XmlDataSource>
</form>

</body>
</html>

Looking at the code in Listing 4-24, you can see that the DataFile points to a URL where the XML is
retrieved. The XPath property filters out all the <item> elements from the RSS feed. The DataList con-
trol creates an HTML table and pulls out specific data elements from the RSS feed, such as the <title>,
<pubDate>, and <description> elements.

Running this page in the browser, you get something similar to the results shown in Figure 4-29.

Figure 4-29

113

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 113

This approach also works with XML Web services, even ones for which you can pass in parameters
using HTTP-GET. You just set up the DataFile value in the following manner:

DataFile=”http://www.someserver.com/GetWeather.asmx/ZipWeather?zipcode=63301”

ObjectDataSource Control
The data source controls I have presented so far are really intended for applications working in a two-
tiered environment. In these cases, the presentation piece works with a data store that might reside on
another server. The ObjectDataSource control enables you to use data source controls that work in a
three-tiered environment. This data source control interacts with an object that you have established,
and that object then interacts with a data store elsewhere.

The object needs to be structured properly in order to work with the ObjectDataSource control, meaning
that the object can perform basic operations such as selects, updates, inserts, and deletes.

For a simple example of working with the ObjectDataSource control, you can create a class that gets its
data from another XML file called Employee.xml. The Employee.xml file is shown in Listing 4-25.

Listing 4-25: Employee.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<Staff>
<Employee>

<FullName>Bill Evjen</FullName>
<StartDate>02/2004</StartDate>
<Salary>25,000</Salary>

</Employee>
<Employee>

<FullName>Fred Cotterell</FullName>
<StartDate>01/2000</StartDate>
<Salary>32,000</Salary>

</Employee>
<Employee>

<FullName>Tuija Pitkanen</FullName>
<StartDate>04/2004</StartDate>
<Salary>31,000</Salary>

</Employee>
</Staff>

The ObjectDataSource control then works with a business object that returns the information from the XML
file. For this, create a class called Employees.vb or Employees.cs. This class utilizes only the selected
aspect of the object because you are only interested in reading the data. This class is shown in Listing 4-26.

Listing 4-26: Employees.vb/.cs

VB
Imports System.Data

Public Class Employees

114

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 114

Public Function GetEmployeeDetails() As DataSet
Dim ds As New DataSet()
ds.ReadXml(HttpContext.Current.Server.MapPath(“Employee.xml”))

Return ds
End Function

End Class
C#
using System;
using System.Web;
using System.Data;

public class Employees
{

public DataSet GetEmployeeDetails()
{

DataSet ds = new DataSet();
ds.ReadXml(HttpContext.Current.Server.MapPath(“~/Employee.xml”));

return ds;
}

}

In this object, the GetEmployeeDetails method is the select statement utilized by the ObjectDataSource
control in the ASP.NET page. This method returns its result using the types of IEnumerable, DataSet,
or DataTable. In this example, it returns a DataSet. Now that the Employees class is in place and it
returns a list of employees from the XML file, you can create an .aspx page that makes use of this object
via an ObjectDataSource control.

The final step is to create an .aspx page that displays the results that come from the Employees class.
This is illustrated in Listing 4-27.

Listing 4-27: Using the ObjectDataSource control

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>ObjectDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:GridView ID=”GridView1” Runat=”server”
DataSourceID=”ObjectDataSource1” BorderWidth=”1px” BackColor=”#DEBA84”
CellPadding=”3” CellSpacing=”2” BorderStyle=”None” BorderColor=”#DEBA84”>

<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”>
</FooterStyle>
<PagerStyle HorizontalAlign=”Center” ForeColor=”#8C4510”>
</PagerStyle>
<HeaderStyle ForeColor=”White” Font-Bold=”True” BackColor=”#A55129”>
</HeaderStyle>
<SelectedRowStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#738A9C”>

(continued)

115

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 115

Listing 4-27: (continued)

</SelectedRowStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”>
</RowStyle>

</asp:GridView>
<asp:ObjectDataSource ID=”ObjectDataSource1” Runat=”server”
TypeName=”Employees” SelectMethod=”GetEmployeeDetails”>

</asp:ObjectDataSource>
</form>

</body>
</html>

Look first at the <asp:ObjectDataSource> control. Only two attributes within this control are doing
all the work. The first is the TypeName property. The value used with this property points to the name
of the class with which it works. In this case, it is working with the Employees class contained in the
Employees.vb or Employees.cs file. The second important property is the SelectMethod property.
This property points to the select function contained in the Employees class. In this case, it is the only
method that the Employees class has — the GetEmployeeDetails method. After these items are in
place, you can bind this control to any of the data-bound controls. In this case, you use the GridView con-
trol and associate the two controls with the use of the DataSourceID property in the GridView control.

Putting all this together produces the results shown in Figure 4-30.

Figure 4-30

SiteMapDataSource Control
The SiteMapDataSource control is another new data source control that enables you to easily bind an
application’s site navigation hierarchy data to some of ASP.NET 2.0’s latest navigation controls. In most
cases, you bind the SiteMapDataSource control to an XML file that is referred to as a site map and has a
.sitemap extension. These site maps define the navigation hierarchy of your application and can then
be utilized by controls such as the TreeView control.

The SiteMapDataSource control and the corresponding navigation controls are discussed in detail in
Chapter 5.

116

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 116

DataSetDataSource Control
The DataSetDataSource control enables you to bind ASP.NET controls to .NET-style DataSets. These might
be DataSets that are produced from XML files, or from in-memory DataSets that you have created in your
code. Using the DataSetDataSource is pretty straightforward because it is quite similar to working with
the other data source controls. Listing 4-28 shows an example of using the DataSetDataSourceControl
with the same Painters.xml file that was an example earlier in the chapter and binding it to a
DropDownList control.

Listing 4-28: Using the DataSetDataSource control

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>DataSetDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DropDownList ID=”Dropdownlist1” Runat=”server” DataTextField=”name”
DataSourceID=”DataSetDataSource1”>

</asp:DropDownList>

<asp:DataSetDataSource ID=”DataSetDataSource1” Runat=”server”
DataFile=”~/Painters.xml”>

</asp:DataSetDataSource>
</form>

</body>
</html>

In this example, the DataSetDataSource control uses the DataFile attribute to get at the XML file, which
is converted to a DataSet by the DataSetDataSource control. After it is converted, the DataSet can be used
by the DropDownList control. The DropDownList control associates itself to the DataSetDataSource con-
trol via the use of the DataSourceID attribute. The field chosen to be displayed in the drop-down list is
determined by using the DataTextField attribute. In this case, it points to the name attribute of the
<Painters> element in the XML file. Running this page produces the results shown in Figure 4-31.

Figure 4-31

117

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 117

Visual Studio 2005
Visual Studio 2005 makes it rather easy and straightforward to create and configure data source controls
and then bind them to any of the data-bound controls. So far in this chapter, you have looked at the cre-
ation of data source controls via the code that you write. This is the best way to learn about the capabili-
ties of ASP.NET 2.0’s data controls. You can also take the approach of simply dragging and dropping
these controls onto the Visual Studio 2005 design surface and manipulating the controls in the IDE’s
Properties Window.

To create your data source controls and bind them to the data-bound controls, you can use the controls’
smart tags. For an example of this, drag and drop a GridView control onto an empty design surface.
Then below the GridView control, drag and drop a SqlDataSource control onto the page.

The first step is to set up your SqlDataSource control to get the data you want. To do this in the visual
designer, you simply highlight the gray box that represents the SqlDataSource control and click the
arrow in the upper-right-hand corner of the control. Doing this opens the control’s smart tag and pro-
vides you with the option to configure and modify the control. The smart tag for the SqlDataSource con-
trol appears as shown in Figure 4-32.

Figure 4-32

Within the smart tag for the SqlDataSource control, click the Configure Data Source link. This initiates
the Data Source Configuration Wizard. The first step in the configuration process is to select the
database you are connecting to. The wizard then shows you the connection string it’s creating for you in
a grayed-out pane (see Figure 4-33).

118

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 118

Figure 4-33

When you click the Next button, the Data Source Configuration Wizard gives you the option of storing
the connection string in the web.config file, which is an outstanding idea because it is a safe way to
store it. Any .config file is not browser-accessible and gives you a single place in the application where
you can change the connection string and have that change take effect throughout the application. Keep
the check box for this checked if you want to store the connection string in this manner (see Figure 4-34);
otherwise, uncheck the box.

119

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 119

Figure 4-34

Again, click the Next button and configure the Select statement that the SqlDataSource control utilizes.
Simply select the Customers table from the drop-down list and then check the * check box (see Figure
4-35). This means that you want each and every field from the Customers table.

120

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 120

Figure 4-35

Click Next, and you can test out the SqlDataSource and its connection to the data store by clicking the
Test Query button shown in Figure 4-36.

121

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 121

Figure 4-36

Clicking the Finish button brings you back to the design surface in Visual Studio. The SqlDataSource
control is now ready to use with the GridView control. In the GridView control, from the drop-down
list in the smart tag, select the SqlDataSource1 control and check the Enable Paging check box (see
Figure 4-37). Next, you can create a better look and feel by choosing the Auto Format option.

Figure 4-37

That’s it! Everything is in place and no coding is needed. Simply press F5 to run the page, and you get
the results shown in Figure 4-38.

122

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 122

Figure 4-38

Connection Strings
An interesting point about the previous example is that we decided to store the connection string
directly in the web.config file instead of hard-coding the connection string directly in the code of the
page. This is always a good idea because it is more secure and makes your connection strings easier to
manage. If you followed the previous steps as instructed, Visual Studio placed the connection string in
the web.config for you. It then appears as shown in Listing 4-29.

Listing 4-29: Storing the connection string in the web.config

<?xml version=”1.0”?>
<configuration>

<connectionStrings>
<add name=”AppConnectionString1” connectionString=”Provider=SQLOLEDB.1;
Data Source=HOME01;User ID=sa;Initial Catalog=Northwind;
Persist Security Info=False”
providerName=”System.Data.OleDb” />

(continued)

123

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 123

Listing 4-29: (continued)

</connectionStrings>

<system.web>
...

</system.web>

</configuration>

A <connectionStrings> section is created in the web.config file. Placed within the <connection
Strings> section is a simple <add> element that contains a couple of attributes. The first attribute is
the name attribute. This is the name that is used to uniquely identify this connection string in your
ASP.NET pages because it is possible to have multiple connection strings within your web.config file.
In this case, the connection string is named AppConnectionString1.

The next attribute is the connectionString attribute. The value given here is the full connection string.
The last attribute is the providerName attribute, which simply contains the name of the provider that
you are using to connect to the data store.

Looking at the SqlDataSource code in the ASP.NET page utilizing this stored connection string in
Listing 4-30, you can see that it is rather simple to use the information stored in the web.config file.

Listing 4-30: Using the connection string stored in the web.config file

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT [Customers].* FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
ProviderName=”<%$ ConnectionStrings:AppConnectionString1.providername %>”>

</asp:SqlDataSource>

You can see here that the connection string value is retrieved using <%$ ConnectionStrings:
AppConnectionString1 %> and that the provider name attribute is accessed using <%$
ConnectionStrings:AppConnectionString1.providername %>.

Although this was done automatically for you by Visual Studio, you can just as easily do this yourself
within the ASP.NET applications that you code.

Summary
This chapter introduced some of the new ways in which you can work with data in ASP.NET 2.0. The
latest version of ASP.NET provides you with an outstanding new collection of data source controls that
you can use to retrieve and manipulate data held in a wide variety of different data stores.

124

Chapter 4

04_572865 ch04.qxd 7/7/04 9:51 PM Page 124

The new data source controls, SqlDataSource, AccessDataSource, XmlDataSource, ObjectDataSource,
DataSetDataSource, and SiteMapDataSource, are powerful and easy to use. They require little effort on
the part of the developer, but at the same time, they are rather extensible and can be modified for almost
any purpose when it comes to working with the data that is running your applications.

In addition to the data source controls, this chapter took a look at some of the new data-bound server
controls such as the GridView and the DetailsView controls. These are outstanding new controls that
you can use with the new data source controls. The GridView is an enhanced DataGrid that has built-in
paging and sorting, whereas the DetailsView control enables you to drill down into a particular data
piece in a logical manner.

125

New Ways to Handle Data

04_572865 ch04.qxd 7/7/04 9:51 PM Page 125

04_572865 ch04.qxd 7/7/04 9:51 PM Page 126

Site Navigation

The Web applications you develop generally have more than a single page. Usually you create a
number of pages that are all interconnected in some fashion. If you also build the navigation
around your pages, you make it easy for the end user to successfully work through your applica-
tion in a straightforward manner.

Currently, you must choose among a number of different ways to expose to the end user the paths
through your application. The difficult task of site navigation is compounded when you continue
to add pages to the overall application.

The present method for building navigation within Web applications is to sprinkle pages with
hyperlinks. Hyperlinks are generally added to Web pages by using include files or user controls.
They can also be directly hard-coded onto a page so that they appear in the header or the side bar
of the page being viewed. The difficulties in working with navigation become worse when you
move pages around or change page names. Sometimes developers are forced to go to each and
every page in the application just to change some aspect of the navigation.

ASP.NET 2.0 tackles this problem with the introduction of a navigation system that makes it quite
trivial to manage how end users work through the applications you create. This new capability in
ASP.NET is complex; but the great thing is that it can be as simple as you need it to be, or you can
actually get in deep and control every aspect of how it works.

The new site navigation system includes the capability to define your entire site in an XML file,
which is called a site map. After you define a new site map, a SiteMap class gives you the capabil-
ity to programmatically work with it. Another addition in ASP.NET 2.0 is a new data provider that
is specifically developed to work with site map files and to bind them to a new series of naviga-
tion-based server controls. This chapter takes a look at all these components in the new ASP.NET
2.0 navigation system. You can begin by looking at site maps.

05_572865 ch05.qxd 7/7/04 9:52 PM Page 127

Site Maps
Although a site map is not a required element (as you see later), one of the common first steps you take
in working with the new ASP.NET 2.0 navigation system is building a site map for your application. A
site map is an XML description of your site’s structure.

You use this site map to define the layout of all the pages in your application and how they relate to one
another. If you do this according to the new site map standard, you can interact with this navigation
information using either the new SiteMap class or the new SiteMapDataSource control. By using the
SiteMapDataSource control, you can bind the information in the site map file to databinding controls,
including the new navigation server controls provided by ASP.NET 2.0.

To create a new site map file for your application, add an XML file to your application. When asked, you
name the XML file web.sitemap. The file is named app and has the new file extension of .sitemap.
Take a look at an example .sitemap file in Listing 5-1.

Listing 5-1: An example of a web.sitemap file

<?xml version=”1.0” encoding=”utf-8” ?>

<siteMap>
<siteMapNode title=”Home” description=”Home Page” url=”default.aspx”>

<siteMapNode title=”News” description=”The Latest News” url=”News.aspx”>
<siteMapNode title=”U.S.” description=”U.S. News”
url=”News.aspx?cat=us” />

<siteMapNode title=”World” description=”World News”
url=”News.aspx?cat=world” />

<siteMapNode title=”Technology” description=”Technology News”
url=”News.aspx?cat=tech” />

<siteMapNode title=”Sports” description=”Sports News”
url=”News.aspx?cat=sport” />

</siteMapNode>
<siteMapNode title=”Finance” description=”The Latest Financial Information”

url=”Finance.aspx”>
<siteMapNode title=”Quotes” description=”Get the Latest Quotes”
url=”Quotes.aspx” />

<siteMapNode title=”Markets” description=”The Latest Market Information”
url=”Markets.aspx”>

<siteMapNode title=”U.S. Market Report”
description=”Looking at the U.S. Market” url=”MarketsUS.aspx” />

<siteMapNode title=”NYSE”
description=”The New York Stock Exchange” url=”NYSE.aspx” />

</siteMapNode>
<siteMapNode title=”Funds” description=”Mutual Funds”
url=”Funds.aspx” />

</siteMapNode>
<siteMapNode title=”Weather” description=”The Latest Weather”
url=”Weather.aspx” />

</siteMapNode>
</siteMap>

So what does this file give you? Well, it gives you a logical structure that ASP.NET 2.0 can now use in the
rest of the navigation system it provides. Next, examine how this file is constructed.

128

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 128

The root node of this XML file is a <siteMap> element. Only one <siteMap> element can exist in the file.
Within the <siteMap> element, there is a <siteMapNode> element. This is generally the start page of the
application. In the case of the file in Listing 5-1, the root <siteMapNode> points to the default.aspx
page, the start page:

<siteMapNode title=”Home” description=”Home Page” url=”default.aspx”>

The following table describes each of the available attributes in the <siteMapNode> element.

Attribute Description

Title The title attribute provides a textual description of the link. The
string value used here is the text used for the link.

Description The description attribute not only reminds you what the link is for
but is also used for the ToolTip attribute on the link. The ToolTip
attribute is the yellow box that shows up next to the link when the end
user hovers the cursor over the link for a couple of seconds.

url The url attribute describes where the file is located in the solution. If
the file is in the root directory, simply use the filename, such as
“default.aspx”. If the file is located in a subfolder, be sure to include
the folders in the string value used in this attribute. For example,
“MySubFolder/Markets.aspx”.

After you have the first <siteMapNode> in place, you can place as many additional <siteMapNode>
elements as you need. You can also create additional link-levels by creating child <siteMapNode> ele-
ments for any parent <siteMapNode> in the structure.

The example in Listing 5-1 gives the application the following navigation structure.

Home
News

U.S.
World
Technology
Sports

Finance
Quotes
Markets

U.S. Market Report
NYSE

Funds
Weather

From this structure, you can see that it goes down three levels in some places. One of the easiest places
to use this file is with the new SiteMapPath server control that now comes with ASP.NET 2.0. Take a
close look at this new server control.

129

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 129

SiteMapPath Server Control
It is quite easy to use the .sitemap file you just created with the new SiteMapPath server control provided
with ASP.NET 2.0. You find this new control in the Navigation section of the Visual Studio 2005 IDE.

The SiteMapPath control creates navigation functionality that you have either created yourself or have
seen elsewhere in Web pages on the Internet. The SiteMapPath control creates what some refer to as
breadcrumb navigation. This is a linear path view of where the end user is in the navigation structure. The
Reuters.com Web site, shown in Figure 5-1, uses this type of navigation. A black arrow points out the
breadcrumb navigation used on the page.

The purpose of this type of navigation is to show end users where they are in relation to the rest of the
site. Traditionally, coding this kind of navigation has been tricky, to say the least; but now with the intro-
duction of the SiteMapPath server control, you should find coding for this type of navigation a breeze.

You should first create an application that has the web.sitemap file created in Listing 5-1. From there,
create a WebForm called MarketsUS.aspx. This is a file defined in the web.sitemap file to be on the
lowest tier of files in the application.

Figure 5-1

130

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 130

The SiteMapPath control is so easy to work with that it doesn’t even require a datasource control to
hook it up to the web.sitemap file where it infers all of its information. All you do is drag and drop a
SiteMapPath control onto your MarketsUS.aspx page. In the end, you should have a page like the one
shown in Listing 5-2.

Listing 5-2: Using the web.sitemap file with a SiteMapPath server control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head ID=”Head1” runat=”server”>

<title>Using the SiteMapPath Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapPath ID=”Sitemappath1” Runat=”server”>
</asp:SiteMapPath>

</form>
</body>
</html>

Not much to it, is there? It really is that easy. Run this page and you see the results shown in Figure 5-2.

Figure 5-2

This screen shot shows that you are on the U.S. Market Report page at MarketsUS.aspx. As an end
user, you can see that this page is part of the Markets section of the site, which, in turn, is part of the
Finance section of the site. With breadcrumb navigation, end users, understanding the structure of the
site and their place in it, can quickly click the links to navigate to where they want to go in the site.

If you hover your mouse over the Finance link, you see a tooltip appear after a couple of seconds, as
shown in Figure 5-3.

This tooltip, which reads The Latest Financial Information, comes from the description attribute
of the <siteMapNode> element in the web.sitemap file.

<siteMapNode title=”Finance” description=”The Latest Financial Information”
url=”Finance.aspx”>

131

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 131

Figure 5-3

The SiteMapPath control works automatically by itself with very little work on your part. You just add
the basic control to your page, and the breadcrumb navigation you have just seen is automatically cre-
ated. However, you can use the properties discussed in the following sections to modify the control’s
appearance and behavior.

The PathSeparator property
One important property for the SiteMapPath control is the PathSeparator property. By default, the
SiteMapPath control uses a greater than sign (>) to separate the link elements. You can change this by
reassigning a new value to the PathSeparator property. Listing 5-3 illustrates the use of this property.

Listing 5-3: Changing the PathSeparator value

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” PathSeparator=” | “>
</asp:SiteMapPath>

Or

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server”>
<PathSeparatorTemplate> | </PathSeparatorTemplate>

</asp:SiteMapPath>

The SiteMapPath control in this example uses the pipe character (|), which is found above your Enter
key. When it is rendered, you get the results shown in Figure 5-4.

Figure 5-4

132

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 132

As you can see, you can use either the PathSeparator property or the <PathSeparatorTemplate>
element within the SiteMapPath control.

With the use of the PathSeparator property or the <PathSeparatorTemplate> element, it is quite
easy to specify what you want to use to separate the links in the breadcrumb navigation, but you might
also want to give this pipe some visual style as well. You can add a <PathSeparatorStyle> node to
your SiteMapPath control. An example of this is shown in Listing 5-4.

Listing 5-4: Adding style to the PathSeparator property

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” PathSeparator=” | “>
<PathSeparatorStyle Font-Bold=”true” Font-Names=”Verdana” ForeColor=”#663333”
BackColor=”#cccc66”></PathSeparatorStyle>

</asp:SiteMapPath>

Okay, it may not be pretty (I am not much of a designer), but by using the <PathSeparatorStyle> ele-
ment with the SiteMapPath control, I am able to change the visual appearance of the separator elements.
The results are shown in Figure 5-5.

Figure 5-5

Using these constructs, you can also add an image as the separator, as illustrated in Listing 5-5.

Listing 5-5: Using an image as the separator

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head ID=”Head1” runat=”server”>

<title>Using the SiteMapPath Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapPath ID=”Sitemappath1” Runat=”server”>

<PathSeparatorTemplate>
<asp:Image ID=”Image1” Runat=”server” ImageUrl=”divider.gif” />

</PathSeparatorTemplate>
</asp:SiteMapPath>

</form>
</body>
</html>

133

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 133

To utilize an image as the separator between the links, you use the <PathSeparatorTemplate> element
and place an Image control within it. In fact, you can choose any type of control you want to be placed
between the navigation links that the SiteMapPath control produces.

The PathDirection property
Another interesting property to use with the SiteMapPath control is PathDirection. This property
changes the direction of the links generated in the output. Only two settings are possible for this
property: RootToCurrent and CurrentToRoot.

The Root link is the first link in the display. This is usually the Home page. The Current link is the link
for the page currently being displayed. By default, this property is set to RootToCurrent. Changing the
example to CurrentToRoot produces the results shown in Figure 5-6.

Figure 5-6

The ParentLevelsDisplayed property
In some cases, your navigation may go quite deep. You can see on the site map shown in Listing 5-1 that
you go three pages deep, which isn’t a big deal. Some of you, however, might be dealing with sites that
go quite a number of pages deeper. In these cases, it might be bit silly to use the SiteMapPath control.
Doing so would display a huge list of pages.

In a case like this, you can turn to the ParentLevelsDisplayed property that is part of the
SiteMapPath control. When set, this property displays pages only as deep as specified. Therefore, if you
are using the SiteMapPath control with the web.sitemap, as shown in Listing 5-1, and you give the
ParentLevelsDisplayed property a value of 3, you don’t notice any change to your page. It already
displays the path three pages deep. If you change this value to 2, however, the SiteMapPath control is
constructed as follows:

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” ParentLevelsDisplayed=”2”>
</asp:SiteMapPath>

Notice the result of this change in Figure 5-7. The SiteMapPath control shows links only two pages deep
and doesn’t show the Home page link.

134

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 134

Figure 5-7

By default, no limit is set on the number of links shown, so the SiteMapPath control just generates the
specified number of links based on what is labeled in the site map file.

The ShowToolTips property
By default, the SiteMapPath control generates tooltips for each link if a description property is used
within the web.sitemap file. Remember, a tooltip is the text that appears on-screen when an end user
hovers the mouse over one of the links in the SiteMapPath control. I showed you this capability earlier
in this chapter.

There may be times when you do not want your SiteMapPath control to show any tooltips for the links
that it generates. For these moments, you can actually turn off this capability in a couple of ways. The
first way is not to include any description attributes in the .sitemap file. If you remove these attributes
from the file, the SiteMapPath has nothing to display for the tooltips on the page.

The other way to turn off the display of tooltips is to set the ShowToolTips property to False, as shown
here:

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” ShowToolTips=”false”>
</asp:SiteMapPath>

This turns off the tooltips capability but still allows you to use the description property in the .sitemap
file. You may still want to use the description attribute because it allows you to keep track of what the
links in your file are used for. This is quite advantageous when you are dealing with hundreds or even
thousands of links in your application.

The SiteMapPath control’s child elements
You already saw the use of the <PathSeparatorStyle> and the <PathSeparatorTemplate> child ele-
ments for the SiteMapPath control, but additional child elements exist. The following table covers each
of the available child elements.

135

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 135

Child Element Description

CurrentNodeStyle Applies styles to the link in the SiteMapPath navigation for the
currently displayed page.

CurrentNodeTemplate Applies a template construction to the link in the SiteMapPath
navigation for the currently displayed page.

HoverNodeStyle Applies styles to the link in the SiteMapPath navigation over
which the end user is hovering the cursor.

NodeStyle Applies styles to all links in the SiteMapPath navigation. The
settings applied in the CurrentNodeStyle or RootNodeStyle
elements supersede any settings placed here.

NodeStyleTemplate Applies a template construction to all links in the SiteMapPath
navigation. The settings applied in the CurrentNodeStyle or
RootNodeStyle elements supersede any settings placed here.

PathSeparatorStyle Applies styles to the link dividers in the SiteMapPath navigation.

PathSeparatorTemplate Applies a template construction to the link dividers in the
SiteMapPath navigation.

RootNodeStyle Applies styles to the first link (the root link) in the SiteMapPath
navigation.

RootNodeTemplate Applies a template construction to the first link in the
SiteMapPath navigation.

TreeView Server Control
I have to say that I really like this new control. The TreeView server control is a rich server control for
rendering a hierarchy of data, so it is quite ideal for displaying what is contained in your .sitemap file.
Figure 5-8 shows you how it displays the contents of the site map (from Listing 5-1) that you have been
working with thus far in this chapter. This figure first shows a completely collapsed TreeView control at
the top of the screen, while the second TreeView control has been completely expanded.

This control can preload the nodes to be displayed, even if they are hidden, at first, by the collapsible
framework of the control. If you use a client-side script, the control does not need to make a call back to
the server if someone expands one of the nodes in the control. Just the fact that it won’t make a postback
and redraw the page gives this control a snappiness that will cause your end users to really enjoy using
it. Of course, this capability is only there if the browser accepts the client-side code that the TreeView
control can generate. If not, the control knows this and renders only what is appropriate and performs
postbacks for those clients who cannot work with this client-side script.

The TreeView control is quite customizable, but first take a look at how to create a default version of the
control using the .sitemap file from Listing 5-1. For this example, continue to use the MarketsUS.aspx
page you created earlier.

136

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 136

Figure 5-8

The first step is to create a SiteMapDataSource control on the page. When working with the TreeView
control that displays the contents of your .sitemap file, you must apply one of these datasource controls.
The TreeView control doesn’t just bind to your site map file automatically as the SiteMapPath control does.

After a basic SiteMapDataSource control is in place, position a TreeView control on the page and set the
DataSourceId property to SiteMapDataSource1. When you have finished, your code should look like
Listing 5-6.

Listing 5-6: A basic TreeView control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head ID=”Head1” runat=”server”>

<title>Using the SiteMapPath Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapPath ID=”Sitemappath1” Runat=”server”>
</asp:SiteMapPath>

<p>
<asp:TreeView ID=”Treeview1” Runat=”server”
DataSourceID=”Sitemapdatasource1”>

</asp:TreeView>
<asp:SiteMapDataSource ID=”Sitemapdatasource1” Runat=”server” /></p>
</form>

</body>
</html>

After the page is run and the TreeView control is expanded, the results are displayed as shown in Figure 5-9.

137

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 137

Figure 5-9

This is a very basic TreeView control. The great thing about this control is that it allows for a high degree
of customization and even gives you the capability to use some predefined styles that come prepackaged
with ASP.NET 2.0.

Identifying the TreeView control’s built-in styles
As stated, the TreeView control does come with a number of pre-built styles right out of the box. The
best way to utilize these predefined styles is to do so from the Design view of your page. By right-
clicking on the TreeView control on your page from the Design view in Visual Studio 2005, you find the
Auto Format option. Click this option and a number of styles become available to you. Selecting one of
these styles changes the code of your TreeView control to adapt to that chosen style. For instance, if you
choose MSDN from the list of options, the simple one-line TreeView control you created is converted to
what is shown in Listing 5-7.

Listing 5-7: A TreeView control with the MSDN style applied to it

<asp:TreeView ID=”Treeview1” Runat=”server” DataSourceID=”Sitemapdatasource1”
nodeindent=”10” font-names=”Verdana” font-size=”8pt” forecolor=”Black”
imageset=”Msdn”>

<HoverNodeStyle BackColor=”#CCCCCC” VerticalPadding=”1” BorderColor=”#888888”
BorderStyle=”Solid” BorderWidth=”1px” Font-Underline=”True”
HorizontalPadding=”3”>

</HoverNodeStyle>
<SelectedNodeStyle BackColor=”White” VerticalPadding=”1” BorderColor=”#888888”
BorderStyle=”Solid” BorderWidth=”1px” HorizontalPadding=”3”>

</SelectedNodeStyle>
<NodeStyle VerticalPadding=”2” Font-Names=”Verdana” Font-Size=”8pt”
NodeSpacing=”1” HorizontalPadding=”5” ForeColor=”Black”>

</NodeStyle>
</asp:TreeView>

138

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 138

As you can see, if you use these built-in styles, it isn’t too difficult to completely change the look and feel
of the TreeView control. When this bit of code is run, you get the results shown in Figure 5-10.

Figure 5-10

Examining the parts of the TreeView control
To master working with the TreeView control, you must understand the terminology used for each part
of the hierarchical tree that is created by the control.

First, every element or entry in the TreeView control is called a node. The uppermost node in the hierar-
chy of nodes is the root node. It is possible for a TreeView control to have multiple root nodes. Any node,
including the root node, is also considered a parent node if it has any nodes that are directly under it in
the hierarchy of nodes. The nodes directly under this parent node are referred to as child nodes. Each
parent node can have one or more child nodes. Finally, if a node contains no child nodes, it is referred
to as a leaf node.

The following listing, based on the site map shown earlier, details the use of this terminology:

Home – Root node, parent node
News – Parent node, child node

U.S. – Child node, leaf node
World – Child node, leaf node
Technology – Child node, leaf node
Sports – Child node, leaf node

Finance – Parent node, child node
Quotes - Child node, leaf node
Markets – Parent node, child node

U.S. Market Report – Child node, leaf node
NYSE – Child node, leaf node

Funds – Child node, leaf node
Weather – Child node, leaf node

139

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 139

From this listing, you can see what each node is and how it is referred in the hierarchy of nodes. For
instance, the U.S. Market Report node is a leaf node — meaning that it doesn’t have any child nodes
associated with it. However, it is also a child node to the Markets node, which is a parent node to the
U.S. Market Report node. If you are working with the Markets node directly, it is also a child node
to the Finance node, which is its parent node. The main point to take away from all this is that each
node in the site map hierarchy has a relationship to the other nodes in the hierarchy. You must under-
stand these relationships because you can programmatically work with these nodes (as will be demon-
strated later in this chapter) and the methods used for working with them includes terms like RootNode,
CurrentNode and ParentNode.

Binding the TreeView control to an XML file
You are not limited to working with just a .sitemap file in order to populate the nodes of your TreeView
controls. You have many ways to get this done. One cool way is to use the XmlDataSource control (instead
of the SiteMapDataSource control) to populate your TreeView controls from your XML files.

For an example of this, suppose that you created a hierarchical list of items in an XML file called
Hardware.xml. An example of this is shown in Listing 5-8.

Listing 5-8: Hardware.xml

<?xml version=”1.0” encoding=”utf-8”?>
<Hardware>

<Item Category=”Motherboards”>
<Option Choice=”Asus” />
<Option Choice=”Abit” />

</Item>
<Item Category=”Memory”>

<Option Choice=”128mb” />
<Option Choice=”256mb” />
<Option Choice=”512mb” />

</Item>
<Item Category=”HardDrives”>

<Option Choice=”40GB” />
<Option Choice=”80GB” />
<Option Choice=”100GB” />

</Item>
<Item Category=”Drives”>

<Option Choice=”CD” />
<Option Choice=”DVD” />
<Option Choice=”DVD Burner” />

</Item>
</Hardware>

As you can see, this list is not meant to be used for site navigation purposes, but instead for allowing the
end user to make a selection from a hierarchical list of options. This XML file is divided into four cate-
gories of available options: motherboards, memory, harddrives, and drives. To bind your TreeView
control to this XML file, use an XmlDataSource control that specifies the location of the XML file you are
going to use. Then within the TreeView control itself, use the <asp:TreeNodeBinding> element to
specify which elements to bind in the XML file to populate the nodes of the TreeView control. This is
illustrated in Listing 5-9:

140

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 140

Listing 5-9: Binding a TreeView control to the Hardware.xml file

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Latest Hardware</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:TreeView ID=”Treeview1” Runat=”server” DataSourceID=”Xmldatasource1”>

<DataBindings>
<asp:TreeNodeBinding DataMember=”Hardware”
Text=”Computer Hardware” />

<asp:TreeNodeBinding DataMember=”Item” TextField=”Category” />
<asp:TreeNodeBinding DataMember=”Option” TextField=”Choice” />

</DataBindings>
</asp:TreeView>
<asp:XmlDataSource ID=”Xmldatasource1” Runat=”server”
DataFile=”Hardware.xml”>

</asp:XmlDataSource>
</form>

</body>
</html>

The first item to look at is the <asp:XmlDataSource> control. It is just as simple as the previous
<asp:SiteMapDataSourceSiteMapDataSource> control, but it points at the Hardware.xml file using
the DataFile property.

The next step is to create a TreeView control that binds to this particular XML file. You can bind a default
TreeView control directly to the XmlDataSource control like this:

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server”
DataSourceId=”XmlDataSource1” />

Doing this, you get the incorrect result shown in Figure 5-11.

Figure 5-11

141

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 141

As you can see, the TreeView control binds just fine to the Hardware.xml file, but looking at the nodes
within the TreeView control, you can see that it is simply displaying the names of the actual XML ele-
ments from the file itself. Because this isn’t what you want, you specify how to bind to the XML file with
the use of the <DataBindings> element within the TreeView control.

The <DataBindings> element encapsulates one or more TreeNodeBinding objects. Two of the more
important available properties of a TreeNodeBinding object are the DataMember and TextField prop-
erties. The DataMember property points to the name of the XML element that the TreeView control
should look for. The TextField property specifies the XML attribute that the TreeView should look for
in that particular XML element. If you do this correctly with the use of the <DataBindings> construct,
you get the result shown in Figure 5-12.

Figure 5-12

You can also see from Listing 5-9 that you can override the text value of the root node from the XML file,
<Hardware>, and have it appear as Computer Hardware in the TreeView control.

<asp:TreeNodeBinding DataMember=”Hardware” Text=”Computer Hardware” />

Selecting multiple options in a TreeView
As I stated earlier, the TreeView control is not meant to be used primarily for navigation purposes.
Instead, you can use it for all sorts of things. In many cases, you can present a hierarchical list from
which you want the end user to select one or more items.

One great built-in feature of the TreeView control is the capability to put check boxes next to nodes
within the hierarchical items in the list. These boxes allow end users to make multiple selections. The
TreeView control contains a property called ShowCheckBoxes, which can be used create check boxes
next to many different types of nodes within a list of items.

The available values for the ShowCheckBoxes property are discussed in the following table.

142

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 142

Value Description

All Applies check boxes to each and every node within the TreeView control.

Leaf Applies check boxes to only the nodes that have no additional child elements.

None Applies no check boxes to any node within the TreeView control.

Parent Applies check boxes to only the nodes considered parent nodes within the
TreeView control. A parent node has at least one child node associated with it.

Root Applies a check box to any root node contained within the TreeView control.

When working with the ShowCheckBoxes property, you can set it declaratively in the control itself:

<asp:TreeView ID=”Treeview1” Runat=”server” Font-Underline=”false”
DataSourceID=”Xmldatasource1” ShowCheckBoxes=”leaf”>

...
</asp:TreeViewTreeView>

Or you can set it programmatically by using the following code:

VB
TreeView1.ShowCheckBoxes = TreeNodeTypes.Leaf

C#
TreeView1.ShowCheckBoxes = TreeNodeTypes.Leaf;

For an example of using check boxes with the TreeView control, let’s continue to expand on the com-
puter hardware example from Listing 5-9. Create a hierarchical list that enables people to select multiple
items from the list in order to receive additional information about the selected items. Listing 5-10 shows
an example of this.

Listing 5-10: Applying check boxes next to the leaf nodes within the hierarchical list
of nodes

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If TreeView1.CheckedNodes.Count > 0 Then
Label1.Text = “We are sending you information on:<p>”

For Each node As TreeNode In TreeView1.CheckedNodes
Label1.Text += node.Text & “ “ & node.Parent.Text & “
”

Next
Else

Label1.Text = “You didn’t select anything. Sorry!”
End If

End Sub
</script>

(continued)

143

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 143

Listing 5-10: (continued)

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Latest Hardware</title>
</head>
<body>

<form runat=”server”>
Please select the items you are interested in:

<p>
<asp:TreeView ID=”Treeview1” Runat=”server” Font-Underline=”false”
DataSourceID=”Xmldatasource1” ShowCheckBoxes=”leaf”>

<DataBindings>
<asp:TreeNodeBinding DataMember=”Hardware”
Text=”Computer Hardware” />

<asp:TreeNodeBinding DataMember=”Item” TextField=”Category” />
<asp:TreeNodeBinding DataMember=”Option” TextField=”Choice” />

</DataBindings>
</asp:TreeView>
<p>
<asp:ButtonButton ID=”Button1” Runat=”server” Text=”Submit Choices”
OnClick=”Button1_Click” />

</p>
<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”Hardware.xml”>

</asp:XmlDataSource>
</p>
<asp:Label ID=”Label1” Runat=”Server” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Button1_Click(object sender, System.EventArgs e)
{

if (TreeView1.CheckedNodes.Count > 0)
{

Label1.Text = “We are sending you information on:<p>”;
foreach (TreeNode node in TreeView1.CheckedNodes)
{

Label1.Text += node.Text + “ “ + node.Parent.Text + “
”;
}

}
else
{

Label1.Text = “You didn’t select anything. Sorry!”;
}

}
</script>

144

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 144

In this example, you first set the ShowTextBoxes property to Leaf, meaning that you are only interested
in having check boxes appear next to items in the TreeView control which do not contain any child
nodes. The only items with check boxes next to them should be the last item that can be expanded in
the hierarchical list.

After this property is set, you then work with the items that are selected by the end user in the
Button1_Click event. The first thing you should check is whether any selection at all was made:

If TreeView1.CheckedNodes.Count > 0 Then
...

End If

In this case, the number of checked nodes on the postback needs to be greater than zero, meaning that at
least one was selected. If so, you can execute the code within the If statement. The If statement then
proceeds to populate the Label control that is on the page. To populate the Label control with data from
the selected nodes, you use a For Each statement, as shown in the following:

For Each node As TreeNode In TreeView1.CheckedNodes
...

Next

This creates an instance of a TreeNode object and checks each TreeNode object within the TreeView1
collection of checked nodes.

For each node that is checked, you grab the nodes Text value and the Text value of this node’s parent
node to further populate the Label control:

Label1.Text += node.Text & “ “ & node.Parent.Text & “
”

In the end, you get a page that produces the results shown in Figure 5-13.

Specifying custom icons in the TreeView control
The TreeView control allows for a high degree of customization. You saw earlier in the chapter that you
were easily able to customize the look and feel of the TreeView control by specifying one of the built-in
styles. Applying one of these styles dramatically changes the appearance of the control. One of the most
noticeable changes concerns the icons used for the nodes within the TreeView control. Although it is not
as easy as just selecting one of the styles built into the TreeView control, you can apply your own icons
to be used for the nodes within the hierarchical list of nodes.

145

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 145

Figure 5-13

The TreeView control contains the properties discussed in the following table. These properties enable
you to specify your own images to use for the nodes of the control.

Property Description

CollapseImageUrl Applies a custom image next to nodes that have been expanded to
show any of their child nodes and have the capability of being
collapsed.

ExpandImageUrl Applies a custom image next to nodes that have the capability of
being expanded to display their child nodes.

LeafImageUrl Applies a custom image next to a node that has no child nodes
and is last in the hierarchical chain of nodes.

146

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 146

Property Description

NoExpandImageUrl Applies a custom image to nodes that, for programmatic reasons,
cannot be expanded or to nodes that are leaf nodes. This is pri-
marily used for spacing purposes to align leaf nodes with their
parent nodes.

ParentNodeImageUrl Applies a custom image only to the parent nodes within the
TreeView control.

RootNodeImageUrl Applies a custom image next to only the root nodes within the
TreeView control.

Listing 5-11 shows an example of these properties in use.

Listing 5-11: Applying custom images to the TreeView control

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server” Font-Underline=”false”
DataSourceId=”Xmldatasource1”
CollapseImageUrl=”Images/CollapseImage.gif”
ExpandImageUrl=”Images/ExpandImage.gif”
LeafImageUrl=”Images/LeafImage.gif”>

<DataBindings>
<asp:TreeNodeBinding DataMember=”Hardware” Text=”Computer Hardware” />
<asp:TreeNodeBinding DataMember=”Item” TextField=”Category” />
<asp:TreeNodeBinding DataMember=”Option” TextField=”Choice” />

</DataBindings>
</asp:TreeView>

Specifying these three images to precede the nodes in your control overrides the default values of using
a plus (+) sign and a minus (–) sign for the expandable and collapsible nodes. It also overrides simply
using an image for any leaf nodes when by default nothing is used. Using the code from Listing 5-11,
you get something similar to the results illustrated in Figure 5-14.

Specifying lines used to connect nodes
Because the TreeView control shows a hierarchical list of items to the end user, you sometimes want to
show the relationship between these hierarchical items more explicitly than it is shown by default with
the TreeView control. One possibility is to show line connections between parent and child nodes within
the display. Simply set the ShowLines property of the TreeView control to True (by default, this prop-
erty is set to False):

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server” Font-Underline=”false”
DataSourceId=”Xmldatasource1” ShowCheckBoxes=”leaf” ShowLines=”True”>

...
</asp:TreeViewTreeView>

This code gives the result shown in Figure 5-15.

147

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 147

Figure 5-14

Figure 5-15

If the ShowLines property is set to True, you can also define your own lines and images within the
TreeView control. This is quite easy to do because Visual Studio 2005 provides you with an ASP.NET
TreeView Line Image Generator tool. This tool enables you to visually design how you want the lines

148

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 148

and corresponding expanding and collapsing images to appear. After you have it set up as you want, the
tool then creates all the necessary files for any of your TreeView controls to use.

To get at the tool, move to the Design view of your file and click open the smart tag for the TreeView
control that is on your page. Here you find the option Customize Line Images. Click this and you are
presented with the ASP.NET TreeView Line Image Generator dialog (shown in Figure 5-16).

Figure 5-16

From within this dialog, you can select the images used for the nodes that require an Expand, Collapse,
or NoCollapse icon. You can also specify the color and style of the lines that connect the nodes. As you
create your styles, a sample TreeView control output is displayed for you directly in the dialog based on
how your styles are to be applied. The final step is to choose the output of the files that this dialog will
create. When you have completed this step, click the OK button. This generates a long list of new files to
the folder that you specified in the dialog. By default, the ASP.NET TreeView Line Image Generator
wants you to name the output folder TreeLineImages, but feel free to name it as you wish. If the folder
doesn’t exist in the project, you will be prompted to allow Visual Studio to create the folder for you.
Once in place, the TreeView control can use your new images and styles by setting the
LineImagesFolderUrl property as shown here:

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server” ShowLines=”true”
DataSourceId=”SiteMapDataSource1” LineImagesFolderUrl=”TreeViewLineImages”>

The important properties are shown in bold. The ShowLines property must be set to True. After it is set,
it uses the default settings displayed earlier, unless you have specified a location where it can retrieve
custom images and styles using the LineImagesFolderUrl property. As you can see, this simply points
to the new folder, TreeViewLineImages, that you created and which contains all the new images and
styles. Take a look in the folder. It is interesting to see what is output by the tool.

149

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 149

Working with the TreeView control programmatically
So far with the TreeView control, you have learned how to work with the control declaratively. The great
thing about ASP.NET is that you are not simply required to work with its components declaratively, but
you can also manipulate these controls programmatically.

The TreeView control has an associated TreeView class that enables you to completely manage the
TreeView control and how it functions from within your code. The next section takes a look at how to
use some of the more common ways to control the TreeView programmatically.

Expanding and collapsing nodes programmatically
One thing you can do with your TreeView control is to expand or collapse the nodes within the hierarchy
programmatically. You can accomplish this by using either the ExpandAll or CollapseAll methods
from the TreeView class. Listing 5-12 shows you one of the earlier TreeView controls that you used in
Listing 5-6, but with a couple of buttons above it that you now use to initiate the expanding and collaps-
ing of the nodes.

Listing 5-12: Expanding and collapsing the nodes of the TreeView control
programmatically

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

TreeView1.ExpandAll()
End Sub

Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)
TreeView1.CollapseAll()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>TreeView Control</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Expand Nodes”
OnClick=”Button1_Click” />

<asp:ButtonButton ID=”Button2” Runat=”server” Text=”Collapse Nodes”
OnClick=”Button2_Click” />

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server”
DataSourceId=”SiteMapDataSource1”>

</asp:TreeViewTreeView>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” /></p>

</form>
</body>
</html>

150

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 150

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Button1_Click(object sender, System.EventArgs e)
{

TreeView1.ExpandAll();
}

void Button2_Click(object sender, System.EventArgs e)
{

TreeView1.CollapseAll();
}

</script>

Running this page gives you two buttons above your TreeView control. Clicking the first button invokes
the ExpandAll method and completely expands the entire list of nodes. Clicking the second button
invokes the CollapseAll method and completely collapses the list of nodes (see Figure 5-17).

Figure 5-17

The example shown in Listing 5-12 is nice, but it only expands and collapses the nodes on end user
actions (when the end user clicks the button). It would be even nicer if you could initiate this action
programmatically.

151

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 151

You might think that you could simply place the TreeView1.ExpandAll() command within the
Page_Load event, but if you try this, you see that it doesn’t work. Instead, you use the OnDataBound
attribute within the TreeView control:

<asp:TreeView ID=”TreeView1” Runat=”server”
DataSourceId=”SiteMapDataSource1” OnDataBound=”TreeView1_DataBound”>

</asp:TreeView>

The value of this attribute points to a method in your code, as shown here:

VB
Sub TreeView1_DataBound(ByVal sender As Object, ByVal e As System.EventArgs)

TreeView1.ExpandAll()
End Sub

C#
void TreeView1_DataBound(object sender, System.EventArgs e)
{

TreeView1.ExpandAll();
}

Now when you run the page, notice that the TreeView control is completely expanded when the page is
first loaded in the browser.

You can also expand specific nodes within the tree instead of just expanding the entire list. For this
example, use the TreeView1_DataBound method you just created. Using the site map from Listing 5-1,
change the TreeView1_DataBound method so that it appears as shown in Listing 5-13.

Listing 5-13: Expanding specific nodes programmatically

VB
Sub TreeView1_DataBound(ByVal sender As Object, ByVal e As System.EventArgs)

TreeView1.FindNode(“Home”).Expand()
TreeView1.FindNode(“Home\Finance”).Expand()
TreeView1.FindNode(“Home\Finance\Markets”).Expand()

End Sub

C#
void TreeView1_DataBound(object sender, System.EventArgs e)
{

TreeView1.FindNode(“Home”).Expand();
TreeView1.FindNode(“Home\\Finance”).Expand();
TreeView1.FindNode(“Home\\Finance\\Markets”).Expand();

}

In this case, you are using the FindNode method and expanding the node that is found. The FindNode
method takes a String value, which is the node and the path of the node that you want to reference. For
instance, TreeView1.FindNode(“Home\Finance”).Expand() expands the Finance node. To find the
node, it is important to specify the entire path from the root node to the node you want to work with (in
this case, the Finance node). You separate the nodes within the site map path structure with a backslash
in between each of the nodes in the site map path (two backslashes if you are working in C#).

152

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 152

Note that you had to expand each of the nodes individually until you got to the Finance node. If you sim-
ply used TreeView1.FindNode(“Home\Finance\Markets”).Expand() in the TreeView1_DataBound
method, the Finance node would indeed be expanded, but the parent nodes above it (the Finance and
Home nodes) would not have been expanded and you wouldn’t see the expanded Markets node when
invoking the page. (Try it, it’s interesting.)

Instead of using the Expand method, you could just as easily have used the Expanded property and set
it to True, as shown in Listing 5-14.

Listing 5-14: Expanding nodes programmatically using the Expanded property

VB
Sub TreeView1_DataBound(ByVal sender As Object, ByVal e As System.EventArgs)

TreeView1.FindNode(“Home”).Expanded = True
TreeView1.FindNode(“Home\Finance”).Expanded = True
TreeView1.FindNode(“Home\Finance\Markets”).Expanded = True

End Sub

C#
void TreeView1_DataBound(object sender, System.EventArgs e)
{

TreeView1.FindNode(“Home”).Expanded = true;
TreeView1.FindNode(“Home\\Finance”).Expanded = true;
TreeView1.FindNode(“Home\\Finance\\Markets”).Expanded = true;

}

Although you focused on the Expand method and the Expanded property here, you can just as easily
work on programmatically collapsing nodes using the Collapse method. No Collapsed property
really exists. Instead, you simply set the Expanded property to False.

Adding nodes
Another interesting thing you can do with the TreeView control is to add nodes to the overall hierarchy
programmatically. The TreeView control is made up of a collection of TreeNode objects. So as you see in
previous examples, the Finance node is actually a TreeNode object that you can work with program-
matically. It includes the capability to add other TreeNode objects.

A TreeNode object typically stores a Text and Value property. The Text property is what is displayed
in the TreeView control for the end user. The Value property is an additional data item that you can use
to associate with this particular TreeNode object. Another property that you can use (if your TreeView
control is a list of navigational links) is the NavigateUrl property. Listing 5-15 demonstrates how to
add nodes programmatically to the same site map from Listing 5-1 that you have been using.

Listing 5-15: Adding nodes programmatically to the TreeView control

VB
<%@ Page Language=”VB” %>
<script runat=”server” language=”vb”>

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

(continued)

153

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 153

Listing 5-15: (continued)

TreeView1.ExpandAll()
End Sub

Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)
TreeView1.CollapseAll()

End Sub

Sub Button3_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myNode As New TreeNode
myNode.Text = TextBox1.Text
myNode.NavigateUrl = TextBox2.Text
TreeView1.FindNode(“Home\Finance\Markets”).ChildNodes.Add(myNode)

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>TreeView Control</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Expand Nodes”
OnClick=”Button1_Click” />

<asp:Button ID=”Button2” Runat=”server” Text=”Collapse Nodes”
OnClick=”Button2_Click” /></p>

<p>
Text of new node:
<asp:TextBox ID=”TextBox1” runat=”server”>
</asp:TextBox>

</p>
<p>

Desination URL of new node:
<asp:TextBox ID=”TextBox2” Runat=”server”>
</asp:TextBox>

<asp:Button ID=”Button3” Runat=”server” Text=”Add New Node”
OnClick=”Button3_Click” />

</p>
<p>
<asp:TreeView ID=”TreeView1” runat=”server”
DataSourceId=”SiteMapDataSource1”>

</asp:TreeView></p>
<p>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” /></p>

</form>
</body>
</html>

154

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 154

C#
void Button3_Click(object sender, System.EventArgs e)
{

TreeNode myNode = new TreeNode();
myNode.Text = TextBox1.Text;
myNode.NavigateUrl = TextBox2.Text;
TreeView1.FindNode(“Home\\Finance\\Markets”).ChildNodes.Add(myNode);

}

This page contains two text boxes and a new Button control. The first text box is used to populate the
Text property of the new node that is created. The second text box is used to populate the NavigateUrl
property of the new node.

If you run the page, you can expand the entire hierarchy by pressing the Expand Nodes button. Then
you can add additional child nodes to the Markets node. To add a new node programmatically, use the
FindNode method as you did before to find the Markets node. When you find it, you can add addi-
tional child nodes by using the ChildNodes.Add method and pass in a TreeNode object instance.
Submitting NASDAQ in the first text box and Nasdaq.aspx in the second text box changes your TreeView
control, as illustrated in Figure 5-18.

Figure 5-18

155

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 155

After it is added, the node stays added even after the hierarchy tree is collapsed and re-opened. You can
also add as many child nodes as you want to the Markets node. It is important to note that although
you are changing nodes programmatically, this in no way alters the contents of the data source (the XML
file, or the .sitemap file). These sources remain unchanged throughout the entire process.

Menu Server Control
One of the cooler navigation controls provided with ASP.NET 2.0 is the new Menu server control. This
control is ideal for allowing the end user to navigate a larger hierarchy of options while utilizing very lit-
tle browser real estate in the process. Figure 5-19 shows you what the menu control looks like when it is
either completely collapsed or completely extended down one of the branches of the hierarchy.

Figure 5-19

From here, you can see that the first Menu control displayed simply shows the Home link with a small
arrow to the right of the display. The arrow means that there are more options available that relate to this
up-most link in the hierarchy. The second Menu control displayed shows what the default control looks
like when the end user works down one of the branches provided by the site map.

The Menu control is an ideal control to use when you have lots of options — whether these options are
selections the end user can make or navigation points provided by the application in which they are
working. The Menu control can provide a multitude of options and consumes little space in the process.

Using the Menu control in your ASP.NET applications is rather simple. You need to have the control
work with a SiteMapDataSource control. You can drag and drop the SiteMapDataSource control and
the Menu control onto the Visual Studio 2005 design surface and connect the two by using the Menu
control’s DataSourceId property. Alternatively, you can create and connect them directly in code.
Listing 5-16 shows an example of the Menu control in its simplest form.

156

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 156

Listing 5-16: A simple use of the Menu control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapDataSource ID=”Sitemapdatasource1” Runat=”server” />
<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”>
</asp:Menu>

</form>
</body>
</html>

From this example, you can see that I’m using a SiteMapDataSource control that automatically works
with the application’s web.sitemap file. The only other item included is the Menu control, which uses
the typical ID and Runat attributes and the DataSourceID attribute to connect this control with what is
retrieved from the SiteMapDataSource control.

Although the default Menu control is pretty simple, you can highly customize how this control looks
and works by redefining the properties of the control. The following sections take a look at some exam-
ples of how you can modify the appearance and change the behavior of this control.

Applying different styles to the Menu control
By default, the Menu control is pretty plain. If you want to maintain this appearance, you can use what
is provided or simply change the font sizes and styles to make it fit in more with your site. There are
actually quite a number of ways in which you can modify this control so that it appears unique and fits
in with the rest of your site. You can either customize this control’s appearance yourself or you can use
one of the predefined styles that come with the control.

Using a pre-defined style
Visual Studio 2005 includes some pre-defined styles that you can use with the Menu control to quickly
apply a look and feel to the displayed menu of items. Some of the provided styles include Classic and
Elegant. To apply one of these pre-defined styles, you work with the Menu control from the Design
view of your page. Within the Design view, highlight the Menu control and expand the control’s smart
tag. From here, you see a list of options for working with this control. To change the look and feel of the
control, click the Auto Format link and select one of the styles.

Performing this operation changes the code of your control by applying a set of style properties. For
example, if you select the Classic option, you get the results shown in Listing 5-17.

157

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 157

Listing 5-17: Code changes when a style is applied to the Menu control

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”
BackColor=”#F7F7DE” BorderWidth=”1px” BorderColor=”#CCCC99” Font-Names=”Verdana”
Font-Size=”10pt” BorderStyle=”Solid”>

<StaticMenuStyle BorderColor=”#CCCC99” Font-Names=”Verdana” Font-Size=”10pt”
BackColor=”#F7F7DE” BorderStyle=”Solid” BorderWidth=”1px”>

</StaticMenuStyle>
<StaticMenuItemStyle BorderColor=”#CCCC99” Font-Names=”Verdana” Font-Size=”10pt”
BackColor=”#F7F7DE” BorderStyle=”Solid” BorderWidth=”1px”>

</StaticMenuItemStyle>
<DynamicMenuStyle BorderColor=”#CCCC99” Font-Names=”Verdana” Font-Size=”10pt”
BackColor=”#F7F7DE” BorderStyle=”Solid” BorderWidth=”1px”>

</DynamicMenuStyle>
<DynamicMenuItemStyle BorderColor=”#CCCC99” Font-Names=”Verdana”
Font-Size=”10pt” BackColor=”#F7F7DE” BorderStyle=”Solid” BorderWidth=”1px”>

</DynamicMenuItemStyle>
</asp:Menu>

You can see that it added a lot of styles that change the menu items that appear in the control. Figure 5-20
shows how this style selection appears in the browser.

Figure 5-20

Changing the style for static items
The Menu control considers items in the hierarchy to be either static or dynamic. Static items from this
example would be the Home link that appears when the page is generated. Dynamic links are the items
that appear dynamically when the user hovers the mouse over the Home link in the menu. It is possible
to change the styles for both these types of nodes in the menu.

To apply a specific style to the static links that appear, you must add a static style element to the Menu
control. The Menu control includes the following static style elements:

❑ <StaticHoverStyle>

❑ <StaticMenuItemStyle>

158

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 158

❑ <StaticMenuStyle>

❑ <StaticSelectedStyle>

❑ <StaticTemplate>

The important options from this list include the <StaticHoverStyle> and the <StaticMenuItemStyle>
elements. The <StaticHoverStyle> is what you use to define the style of the static item in the menu
when the end user hovers the mouse over the option. The <StaticMenuItemStyle> is what you use for
the style of the static item whether or not the end user is hovering the mouse over the option.

Adding a style to the static item in the menu for when the end user hovers the mouse over the option is
illustrated in Listing 5-18.

Listing 5-18: Adding a hover style to static items in the menu control

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”>
<StaticHoverStyle BackColor=”DarkGray” BorderColor=”Black” BorderStyle=”Solid”
BorderWidth=”1”></StaticHoverStyle>

</asp:Menu>

This little example adds a background color and border to the static items in the menu when the end
user hovers the mouse over the item. The result is shown in Figure 5-21.

Figure 5-21

Adding styles to dynamic items
Adding styles to the dynamic items of the menu control is just as easy as it was in adding them to static
items. The Menu control includes a number of different elements for modifying the appearance of
dynamic items, including the following:

❑ <DynamicHoverStyle>

❑ <DynamicMenuItemStyle>

❑ <DynamicMenuStyle>

159

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 159

❑ <DynamicSelectedStyle>

❑ <DynamicTemplate>

These elements change menu items the same way as the static versions of these elements, but they
change only the items that dynamically pop-out from the static items. Listing 5-19 shows an example of
applying the same style to the dynamic items as was applied to the static items.

Listing 5-19: Adding a hover style to dynamic items in the menu control

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”>
<StaticHoverStyle BackColor=”DarkGray” BorderColor=”Black” BorderStyle=”Solid”
BorderWidth=”1”></StaticHoverStyle>

<DynamicHoverStyle BackColor=”DarkGray” BorderColor=”Black” BorderStyle=”Solid”
BorderWidth=”1”></DynamicHoverStyle>

</asp:Menu>

This code produces the results shown in Figure 5-22.

Figure 5-22

Changing the layout of the menu items
By default, the dynamic menu items are displayed from left-to-right. This means that as the items in the
menu expand, they are just continually displayed in a vertical fashion. You can actually control this
behavior, as there is another option available to you.

The other option is to have the first level of menu items appear directly below the first static item (hori-
zontally). You change this behavior by using the Orientation attribute of the Menu control, as shown
in Listing 5-20.

Listing 5-20: Forcing the menu items to use a horizontal orientation

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”
Orientation=”Horizontal”>

</asp:Menu>

160

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 160

This code produces the results shown in Figure 5-23.

Figure 5-23

The Orientation attribute can take a value of Horizontal or Vertical only. The default value is
Vertical.

Changing the pop-out symbol
As the default, an arrow is used as the pop-out symbol for the menu items generated, whether they are
static or dynamic menu items. This is again shown in Figure 5-24.

Figure 5-24

You are not forced to use this arrow symbol; in fact, you can change it to an image with relatively little
work. Listing 5-21 shows how to accomplish this task.

Listing 5-21: Using custom images

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”
Orientation=”Horizontal” DynamicPopOutImageUrl=”myArrow.gif”
StaticPopOutImageUrl=”myArrow.gif”>

</asp:Menu>

To change the pop-out symbol to an image of your choice, you use the DynamicPopOutImageUrl or
StaticPopOutImageUrl properties. The String value these attributes take is simply the path of the
image you want to use. Depending on the image used, it produces something similar to what you see in
Figure 5-25.

161

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 161

Figure 5-25

Separating menu items with images
Another nice styling option of the Menu control is the capability to add a divider image to the menu
items. You use the StaticBottomSeparatorImageUrl, StaticTopSeparatorImageUrl,
DynamicBottomSeparatorImageUrl, and DynamicTopSeparatorImageUrl properties depending on
where you want to place the separator image.

For example, if you wanted to place a divider image under only the dynamic menu items, you would
use the DynamicBottomSeparatorImageUrl property, as shown in Listing 5-22.

Listing 5-22: Applying divider images to dynamic items

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”
DynamicBottomSeparatorImageUrl=”myDivider.gif”>

</asp:Menu>

All the properties of the Menu control that define the image to use for the dividers take a String value
that points to the location of the image. The result of Listing 5-22 is shown in Figure 5-26.

Figure 5-26

162

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 162

Menu Events
The Menu control exposes events such as

❑ DataBinding

❑ DataBound

❑ Disposed

❑ Init

❑ Load

❑ MenuItemClick

❑ MenuItemDataBound

❑ PreRender

❑ Unload

One nice event to be aware of is the MenuItemClick event. This event, shown in Listing 5-23, allows
you to take some action when the end user clicks one of the available menu items.

Listing 5-23: Using the MenuItemClick event

VB
Sub Menu1_MenuItemClick(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.MenuEventArgs)

‘ Code for event here

End Sub

C#
void Menu1_MenuItemClick(object sender, MenuEventArgs e)
{

// Code for event here

}

This event uses the MenuEventArgs event delegate and provides you access to the text and value of the
item selected from the menu.

Binding the Menu control to an XML file
Just as with the TreeView control, it is possible to bind the Menu control to items that come from other
data source controls provided with ASP.NET 2.0. Although most developers are likely to use the Menu
control to enable end users to navigate to URL destinations, you can also use the Menu control to enable
users to make selections.

As an example, take the previous XML file, Hardware.xml, which was used with the TreeView control
from Listing 5-8 earlier in the chapter. For this example,the Menu control needs to work with an

163

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 163

XmlDataSource control. When the end user makes a selection from the menu, you populate a Listbox on
the page with the items selected. The code for this is shown in Listing 5-24.

Listing 5-24: Using the Menu control with an XML file

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Menu1_MenuItemClick(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.MenuEventArgs)

Listbox1.Items.Add(e.Item.Parent.Value & “ : “ & e.Item.Value)
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”XmlDataSource1”
OnMenuItemClick=”Menu1_MenuItemClick”>

<Bindings>
<asp:MenuItemBinding DataMember=”Item”
TextField=”Category”></asp:MenuItemBinding>

<asp:MenuItemBinding DataMember=”Option”
TextField=”Choice”></asp:MenuItemBinding>

</Bindings>
</asp:Menu>
<p>
<asp:ListBox ID=”Listbox1” Runat=”server”>
</asp:ListBox></p>
<asp:xmldatasource ID=”XmlDataSource1” runat=”server”
datafile=”Hardware.xml” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Menu1_MenuItemClick(object sender, MenuEventArgs e)
{

Listbox1.Items.Add(e.Item.Parent.Value + “ : “ + e.Item.Value);
}

</script>

From this example, you can see that instead of using the <asp:TreeNodeBinding> elements, as I did
with the TreeView control, the Menu control uses the <asp:MenuItemBinding> elements to make
connections to items listed in the XML file: Hardware.xml. In addition, the root element of the Menu
control, the <asp:Menu> element, now includes the OnMenuItemClick attribute, which points to the
event delegate Menu1_MenuItemClick.

164

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 164

The Menu1_MenuItemClick event includes the event delegate MenuEventArgs, which allows you to get
at both the values of the child and parent elements selected. For this example, both are used and then
populated into the Listbox control, as illustrated in Figure 5-27.

Figure 5-27

SiteMap Data Provider
A whole new series of data providers in the form of DataSource controls have been added to ASP.NET
2.0. One of these new DataSource controls now at your disposal, which we looked at earlier in the chap-
ter, is the SiteMapDataSource control. This new DataSource control was developed to work with site
maps and the controls that can bind to them.

Some controls don’t need a SiteMapDataSource control in order to bind to the application’s site map
(which is typically stored in the web.sitemap file). Earlier in the chapter, you saw this in action when
using the SiteMapPath control. This control was able to work with the web.sitemap file directly with-
out the need for this new data provider.

Certain navigation controls, however, such as the TreeView control and the DropDownList control,
require an intermediary SiteMapDataSource control to retrieve the site navigation information.

The SiteMapDataSource control is simple to use as demonstrated throughout this chapter. The
SiteMapDataSource control in its simplest form is illustrated here:

<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

In this form, the SiteMapDataSource control simply grabs the info as a tree hierarchy (as consistently
demonstrated so far). Be aware that a number of properties do change how the data is displayed in any
control that binds to the data output.

SiteMapViewType
The SiteMapViewType property can take one of three available values: Tree, Flat, or Path. Changing
this property’s value dramatically changes how the view of the site map data is represented in the con-
trol that binds to it. The following table describes each of these values.

165

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 165

Value Description

Tree This is the default setting for the SiteMapViewType property. The value of
Tree assigns the hierarchical site map structure as it is presented in the site
map data file.

Flat This value flattens the hierarchical structure of the data that is presented in
the site map data file so that no hierarchical structure is represented. This is
ideal setting for controls such as the DropDownList control.

Path This value presents the navigation structure that shows the data as a hier-
archical structure from the current node to the root node (this is similar to
how it is presented in the SiteMapPath control).

StartingNodeType
The StartingNodeType property sets the depth where the SiteMapDataSource control starts retrieving
node objects. It is based on the current node. For example, if you were looking at a page in the hierarchy
that contained child nodes and you set the StartingNodeType to Root (which is the default), all the
links for the entire hierarchy are displayed. However, if you set the StartingNodeType to Parent, only
the parent node to the node being displayed and all the successive child nodes are displayed. Finally, if
you set the StartingNodeType to Current, only the current node and any child nodes are shown in the
hierarchy. This is demonstrated in Listing 5-25. For this example, use the site map from Listing 5-1 and
create a page called Markets.aspx.

Listing 5-25: Changing the StartingNodeType values in Markets.aspx

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SiteMapDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server”
SiteMapViewType=”flat” StartingNodeType=”root” />

<asp:BulletedList ID=”BulletedList1” Runat=”server”
DisplayMode=”HyperLink” DataSourceId=”SiteMapDataSource1”
DataTextField=”Title” DataValueField=”Url” BulletStyle=”Circle” >

</asp:BulletedList>
</form>

</body>
</html>

For this page, the StartingNodeType is set to Root for the bulleted list of site links. This gives you the
results illustrated in Figure 5-28.

166

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 166

Figure 5-28

Now simply change the StartingNodeType to Parent, and you get the results illustrated in Figure 5-29.

Figure 5-29

And finally, set the StartingNodeType to Current, and you get the results shown in Figure 5-30.

167

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 167

Figure 5-30

SiteMap API
The SiteMap class is an in-memory representation of the site’s navigation structure. This is a great class
for programmatically working around the hierarchical structure of your site. The SiteMap class comes
with a couple of objects that make working with the navigation structure easy. These objects are
described in the following table.

Object Description

CurrentNode Retrieves a SiteMapNode object for the current page.

RootNode Retrieves a SiteMapNode object that starts from the root node and the
rest of the site’s navigation structure.

Provider Retrieves the default ISiteMapProvider for the current site map.

Providers Retrieves a collection of available, named ISiteMapProvider objects.

For an example of how to work with some of these SiteMap objects, see Listing 5-26, which gives a
demonstration of using the CurrentNode object.

Listing 5-26: Working with the CurrentNode object

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

168

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 168

Label1.Text = SiteMap.CurrentNode.Description & “
” & _
SiteMap.CurrentNode.HasChildNodes & “
” & _
SiteMap.CurrentNode.NextSibling.ToString() & “
” & _
SiteMap.CurrentNode.ParentNode.ToString() & “
” & _
SiteMap.CurrentNode.PreviousSibling.ToString() & “
” & _
SiteMap.CurrentNode.RootNode.ToString() & “
” & _
SiteMap.CurrentNode.Title & “
” & _
SiteMap.CurrentNode.Url

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SiteMapDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = SiteMap.CurrentNode.Description + “
” +
SiteMap.CurrentNode.HasChildNodes + “
” +
SiteMap.CurrentNode.NextSibling.ToString() + “
” +
SiteMap.CurrentNode.ParentNode.ToString() + “
” +
SiteMap.CurrentNode.PreviousSibling.ToString() + “
” +
SiteMap.CurrentNode.RootNode.ToString() + “
” +
SiteMap.CurrentNode.Title + “
” +
SiteMap.CurrentNode.Url;

}
</script>

As you can see from this little bit of code, by using the SiteMap class and the CurrentNode object, you
can work with a plethora of information regarding the current page. Running this page, you get the
following results printed to the screen:

The Latest Market Information

True
Funds
Finance
Quotes
Home
Markets
/Chapter05_VB/Markets.aspx

Using the CurrentNode property, you can actually create your own style of SiteMapPath control as
illustrated in Listing 5-27.

169

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 169

Listing 5-27: Creating a custom navigation display using the CurrentNode property

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Hyperlink1.Text = SiteMap.CurrentNode.ParentNode.ToString()
Hyperlink1.NavigateUrl = SiteMap.CurrentNode.ParentNode.Url

Hyperlink2.Text = SiteMap.CurrentNode.PreviousSibling.ToString()
Hyperlink2.NavigateUrl = SiteMap.CurrentNode.PreviousSibling.Url

Hyperlink3.Text = SiteMap.CurrentNode.NextSibling.ToString()
Hyperlink3.NavigateUrl = SiteMap.CurrentNode.NextSibling.Url

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SiteMapDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
Move Up:
<asp:Hyperlink ID=”Hyperlink1” Runat=”server”></asp:Hyperlink>

<-- <asp:Hyperlink ID=”Hyperlink2” Runat=”server”></asp:Hyperlink> |
<asp:Hyperlink ID=”Hyperlink3” Runat=”server”></asp:Hyperlink> -->

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

Hyperlink1.Text = SiteMap.CurrentNode.ParentNode.ToString();
Hyperlink1.NavigateUrl = SiteMap.CurrentNode.ParentNode.Url;

Hyperlink2.Text = SiteMap.CurrentNode.PreviousSibling.ToString();
Hyperlink2.NavigateUrl = SiteMap.CurrentNode.PreviousSibling.Url;

Hyperlink3.Text = SiteMap.CurrentNode.NextSibling.ToString();
Hyperlink3.NavigateUrl = SiteMap.CurrentNode.NextSibling.Url;

}
</script>

When run, this page gives you your own custom navigation structure, as shown in Figure 5-31.

170

Chapter 5

05_572865 ch05.qxd 7/7/04 9:52 PM Page 170

Figure 5-31

Summary
This chapter introduced the new navigation mechanics that ASP.NET 2.0 provides. At the core of the
new navigation capabilities is the power to detail the navigation structure in an XML file, which can
then be utilized by various navigation controls — such as the new TreeView and SiteMapPath controls.

The powerful functionality that the new navigation capabilities provide saves you a tremendous amount
of coding time.

In addition to showing you the core infrastructure for navigation in ASP.NET 2.0, this chapter also
described both the new TreeView and SiteMapPath controls and how to use them throughout your
applications. The great thing about these new controls is that right out of the box they can richly display
your navigation hierarchy and allow the end user to work through the site easily. In addition, these con-
trols are easily changeable so that you can go beyond the standard appearance and functionality that
they provide.

171

Site Navigation

05_572865 ch05.qxd 7/7/04 9:52 PM Page 171

05_572865 ch05.qxd 7/7/04 9:52 PM Page 172

Working with Master Pages

Visual inheritance is a great new enhancement to your Web pages provided by new additions to
ASP.NET 2.0. In effect, you can create a single template page that can be used as a foundation for
any number of ASP.NET content pages in your application. These templates, called master pages,
increase your productivity by making your applications easier to build and to manage after they
are built. This chapter takes a close look at how to utilize master pages in your applications to the
fullest extent. But first, I explain the advantages of master pages.

Why Do You Need Master Pages?
Most Web sites today have common elements used throughout the entire application or on a
majority of the pages within the application. For instance, if you look at the main page of the
Reuters News Web site (found at www.reuters.com), you see common elements that are used
throughout the entire Web site. These common areas are labeled in Figure 6-1.

screen shot, notice a header section, a navigation section, and a footer section on the page. In fact,
pretty much every page within the entire application uses these same elements. Even before mas-
ter pages, you had ways to put these elements into every page; but in most cases, these other
means posed difficulties.

Some developers simply copy and paste the code for these common sections to each and every
page that requires them. This works, but it’s rather labor intensive. And if you use the copy-and-
paste method, whenever a change is required to one of these common sections of the application,
you have to go into each and every page to make the change. That’s not much fun!

In the Active Server 3.0 days, one popular option was to put all the common sections into what
was called an include file. You could then place this file within your page like this:

<!-- #include virtual=”/myIncludes/header.asp” -->

06_572865 ch06.qxd 7/7/04 9:52 PM Page 173

Figure 6-1

In this The problem with using include files was that you had to take into account the HTML tags in
the header include file. These tags had to be closed in the main document or in the footer include file.
It was usually difficult to keep all the HTML tags in order, especially if multiple people worked on a pro-
ject. Web pages sometimes displayed strange results because of inappropriate or nonexistent tag closings
or openings. It was also difficult to work with include files in a visual designer. Using include files
didn’t allow for the developer to see the entire page as it would appear in a browser. The developer
ended up developing the page in sections and hoping that the pieces would come together as planned.

Header

Secondary
Navigation

Common
Page

Items

Footer

Ad Space

174

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 174

With the introduction of ASP.NET in 2000, developers started using user controls to encapsulate common
sections of their Web pages. For instance, you could build a Web page that included header, navigation,
and footer sections by simply dragging and dropping these sections of code onto each page that required
them. This approach is shown in Figure 6-2.

This technique worked, but it also raised some issues. First, as you can tell from the screen shot, user
controls cause problems similar to those related to include files. When working in the Design view of
your Web page, the common areas of the page display only as gray boxes in Visual Studio .NET. This
makes it harder to build a page. You cannot visualize what the page you are building actually looks like
until you compile and run the completed page in a browser. Another problem with user controls was
that you have to open and close HTML tags properly just as you did with include files. I personally like
the use of user controls better than include files, but they aren’t always perfect template pieces for use
throughout an application.

In light of these issues, the ASP.NET team has come up with the idea of master pages — an outstanding
new way of applying templates to your applications. These pages keep a more distinct line between the
common areas that you carry over from page to page and the content areas that are unique on each and
every page. Working with master pages is easy and fun. Take a look at some of the basics of master
pages in ASP.NET 2.0.

Figure 6-2

175

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 175

The Basics of Master Pages
Master pages are an easy way to provide a template that can be used by any number of ASP.NET pages
in your application. In working with master pages, you create a master file that is the template to be
used by a subpage or content page. Master pages use a .master file extension and the content pages use
the .aspx file extension, but are declared content pages within the file’s Page directive.

Anything that you want to encapsulate within the template should be put into the .master file. This can
include the header, navigation, and footer sections that are used across the Web application. The content
page then contains all the page content except for the master page’s elements. At runtime, the ASP.NET
engine combines these elements into a single page for the end user. Figure 6-3 shows a diagram of how
this process works.

Figure 6-3

One of the nice things about working with master pages is that you can visually see the template in the
IDE when you are creating the content pages.

Because you can see the entire page while you are working on it, it is much easier to develop any content
pages that use this template. When working in this manner, all the templated items are shown in shaded
gray and are not editable while you are working on the content page. The only items that can be altered
are clearly shown in the template. These workable areas, called content areas, are also defined in the mas-
ter page itself. Within the master page, you specify the areas of the page that the content pages can use.
You can have more than one content area in your master page if you want. Figure 6-4 shows the master
page with a couple of content areas shown.

Combined Page
Default.aspx

M C

Master Page
MyMaster.master

Content Page
Default.aspx

M C

176

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 176

Figure 6-4

With the release of ASP.NET 2.0, master pages are possible because the .NET Framework 2.0 now sup-
ports partial classes. This is the capability to take two classes and merge them together as a single class at
runtime. Using this new capability, the ASP.NET engine is taking two-page classes and bringing them
together into a single page at runtime.

Companies and organizations will find using master pages ideal. Many companies have a common look
and feel that they apply across their intranet. They can now provide the divisions of their company with
a .master file to use when creating a department’s section of the intranet. This process makes it quite
easy for the company to keep a consistent look and feel across its entire intranet.

Coding a Master Page
You can build the master page from Figure 6-4. You can create one in any text-based editor, such as
Notepad, or use the new Visual Studio 2005. In this chapter, I show you how to use Visual Studio 2005.

Master pages work much as regular .aspx pages do, so you can choose the master page option when
you add a new file to your application. This is shown in Figure 6-5.

177

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 177

Figure 6-5

Because it’s just like any other .aspx page, the Add New Item dialog enables you to choose from a master
page using the inline coding model or a master page that places its code in a separate file. Not placing
your server code in a separate file means that you use the inline code model for the page you are creating.
This option creates a single .master page. Choosing the option of placing your code in a separate file
means that you use the new code-behind model with the page you are creating. The Master Page with
Code Separation option creates a single .master page along with a .master.vb or .master.cs file.

A sample master page that uses the inline-coding model is shown in Listing 6-1.

Listing 6-1: A sample master page

<%@ Master Language=”VB” %>

<script runat=”server”>

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>My Company Master Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<table cellpadding=”3” border=”1”>

<tr bgcolor=”silver”>
<td colspan=”2”>

<h1>My Company Home Page</h1>
</td>

</tr>
<tr>

<td>

178

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 178

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>
Copyright 2004 - My Company

</td>
</tr>

</table>
</form>

</body>
</html>

This is a simple master page (it is also lacking any artistic qualities because of author limitations in this
area). The great thing about creating master pages in Visual Studio 2005 is that not only can you work
with the master page in Code view, you can also switch over to Design view to create your master pages.

Review the code for the master page. The first line is the directive:

<%@ Master Language=”VB” %>

Instead of using the Page directive, as you would with a typical .aspx page, you use the Master direc-
tive for a master page. This master page uses only a single attribute, language. The language
attribute’s value here is VB, but you could also use C# (if you are building a C# master page).

You code the rest of the master page just as you would any other .aspx page. You can use server con-
trols, raw HTML and text, images, events, or anything else you normally would use for any .aspx page.
This means that your master page can have a Page_Load event as well or any other event that you deem
appropriate.

In the code shown in Listing 6-1, notice the use of a new server control — the <asp:ContentPlaceHolder>
control. This control is used to define the areas of the template where the content page can place its content:

<tr>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>

179

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 179

In the case of this master page, two defined areas exist where the content page can place content. Our
master page contains a header and a footer area. It also defines two areas in the page where any inherit-
ing content page can place its own content. Look at how a content page uses this master page.

Coding a Content Page
Now that you have a master page in place in your application, you can use this template for any content
pages in your application. To create a new content page within your application, right-click on the appli-
cation in the Solution Explorer and choose Add New Item.

To create a content page, or a page that will use this master page as its template, you need to select a typ-
ical Web Form from the list of options in the Add New Item dialog. Instead of creating a typical Web
Form, however, you need to check the Select Master Page check box. This gives you the option later of
associating this Web Form to some master page. The Add New Item dialog is shown in Figure 6-6.

Figure 6-6

After you name your content page and click the Add button in the Add New Item dialog, you are pre-
sented with the Select a Master Page dialog, as shown in Figure 6-7.

This dialog allows you to choose the master page from which you want to build your content page. You
choose from the available master pages that are contained within your application. Select the new mas-
ter page that you created in Listing 6-1 and click the OK button. This creates the content page. The cre-
ated page is a simple .aspx page with only a single line of code contained within the file, as shown in
Listing 6-2.

180

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 180

Figure 6-7

Listing 6-2: The created content page

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” Title=”Untitled Page” %>

This content page is not much different from the typical .aspx page you coded in the past. The big dif-
ference is the inclusion of the MasterPageFile attribute within the Page directive. The use of this
attribute specifies that this particular .aspx page inherits from another page. The location of the master
page within the application is specified as the value of the MasterPageFile attribute.

The other big difference is that it contains neither the <form id=”form1” runat=”server”> tag nor
any opening or closing HTML tags that would normally be included in a typical .aspx page.

This content page may seem simple, but if you switch to the Design view within Visual Studio 2005, you
see the power of using content pages. What you get with visual inheritance is shown in Figure 6-8.

In this screen shot, you can see that just by using the MasterFilePage attribute in the Page directive,
you are able to completely inherit everything that the Wrox.master file exposes. All the common areas
defined in the master page are shown in gray, whereas the content areas that you specified in the master
page using the <asp:ContentPlaceHolder> server control are shown clearly and available for addi-
tional content in the content page. You can add any content to these defined content areas as if you were
working with a regular .aspx page. An example of using this .master page for a content page is shown
in Listing 6-3.

181

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 181

Figure 6-8

Listing 6-3: The content page that uses Wrox.master

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & TextBox1.Text & “!”
End Sub

</script>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server” />

182

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 182

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server” />

</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”wrox.gif” />
</asp:content>

C#
<%@ Page Language=”C#” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”c#”>
void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “!”;
}

</script>

Right away you see some differences. As stated before, this page has no <form id=”form1”
runat=”server”> tag nor any opening or closing HTML tags. These tags are not included because they
are located in the master page. You should also notice a new server control — the <asp:Content>
server control:

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

...
</asp:Content>

The <asp:Content> server control is a defined content area that maps to a specific <asp:Content
PlaceHolder> server control on the master page. In this example, you can see that the <asp:Content>
server control maps itself to the <asp:ContentPlaceHolder> server control in the master page that has
the ID of ContentPlaceHolder1. Within the content page, you don’t have to worry about specifying
the location of the content because this is completely defined within the master page. Therefore, your
only concern is to place the appropriate content within the provided content sections, allowing the mas-
ter page to do most of the work for you.

Just as when you work with any typical .aspx page, you can create any event handlers for your content
page. In this case, you are using just a single event handler — the button-click when the end user sub-
mits the form. Finally, the created .aspx page that includes the master page and content page material
is shown in Figure 6-9.

183

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 183

Figure 6-9

Mixing page types and languages
One interesting point: When you use master pages, you are not tying yourself to a specific coding model
(inline or code-behind) nor are you tying yourself to the use of a specific language. You can feel free to
mix these elements within your application knowing that they all work well.

You could use the master page created earlier, knowing that it was created using the inline-coding
model, and then build your content pages using the code-behind model. Listing 6-4 shows a content
page created using a Web Form that uses the code-behind option.

Listing 6-4: A content page that uses that code-behind model

.aspx (VB)
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” AutoEventWireup=”false”

CompileWith=”MyContentPage.aspx.vb” ClassName=”MyContentPage_aspx” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

184

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 184

<asp:Label ID=”Label1” Runat=”server” />
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”ineta.JPG” />
</asp:Content>

VB Code-Behind
Imports Microsoft.VisualBasic

Partial Class MyContentPage_aspx

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = “Hello “ & TextBox1.Text & “!”

End Sub

End Class

C# Code-Behind
using System;
using System.Configuration;
using System.Web;
using System.Web.Caching;
using System.Web.SessionState;
using System.Web.Security;
using System.Web.Profile;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class MyContentPage_aspx
{

void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “!”;
}

}

Even though the master page is using the inline-coding model, you can easily create content pages (such
as the page shown in Listing 6-4) that use the code-behind model. The pages will still work perfectly.

Not only can you mix the coding models when using master pages, you can also mix the programming
languages. Just because you build a master page in C# doesn’t mean that you are required to use C# for
all the content pages that use this master page. You can also build content pages in Visual Basic. For a
good example, create a master page in C# that uses the Page_Load event handler and then create a con-
tent page in Visual Basic. Run the page and it works perfectly well. This means that even though you
might have a master page in one of the available .NET languages, the programming teams that build
applications from the master page can use whatever .NET language they want. You have to love the
openness that the .NET Framework offers!

185

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 185

Specifying which master page to use
You just observed that it is pretty easy to specify at page level which master page to use. In the Page
directive of the content page, you simply use the MasterPageFile attribute:

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

Besides specifying the master page that you want to use at the page level, you have a second way to
specify which master page you want to use in the web.config file of the application. This is shown in
Listing 6-5.

Listing 6-5: Specifying the master page in the web.config file

<configuration>
<system.web>

<pages masterPageFile=”~/Wrox.master” />
</system.web>

</configuration>

Specifying the master page in the web.config file causes every single Web Form you create in the appli-
cation to inherit from the specified master page. If you declare your master pages in this manner, you
can create any number of content pages that use this master page. The content pages’ Page directive
must be constructed in the following manner:

<%@ Page Language=”VB” %>

You can easily override the application-wide master page specification by simply declaring a different
master page within your content page:

<%@ Page Language=”VB” MasterPageFile=”~/MyOtherCompany.master” %>

By specifying the master page in the web.config, you are really saying that you want all the .aspx
pages to use this master page. So if you create a normal Web Form and run it, you get an error stating:

Literal content (‘<html>’) is not allowed on a content page.

The application is treating this page as a content page when you really intended it to be a normal .aspx
page. To get around this, you make the following declaration in the Page directive of the page:

<%@ Page Language=”VB” MasterPageFile=”” %>

To make this page work without using the default master page, you simply override the master declara-
tion with a master value of nothing. This causes the page to be generated without the use of the master
page, and the page then works correctly.

Working with the page title
When you create content pages in your application, by default all the content pages automatically use
the title that is declared in the master page. For instance, you have primarily been using a master page

186

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 186

with the title My Company Master Page. Every content page that is created using this particular master
page also use the same My Company Master Page title. You have a way around this, however.

In the code of the content page, you can work with the Master object. The Master object conveniently
has a property called Title. The value of this property is the page title that is used for the content page.
You code it as shown in Listing 6-6.

Listing 6-6: Coding a custom page title for the content page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Sub Page_LoadComplete(ByVal sender As Object, ByVal e As System.EventArgs)

Master.Page.Title = “This is a title from the content page”
End Sub

</script>

C#
<%@ Page Language=”C#” MasterPageFile=”~/wrox.master” %>

<script runat=”server”>
void Page_LoadComplete(object sender, EventArgs e)
{

Master.Page.Title = “This is a title from the content page”;
}

</script>

Working with controls and properties
from the master page

When working with master pages from a content page, you actually have good access to the controls
and the properties that the master page exposes. The master page, when inherited by the content page,
exposes a property called Master. You use this property to get at control values or custom properties
that are contained in the master page itself.

To see an example of this, create a GUID (unique identifier) in the master page that you can retrieve on
the content page that is using the master. For this example, use the master page that was created in
Listing 6-1, but with the addition of a Label server control and the Page_Load event. This is shown
in Listing 6-7.

Listing 6-7: A master page that creates a GUID on the first request

VB
<%@ Master Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Label1.Text = System.Guid.NewGuid().ToString()

187

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 187

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>My Company Master Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<table cellpadding=”3” border=”1”>

<tr bgcolor=”silver”>
<td colspan=”2”>

<h1>My Company Home Page</h1>
User’s GUID:

<asp:label id=”Label1” runat=”server” />
</td>

</tr>
<tr>

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>
Copyright 2004 - My Company

</td>
</tr>

</table>
</form>

</body>
</html>

C#
void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

Label1.Text = System.Guid.NewGuid().ToString();
}

}

Now you have a Label control on the master page that you can access on the content page. You have a
couple of ways to accomplish this task. The first is to use the FindControl method that the master page
exposes. This approach is shown in Listing 6-8.

188

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 188

Listing 6-8: Getting at the Label’s Text value in the content page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Sub Page_LoadComplete(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = CType(Master.FindControl(“Label1”), Label).Text
End Sub

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label2.Text = “Hello “ & TextBox1.Text & “!”

End Sub
</script>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Your GUID number from the master page is:

<asp:Label ID=”Label1” Runat=”server” /><p>
Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<asp:Label ID=”Label2” Runat=”server” />

</asp:content>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”Wrox.gif” />
</asp:Content>

C#
<%@ Page Language=”C#” MasterPageFile=”~/wrox.master” %>

<script runat=”server”>

void Page_LoadComplete(object sender, EventArgs e)
{

Label1.Text = (Master.FindControl(“Label1”) as Label).Text;
}

void Button1_Click(object sender, EventArgs e)
{

Label2.Text = “Hello “ + TextBox1.Text + “!”;
}

</script>

In this example, the master page in Listing 6-7 first creates a GUID that it then stores as a text value in a
Label server control on the master page itself. The id of this Label control is Label1. The master page

189

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 189

only generates this GUID on the first request for this particular content page. You want to populate one
of the content page’s controls with this value.

The interesting thing about the content page is that you put code in the Page_LoadComplete event
handler so that you can get at the GUID value that is on the master page. This new event handler in
ASP.NET 2.0 is fired after the Page_Load event is fired. I cover event ordering later, but the Page_Load
event in the content page always fires before the Page_Load event in the master page. In order to get at
the newly created GUID (if it is created in the master page’s Page_Load event), you have to get the
GUID in an event that comes after this — and that is where the Page_LoadComplete comes into play.
So within the content page’s Page_LoadComplete event, you populate a Label server control within the
content page itself. Note that the Label control in the content page has the same id as the Label control
in the master page, but this doesn’t make a difference. You can differentiate between them with the use
of the Master property.

Not only can you get at the server controls that are in the master page in this way, you can get at any cus-
tom properties that the master page might expose as well. Look at the master page shown in Listing 6-9;
it uses a custom property for the <h1> section of the page.

Listing 6-9: A master page that exposes a custom property

VB
<%@ Master Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Label1.Text = Guid.NewGuid().ToString()

End If
End Sub

Dim m_PageHeadingTitle As String = “My Company”

Public Property PageHeadingTitle() As String
Get

Return m_PageHeadingTitle
End Get
Set(ByVal Value As String)

m_PageHeadingTitle = Value
End Set

End Property
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>My Company Master Page</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<table cellpadding=”3” border=”1”>

<tr bgcolor=”silver”>
<td colspan=”2”>

190

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 190

<h1><%= PageHeadingTitle() %></h1>
User’s GUID:

<asp:label id=”Label1” runat=”server” />
</td>

</tr>
<tr>

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>
Copyright 2004 - My Company

</td>
</tr>

</table>
</form>

</body>
</html>

C#
<%@ Master Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

Label1.Text = System.Guid.NewGuid().ToString();
}

}

string m_PageHeadingTitle = “My Company”;

public string PageHeadingTitle
{

get
{

return m_PageHeadingTitle;
}
set
{

m_PageHeadingTitle = value;
}

}
</script>

191

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 191

In this master page example, the master page is exposing the property you created called PageHeading
Title(). You also assign a default value to this property of “My Company”. You then place it within the
HTML of the master page file between some <h1> elements. This makes the default value become the
heading used on the page within the master page template. Although the master page already has a
value it uses for the heading, any content page that is using this master page can override the <h1> title
heading. The process is shown in Listing 6-10.

Listing 6-10: A content page that overrides the property from the master page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Master.PageHeadingTitle = “My Company – Division X”
End Sub

</script>

C#
<%@ Page Language=”C#” MasterPageFile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

Master.PageHeadingTitle = “My Company – Division X”
}

</script>

From the content page, you can assign a value to the property that is exposed from the master page by
the use of the Master property. The result is shown earlier in Figure 6-9. As you can see, this is quite
simple to achieve. Remember that not only can you get at any public properties that the master page
might expose, but you can also retrieve any methods that the master page contains as well.

Earlier, I showed you how to get at the server controls that are on the master page by using the
FindControl method. The FindControl method works fine, but it is a late-bound approach. Using
the mechanics I just illustrated with the use of public properties shown in Listing 6-9, you have another
approach to expose any server controls on the master page. You may find this approach to be more
effective.

To do this, you simply expose the server control as a public property as shown in Listing 6-11.

Listing 6-11: Exposing a server control from a master page as a public property

VB
<%@ Master Language=”VB” %>

<script runat=”server” language=”vb”>
Public Property MasterPageLabel1() As Label

Get
Return Label1

End Get

192

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 192

Set(ByVal Value As Label)
Label1 = Value

End Set
End Property

</script>

C#
<%@ Master Language=”VB” %>

<script runat=”server” language=”C#”>
public Label MasterPageLabel
{

get
{

return Label1;
}
set
{

Label1 = value;
}

}
</script>

In this case, a public property called MasterPageLabel1 returns an instance of the Label control that
uses the id of Label1. You can now create an instance of the MasterPageLabel1 property on the con-
tent page and override any of the attributes of the Label server control. So if you want to increase the
size of the GUID that the master page creates and displays in the Label1 server control, you can simply
override the Font.Size attribute of the Label control as shown in Listing 6-12.

Listing 6-12: Overriding an attribute from the Label control that is on the master page

VB
<%@ page language=”VB” masterpagefile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Master.MasterPageLabel1.Font.Size = 25
End Sub

</script>

C#
<%@ page language=”C#” masterpagefile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server” language=”C#”>
void Page_Load(object sender, EventArgs e)
{

Master.MasterPageLabel1.Font.Size = 25;
}

</script>

This approach may be the most effective way to get at any server controls that the master page exposes
to the content pages.

193

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 193

Specifying Default Content
in the Master Page

As you have seen, the master page enables you to specify content areas that the content page can use.
Master pages can consist of just one content area, or they can be made up of multiple content areas. The
nice thing about content areas is that when you create a master page, you can specify default content for
the content area. This default content can then be left in place and utilized by the content page if you
choose not to override it. Listing 6-13 shows a master page that specifies some default content within a
content area.

Listing 6-13: Specifying default content in the master page

<%@ Master Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>My Company</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server”>
Here is some default content
</asp:ContentPlaceHolder><p>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder2” Runat=”server”>
Here is some more default content
</asp:ContentPlaceHolder></p>

</form>
</body>
</html>

To place default content within one of the content areas of the master page, you simply put it in the
ContentPlaceHolder server control on the master page itself. Any content page that inherits this master
page also inherits the default content. Listing 6-14 shows a content page that overrides just one of the
content areas from this master page.

Listing 6-14: Overriding some default content in the content page

<%@ Page Language=”VB” MasterPageFile=”~/MasterPage.master” %>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

This is new content
</asp:Content>

This code creates a page with one content area that shows content coming from the master page itself, in
addition to other content that comes from the content page (see Figure 6-10).

The other interesting point when you work with content areas in the Design mode of Visual Studio 2005
is that the smart tag shown for the content area enables you to do two things (shown in Figure 6-11).

194

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 194

Figure 6-10

Figure 6-11

The first option is Create Empty Content. This option allows you to override the master page content, but
at the same time, keep the content area empty. The second option, Default to Master’s Content, enables
you to return the default content that the master page exposes to the content area. This option erases
whatever content you have already placed in the content area and simply returns the default content.

195

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 195

Nesting Master Pages
I hope you see the power that master pages provide to help you create templated Web applications. So
far, you have been creating a single master page that the content page can use. Most companies and
organizations, however, are not just two layers. Many divisions and groups exist within the organization
that might want to use variations of the master by, in effect, having a master page within a master page.
With ASP.NET 2.0 this is quite possible.

For example, imagine that Reuters is creating a master page to be used throughout the entire company
intranet. Not only does the global Reuters entity want to implement this master page company-wide,
but various divisions within Reuters also want to provide templates for the subsections of the intranet
directly under their control. Reuters Europe and Reuters America, for example, each wants its own
unique master page, as illustrated in Figure 6-12.

To do this, the creators of the Reuters Europe and Reuters America master page simply create a master
page that inherits from the global master page. All the files are shown here starting with Listing 6-15.

Listing 6-15: The main master page

ReutersMain.master
<%@ Master Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p><asp:Label ID=”Label1” Runat=”server” BackColor=”LightGray”

BorderColor=”Black” BorderWidth=”1px” BorderStyle=”Solid”
Font-Size=”XX-Large”>Reuters</asp:Label></p>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server”>
</asp:ContentPlaceHolder>

</form>
</body>
</html>

This is a simple master page, but excellent for showing you how this nesting capability works. The main
master page is the master page used globally in the company. It has the ContentPlaceHolder server con-
trol with the ID of ContentPlaceHolder1.

Listing 6-16 illustrates how you can work with this main master from a submaster file.

Listing 6-16: The submaster page

ReutersEurope.master
<%@ Master MasterPageFile=”~/ReutersMain.master” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

<asp:Label ID=”Label1” Runat=”server” BackColor=”#E0E0E0” BorderColor=”Black”
BorderStyle=”Dotted” BorderWidth=”2px” Font-Size=”Large”>

196

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 196

Reuters Europe</asp:Label>
<hr />

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2” Runat=”server”>
</asp:ContentPlaceHolder>

</asp:Content>

When creating the submaster page, notice that Visual Studio 2005 isn’t as friendly when it creates this file
for you. This is because Visual Studio 2005 is not expecting the creation of a submaster page. Therefore, to
create your submaster page, first create a normal master page and remove all the content in the file except
for the directive line. Then you create a Content server control.

Figure 6-12

Reuters America
ReutersAmerica.master

Reuters Europe
ReutersEurope.master

RA RE

Content Page
Default.aspx

RAC1

Content Page
Default2.aspx

RAC2

Content Page
Default.aspx

REC1

Content Page
Default2.aspx

REC2

Master Page
Reuters.master

R

197

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 197

The objects that you place in the content area defined with this Content control are actually placed in the
defined content area within the master page. You can see this by the use of the ContentPlaceHolderId
attribute of the Content control. This attribute is tying this content area to the content area
ContentPlaceHolder1, which is defined in the master page.

Within this submaster page, you can also now use as many ContentPlaceHolder server controls as you
want. Any content page that uses this master can use these controls. Listing 6-17 shows a content page
that uses this submaster page, ReutersEurope.master.

Listing 6-17: The content page

Default.aspx
<%@ Page Language=”VB” MasterPageFile=”~/ReutersEurope.master” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

Hello World
</asp:Content>

As you can see, in this content page the value of the Master attribute in the Page directive is the submas-
ter page that you created. Inheriting this submaster page actually combines both master pages into a
single master page. The Content control in this content page points to the content area defined in the
submaster page as well. You can see this with the use of the ContentPlaceHolderId attribute. In the
end, you get a very nonartistic page as shown in Figure 6-13.

Figure 6-13

Creating a content page that uses a submaster page works pretty well. One negative point is that Visual
Studio 2005 has issues with this construct, and you cannot work in the Design mode when creating your
content page.

198

Chapter 6

06_572865 ch06.qxd 7/7/04 9:52 PM Page 198

Container-Specific Master Pages
In many cases, developers are building applications that will be viewed in a multitude of different con-
tainers. Some viewers may view the application in Microsoft Internet Explorer and some might view it
using Opera or Netscape Navigator. And still other viewers may call up the application on a Pocket PC
or Nokia cell phone.

For this reason, ASP.NET 2.0 allows you to use multiple master pages within your content page.
Depending on the viewing container used by the end user, the ASP.NET engine pulls the appropriate
master file. Therefore, you want to build container-specific master pages to provide your end users
with the best possible viewing experience by taking advantage of the features that a specific container
provides. The capability to use multiple master pages is demonstrated in Listing 6-18.

Listing 6-18: A content page that can work with more than one master page

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master”
Mozilla:MasterPageFile=”~/WroxMozilla.master”
Opera:MasterPageFile=”~/WroxOpera.master” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Hello World
</asp:Content>

As you can see from this example content page, it can work with three different master page files. The
first one uses the attribute master. This is the default setting used for any page that doesn’t fit the crite-
ria for any of the other options. This means that if the requestor is not a Mozilla or Opera browser, the
default master page, Wrox.master, is used. However, if the requestor is an Opera browser, then
WroxOpera.master is used instead. This is illustrated in Figure 6-14.

Figure 6-14

199

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 199

You can find a list of available browsers on the production server where the application will be hosted at
C:\WINDOWS\Microsoft.NET\Framework\v2.0.xxxxx\CONFIG\Browsers. Please note that your
version number may vary. Some of the available options include

200

Chapter 6

❑ avantgo

❑ cassio

❑ default

❑ docomo

❑ ericsson

❑ gateway

❑ generic

❑ goAmerica

❑ ie

❑ jphone

❑ MME

❑ mozilla

❑ netscape

❑ nokia

❑ openwave

❑ opera

❑ palm

❑ panasonic

❑ pie

❑ webtv

❑ xiino

Of course, you can also add any additional .browser files that you deem necessary.

Event Ordering
When you work with master pages and content pages, both can use the same events (such as Page_Load).
Be sure you know which events come before others. You are bringing two classes together to create a sin-
gle page class, and a specific order is required. When an end user requests a content page in the browser,
the event ordering is the following:

❑ Master page child controls initialization: All server controls contained within the master page
are first initialized.

❑ Content page child controls initialization: All server controls contained in the content page are
initialized.

❑ Master page initialization: The master page itself is initialized.

❑ Content page initialization: The content page is initialized.

❑ Content page load: The content page is loaded (this is the Page_Load event followed by the
Page_LoadComplete event).

❑ Master page load: The master page is loaded (this is also the Page_Load event followed by the
Page_LoadComplete event).

❑ Master page child controls load: The server controls on the master page are loaded onto the page.

❑ Content page child controls load: The server controls on the content page are loaded onto
the page.

06_572865 ch06.qxd 7/7/04 9:52 PM Page 200

Pay attention to this event ordering when building your applications. If you want to use server control
values that are contained on the master page within a specific content page, for example, you can’t
retrieve the values of these server controls from within the content page’s Page_Load event. This is
because this event is triggered before the master page’s Page_Load event. This problem prompted the
creation of the new Page_LoadComplete event. The content page’s Page_LoadCompete event follows
the master page’s Page_Load event. You can, therefore, use this ordering to get at values from the mas-
ter page even though it isn’t populated when the content page’s Page_Load event is triggered.

Caching with Master Pages
When working with typical .aspx pages, you can apply output caching to the page by using the follow-
ing construct (or variation thereof):

<%@ OutputCache Duration=”10” Varybyparam=”None” %>

This caches the page in the server’s memory for 10 seconds. Many developers use output caching to
increase the performance of their ASP.NET pages. It also makes a lot of sense for use on pages with data
that doesn’t become stale too quickly.

How do you go about applying output caching to ASP.NET pages when working with master pages?
First, you cannot apply caching to just the master page. You cannot put the OutputCache directive on
the master page itself. If you do so, on the page’s second retrieval, you get an error because the applica-
tion cannot find the cached page.

To work with output caching when using a master page, stick the OutputCache directive in the content
page. This caches both the contents of the content page as well as the contents of the master page
(remember, it is just a single page at this point). The OutputCache directive placed in the master page
does not cause the master page to produce an error, but it won’t get cached. This directive only works
in the content page.

Summary
When you create applications that use a common header, footer, or navigation section on pretty much
every page of the application, master pages are a great solution. Master pages are easy to implement
and enable you to make changes to each and every page of your application by changing a single file.
Imagine how much easier this makes managing large applications that contain thousands of pages.

This chapter described master pages in ASP.NET 2.0 and explained how you build and use master pages
within your Web applications. In addition to the basics, the chapter covered master page event ordering,
caching, and specific master pages for specific containers. In the end, when you are working with tem-
plated applications, master pages should be your first option — the power of this approach is immense.

201

Working with Master Pages

06_572865 ch06.qxd 7/7/04 9:52 PM Page 201

06_572865 ch06.qxd 7/7/04 9:52 PM Page 202

Themes and Skins

When you build a Web application, it usually has a similar look and feel across all its pages.
Not too many applications are designed with each page dramatically different from the next.
Generally, for your applications you use similar fonts, colors, and server control styles across
all the pages.

You can apply these common styles individually to each and every server control or object on each
page, or you can use a new capability provided by ASP.NET 2.0 to centrally specify these styles.
All pages or parts of pages in the application can then access them.

Themes are the text-based style definitions in ASP.NET 2.0 that are the focus of this chapter.

Using ASP.NET 2.0 Packaged Themes
Themes are similar to Cascading Style Sheets (CSS) in that they enable you to define visual styles
for your Web pages. Themes go further than CSS, however, in that they allow you to apply styles,
graphics, and even CSS files themselves to the pages of your applications. You can apply ASP.NET
themes at the application, page, or server control level.

To make life easy for the developer, ASP.NET comes with free prepackaged themes that you can
use for your pages or applications. You find these themes located at C:\WINDOWS\Microsoft
.NET\Framework\v2.0.xxxxx\ASP.NETClientFiles\Themes. The available themes that
come with ASP.NET 2.0 include

❑ BasicBlue

❑ SmokeAndGlass

07_572865 ch07.qxd 7/7/04 9:53 PM Page 203

Applying a theme to a single ASP.NET page
In order to see how to use one of these themes, create a basic page, which includes text, a text box, a button,
and a calendar. This is shown in Listing 7-1.

Listing 7-1: An ASP.NET page that does not use themes

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>INETA</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>International .NET Association (INETA)</h1>

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Calendar ID=”Calendar1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Button” />

</form>
</body>
</html>

This simple page shows some default server controls that appear just as you would expect, but that you
can change with one of the ASP.NET built-in themes. When the page is called in the browser, it should
look like Figure 7-1.

Figure 7-1

204

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 204

To instantly change the appearance of this page without changing the style of each server control on the
page, you simply apply one of the ASP.NET default themes from within the Page directive:

<%@ Page Language=”VB” Theme=”SmokeAndGlass” %>

Adding the Theme attribute to the Page directive changes the appearance of everything on the page that
is defined in the SmokeAndGlass theme file provided with ASP.NET 2.0. When you invoke the page in
the browser, you see the result shown in Figure 7-2.

Figure 7-2

Applying a theme to an entire application
In addition to applying an ASP.NET 2.0 predefined theme to your ASP.NET pages using the Theme
attribute within the Page directive, you can also apply it at an application level from the web.config
file. This is illustrated in Listing 7-2.

Listing 7-2: Applying a theme application-wide from the web.config file

<?xml version=”1.0” encoding=”UTF-8” ?>

<configuration>
<system.web>

<pages theme=”SmokeAndGlass” />
</system.web>

</configuration>

205

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 205

If you specify the theme in the web.config file, you don’t need to define the theme again in the Page
directive of your ASP.NET pages. This theme is applied automatically to each and every page within
your application.

Applying a theme to all applications on a server
If you want to take it even one level higher, you can specify the theme that you want to use within the
machine.config file. This is illustrated in Listing 7-3.

Listing 7-3: Specifying the theme in the machine.config file

<pages buffer=”true” enableSessionState=”true” enableViewState=”true”
enableViewStateMac=”true” autoEventWireup=”true” validateRequest=”true”
enablePersonalization=”false” theme=”SmokeAndGlass” >...</pages>

The machine.config file is located at C:\WINDOWS\Microsoft.NET\Framework\v2.0.xxxxx\
CONFIG. The pages node is about one-third of the way through the file. Adding the Theme attribute to
the pages node within the machine.config file causes every Web application on that server to use the
specified theme. This is a great solution if the server has multiple applications that should all be using
the same theme.

If you set a theme in the machine.config file, you are not in any way required to use this theme for all
the applications on the server. To override the theme setting placed in the machine.config file, you
just specify another theme in the application’s web.config file or in the Web page’s Page directive.
Remember settings that are set in the web.config file override settings that are in the machine.config
file. Settings that are placed in the Page directive override both settings in the machine.config and in
the web.config files.

Removing themes from server controls
Whether themes are set on a server, at the application level, or on a page, at times you want an alterna-
tive to the theme that has been defined. For example, change the text box server control that you have
been working with (from Listing 7-1) by making its background black and using white text:

<asp:Textbox ID=”TextBox1” Runat=”server”
BackColor=”#000000” ForeColor=”#ffffff” />

The black background color and the color of the text in the text box are specified directly in the control
itself with the use of the BackColor and ForeColor attributes. If you have applied a theme to the page
where this text box control is located, however, you won’t see this black background or white text
because these changes are overridden by the theme itself.

To apply a theme to your ASP.NET page but not to this text box control, you simply use the EnableTheming
property of the text box server control:

<asp:Textbox ID=”TextBox1” Runat=”server”
BackColor=”#000000” ForeColor=”#ffffff” EnableTheming=”false” />

206

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 206

If you apply this control to the text box server control from Listing 7-1 with the SmokeAndGlass theme
applied to the entire page, the theme is applied to every control on the page except the text box. This
result is shown in Figure 7-3.

Figure 7-3

If you want to turn off theming for multiple controls within a page, consider using the Panel control to
encapsulate a collection of controls and then set the EnableTheming attribute of the Panel control to
False. This disables theming for each control contained within the Panel control.

Removing themes from Web pages
Now what if, when you set the theme for an entire application in the web.config file, you want to
exclude a single ASP.NET page? It is quite possible to remove a theme setting at the page level, just as it
is at the server control level.

The Page directive includes an EnableTheming attribute that can be used to remove theming from your
ASP.NET pages. To remove the theme that would be applied by the theme setting in the web.config or
machine.config file, you simply construct your Page directive in the following manner:

<%@ Page Language=”VB” EnableTheming=”False” %>

This construct sets the theme to nothing — thereby removing any settings that were specified in the
web.config or machine.config files.

207

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 207

Removing themes from applications
Because themes can be set in the machine.config file that affect every application on the server, you
might sometimes want to remove the theme setting from the application that you are working on. To do
this, you specify no theme in the web.config file. This construct is shown in Listing 7-4.

Listing 7-4: Removing the server-set theme in the web.config file

<?xml version=”1.0” encoding=”UTF-8” ?>

<configuration>
<system.web>

<pages theme=”” />
</system.web>

</configuration>

Creating Your Own Themes
When you are applying themes to your applications, you are in no way limited just to default themes
provided with ASP.NET. You can easily create your own themes. The themes that you create can be
applied at the application level or put in the server theme repository along with the Microsoft default
themes that come with the ASP.NET 2.0 install. As you can see, themes are a great way to easily apply a
consistent look and feel across your entire application.

Creating the proper folder structure
In order to create your own themes for an application, you first need to create the proper folder structure
in your application. To do this, right-click your project and add a new folder. Name the folder Themes.
Notice when you do this that the Themes folder does not have the typical folder icon next to it, but
instead has a folder icon that includes a paint brush. This is shown in Figure 7-4.

Figure 7-4

208

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 208

Within the Themes folder itself, you create an additional theme folder for each and every theme that
you might use in your application. For instance, if you are going to have four themes — Summer, Fall,
Winter, and Spring — then you create four folders that are named appropriately.

You might use more than one theme in your application for many reasons — season changes, day/night
changes, category of user, or even user preferences.

Each theme folder must contain the elements of the theme, which can include

❑ A single skin file

❑ CSS files

❑ Images

Creating a skin
A skin is a definition of styles applied to server controls in your ASP.NET page. Skins can work in con-
junction with CSS files or images. To create a theme to use in your ASP.NET applications, you use just
a single skin file in the theme folder. The skin file can have any name, but it must have a .skin file
extension.

Even though you have four theme folders in your application, concentrate on the creation of the
Summer theme for the purposes of this chapter. Within the Summer folder in your project, create a text
file called Summer.skin. If you try to right-click the Summer theme folder and select Add New Item,
notice that a skin file isn’t listed among the options. Therefore, select the Text File option and name the
file Summer.skin. Then create a skin file as shown in Listing 7-5.

Listing 7-5: The Summer.skin file

<asp:Label Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” />

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” />

<asp:Button Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” BackColor=”#FFE0C0” />

This is just a sampling of what the Summer.skin file should be. If you are going to use it in a real appli-
cation, you actually make a definition for each and every server control option. In this case, you have a
definition in place for three different types of server controls — the Label, TextBox, and Button controls.
After saving the Summer.skin file in the Summer folder, your file structure should resemble Figure 7-5
from the Solution Explorer of Visual Studio 2005.

209

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 209

Figure 7-5

Just like the regular server control definitions that you put on a typical .aspx page, these control defini-
tions must contain the Runat=”server” attribute. If you specify this attribute in the skinned version of
the control, you also include it in the server control you put on an .aspx page that uses this theme. Also
notice is that no ID attribute is specified in the skinned version of the control. If you specify an ID
attribute here, you get an error when a page tries to use this theme.

As you can see, you supply a lot of different visual definitions to these three controls and this should
give the page a summery look and feel. An ASP.NET page in this project can simply use this custom
theme as it would any global Microsoft pre-installed theme (see Listing 7-6).

Listing 7-6: Using the Summer theme in an ASP.NET page

VB
<%@ Page Language=”VB” Theme=”Summer” %>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>INETA</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Textbox ID=”TextBox1” Runat=”server”>
</asp:Textbox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit Your Name”
OnClick=”Button1_Click” />

210

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 210

<asp:Label ID=”Label1” Runat=”server” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” Theme=”Summer” %>

<script runat=”server”>
void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text.ToString();
}

</script>

As you can see from the server controls on this .aspx page, no styles are associated with them. These
are just the default server controls that you drag and drop onto the design surface of Visual Studio 2005.
There is, however, the style that you defined in the Summer.skin file, as shown in Figure 7-6.

Figure 7-6

Including CSS files in your themes
In addition to the server control definitions that you create from within a .skin file, you can make fur-
ther definitions using Cascading Style Sheets (CSS). You might have noticed, when using a .skin file,
that you could define only the styles associated with server controls and nothing else. But developers
usually use quite a bit more than server controls in their ASP.NET pages. For instance, ASP.NET pages
are routinely made up of HTML server controls, raw HTML, or even raw text. As the Summer theme
stands at present it has only a Summer.skin file associated with it. Any of these other items would have
no style whatsoever applied to them.

For a theme that goes beyond the server controls, you must further define the theme style so that HTML
server controls, HTML, and raw text are all changed according to the theme. You achieve this with a CSS
file within your Themes folder.

211

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 211

It is rather easy to create CSS files for your themes when using Visual Studio 2005. Right-click the
Summer theme folder and select Add New Item. In the list of options, select the option Style Sheet and
name it Summer.css. The Summer.css file should be sitting right next to your Summer.skin file. This
creates an empty .css file for your theme. I won’t go into the details of how to make a CSS file using
Visual Studio 2005 and the CSS creation tool. The process is the same as in previous versions. I just want
to point out that it is quite simple to do this because the dialog that comes with Visual Studio 2005
enables you to completely define your CSS page with no need to code. A sample dialog is shown in
Figure 7-7.

Figure 7-7

To create a comprehensive theme with this dialog, you define each HTML element that might appear in
the ASP.NET page. This can be a lot of work, but it’s worth it in the end. For now, create a small CSS file
that changes some of the nonserver control items on your ASP.NET page. This CSS file is shown in
Listing 7-7.

Listing 7-7: A CSS file with some definitions

body
{
font-size: x-small;

212

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 212

font-family: Verdana;
color: #004000;

}

A:link {
color: Blue;
text-decoration:none;

}

A:visited
{
color: Blue;
text-decoration:none;

}

A:hover {
COLOR: Red;
text-decoration:underline overline;

}

In this CSS file, you define four things. First, you define text that is found within the <body> tag of the
page (basically all the text). Plenty of text appears in a typical ASP.NET page that is not placed inside
of an <asp:label> or <asp:literal> tag. Therefore, you define how your text should appear —
otherwise, your Web page appears quite odd at times. In this case, a definition is in place for the size, the
font family, and the color of the text. You make this definition the same as the one for the <asp:label>
server control in the Summer.skin file.

The next three definitions in this CSS file revolve around the <a> element (for hyperlinks). One cool
feature that many Web pages use is responsive hyperlinks — or hyperlinks that change when you
hover a mouse over them. The A:link definition defines what a typical link looks like on the page.
The A:visited definition defines the look of the link if the end user has clicked on the link previously
(without this definition, it is typically purple in IE). Then the A:hover definition defines the appearance
of the hyperlink when the end user hovers the mouse over the link. You can see that not only are these
three definitions changing the color of the hyperlink, but they are also changing how the underline is
used. In fact, when the end user hovers the mouse over a hyperlink on a page using this CSS file, an
underline and an overline appear on the link itself.

In CSS files, the order in which the style definitions appear in the .css file is important. This is an inter-
preted file — the first definition that appears in the CSS file is applied first to the page, then the second
is applied, and so forth. Some styles might change previous styles, so make sure your style definitions
are in the proper order. For instance, if you put the A:hover style definition first, you would never see it.
The A:link and A:visited definitions would supersede it because they are defined after the fact.

In working with your themes that include .css files, you must understand what they can and cannot do
for you. For instance, examine an .aspx file that contains two text boxes — one text box created using a
server control and another text box created using a typical <input> HTML element:

<asp:Textbox ID=”TextBox1” Runat=”server” />
<input type=”text” />

213

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 213

Suppose that there is a definition for the TextBox server control in the .skin file:

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
BackColor=”#ffffff” Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” />

But, what if you also had a definition in your .css file for each <input> element in the ASP.NET page
as shown here:

INPUT
{
background-color: black;

}

When you run the .aspx page with these kinds of style conflicts, the .skin file takes precedence over
styles applied to every HTML element that is created using ASP.NET server controls regardless of what
the .css file says. In fact, this sort of scenario gives you a page in which the <input> element that is cre-
ated from the server control is white as defined in the .skin file and the second text box is black as
defined in the .css file. This is shown in Figure 7-8.

Figure 7-8

Having your themes include images
Probably one of the coolest reasons why themes, rather than CSS, are the better approach for applying a
consistent style to your Web page is that themes enable you to incorporate actual images into the style
definitions.

A lot of controls use images to create a better visual appearance. The first step in incorporating images
into your server controls that consistently use themes is to create an Images folder within the Themes
folder itself, as illustrated in Figure 7-9.

You have a couple of easy ways to use the images that you might place in this folder. The first is to incor-
porate the images directly from the .skin file itself. You can do this with the TreeView server control.
The TreeView control can contain images used to open and close nodes for navigation purposes. You can
place images in your theme for each and every TreeView control in your application. If you do that, you
can then define the TreeView server control in the .skin file, as shown in Listing 7-8.

214

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 214

Figure 7-9

Listing 7-8: Using images from the theme folder in a TreeView server control

<asp:TreeView runat=”server” BorderColor=”#FFFFFF” BackColor=”#FFFFFF”
ForeColor=”#585880” Font-Size=”.9em” Font-Names=”Verdana”
LeafNodeImageURL=”images\summer_iconlevel.gif”
RootNodeImageURL=”images\summer_iconmain.gif”
ParentNodeImageURL=”images\summer_iconmain.gif” NodeIndent=”30”
CollapseImageURL=”images\summer_minus.gif”
ExpandImageURL=”images\summer_plus.gif”>

...
</asp:TreeView>

When you run a page containing a TreeView server control, it is populated with the images held in the
Images folder of the theme.

It is easy to incorporate images into the TreeView control. It even specifically asks for an image location
as an attribute of the control. The new WebParts controls are used to build portals. Listing 7-9 is an
example of a Web Part definition from a .skin file that incorporates images from the Images folder of
the theme.

Listing 7-9: Using images from the theme folder in a WebPartZone server control

<asp:WebPartZone runat=”server” PartFrameType=”TitleAndBorder”
DragHighlightColor=”#6464FE” ShowIconInPartTitle=”True” BorderStyle=”double”
BorderColor=”#E7E5DB” BorderWidth=”2pt” BackColor=”#F8F8FC”
cssclass=”theme_fadeblue” Font-Size=”.9em” Font-Names=”Verdana”>

<PartContentStyle ForeColor=”#585880” BorderStyle=”double”
BorderColor=”#585880” BorderWidth=”1pt”
BackColor=”#FFFFFF”></PartContentStyle>

<FooterStyle ForeColor=”#585880” BackColor=”#CCCCCC”></FooterStyle>
<WebPartHelpVerb ImageURL=”images/SmokeAndGlass_help.gif”
checked=”False” enabled=”True” visible=”True”></WebPartHelpVerb>

<WebPartCloseVerb ImageURL=”images/SmokeAndGlass_close.gif”
checked=”False” enabled=”True” visible=”True”></WebPartCloseVerb>

<WebPartRestoreVerb ImageURL=”images/SmokeAndGlass_restore.gif”

215

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 215

checked=”False” enabled=”True” visible=”True”></WebPartRestoreVerb>
<WebPartMinimizeVerb ImageURL=”images/SmokeAndGlass_minimize.gif”
checked=”False” enabled=”True” visible=”True”></WebPartMinimizeVerb>

<WebPartEditVerb ImageURL=”images/SmokeAndGlass_edit.gif”
checked=”False” enabled=”True” visible=”True”></WebPartEditVerb>

<TitleStyle ForeColor=”#FFFFFF” Font-Names=”Verdana”
BorderStyle=”double” BorderWidth=”0” Font-Bold=”true” BorderColor=”#E7E5DB”
BackColor=”#232377”></TitleStyle>

<PartStyle ForeColor=”#585880” Font-Names=”Verdana” Font-Size=”.9em”
BorderColor=”#44448A” BackColor=”#F8F7F4”></PartStyle>

<PartTitleStyle ForeColor=”#585880” Font-Names=”Verdana”
BorderStyle=”solid” Font-Bold=”true” BorderWidth=”1pt” Font-Size=”.9em”
BorderColor=”#494979” BackColor=”#F8F7F4”
cssclass=”theme_header”></PartTitleStyle>

<PartVerbStyle ForeColor=”#FFFFFF” Font-Names=”Verdana” Font-
Underline=”False” Font-Size=”.7em” BorderColor=”#000066” BorderWidth=”1pt”
BackColor=”#8383B6”></PartVerbStyle>

<EditWebPartStyle ForeColor=”#6464FE” BorderColor=”#6464FE”
BackColor=”#6464FE” Font-Size=”.9em” Font-Names=”Verdana”/>

</asp:WebPartZone>

As you can see here, this series of toolbar buttons that are in a WebPart now use images that come from
the SmokeAndGlass theme. When this WebPart is generated, the style is defined directly from the .skin
file, but the images specified in the .skin file are retrieved from the Images folder in the theme itself.

Not all server controls enable you to work with images directly from the Themes folder by giving you an
image attribute to work with. If you don’t have this capability, you must work with the .skin file and
the CSS file together. If you do, you can place your theme-based images in any element you want. The
SmokeAndGlass theme that comes with ASP.NET 2.0 is a good example of how to do this.

Place the image that you want to use in the Images folder just as you normally would. Then define the
use of the images in the .css file. The SmokeAndGlass example in Listing 7-10 demonstrates this.

Listing 7-10: Part of the CSS file from SmokeAndGlass.css

.theme_header {
background-image :url(images/smokeandglass_brownfadetop.gif);

}

.theme_highlighted {
background-image :url(images/smokeandglass_blueandwhitef.gif);

}

.theme_fadeblue {
background-image :url(images/smokeandglass_fadeblue.gif);

}

These are not styles for a specific HTML element; instead, they are CSS classes that you can put into any
HTML element that you want. In this case, each CSS class mentioned here is defining a specific back-
ground image to use for the element.

216

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 216

After it is defined in the CSS file, you can utilize this CSS class in the .skin file when defining your
server controls. Listing 7-11 shows you how.

Listing 7-11: Using the CSS class in one of the server controls defined in the .skin file

<asp:Calendar runat=”server” BorderStyle=”double” BorderColor=”#E7E5DB”
BorderWidth=”2” BackColor=”#F8F7F4” Font-Size=”.9em” Font-Names=”Verdana”>

<TodayDayStyle BackColor=”#F8F7F4” BorderWidth=”1” BorderColor=”#585880”
ForeColor=”#585880” />

<OtherMonthDayStyle BackColor=”transparent” ForeColor=”#CCCCCC” />
<SelectedDayStyle ForeColor=”#6464FE” BackColor=”transparent”
cssclass=”theme_highlighted” />

<TitleStyle Font-Bold=”True” BackColor=”#CCCCCC” ForeColor=”#585880”
BorderColor=”#CCCCCC” BorderWidth=”1pt” cssclass=”theme_header” />

<NextPrevStyle Font-Bold=”True” ForeColor=”#585880”
BorderColor=”transparent” BackColor=”transparent” />

<DayStyle ForeColor=”#000000”
BorderColor=”transparent” BackColor=”transparent” />

<SelectorStyle Font-Bold=”True” ForeColor=”#696969” BackColor=”#F8F7F4”
/>

<WeekendDayStyle Font-Bold=”False” ForeColor=”#000000”
BackColor=”transparent” />

<DayHeaderStyle Font-Bold=”True” ForeColor=”#585880”
BackColor=”Transparent” />

</asp:Calendar>

This Calendar server control definition from a .skin file uses one of the earlier CSS classes in its defini-
tion. It actually uses an image that is specified in the CSS file in two different spots within the control
(shown in bold). It is first specified in the <SelectedDayStyle> element. Here you see the attribute and
value cssclass=”theme_highlighted”. The other spot is within the <TitleStyle> element. In this
case, it is using theme_header. When the control is rendered, these CSS classes are referenced and
finally point to the images that are defined in the CSS file.

It is interesting that the images used here for the header of the Calendar control don’t really have much
to them. For instance, the smokeandglass_brownfadetop.gif image is simply a thin, gray sliver, as
shown in Figure 7-10.

Figure 7-10

This very small image (in this case, very thin) is actually repeated as often as necessary to make it equal
the length of the header in the Calendar control. The image is lighter at the top and darkens toward the
bottom. Repeated horizontally, any control like this gives a three-dimensional effect to the control. Try it
out, and you get the result shown in Figure 7-11.

217

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 217

Figure 7-11

Defining Multiple Skin Options
Using the themes technology in ASP.NET 2.0, you can have a single theme; but also, within the theme’s
.skin file, you can have specific controls that are defined in multiple ways. You can frequently take
advantage of this feature within your themes. For instance, you might have text box elements scattered
throughout your application, but you might not want each and every text box to have the same visual
appearance. In this case, you can create multiple versions of the <asp:textbox> server control within
your .skin file. In Listing 7-12 you see how to create multiple versions of the <asp:textbox> control in
the .skin file from Listing 7-5.

Listing 7-12: The Summer.skin file, which contains multiple version of the
<asp:textbox> server control

<asp:Label Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” />

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” />

<asp:Textbox Runat=”server” ForeColor=”#000000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Dotted” BorderWidth=”5px”
BorderColor=”#000000” Font-Bold=”False” SkinID=”TextboxDotted” />

<asp:Textbox Runat=”server” ForeColor=”#000000” Font-Names=”Arial”
Font-Size=”X-Large” BorderStyle=”Dashed” BorderWidth=”3px”
BorderColor=”#000000” Font-Bold=”False” SkinID=”TextboxDashed” />

<asp:Button Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” BackColor=”#FFE0C0” />

In this .skin file, you can see three definitions in place for the TextBox server control. The first one is the
same as before. Although the second and third definitions have a different style, they also contain a new
attribute in the definition — SkinID. To create multiple definitions of a single element, you use the
SkinID attribute to differentiate among the definitions. The value used in the SkinID can be anything
you want. In this case, it is TextboxDotted and TextboxDashed.

218

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 218

Note that no SkinID attribute is used for the first <asp:Textbox> definition. By not using one, you
are saying that for each <asp:Textbox> control on an ASP.NET page that uses this theme but has no
pointer to a SkinID, this is the default style definition to use.

Take a look at a sample .aspx page that uses this .skin file, Listing 7-13.

Listing 7-13: A simple .aspx page that uses the Summer.skin file with
multiple text-box style definitions

<%@ Page Language=”VB” Theme=”Summer” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Different SkinIDs</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:Textbox ID=”TextBox1” Runat=”server”>Textbox1</asp:Textbox>
</p><p>

<asp:Textbox ID=”TextBox2” Runat=”server”
SkinId=”TextboxDotted”>Textbox2</asp:Textbox>

</p><p>
<asp:Textbox ID=”TextBox3” Runat=”server”
SkinId=”TextboxDashed”>Textbox3</asp:Textbox>

</p>
</form>

</body>
</html>

This small .aspx page shows three text boxes, each of a different style. When you run this page, you get
the results shown in Figure 7-12.

Figure 7-12

219

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 219

The first text box doesn’t point to any particular SkinID in the .skin file. Therefore, the default skin is
used. As stated before, the default skin is the one in the .skin file that doesn’t have a SkinID attribute
in it. The second text box then contains skinid=”TextboxDotted” and, therefore, inherits the style def-
inition defined in the TextboxDotted skin in the Summer.skin file. The third text box takes the SkinID
TextboxDashed and is also changed appropriately.

As you can see, it is quite simple to define multiple versions of a control that can be used throughout
your entire application.

Programmatically Working with Themes
So far, you have seen examples of working with ASP.NET 2.0 themes in a declarative fashion, but you
can also work with themes programmatically.

Assigning the page’s theme programmatically
To programmatically assign the theme to the page, use the construct shown in Listing 7-14.

Listing 7-14: Assigning the theme of the page programmatically

VB
<script runat=”server” language=”vb”>

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString(“ThemeChange”)

End Sub
</script>

C#
<script runat=”server”>

void Page_PreInit(object sender, System.EventArgs e)
{

Page.Theme = Request.QueryString[“ThemeChange”];
}

</script>

You must set the Theme of the Page property in or before the Page_PreInit event for any static controls
that are on the page. If you are working with dynamic controls, set the Theme property before adding it
to the Controls collection.

Assigning a control’s SkinID programmatically
Another option is to assign a specific server control’s SkinID property programmatically (see Listing 7-15).

Listing 7-15: Assigning the server control’s SkinID property programmatically

VB
<script runat=”server” language=”vb”>

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

220

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 220

TextBox1.SkinID = “TextboxDashed”
End Sub

</script>

C#
<script runat=”server”>

void Page_PreInit(object sender, System.EventArgs e)
{

TextBox1.SkinID = “TextboxDashed”;
}

</script>

Again, you assign this property before or in the Page_PreInit event in your code.

Themes and Custom Controls
If you are building custom controls in an ASP.NET 2.0 world, understand that end users can also apply
themes to the controls that they use in their pages. By default, your custom controls are theme enabled
whether your custom control inherits from Control or WebControl.

To disable theming for your control, you can simply use the EnableTheming attribute on your class.
This is illustrated in Listing 7-16.

Listing 7-16: Disabling theming for your custom controls

VB
Namespace Wrox.ServerControls

<EnableTheming(False)> _
Public Class SimpleHello

Inherits System.Web.UI.Control

Private _name As String

Public Property Name() As String
Get

Return _name
End Get
Set(ByVal Value As String)

_name = Value
End Set

End Property

Protected Overrides Sub RenderContents(ByVal controlOutput As _
HtmlTextWriter)

controlOutput.Write(“Hello “ + Name)
End Sub

End Class

End Namespace

(continued)

221

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 221

Listing 7-16: (continued)

C#
namespace Wrox.ServerControls
{

[EnableTheming(false)]
public class SimpleHello : Control
{

private string _name;

public string Name
{

get { return _name; }
set { _name = value; }

}

protected override void RenderContents (HtmlTextWriter controlOutput)
{

controlOutput.Write (“Hello “ + Name);
}

}
}

You can also disable theming for the individual properties that might be in your custom controls. This is
done as illustrated in Listing 7-17.

Listing 7-17: Disabling theming for properties in your custom controls

VB
Namespace Wrox.ServerControls

Public Class SimpleHello
Inherits System.Web.UI.Control

Private _myValue As String

<Themeable(False)>
Public Property MyCustomProperty() As String

Get
Return _myValue

End Get
Set(ByVal Value As String)

_myValue = Value
End Set

End Property

End Class

End Namespace

222

Chapter 7

07_572865 ch07.qxd 7/7/04 9:53 PM Page 222

C#
namespace Wrox.ServerControls
{

public class SimpleHello : Control
{

private string _myValue;

[Themeable(false)]
public string Name
{

get { return _myValue; }
set { _myValue = value; }

}
}

}

Summary
With the addition of themes and skins in ASP.NET 2.0, it has become quite easy to apply a consistent
look and feel across your entire application. Remember that themes can just contain simple server con-
trol definitions in a .skin file or elaborate style definitions, which include not only .skin files, but also
CSS style definitions and even images!

As you will see later in the book, you can use themes in conjunction with the new personalization features
that ASP.NET 2.0 provides. This can enable your end users to customize their experiences by selecting
their own themes. Your application can present a theme just for them, and it can remember their choices
through the APIs that are offered in ASP.NET 2.0.

223

Themes and Skins

07_572865 ch07.qxd 7/7/04 9:53 PM Page 223

07_572865 ch07.qxd 7/7/04 9:53 PM Page 224

Membership and Role
Management

The authentication and authorization of users are important functions in many Web sites and
browser-based applications. Traditionally, when working with Microsoft’s Windows Forms appli-
cations (thick-client), you depended on Windows Integrated Authentication; when working with
browser-based applications (thin-client), you used forms authentication.

Forms authentication enabled you to take requests that were not yet authenticated and redirect
them to an HTML form using HTTP client-side redirection. The user provided his login informa-
tion and submitted the form. After the application authenticated the request, the user received an
HTTP cookie, which was then used on any subsequent requests. This kind of authentication was
fine in many ways, but it required developers to build every element and even manage the back-
end mechanics of the overall system. This was a daunting task for many developers and, in most
cases, it was rather time-consuming.

ASP.NET 2.0 introduces a new authentication and authorization management service that takes
care of the login, authentication, authorization, and management of users who require access to
your Web pages or applications. This outstanding new Membership and Role Management
Service is an easy-to-implement framework that works out of the box using either Microsoft
Access or Microsoft SQL Server as the back-end data store. This new framework also includes a
new API that allows for programmatic access to the capabilities of both the membership and role
management services. In addition, a number of new server controls make it easy to create Web
applications that incorporate everything these services have to offer.

Before you look at the new membership and role management features of ASP.NET 2.0, here’s a
quick review of authentication and authorization.

08_572865 ch08.qxd 7/7/04 9:54 PM Page 225

Authentication
Authentication is a process that determines the identity of a user. After a user has been authenticated, a
developer can determine if the identified user has authorization to proceed. It is impossible to give an
entity authorization if no authentication process has been applied. Authentication is provided in
ASP.NET 2.0 through the use of the new membership service.

Authorization
Authorization is the process determining whether an authenticated user is allowed access to any part of
an application, access to specific points of an application, or access only to specific datasets that the
application provides. Authenticating and authorizing users or groups enable you to customize a site
based on user types or preferences. Authorization is provided in ASP.NET 2.0 through the use of a new
role management service.

ASP.NET 2.0 Authentication
ASP.NET 2.0 provides the membership management service to deal with authenticating users to access a
page or an entire site. The new ASP.NET management service not only provides a new API suite for
managing users, but it also gives you some new server controls. These new server controls work with
the end user through the process of authentication. Shortly, you will look at the functionality of these
controls.

Setting up your Web site for membership
Before you can use the security controls that are provided with ASP.NET 2.0, you first have to set up
your application to work with the new membership service. How you do this depends on how you
approach the security framework provided.

By default, ASP.NET 2.0 uses the built-in AspNetAccessProvider for storing details about the registered
users of your application. Also, for the initial demonstrations, you will work with Forms authentication.
I assume that the application is open to the public for registration and viewing. If it were an intranet-
based application (meaning that all the users are on a particular network), then you would use Windows
Integrated Authentication for authenticating users.

ASP.NET 2.0, as you know, offers a data provider model that handles the detailed management required
to interact with multiple types of underlying data stores. Figure 8-1 shows a diagram of the new
ASP.NET 2.0 membership service.

From the diagram, you can see that like the rest of the ASP.NET 2.0 provider models, the membership
providers can access a wide variety of underlying data stores. In this diagram, you can see the built-in
Microsoft Access and Microsoft SQL Server data stores. You can also build your own membership providers
to get at any other custom data stores that work with user credentials. Above the membership providers in
the diagram, you can see a list of security server controls that utilize the access granted by providers to work
with the users in the authentication process.

226

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 226

Figure 8-1

Adding an <authentication> element to the web.config file
To allow forms authentication in your Web application for the new membership service, the first step is
to turn on this feature from the web.config file. So create a web.config file if you don’t already have
one. Then, add the section shown in Listing 8-1 to the file.

Listing 8-1: Adding Forms authentication to the web.config file

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authentication mode=”Forms” />

</system.web>
</configuration>

The simple addition of the <authentication> element to the web.config file turns on everything that
you need to start using the membership service provided by ASP.NET 2.0. To turn on the forms authenti-
cation using this element, you simply give the value Forms to the mode attribute. This is a forms authen-
tication example, but other possible values of the mode attribute include Windows, Passport, or None.

IIS authentication schemes include basic, digest, and Integrated Windows Authentication. Passport
authentication points to a centralized service provided by Microsoft that offers a single login and core
profile service for any member sites (it costs money to use Passport).

Because the mode attribute in our example is set to Forms, you can move on to the next step of adding
users to the data store. You can also change the behavior of the forms authentication system at this point
by making some modifications to the web.config file. These possibilities are reviewed next.

Server Controls

Membership Server Controls
<asp:Login>, etc.

API

Membership API

Membership Providers

AspNetAccessProvider AspNetSqlProvider Custom Provider

Data Stores

Access SQL Server Custom

227

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 227

Adding a <forms> element to the web.config file
Using forms authentication, you can provide users with access to a site or materials based upon creden-
tials they input into a Web-based form. When an end user attempts to access a Web site, he is entering
the site using anonymous authentication, which is the default authentication mode. If he is found to be
anonymous, he can be redirected (by ASP.NET) to a specified login page. After the end user passes the
authentication process, he is provided with an HTTP cookie, which can be used in any subsequent
requests.

You can see the possibilities of the forms authentication setting in Listing 8-2, which shows possible
changes to the web.config file.

Listing 8-2: Modifying the Forms authentication behavior

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authentication mode=”Forms”>

<forms name=”.ASPXAUTH”
loginUrl=”login.aspx”
protection=”All”
timeout=”30”
path=”/”
requireSSL=”false”
slidingExpiration=”true”
cookieless=”useDeviceProfile”

</authentication>
</system.web>

</configuration>

You can set these as you wish, and you have plenty of options for values other than the ones that are dis-
played. Also, as I stated earlier, these values are not required. You can use the membership service right
away with only what was shown in Listing 8-1.

You can find some interesting settings in Listing 8-2, however. You can change how the forms authenti-
cation system works by adding a <forms> element to the web.config file. Make sure that you have
the <forms> element nested within the <authentication> elements. The following list describes the
possible attributes of the <forms> element:

❑ name: Defines the name used for the cookie sent to the end users after they have been authenti-
cated. By default, this cookie is named .ASPXAUTH.

❑ loginUrl: Specifies the page location to which the HTTP request is redirected for login if no valid
authentication cookie (.ASPXAUTH or otherwise) is found. By default, it is set to login.aspx.

❑ protection: Specifies the amount of protection that you want to apply to the cookie that is
stored on the end user’s machine after he has been authenticated. The possible settings include
All, None, Encryption, and Validation. You should always attempt to use All.

❑ timeout: Defines the amount of time (in minutes) after which the cookie expires. The default
value is 30 minutes.

228

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 228

❑ path: Specifies the path for cookies issued by the application.

❑ requireSSL: Defines whether you require that credentials be sent over an encrypted wire (SSL)
instead of clear text.

❑ slidingExpiration: Specifies whether the timeout of the cookie is on a sliding scale. The
default value is True. This means that the end user’s cookie does not expire until 30 minutes
(or the time specified in the timeout attribute) after the last request to the application has been
made. If the value of the slidingExpiration attribute is set to False, the cookie expires 30
minutes from the first request.

❑ cookieless: Specifies how the cookies are handled by ASP.NET. The possible values include
useDeviceProfile, useCookies, auto, and useUri. The default value is useDeviceProfile.
This value detects whether to use cookies based on the user agent of the device. useCookies
requires that all requests have the credentials stored in a cookie. auto auto-determines whether
the details are stored in a cookie on the client or within the URI (this is done by sending a test
cookie first). Finally, useUri forces ASP.NET to store the details within the URI on all instances.

Now that forms authentication is turned on, the next step is adding users to the Microsoft Access data
store.

Adding users
To add users to the membership service, you can register users into the Microsoft Access data store. The
first question you might ask is, “Where is this data store?”

The Microsoft Access provider uses an Access file structured specifically for the membership service
(and other ASP.NET systems). You can find a templated version of this Access file at C:\WINDOWS\
Microsoft.NET\Framework\v2.0.xxxxx\ASPNetdb_Template.mdb. One option is to make a copy
of this file and place the copy in the Data folder of your solution. If you take this approach, be sure to
rename the file AspNetDB.mdb.

The other option is to let Visual Studio 2005 create it for you. To do this, you work with the ASP.NET
server controls that utilize the membership service to force the creation of this file (as I explain later).

Now that the data store is in place (or you let Visual Studio take care of it for you), it is time to start
adding users to the data store.

Using the CreateUserWizard server control
The first server control that utilizes the membership service is the CreateUserWizard server control. This
control enables you to plug registered users into your data store for later retrieval. If the first page of
your application allows end users to register for your site, you want, at a minimum, to retrieve a login
and password from the user so that he can use these items later to log in to the site.

To make your life as simple as possible, the CreateUserWizard control takes complete control of doing
all these things. Listing 8-3 shows a simple use of the control.

229

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 229

Listing 8-3: Allowing end users to register with the site

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Creating Users</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”
BorderWidth=”1px” BorderColor=”#FFDFAD” BorderStyle=”Solid”
BackColor=”#FFFBD6” Font-Names=”Verdana” Font-Size=”0.8em”>

<TitleTextStyle Font-Bold=”True” BackColor=”#990000”
ForeColor=”White”></TitleTextStyle>

</asp:CreateUserWizard>
</form>

</body>
</html>

This page simply uses the CreateUserWizard control and nothing more. This one control enables you to
register end users. This particular CreateUserWizard control has a little style applied to it from the Auto
Format option found in the control’s smart tag, but this control can be as simple as:

<asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”>
</asp:CreateUserWizard>

When this code is run, an end user is presented with the form shown in Figure 8-2.

Figure 8-2

230

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 230

This screen shot shows the form as it would appear when filled out by the end user and includes user
information such as the username, password, e-mail, as well as the security question-and-answer sec-
tion. Clicking the Create User button places this user information into the data store.

The username and password enable the end user to log in to the application through the login server
control. A Confirm Password text box is also included in the form to ensure that the password is spelled
correctly. An e-mail address is included in case end users forget their login credentials and want the cre-
dentials e-mailed to them. Then finally, the security question and answer are used to verify the identity
of the end user before any credentials or user information is changed.

After the Create User button is clicked, the end user is presented with a confirmation of the information
being stored (see Figure 8-3).

Figure 8-3

Seeing where users are stored
Now that the CreateUserWizard control has been used to add a user to the membership service, take a
look at where this information is stored. If you are letting Visual Studio create the Microsoft Access file
for you to store the user information, the file was created when the previous example was run. When the
example is run, you can click the Refresh button in the Solution Explorer to find the AspNetDB.mdb file,
which is located in the Data folder. Many different tables are included in this file, but you are only inter-
ested in the aspnet_Membership table.

When you open the aspnet_Membership table, the users you entered are in the system. This is shown
in Figure 8-4.

The user password in this table is not stored as clear text, but instead, is hashed. When a user logs into
an application that is using the ASP.NET 2.0 membership service, his or her password is immediately
hashed and then compared to the hashed password stored in the database. If the two hashed strings do
not compare, the passwords are not considered a match.

231

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 231

Figure 8-4

Working with the CreateUserWizard control
When you work with the CreateUserWizard control, be aware of the ContinueButtonClick and the
CreatedUser events. The ContinueButtonClick event is triggered when the Continue button on the
second page is clicked after the user has been successfully created (see Listing 8-4).

Listing 8-4: The ContinueButtonClick event

VB
Sub CreateUserWizard1_ContinueButtonClick(ByVal sender As Object, _

ByVal e As System.EventArgs)

Response.Redirect(“Default.aspx”)
End Sub

C#
void CreateUserWizard1_ContinueButtonClick(object sender, EventArgs e)
{

Response.Redirect(“Default.aspx”);
}

232

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 232

In this example, after the user has been added to the membership service through the form provided by
the CreateUserWizard control, she can click the Continue button and is redirected to another page in the
application. This is done with a simple Response.Redirect statement. Remember when you use this
event, to add an OnContinueButtonClick=”CreateUserWizard1_ContinueButtonClick” to the
<asp:CreateUserWizard> control.

The CreateUser event is triggered when a user is successfully created in the data store. The use of this
event is shown in Listing 8-5.

Listing 8-5: The CreateUser event

VB
Sub CreateUserWizard1_CreateUser(ByVal sender As Object, _

ByVal e As System.EventArgs)

‘ Code here
End Sub

C#
void CreateUserWizard1_CreateUser(object sender, EventArgs e)
{

// Code here
}

Use this event if you want to take any additional actions when a user is registered to the service.

Adding users programmatically
You are not limited to using only server controls to register or add new users to the membership service.
ASP.NET 2.0 provides a Membership API for performing this task programmatically. This is ideal to
create your own mechanics for adding users to the service — or if you are modifying a Web application
that was created using ASP.NET 1.0/1.1.

The Membership API includes the CreateUser method for adding users to the service. The
CreateUser method includes three possible signatures:

Membership.CreateUser(username As String, password As String)

Membership.CreateUser(username As String, password As String,
email As String)

Membership.CreateUser(username As String, password As String,
email As String, passwordQuestion As String,
passwordAnswer As String, isApproved As Boolean,
ByRef status As System.Web.Security.MembershipCreateStatus)

You can use this method to create users. The nice thing about this method is that you aren’t required to
create an instance of the Membership class; you use it directly. A simple use of the CreateUser method
is illustrated in Listing 8-6.

233

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 233

Listing 8-6: Creating users programmatically

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Try
Membership.CreateUser(TextBox1.Text, TextBox2.Text)
Label1.Text = “Successfully created user “ & TextBox1.Text

Catch ex As MembershipCreateUserException
Label1.Text = “Error: “ & ex.ToString()

End Try
End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Creating a User</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>Create User</h1>
<p>Username

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
</p>
<p>Password

<asp:TextBox ID=”TextBox2” Runat=”server”
TextMode=”Password”></asp:TextBox>

</p>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Create User”
OnClick=”Button1_Click” />

</p>
<p>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Button1_Click(object sender, EventArgs e)
{

try
{

Membership.CreateUser(TextBox1.Text.ToString(),
TextBox2.Text.ToString());

Label1.Text = “Successfully created user “ + TextBox1.Text;
}
catch (MembershipCreateUserException ex)

234

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 234

{
Label1.Text = “Error: “ + ex.ToString();

}
}

</script>

So, use either the CreateUserWizard control or the CreateUser method found in the Membership API
to create users for your Web applications with relative ease. This functionality was possible in the past
with ASP.NET 1.0/1.1, but it was a labor-intensive task. Now with ASP.NET 2.0, you can create users
with either a single control or with a single line of code.

Changing how users register with your application
You determine how users register with your applications and what is required of them by the member-
ship provider you choose. Each membership provider has default settings to determine how it behaves
established from within the machine.config file. If you dig down in the machine.config file on your
server you find the following code (shown in Listing 8-7).

Listing 8-7: Membership provider settings in the machine.config file

<membership defaultProvider=”AspNetAccessProvider” userIsOnlineTimeWindow=”15” >
<providers>

<add name=”AspNetSqlProvider”
type=”System.Web.Security.SqlMembershipProvider, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”LocalSqlServer”
enablePasswordRetrieval=”false”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”false”
applicationName=”/”
requiresUniqueEmail=”false”
passwordFormat=”Hashed”
description=”Stores and retrieves membership data from the local

Microsoft SQL Server database”
/>

<add name=”AspNetAccessProvider”
type=”System.Web.Security.AccessMembershipProvider, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”AccessFileName”
enablePasswordRetrieval=”false”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”false”
applicationName=”/”
requiresUniqueEmail=”false”
passwordFormat=”Hashed”
description=”Stores and retrieves membership data from the local

Microsoft Access database file”
/>

</providers>
</membership>

235

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 235

This section of the machine.config file shows the two default membership providers that come with
ASP.NET 2.0 — the AspNetSqlProvider and the AspNetAccessProvider. In the <membership> element
at the top of the code snippet, you see that the AspNetAccessProvider is the default provider and is the
second provider detailed.

The important attributes of the AspNetAccessProvider definition include the enablePasswordRetrieval,
enablePasswordReset, requiresQuestionAndAnswer, requiresUniqueEmail, and PasswordFormat
attributes. The following table defines these attributes.

Attribute Description

enablePasswordRetrieval Defines whether the provider supports password
retrievals. This attribute takes a Boolean value. The
default value is False.

enablePasswordReset Defines whether the provider supports password resets.
This attribute takes a Boolean value. The default value is
True. When set to False, passwords cannot be retrieved
although they can be changed with a new random pass-
word.

requiresQuestionAndAnswer Specifies whether the provider should require a question
and answer combination for when a user is created. This
attribute takes a Boolean value, and the default value is
False.

requiresUniqueEmail Defines whether the provider should require a unique
e-mail to be specified when the user is created. This
attribute takes a Boolean value, and the default value is
False. When set to True, only unique e-mail addresses
can be entered into the data store.

PasswordFormat Defines the format in which the password is stored in the
data store. The possible values include Hashed, Clear,
and Encrypted. The default value is Hashed. Hashed
passwords use SHA1, whereas encrypted passwords use
Triple-DES encryption.

Asking for credentials
After you have users that can access your Web application using the new membership service provided
by ASP.NET 2.0, you can then give these users the means to log into the site. This requires little work on
your part. Before you learn the controls that enable users to access your applications, first you should
make a few more modifications to the web.config file.

Turning off access with the <authorization> element
After you make the changes to the web.config file by adding the <authorization> and <forms> ele-
ments (Listings 8-1 and 8-2), your Web application is accessible to each and every user that browses to
any page your application contains. To prevent open access, you have to deny unauthenticated users
access to the pages of your site.

236

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 236

Denying unauthenticated users access to your site is illustrated in Listing 8-8.

Listing 8-8: Denying unauthenticated users

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authentication mode=”Forms” />
<authorization>

<deny users=”?” />
</authorization>

</system.web>
</configuration>

Using the <authentication> and <deny> elements, you can deny specific users access to your Web
application — or (as in this case) simply deny every unauthenticated user (this is what the question
mark signifies).

Now that everyone but authenticated users has been denied access to the site, you want to make it easy
for viewers of your application to become authenticated users. To do so, use the Login server control.

Using the Login server control
The Login server control enables you to turn unauthenticated users into authenticated users by allowing
them to provide login credentials that can be verified in a data store of some kind. In the examples so far,
you have used Microsoft Access as the data store.

The first step in using the Login control is to create a new Web page titled Login.aspx. This is the
default page to which unauthenticated users are redirected in order to obtain their credentials.

The Login.aspx page simply needs an <asp:Login> control to give the end user everything she needs
to become authenticated, as illustrated in Listing 8-9.

Listing 8-9: Providing a login for the end user using the Login control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Login ID=”Login1” Runat=”server”>
</asp:Login>

</form>
</body>
</html>

If the unauthenticated user hits a different page in the application, she is redirected to the Login.aspx
page. You can see how ASP.NET tracks the location from the URL:

http://localhost:18436/Membership/login.aspx?ReturnUrl=%2fMembership%2fDefault.aspx

237

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 237

The login page, using the Login control, is shown in Figure 8-5.

Figure 8-5

From this figure, you can see that the Login control asks the user for a username and password. A check
box allows for a cookie to be stored on the client machine. This cookie enables the end user to bypass
login in the future. After she is logged in, the end user is returned to the page she originally wanted to
access.

You can modify the look and feel of the Login control just as you can for the other controls. One way to
do this is by clicking the Auto Format link in the control’s smart tag. There you find a list of options for
modifying the look and feel of the control (see Figure 8-6).

Figure 8-6

Select the Elegant option, for example, and the code is modified. Listing 8-10 shows the code generated
for this selection.

238

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 238

Listing 8-10: A formatted Login control

<asp:Login ID=”Login1” Runat=”server” BorderWidth=”1px” BorderColor=”#CCCC99”
BorderPadding=”0” BorderStyle=”Solid” BackColor=”#F7F7DE” Font-Names=”Verdana”
Font-Size=”10pt”>

<InstructionTextStyle Font-Italic=”False”></InstructionTextStyle>
<TitleTextStyle Font-Bold=”True” BackColor=”#6B696B”
ForeColor=”#FFFFFF”></TitleTextStyle>

</asp:Login>

From this listing, you can see that the <InstructionTextStyle> and the <TitleTextStyle> subele-
ments are used to modify those particular items displayed by the control. The available styling elements
that are included with the Login control include

❑ <CheckboxStyle>

❑ <FailureTextStyle>

❑ <HyperLinkStyle>

❑ <InstructionTextStyle>

❑ <LabelStyle>

❑ <SubmitButtonStyle>

❑ <TextBoxStyle>

❑ <TitleTextStyle>

Logging in users programmatically
Besides using the prebuilt mechanics of the Login control, you can also perform this task programmati-
cally using the Membership API. To validate credentials that you receive, you use the ValidateUser
method. The ValidateUser method takes a single signature:

ValidateUser(username As String, password As String)

This method is illustrated in Listing 8-11.

Listing 8-11: Validating a user’s credentials programmatically

VB
If Membership.ValidateUser(TextBox1.Text, TextBox2.Text) Then

FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, False)
Else

Label1.Text = “You are not registered with the site.”
End If

C#
if (Membership.ValidateUser(TextBox1.Text.ToString(), TextBox2.Text.ToString()) {

FormsAuthentication.RedirectFromLoginPage(TextBox1.Text.ToString(), false);
}
else {

Label1.Text = “You are not registered with the site.”;
}

239

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 239

The ValidateUser method returns a Boolean value of True if the user credentials pass the test and
False if they do not. From the code snippet in Listing 8-11, you can see that end users whose credentials
are verified as correct are redirected from the login page using the RedirectFromLoginPage method.
This method takes the username and a Boolean value that specifies whether the credentials are per-
sisted through a cookie setting.

Working with authenticated users
After users are authenticated, ASP.NET 2.0 provides a number of different server controls and methods
that you can use to work with the user details. Included in this collection of tools are the LoginStatus
and the LoginName controls.

The LoginStatus server control
The LoginStatus server control enables users to click a link to log in or log out of a site. For a good exam-
ple of this control, remove the <deny> element from the web.config file so that the pages of your site
are accessible to unauthenticated users. Then code your Default.aspx page so that it is similar to the
code shown in Listing 8-12.

Listing 8-12: Login and logout features of the LoginStatus control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login or Logout</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />

</form>
</body>
</html>

Running this page gives you a simple page that has only a hyperlink titled Login, as shown in Figure 8-7.

Figure 8-7240

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 240

Clicking the Login hyperlink forwards you to the Login.aspx page where you provide your credentials.
After the credentials are provided, you are redirected to the Default.aspx page — although now the
page includes a hyperlink titled Logout (see Figure 8-8). The LinkStatus control displays one link when
the user is unauthenticated and another link when the user is authenticated. Clicking the Logout hyper-
link logs out the user and redraws the Default.aspx page — but with the Login hyperlink in place.

Figure 8-8

The LoginName server control
The LoginName server control enables you to display the username of the authenticated user. This is a
common practice today. For an example of this, change the Default.aspx page so that it now includes
the authenticated user’s login name when that user is logged in, as illustrated in Listing 8-13.

Listing 8-13: Displaying the username of the authenticated user

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login or Logout</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p><asp:LoginName ID=”LoginName1” Runat=”server”

Font-Bold=”True” Font-Size=”XX-Large” /></p>
</form>

</body>
</html>

When the user logs in to the application and is returned to the Default.aspx page, he sees his user-
name displayed, as well as the hyperlink generated by the LoginStatus control (see Figure 8-9).

241

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 241

Figure 8-9

Showing the number of users online
One cool feature of the membership service is that you can display how many users are online at a given
moment. This is an especially popular option for a portal or a forum that wishes to impress visitors to
the site with its popularity.

To show the number of users online, you use the GetNumberOfUsersOnline method provided by the
Membership class. You can add to the Default.aspx page shown in Figure 8-9 with the code illustrated
in Listing 8-14.

Listing 8-14: Displaying the number of users online

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = Membership.GetNumberOfUsersOnline.ToString()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login or Logout</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p><asp:LoginName ID=”LoginName1” Runat=”server”

Font-Bold=”True” Font-Size=”XX-Large” /></p>

242

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 242

<p>There are <asp:Label ID=”Label1” Runat=”server” Text=”0” />
users online.</p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

Label1.Text = Membership.GetNumberOfUsersOnline.ToString();
}

</script>

When the page is generated, it displays the number of users who have logged on in the last 15 minutes.
An example of what is generated is shown in Figure 8-10.

Figure 8-10

You can see that two users have logged on in the last 15 minutes. This 15-minute period is determined in
the machine.config file from within the <membership> element:

<membership defaultProvider=”AspNetAccessProvider” userIsOnlineTimeWindow=”15” >
</membership>

By default, the userIsOnlineTimeWindow is set to 15. The number is specified here in minutes. To
increase the time window, you simply increase this number. In addition to specifying this number from
within the machine.config file, you can also set this number in the web.config file.

243

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 243

Dealing with passwords
Many of us seem to spend our lives online and have username/password combinations for many differ-
ent Web sites on the Internet. For this reason, end users forget passwords or want to change them every
so often. ASP.NET 2.0 provides a couple of new server controls that work with the membership service
so that end users can either change their password or retrieve a forgotten password.

The ChangePassword server control
The ChangePassword server control enables end users to change their password directly in the browser.
Listing 8-15 shows a use of the ChangePassword control.

Listing 8-15: Allowing users to change their passwords

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Change Your Password</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p><asp:ChangePassword ID=”ChangePassword1” Runat=”server”>

</asp:ChangePassword><p>
</form>

</body>
</html>

This is a rather simple use of the <asp:ChangePassword> control. Running this page produces the
results shown in Figure 8-11.

Figure 8-11

The ChangePassword control produces a form that asks for the previous password. It also requires the
end user to type the new password twice. Clicking the Change Password button launches an attempt to

244

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 244

change the password if the user is logged in. If the end user isn’t logged into the application yet, he or
she is redirected to the login page. Only a logged-in user can change his or her password. After the pass-
word is changed, the end user is notified (see Figure 8-12).

Figure 8-12

Remember that end users are allowed to change their passwords because the enablePasswordReset
attribute of the membership provider is set to True. To deny this capability, set the
enablePasswordReset attribute to False.

The PasswordRecovery server control
People simply forget their passwords. For this reason, you should provide the means to retrieve pass-
words from your data store. The PasswordRecovery server control provides an easy way to accomplish
this task.

Password recovery usually means sending the end user’s password to him in an e-mail. Therefore, you
set up an SMTP server (it might be the same as the application server). You configure for this server in
the web.config file, as illustrated in Listing 8-16.

Listing 8-16: Setting up the SMTP server in the web.config file

<configuration>
<system.web>

<smtpMail serverName=”localhost” serverPort=”25” from=”evjen@yahoo.com”>
<fields>

<add
name=”http://schemas.microsoft.com/cdo/configuration/smtpauthenticate”
value=”0” />

</fields>
</smtpMail>

</system.web>
</configuration>

245

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 245

After you have the <smtpMail> element set up correctly, you can start to use the PasswordRecovery
control. A simple use of the PasswordRecovery control is shown in Listing 8-17.

Listing 8-17: Using the PasswordRecovery control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Getting Your Password</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:PasswordRecovery ID=”PasswordRecovery1” Runat=”server”>

<MailDefinition From=”evjen@yahoo.com”>
</MailDefinition>

</asp:PasswordRecovery>
</form>

</body>
</html>

The <asp:PasswordRecovery> element needs a <MailDefinition> subelement. The
<MailDefinition> element describes details about the e-mail to be sent to the end user. The minimum
requirement is that the From attribute is used, which provides the e-mail address for the From part of the
e-mail. The String value of this attribute should be an e-mail address. Other attributes for the
<MailDefinition> element include

❑ BodyFileName

❑ BodyFormat

❑ Cc

❑ From

❑ Priority

❑ Subject

When you run this page, the PasswordRecovery control asks for the user’s username, as shown in
Figure 8-13.

When it has the username, the membership service retrieves the question and answer that was earlier
entered by the end user and generates the view shown in Figure 8-14.

If the question is answered correctly, an e-mail containing the password is generated and mailed to the
end user. If the question is answered incorrectly, an error message is displayed.

It is important to change some of your membership service settings in order for this entire process to
work. At present, it won’t work because of the way in which a user’s password is hashed. The member-
ship service data store isn’t storing the actual password — just this hashed version of it. Of course, it is
useless for an end user to receive a hashed password.

246

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 246

Figure 8-13

Figure 8-14

In order for you to be able to send back an actual password to the user, you must change how the pass-
words are stored in the membership service data store. This is done (as stated earlier in the chapter) by
changing PasswordFormat attribute of your membership data provider. The other possible values
(besides Hashed) are Clear and Encrypted. Changing it to either Clear or Encrypted makes it
possible for the passwords to be sent back to the end user in a readable format.

ASP.NET 2.0 Authorization
Now that you can deal with the registration and authentication of users who want to access your Web
applications, the next step is authorization. What are they allowed to see and what roles do they take?
These are important questions for any Web application. First, learn how to show only certain items to
authenticated users while showing different items to unauthenticated users.

247

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 247

Using the LoginView server control
The LoginView server control allows you to control who views what information on a particular part of
a page. Using the LoginView control, you can dictate which parts of the pages are for authenticated
users and which parts of the pages are for unauthenticated users. Listing 8-18 shows an example of this
control.

Listing 8-18: Controlling information viewed via the LoginView control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Changing the View</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p>
<asp:LoginView ID=”LoginView1” Runat=”server”>

<LoggedInTemplate>
Here is some REALLY important information that you should know
about all those people that are not authenticated!

</LoggedInTemplate>
<AnonymousTemplate>

Here is some basic information for you.
</AnonymousTemplate>

</asp:LoginView><p>
</form>

</body>
</html>

The <asp:LoginView> control is a templated control that takes two possible subelements — the
<LoggedInTemplate> and <AnonymousTemplate> elements. In this case, the information defined in
the <AnonymousTemplate> section (see Figure 8-15) is for unauthenticated users and is quite different
from what authenticated users see defined in the <LoggedInTemplate> section (see Figure 8-16).

Figure 8-15

248

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 248

Figure 8-16

Only simple ASCII text is placed inside both of these templates, but you can actually place anything else
within the template including additional server controls. This means that you can show entire sections of
pages, including forms, from within the templated sections.

Setting up your Web site for role management
In addition to the membership service just reviewed, ASP.NET 2.0 provides you with the other side of
the end user management service — the ASP.NET role management service. The membership service
covered all the details of authentication for your applications, whereas the role management service cov-
ers authorization. Just as the membership service can use any of the data providers listed earlier, the role
management service can use the same providers plus a couple of others. In fact, this service is compara-
ble to the membership service in many ways. Figure 8-17 shows you a simple diagram that details some
the particulars of the role management service.

Figure 8-17

API

Roles API

Roles Membership Providers

AspNetAccessProvider AspNetSqlProvider Custom Provider

Data Stores

Access SQL Server Custom

249

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 249

Making changes to the <roleManager> section
The first step in working with the role management service is to change any of the role management
provider behaviors either in the machine.config or from the web.config files. If you look in the
machine.config file, you see an entire section that deals with the role management service (see
Listing 8-19).

Listing 8-19: Role management provider settings in the machine.config file

<roleManager
enabled=”false” cacheRolesInCookie=”false” cookieName=”.ASPXROLES”
cookieTimeout=”30” cookiePath=”/” cookieRequireSSL=”false”
cookieSlidingExpiration=”true” createPersistentCookie=”false”
cookieProtection=”All” defaultProvider=”AspNetAccessProvider” >

<providers>
<add name=”AspNetSqlProvider” type=”System.Web.Security.SqlRoleProvider,
System.Web, Version=2.0.3600.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”LocalSqlServer”
applicationName=”/”
description=”Stores and retrieves roles data from the local

Microsoft SQL Server database” />

<add name=”WindowsToken”
type=”System.Web.Security.WindowsTokenRoleProvider, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
description=”Retrieves roles data from the Windows authenticated token

for the request” />

<add name=”AspNetAccessProvider”
type=”System.Web.Security.AccessRoleProvider, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”AccessFileName”
applicationName=”/”
description=”Stores and retrieves roles data from the local

Microsoft Access database file” />

<add name=”AspNetAzManProvider”
type=”System.Web.Security.AzManRoleProvider, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”AzManStore”
applicationName=”MyApplication”
scopeName=”MyScope”
description=”Stores and retrieves roles data from the

Authorization Manager application store” />
</providers>

</roleManager>

The role management service defines its settings from within the machine.config file, as shown in the
previous code listing. You can make changes to these settings either directly in the machine.config file
or by overriding these settings in the web.config file (thereby making changes only to the application
at hand).

The main settings are defined in the <roleManager> element. Some of the attributes of the
<roleManager> element are defined in the following table.

250

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 250

Attribute Description

enabled Defines whether the role management service is enabled for
the application. This attribute takes a Boolean value and is
set to False by default. This means that the role manage-
ment service is disabled by default. Therefore, you must
change this value to True in either the machine.config or
the web.config file first. This value is set to False by
default to avoid breaking changes that would occur for peo-
ple migrating from ASP.NET 1.0/1.1 to ASP.NET 2.0.

cacheRolesInCookie Defines whether the roles of the user can be stored within a
cookie on the client machine. This attribute takes a Boolean
value and is set to True by default. This is an ideal situation
because retrieving the roles from the cookie prevents
ASP.NET from looking up the roles of the user via the role
management provider. Set to False if you want the roles to
be retrieved via the provider for all instances.

cookieName Defines the name used for the cookie sent to the end user
for role management information storage. By default, this
cookie is named .ASPXROLES, and you probably won’t
change this.

cookieTimeout Defines the amount of time (in minutes) after which the
cookie expires. The default value is 30 minutes.

cookieRequireSSL Defines whether you are going to want to require that the
role management information be sent over an encrypted
wire (SSL) instead of sending credentials as clear text. The
default value is False.

cookieSlidingExpiration Specifies whether the timeout of the cookie is on a sliding
scale. The default value is True. This means that the end
user’s cookie does not expire until 30 minutes (or the time
specified in the cookieTimeout attribute) after the last
request to the application has been made. If the value of the
cookieSlidingExpiration attribute is set to False, the
cookie expires 30 minutes from the first request.

createPersistentCookie Specifies whether the cookie that is created should never
expire, but instead remain alive indefinitely. The default set-
ting is False because this is not always advisable for secu-
rity reasons.

cookieProtection Specifies the amount of protection that you want to apply to
the cookie that is stored on the end user’s machine for man-
agement information. The possible settings include All,
None, Encryption, and Validation. You should always
attempt to use All.

defaultProvider Defines the provider used for the role management service.
By default, it is set to AspNetAccessProvider.

251

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 251

Making changes to the web.config file
The next step is to configure your web.config file so that it can work with the role management service.
Certain pages or subsections of your application may be accessible only to people with specific roles. To
manage this access, you define the access rights in the web.config file. The necessary changes are
shown in Listing 8-20.

Listing 8-20: Changing the web.config file

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<roleManager enabled=”true”/>
<authentication mode=”Forms” />
<authorization>

<deny users=”?” />
</authorization>

</system.web>

<location path=”AdminPage.aspx”>
<system.web>

<authorization>
<allow roles=”AdminPageRights” />
<deny users=”*” />

</authorization>
</system.web>

</location>

</configuration>

This web.config file is doing a couple of things. First, the function of the first <system.web> section is
no different from that of the membership service shown earlier in the chapter. The <deny> element is
denying all unauthenticated users across the board.

The second section of this web.config file is rather interesting. The <location> element is used to
define the access rights of a particular page in the application (AdminPage.aspx). In this case, only
users contained in the AdminPageRights role are allowed to view the page, whereas all other users —
regardless whether they are authenticated — are not allowed to view the page. When using the asterisk
(*) as a value of the users attribute of the <deny> element, you are saying that all users (regardless of
whether they are authenticated) are not allowed to access the resource being defined. This overriding
denial of access, however, is broken open a bit via the use of the <allow> element, which allows users
contained within a specific role.

Adding and retrieving application roles
Now that the machine.config and the web.config files are in place, you can add roles to the role
management service. The role management service, just like the membership service, uses data stores to
store information about the users. In these examples, I focus primarily on using Microsoft Access as the
provider because it is the default provider.

252

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 252

To get Microsoft Access ready for use, read the instructions outlined earlier in the section “Adding users.”

One big difference between the role management service and the membership service is that no server
controls are used for the role management service. You manage the application’s roles and the user’s role
details through a new Roles API or through the Web Site Administration Tool provided with ASP.NET 2.0.
Listing 8-21 shows how to use some of the new methods to add roles to the service.

Listing 8-21: Adding roles to the application

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

ListBoxDataBind()
End Sub

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Roles.CreateRole(TextBox1.Text)
ListBoxDataBind()

End Sub

Sub ListBoxDataBind()
ListBox1.DataSource = Roles.GetAllRoles()
ListBox1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Role Manager</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>Role Manager</h1>
Add Role:

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<p><asp:Button ID=”Button1” Runat=”server” Text=”Add Role to Application”

OnClick=”Button1_Click” /></p>
Roles Defined:

<asp:ListBox ID=”ListBox1” Runat=”server”>
</asp:ListBox>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

(continued)

253

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 253

Listing 8-21: (continued)

ListBoxDataBind();
}

void Button1_Click(object sender, EventArgs e)
{

Roles.CreateRole(TextBox1.Text.ToString());
ListBoxDataBind();

}

void ListBoxDataBind()
{

ListBox1.DataSource = Roles.GetAllRoles();
ListBox1.DataBind();

}
</script>

This example enables you to enter roles into the text box and then submit them to the role management
service. The roles contained in the role management service are then displayed in the list box, as illus-
trated in Figure 8-18.

Figure 8-18

To enter the roles into the management service, you simply use the CreateRole method of the Roles
class. Just as with the Membership class, you don’t instantiate the Roles class. To add roles to the role
management service, use the CreateRole method that takes only a single parameter — the name of the
role as a String value:

Roles.CreateRole(rolename As String)

With this method, you can create as many roles as you want, but each role must be unique — otherwise
an exception is thrown.

254

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 254

To retrieve the roles that are in the application’s role management service (such as the list of roles dis-
played in the list box from the earlier example), you use the GetAllRoles method of the Roles class.
This method returns a String collection of all the available roles in the service:

Roles.GetAllRoles()

Deleting roles
It would be just great to sit and add roles to the service all day long. Every now and then, however, you
must delete roles from the service as well. Deleting roles is just as easy as adding roles to the role man-
agement service. To delete a role, you use one of the DeleteRole method signatures. The first option of
the DeleteRole method takes a single parameter — the name of the role as a String value. The second
option takes the name of the role plus a Boolean value that determines whether to throw an exception
when one or more members are contained within that particular role:

Roles.DeleteRole(rolename As String)

Roles.DeleteRole(rolename As String, throwOnPopulatedRole As Boolean)

Listing 8-22 is a partial code example that builds on Listing 8-21. For this example, add an additional
button, which initiates a second button-click event that deletes the role from the service.

Listing 8-22: Deleting roles from the application

VB
Sub DeleteButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)

For Each li As ListItem In ListBox1.Items
If li.Selected = True Then

Roles.DeleteRole(li.ToString())
End If

Next
ListBoxDataBind()

End Sub

C#
void DeleteButton_Click(object sender, EventArgs e)
{

foreach (ListItem li in ListBox1.Items) {
if (li.Selected == true) {

Roles.DeleteRole(li.ToString());
}

}
ListBoxDataBind();

}

This example deletes the selected items from the ListBox control. If more than one selection is made
(meaning that you have placed the attribute SelectionMode=”Multiple” in the ListBox control), each
of the roles is deleted from the service, in turn, in the For Each loop. Although Roles.DeleteRole
(li.ToString()) is used to delete the role, Roles.DeleteRole(li.ToString(), True) could also
be used to make sure that no roles are deleted if that role contains any members.

255

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 255

Adding users to roles
Now that the roles are in place and it is possible to also delete them if required, the next step is adding
users to the roles created. A role doesn’t do much good if no users are associated with the role. To add a
single user to a single role, you use the following construct:

Roles.AddUserToRole(username As String, rolename As String)

To add a single user to multiple roles at the same time, you use this construct:

Roles.AddUserToRoles(username As String, rolenames() As String)

To add multiple users to a single role, you use the following construct:

Roles.AddUsersToRole(usernames() As String, rolename As String)

Then finally, to add multiple users to multiple roles, you use the following construct:

Roles.AddUsersToRoles(usernames() As String, rolenames() As String)

The parameters that can take collections, whether they are usernames() or rolenames(), are presented
to the method as String arrays.

Getting all the users of a particular role
Looking up information is easy in the role management service, whether you are determining which
users are contained within a particular role, or whether you want to know the roles that a particular user
belongs to.

Methods are available for either of these scenarios. First, look at how to determine all the users con-
tained in a particular role, as illustrated in Listing 8-23.

Listing 8-23: Looking up users in a particular role

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

DropDownDataBind()
End Sub

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
GridView1.DataSource = Roles.GetUsersInRole(DropDownList1.SelectedValue)
GridView1.DataBind()
DropDownDataBind()

End Sub

Sub DropDownDataBind()
DropDownList1.DataSource = Roles.GetAllRoles()
DropDownList1.DataBind()

256

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 256

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Role Manager</title>
</head>
<body>

<form id=”form1” runat=”server”>
Roles:
<asp:DropDownList ID=”DropDownList1” Runat=”server”>
</asp:DropDownList>
<asp:Button ID=”Button1” Runat=”server” Text=”Get Users In Role”
OnClick=”Button1_Click” />

<asp:GridView ID=”GridView1” Runat=”server”>
</asp:GridView>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

DropDownDataBind();
}

void Button1_Click(object sender, EventArgs e)
{

GridView1.DataSource = Roles.GetUsersInRole(DropDownList1.SelectedValue);
GridView1.DataBind();
DropDownDataBind();

}

void DropDownDataBind()
{

DropDownList1.DataSource = Roles.GetAllRoles();
DropDownList1.DataBind();

}
</script>

This page creates a drop-down list that contains all the roles for the application. Clicking the button displays
all the users for the selected role. Users of a particular role are determined using the GetUsersInRole
method. This method takes a single parameter — a String value representing the name of the role:

Roles.GetUsersInRole(rolename As String)

When run, the page looks similar to the page shown in Figure 8-19.

257

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 257

Figure 8-19

Getting all the roles of a particular user
To determine all the roles for a particular user, create a page with a single text box and a button. In the
text box, you type the name of the user, and a button click initiates the retrieval and populates a
GridView control. The button click event (where all the action is) is illustrated in Listing 8-24.

Listing 8-24: Getting all the roles of a specific user

VB
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

GridView1.DataSource = Roles.GetRolesForUser(TextBox1.Text)
GridView1.DataBind()

End Sub

C#
void Button1_Click(object sender, EventArgs e)
{

GridView1.DataSource = Roles.GetRolesForUser(TextBox1.Text.ToString());
GridView1.DataBind();

}

The preceding code produces something similar to what is shown in Figure 8-20.

Figure 8-20

258

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 258

To get the roles of a particular user, you simply use the GetRolesForUser method. This method has
two possible signatures. The first is shown in the preceding example — a String value that represents
the name of the user. The other option is an invocation of the method without any parameters listed.
This returns the roles of the user who has logged into the membership service.

Removing users from roles
In addition to adding users to roles, you can also easily remove users from roles. To delete or remove a
single user from a single role, you use the following construct:

Roles.RemoveUserFromRole(username As String, rolename As String)

To remove a single user from multiple roles at the same time, you use this construct:

Roles.RemoveUserFromRoles(username As String, rolenames() As String)

To remove multiple users from a single role, you use the following construct:

Roles.RemoveUsersFromRole(usernames() As String, rolename As String)

Then finally, to remove multiple users from multiple roles, you use the following construct:

Roles.RemoveUsersFromRoles(usernames() As String, rolenames() As String)

The parameters shown as collections, whether they are usernames() or rolenames(), are presented to
the method as String arrays.

Checking users in roles
One final action you can take is checking whether or not a particular user is in a role. You can go about
this in couple of ways. The first is using the IsUserInRole method.

The IsUserInRole method takes two parameters — the username and the name of the role:

Roles.IsUserInRole(username As String, rolename As String)

This method returns a Boolean value on the status of the user, and it can be used as shown in Listing 8-25.

Listing 8-25: Checking a user’s role status

VB
If (Roles.IsUserInRole(TextBox1.Text, “AdminPageRights”)) Then

‘ perform action here
End If

C#
If (Roles.IsUserInRole(TextBox1.Text.ToString(), “AdminPageRights”))
{

// perform action here
}

259

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 259

The other option, in addition to the IsUserInRole method, is to use FindUsersInRole. This method
enables you make a name search against all the users in a particular role. The FindUsersInRole
method takes two parameters — the name of the role and the username, both as String values:

Roles.FindUsersInRole(rolename As String, username As String)

Listing 8-26 shows an example of this method.

Listing 8-26: Checking for a specific user in a particular role

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

GridView1.DataSource = _
Roles.FindUsersInRole(“AdminPageRights”, TextBox1.Text)

GridView1.DataBind()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Role Manager</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Button”
OnClick=”Button1_Click” />

<p><asp:GridView ID=”GridView1” Runat=”server”>
</asp:GridView></p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Button1_Click(object sender, EventArgs e)
{

GridView1.DataSource =
Roles.FindUsersInRole(“AdminPageRights”, TextBox1.Text.ToString());

GridView1.DataBind();
}

</script>

260

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 260

Using the Web Site Administration Tool
Many of the actions shown in this chapter can also be performed through the Web Site Administration
Tool shown in Figure 8-21.

Figure 8-21

Although you can easily use this tool to perform all the actions for you, often you perform these actions
through your own applications as well. It is important to know all the possibilities when programming
an ASP.NET application.

The Web Site Administration Tool is detailed in Chapter 14.

261

Membership and Role Management

08_572865 ch08.qxd 7/7/04 9:54 PM Page 261

Summary
This chapter covered two outstanding new additions to ASP.NET 2.0. These are probably my favorite
new ASP.NET features. The membership and role management services that are now a part of ASP.NET
make managing users and their roles almost trivial.

This chapter reviewed both the Membership and Roles APIs and the controls that also utilize these APIs.
These new controls and APIs follow the same data provider models as the rest of ASP.NET 2.0. The
examples were presented using Microsoft Access, but you can also use Microsoft SQL Server for the
back-end storage.

Chapter 9, “Personalization,” builds on this chapter and shows you how to use SQL Server as the back-
end data store as well. The lessons you learn in the next chapter can also be applied here.

262

Chapter 8

08_572865 ch08.qxd 7/7/04 9:54 PM Page 262

Personalization

Many Web applications must be customized to contain information that is specific to the end user
who is presently viewing the page. In the past, the developer usually provided storage of person-
alization properties for end users viewing the page by means of cookies, the Session object, or
the Application object. Cookies enabled storage of persistent items so that when the end user
returned to a Web page, any settings related to him were retrieved. Cookies aren’t the best way to
approach persistent user data storage, however, because they are not accepted by all computers,
and also because a crafty end user can easily alter them.

As you saw in the previous chapter, ASP.NET 2.0’s membership and role management capabilities
are ways for ASP.NET to conveniently store information about the user. How can you, as the
developer, use the same mechanics to store custom information?

ASP.NET 2.0 provides you with a new and outstanding feature — Personalization. The ASP.NET
Personalization engine provided with this latest release can make an automatic association
between the end user viewing the page and any data points stored for that user. The personaliza-
tion properties that are maintained on a per-user basis are stored on the server and not on the
client. These items are conveniently placed in a data store of your choice (such as Microsoft’s SQL
Server) and, therefore, the end user can access these personalization properties on later site visits.

This new feature is an ideal way to start creating highly customizable and user-specific sites with-
out building any of the plumbing beforehand. The new Personalization feature is yet another way
that the ASP.NET team is making the lives of developers easier by making them more productive.

The Personalization Model
The Personalization model provided with ASP.NET 2.0 is simple and, as with most items that come
with ASP.NET, it is an extensible model as well. Figure 9-1 shows a simple diagram that outlines the
new Personalization model.

09_572865 ch09.qxd 7/7/04 9:54 PM Page 263

Figure 9-1

From this diagram, you can see the three layers in this model. First, look at the middle layer of the
Personalization model — the Personalization Services layer. This layer contains the Profile API. This
new Profile API layer enables you to program your end user’s data points into one of the lower-layer
data stores. Also included in this layer are the server control personalization capabilities, which are
important for the Portal Framework and the use of Web Parts. The Portal Framework and Web Parts
are discussed in Chapter 10.

Although controls are built into ASP.NET that utilize the new personalization capabilities for storing
information about the page settings, you can also use this new engine to store your own data points.
Just like Web Parts, these points can be used within your ASP.NET pages.

Below the Personalization Services layer, you find the two default personalization data providers — one for
working with Microsoft’s SQL Server, and another for working with Microsoft Access Jet data stores. You are
not limited to just these two data stores when applying the new personalization features of ASP.NET 2.0;
you can also extend the model and create a custom data provider for the personalization engine.

Now that you have looked briefly at the personalization model, you can begin using it by creating some
stored personalization properties that can be used later within your applications.

Creating Personalization Properties
The nice thing about creating custom personalization properties is that you can do so easily, and you
gain a strongly typed access to the items you create. It is also possible to create personalization proper-
ties that are used only by authenticated users, and also some that anonymous users can utilize. These

Server Controls

Web Parts

Data Stores

SQL Server 7.0/2000/Yukon Jet (Access) Custom

Interfaces

Profile API Control Personalization

264

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 264

data points are powerful — mainly because you can start using them immediately in your application.
First, try creating some simple personalization properties. Later, you learn how to use these personaliza-
tion properties within your application.

Adding a simple personalization property
The first step is to decide what data items you are going to store from the user. For our example, create a
few items about the user that you might want to use within your application; assume that you want to
store the following information about the user:

❑ First name

❑ Last name

❑ Last visited

❑ Age

❑ Member

ASP.NET has a heavy dependency on storing configurations inside XML files, and the ASP.NET 2.0 per-
sonalization engine is no different. All these customization points concerning the end user are defined
and stored within the web.config file of your application. This is illustrated in Listing 9-1.

Listing 9-1: Creating personalization properties in the web.config file

<configuration>
<system.web>

<profile inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” />

</properties>

</profile>

</system.web>
</configuration>

Within the web.config file and nested within the <system.web> section of the file, you create a <pro-
file> section in order to work with the ASP.NET 2.0 Personalization engine. Within this <profile>
section of the web.config file, you need a <properties> section. In this section, you can define all the
properties you want the personalization engine to store.

265

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 265

From this code example, you can see that it was rather easy to define simple properties using the <add>
element. This element simply takes the name attribute, which takes the name of the property you want
to persist.

It’s just as easy to use these personalization properties as it is to define them. The next section looks at
how to use these definitions in an application.

Using personalization properties
Now that you have defined the personalization properties in the web.config file, it’s possible to use
these items in code. For an example, I create a simple form that asks for some of this information from
the end user. On the Button_Click event, the data is stored in the personalization engine. Listing 9-2
shows an example of this.

Listing 9-2: Using the defined personalization properties

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Profile.FirstName = TextBox1.Text
Profile.LastName = TextBox2.Text
Profile.Age = TextBox3.Text
Profile.Member = Radiobuttonlist1.SelectedItem.Text
Profile.LastVisited = DateTime.Now().ToString()

Label1.Text = “Stored information includes:<p>” & _
“First name: “ & Profile.FirstName & _
“
Last name: “ & Profile.LastName & _
“
Age: “ & Profile.Age & _
“
Member: “ & Profile.Member & _
“
Last visited: “ & Profile.LastVisited

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Storing Personalization</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>First Name:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox></p>
<p>Last Name:
<asp:TextBox ID=”TextBox2” Runat=”server”></asp:TextBox></p>
<p>Age:
<asp:TextBox ID=”TextBox3” Runat=”server” Width=”50px”
MaxLength=”3”></asp:TextBox></p>

<p>Are you a member?

266

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 266

<asp:RadioButtonList ID=”Radiobuttonlist1” Runat=”server”>
<asp:ListItem Value=”1”>Yes</asp:ListItem>
<asp:ListItem Value=”0” Selected=”True”>No</asp:ListItem>

</asp:RadioButtonList></p>
<p><asp:Button ID=”Button1” Runat=”server” Text=”Submit”

OnClick=”Button1_Click” />
</p>
<hr /><p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</form>
</body>
</html>
C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Button1_Click(object sender, EventArgs e)
{

Profile.FirstName = TextBox1.Text;
Profile.LastName = TextBox2.Text;
Profile.Age = TextBox3.Text;
Profile.Member = Radiobuttonlist1.SelectedItem.Text;
Profile.LastVisited = DateTime.Now().ToString();

Label1.Text = “Stored information includes:<p>” +
“First name: “ + Profile.FirstName +
“
Last name: “ + Profile.LastName +
“
Age: “ + Profile.Age +
“
Member: “ + Profile.Member +
“
Last visited: “ + Profile.LastVisited;

}
</script>

This is similar to the way you worked with the Session object in the past, but note that the personaliza-
tion properties you are storing and retrieving are not key based. Therefore, when working with them
you don’t need to remember key names.

By default, these items are stored as type String, and you have early-bound access to the items stored.
To store an item, you simply populate the personalization property directly using the Profile object:

Profile.FirstName = TextBox1.Text

To retrieve the same information, you simply grab the appropriate property of the Profile class as
shown here:

Label1.Text = Profile.FirstName

The great thing about using the Profile class and all the personalization properties defined in code is
that this method provides IntelliSense. When working with the Profile class, all the items you define
are listed as available options, as illustrated in Figure 9-2.

267

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 267

Figure 9-2

All these properties are accessible in IntelliSense because the Profile class is hidden and dynamically
compiled behind the scenes whenever you save the personalization changes made to the web.config
file. After these items are saved in the web.config file, these properties are available to you throughout
your application.

When run, the page from Listing 9-2 produces the results shown in Figure 9-3.

268

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 268

Figure 9-3

In addition to using early-bound access techniques, you can also use late-bound access for the items that
you store in the personalization engine. This technique is illustrated in Listing 9-3.

Listing 9-3: Using late-bound access

VB
Dim myFirstName As String

myFirstName = Profile.PropertyValues(“FirstName”).PropertyValue.ToString()

C#
string myFirstName;

myFirstName = (string) Profile.PropertyValues[“FirstName”].PropertyValue;

Whether it is early-bound access or late-bound access, you can easily store and retrieve personalization
properties for a particular user using this new capability afforded by ASP.NET 2.0. All this is done in the
personalization engine’s simplest form — now take a look at how you can customize for specific needs
in your applications.

269

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 269

Adding a group of personalization properties
If you want to store a large number of personalization properties about a particular user, remember, you
are not just storing personalization properties for a particular page, but for the entire application. This
means that items you have stored about a particular end user somewhere in the beginning of the appli-
cation can be retrieved later for use on any other page within the application. Because different sections
of your Web applications store different personalization properties, you sometimes end up with a large
collection of items to be stored and then made accessible.

To make it easier not only to store the items, but also to retrieve them, the personalization engine enables
you to store your personalization properties in groups. This is illustrated in Listing 9-4.

Listing 9-4: Creating personalization groups in the web.config file

<configuration>
<system.web>

<profile inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />

<group name=”MemberDetails”>
<add name=”Member” />
<add name=”DateJoined” />
<add name=”PaidDuesStatus” />
<add name=”Location” />

</group>

<group name=”FamilyDetails”>
<add name=”MarriedStatus” />
<add name=”DateMarried” />
<add name=”NumberChildren” />
<add name=”Location” />

</group>

</properties>

</profile>

</system.web>
</configuration>

From the code in Listing 9-4, which is placed within the web.config file, you can see that two groups
are listed. The first group is the MemberDetails group, which has four specific items defined; the sec-
ond group — FamilyDetails — has three other related items defined. Personalization groups are

270

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 270

defined using the <group> element within the <properties> definition. The name of the group is spec-
ified using the name attribute, just as you specify the <add> element. You can have as many groups
defined as you deem necessary or as have been recommended as good practice to employ.

Using grouped personalization properties
From Listing 9-4, you can also see that some items are not defined in any particular group. It is possible
to mix properties defined from within a group with those that are not. The items not defined in a group
in Listing 9-4 can still be accessed in the manner illustrated previously:

Label1.Text = Profile.FirstName

Now, using personalization groups, you can access your defined items in a logical manner using nested
namespaces:

Label1.Text = Profile.MemberDetails.DateJoined

Label2.Text = Profile.FamilyDetails.MarriedStatus

From this example, you can see that two separate items from each of the defined personalization groups
that were defined were accessed in a logical manner. From the defined properties, you can see that each
of the groups has a property with the same name — Location. This is possible because you are using
personalization groups. With this structure, it is now possible to get at each of the Location properties
by specifying the appropriate group:

Label1.Text = Profile.MemberDetails.Location

Label2.Text = Profile.FamilyDetails.Location

Defining types for personalization properties
By default, when you store personalization properties, you store them as type String. It is quite easy,
however, to change the type to something else through configurations within the web.config file. To
define the name of the personalization property along with its type, you use the Type attribute, as
shown in Listing 9-5.

Listing 9-5: Defining types for personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” />

</properties>

271

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 271

The first two properties, FirstName and LastName, are cast as type String. This isn’t actually required.
Even if you omitted this step, they would still be cast as type String because that is the default type. The
next personalization property is the LastVisited property, which is defined as type System.DataTime
and used to store the date and time of the end user’s last visit to the page. Beyond that, you can see the
rest of the personalization properties are defined using a specific .NET data type.

This is the preferred approach because it gives you type-checking capabilities as you code your applica-
tion and use the personalization properties you have defined.

Using custom types
As you can see from the examples that show you how to define types for the personalization properties, it
is quite simple to define types that are available in the .NET Framework. Items such as System.Integer,
System.String, System.DateTime, System.Byte, and System.Boolean are easily defined within the
web.config file. But how do you go about defining complex types?

Personalization properties that utilize custom types are just as easy to define as personalization proper-
ties that use simple types. Custom types give you the capability to store complex items such as shopping
cart information or other status information from one use of the application to the next. Listing 9-6 first
shows a class, ShoppingCart, which you use later in one of the personalization property definitions.

Listing 9-6: Creating a class to use as a personalization type

VB
<Serializable()> _
Public Class ShoppingCart

Private PID As String
Private CompanyProductName As String
Private Number As Integer
Private Price As Decimal
Private DateAdded As DateTime

Public Property ProductID() As String
Get

Return PID
End Get
Set(ByVal value As String)

PID = value
End Set

End Property

Public Property ProductName() As String
Get

Return CompanyProductName
End Get
Set(ByVal value As String)

CompanyProductName = value
End Set

End Property

Public Property NumberSelected() As Integer
Get

272

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 272

Return Number
End Get
Set(ByVal value As Integer)

Number = value
End Set

End Property

Public Property ItemPrice() As Decimal
Get

Return Price
End Get
Set(ByVal value As Decimal)

Price = value
End Set

End Property

Public Property DateItemAdded() As DateTime
Get

Return DateAdded
End Get
Set(ByVal value As DateTime)

DateAdded = value
End Set

End Property
End Class
C#
using System;

[Serializable]
public class ShoppingCart
{

private string PID;
private string CompanyProductName;
private int Number;
private decimal Price;
private DateTime DateAdded;

public ShoppingCart() {}

public string ProductID
{

get { return PID; }
set { PID = value; }

}

public string ProductName
{

get { return CompanyProductName; }
set { CompanyProductName = value; }

}

public int NumberSelected
{

get { return Number; }

(continued)

273

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 273

Listing 9-6: (continued)

set { Number = value; }
}

public decimal ItemPrice
{

get { return Price; }
set { Price = value; }

}

public DateTime DateItemAdded
{

get { return DateAdded; }
set { DateAdded = value; }

}
}

This simple shopping cart construction can now store the end user’s shopping cart basket as she moves
around on an e-commerce site. The basket can even be persisted when the end user returns to the site at
another time.

Take a look at how you would specify from within the web.config file that a personalization property
is this complex type. This is illustrated in Listing 9-7.

Listing 9-7: Using complex types for personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” />
<add name=”Cart” type=”ShoppingCart” serializeAs=”Binary” />

</properties>

Just as the basic data types are stored in the personalization data stores, this construction allows you to
easily store custom types and to have them serialized into the end data store in the format you choose.
In this case, the ShoppingCart object is serialized into a binary object in the data store. The
SerializeAs attribute can take the values defined in the following list:

❑ Binary: Serializes and stores the object as binary data within the chosen data store.

❑ ProviderSpecific: Stores the object based upon the direction of the provider. This simply means
that instead of the personalization engine determining the serialization of the object, it is simply
left up to the data store.

❑ String: The default setting. Stores the personalization properties as a string inside the chosen
data store.

❑ XML: Takes the object and serializes it into an XML format before storing it in the chosen data
store.

274

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 274

Providing default values
In addition to defining the types of personalization properties, you can also define their default values.
The personalization properties you create do not have a value, but you can easily change this using the
DefaultValue attribute of the <add> element. Defining default values is illustrated in Listing 9-8.

Listing 9-8: Defining default values for personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” defaultValue=”False” />

</properties>

From this example, you can see that only one of the personalization properties is provided with a default
value. The last personalization property, Member, in this example, is given a default value of False. This
means that when you add a new end user to the personalization property database, Member is defined
instead of remaining a blank value.

Making personalization properties read-only
It is also possible to make personalization properties read-only. To do this, you simply add the
readOnly attribute to the <add> element:

<add name=”StartDate” type=”System.DateTime” readOnly=”True” />

To make the personalization property a read-only property, you give the readOnly attribute a value of
True. By default, this property is set to False.

Anonymous Personalization
A great new feature in ASP.NET 2.0 enables anonymous end users to utilize the personalization features
it provides. This is important if a site requires registration of some kind. In these cases, end users do not
always register for access to the greater application until they have first taken advantage of some of the
basic services. For instance, many e-commerce sites allow anonymous end users to shop a site and use
the site’s shopping cart before the shoppers register with the site.

Enabling anonymous identification of the end user
By default, anonymous personalization is turned off because it consumes database resources on popular
sites. Therefore, one of the first steps to allow anonymous personalization is to turn on this feature using
a setting in the web.config file.

275

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 275

As shown in Listing 9-9, you can turn on anonymous identification to enable the personalization engine
to identify the unknown end users.

Listing 9-9: Allowing anonymous identification

<configuration>
<system.web>

<anonymousIdentification enabled=”True” />

</system.web>
</configuration>

To enable anonymous identification of the end users who might visit your applications, you add an
<anonymousIdentification> element to the web.config file within the <system.web> nodes. Then
within the <anonymousIdentification> element, you use the Enabled attribute and set its value to
True. Remember that by default, this value is set to False.

When anonymous identification is turned on, ASP.NET uses a unique identifier for each anonymous
user who comes to the application. This identifier is sent with each and every request, although after
the end user becomes authenticated by ASP.NET, the identifier is removed from the process.

For an anonymous user, information is stored by default as a cookie on the end user’s machine. Additional
information (the personalization properties that you enable for anonymous users) is stored in the specified
data store on the server.

Changing the name of the cookie for anonymous identification
Cookies are used by default under the cookie name .ASPXANONYMOUS. You can change the name of this
cookie from the <anonymousIdentification> element in the web.config file by using the cookieName
attribute, as shown in Listing 9-10.

Listing 9-10: Changing the name of the cookie

<configuration>
<system.web>

<anonymousIdentification
enabled=”True”
cookieName=”.ASPXEvjenWebApplication” />

</system.web>
</configuration>

Changing the length of time the cookie is stored
Also, by default, the cookie stored on the end user’s machine is stored for 100,000 minutes (which is
almost 70 days). If you want to change this value, you do it within this <anonymousIdentification>
element through the use of the cookieTimeout attribute, as shown in Listing 9-11.

276

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 276

Listing 9-11: Changing the length of time the cookie is stored

<configuration>
<system.web>

<anonymousIdentification
enabled=”True”
cookieTimeout=”1440” />

</system.web>
</configuration>

In this case, I changed the cookieTimeout value to 1440 — meaning 1,440 minutes (or one day). This
would be ideal for a shopping cart for which you don’t want to persist the identification of the end user
too long.

Changing how the identifiers are stored
Although anonymous identifiers are stored through the use of cookies, you can also easily change this.
Cookies are, by far, the preferred way to achieve identification, but you can also do it without the use of
cookies. Other options include using the URI or device profiles. Listing 9-12 shows an example of using
the URI to place the identifiers.

Listing 9-12: Specifying how cookies are stored

<configuration>
<system.web>

<anonymousIdentification
enabled=”True”
cookieless=”UseUri” />

</system.web>
</configuration>

Besides UseUri, other options include UseCookies, AutoDetect, and UseDeviceProfile. The follow-
ing list reviews each of the options:

❑ UseCookies: This is the default setting. If you set no value, ASP.NET assumes this is the value.
UseCookies means that a cookie is placed on the end user’s machine for identification.

❑ UseUri: This value means that a cookie will not be stored on the end user’s machine, but instead
the unique identifier will be munged within the URL of the page. This is the same approach
used for cookieless sessions in ASP.NET 1.0/1.1. Although this is great if developers want to
avoid sticking a cookie on an end user’s machine, it does create strange looking URLs and can
be an issue when an end user bookmarks pages for later retrieval.

❑ AutoDetect: Using this value means that you are letting the ASP.NET engine decide whether
to use cookies or use the URL-approach for the anonymous identification. This is done on a per-
user basis and performs a little worse than the other two options. ASP.NET must check the end
user before deciding which approach to use. My suggestion is to use AutoDetect instead of

277

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 277

UseUri if you absolutely must allow for end users who have cookies turned off (which is rare
these days).

❑ UseDeviceProfile: Configures the identifier for the device or browser that is making the
request.

Looking at how the anonymous identifiers are stored
In order to make the anonymous identifiers unique, a globally unique GUID is used. You can also now
grab hold of this unique identifier for your own use. In order to retrieve the GUID, the Request object
has been enhanced with an AnonymousId property. The AnonymousId property returns a value of type
String, which can be used in your code as shown here:

Label1.Text = Request.AnonymousId

Working with anonymous identification events
In working with the creation of anonymous users, be aware of two important events that can be used for
managing the process:

❑ AnonymousIdentification_OnCreate

❑ AnonymousIdentification_OnRemove

By using the AnonymousIdentification_OnCreate event, you can work with the identification of the
end user as it occurs. For instance, if you do not want to use GUIDs for uniquely identifying the end
user, you can change the identifying value from this event instead.

To do so, create the event using the event delegate of type AnonymousIdentificationEventArgs, as
illustrated in Listing 9-13.

Listing 9-13: Changing the unique identifier of the anonymous user

VB
Public Sub AnonymousIdentification_OnCreate(ByVal sender As Object, _

ByVal e As AnonymousIdentificationEventArgs)

e.AnonymousId = “Bubbles “ & DateTime.Now()

End Sub
C#
public void AnonymousIdentification_OnCreate(object sender,

AnonymousIdentificationEventArgs e)
{

e.AnonymousId = “Bubbles “ + DateTime.Now();
}

The AnonymousIdentificationEventArgs event delegate exposes an AnonymousId property that
assigns the value used to uniquely identify the anonymous user. Now, instead of a GUID to uniquely
identify the anonymous user as

d13fafec-244a-4d21-9137-b213236ebedb

278

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 278

the AnonymousID property is changed within the AnonymousIdentification_OnCreate event to

Bubbles 6/10/2004 2:07:33 PM

The AnonymousIdentification_OnRemove event also employs an event delegate of type Anonymous
IdentificationEventArgs that is used immediately prior to migrating anonymous users to registered
users. Note that the AnonymousId property of the Request object is still accessible at this point.

Anonymous options for personalization properties
Now that the capability to work with anonymous users is in place, you have to specify which personal-
ization properties you want to enable for anonymous users. This is also done through the web.config
file by adding the allowAnonymous attribute to the <add> element (see Listing 9-14).

Listing 9-14: Turning on anonymous capabilities personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” allowAnonymous=”true” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” />

</properties>

In this example, the LastVisited property is set to allow anonymous users by setting the allow
Anonymous attribute to True. Because this is the only property that works with anonymous users,
the rest of the defined properties do not store information for these types of users.

Migrating Anonymous Users
When working with anonymous users, you must be able to migrate anonymous users to registered
users. For instance, after an end user fills a shopping cart, she can then register on the site to purchase
the items. At this moment, she switches from an anonymous user to a registered user.

For this reason, ASP.NET 2.0 provides a Profile_MigrateAnonymous event enabling you to migrate
anonymous users to registered users. The Profile_MigrateAnonymous event requires an event dele-
gate of type ProfileMigrateEventArgs. It is placed either in the page that deals with the migration or
within the Global.asax file (if it can be used from anywhere within the application). The use of this
event is illustrated in Listing 9-15.

Listing 9-15: Migrating anonymous users for particular personalization properties

VB
Public Sub Profile_MigrateAnonymous(ByVal sender As Object, _

ByVal e As ProfileMigrateEventArgs)

(continued)

279

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 279

Listing 9-15: (continued)

Profile.LastVisited = Profile.GetPropertyValue(e.AnonymousId).LastVisited

End Sub
C#
public void Profile_MigrateAnonymous(object sender,

ProfileMigrateEventArgs e)
{

Profile.LastVisited = Profile.GetPropertyValue(e.AnonymousId).LastVisited;
}

From this example, you populate the new Profile property with the old property. You get at the old
property of the anonymous user by using the GetPropertyValue property, which takes a parameter of
the ID of the anonymous user. From the Profile_MigrateAnonymous event, you still have access to the
AnonymousId property, which you can retrieve from the event delegate — ProfileMigrateEventArgs.

Listing 9-15 shows how to migrate a single personalization property from an anonymous user to the
new registered user. In addition to migrating single properties, you also must migrate properties that
come from personalization groups. This is shown in Listing 9-16.

Listing 9-16: Migrating anonymous users for items in personalization groups

VB
Public Sub Profile_MigrateAnonymous(ByVal sender As Object, _

ByVal e As ProfileMigrateEventArgs)

Dim au As HttpProfile = Profile.GetProfile(e.AnonymousId)

If au.MemberDetails.DateJoined <> “” Then
Profile.MemberDetails.DateJoined = DateTime.Now().ToString()
Profile.FamilyDetails.MarriedStatus = au.FamilyDetails.MarriedStatus

End If

End Sub
C#
public void Profile_MigrateAnonymous(object sender,

ProfileMigrateEventArgs e)
{

HttpProfile au = Profile.GetProfile(e.AnonymousId);

if (au.MemberDetails.DateJoined != String.Empty) {
Profile.MemberDetails.DateJoined = DateTime.Now.ToString();
Profile.FamilyDetails.MarriedStatus = au.FamilyDetails.MarriedStatus;

}

}

Using this event either in the page or in the Global.asax file enables you to logically migrate anony-
mous users as they register themselves with your applications. The migration process also allows you to
pick and choose which items you migrate and to change the values as you wish.

280

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 280

Personalization Providers
As shown in Figure 9-1 earlier in the chapter, the middle tier of the Personalization model, the
Personalization Services layer, communicates with a series of default data providers. By default, the
Personalization model uses Microsoft Access for storing the personalization properties that you define.
You are not limited to just this type of data store, however. Other built-in data providers include a
Microsoft SQL Server data provider that enables you to work with Microsoft SQL Server 7.0, 2000, and
SQL Yukon. Besides the Microsoft Access and SQL Server data providers, the architecture allows you to
create your own data providers if one of these data stores doesn’t fit your requirements.

Working with the Access personalization provider
The first data provider is the Microsoft Access data provider. This is the default provider used by the
personalization system provided by ASP.NET. When used with Visual Studio 2005, the IDE places the
AspNetDB.mdb file within your application’s Data folder.

As you look through the machine.config file, note the sections that deal with how the personalization
engine works with the Microsoft Access database. In the first reference to the Access file that it works
with, you find a connection string to this file (shown in Listing 9-17) within the <connections> section
located in the <system.web> section of the file.

Listing 9-17: The connection string to the Access file in the machine.config file

<configuration>
<system.web>

<connectionStrings>
<add name=”AccessFileName” connectionString=”~\DATA\ASPNetDB.mdb” />

</connectionStrings>

</system.web>
</configuration>

In this example, you see that a connection string with the name of AccessFileName has been defined.
The location of the file, specified by the connectionString attribute, points to the relative path of the
file. This means that in every application you build that utilizes the new personalization capabilities,
the default Access provider should be located in the application’s Data folder and have the name of
ASPNetDB.mdb.

The Access file’s connection string is specified through the AccessFileName declaration within the
<connectionStrings> section. You can see the Personalization engine’s reference to this in the <pro-
file> section within the machine.config file. The <profile> section here includes a subsection list-
ing all the providers available to the Personalization engine. This is shown in Listing 9-18.

Listing 9-18: The Access data provider

<configuration>
<system.web>

<profile enabled=”true” defaultProvider=”AspNetAccessProvider”

(continued)

281

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 281

Listing 9-18: (continued)

inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>

<providers>
<add name=”AspNetAccessProvider”
type=”System.Web.Profile.AccessProfileProvider, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”AccessFileName” applicationName=”/”
description=”Stores and retrieves profile data from the local
Microsoft Access database file” />

</providers>
</profile>

</system.web>
</configuration>

From this, you can see that a provider is added by using the <add> element. Within this element, the
connectionStringName attribute points to what was declared in the <connectionString> attribute
from Listing 9-17.

To specify an entirely different Microsoft Access file other than the one specified in the machine.config
file, first create a connection string which points to an Access file that is a templated version of the
AspNetDB.mdb file. You can find this template file at C:\WINDOWS\Microsoft.NET\Framework\
v2.0.xxxxx\ASPNetdb_Template.mdb. Just copy this file and locate the copy where you want. At this
point, you can use the <connectionString> to point to this new Access file. If you change these values
in the machine.config file, all the ASP.NET applications that reside on the server use this Access file. If
you make the changes only to the web.config file, however, only the application that is using this par-
ticular web.config file uses this new data store. Other applications on the server remain unchanged.

Working with the SQL Server personalization provider
Although the Access personalization provider is the default provider when you work with the personal-
ization framework, when you work with larger applications that require the factors of performance and
reliability, you want to use the SQL Server personalization provider. If this data store is available, you
should always try to use this option instead of the default Access personalization provider.

If you worked with the Access personalization provider I explained earlier, you probably found it easy
to work with. It works with the personalization provider right out of the box — without any set up or
configuration on your part. Using the SQL Server personalization provider is a bit of a different story.
Although it is not difficult to work with, you must set up and configure your SQL Server before using it.

ASP.NET 2.0 provides three ways to set up and configure SQL Server for the personalization framework.
The first way is through the Web Administration Tool, which is explained in detail in Chapter 14. The
second way is through the ASP.NET SQL Server Setup Wizard, and the last method is by running some
of the SQL Server scripts provided with the .NET Framework 2.0.

Using the ASP.NET SQL Server Setup Wizard
The ASP.NET SQL Server Setup Wizard is an easy-to-use tool that facilitates setup of the SQL Server to
work with the personalization framework. The Setup Wizard provides two paths to set up the database —
through the use of a command-line tool or through the use of a provided GUI tool.

282

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 282

The ASP.NET SQL Server Setup Wizard command-line tool
The command-line version of the Setup Wizard gives the developer optimal control over how the database
is created. Working from the command-line using this tool is not difficult, so don’t be intimidated by it.

You can get at the actual tool, aspnet_regsql.exe, from the Visual Studio Command Prompt. You can
find this command prompt at Start ➪ All Programs ➪ Microsoft Visual Studio Whidbey ➪ Visual Studio
Tools ➪ Visual Studio Command Prompt. At the command prompt, type aspnet_regsql.exe -? to get
a list of all the available command-line options at your disposal for working this tool.

The following table describes some of the available options for setting up your SQL Server instance to
work with the personalization framework.

Command Option Description

-? Displays a list of available option commands.

-W Uses the Wizard mode. This uses the default installation if no other param-
eters are used.

-S <server> Specifies the SQL Server instance to work with.

-U <login> The username to log in to SQL Server. If used, you also use the -P command.

-P <password> The password to use for logging in to SQL Server. If used, you also use the
-U command.

-E Provides instructions to use the current Windows credentials for
authentication.

-C Specifies the connection string for connecting to SQL Server. If used, you
can avoid using the -U and -P commands because they are specified in the
connection string itself.

-A all Adds support for all the available SQL Server operations provided by
ASP.NET 2.0 including membership, role management, profiles, site coun-
ters, and page/control personalization.

-A p Adds support for working with profiles.

_R all Removes support for all the available SQL Server operations that have been
previously installed. These include membership, role management, pro-
files, site counters, and page/control personalization.

-R p Removes support for the profile capability from SQL Server.

-d <database> Specifies the database name to use with the application services. If you
don’t specify a name of a database, aspnetdb is used.

/sqlexportonly Instead of modifying an instance of a SQL Server database, use this com-
<filename> mand in conjunction with the other commands to generate a SQL script

that adds or removes the features specified. This command creates the
scripts in a file by the name specified in the command.

283

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 283

To modify SQL Server to work with the personalization provider using this command-line tool, you
enter a command such as the following:

aspnet_regsql.exe –A p –E

After you enter the preceding command, the command-line tool creates the profile features required.
The results are shown in the tool itself as you see in Figure 9-4.

Figure 9-4

When this action is completed, you can see that, in fact, a new table, aspnetdb, has been created in the
SQL Server Enterprise Manager. It now contains the appropriate tables for working with the personal-
ization framework (see Figure 9-5).

Figure 9-5

284

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 284

The ASP.NET SQL Server Setup Wizard GUI tool
Instead of working with this tool through the command-line, another option is to work with the same
wizard through a GUI version of it. To get at the GUI version, type the following at the Visual Studio
Command Prompt:

aspnet_regsql.exe

At this point, the ASP.NET SQL Server Setup Wizard welcome screen appears, as shown in Figure 9-6.

Figure 9-6

Clicking the Next button gives you a new screen that provides you with two options — one to install
management features into SQL Server and the other to remove them (see Figure 9-7).

Figure 9-7 285

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 285

From here, choose the Configure SQL Server for ASP.NET SQL Server Features and click the Next but-
ton. The third screen (see Figure 9-8) asks for the login credentials to SQL Server and the name of the
database to perform the operations. When you pull it up, the Database option is <default> — meaning
that the wizard creates a database called aspnetdb. If you want to choose a different folder, such as the
application’s database, choose the appropriate option.

Figure 9-8

After you have made your server and database selections, click Next. The screen shown in Figure 9-9
asks you to confirm your settings. If everything looks correct, click the Next button — otherwise click
Back and correct your settings.

When you’re finished, you get a notification that everything was set up correctly.

Using SQL scripts to install personalization features
Another option is to use the same SQL scripts that these tools and wizards use. If you look at C:\WIN-
DOWS\Microsoft.NET\Framework\v2.0.xxxxx\, from this location, you see the install and remove
scripts — InstallPersonalization.sql and UninstallPersonalization.sql. Running these
scripts provides your database with the tables needed to run the personalization framework.

Setting up your application to use a SQL Server personalization provider
Now SQL Server is set up to work with the personalization capabilities provided by ASP.NET 2.0.
The personalization framework understands how to work with SQL through settings that are in the
machine.config or web.config files.

286

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 286

Figure 9-9

If you look in the machine.config file, you find the connection string to SQL Server is specified in the
<connectionStrings> section of the document, as shown in Listing 9-19.

Listing 9-19: The connection string to SQL Server in the machine.config file

<configuration>
<system.web>

<connectionStrings>
<add name=”LocalSqlServer”
connectionString=”data source=127.0.0.1;Integrated Security=SSPI” />

</connectionStrings>

</system.web>
</configuration>

You may want to change the values provided if you are working with a remote instance of SQL Server
rather than an instance that resides on the same server as the application. Changing this value in the
machine.config file changes how each and every ASP.NET application uses this provider.

After the connection string is set up accordingly, look further in the <providers> section of the <profile>
element. You see the settings for SQL Server, as shown in Listing 9-20.

Listing 9-20: The SQL Server data provider

<configuration>
<system.web>

<profile enabled=”true” defaultProvider=”AspNetAccessProvider”

(continued)

287

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 287

Listing 9-20: (continued)

inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>

<providers>
<add name=”AspNetSqlProvider”
type=”System.Web.Profile.SqlProfileProvider,
System.Web, Version=2.0.3600.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” connectionStringName=”LocalSqlServer”
applicationName=”/” description=”Stores and retrieves profile data
from the local Microsoft SQL Server database” />

</providers>
</profile>

</system.web>
</configuration>

With this addition, SQL Server is now added as one of available providers to use with your applications.
The name of this provider instance is AspNetSqlProvider. You can see that this instance also uses the
connection string of LocalSqlServer, which was defined in Listing 9-19.

Now that the SQL Server provider is in place and ready to use, you have to make only a minor change to
the web.config file of your application in order for your application to take advantage of what you
have established. Listing 9-21 shows the <profile> section of the web.config file.

Listing 9-21: Using SQL Server as the provider in the web.config file

<configuration>
<system.web>

<profile inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”

defaultProvider=”AspNetSqlProvider”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” />

</properties>

</profile>

</system.web>
</configuration>

The only change necessary is to use the defaultProvider attribute and give it a value that is the name
of the provider you want to use — in this case the SQL Server provider, AspNetSqlProvider. You
could have also made this change to the machine.config file by changing the <profile> element as
shown in Listing 9-22.

288

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 288

Listing 9-22: Using SQL Server as the provider in the machine.config file

<configuration>
<system.web>

...

<profile enabled=”true” defaultProvider=”AspNetSqlProvider”
inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>

...

</profile>

...

</system.web>
</configuration>

This change forces each and every application that resides on this server to use the SQL Server provider
instead of the Access provider, unless this command is overridden in the application’s web.config file.

Using multiple providers
You are not limited to using a single provider, such as the Access or SQL provider. Instead, you can use
any number of providers. You can specify the personalization provider for each property defined. This
means that you can use the default provider for most of the properties, whereas a few of them use an
entirely different provider (see Listing 9-23).

Listing 9-23: Using different providers

<configuration>
<system.web>

<profile inherits=”System.Web.Profile.HttpProfileBase, System.Web,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”

defaultProvider=”AspNetSqlProvider”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” provider=”AspNetAccessProvider” />

</properties>

</profile>

</system.web>
</configuration>

289

Personalization

09_572865 ch09.qxd 7/7/04 9:54 PM Page 289

From this example, you can see that a default provider is specified — AspNetSqlProvider. Unless speci-
fied otherwise, this provider is used. The only property that changes this setting is the property Member.
The Member property uses an entirely different personalization provider. In this case, it employs the
Access provider (AspNetAccessProvider) through the use of the provider attribute of the <add> ele-
ment. With this attribute, you can define a specific provider for each and every property that is defined.

Summary
The new personalization capabilities provided by ASP.NET 2.0 make it incredibly easy to make your Web
applications unique for all end users, whether they are authenticated or anonymous. This new system
enables you to store everything from basic data types provided by the .NET Framework to custom types
that you create. This system is more versatile and extensible than the use of Session or Application
objects. The data is stored via a couple of built-in personalization providers that ship with ASP.NET. These
providers include ones that connect with either Microsoft Access or Microsoft SQL Server.

290

Chapter 9

09_572865 ch09.qxd 7/7/04 9:54 PM Page 290

Portal Frameworks
and Web Parts

Internet and intranet applications have changed considerably since their introduction in the 1990s.
Today’s applications don’t simply display the same canned information to every viewer; they do
much more. Because of the wealth of information exposed to end users, Internet and intranet appli-
cations must integrate large amounts of customization and personalization into their offerings.

Web sites that provide a plethora of offerings give end users the option to choose which parts of
the site they want to view and which parts they want to hide. Ideally, end users can personalize
the pages, deciding for themselves the order in which the content appears on the page. They
should be able to move items around on the page as if it were a design surface.

After pages are customized and established, the end user needs the capability to export his set-
tings for storage. You certainly wouldn’t want to allow an end user to highly customize a page or a
series of pages in your portal and then force him to reapply the settings each time he visits the site.
Instead, developers need to take these setting points and move the items to a data store for later
exposure.

Adding this kind of functionality is expensive — expensive in the sense that it can take a consider-
able amount of work on the part of the developer. Before ASP.NET 2.0, the developer had to build a
personalization framework that would be used by each page requiring the functionality. This type
of work is error prone and difficult to achieve, which is why in most cases it wasn’t developed.

But wait. . . .

Introducing Web Parts
To make it easier to retain the page customization settings applied to your page by your applica-
tion’s end users, Microsoft has included Web Parts in this release of ASP.NET. Web Parts, part of
the larger Portal Framework, are an outstanding way to build a modular Web site that can be
customized with dynamically reapplied settings on a per-user basis. Web Parts are objects in the

10_572865 ch10.qxd 7/7/04 9:55 PM Page 291

Portal Framework which the end user can open, close, minimize, maximize or move from one part of the
page to another.

The Portal Framework enables you to build pages that contain multiple Web Parts — which are part of
the ASP.NET server control framework and are used like any of the other ASP.NET server controls. This
means that you can also extend Web Parts if necessary.

The components of the Portal Framework provide the means to build a truly dynamic Web site, whether
that site is a traditional Internet site, an intranet site, a browser-based application, or any other typical
portal.

When you first look at Web Parts in ASP.NET 2.0, it may remind you of Microsoft’s SharePoint Portal
Server. Be forewarned, however, that these two technologies are similar in name only. The ASP.NET
team introduced Web Parts; the resulting Portal Framework is the basis of what is now also used by the
SharePoint Portal Server, in addition to being offered in ASP.NET. Microsoft is simply creating singular
technologies that can be used by other Microsoft offerings. In this process, Microsoft is trying to reach
the Holy Grail of computing — code reuse!

The modular and customizable sites that you can build with the new Portal Framework enable you to
put the Web page that is in view in several possible modes for the end user. The following list describes
each of the available modes and what each means to the end user viewing the page:

❑ Normal Mode: Puts the page in a normal state, which means that the end user cannot edit or
move sections of the page. This is the mode used for standard page viewing.

❑ Edit Mode: Enables end users to select particular sections on the page for editing. The selected
section allows all types of editing capabilities from changing the part’s title, the part’s color, or
even setting custom properties — such as specifying the end user’s zip code to pull up a cus-
tomized weather report.

❑ Design Mode: Enables end users to rearrange the order of the page’s modular components. The
end user can bring items higher or lower within a zone, delete items from a zone, or move items
from one page zone to another.

❑ Catalog Mode: Displays a list of available sections (Web Parts) that can be placed in the page.
Catalog Mode also allows the end user to select in which zone on the page the items should
appear.

Figure 10-1 shows a screen shot of a portal utilizing the Portal Framework with the Edit Mode selected.

The Portal Framework is a comprehensive and thought-out framework that enables you to incorporate
everything you would normally include in your ASP.NET applications. You can apply security using
either Windows Authentication or Forms Authentication. This framework also enables you to leverage
the other new aspects of ASP.NET 2.0, such as applying role management, personalization, and member-
ship features to any portal that you build.

To understand how to build your own application on top of the new Portal Framework, start by creating
a simple page that uses this new framework’s utilities.

292

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 292

Figure 10-1

Building Dynamic and Modular Web Sites
As you begin using the new Portal Framework to build Web sites, note that the framework defines
everything in zones. There are zones for laying out content and zones for editing content. The zones that
a page might incorporate are managed by a Portal Framework manager — they don’t have to be man-
aged by you in any fashion — which makes working with this new Portal Framework a breeze.

This framework contains a lot of moving parts (pieces that are dependent upon each other), so I start at
the beginning by examining the Portal Framework manager control: WebPartManager.

Introducing the WebPartManager control
The WebPartManager control is an ASP.NET server control that completely manages the state of the
zones and the content placed in the zones on a per-user basis. This control, which has no visual aspect,
can add and delete items contained within each zone of the page. The WebPartManager control can also

293

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 293

manage the communications sometimes required between different elements contained in the zones. For
example, you can pass a specific name/value pair from one item to another item within the same zone,
or between items contained in entirely separate zones. The WebPartManager control provides the capa-
bilities to make this communication happen.

The WebPartManager control is required to be in place on every page in your application that works
with the Portal Framework. A single WebPartManager control does not manage an entire application; it
manages on a per-page basis.

Listing 10-1 shows a WebPartManager control added to an ASP.NET page.

Listing 10-1: Adding a WebPartManager control to an ASP.NET page

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Web Parts Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:WebPartManager ID=”Webpartmanager1” Runat=”server”>
</asp:WebPartManager>

</form>
</body>
</html>

If you want to work from the design surface of Visual Studio 2005, you can drag and drop the
WebPartManager control from the Toolbox to the design surface — but remember, it does not have a
visual aspect and appears only as a gray box. You can find the WebPartManager control (and the other
server controls that are part of the Portal Framework) in the Personalization section of the Toolbox, as
shown in Figure 10-2.

Working with zone layouts
After you place the WebPartManager control, the next step is to create zones on the page on which you
want to utilize the Portal Framework. You should give this step some thought because it contributes
directly to the usability of the page you are creating. Web pages are constructed in a linear fashion —
either horizontally or vertically. Web pages are managed in square boxes — usually through the use of
tables that organize the columns and rows in which items appear on the page.

Web zones define specific rows or columns as individual content areas managed by the WebPartManager.
For an example of a Web page that uses these zones, you can create a table similar to the one shown in
Figure 10-3.

294

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 294

Figure 10-2

Figure 10-3

295

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 295

The black sections in Figure 10-3 represent Web zones. The code used to produce the table is shown in
Listing 10-2.

Listing 10-2: Creating multiple Web zones

<%@ Page Language=”VB”%>
<%@ Register TagPrefix=”myUserControl1” TagName=”DailyLinksWebPart”

Src=”~/controls/DailyLinksWebPart.ascx” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Web Parts Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:WebPartManager ID=”Webpartmanager1” Runat=”server”>
</asp:WebPartManager>
<table cellpadding=”5” border=”1”>

<tr>
<td colspan=”3”>

<h1>Bill Evjen’s Web Page</h1>
<asp:WebPartZone ID=”WebPartZone1” Runat=”server”
LayoutOrientation=”Horizontal”>

<ZoneTemplate>
<asp:Label ID=”Label1” Runat=”server” Text=”Label”
Title=”Welcome to my web page!”>
Welcome to the page!

</asp:Label>
</ZoneTemplate>

</asp:WebPartZone>
</td>

</tr>
<tr valign=”top”>

<td>
<asp:WebPartZone ID=”WebPartZone2” Runat=”server”>

<ZoneTemplate>
<asp:DynamicImage ID=”DynamicImage1” Runat=”server”
ImageFile=”~/kids.jpg” Width=”150” Title=”My Kids”>

</asp:DynamicImage>
<myUserControl1:DailyLinksWebPart
ID=”DailyLinksWebPart1” Runat=”server”
Title=”Daily Links” >

</myUserControl1:DailyLinksWebPart >
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

</td>
<td><!-- Blank for now -->

296

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 296

</td>
</tr>

</table>
</form>

</body>
</html>

This page now has sections like the ones shown in Figure 10-3: a header section that runs horizontally
and three vertical sections underneath the header. Running this page provides the result shown in
Figure 10-4.

Figure 10-4

First, this page includes the <asp:WebPartManager> control that manages the items contained in the
three zones on this page. Within the table, the <asp:WebPartZone> server control specifies three Web
zones. You can declare each Web zone in one of two ways. You can use the <asp:WebPartZone> ele-
ment directly in the code, or you can create the zones within the table by dragging and dropping
WebPartZone controls onto the design surface at appropriate places within the table. In Figure 10-4, the
table border width is intentionally turned on and set to 1 in order to show the location of the Web zones
in greater detail. Figure 10-5 shows what the sample from Listing 10-2 looks like in the Design view of
Visual Studio 2005.

297

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 297

Figure 10-5

When using Visual Studio 2005, note that this IDE creates an Access file called ASPNetDB.mdb and stores
it in the Data folder of your Web Project. This database file is where the Portal Framework stores all the
customization points.

Now that you have seen the use of WebPartZone controls, which are managed by the WebPartManager
control, the next section takes a closer look at the WebPartZone control itself.

Understanding the WebPartZone control
The WebPartZone control defines an area of items, or Web Parts, that can be moved, minimized, maxi-
mized, deleted, or added based on programmatic code or user preferences. When you drag and drop
WebPartZone controls onto the design surface using Visual Studio 2005, the WebPartZone control is
drawn at the top of the zone, along with a visual representation of any of the items contained within
the zone.

You can place almost anything in one of the Web zones. For example, you can include

❑ HTML elements

❑ Raw text

❑ HTML server controls

298

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 298

❑ Web server controls

❑ User controls

❑ Custom controls

WebPartZone controls are declared like this:

<asp:WebPartZone ID=”WebPartZone1” Runat=”server”></asp:WebPartZone>

The LayoutOrientation attribute
The Web Parts declared within a WebPartZone control can be displayed either horizontally or vertically.
By default, all the items are displayed vertically, but to display the items horizontally, you simply add
the LayoutOrientation attribute to the <asp:WebPartZone> element:

<asp:WebPartZone ID=”WebPartZone1” Runat=”server”
LayoutOrientation=”Horizontal”></asp:WebPartZone>

The first row in the table from Listing 10-2 uses horizontal orientation, whereas the other two zones use
the default vertical orientation.

The ZoneTemplate element
In order to include items within the templated WebPartZone control, you must include a <ZoneTemplate>
element. The ZoneTemplate element encapsulates all the items contained within a particular zone. The
order in which they are listed in the ZoneTemplate section is the order in which they appear in the
browser until changed by the end user or by programmatic code. The sample <ZoneTemplate> section
used earlier is illustrated here:

<asp:WebPartZone ID=”WebPartZone2” Runat=”server”>
<ZoneTemplate>

<asp:DynamicImage ID=”DynamicImage1” Runat=”server”
ImageFile=”~/kids.jpg” Width=”150” Title=”My Kids”>

</asp:DynamicImage>
<myUserControl1:DailyLinksWebPart
ID=”DailyLinksWebPart1” Runat=”server”
Title=”Daily Links” >

</myUserControl1:DailyLinksWebPart >
</ZoneTemplate>

</asp:WebPartZone>

This zone contains two items — a dynamic image and a user control consisting of a collection of links
that come from an XML file.

Default Web Part control elements
By default, when you generate a page using the code from Listing 10-2, you discover that you can exert
only minimal control over the Web Parts themselves. In the Default view, which isn’t the most artistic, you
are only able to minimize or close a Web Part, which removes that particular Web Part from the screen.

299

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 299

Figure 10-6 shows what the Web Part that contains the Calendar control looks like after you minimize it.
Notice also that if you opt to close one of the Web Parts, the item completely disappears. You seem to
have no way to make it come back — even if you shut down the page and restart it. This is by design —
so don’t worry. I show you how to get it back!

Figure 10-6

A few of the items included in the zones have new titles. By default, the title that appears at the top of
the Web Part is the name of the control. For instance, you can see that the Calendar control is simply
titled Calendar. If you add a Button control to the zone, it would simply be called Button. To give better
and more meaningful names to the Web Parts that appear in a zone, you simply add a Title attribute to
the control — just as you did with the DynamicImage control and the User control, which both appear
on the page. In the example above, I rename the DynamicImage control My Kids, whereas I give the
user control the Title value Daily Links.

Besides this little bit of default functionality, you can do considerably more with the Web Parts contained
within this page, but you have to make some other additions, which I review next.

300

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 300

Explaining the WebPartPageMenu control
The WebPartPageMenu control is another management control that simplifies applying customization
capabilities to your pages that utilize the Portal Framework. This control provides a menu on the page
so that the end user can customize the page and then save his changes to the server.

The WebPartPageMenu control enables the end user to

❑ Add new Web Parts to the page: Includes Web Parts not displayed on the page by default and
Web Parts that the end user has previously deleted. This aspect of the control works with the
catalog capabilities of the Portal Framework, which is discussed shortly.

❑ Enter the design mode for the page: Enables the end user to drag and drop elements around
the page. The end user can use this capability to change the order in which items appear in a
zone or to move items from one zone to another.

❑ Modify the Web Parts settings: Enables the end user to customize aspects of the Web Parts,
such as their appearance and behavior. It also allows the end user to modify any custom settings
that developers apply to the Web Part.

❑ Connect Web Parts on the page: Enables the end user to make a connection between one or
more Web Parts on the page. For instance, if the end user is working in a financial services
application and enters a stock symbol into one of the Web Parts — by using a connection to
another Web Part — a chart is changed or news appears based upon the variable defined in the
first Web Part.

Building upon Listing 10-2, Listing 10-3 adds a WebPartPageMenu control to the table’s header.

Listing 10-3: Adding a WebPartPageMenu control

<tr valign=”top”>
<td colspan=”2”>

<h1>Bill Evjen’s Web Page</h1>
<asp:WebPartZone ID=”WebPartZone1” Runat=”server”
LayoutOrientation=”Horizontal”>

<ZoneTemplate>
<asp:Label ID=”Label1” Runat=”server” Text=”Label”
Title=”Welcome to my web page!”>
Welcome to the page!

</asp:Label>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:WebPartPageMenu ID=”Webpartpagemenu1” Runat=”server”>
</asp:WebPartPageMenu>

</td>
</tr>

This adds the WebPartPageMenu control to the top of the table as shown in Figure 10-7.

301

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 301

Figure 10-7

When the end user clicks on the link, a drop-down window of options appears, as shown in Figure 10-8.

The next section covers an important addition to the Portal Framework provided by the
WebPartPageMenu control — the capability to Add Web Parts to This Page.

Adding Web Parts to a page
The end user has a built-in way to add Web Parts to the page by using the Portal Framework. The
WebPartPageMenu control enables you to add Web Parts, but you also need to provide the end user
with a list of items he can add. To do this, simply add a Catalog Zone to the last table cell in the bottom
of the table. This is illustrated in the partial code example in Listing 10-4.

Listing 10-4: Adding a Catalog Zone

<tr valign=”top”>
<td>

<asp:WebPartZone ID=”WebPartZone2” Runat=”server”>
<ZoneTemplate>

<asp:DynamicImage ID=”DynamicImage1” Runat=”server”
ImageFile=”~/kids.jpg” Width=”150” Title=”My Kids”>

</asp:DynamicImage>
<myUserControl1:DailyLinksWebPart
ID=”DailyLinksWebPart1” Runat=”server”
Title=”Daily Links” >

302

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 302

</myUserControl1:DailyLinksWebPart >
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

</td>
<td>

<asp:CatalogZone ID=”Catalogzone1” Runat=”server”>
<ZoneTemplate>

<asp:PageCatalogPart ID=”Pagecatalogpart1” Runat=”server” />
</ZoneTemplate>

</asp:CatalogZone>
</td>

</tr>

Figure 10-8

303

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 303

To add the capability for the end user to select items to place on the page after he selects the option in
the WebPartPageMenu control, you must create a Catalog Zone with the <asp:CatalogZone> control.
This is similar to creating a Web Part Zone, but the Catalog Zone is specifically designed to allow for cat-
egorization of items to be placed on the page. After the Catalog Zone is in place, the next step is to create
a <ZoneTemplate> section within the Catalog Zone because this is a templated section. Inside the
<ZoneTemplate> element is a single control — the PageCatalogPart control. If you run the page after
adding the PageCatalogPart control, you see the results shown in Figure 10-9.

To get some items to appear in the list, delete one or more items from the page’s default view and enter
the catalog mode through the WebPartPageMenu control. At this point, you see the deleted Web Parts.
The PageCatalogPart control contains a title and check box list of items that can be selected. The
PageCatalogPart control also includes a drop-down list of all the available Web Part Zones on the page.
You can place the selected Web Parts in this list. After you select the Web Parts and the appropriate zone,
you click the Add button and the items appear in their specified locations.

Figure 10-9

304

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 304

Moving Web Parts
Not only can the end user change the order in which Web Parts appear in a zone, he can also move Web
Parts from one zone to another. By adding the WebPartPageMenu control, you have already provided
the end user with this capability. He simply needs to enter a mode that allows for this type of movement.

The end user can move Web Parts by selecting Design Page Layout from the list. This is the second
option in the list and changes the page so that the end user can see the zones defined on the page. This
view is illustrated in Figure 10-10.

From this figure, you can see the three zones (WebPartZone1, WebPartZone2, and WebPartZone3). At
this point, the end user can select one of the Web Parts and either change its order in the zone or move it
to an entirely different zone on the page. To grab one of the Web Parts, the user simply clicks and holds
the left mouse button on the title of the Web Part. When done correctly, a cross-hair appears, meaning
that the user has grabbed hold of the Web Part and can drag it to another part of the page. While the end
user drags the Web Part around the page, a visual representation of the item appears (see Figure 10-11).
In this state, the Web Part is a bit transparent and its location in the state of the page is defined with a
blue line. Releasing the left mouse button drops the Web Part at the blue line’s location.

Figure 10-10

305

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 305

Figure 10-11

After the end user places all the items where he wants them, he can save the locations of the items for
later use. When he reopens the browser, everything is drawn in the last state in which he left the page.
This is done on a per-user basis, so any other users browsing to the same page see either their own
modified results or the default view if it is a first visit to the page.

The user can then leave the Design view by opening the list of options from the WebPartPageMenu
control and selecting Browse this Page.

Another way to move Web Parts is to enter the catalog mode of the page (which is the first option in the
list from the WebPartPageMenu control). The catalog mode enables you to add deleted items to the
page, and it also allows you to modify the location of the items on the page by providing the same
drag-and-drop capability as the design mode.

Modifying the Web Part Settings
The third option in the WebPartPageMenu control drop-down list is Modify Web Part Settings. This
selection allows the end user to modify settings determining appearance, behavior, and layout for
particular Web Parts on the page.

To make this functionality work, you must add an Editor Zone to the page just as you add the Catalog
Zone. This is illustrated in Listing 10-5. You place this bit of new code within the same table directly
below the Catalog Zone declaration.

306

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 306

Listing 10-5: Adding an Editor Zone to the page

<td>
<asp:CatalogZone ID=”Catalogzone1” Runat=”server”>

<ZoneTemplate>
<asp:PageCatalogPart ID=”Pagecatalogpart1” Runat=”server” />

</ZoneTemplate>
</asp:CatalogZone>
<asp:EditorZone ID=”Editorzone1” Runat=”server”>

<ZoneTemplate>
<asp:AppearanceEditorPart ID=”Appearanceeditorpart1” Runat=”server” />
<asp:BehaviorEditorPart ID=”Behavioreditorpart1” Runat=”server” />
<asp:LayoutEditorPart ID=”Layouteditorpart1” Runat=”server” />

</ZoneTemplate>
</asp:EditorZone>

</td>

Just like the <asp:CatalogZone>, the <asp:EditorZone> control is a templated control that requires
a <ZoneTemplate> section. Within this section, you can place controls that allow for the modification
of the appearance, behavior, and layout of the selected Web Part. These controls include the
<asp:AppearanceEditorPart>, <asp:BehaviorEditorPart>, and <asp:LayoutEditorPart>
controls.

When you run this new section of code and select Modify Web Part Settings from the WebPartPageMenu
control, you cause an arrow to appear next to the Web Part title. Clicking this arrow shows an Edit
option, as illustrated in Figure 10-12.

Figure 10-12

After you select the Edit option, the right column of the table shows the various editing sections for this
particular Web Part.

The Appearance section enables the end user to change the Web Part’s details, including the title, how
the title appears, and other appearance-related items such as the item’s height and width. The
Appearance section is shown in Figure 10-13.

307

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 307

Figure 10-13

The Behavior section (shown in Figure 10-14) enables the end user to select whether the Web Part can be
closed, minimized, or exported. It also gives the end user the capability to change the roles of users who
can view the Behavior section. The Behavior section is generally used if you want to allow site editors
(or admins) to change the dynamics of how end users can modify Web Parts. General viewers of the
page most likely won’t see this section.

Figure 10-14

308

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 308

The Layout section (shown in Figure 10-15) enables the end user to change the order in which Web Parts
appear in a zone or allows the end user to move Web Parts from one zone to another. This is quite simi-
lar to the drag-and-drop capabilities illustrated previously, but this section allows for the same capabili-
ties through the manipulation of simple form elements.

Figure 10-15

After the appearance or the layout of the Web Parts is to your liking, simply click OK or Apply.

Connecting Web Parts
The last option in the WebPartPageMenu control is Connect Web Parts on this Page. This section enables
you to make property connections between two Web Parts on the same page. For example, within the
Weather Web Part built into one of ASP.NET’s pre-built applications, you can have a separate Web Part
that is simply a text box and a button that allows the end user to input a zip code. This, in turn, modifies
the contents in the original Weather Web Part.

Customizing the look and feel of the WebPartPageMenu control
You can completely customize the look and feel of all the items used throughout the framework, just as
you can modify all aspects of the Portal Framework. Because so many options are available to develop-
ers, I cannot possibly cover every point of customization. To see what I mean, take a look at a modified
WebPartPageMenu control in particular, as shown in Listing 10-6.

Listing 10-6: Modifying the look and feel of the WebPartPageMenu control

<asp:WebPartPageMenu ID=”Webpartpagemenu1” Runat=”server” Text=”MODIFY PAGE”
Font-Size=”8” Font-Names=”Verdana” MenuStyle-GridLines=”Horizontal”
MenuStyle-Font-Size=”8” MenuStyle-Font-Names=”Verdana”
MenuStyle-BorderColor=”Gray” MenuStyle-BorderStyle=”Solid”
MenuStyle-BorderWidth=”1” HoverStyle-BackColor=”Gainsboro”
VerbHoverStyle-BackColor=”Khaki”>

</asp:WebPartPageMenu>

A huge list of possible modifications can be made to this control — I selected just a few of the possible
choices! As you can see, I changed the text so that it is capitalized and displayed in a different font. I also
designed the background color of the text to change if the end user hovers the mouse over the text. After
the end user opens the WebPartPageMenu control, the box in which the items are displayed changes as
well. Notice that an option changes to a different color when the end user hovers the mouse over that par-
ticular option. Running this example produces a WebPartPageMenu like the one shown in Figure 10-16.

309

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 309

Figure 10-16

Modifying zones
One aspect of the Portal Framework that merits special attention is the capability to modify zones on the
page. These zones allow for a high degree of modification — not only in the look and feel of the items
placed in the zone, but also in terms of the behaviors of zones and the items contained in the zones as
well. Following are some examples of what you can do to modify zones.

Turning off the capability for modifications in a zone
As you have seen, giving end users the capability to move Web Parts around the page is quite easy,
whether within a zone or among entirely different zones. When working with the Portal Framework and
multiple zones on a page, you do not always want to allow the end user to freely change the items that
appear in every zone. You want the items placed in some zones to be left alone. Listing 10-7 shows an
example of this.

Listing 10-7: Turning off the zone modfication capability

<asp:WebPartZone ID=”WebPartZone1” Runat=”server”
LayoutOrientation=”Horizontal” AllowLayoutChange=”false”>

<ZoneTemplate>

310

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 310

<asp:Label ID=”Label1” Runat=”server” Text=”Label”
Title=”Welcome to my web page!”>
Welcome to the page!

</asp:Label>
</ZoneTemplate>

</asp:WebPartZone>

In this example, the first Web Part Zone, WebPartZone1, uses the AllowLayoutChange attribute with a
value of False, which turns off the end user’s capability to modify this particular Web Part Zone. When
you run this page and go to the design mode, notice that you cannot drag and drop any of the Web Parts
from the other zones into WebPartZone1. Neither can you grab hold of the Label Web Part contained in
WebPartZone1. No capability exists to minimize and close the Web Parts contained in this zone. It
allows absolutely no modifications.

Here is another interesting change you may notice when you are working in the page catalog mode with
the AllowLayoutChange attribute set to False. After you select items to add to the page through the
page catalog, WebPartZone1 does not appear in the drop-down list of places where you can publish the
Web Parts (see Figure 10-17). From this figure, you can see that only WebPartZone2 and WebPartZone3
appear and allow modifications.

Figure 10-17

311

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 311

Adding controls through other means
Earlier in this chapter, you examined how to use the <asp:PageCatalogPart> control to restore con-
trols to a page after they had been deleted. Although the <asp:PageCatalogPart> is ideal for this, you
might also want to allow the end user to add Web Parts that are not on the page by default. You may
want to enable the end user to add more than one of any particular Web Part to a page. For these
situations, you work with the <asp:DeclarativeCatalogPart> control.

Listing 10-8 shows an example of using this type of catalog system in place of the
<asp:PageCatalogPart> control.

Listing 10-8: Using the DeclarativeCatalogPart control

<asp:CatalogZone ID=”Catalogzone1” Runat=”server”>
<ZoneTemplate>

<asp:DeclarativeCatalogPart ID=”Declarativecatalogpart1” Runat=”server”>
<WebPartsTemplate>

<uc1:CompanyContactInfo ID=”CompanyContact” Runat=”Server” />
<uc1:PhotoAlbum ID=”PhotoAlbum” Runat=”Server” />
<uc1:Customers ID=”Customers” Runat=”Server” />
<uc1:Locations ID=”Locations” Runat=”Server” />

</WebPartsTemplate>
</asp:DeclarativeCatalogPart>

</ZoneTemplate>
</asp:CatalogZone>

Instead of using the <asp:PageCatalogPart> control, this catalog uses the <asp:Declarative
CatalogPart> control. This templated control needs a <WebPartsTemplate> section where you place
all the available controls. The controls appear in the check box list in the same order in which you
declare them in the <WebPartsTemplate> section. Figure 10-18 shows how the catalog will look in the
Design view in Visual Studio 2005.

Figure 10-18

This catalog lets you select items from the list of Web Parts and assign the location of the zone in which
they will be placed. Once placed, notice that the option to add these Web Parts has not disappeared as it
did with the earlier PageCatalogPart control. In fact, you can add as many of these items to the page as
you deem necessary — even if it is to the same zone within the Portal Framework.

Even using the DeclarativeCatalogPart control is not always 100% ideal. When the end user closes one of the
Web Parts that initially appears on the page, he does not see that control listed in the DeclarativeCatalogPart
control’s list of elements. In fact, the end user cannot re-add these deleted items. Using both the

312

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 312

PageCatalogPart control and the DeclarativeCatalogPart control simultaneously is the best solution. The
great thing about this framework is that it allows you to do that. The Portal Framework melds both controls
into a cohesive control that not only enables you to add controls that are not on the page by default, but it
also lets you add previously deleted default controls. Listing 10-9 shows an example of this.

Listing 10-9: Combining both catalog types

<asp:CatalogZone ID=”Catalogzone1” Runat=”server”>
<ZoneTemplate>

<asp:PageCatalogPart ID=”Pagecatalogpart1” Runat=”server” />
<asp:DeclarativeCatalogPart ID=”Declarativecatalogpart1” Runat=”server”>

<WebPartsTemplate>
<uc1:CompanyContactInfo ID=”CompanyContact” Runat=”Server” />
<uc1:PhotoAlbum ID=”PhotoAlbum” Runat=”Server” />
<uc1:Customers ID=”Customers” Runat=”Server” />
<uc1:Locations ID=”Locations” Runat=”Server” />

</WebPartsTemplate>
</asp:DeclarativeCatalogPart>

</ZoneTemplate>
</asp:CatalogZone>

In this example, both the PageCatalogPart control and the DeclarativeCatalogPart control are contained
with the <ZoneTemplate> section. When this page is run, you see the results shown in Figure 10-19.

Figure 10-19

313

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 313

You can see that each catalog is defined within the Catalog Zone. Figure 10-19 shows the PageCatalogPart
control’s collection of Web Parts (defined as Page Catalog), while a link to the Declarative Catalog is
provided for that particular list of items. Note that the order in which the catalogs appear in the
<ZoneTemplate> section is the order in which the links appear in the Catalog Zone.

Web Part verbs
Web Part verbs declare the actions of the items (such as Minimize and Close) that appear in the title.
These verbs are basically links that initiate an action for a particular Web Part. The available list of Web
Part verbs includes

❑ <CloseVerb>

❑ <ConnectVerb>

❑ <EditVerb>

❑ <ExportVerb>

❑ <HelpVerb>

❑ <MinimizeVerb>

❑ <RestoreVerb>

The <asp:WebPartZone> control allows you to control these verbs by nesting the appropriate verb ele-
ments within the <asp:WebPartZone> element itself. After these are in place, you can manipulate how
these items appear in all the Web Parts that appear in the chosen Web Part Zone.

For example, look at graying out the default Close link included with a Web Part. This is illustrated in
Listing 10-10.

Listing 10-10: Graying out the Close link in a Web Part

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<CloseVerb Enabled=”False” />
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

In this example, you can see that you simply need to set the Enabled attribute of the <CloseVerb>
element to False in order to gray out the Close link in any of the generated Web Parts included in this
Web Part Zone. If you construct the Web Part Zone in this manner, you achieve the results shown in
Figure 10-20.

314

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 314

Figure 10-20

If you don’t want to gray out the Close link (or any other verb link contained within the Web Part), you
must instead use the Visible attribute of the appropriate verb (see Listing 10-11).

Listing 10-11: Removing the Close link in a Web Part

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<CloseVerb Visible=”False” />
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

Using the Visible attribute produces the screen shown in Figure 10-21.

315

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 315

Figure 10-21

Verb elements provide another exciting feature: They give you the capability to use images for the items
rather than default text. Using images instead of text makes the Web Parts appear more like the overall
Windows environment. For instance, you can change the contents of WebPartZone3 again so that it now
uses images instead of text for the Close and Minimize links. This is illustrated in Listing 10-12.

Listing 10-12: Using images for the Web Part verbs

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<CloseVerb ImageUrl=”Images/CloseVerb.gif” />
<MinimizeVerb ImageUrl=”Images/MinimizeVerb.gif” />
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

To point to an image for the verb, use the ImageUrl attribute. This produces something similar to Figure
10-22, depending on the images you use.

316

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 316

Figure 10-22

This chapter thus far has concentrated on creating completely customizable portal applications in a
declarative manner using the capabilities provided by the ASP.NET Portal Framework. As with most
aspects of ASP.NET, however, not only can you work with appearance and functionality in a declarative
fashion, but you can also create the same constructs through server-side code.

Working with Classes in
the Portal Framework

The Portal Framework provides three main classes for dealing with the underlying framework presented
in this chapter: WebPartManager, WebPartZone, and WebPart.

The WebPartManager class allows you to perform multiple operations in your server-side code. The
following table shows a partial listing of some of the properties that this class provides.

317

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 317

WebPartManager Class Properties Description

Connections Provides a collection of all the connections between Web
Parts contained on the page.

DisplayMode Allows you to change the page’s display mode.
Possible choices include CatalogDisplayMode,
ConnectDisplayMode, DesignDisplayMode,
EditDisplayMode, and NormalDisplayMode.

EnableCatalogDisplayMode Takes a Boolean value and either enables or disables the
capability to turn on the page in the catalog mode.

EnableConnectDisplayMode Takes a Boolean value and either enables or disables the
capability to turn on the page in the connect mode.

EnableDesignDisplayMode Takes a Boolean value and either enables or disables the
capability to turn on the page in the design mode.

EnableEditDisplayMode Takes a Boolean value and either enables or disables the
capability to turn on the page in the display mode.

SelectedWebPart Allows you to perform multiple operations on the
selected Web Part.

WebParts Provides a collection of all the Web Parts contained on
the page.

Zones Provides a collection of all the Web Part Zones contained
on the page.

Beyond the properties of the WebPartManager class, you also have an extensive list of available meth-
ods at your disposal. The following table outlines some of the available methods of the
WebPartManager class.

WebPartManager Class Methods Description

AddWebPart Allows you to dynamically add new Web Parts to a par-
ticular zone on the page.

ConnectWebParts Allows you to connect two Web Parts together via a com-
mon property or value.

DeleteWebPart Allows you to dynamically delete new Web Parts from a
particular zone on the page.

DisconnectWebParts Allows you to delete a connection between two Web
Parts.

MoveWebPart Allows you to move a Web Part from one zone to
another, or allows you to change the index order in
which Web Parts appear in a particular zone.

318

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 318

Whereas the WebPartManager class allows you to manipulate the location, addition, and deletion of
Web Parts that appear in the page as a whole, the WebPartZone class allows you to modify a single Web
Part Zone on the page. The following table provides a list of some properties available to the
WebPartZone class.

WebPartZone Class Properties Description

AllowLayoutChange Takes a Boolean value and either enables or disables the
Web Part Zone’s capability to accept or allow any
changes in the Web Parts it contains.

BackColor, BackImageUrl, Enable you to modify the Web Part Zone’s general
BorderColor, BorderStyle, appearance.
BorderWidth

CloseVerb References the Close verb for a particular Web Part Zone
from which you can then manipulate the verb’s
Description, Enabled, ImageUrl, Text, and Visible
properties.

ConnectVerb References a Web Part Zone’s Connect verb from which
you can then manipulate the verb’s Description,
Enabled, ImageUrl, Text, and Visible properties.

DragHighlightColor Takes a System.Color value that sets the color of the
Web Part Zone’s border if focused when the moving
of Web Parts is in operation. This also changes the color
of the line that appears in the Web Part Zone specifying
where to drop the Web Part.

EditVerb References a Web Part Zone’s Edit verb from which you
can then manipulate the verb’s Description, Enabled,
ImageUrl, Text, and Visible properties.

EmptyZoneText Sets the text that is shown in the zone if a Web Part is not
set in the zone.

HeaderAlignment Allows you to align the Web Part Zone header.

HeaderText Sets header text.

Height Sets the height of the Web Part Zone.

HelpVerb References a Web Part Zone’s Help verb from which you
can then manipulate the verb’s Description, Enabled,
ImageUrl, Text, and Visible properties.

MenuImageUrl, MenuLabelStyle, Enable you to modify the drop-down menu that appears
MenuLabelText, MenuText when end users edit a Web Part. These properties let you

apply an image, alter the text, or change the style of the
menu.

MinimizeVerb References a Web Part Zone’s Minimize verb from which
you can then manipulate the verb’s Description,
Enabled, ImageUrl, Text, and Visible properties.

Table continued on following page

319

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 319

WebPartZone Class Properties Description

Orientation Enables you to change the Web Part Zone’s orientation
from horizontal to vertical or vice versa.

RestoreVerb References a Web Part Zone’s Restore verb, from which
you can then manipulate the verb’s Description,
Enabled, ImageUrl, Text, and Visible properties.

VerbButtonType Enables you to change the button style. Choices include
ButtonType.Button, ButtonType.Image, or
ButtonType.Link.

WebParts Provides a collection of all the Web Parts contained
within the zone.

Width Sets the width of the Web Part Zone.

You have a plethora of options to manipulate the look and feel of the Web Part Zone and the items
contained therein.

The final class is the WebPart class. This class enables you to manipulate specific Web Parts located on
the page. The following table details some of the available properties of the WebPart class.

WebPart Class Properties Description

AllowClose Takes a Boolean value that specifies whether the Web
Part can be closed and removed from the page.

AllowEdit Takes a Boolean value that specifies whether the end
user can edit the Web Part.

AllowHide Takes a Boolean value that specifies whether the end
user can hide the Web Part within the Web Part Zone. If
the control is hidden, it is still in the zone, but invisible.

AllowMinimize Takes a Boolean value that specifies whether the end
user can collapse the Web Part.

AllowPaginate Takes a Boolean value that specifies whether the Web
Part can be paginated using the ASP.NET Pager server
control.

AllowZoneChange Takes a Boolean value that specifies whether the end
user can move the Web Part from one zone to another.

BackColor, BackImageUrl, Enable you to modify the Web Part’s general appearance.
BorderColor, BorderStyle,
BorderWidth

Caption Sets an item of text directly in the title bar next to the
Web Part’s title. This property allows you to differentiate
among multiple Web Parts that have the same title.

320

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 320

WebPart Class Properties Description

ChromeState Specifies whether the Web Part chrome is in a normal
state or is minimized.

ChromeType Specifies the chrome type that the Web Part uses. Avail-
able options include BorderOnly, Default, None,
TitleAndBorder, and TitleOnly.

Direction Specifies the direction of the text or items placed within
the Web Part. Available options include LeftToRight,
NotSet, and RightToLeft. This property is ideal for
dealing with Web Parts that contain Asian text that is
read from right to left.

HelpMode Specifies how the help items display when the end user
clicks on the Help verb. Available options include Modal,
Modeless, and Navigate. Modal displays the help items
within a modal window if the end user’s browser sup-
ports modal windows. If not, a pop-up window displays.
Modeless means that a pop-up window displays for
every user. Navigate redirects the user to the appropri-
ate help page (specified by the HelpUrl property) when
he clicks on the Help verb.

HelpUrl Used when the HelpMode is set to Navigate. Takes a
String value that specifies the location of the page the
end user is redirected to when he clicks on the Help verb.

ScrollBars Applies scroll bars to the Web Part. Available values
include Auto, Both, Horizontal, None, and Vertical.

Title Specifies the text for the Web Part’s title. Text appears in
the title bar section.

TitleIconImageUrl Enables you to apply an icon to appear next to the title
by specifying to the icon image’s location as a String
value of the property.

TitleUrl Specifies the location to direct the end user when the
Web Part’s title Web Part is clicked. When set, the title is
converted to a link; when not set, the title appears as
regular text.

Zone Allows you to refer to the zone in which the Web Part is
located.

321

Portal Frameworks and Web Parts

10_572865 ch10.qxd 7/7/04 9:55 PM Page 321

Summary
This chapter introduced you to the Web Part Manager, Web Part Zone, and the Web Part controls. Not
only do these controls allow for easy customization of the look and feel of either the Web Parts or the
zones in which they are located, but you can also use the framework provided to completely modify the
behavior of these items.

Personally, I find the Portal Framework to be one of the more exciting new features of ASP.NET 2.0. I like
the idea of creating completely modular and customizable Web pages. End users like this feature, and it
is quite easy for developers to implement. Just remember that you don’t have to implement every fea-
ture explained in this chapter, but with the framework provided, you can choose only the functionality
that you want.

322

Chapter 10

10_572865 ch10.qxd 7/7/04 9:55 PM Page 322

SQL Cache Invalidation

Performance is key for any application or piece of code that you develop. The browser helps with
client-side caching of text and images, whereas the server-side caching you choose to implement is
vital for creating the best possible performance. Caching is the process of storing frequently used
data on the server to fulfill subsequent requests. You will discover that grabbing objects from
memory is much faster than re-creating the Web pages or items contained in them from scratch
each and every time. Caching increases your application’s performance, scalability, and availabil-
ity. The more you fine-tune your application’s caching approach, the better it performs.

ASP.NET 2.0 introduces SQL Server cache invalidation that enables you to create a cache based
upon items contained within a Microsoft SQL Server database and also to invalidate it if any
changes occur in the database. This is something frequently requested by developers using
ASP.NET 1.0/1.1, and the ASP.NET team worked hard to bring it to ASP.NET 2.0. This chapter
takes a close look at this unique aspect of caching.

Caching in ASP.NET 1.0/1.1
In ASP.NET 1.0/1.1, developers deal with caching in several ways. First, you can cache an entire
HTTP response (the entire Web page) using a mechanism called output caching. Two other methods
are partial page caching and data caching. These methods are described in the following sections.

Output caching
Output caching is a way to keep the dynamically generated page content in the server’s memory
for later retrieval. After a cache is saved to memory, it can be used when any subsequent requests
are made to the server. You apply output caching using the OutputCache directive as follows:

<%@ OutputCache Duration=”60” VaryByParam=”None” %>

11_572865 ch11.qxd 7/7/04 9:56 PM Page 323

You apply output caching by inserting an OutputCache page directive at the top of an .aspx page. The
Duration attribute defines the number of seconds that a page is stored in memory. The VaryByParam
attribute determines which versions of the page output are actually cached. You can generate different
responses based on whether an HTTP-POST or HTTP-GET response is required. Other than the
attributes for the OutputCache directive, ASP.NET 1.0/1.1 includes the VaryByHeader, VaryByCustom,
and Location attributes.

Partial page caching
Similar to output caching, partial page caching enables you to cache only specific blocks of a Web page.
You can, for example, cache only the center of the page. Partial page caching is achieved with the
caching of user controls. You can build your ASP.NET pages utilizing numerous user controls and then
apply output caching to the user controls that you select. This, in essence, only caches the parts of the
page that you want, while leaving other parts of the page outside the reach of caching. This is a nice
feature, and if done correctly, it can lead to pages that perform better.

Data caching using the Cache object
The other method of caching is using the Cache object to start caching specific data items for later use on
a particular page or group of pages. The Cache object enables you to store everything from simple
name/value pairs to more complex objects like datasets and even entire .aspx pages.

The Cache object is used in the following fashion:

Cache(“WhatINeedToStore”) = myDataSet

After an item is in the cache, you can retrieve it later as shown here:

Dim ds As New DataSet
ds = CType(Cache(“WhatINeedToStore”), DataSet)

The Cache object is an outstanding way to cache your pages and is, in fact, what the OutputCache
directive uses under the covers.

Cache dependencies
Using the Cache object, you can store items in the cache and invalidate these items in the cache based on
several different dependencies. In ASP.NET 1.0/1.1, the only possible dependencies include

❑ File-based dependencies

❑ Key-based dependencies

❑ Time-based dependencies

When inserting items into the cache using the Cache object, you set the dependencies with the Insert
method, as shown in the following example:

Cache.Insert(“DSN”, connectionString, _
New CacheDependency(Server.MapPath(“myconfig.xml”)))

324

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 324

By using a dependency, when the item being referenced changes, the cache for that item is removed from
memory.

ASP.NET 2.0 unseals the CacheDependency class
The big change in ASP.NET 2.0 in the area of caching is that the CacheDependency class has been
unsealed (or made overrideable). You can now create classes that inherit from the CacheDependency
class and create more elaborate dependencies that are not limited to the Time, Key, or File dependen-
cies of the past.

When you create your own cache dependencies, you have the option to add procedures for such things
as Web services data, only-at-midnight dependencies, or textual string changes within a file. The depen-
dencies you create are limited only by your imagination. The unsealing of the CacheDependency class
has provided all this for you.

Because of the unsealing of the CacheDependency class, the ASP.NET team has built a new SQL Server
cache dependency — SqlCacheDependency. A SQL cache dependency was the most requested caching
feature from ASP.NET 1.0/1.1 developers. You can now determine that a cache becomes invalid when-
ever a table changes within the underlying SQL Server.

Using the SQL Server Cache Dependency
To utilize the new SQL Server cache dependency feature in ASP.NET 2.0, you must perform a one-time
setup of your SQL Server database. To set up your SQL Server, use the aspnet_regsqlcache.exe tool
found at C:\WINDOWS\Microsoft.NET\Framework\v2.0.xxxxx. This tool makes the necessary modi-
fications to SQL Server so that you can start working with the new SQL cache invalidation features.

To get at the aspnet_regsqlcache.exe tool, open up the Visual Studio Command Prompt by choosing
Start ➪ All Programs ➪ Microsoft Visual Studio 2005 ➪ Visual Studio Tools ➪ Visual Studio Command
Prompt. After you get the command prompt, type this command:

aspnet_regsqlcache.exe -?

This pulls up the help command list (see Figure 11-1).

Figure 11-1

325

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 325

The following table details the commands available in the aspnet_regsqlcache.exe tool.

Command Description

-S server The server where the SQL cache invalidation setup is to occur.

-U login id The SQL Server login ID.

-P password The SQL Server password.

-E trusted connection Instructions for using the current Windows credentials for
authentication.

-t table name The name of the table you want to work with for SQL Server
cache invalidation.

-d database The name of the database.

-ed A command to enable a database for SQL cache dependency.

-dd A command to disable a database for SQL cache dependency.

-et A command to enable a table for SQL cache dependency.

-dt A command to disable a table for SQL cache dependency.

-lt A list of all the tables enabled for SQL cache dependency.

-? A list of available option commands.

The following sections show you how to use some of these commands.

Enabling databases for SQL Server cache invalidation
To use SQL Server cache invalidation, begin with two steps. The first step enables the appropriate
database. Next, you enable the tables that you want to work with. You must perform both steps for this
process to work. Start by enabling the database.

If you want to enable your databases for SQL cache invalidation and you are working on the computer
where the SQL Server instance is located, you use the following construct:

aspnet_regsqlcache.exe –S localhost –U sa –P password –d Northwind –ed

This produces something similar to what you see in Figure 11-2.

Figure 11-2

326

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 326

From this command prompt, you can see that I simply enabled the Northwind database (the sample
database that comes with SQL Server) for SQL cache invalidation. The aspnet_sqlcache.exe tool
responded as follows:

Enabling the database for SQL cache dependency.
Finished.

Now that you have enabled the database for SQL cache invalidation, you can enable one or more tables
contained within the Northwind database.

Enabling tables for SQL Server cache invalidation
You enable one or more tables by using the following command:

aspnet_regsqlcache.exe –S localhost –U sa –P password –d Northwind –t Customers –et

You can see that this command is not much different from the one for enabling the database, except
for the extra –t Customers entry. Customers is the name of the table that is enabled, as shown in
Figure 11-3.

Figure 11-3

In this screen shot, you can see that I enabled two tables within the Northwind database. The first is the
Customers table and the second is the Products table. After a table is successfully enabled, you receive
the following response:

Enabling the table for SQL cache dependency.
Finished.

After the table is enabled, you can begin using the SQL cache invalidation features. But before you do,
the following section shows you what happens to SQL Server when you enable these features.

Looking at SQL Server
Now that both the Northwind database and the Customers and Products tables have been enabled for
SQL cache invalidation, look at what happens in SQL Server to enable this. If you open up the SQL
Server Enterprise Manager, you see a new table contained within the Northwind database —
AspNet_SqlCacheTablesForChangeNotification (whew, that’s a long one!). You should see
what is shown in Figure 11-4.

327

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 327

Figure 11-4

At the top of the list of tables in the right-hand pane, you see the AspNet_SqlCacheTablesFor
ChangeNotification table. This is the table that ASP.NET uses to learn which tables are being moni-
tored for change notification and also to make note of any changes to the tables being monitored. The
table is actually quite simple when you look at the details, as illustrated in Figure 11-5.

Figure 11-5

From this screen shot, you can see three columns in this new table. The first is the tableName column.
This column is simply a String reference to the name of the table contained in the same database. Any
table named here is enabled for SQL cache invalidation. Therefore, Figure 11-5 shows that the Customers
and Products table are enabled.

The second column, notificationCreated, shows the date and time when the table was enabled for
SQL cache invalidation. The final column, changeId, is used to communicate to ASP.NET any changes
to the included tables. ASP.NET is monitoring this column for changes and, depending on the value,
either uses what is stored in memory or makes a new database query.

328

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 328

Looking at the tables that are enabled
Using the aspnet_regsqlcache.exe tool, you can see which tables are enabled in a particular
database with a simple command. If you are working through the preceding examples, you see that so
far you have enabled the Customers and Products tables of the Northwind database. To get a list of the
tables that are enabled, use something similar to the following command:

aspnet_regsqlcache.exe –S localhost –U sa –P password –d Northwind –lt

This command produces the results shown in Figure 11-6.

Figure 11-6

As you can see from this screen shot, the -lt command produces a simple list of tables enabled for SQL
cache invalidation. Inputting this command produces the following results:

Listing all tables enabled for SQL cache dependency:
Customers
Products

Disabling a table for SQL Server cache invalidation
Now that you know how to enable your SQL Server database for SQL Server cache invalidation, take a
look at how you remove the capability for a specific table to be monitored for this process. To remove a
table from the SQL Server cache invalidation process, use the –dt command. Figure 11-7 details how to
remove an individual table from the process.

Figure 11-7

329

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 329

From Figure 11-7, you can see that the tables enabled for SQL Server cache invalidation are listed using
the –lt command. It shows that you have both the Customers and Products tables enabled. Next, you
remove the Products table from the process using the following command:

aspnet_regsqlcache.exe –S localhost –U sa –P password –d Northwind –t Products -dt

You can see that all you do is specify the name of the table using the –t command followed by a –dt
command (disable table). From the figure, you can also see the third command again lists the tables that
are enabled for SQL Server cache invalidation, and this time, the Products table is not listed — instead,
only the Customers table is listed.

Disabling a database for SQL Server cache invalidation
Not only can you pick and choose the tables that you want to remove from the process, but you can also
disable the entire database for SQL Server cache invalidation. In order to disable an entire database, you
use the –dd command (disable database). You should note that disabling an entire database for SQL
Server cache invalidation also means that every single table contained within this database is also dis-
abled. Figure 11-8 shows the Northwind database being disabled on my computer.

Figure 11-8

From this figure, you can see that I disabled the Northwind database from SQL Server cache invalidation
using the –dd command. This is the result:

Disabling the database for SQL cache dependency.
Finished.

To ensure that the table was no longer enabled for SQL Server cache invalidation, I attempted to list the
tables that were enabled for cache invalidation using the –lt command. I received the following error:

An error has happened. Details of the exception:
The database is not enabled for SQL cache notification. To enable a database for
SQL cache notification, please use SQLCacheDependencyAdmin.EnableNotifications
method, or the command line tool aspnet_regsql.exe.

If you now open the Northwind database in the SQL Server Enterprise Manager, notice that the
AspNet_SqlCacheTablesForChangeNotification table has been removed for the database.

330

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 330

Configuring your ASP.NET Application
After you enable a database for SQL Server cache invalidation, and you also enable a couple of tables
within this database, the next step is to configure your application for SQL Server cache invalidation.

To configure your application to work with SQL Server cache invalidation, the first step is to make
some changes to the web.config file. In the web.config file, specify that you want to work with the
Northwind database and you want ASP.NET connected to it.

Listing 11-1 shows an example of how you should change your web.config file in order to work with
SQL Server cache invalidation.

Listing 11-1: Configuring the web.config file

<configuration>

<connectionStrings>
<add name=”AppConnectionString1” connectionString=”Provider=SQLOLEDB.1;

Data Source=EVJEN01;User ID=sa;Password=;Initial
Catalog=Northwind;Persist Security Info=False”
providerName=”System.Data.OleDb” />

</connectionStrings>

<system.web>

<caching>
<sqlCacheDependency enabled=”true”>

<databases>
<add name=”Northwind” connectionStringName=”AppConnectionString1”
pollTime=”500” />

</databases>
</sqlCacheDependency>

</caching>

</system.web>
</configuration>

From this listing, you can see that the first thing established is the connection string to the Northwind
database using the <connectionStrings> element in the web.config file. It is important to make note
of the name of the connection string because it is utilized later in the configuration settings for SQL
Server cache invalidation.

The SQL Server cache invalidation is configured using the new <caching> element. This element must
be nested within the <system.web> elements. Because you are working with a SQL Server cache depen-
dency, you must use a <sqlCacheDependency> child node, and you enable the entire process by using
the enabled=”true” attribute. After this attribute is enabled, you work with the <databases> section.
Nested within the <databases> nodes, you use the <add> element to reference the Northwind database.
The following table explains all the attributes of the <add> element.

331

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 331

Attribute Description

name The name attribute provides an identifier to the SQL Server database.

connectionStringName The connectionStringName attribute specifies the name of the
connection. Because the connection string in the preceding example
is called AppConnectionString1, you use this value for the con-
nectionStringName attribute as well.

pollTime The pollTime attribute specifies the time interval from one SQL
Server poll to the next. The default is 5 seconds or 500 milliseconds
(as shown in the previous example).

Now that the web.config file is set up correctly, you can start using SQL Server cache invalidation on
your pages. ASP.NET makes a separate SQL Server request on a completely different thread to the
AspNet_SqlCacheTablesForChangeNotification table to see if the changeId number has been
incremented. If the number is changed, ASP.NET knows that an underlying change has been made to the
SQL Server table and that a new result set should be retrieved. When it checks to see if it should make a
SQL Server call, the request to the small AspNet_SqlCacheTablesForChangeNotification table has
a single result. This is done in such a quick fashion that you can notice the difference in speed with SQL
Server cache invalidation enabled.

Testing SQL Server Cache Invalidation
Now that the web.config file is set up and ready to go, the next step is to actually apply these new
capabilities to a page. For an example of a page using the new SQL Server cache invalidation process,
look at Listing 11-2.

Listing 11-2: An ASP.NET page utilizing SQL Server cache invalidation

VB
<%@ Page Language=”VB” %>
<%@ OutputCache Duration=”3600” VaryByParam=”none”

SqlDependency=”Northwind:Customers”%>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Page created on “ & DateTime.Now.ToString()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Sql Cache Invalidation</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”>
</asp:GridView>

332

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 332

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
ProviderName=”<%$ ConnectionStrings:AppConnectionString1.providername %>”>

</asp:SqlDataSource>
</form>

</body>
</html>
C#
<%@ Page Language=”C#” %>
<%@ OutputCache Duration=”3600” VaryByParam=”none”

SqlDependency=”Northwind:Customers”%>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = “Page created on “ + DateTime.Now.ToString();
}

</script>

The first and most important part of this page is the OuputCache page directive that is specified at the
top of the file. Typically, the OutputCache directive specifies how long the page output is held in the
cache using the Duration attribute. It is followed by the VaryByParam attribute, which does not permit
separate page outputs to be cached based on factors like the requestor’s browser. The new addition is
the SqlDependency attribute. This enables a particular page to use SQL Server cache invalidation. The
following line shows the format of the value for the SqlDependency attribute:

SqlDependency=”database:table”

The value of Northwind:Customers specifies that you want the SQL Server cache invalidation enabled
for the Customers table within the Northwind database. The Duration attribute of the OutputCache
directive shows you that, typically, the output of this page is stored in the cache for a long time — but this
cache is disabled if the Customers table has any underlying changes made to the data that it contains.

A change to the any of the cells in the Customers table of the Northwind database invalidates the cache,
and a new cache is generated from the results, which now contain a new SQL Server database request.
Figure 11-9 shows an example of the page generated the first time it is run.

Figure 11-9

333

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 333

From this figure, you can see the contents of the customer with the CustomerID of ALFKI. For this entry,
you go to SQL Server and change the value of the ContactName from Maria Anders to Mary Anders.
Before SQL Server cache invalidation, this change would have done nothing to the output cache. The
original page output in the cache would still be present and the end user would still see the Maria
Anders entry for the duration specified in the page’s OutputCache directive. Because of SQL Server
cache invalidation, after the underlying information in the table is changed, the output cache is invali-
dated, a new result set is retrieved, and the new result set is cached. When a change has been made,
you see the results shown in Figure 11-10.

Figure 11-10

Adding more than one table to a page
The preceding example shows how to use SQL Server cache invalidation for a single table on the
ASP.NET page. What do you do if your page is working with two or more tables?

To add more than one table, you use the OutputCache directive shown here:

SqlDependency=”database:table;database:table”

From this example, you can see that the value of the SqlDependency attribute separates the databases
and tables with a semicolon. If you want to work with both the Customers table and the Products table
of the Northwind database, you construct the value of the SqlDependency attribute as follows:

SqlDependency=”Northwind:Customers;Northwind:Products”

Attaching SQL Server cache dependencies
to the Request object

In addition to changing settings in the OutputCache directive to activate SQL Server cache invalidation,
you can also set the SQL Server cache invalidation programmatically. To do so, you use the SqlCache
Dependency class, which is illustrated in Listing 11-3.

334

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 334

Listing 11-3: Working with SQL Server cache invalidation programmatically

VB
Dim myDependency As SqlCacheDependency = _

New SqlCacheDependency(“Northwind”, “Customers”)
Response.AddCacheDependency(dependency)
Response.Cache.SetValidUntilExpires(true)
Response.Cache.SetExpires(DateTime.Now.AddMinutes(60))
Response.Cache.SetCacheability(HttpCacheability.Public)
C#
SqlCacheDependency myDependency = new SqlCacheDependency(“Northwind”, “Customers”);
Response.AddCacheDependency(myDependency);
Response.Cache.SetValidUntilExpires(true);
Response.Cache.SetExpires(DateTime.Now.AddMinutes(60));
Response.Cache.SetCacheability(HttpCacheability.Public);

You first create an instance of the SqlCacheDependency object — assigning it the value of the database
and the table at the same time. The SqlCacheDependency class takes the following parameters:

SqlCacheDependency(databaseEntryName As String, tablename As String)

You use this parameter construction if you are working with SQL Server 7.0 or with SQL Server 2000. If
you are working with SQL Server “Yukon,” you use the following construction:

SqlCacheDependency(sqlCmd As System.Data.SqlClient.SqlCommand)

After the SqlCacheDependency class is in place, you add the dependency to the Cache object and set
some of the properties of the Cache object as well. You can do this either programmatically or through
the OutputCache directive.

Attaching SQL Server cache dependencies
to the Cache object

In addition to attaching SQL Server cache dependencies to the Request object, you can attach them to
the Cache object as well. The Cache object is contained within the System.Web.Caching namespace,
and it enables you to work programmatically with the caching of any type of objects. Listing 11-4 shows
a page that utilizes the Cache object with the SqlDependency object.

Listing 11-4: Using the Cache object with the SqlDependency object

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data”%>
<%@ Import Namespace=”System.Data.SqlClient”%>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myCustomers As DataSet
myCustomers = CType(Cache(“firmCustomers”, DataSet))

(continued)

335

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 335

Listing 11-4: (continued)

If myCustomers Is Nothing Then
Dim conn As SqlConnection = _
New SqlConnection(ConfigurationSettings.ConnectionStrings(“Northwind”))

Dim da As SqlDataAdapter = _
New SqlDataAdapter(“Select * From Customers”, conn)

myCustomers = New DataSet
da.Fill(myCustomers)

Dim myDependency As SqlCacheDependency = _
New SqlCacheDependency(“Northwind”, “Customers”)

Cache.Insert(“firmCustomers”, myCustomers, myDependency)

Label1.Text = “Produced from database.”
Else

Label1.Text = “Produced from Cache object.”
End If

GridView1.DataSource = myCustomers
GridView1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Sql Cache Invalidation</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

<asp:GridView ID=”GridView1” Runat=”server”>
</asp:GridView>

</form>
</body>
</html>
C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data”%>
<%@ Import Namespace=”System.Data.SqlClient”%>

<script runat=”server”>
void Page_Load(object sender, System.EventArgs e)
{

DataSet myCustomers;
myCustomers = (DataSet)Cache[“firmCustomers”];

if (categories == null)
{

SqlConnection conn = new
SqlConnection(ConfigurationSettings.ConnectionStrings[“Northwind”]);

SqlDataAdapter da = new

336

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 336

SqlDataAdapter(“Select * from Customers”, conn);

myCustomers = new DataSet();
da.Fill(myCustomers);

SqlCacheDependency myDependency = new
SqlCacheDependency(“Northwind”, “Customers”);

Cache.Insert(“firmCustomers”, myCustomers, myDependency);

Label1.Text = “Produced from database.”;
}
else
{

Label1.Text = “Produced from Cache object.”;
}

GridView1.DataSource = myCustomers;
GridView1.DataBind();

}
</script>

In this example, the SqlCacheDependency class associated itself to the Customers table in the
Northwind database as before. This time, however, you use the Cache object to insert the retrieved
dataset along with a reference to the SqlCacheDependency object. The Insert method of the Cache
class is constructed as follows:

Cache.Insert(key As String, value As Object,
dependencies As System.Web.Caching.CacheDependency)

You can also insert more information about the dependency using the following construct:

Cache.Insert(key As String, value As Object,
dependencies As System.Web.Caching.CacheDependency
absoluteExpiration As Date, slidingExpiration As System.TimeSpan)

And finally:

Cache.Insert(key As String, value As Object,
dependencies As System.Web.Caching.CacheDependency
absoluteExpiration As Date, slidingExpiration As System.TimeSpan)
priority As System.Web.Caching.CacheItemPriority,
onRemoveCallback As System.Web.Caching.CacheItemRemovedCallback)

The SQL Server cache dependency created comes into action and does the same polling as it would have
done otherwise. If any of the data in the Customers table has changed, the SqlCacheDependency class
invalidates what is stored in the cache. On the next request, the Cache(“firmCustomers”) is found to
be empty and a new request is made to SQL Server. The Cache object again repopulates the cache with
the new results generated.

When the ASP.NET page from Listing 11-4 is called for the first time, the results generated are as shown
in Figure 11-11.

337

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 337

Figure 11-11

Because this is the first time that the page is generated, nothing is in the cache. The Cache object is,
therefore, placed in the result set along with the association to the SQL Server cache dependency.
Figure 11-12 shows the result for the second request.

Figure 11-12

On the second request, the dataset is already contained within the cache and, therefore, it is retrievable.
You aren’t required to hit SQL Server to get the full results again. If the any of the information has
changed within SQL Server itself, however, the Cache object returns nothing, and a new result set is
retrieved.

338

Chapter 11

11_572865 ch11.qxd 7/7/04 9:56 PM Page 338

Summary
SQL Server cache invalidation is an outstanding new feature of ASP.NET 2.0 that enables you to invali-
date items stored in the cache when underlying changes occur to the data in the tables being monitored.

When you are monitoring changes to the database, you can configure these procedures easily in the
web.config file, or you can work programmatically with cache invalidation directly in your code.
These changes are possible because the CacheDependency object has been unsealed. You can now
inherit from this object and create your own cache dependencies. The SQL Server cache invalidation
process is the first example of this capability.

339

SQL Cache Invalidation

11_572865 ch11.qxd 7/7/04 9:56 PM Page 339

11_572865 ch11.qxd 7/7/04 9:56 PM Page 340

Additional New Controls

When I sat in one of the first review sessions for ASP.NET 2.0 on the Microsoft campus in Redmond,
Washington, I remember being amazed by the number of new server controls (in addition to many
other new and exciting features) this newest release offered. The core infrastructure was already in
place with ASP.NET 1.0/1.1; but with the much improved 2.0 release, the ASP.NET team was mak-
ing the lives of developers even simpler.

The purpose of this large collection of new controls is to make you more productive. They enable
you to introduce advanced functionality that would have been laboriously programmed or simply
omitted in the past. For example, in the classic ASP days, few calendars were used on Internet Web
sites. With the introduction of the Calendar server control in ASP.NET 1.0, calendar creation on a
site became a trivial task. And with ASP.NET 1.0/1.1, it was rather difficult to build an image map
on top of an image. Through the use of a new server control, this is now built into ASP.NET 2.0.

I covered a considerable number of these new controls in the preceding chapters, but I still have
quite a few new server controls to discuss. This chapter takes a look at some of these new server
controls and explains how to use them in ASP.NET 2.0 applications.

BulletedList Server Control
One common HTML Web page element is a collection of items in a bulleted list. The BulletedList
server control is meant to easily display a bulleted list of items in an ordered (using the HTML
 element) or unordered (using the HTML element) fashion.

In addition to creating lists that are ordered or unordered, you can use this control to determine
the style used for displaying the list.

12_572865 ch12.qxd 7/7/04 9:56 PM Page 341

The BulletedList control can be constructed of any number of <asp:ListItem> controls or be data-
bound to a data source of some kind and populated based upon the contents retrieved. Listing 12-1
shows a bulleted list in its simplest form.

Listing 12-1: A simple BulletedList control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>BulletedList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:BulletedList ID=”Bulletedlist1” Runat=”server”>

<asp:ListItem>United States</asp:ListItem>
<asp:ListItem>United Kingdom</asp:ListItem>
<asp:ListItem>Finland</asp:ListItem>
<asp:ListItem>Russia</asp:ListItem>
<asp:ListItem>Sweden</asp:ListItem>
<asp:ListItem>Estonia</asp:ListItem>

</asp:BulletedList>
</form>

</body>
</html>

The use of the <asp:BulletedList> element, along with the <asp:ListItem> elements, produces a
simple bulleted list output like the one shown in Figure 12-1.

Figure 12-1

The BulletedList control also enables you to easily change the style of the list with just one or two
attributes. The BulletStyle attribute changes the style of the bullet that precedes each line of the
bulleted list. This attribute has possible values of Numbered, LowerAlpha, UpperAlpha, LowerRoman,
UpperRoman, Disc, Circle, Square, NotSet, and CustomImage. Figure 12-2 shows an example of these
styles (minus the CustomImage setting, as it can be any image of your choice).

342

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 342

Figure 12-2

When working with any of the numbered styles (Numbered, LowerAlpha, UpperAlpha, LowerRoman,
UpperRoman), you can also change the starting value of the first bulleted item in the list by using the
FirstBulletNumber attribute. Setting this attribute’s value to 5 when you use the UpperRoman setting
results in the format illustrated in Figure 12-3.

Figure 12-3

343

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 343

When you use the CustomImage setting in the BulletedList control, you must also use the
BulletedImageUrl attribute in the following manner:

<asp:BulletedList ID=”Bulletedlist1” Runat=”server”
BulletStyle=”CustomImage” BulletedImageUrl=”~/myImage.gif”>

The BulletedList control has an attribute called DisplayMode, which has three possible values: Text,
HyperLink, and LinkButton. Text is the default and has been used so far in the examples. Using Text
means that the items in the bulleted list are laid out only as text. HyperLink means that each of the
items will be turned into a hyperlink — any user clicking the link is redirected to another page. This
page is specified by the <asp:ListItem> control’s Value attribute. A value of LinkButton turns each
bulleted list item into a hyperlink that posts back to the same page. It enables you to retrieve the selec-
tion that the end user makes, as illustrated in Listing 12-2.

Listing 12-2: Using the LinkButton value for the DisplayMode attribute

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Sub BulletedList1_Click(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.BulletedListEventArgs)

Label1.Text = “The index of item you selected: “ & e.Index & _
“The value of the item selected: “ & _
BulletedList1.Items(e.Index).Text

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>BulletedList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:BulletedList ID=”BulletedList1” Runat=”server”
OnClick=”BulletedList1_Click” DisplayMode=”LinkButton”>

<asp:ListItem>United States</asp:ListItem>
<asp:ListItem>United Kingdom</asp:ListItem>
<asp:ListItem>Finland</asp:ListItem>
<asp:ListItem>Russia</asp:ListItem>
<asp:ListItem>Sweden</asp:ListItem>
<asp:ListItem>Estonia</asp:ListItem>

</asp:BulletedList>
<asp:Label ID=”Label1” Runat=”server”>
</asp:Label>

</form>
</body>
</html>

344

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 344

C#
<script runat=”server”>

void BulletedList1_Click(object sender,
System.Web.UI.WebControls.BulletedListEventArgs e)

{
Label1.Text = “The index of item you selected: “ + e.Index +

“The value of the item selected: “ +
BulletedList1.Items[e.Index].Text;

}
</script>

In this example, the DisplayMode attribute is set to LinkButton, and the OnClick attribute is used to
point to the BulletedList1_Click event. This event uses the BulletedListEventArgs object, which
only exposes the Index property. Using this, you can determine the index number of the item selected.

You can directly access the Text value of a selected item by using the Items property, or you can use the
same method to populate an instance of the ListItem object. You do so as shown here:

VB
Dim blSelectedValue As ListItem = BulletedList1.Items(e.Index)

C#
ListItem blSelectedValue = BulletedList1.Items[e.Index];

Now that you have seen how to create bulleted lists with items that you declaratively place in the code,
take a look at how to create dynamic bulleted lists from items that are stored in a data store of some
kind. For an example of how to use the BulletedList control to data-bind to results coming from a data
store, look at the following example where all information is retrieved from an XML file.

The first step is to create the XML file. For this example, I use the XML file shown in Listing 12-3.

Listing 12-3: FilmChoices.xml

<?xml version=”1.0” encoding=”utf-8”?>
<FilmChoices>

<Film>
<Title>Close Encounters of the Third Kind</Title>
<Year>1977</Year>
<Director>Steven Spielberg</Director>

</Film>
<Film>

<Title>Grease</Title>
<Year>1978</Year>
<Director>Randal Kleiser</Director>

</Film>
<Film>

<Title>Lawrence of Arabia</Title>
<Year>1962</Year>
<Director>David Lean</Director>

</Film>
</FilmChoices>

345

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 345

To populate the BulletedList server control with the <Title> element from the FileChoices.xml file,
use a DataSetDataSource control to access the file, as illustrated in Listing 12-4.

Listing 12-4: Dynamically populating a BulletedList server control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>BulletedList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:BulletedList ID=”Bulletedlist1” Runat=”server”
DataSourceId=”DataSetDataSource1” DataTextField=”Title”>

</asp:BulletedList>
<asp:DataSetDataSource ID=”DataSetDataSource1”
Runat=”server” DataFile=”~/FilmChoices.xml”>

</asp:DataSetDataSource>
</form>

</body>
</html>

In this example, you use the DataSourceId attribute to point to the DataSetDataSource control (as you
would with any control that can be bound to one of the data source controls). After you are connected to
this data source control, you specifically point at the <Title> element by using the DataTextField
attribute. After the two server controls are connected and the page is run, you get a bulleted list that is
completely generated from the contents of the XML file. The result is shown in Figure 12-4.

Figure 12-4

HiddenField Server Control
For many years now, developers have been using hidden fields in their Web pages to work with state
management. The <input type=”hidden”> element is ideal for storing items that have no security
context to them. These items are simply placeholders for data points that you want to store in the page
itself instead of using the Session object or intermingling the data with the view state of the page. View

346

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 346

state is another great way to store information in a page, but many developers turn off this feature in
order to avoid corruption of the view state or possibly degradation of page performance.

Any time a hidden field is placed within a Web page, it is not interpreted in the browser in any fashion,
although is completely viewable by end users if they look at the source of the HTML page.

Listing 12-5 is an example of using the HiddenField server control to hold a GUID that can be used from
page to page simply by carrying over its value as the end user navigates through your application.

Listing 12-5: Working with the HiddenField server control

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

HiddenField1.Value = System.Guid.NewGuid().ToString()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>HiddenField Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:HiddenField ID=”HiddenField1” Runat=”Server” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

HiddenField1.Value = System.Guid.NewGuid().ToString();
}

</script>

In this example, the Page_Load event populates the HiddenField1 control with a GUID. You can see
the hidden field and the value created by looking at the source of the blank HTML page that is created.
You should see a result similar to the following (the GUID has a different value, of course):

<input type=”hidden” name=”HiddenField1” id=”HiddenField1”
value=”a031e77c-379b-4b4a-887c-244ee69584d5” />

On the page postback, ASP.NET can detect whether the HiddenField server control has changed its
value since the last post. This enables you to change the HiddenField value with client-side script and
then work with the changes in a page event.

347

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 347

The HiddenField server control has an event called ValueChanged that you can use when the value is
changed:

VB
Sub HiddenField1_ValueChanged(ByVal sender As Object, ByVal e As System.EventArgs)

‘ Handle event here
End Sub

C#
void HiddenField1_ValueChanged(object sender, EventArgs e)
{

// Handle event here
}

This ValueChanged event is triggered when the ASP.NET page gets posted back to the server if the
value of the HiddenField server control has changed since the last time the page was drawn. If the value
of the HiddenField control has not changed, this method is never triggered. Therefore, this method is
useful when you act upon any changes to the HiddenField control — such as recording a value to the
database or changing a value in the user’s profile.

FileUpload Server Control
In ASP.NET 1.0/1.1, it was quite possible to upload files using the HTML FileUpload control. This
HTML server control put an <input type=”file”> element on your Web page to enable the end user
to upload files to the server. In order to use this file, however, you had to make a couple of modifications
to the page. You were, for example, required to add an enctype=”multipart/form-data” to the
page’s <form> element.

ASP.NET 2.0 introduces a new FileUpload server control that makes the process of uploading files to a
server even simpler than before. When giving a page the capability to upload files, you simply include
the new <asp:FileUpload> control and ASP.NET takes care of the rest, including adding the enctype
attribute to the page’s <form> element for you.

After the file is uploaded to the server, you can also take hold of the uploaded file’s properties and either
display them to the end user or use these values yourself in your page’s code-behind. Listing 12-6 shows
an example of using the new FileUpload control. The page contains a single FileUpload control, plus a
Button and a Label control.

Listing 12-6: Uploading files using the new FileUpload control

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If FileUpload1.HasFile Then
Try

FileUpload1.SaveAs(“C:\Uploads\” & _
FileUpload1.FileName)

Label1.Text = “File name: “ & _

348

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 348

FileUpload1.PostedFile.FileName & “
” & _
“File Size: “ & _
FileUpload1.PostedFile.ContentLength & “ kb
” & _
“Content type: “ & _
FileUpload1.PostedFile.ContentType

Catch ex As Exception
Label1.Text = “ERROR: “ & ex.Message.ToString()

End Try
Else

Label1.Text = “You have not specified a file.”
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>FileUpload Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:FileUpload ID=”FileUpload1” Runat=”server” />
<p>
<asp:Button ID=”Button1” Runat=”server” Text=”Upload”
OnClick=”Button1_Click” /></p>

<p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
void Button1_Click(object sender, EventArgs e)
{

if (FileUpload1.HasFile)
try {

FileUpload1.SaveAs(“C:\\Uploads\\” + FileUpload1.FileName);
Label1.Text = “File name: “ +

FileUpload1.PostedFile.FileName + “
” +
FileUpload1.PostedFile.ContentLength + “ kb
” +
“Content type: “ +
FileUpload1.PostedFile.ContentType;

}
catch (Exception ex) {

Label1.Text = “ERROR: “ + ex.Message.ToString();
}

else
{

Label1.Text = “You have not specified a file.”;
}

}
</script>

349

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 349

From this example, you can see that the entire process is rather simple. The single button on the page
initiates the upload process. The first check done examines whether a file reference was actually placed
within the <input type=”file”> element. If a file was specified, an attempt is made to upload the ref-
erenced file to the server using the SaveAs method of the FileUpload control. This method takes a single
String parameter, which should include the location where you want to save the file. In the String
parameter that I use in Listing 12-6, you can see that I am saving the file to a folder called Uploads,
which is located in the C:\ drive.

In addition to saving the file uploaded to the C:\Uploads folder, I give the saved file the same name as
the file it was copied from. To do this, I use the PostedFile.FileName attribute. If you want to name
the file something else, you simply use the SaveAs method in the following manner:

FileUpload1.SaveAs(“C:\Uploads\UploadedFile.txt”)

You could also give the file a name that specifies the time it was uploaded:

FileUpload1.SaveAs(“C:\Uploads\” & System.DateTime.Now.ToFileTimeUtc() & “.txt”)

In this case, the file is named according to the time the upload occurred.

After the upload is successfully completed, the Label control on the page is populated with metadata of
the uploaded file. In this case, the file’s name, size, and content type are retrieved and displayed on the
page for the end user. When the file is uploaded to the server, the page generated is similar to that
shown in Figure 12-5.

Figure 12-5

Uploading files to another server can be an error-prone affair. It is vital to upload files in your code using
proper exception handling. This is why the file in the example is uploaded using a Try Catch statement.
Another way to prevent the FileUpload control from ruining the experience of the end user is to use the
FileUpload’s AlternateText attribute:

<asp:FileUpload ID=”FileUpload1” Runat=”server”
AlternateText=”Your browser does not allow uploads.” />

350

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 350

This attribute assists end users whose browsers are unable to understand the <input type=”file”>
element. That specific user gets the text shown in the AlternateText attribute.

MultiView and View Server Controls
The MultiView and View server controls work together to give you the capability to turn on and off sec-
tions of an ASP.NET page. Turning sections on and off, which means activating or deactivating a series of
View controls within a MultiView control, is similar to changing the visibility of Panel controls. For cer-
tain operations, however, you may find that the MultiView control is easier to manage and work with.

The sections, or views, do not change on the client-side; rather, they change with a postback to the
server. In each view, you can put any number of elements and controls, and the end user can work
through the views based upon the sequence numbers that you assign to the views.

You can build them (like all server controls) from the Source view or Design view. If working with Visual
Studio 2005, you can drag and drop a MultiView control onto the design surface and then drag and drop
any number of View controls inside the MultiView control. You place the elements you want within the
View controls. After this is completed, you have something like the view in Figure 12-6.

Figure 12-6

The other option is to create this directly in the code, as shown in Listing 12-7.

Listing 12-7: Using the MultiView and View server controls

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
MultiView1.ActiveViewIndex = 0

End If
End Sub

Sub NextView(ByVal sender As Object, ByVal e As System.EventArgs)
MultiView1.ActiveViewIndex += 1

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

(continued)

351

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 351

Listing 12-7: (continued)

<title>MultiView Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:MultiView ID=”MultiView1” Runat=”server”>

<asp:View ID=”View1” Runat=”Server”>
Billy’s Famous Pan Pancakes<p />
<i>Heat 1/2 tsp of butter in cast iron pan.

Heat oven to 450 degrees Fahrenheit.

</i><p />
<asp:Button ID=”Button1” Runat=”Server” Text=”Next Step”
OnClick=”NextView” />

</asp:View>
<asp:View ID=”View2” Runat=”Server”>

Billy’s Famous Pan Pancakes<p />
<i>Mix 1/2 cup flour, 1/2 cup milk and 2 eggs in bowl.

Pour in cast iron pan. Place in oven.</i><p />
<asp:Button ID=”Button2” Runat=”Server” Text=”Next Step”
OnClick=”NextView” />

</asp:View>
<asp:View ID=”View3” Runat=”Server”>

Billy’s Famous Pan Pancakes<p />
<i>Cook for 20 minutes and enjoy!

</i><p />

</asp:View>
</asp:MultiView>

</form>
</body>
</html>

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

MultiView1.ActiveViewIndex = 0;
}

}

void NextView(object sender, EventArgs e)
{

MultiView1.ActiveViewIndex += 1;
}

</script>

352

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 352

In the example in Listing 12-7, you can see that three views are expressed in the MultiView control. Each
view is constructed with an <asp:View> server control that also needs ID and Runat attributes added.
A button is added to each of the first two views (View1 and View2) of the MultiView control. These but-
tons both point to a server-side event that triggers the MultiView control to progress onto the next view
within the series of views.

Before either of the buttons can be clicked, the MultiView control’s ActiveViewIndex attribute is
assigned a value. By default, the ActiveViewIndex, which describes the view that should be showing,
is set to -1. This means that no view shows when the page is generated. To start on the first view when
the page is drawn, you set the ActiveViewIndex property to 0, which is the first view because this is a
zero-based index. Therefore, the code from Listing 12-7 first checks to see if the page is in a postback
situation and if not, the ActiveViewIndex is assigned to the first View control.

Each of the buttons in the MultiView control triggers the NextView method. This method simply adds
one to the ActiveViewIndex value — thereby showing the next view in the series until the last view is
shown. The view series is illustrated in Figure 12-7.

In addition to the Next Step button on the first two views, you can also place a button in the last two
views that allows the user to navigate backward through the views. To do this, create two buttons titled
Previous Step in the last two views, both of which point to the following method in their OnClick events:

VB
Sub PreviousView(ByVal sender As Object, ByVal e As System.EventArgs)

MultiView1.ActiveViewIndex -= 1
End Sub

C#
void PreviousView(object sender, EventArgs e)
{

MultiView1.ActiveViewIndex -= 1;
}

Here, the PreviousView method subtracts one from the ActiveViewIndex value, thereby showing the
previous view in the view series.

Another option to spice up the MultiView control is to add a step counter that displays to a Label control
which step the end user is currently performing in the series. In the Page_PreRender event, you add
the following line:

VB
Label1.Text = “Step “ & (MultiView1.ActiveViewIndex + 1).ToString() & _

“ of “ & MultiView1.Views.Count.ToString()

C#
Label1.Text = “Step “ + (MultiView1.ActiveViewIndex + 1).ToString() +

“ of “ + MultiView1.Views.Count.ToString();

Now when working through the MultiView control, the end user sees Step 1 of 3 on the first view,
which changes to Step 2 of 3 on the next view, and so on.

353

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 353

Figure 12-7

354

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 354

Wizard Server Control
Quite similar to the MultiView control, the Wizard server control enables you to build a sequence of
steps that are displayed to the end user. Web pages are all about either displaying or gathering informa-
tion and, in many cases, you don’t want to display all the information at once — nor do you always
want to gather everything from the end user at once. Sometimes, you want to trickle the information in
from or out to the end user.

When you are constructing a step-by-step process that includes logic on the steps taken, use the Wizard
control to manage the entire process. When working with the Wizard control for the first time, notice
that this control allows for a far greater degree of customization than does the MultiView control.

In its simplest form, the Wizard control can be just an <asp:Wizard> element with any number of
<asp:WizardStep> elements. In Listing 12-8, you create a Wizard control that works through three
steps.

Listing 12-8: A simple Wizard control

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Wizard server control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Wizard ID=”Wizard1” Runat=”server” SideBarEnabled=”true”
ActiveStepIndex=”0”>

<WizardSteps>
<asp:WizardStep Runat=”server” Title=”Step 1”>

This is the first step.</asp:WizardStep>
<asp:WizardStep Runat=”server” Title=”Step 2”>

This is the second step.</asp:WizardStep>
<asp:WizardStep Runat=”server” Title=”Step 3”>

This is the third and final step.</asp:WizardStep>
</WizardSteps>

</asp:Wizard>
</form>

</body>
</html>

In this example, three steps are defined with the <asp:WizardSteps> control. Each step contains con-
tent. In this case, the content is simply text, but you can put anything you desire — such as other Web
server controls or even user controls. The order in which the Wizard Steps are defined is completely
based upon the order in which they appear within the <WizardSteps> element. Changing this order
changes the order in which the end user sees them.

The <asp:Wizard> element itself contains a couple of important attributes. The first is the
SideBarEnabled attribute. In this example, it is set to True — meaning that a side navigation system
in the displayed control enables the end user to quickly navigate to other steps in the process. The
ActiveStepIndex attribute of the Wizard control defines the first Wizard Step. In this case, it is the first
step — 0.

355

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 355

The three steps of this Wizard control are shown in Figure 12-8.

Figure 12-8

From this example, you can see that the side navigation allows for easy access to the steps defined. The
Wizard control also adds appropriate buttons to the steps in the process. The first step has simply a Next
button, whereas the middle step has Previous and Next buttons, and the final step has a Previous and a
Finish button. Therefore, the end user can navigate through the steps using either the side navigation or
the buttons on each of the steps. You can customize the Wizard control in so many ways that it tends to
remind me of the other rich Web server controls from ASP.NET, such as the Calendar control. Because so
much is possible, I cover only a few of the basics that you are most likely to employ in some of the
Wizard controls you build.

356

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 356

Customizing the side navigation
From the example in Figure 12-8, you can see that the steps are defined as Step 1, Step 2, and Step 3. The
links are created based upon the Title property’s value that you give to each of the <asp:WizardStep>
elements in the Wizard control:

<asp:WizardStep Runat=”server” Title=”Step 1”>
This is the first step.</asp:WizardStep>

By default, when creating Wizard Steps in Design view, each Wizard Step created is titled Step X (with
X being the number in the sequence). You can easily change the value of the Title attributes of each of
the Wizard Steps to define the steps as you see fit. Figure 12-9 shows the side navigation of the Wizard
control with renamed titles.

Figure 12-9

Examining the AllowReturn attribute
Some other interesting points of customization for the side navigation piece of the Wizard control
include the AllowReturn attribute. By setting this attribute on one of the Wizard Steps to False, you
can remove the capability for the end users to go back to the step after they have viewed it. This
ensures that the end user cannot backward navigate to any of the viewed steps that contained this
attribute, but he would be able to return to any steps that do not contain this attribute or which have
this attribute set to True:

<asp:WizardStep Runat=”server” Title=”Step 1” AllowReturn=”False”>
This is the first step.</asp:WizardStep>

Working with the StepType attribute
Another interesting attribute in the <asp:WizardStep> element is the StepType attribute. The StepType
attribute defines the structure of the buttons used on the steps. For instance, by default, the Wizard control
places only a Next button on the first step. It understands that because this is the first step, you probably
don’t need the Previous button here. It also knows to use a Next and Previous button on the middle step,
but it uses a Previous and a Finish button on the last step. It draws the buttons in this fashion because, by
default, the StepType attribute is set to Auto, meaning that the Wizard control determines the placement

357

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 357

of buttons. You can, however, take control of the StepType attribute in the <asp:WizardStep> element to
make your own determination about which buttons are used for which steps.

Besides a StepType value of Auto, the other options include Start, Step, Finish, and Complete. A
value of Start for the Wizard Step means that the step defined has only a Next button and nothing else.
This simply allows the user to proceed to the next step in the series. A value of Step means that the
Wizard Step has a Next and a Previous button. A value of Finish means that the step includes a
Previous and a Finish button. The last one, Complete, is an interesting step that you can add to give
some final message to the end user who is working through the steps of your Wizard control. In the
Wizard control shown in Listing 12-8, for example, when the end user gets to the last step and clicks the
Finish button, nothing happens and the user just stays on the last page. You can address this by adding a
final step to the collection of Wizard Steps to give a final message as shown in Listing 12-9.

Listing 12-9: Having a Complete step in the Wizard Step collection

<WizardSteps>
<asp:WizardStep Runat=”server” Title=”Step 1”>
This is the first step.</asp:WizardStep>

<asp:WizardStep Runat=”server” Title=”Step 2”>
This is the second step.</asp:WizardStep>

<asp:WizardStep Runat=”server” Title=”Step 3”>
This is the third and final step.</asp:WizardStep>

<asp:WizardStep Runat=”server” Title=”Final Step” StepType=”Complete”>
Thanks for working through the steps.</asp:WizardStep>

</WizardSteps>

When you run this Wizard control in a page, you still only see the first three steps in the side navigation.
Because the last step has a StepType set to Complete, it does not appear in the side navigation list, and
when the end user clicks the Finish button in Step 3, the last step — Final Step — is shown and no
buttons are shown with it.

Adding a header to the Wizard control
The Wizard control enables you to place a header at the top of the control with the use of the
HeaderText attribute in the main <asp:Wizard> element. This is illustrated in Listing 12-10.

Listing 12-10: Working with the HeaderText attribute

<asp:Wizard ID=”Wizard1” Runat=”server” SideBarEnabled=”true” ActiveStepIndex=”0”
HeaderText=” Step by Step with the Wizard control ”
HeaderStyle-BackColor=”DarkGray” HeaderStyle-Font-Bold=”true”
HeaderStyle-Font-Size=”20”>

...

</asp:Wizard>

This code creates a header that appears on each of the steps in the Wizard. The result of this snippet is
shown in Figure 12-10.

358

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 358

Figure 12-10

Working with the Wizard’s navigation system
As I stated earlier, the Wizard control allows for a very high degree of customization — especially in the
area of style. You can customize every single aspect of the process, as well as how every element appears
to the end user.

Pay particular attention to the options that are available for customization of the navigation buttons. By
default, the Wizard Steps use buttons for Next, Previous, and Finish that are used throughout the entire
series of steps. From the main <asp:Wizard> element, you can change everything about these buttons
and how they work.

First, if you look through the long list of attributes available for this element, notice that one available
button isn’t shown by default. The Cancel button can be added by setting the value of the
DisplayCancelButton attribute to True. As shown in Figure 12-11, this gives you a Cancel button
within the navigation created for each and every step (including the final step in the series).

Figure 12-11

359

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 359

After you decide which buttons to use within the Wizard navigation, you can choose the style of these but-
tons. By default, regular buttons appear, but you can change the button style with the CancelButtonType,
FinishStepButtonType, FinishStepPreviousButtonType, NextStepButtonType,
PreviousStepButtonType, and StartStepNextButtonType attributes. All these attributes change the
style of the buttons used for the navigation system of the Wizard control. If you use any of these button
types and want all the buttons consistently styled, you must change each attribute to the same value. The
possible values of these button-specific elements include Button, Image, and Link. Button is the default
and means that the navigation system uses buttons. A value of Image enables you to use image buttons,
and Link turns a selected item in the navigation system into a hyperlink.

In addition to these button-specific attributes of the <asp:Wizard> element, you can also specify a URL
to which the user is directed when the he clicks either the Cancel or Finish buttons. To redirect the user
with one of these buttons, you use the CancelDestinationPageUrl or the
FinishDestinationPageUrl attributes and set the appropriate URL as the destination.

Finally, you are not required to use the default text included with the buttons in the navigation system.
You can change the text of each of the buttons with the use of the CancelButtonText,
FinishStepButtonText, FinishStepPreviousButtonText, NextStepButtonText,
PreviousStepButtonText, and the StartStepNextButtonText attributes.

Utilizing Wizard control events
One of the most convenient capabilities of the Wizard control is that it enables you to divide large forms
into logical pieces. The end user can then work step by step through each section of the form. The devel-
oper, dealing with the inputted values of the form, has a few options because of the various events that
are available in the Wizard control.

The Wizard control exposes events for each of the possible steps that an end user might take when
working with the control. The following table describes each of the available events.

Event Description

ActiveViewChanged Triggers when the end user moves from one step to the next.
It doesn’t matter if the step is the middle or final step in the
series. This event simply covers each step change generically.

CancelButtonClick Triggers when the end user clicks the Cancel button in the
navigation system.

FinishButtonClick Triggers when the end user clicks the Finish button in the
navigation system.

NextButtonClick Triggers when the end user clicks the Next button in the
navigation system.

PreviousButtonClick Triggers when the end user clicks the Previous button in the
navigation system.

SideBarButtonClick Triggers when the end user clicks one of the links contained
within the sidebar navigation of the Wizard control.

360

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 360

By working with these events, you can create a multistepped form that saves all the end users’ input
information when they change from one step to the next. You can also use the FinishButtonClick
event and save everything that was stored in each of the steps at the end of the process. The nice thing
about the Wizard control is that it remembers all the end user’s input in each of the steps by means of
the view state in the page. This enables you to work with all these values in the last step. This also gives
the end user the capability to work back to previous steps and change values before these values are
saved to a data store of some kind.

The event appears in your code-behind or inline code as shown in Listing 12-11.

Listing 12-11: The FinishButtonClick event

VB
<script runat=”server”>

Sub Wizard1_FinishButtonClick(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)

End Sub
</script>

C#
<script runat=”server”>

void Wizard1_FinishButtonClick(object sender, WizardNavigationEventArgs e)
{

}
</script>

The main <asp:Wizard> element should also have the attribute shown in Listing 12-12 added to point
at the new event.

Listing 12-12: The <asp:Wizard> element changes

<asp:Wizard ID=”Wizard1” Runat=”server” SideBarEnabled=”true” ActiveStepIndex=”0”
OnFinishButtonClick=”Wizard1_FinishButtonClick”>

DynamicImage Server Control
Before the DynamicImage control came along, the only way to work with images in ASP.NET was to
point to actual physical image files using either the <asp:Image> element or a HTML element.
The physical images in ASP.NET 1.0/1.1 weren’t always interpreted that well to other devices (especially
smaller devices). It was also rather difficult and cumbersome to deal with images that were contained in
a stream or received as a byte array.

ASP.NET 2.0 now includes a new .axd HttpHandler that is specifically developed for working with
images not typically stored on disk.

Working with images from disk
Although the DynamicImage control is great for working with images that are in a stream, you can also use
this control and simply point to images stored as a file on the server. This is illustrated in Listing 12-13.

361

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 361

Listing 12-13: Using the DynamicImage control with an image from disk

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>DynamicImage Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DynamicImage ID=”Dynamicimage1” Runat=”server”
ImageFile=”wrox_logo.gif”>

</asp:DynamicImage>
</form>

</body>
</html>

The DynamicImage control uses the ImageFile attribute, which points to a Wrox logo that sits on a
hard drive and displays this image in the browser. If you look at the properties of the picture in the
browser, you see that the image displayed is exactly the same as the image stored on disk. The browser
is quite capable of displaying .gif files without any difficulty. Without this control, if you try to pull
open this page in a cell phone browser that understands only WML files, you have a problem. WML
browsers do not understand .gif images and cannot display them. This isn’t a problem for the new
DynamicImage control because it automatically converts the image to a format that the consuming
browser understands. Therefore, if you pull up the page from Listing 12-13 in a phone browser and
compare it to the same image invoked in a typical browser, the two look like Figure 12-12.

Figure 12-12362

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 362

In this example, the image shown in Microsoft Internet Explorer is a typical .gif image, whereas the
image shown in the phone is a MIME-type image/vnd.wap.wbmp being automatically converted by the
.axd HttpHandler. This feature alone makes it quite beneficial to work with the DynamicImage control.

Resizing images
Another outstanding feature of the new DynamicImage control is that, because it deals with the images
as a stream, the control can perform modifications on the images before sending them onward to the
container. For example, it can make larger images smaller.

As an example, I use a large image of my kids taken last winter that measures 1632 x 1224. This size is
too large to display in the browser in a meaningful fashion. Therefore, I can use the DynamicImage con-
trol to manage the image’s display size. Listing 12-14 shows how I can make the image smaller.

Listing 12-14: Resizing an image

<asp:DynamicImage ID=”Dynamicimage1” Runat=”server”
ImageFile=”kids.jpg” Width=”300”>

</asp:DynamicImage>

To change the size of an image with the DynamicImage control, you use the Width or Height attributes
of the <asp:DynamicImage> element. The image is automatically converted to the appropriate size. In
this case, I use the Width attribute and give it a value of 300, which means that the width of the image is
set to 300 pixels. No Height attribute is specified because the height of the image is changed along with
the width of the image. The DynamicImage control constrains the proportions of the image in order to
keep it set to a realistic factor. Remember that the large image is not actually compressed to a width of
300 pixels, but the image is redrawn so that it is only 300 pixels wide. This has huge ramifications,
especially for the performance for your ASP.NET pages. My resized image is shown in Figure 12-13.

Figure 12-13

363

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 363

Now that you can resize images on the fly, you can see that it is relatively easy to create dynamic thumb-
nails of your images to display in the browser.

Displaying images from streams
In the Web world, you can utilize a lot of images in your ASP.NET pages, but they come at you in a non-
typical format. For instance, if you retrieve an image sent from an XML Web service, invariably you
receive this image as a byte array. Getting an image as a byte array was always a tricky procedure in
ASP.NET 1.0/1.1. You had to save the file to disk before you could use it on your page. Now, with the
use of the DynamicImage control, you can retrieve images that come in this format and place them
directly on your page without saving them to disk first. You can also create dynamic images using tech-
nologies such as GDI+ and write these images directly to the browser. Listing 12-15 shows you how to
use GDI+ to display a dynamically created image directly in the browser.

Listing 12-15: A GDI+ image displayed with a DynamicImage control

VB
<%@ Page Language=”VB”%>
<%@ Import Namespace=”System.Drawing” %>

<script runat=”server”>
Public Function DrawText() As Bitmap

Dim myBitMap As Bitmap = New Bitmap(300, 300)
Dim myDraw As Graphics = Graphics.FromImage(myBitMap)
myDraw.DrawString(“This is actually an image.”, _

New Font(“Arial”, 12), Brushes.Black, 10, 10)
myDraw.DrawLine(New Pen(Color.Black), 2, 2, 10, 10)
myDraw.DrawLine(New Pen(Color.Black), 100, 100, 40, 40)

Return myBitMap
End Function

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dynamicimage1.Image = DrawText()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>GDI+</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DynamicImage ID=”Dynamicimage1” Runat=”server”>
</asp:DynamicImage>

</form>
</body>
</html>

364

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 364

C#
<%@ Page Language=”C#”%>
<%@ Import Namespace=”System.Drawing” %>

<script runat=”server”>
public Bitmap DrawText()
{

Bitmap myBitMap = new Bitmap(300, 300);
Graphics myDraw = Graphics.FromImage(myBitMap);
myDraw.DrawString(“This is actually an image.”,

new Font(“Arial”, 12), Brushes.Black, 10, 10);

myDraw.DrawLine(new Pen(Color.Black), 2, 2, 10, 10);
myDraw.DrawLine(new Pen(Color.Black), 100, 100, 40, 40);

return myBitMap;
}

void Page_Load(object sender, EventArgs e)
{

Dynamicimage1.Image = DrawText();
}

</script>

From this example, you can see that a DrawText method performs some pretty non-artistic tasks in the
creation of an image. In the Page_Load event, you use DynamicImage control’s Image property and
assign it the invocation of the DrawText method. As simply as that you create the image dynamically,
which is then displayed in the browser (see Figure 12-14).

Figure 12-14

365

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 365

ImageMap Server Control
Another image control that is new to ASP.NET 2.0 is the ImageMap server control. This control enables
you to turn an image into a navigation menu. In the past, many developers would break an image into
multiple pieces and put them together again in a table, which reassembled the pieces into one image. In
this way, when the end user clicks a particular piece of the overall image, the application can pick out
which piece of the image was chosen and base actions upon that particular selection.

With the new ImageMap control, you can take a single image and specify particular hotspots of the
image using coordinates. An example is shown in Listing 12-16.

Listing 12-16: Specifying sections of the image that are clickable

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Sub Imagemap1_Click(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.ImageMapEventArgs)

Response.Write(“You selected: “ & e.PostBackValue)
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:ImageMap ID=”Imagemap1” Runat=”server” ImageUrl=”kids.jpg”
Width=300 OnClick=”Imagemap1_Click” HotSpotMode=”PostBack”>

<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”0” Right=”150”
AlternateText=”Henri” PostBackValue=”Henri”>

</asp:RectangleHotSpot>
<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”151” Right=”300”
AlternateText=”Sofia” PostBackValue=”Sofia”>

</asp:RectangleHotSpot>
</asp:ImageMap>

</form>
</body>
</html>

C#
<%@ page language=”C#”%>

<script runat=”server”>
void Imagemap1_Click(object sender,

System.Web.UI.WebControls.ImageMapEventArgs e) {

Response.Write(“You selected: “ + e.PostBackValue);
}

</script>

366

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 366

This page brings up an image of my two kids. If you click the left side of the image, you select Henri,
and if you click the right side of the image, you select Sofia. You know which child you selected through
a Response.Write statement, as shown in Figure 12-15.

Figure 12-15

The ImageMap control enables you to specify hotspots in a couple of different ways. From the example
in Listing 12-16, you can see that these hotspots are placed in a rectangular fashion using the
<asp:RectangleHotSpot> element. This control takes the Top, Bottom, Left, and Right coordinates
of the rectangle that is to be the hotspot. Besides the <asp:RectangleHotSpot> control, you can also
use the <asp:CircleHotSpot> and the <asp:PolygonHotSpot> controls. Each control takes coordi-
nates appropriate to its shape.

After you define the hotspots on the image, you can respond to the end user click of the hotspot in sev-
eral ways. You first specify how you deal with the hotspot clicks in the root <asp:ImageMap> element
with the use the HotSpotMode attribute.

The HotSpotMode attribute can take the values PostBack, Navigate, or InActive. In the previous
example, the HotSpotMode value is set to PostBack — meaning that after the end user clicks the
hotspot, you want to postback to the server and deal with the click at that point.

Because the HotSpotMode is set to PostBack and you have created several hotspots, you must
determine which hotspot is selected. You make this determination by giving each hotspot
(<asp:RectangleHotSpot>) a postback value with the PostBackValue attribute. In the first hotspot,
the example uses Henri as the value, whereas the second hotspot uses Sofia as the value.

The PostBackValue attribute is also the helper text that appears in the browser (in the yellow box)
directly below the mouse cursor when the end user hovers the mouse over the hotspot.

367

Additional New Controls

12_572865 ch12.qxd 7/7/04 9:56 PM Page 367

After the end user clicks one of the hotspots from the previous example, the event procedure displays
the value that was selected in a Response.Write statement.

Instead of posting back to the server, you can also navigate to an entirely different URL when a
particular hotspot is selected. To accomplish this, you change the HotSpotMode attribute in the main
<asp:ImageMap> element to the value Navigate. Then within the <asp:RectangleHotSpot>
elements, simply use the NavigateUrl attribute and assign the location to which the end user should
be directed if this particular hotspot is clicked:

<asp:ImageMap ID=”Imagemap1” Runat=”server” ImageUrl=”kids.jpg”
HotSpotMode=”Navigate”>

<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”0” Right=”150”
AlternateText=”Henri” NavigateUrl=”HenriPage.aspx”>

</asp:RectangleHotSpot>
<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”151” Right=”300”
AlternateText=”Sofia” NavigateUrl=”SofiaPage.aspx”>

</asp:RectangleHotSpot>
</asp:ImageMap>

Summary
New server controls are fun. When they were first introduced, I kept saying to myself “this will save me
a ton of time,” “this will be so useful,” “this is going in my next project,” and so on. This chapter intro-
duced you to some of these new controls and to the different ways you might incorporate them into
your next projects.

The BulletedList control enables you to create all sorts of bulleted lists either directly from inline items or
from items contained in a data store of some kind. The HiddenField control allows for server-side access
to a very important HTML element that was formerly far more difficult to work with. Other controls
covered include the FileUpload control, which enables you to upload files easily to the server. I also cov-
ered the MultiView and View controls for working through processes, the Wizard control for advanced
process work, the DynamicImage control for working with images not found on disk, and finally the
ImageMap control for creating hotspots on an image. All these controls are wonderful options to use on
any of your ASP.NET pages, making it much easier to develop the functionality that your pages require.

368

Chapter 12

12_572865 ch12.qxd 7/7/04 9:56 PM Page 368

Changes to ASP.NET 1.0
Controls

This book, thus far, has given you a close look at the substantial new features in ASP.NET version
2.0, but you haven’t yet seen the changes that have taken place to the core controls already present
in ASP.NET 1.0/1.1. These controls still work as they did before. ASP.NET 2.0 is backward compat-
ible with the previous two versions of ASP.NET. This means that the control code that you wrote
in these past versions works in ASP.NET 2.0, but now you have more functionality for some of
these controls.

This chapter focuses on the enhancements to these controls that make them even better today.
Some of the improvements are minor, but others are quite dramatic. Some of the changes to the
simpler controls are reviewed first.

Label Server Control
The Label server control has always been a control that simply showed text. Now, it has a little bit
of extra functionality. The big change to the Label server control is that you can now give items in
your form hotkey functionality (also known as accelerator keys). This causes the page to focus on a
particular server control that you declaratively assign to a specific hotkey press (for example,
using Alt+N to focus on the first text box on the form).

A hotkey is a quick way for the end user to initiate an action on the page. For instance, with
Microsoft Internet Explorer you can press Ctrl+N to open a new instance of IE. Hotkeys have
always been quite common in thick-client applications (Windows Forms), so you can now use
them in ASP.NET. Listing 13-1 shows an example of how to give hotkey functionality to two text
boxes on a form.

13_572865 ch13.qxd 7/7/04 9:57 PM Page 369

Listing 13-1: Using the Label server control to provide hotkey functionality

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Label Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:Label ID=”Label1” Runat=”server” AccessKey=”N”
AssociatedControlId=”Textbox1”>User<u>n</u>ame</asp:Label>

<asp:Textbox ID=”TextBox1” Runat=”server”></asp:Textbox></p>
<p>

<asp:Label ID=”Label2” Runat=”server” AccessKey=”P”
AssociatedControlId=”Textbox2”><u>P</u>assword</asp:Label>

<asp:Textbox ID=”TextBox2” Runat=”server”></asp:Textbox></p>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit” />
</p>

</form>
</body>
</html>

Hotkeys are assigned with the AccessKey attribute. In this case, Label1 uses N, while Label2 uses P.
The second new attribute for the Label control is the AssociatedControlId attribute. The String
value placed here associates the Label control to another server control on the form. The value must be
one of the other server controls on the form. If not, the page gives you an error when invoked.

Now that these two controls are in place, when the page is called in the browser, you can press Alt+N or
Alt+P to automatically focus on a particular text box in the form. Notice in Figure 13-1 that I placed
HTML declared underlines for the letter to be pressed along with the Alt key that creates focus on the
control adjoining the text. This is not required, but I highly recommend it because it is what the end user
expects when working with hotkeys. In this case, I have underlined the letter n in Username and the let-
ter P in Password.

Figure 13-1

370

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 370

When working with hotkeys, be aware that not all letters are available to use with the Alt key. Microsoft
Internet Explorer already uses Alt+F, E, V, I, O, T, A, W, and H. If you use any of these letters, IE actions
supersede any actions on the page.

Button, LinkButton, and ImageButton
Server Controls

Frequently, buttons are used for submitting information and causing actions to occur on a Web page.
Before ASP.NET 1.0/1.1, people intermingled quite a bit of JavaScript in their pages to fire JavaScript
events when a button was clicked. This process became more cumbersome in ASP.NET 1.0/1.1, but now
with ASP.NET 2.0, it is much easier.

You can create a page that has a JavaScript event, as well as a server-side event, triggered when the but-
ton is clicked, as illustrated in Listing 13-2.

Listing 13-2: Two types of events for the button

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Response.Write(“Postback!”)
End Sub

</script>

<script language=javascript>
function AlertHello()
{

alert(‘Hello ASP.NET’);
}

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Button Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Button ID=”Button1” Runat=”server” Text=”Button”
OnClientClick=”AlertHello()” OnClick=”Button1_Click” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Button1_Click(object sender, EventArgs e)

(continued)

371

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 371

Listing 13-2: (continued)

{
Response.Write(“Postback!”);

}
</script>

A couple of things are happening here. The first thing to notice is the new attribute for the Button server
control: OnClientClick. This attribute points to the client-side function, unlike the OnClick attribute
that points to the server-side event. In this case, I have created a JavaScript function called
AlertHello().

One cool thing about Visual Studio 2005 is that now it can work with server-side script tags that are right
alongside client-side script tags. This all works together seamlessly now. In the example, after the
JavaScript alert dialog is issued (see Figure 13-2) and the end user clicks OK, the page posts back as the
server-side event is triggered.

Figure 13-2

Another new and exciting attribute for the button controls is the PostBackUrl attribute. It enables you
to perform cross-page posting, instead of simply posting your ASP.NET pages back to the same page, as
shown in the following example:

<asp:Button ID=”Button2” Runat=”server” Text=”Submit page to Page2.aspx”
PostBackUrl=”Page2.aspx” />

Cross-page posting is covered in greater detail in Chapter 3.

DropDownList, ListBox, CheckBoxList,
and RadioButtonList Server Controls

The DropDownList, ListBox, CheckBoxList, and RadioButtonList server controls now give you the capabil-
ity to visually remove items from the collection displayed in the control, although you can still work with
the items that aren’t displayed in your server-side code. For a quick example of this, create a drop-down

372

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 372

list with three items, one of which will not display. On the postback, however, you should still be able to
work with the ListItem’s Value or Text property, as illustrated in Listing 13-3.

Listing 13-3: Disabling certain ListItems from a collection

VB
<%@ page language=”VB” %>

<script runat=”server”>
Sub Dropdownlist1_SelectedIndexChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
Response.Write(“You selected item number “ & _

Dropdownlist1.SelectedValue & “
”)
Response.Write(“You didn’t select item number “ & _

Dropdownlist1.Items(1).Value)
End Sub

</script>

<html>
<head runat=”server”>

<title>DropDownList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DropDownList ID=”Dropdownlist1” Runat=”server” AutoPostBack=”True”
OnSelectedIndexChanged=”Dropdownlist1_SelectedIndexChanged”>

<asp:ListItem Value=”1”>First Choice</asp:ListItem>
<asp:ListItem Value=”2” Enabled=”False”>Second Choice</asp:ListItem>
<asp:ListItem Value=”3”>Third Choice</asp:ListItem>

</asp:DropDownList>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{

Response.Write(“You selected item number “ +
Dropdownlist1.SelectedValue + “
”);

Response.Write(“You didn’t select item number “ +
Dropdownlist1.Items(1).Value);

}
</script>

From the code, you can see that the <asp:listitem> element has a new attribute: Enabled. The
Boolean value given to this element dictates whether an item in the collection is displayed. If you use
Enabled=”False”, the item is not displayed, but you still have the capability to work with the item if
required in the server-side code displayed in the DropDownList1_SelectedIndexChanged event. The
result of the output from these Response.Write statements is shown in Figure 13-3.

373

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 373

Figure 13-3

Image Server Control
Special circumstances can prevent end users from viewing an image that is part of your Web page. They
might be physically unable to see the image, or they might be using a text-only browser. In these cases,
their browsers look for the element’s longdesc attribute, which points to a file containing a long
description of the image that is displayed.

For these cases, the Image server control now includes a new DescriptionUrl attribute. The value
assigned to this attribute is a text file, which contains a thorough description of the image with which it
is associated. You use it as shown in Listing 13-4.

Listing 13-4: Using the DescriptionUrl attribute

<asp:Image ID=”Image1” Runat=”server” DescriptionUrl=”~/Image01.txt” />

This produces the following results in the browser:

Table Server Control
The Table server control is enhanced with some extra features as well. One of the simpler new additions is
the capability to add captions to the tables on Web pages. A table with a caption is displayed in Figure 13-4.

To give your page a caption, simply use the new Caption attribute in the Table control as illustrated in
Listing 13-5.

374

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 374

Figure 13-4

Listing 13-5: Using the new Caption attribute

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” ><head runat=”server”>
<title>Table Server Control</title>

</head>
<body>

<form id=”form1” runat=”server”>
<asp:Table ID=”Table1” Runat=”server”
Caption=”Table 1: This is an example of a caption above a table.”
BackColor=Gainsboro>

<asp:TableRow ID=”Tablerow1” Runat=server>
<asp:TableCell ID=”Tablecell1” Runat=”server”>Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aliquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</asp:TableCell>

</asp:TableRow>
</asp:Table>

</form>
</body>
</html>

By default, the caption is placed at the top center of the table, but you can also control where the caption
is placed by using the second new attribute — CaptionAlign. The possible settings for this attribute
include Bottom, Left, NotSet, Right, and Top.

375

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 375

In the past, an <asp:Table> element contained any number of <asp:TableRow> elements. Now you
have some additional elements that can be nested within the <asp:Table> element. These new ele-
ments include the <asp:TableHeaderRow> and the <asp:TableFooterRow> elements. These two new
elements add either a header or footer to your table. These headers and footers enable you to use the
Table server control to page through lots of data but still retain some text in place to indicate the type of
data being handled. This is quite powerful when you work with mobile applications because sometimes
end users are able to move through only a few records at a time.

Literal Server Control
The Literal server control was always used in the past for text that you wanted to remain unchanged on
your page. The Label server control altered the output by placing elements around the text as
shown:

Here is some text

The Literal control just output the text without the elements. The Literal server control now
includes the new attribute Mode that allows you to dictate how the text assigned to the control is inter-
preted by the ASP.NET engine.

If you place some HTML code in the string that is output (for instance, Here is some text),
the Literal control outputs just that and the consuming browser shows the text as bold:

Here is some text

Adding Mode=”Encode” encodes the output before it is received by the consuming application:

Label

Now, instead of the text being converted to a bold font, the elements are displayed:

Here is some text

This is ideal if you want to display code in your application. Other values for the Mode attribute include
Transform and PassThrough. Transform looks at the consumer and includes or removes elements as
needed. For instance, not all devices accept HTML elements and, if the value of the Mode attribute is set
to Transform, these elements are removed from the string before it is sent to the consuming application.
A value of PassThrough for the Mode property means that the text is sent to the consuming application
without any changes made to the string.

AdRotator Server Control
Although Web users find ads rather annoying, advertising continues to be prevalent everywhere on the
Web. The AdRotator server control has been enhanced quite a bit to give you several different ways to
incorporate ads into your Web applications. The biggest change to this control is that it now enables you

376

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 376

to utilize pop-up or pop-under ads in addition to the standard banner ads. With the AdRotator control
you can now use advertisement data from sources other than the standard XML file that was used with
the previous versions of this control.

If using an XML source for the ad information, you first create an XML advertisement file. This adver-
tisement file is quite similar to the previous advertisement file, but you can now incorporate some new
elements that give you even more control over the appearance and behavior of your ads. Listing 13-6
shows an example of the XML advertisement file.

Listing 13-6: The XML advertisement file

<?xml version=”1.0” encoding=”utf-8” ?>
<Advertisements>
<Ad>

<ImageUrl>book1.gif</ImageUrl>
<NavigateUrl>http://www.wrox.com</NavigateUrl>
<AlternateText>Visit Wrox Today!</AlternateText>
<Impressions>50</Impressions>
<Keyword>VB.NET</Keyword>
<Height>126</Height>
<Width>100</Width>

</Ad>
<Ad>

<ImageUrl>book2.gif</ImageUrl>
<NavigateUrl>http://www.wrox.com</NavigateUrl>
<AlternateText>Visit Wrox Today!</AlternateText>
<Impressions>50</Impressions>
<Keyword>XML</Keyword>
<Height>125</Height>
<Width>100</Width>

</Ad>
</Advertisements>

This XML file, used for storing information about the advertisements that appear in your application,
has some new elements detailed in the following table.

New Element Description

CounterGroup Specifies the group that is used by the new site counter capabilities in
ASP.NET.

CounterName Specifies the name of the counter used.

Height Takes a numerical value that indicates the height of the ad in pixels.

Width Takes a numerical value that indicates the width of the ad in pixels.

Now that the XML advertisement file is in place, you can simply use the AdRotator control as before.
This is shown in Listing 13-7.

377

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 377

Listing 13-7: Using the AdRotator control as a banner ad

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>AdRotator Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:AdRotator ID=”AdRotator1” Runat=”server”
AdvertisementFile=”MyAds.xml” />

<p>Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aliquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</p>

</form>
</body>
</html>

This example shows the ad that is specified in the XML advertisement file as a banner ad at the top of
the page. You can easily change the AdRotator control, however, so that instead of appearing directly on
the page, it displays as a pop-up or pop-under ad instead. A pop-up ad is an ad that is shown in a sepa-
rate browser instance on top of the page that is currently being viewed, whereas a pop-under ad is an ad
that is shown in a separate browser instance that appears under the page that is currently being viewed.
In the latter case, the end user might not see the ad until much later in the browsing experience.

To change the ad from Listing 13-7 so that it appears as a pop-up, you use the AdType property:

<asp:AdRotator ID=”AdRotator1” Runat=”server”
AdvertisementFile=”MyAds.xml” AdType=”popup” />

This causes the ad to appear as a pop-up ad as illustrated in Figure 13-5.

To have the ad appear as a pop-under ad, change the value of the AdType property to PopUnder:

<asp:AdRotator ID=”AdRotator1” Runat=”server”
AdvertisementFile=”MyAds.xml” AdType=”popunder” />

As you can see from Figure 13-5, the ad appears as a pop-up directly in the center of the screen. This is
the default behavior (also for the pop-under ads). To change the location of the pop-up or pop-under ads
on the screen, you can use the AdRotator’s PopPositionLeft and PopPositionTop attributes:

<asp:AdRotator ID=”AdRotator1” Runat=”server”
PopPositionLeft=”25” PopPositionTop=”25”
AdvertisementFile=”MyAds.xml” AdType=”popup” />

378

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 378

Figure 13-5

This change causes the ad to appear 25 pixels down from the top-left corner of the screen and 25 pixels
over from the left side of the screen, as illustrated in Figure 13-6.

Figure 13-6

You can also control the frequency of the pop-up or pop-under rate with the new PopFrequency attribute
to ensure these pop-ups or pop-unders don’t appear each and every time someone visits the page:

<asp:AdRotator ID=”AdRotator1” Runat=”server”
PopFrequency=”50”
AdvertisementFile=”MyAds.xml” AdType=”popup” />

The default value of the PopFrequency attribute is 100, which means that the pop-up or pop-under ads
appear 100% of the time. Changing the value to 50, as shown in the preceding code snippet, means that
the ads appear in only 50% of the instances when someone invokes the page in the browser.

379

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 379

You are not required to place all your ad information in the XML advertisement file, but instead, you can
use another data source to which you bind the AdRotator. For instance, you bind the AdRotator to a
SqlDataSource object that is retrieving the ad information from SQL Server in the following fashion:

<asp:AdRotator ID=”AdRotator1” Runat=”server”
DataSourceId=”SqlDataSource1” AlternateTextField=”AlternateTF”
ImageUrlField=”Image” NavigateUrlField=”NavigateUrl”
AdType=”popup” />

The AlternateTextField, ImageUrlField, and NavigateUrlField properties point to the column
names that are used in SQL Server for those items.

Panel Server Control
The Panel server control encapsulates a set of controls you can use to manipulate or lay out your
ASP.NET pages. The Panel control is basically a wrapper for other controls. It enables you to take a
group of server controls along with other elements (such as HTML and images) and turn them into a
single unit.

The advantage of using the Panel control to encapsulate a set of other elements is that as a single unit,
you can manipulate these elements with a single attribute set in the Panel control itself. For example, set-
ting the Font-Bold attribute to True causes each item within the panel control to adopt this attribute.

The new addition to the Panel control is the capability to scroll with scrollbars that appear automatically
depending on the amount of information that Panel control holds. You can even specify how the scroll-
bars should appear.

For an example of using scrollbars, look at a long version of the Lorem Ipsum text (found at www
.lipsum.com) and place that text within the Panel control as shown in Listing 13-8.

Listing 13-8: Using the new scrollbar feature with the Panel server control

<%@ Page Language=”VB” %>

<html>
<head runat=”server”>

<title>Panel Server Control Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Panel ID=”Panel1” Runat=”server” Height=”300” Width=”300”
ScrollBars=”auto”>

<p>Lorem ipsum dolor sit amet...</p>
</asp:Panel>

</form>
</body>
</html>

380

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 380

By assigning values to the Height and Width attributes of the Panel server control and using the
ScrollBars attribute (in this case, set to Auto), you can display the information it contains within the
defined area using scrollbars (see Figure 13-7).

Figure 13-7

As you can see from the figure, a single vertical scrollbar has been added to the set area of 300 x 300 pix-
els. The Panel control wraps the text by default as required. To change this behavior, you can use the
new Wrap attribute, which takes a Boolean value:

<asp:Panel ID=”Panel1” Runat=”server”
Height=”300” Width=”300” ScrollBars=”Auto”
Wrap=”False” />

Turning off wrapping may cause the horizontal scrollbar to turn on (depending on what is contained in
the panel section).

If you don’t want to let the ASP.NET engine decide which scrollbars to activate, you can actually make
that decision with the use of the ScrollBars attribute. Other values of this attribute besides Auto
include None, Horizontal, Vertical, and Both.

Another interesting attribute that allows you to change the behavior of the Panel control is the
HorizontalAlign attribute. When using this attribute, you can set how the content in the Panel control
is horizontally aligned. The possible values of this attribute include NotSet, Center, Justify, Left, and
Right. Figure 13-8 shows a collection of Panel controls with different horizontal alignments for each.

381

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 381

Figure 13-8

It is also possible to move the vertical scrollbar to the left side of the Panel control with the use of the
Direction attribute. This attribute can be set to NotSet, LeftToRight, and RightToLeft. A setting of
RightToLeft is ideal when you are dealing with languages that are written from right to left (some
Asian languages, for example). This setting, however, also moves the scrollbar to the left side of the
Panel control. If the scrollbar is moved to the left side and the HorizontalAlign attribute is set to Left,
your content resembles Figure 13-9.

Figure 13-9

Validation Server Controls
In many instances, developers want to place more than one form on a single page. This was always pos-
sible in ASP.NET 1.0/1.1 because different button clicks could be used to perform different server-side
events. Some issues related to this type of construction were problematic, however.

One of these issues was the difficulty of having validation controls for each of the forms on the page.
Different validation controls were often assigned to two distinct forms on the page. When the end user

Center aligned Justified Left align Right align

382

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 382

submitted one form, the validation controls in the other form were fired (because the user was not work-
ing with that form), thereby stopping the first form from being submitted.

Figure 13-10, for example, shows a basic page for the St. Louis .NET User Group that includes two forms.

Figure 13-10

One of the forms is for members of the site to supply their usernames and passwords to log in to the
Members’ Only section of the site. The second form on the page is for anyone who wishes to sign up for the
user group’s newsletter. Each form has its own button and some validation controls associated with it. The
problem arises when someone submits information for one of the forms. For instance, if you are a member
of the group, supply your username and password, and click the Login button, the validation controls for
the newsletter form fire because no e-mail address was placed in that particular form. If someone interested
in getting the newsletter places an e-mail address in the last text box and clicks the Sign-up button, the vali-
dation controls in the first form fire because no username and password were input in that form.

ASP.NET 2.0 now provides you with a ValidationGroup property that enables you to separate the vali-
dation controls into separate groups. It allows you to activate only the required validation controls when
an end user clicks a button on the page. Listing 13-9 shows an example of separating the validation con-
trols on a user group page into different buckets.

Listing 13-9: Using the ValidationGroup property

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Validation Groups</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>St. Louis .NET User Group</h1>

(continued)

383

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 383

Listing 13-9: (continued)

<p>Username:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox> Password:
<asp:TextBox ID=”TextBox2” Runat=”server”
TextMode=”Password”></asp:TextBox>

<asp:Button ID=”Button1” Runat=”server” Text=”Login”
ValidationGroup=”Login” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” Runat=”server”
ErrorMessage=”* You must submit a username!”
ControlToValidate=”TextBox1” ValidationGroup=”Login”>

</asp:RequiredFieldValidator>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2” Runat=”server”
ErrorNessage=”* You must submit a password!”
ControlToValidate=”TextBox2” ValidationGroup=”Login”>

</asp:RequiredFieldValidator>
<p>

Our main meeting is almost always held on the last Monday of the month.
Sometimes due to holidays or other extreme circumstances,
we move it to another night but that is very rare. Check the home page
of the web site for details. The special
interest groups meet at other times during the month. Check the SIG
page and visit their individual sites for more information.
You can also check out calendar page for a summary of events.

</p>
<h2>Sign-up for the newsletter!</h2>
<p>Email:
<asp:TextBox ID=”TextBox3” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button2” Runat=”server” Text=”Sign-up”
ValidationGroup=”Newsletter” />

<asp:RegularExpressionValidator ID=”RegularExpressionValidator1”
Runat=”server”
ErrorMessage=”* You must submit a correctly formatted email address!”
ControlToValidate=”TextBox3” ValidationGroup=”Newsletter”>

</asp:RegularExpressionValidator>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator3” Runat=”server”
ErrorMessage=”* You forgot your email address!”
ControlToValidate=”TextBox3” ValidationGroup=”Newsletter”>

</asp:RequiredFieldValidator>
</p>

</form>
</body>
</html>

The use of the ValidationGroup property in this page is shown in bold. You can see that this property
takes a String value. The other item to notice is that not only validation controls have this new prop-
erty. The core server controls also have the ValidationGroup property because things like button clicks
must be associated with specific validation groups.

384

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 384

In this example, each of the buttons has a distinct validation group assignment. The first button on the
form uses Login as a value and the second button on the form uses Newsletter as a value. Then each
of the validation controls is associated with one of these validation groups. Because of this, when the
end user clicks on the Login button on the page, ASP.NET recognizes that it should work only with the
validation server controls that have the same validation group name. ASP.NET ignores the other valida-
tion controls that are assigned to other validation groups.

Using this enhancement, you can now have multiple sets of validation rules fired only when you want
them to be fired (see Figure 13-11).

Figure 13-11

Another great feature that has been added to validation controls is a property called SetFocusOnError.
This property takes a Boolean value and, if a validation error is thrown when the form is submitted, the
property places the page focus on the form element that receives the error. The SetFocusOnError prop-
erty is used in the following example:

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” Runat=”server”
ErrorMessage=”* You must submit a username!”
ControlToValidate=”TextBox1” ValidationGroup=”Login” SetFocusOnError=”True”>

</asp:RequiredFieldValidator>

If RequiredFieldValidator1 throws an error because the end user didn’t place a value in TextBox1,
the page is redrawn with the focus in TextBox1, as shown in Figure 13-12.

Note that if you have multiple validation controls on your page with the SetFocusOnError property
set to True and there is more than one validation error, the uppermost form element that has a valida-
tion error gets the focus. In the previous example, if both the username text box (TextBox1) and the
password text box (TextBox2) have validation errors associated with them, the page focus is assigned to
the username text box because it is the first control on the form with an error.

385

Changes to ASP.NET 1.0 Controls

13_572865 ch13.qxd 7/7/04 9:57 PM Page 385

Figure 13-12

Summary
In this chapter, I showed you the numerous new capabilities and features added to ASP.NET in this lat-
est version, and they are pretty astounding. You have more than 40 new server controls at your disposal,
besides some great changes to the server controls that you already use on a day-to-day basis from
ASP.NET 1.0/1.1.

This chapter covered changes to controls such as the Label, Table, and Validation server controls. The
new features added to classic server controls are, in many ways, just as outstanding as the new controls
that appear in ASP.NET 2.0. The new features added to the classic controls make it easy to extend the
capabilities of your ASP.NET applications.

386

Chapter 13

13_572865 ch13.qxd 7/7/04 9:57 PM Page 386

Administration and
Management

The exciting 2.0 version of ASP.NET adds a lot of punch to developer productivity. In addition to
incorporating a lot of common Web site functionality, new features in ASP.NET make it easier to
manage ASP.NET applications. These new ASP.NET administration and management capabilities
are designed to fill the pressing needs of developers. This chapter introduces the new management
dialogs for working with ASP.NET applications that run on IIS, as well as showing you the new
ASP.NET Web Site Administration Tool.

The MMC ASP.NET Snap-In
One great new addition to ASP.NET management is the ASP.NET tab in the Microsoft
Management Console if you are using IIS for the basis of your ASP.NET applications. To get at this
new ASP.NET tab, open IIS and expand the Web Sites folder. This folder shows a list of all the
Web sites configured to work with IIS. Remember that not all of your Web sites are configured to
work in this manner. It is also possible to create ASP.NET applications that make use of the new
ASP.NET built-in Web server.

After you find the application you are looking for in the Web Sites folder, right-click that applica-
tion and select Properties (see Figure 14-1).

Selecting the Properties option brings up the MMC console. The far-right tab is the ASP.NET tab.
Click this tab to get the results shown in Figure 14-2. You should also note that selecting one of the
application folders lets you edit the web.config file from the MMC snap-in; selecting Properties
for the default Web site (the root node) lets you edit the machine.config file.

14_572865 ch14.qxd 7/7/04 9:57 PM Page 387

Figure 14-1

Figure 14-2
388

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 388

The top configuration panel for ASP.NET enables you to change the following items:

❑ ASP.NET Version: The .NET Framework version number on which the ASP.NET application is
to run. Be careful about switching versions of the application. Some minor breaking changes
may cause errors in different versions of the framework.

❑ Virtual path: The virtual path of the application. In this case, Visual Studio creates an applica-
tion titled MyIISApp with a MyIISApp virtual directory.

❑ File location: The location of the file being altered by the MMC console. In most cases, these
configuration GUIs alter the web.config file. In this case, the file location is the web.config
file in the MyIISApp application.

❑ File creation date: The date when the web.config file was created.

❑ File last modified: The date when the web.config file was last modified either manually, using
the MMC console, or by the ASP.NET Web Site Administration Tool.

In addition to these items, the ASP.NET tab also includes an Edit Configuration button that provides a
tremendous amount of modification capabilities to use in the web.config file. When you click this but-
ton, you see a multitabbed GUI titled ASP.NET Configuration Settings. The following sections review
each of the tabs available to you through this MMC console.

General
The first tab, labeled General, enables you to manage connection strings and app settings for your appli-
cation. Figure 14-3 shows an example of one setting for an application.

Figure 14-3 389

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 389

The General tab has two sections. One is for adding, editing, or removing connection strings; the other is
for adding, editing, and removing app settings. Both of these items work with name/value pairs. If you
choose to add a connection string to your application, click the Add button in the top section
(Connection String Manager) to see the dialog in Figure 14-4.

Figure 14-4

The Edit/Add Connection String dialog asks for the Name and the Connection Parameter for the con-
nection string. Supplying this information and clicking OK provides your application with a connection
string.

If you select the Edit/Add buttons in the bottom section (App Settings), you see the dialog shown in
Figure 14-5.

Figure 14-5

The Edit/Add Application Settings dialog asks for a Key and Value pair. After you add these items and
click OK, the settings appear in the list in the main dialog. You can now either edit or delete the settings
from the application.

Custom Errors
The second tab is the Custom Errors tab. This section of the console enables you to add custom error
pages or redirect users to particular pages when a specific error occurs in the application. Figure 14-6
shows an example of the Custom Errors tab.

390

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 390

Figure 14-6

This particular tab allows you to work with the following items:

❑ Custom error mode: This drop-down list applies custom errors for particular users of the appli-
cation. The default option is Remote Only. This option ensures that errors are redirected only for
users who are on a remote machine. The other settings for this drop-down list include On and
Off. On turns on the error redirection for all users, whereas the Off setting turns off the error
redirecting for all users.

❑ Default redirect URL: The URL to which all errors are redirected.

❑ Inherited custom errors: All the errors that have been inherited from server defaults. These can
be redirections for custom errors that are set in the machine.config file.

❑ Local custom errors: The errors that are set by you for this particular application. Error redirec-
tions are set using a name/value pair for Status Code/Redirect URL.

Authorization
The third tab is the Authorization tab. This section of the MMC enables you to authorize specific users or
groups for the application (see Figure 14-7).

391

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 391

Figure 14-7

This section enables you to create roles made up of multiple users and/or groups. This dialog contains
two items:

❑ Inherited authorization rules: All the authorization rules inherited from server defaults. These
can be roles that are established in the machine.config file of the server.

❑ Local authorization rules: The authorization rules that you set for this particular application.

From this dialog, you can add, edit, or remove roles that have been created. If you click the Add button,
the dialog shown in Figure 14-8 appears.

You can either allow or deny users access to the application by using the Edit Rule dialog. To use this
feature, click the appropriate option in the Rule Type section.

The Verbs section allows you to apply a specific rule to those end users retrieving the page via all possi-
ble means (HTTP-POST or HTTP-GET), or to narrow the rule to cover only the specific verbs you want
using the second option. Remember that the verb of a request is in how the request is actually made. The
possible options specify that the request can be made either using HTTP-POST or HTTP-GET.

The final section, Users and Roles, enables you to choose who you want the rule to be applied to: all
users that come to the site, anonymous users only, specific users, or users contained within specific
groups.

392

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 392

Figure 14-8

Authentication
The fourth tab in the MMC dialog is the Authentication tab (see Figure 14-9). This tab enables you to
modify how your application will authenticate users for later authorization.

Figure 14-9

393

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 393

This dialog contains many options because you can work with the authorization of your end users in so
many ways. The following list describes some of the items in this dialog:

❑ Application Settings: This section of the dialog lets you set the authentication mode of your
application. The options in the drop-down list include Windows, Forms, Passport, or None. If
you select Forms, the grayed-out options (shown in Figure 14-9) are available and enable you to
modify all the settings that determine how forms authentication is applied.

❑ Membership: The Membership section enables you to tie the membership process to one of the
available data providers available on your server. From this section, you can click the Manage
Providers button to add, edit, or remove providers.

❑ Roles: From the Roles section, you can enable role-based management by checking the check
box. From here, you can also tie the role management capabilities to a particular data provider.

Clicking the Manage Providers button opens the Provider Settings dialog (see Figure 14-10), which
enables you to work with the data providers on the server.

Figure 14-10

From the Provider Settings dialog, you can add, edit, or remove providers. You can also edit the settings
of a particular provider. To edit any of the options in the dialog, just highlight the property that you
want to change and click the Edit button. A new dialog pops up, which enables you to make changes.

Application
The fifth tab, Application, enables you to make more specific changes to the pages in the context of your
application. From this dialog, shown in Figure 14-11, you can change how your pages are compiled and
run. You can also make changes to global settings in your application.

394

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 394

Figure 14-11

Again, this dialog provides you with a wealth of available options for modifying how the pages are run
in a specific application as well as how your applications, in general, are built and run. The following list
briefly describes some of these options:

❑ Common Compilation, Page, and Runtime Settings: This section includes a number of items
that are very page-specific. From the first drop-down list, you can select the default language of
your application. The available options include all the Microsoft .NET-compliant languages —
C#, VB, JS, VJ#, and CPP. Other settings enable you to set the default theme or master page that
your ASP.NET pages use during construction.

❑ Globalization Settings: This section allows you to set the default encodings and the cultures for
your application.

❑ Identity Settings: The Identity Settings enable you to run the ASP.NET worker-process under a
specific user account.

State Management
ASP.NET applications, being stateless in nature, are highly dependent on how state is stored. The sixth
tab, the State Management tab (see Figure 14-12), enables you to change a number of different settings
that determine how state management is administered.

395

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 395

Figure 14-12

Because you can apply state management to your applications in a number of ways, this dialog allows
for a number of different settings — some of which are enabled or disabled based on what is selected.
The following list describes some of the available items in this dialog:

❑ Session state mode: This section enables you to determine how the sessions are stored by the
ASP.NET application. The default option (shown in Figure 14-12) is InProc. Other options
include Off, StateServer, and SQLServer. Running sessions in-process (InProc) means that the
sessions are stored in the same process as the ASP.NET worker process. Therefore, if IIS is shut
down and then brought up again, all the sessions are destroyed and unavailable to end users.
StateServer means that sessions are stored out-of-process by a Windows service called ASPState.
SQLServer is by far the most secure way to deal with your sessions@@it stores them directly in
SQL Server itself. Although it is the most secure method, it is also the least performance-efficient
method.

❑ Cookieless mode: The Cookieless mode section enables you to change how the identifiers for
the end user are stored. The default setting uses cookies (UseCookies). Other possible settings
include UseUri, AutoDetect, and UseDeviceProfile.

❑ Session timeout: Sessions are only stored for a short period of time before they expire. For
years, the default has been 20 minutes. Changing the value here changes how long the sessions
created by your application are valid.

396

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 396

Advanced
The last tab, the Advanced tab, is basically a catch-all for all other possible settings in the web.config
file. The uppermost drop-down list in the dialog allows you to change the entire page of options. The
available sections include

❑ Pages & Tracing

❑ Compilation

❑ Http Handlers

❑ Http Runtime

❑ Locations

❑ Http Modules

❑ Trust

I don’t have room to discuss all of these sections in depth, but I cover some of the more interesting ones
in the following paragraphs. Figure 14-13 shows the first option, Pages & Tracing, selected.

Figure 14-13

397

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 397

The Pages & Tracing page lets you determine how the pages are run and traced. You can decide whether
smart navigation, view state, response buffering, or request validation is enabled. With tracing, you can
set how tracing functions, including whether tracing is used for local requests only, and also how the
tracing information is sorted.

The Compilation section of the Advanced tab enables you to define how your ASP.NET pages are com-
piled. For example, you can define whether Visual Basic’s Option Strict is always enabled or not enabled
during the compilation process. You can also specify the local assemblies that are compiled with the
application.

The Http Handlers section of the Advanced tab, shown in Figure 14-14, enables you to make modifica-
tions to the handlers available for your application. By default, a number of handlers — such as han-
dlers for tracing and the ASP.NET Web Site Administration Tool — are already in place. In this section of
the dialog, you can add, edit, or remove handlers.

Figure 14-14

Another Advanced tab option, Http Runtime, is shown in Figure 14-15. This section enables you to set the
maximum request length that your application can deal with. By default, this is set at around 4MB, but for
security purposes it is always better to lower this number to something that are you still comfortable with.
Other options in this dialog enable you to set the minimum number of free threads for new requests, the
minimum number of free threads for new local requests, and the application request queue limit.

398

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 398

Figure 14-15

Although a number of other settings are possible through the MMC console, I will stop here. The point is
that if you are an administrator of ASP.NET applications, gone are the days when you were required to
go to XML files to fiddle with the settings. Fiddling is an error-prone method of administration and is
effectively eliminated through the new administration GUIs — one of which is provided by the new
ASP.NET MMC snap-in.

Next, I show you the other administration tool for ASP.NET — the ASP.NET Web Site Administration Tool.

ASP.NET Web Site Administration Tool
In addition to the new ASP.NET snap-in for the MMC console, another outstanding new GUI-based tool
for administering your Web site is the ASP.NET Web Site Administration Tool (WAT). WAT lets you
work in Visual Studio 2005 or directly from the browser to modify the settings stored within the applica-
tion’s web.config file.

By default, all local users can automatically use WAT to administer settings for their Web applications.
The settings are primarily set and stored within your application’s web.config file. If your application
doesn’t have a web.config file, WAT creates one for you. The changes that you make using WAT are
immediately applied to the web.config file.

399

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 399

You can get at WAT in a couple of ways. The first is to click the ASP.NET Configuration button in Visual
Studio Solution Explorer. This opens up a new tab in the document window, which is basically just a
browser view of WAT, as shown in Figure 14-16.

Figure 14-16

This figure shows the ASP.NET Web Site Administration Tool running in Visual Studio 2005 as one of the
tabs in the document window. You can see from the screen shot that ASP.NET also fires up a new
instance of the built-in ASP.NET Web Server to run the tool. Using WAT directly in Visual Studio allows
you to change your application’s settings in a GUI-fashion, as opposed to working from an XML file (as
you did with ASP.NET 1.0/1.1).

Another option for working with WAT is to pull it up directly in the browser instead of working with it
in Visual Studio. To do this, you must call the appropriate http handler. The following URL shows what
you type into the browser for an application called myWeb:

http://localhost/myWeb/Webadmin.axd

Typing this line gives you the results shown in Figure 14-17.

400

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 400

Figure 14-17

You can also get at WAT by clicking Website ➪ ASP.NET Configuration in the menu bar of Visual Studio.
Whether you pull up WAT in Visual Studio or directly in the browser makes no difference. Accessing
WAT directly from Internet Explorer is ideal for developers who are working with remote or hosted
applications and must change settings on the fly.

Now that you know how to get at WAT, take a look at each of the sections that it provides.

Home
WAT is made up of five tabs. The first tab, Home, is a summary tab that provides you with some basic
information about the application you are monitoring or modifying.

Using this tab, you can see the name of the application and the current user context in which you are
accessing the application. In addition to these basic items, you see links to the other four tabs of the WAT
application — some of which provide you with a summary of the settings contained in them. To make
changes to your application, you click the appropriate tab or link.

401

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 401

Security
The second tab, Security (see Figure 14-18), enables you to set up the authentication aspect of your
ASP.NET application. You can set the authentication type, roles, and rules for your application.

Figure 14-18

At the bottom of the page on the Security tab, the Select Authentication Type link brings you to a new
page that asks whether your application is going to run on a network or be open to the public. If you
choose to run your application on a closed network, Windows authentication is applied. If you say that
your application will be exposed to the Internet, your application is configured for Forms authentication.

The Roles section enables to create roles that you can apply to your application. First you have to click
the Enable Roles link that enables the Create Roles and Manage Roles links. With these two links, you
can create roles (by giving a role a specific name) and then assign users to the roles you create.

The Access Rules section offers an outstanding way to give or deny access to certain roles or users down
to the folder level. After you create a rule, you can edit or delete it.

402

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 402

The other option on the Security tab is the Security Setup Wizard. This wizard, shown in Figure 14-19,
makes it even easier to set up the users, roles, and rules because it takes you through a step-by-step process.

Figure 14-19

From the first page of the Security Setup Wizard, you see steps listed for a number of different tasks.
These steps enable you to select the Windows or Forms authentication, choose the data provider you
want to use, define the roles, add users, and then create rules for your application.

Profile
Using the Profile tab, shown in Figure 14-20, you can set up your application to work with the new per-
sonalization management system. The personalization system allows you to store unique values for
authenticated or unauthenticated users.

403

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 403

Figure 14-20

The ASP.NET personalization features are enabled by default; therefore, the Enable Profile section lets
you disable personalization if you want. It also allows you to enable personalization for anonymous
users — something that is disabled by default. With the Manage Profile section, you create, edit, or
delete profile properties or groups of properties. The last section, Clean Up (Remove) Data, enables you
to set a date when personalization points become stale. This setting removes the personalization points
from your data store if they are older than the date specified.

Application
The Application tab, shown in Figure 14-21, enables you to create application settings (key/value pairs),
configure site counters, apply settings so your application can send e-mails, as well as modify debug-
ging, tracing, and error page settings.

404

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 404

Figure 14-21

Provider
The final tab in the Web Admin tool is the Provider tab (see Figure 14-22). You use this tab to set up addi-
tional providers and to determine the providers your application will use.

405

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 405

Figure 14-22

This Provider page is simple, but it contains one important piece of information: the default data
provider your application is geared to work with. Figure 14-22 shows that my application is set up to
work with the AspNetAccessProvider, the default data provider.

The two links on this tab let you set up either a single data provider (see Figure 14-23) or a specific data
provider for each of the features in ASP.NET that requires a data provider.

As you can see from the screen shots and brief explanations provided here, you can now handle a large
portion of the necessary configurations through a GUI. You no longer have to figure out which setting
must be placed in the web.config file. This functionality becomes even more important as the
web.config file grows. In ASP.NET 1.0/1.1, the web.config file possibilities were a reasonable size;
but with all the new features now provided by ASP.NET 2.0 the web.config file has the potential to
become very large. The new GUI-based tools are an outstanding way to manage it.

406

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 406

Figure 14-23

Managing the Site Counter System
Another outstanding management feature is ASP.NET’s capability to monitor the views and clicks occur-
ring in an application. Not only does the new site counter system count the views and clicks that occur
as end users work through your Web application, it also generates reports in the browser with the site
counter results.

To see an example of the new site counter system, begin by working with the ASP.NET Web Site
Administration Tool. Open WAT and click the Configure Counter Settings link on the Application tab.
You see a page dealing with counters, as shown in Figure 14-24.

407

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 407

Figure 14-24

On this screen, make sure that the Enable Counter For Controls check box is checked. Then, in the text
box labeled Specify How Many Rows Per Day of Site Statistics Will Be Written to the Database, keep the
default of 1. One row in the database is used to store the counts. For the rest of the options, make sure
the Track Application Name and Track Page URL check boxes are checked. Give your created site
counter configuration a name and associate it to a counter group. As you can see in Figure 14-24, I gave
the counter the name BannerAds and the counter group the name PageCounters. Finally, save your con-
figuration by clicking the Save button in the lower-right corner of the dialog.

This operation has changed your web.config file. The results are shown in Listing 14-1.

Listing 14-1: Enabling the web.config for the site counter system

<?xml version=”1.0”?>
<configuration>

<system.web>

<siteCounters defaultProvider=”AspNetAccessProvider” enabled=”true”
rowsPerDay=”1”>

<pageCounters enabled=”true” trackApplicationName=”true”
trackPageUrl=”true” counterName=”BannerAds”

408

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 408

counterGroup=”PageCounters” />
</siteCounters>

</system.web>
</configuration>

Remember that although it is possible to work with tools such as WAT to build all this for you in the
application’s configuration file, you can also place all the information in the web.config file yourself.
The best approach is whatever is easier for you in the end.

Now that you have configured the web.config file to work with control clicks, learn how to monitor
button clicks and views of an AdRotator server control. This is a common scenario because many Web
sites sell advertising and charge their clients based on views, clicks, or both. Not only will the site
counter system tally these items for you, but it also provides the GUI reports of what was tallied. Listing
14-2 shows an AdRotator control enabled to work with the site counter system.

Listing 14-2: A server control working with the site counter system

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>AdRotator Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:AdRotator ID=”AdRotator1” Runat=”server” AdvertisementFile=”MyAds.xml”
CountViews=”true” CountClicks=”true” />

<p>Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aliquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</p>

</form>
</body>
</html>

This AdRotator server control isn’t much different from the AdRotator server control shown in Listing
13-7 in the last chapter — although this one has a couple of new attributes. To work with the site counter
system provided by ASP.NET 2.0, you add the CountViews and the CountClicks attributes. In both
cases, you set these attribute values to True. The CountViews attribute enables or disables the site
counter system, which records each and every time that the image shown by the AdRotator control is
actually viewed in the browser. The CountClicks attribute is always a lesser number because it enables
or disables the site counter system that counts the number of times an end user clicks on the advertise-
ment.

Now that both of these attributes have been set to True and the web.config file is configured properly,
you can run the application and refresh the page a few times. Click the advertisement generated by the
AdRotator control a few times to generate some results for the site counter system.

409

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 409

Then, with the ASP.NET Web Site Administration Tool, return to the Application tab and click the Site
Counter Reports link. This pulls up details on the PageCounter’s Details page. From this page, you can
see the number of page views that have been counted by the system. From the drop-down list on the
page, select AdRotator. This causes WAT to pull up details about the AdRotator server control, as shown
in Figure 14-25.

Figure 14-25

On this page, you can see the date the views or clicks were recorded, the page the details came from, and
the ID of the server control (in this case AdRotator1). It also shows the count event (Views or Clicks), the
destination URL of the control, and finally the number recorded by the site counter system.

Summary
This chapter showed you some of the new management tools that come with the latest release of
ASP.NET. These new tools make the ever-increasing size of the web.config file more manageable
because the tools take care of setting the appropriate values in the application’s configuration file.

410

Chapter 14

14_572865 ch14.qxd 7/7/04 9:57 PM Page 410

The ASP.NET snap-in to the Microsoft Management Console is a welcome addition for managing appli-
cations that are configured to work with IIS. The ASP.NET Web Site Administration Tool provides even
more value to administrators and developers as it enables them to remotely manage settings.

Finally, you learned how to use the site counter system to create detailed reports on the clicks and views
that your Web application produces.

411

Administration and Management

14_572865 ch14.qxd 7/7/04 9:57 PM Page 411

14_572865 ch14.qxd 7/7/04 9:57 PM Page 412

Visual Basic 8.0 and C# 2.0
Language Enhancements

A lot has changed with the Whidbey release of .NET. Not only are there dramatic changes to
ASP.NET (as I have shown you throughout this book), but considerable changes have been made
to the IDE, Windows Forms, Visual Basic, C#, and more. This chapter focuses on the changes to
Visual Basic and C# languages because these are the two languages most commonly used for
ASP.NET development. Because of their heavy use in Web application development, it is vital to
understand the capabilities of these languages and the direction they are taking.

Probably one of the greatest changes to Web application development in the Microsoft world is
.NET’s use of true object-oriented languages such as Visual Basic .NET and C# to build Web appli-
cations. You are no longer required to work with interpreted languages. Although they have only
recently been introduced to the Web application world, these object-oriented languages are contin-
uing to evolve, bringing new features to Web application development.

This last chapter focuses on the changes that have occurred to both Visual Basic and C# with this
latest release of the .NET Framework. You can apply what you learn here directly to your ASP.NET
2.0 applications.

Overview of Changes
Both Visual Basic and C# have undergone changes with the release of the .NET Framework 2.0.
Some of the changes have occurred in both languages, whereas other changes have occurred in
only one.

15_572865 ch15.qxd 7/7/04 9:58 PM Page 413

Throughout the book I refer to the VB language as Visual Basic. With this release of the .NET
Framework, the language has reverted to the name Visual Basic (minus the .NET at the end of the name).
This version of the VB language is called Visual Basic 8.0, whereas the newest version of C# is 2.0.

Some new features of these two languages include those described in the following table.

New Language Feature Visual Basic 8.0 C# 2.0

Generics Yes Yes

Iterators No Yes

Anonymous methods No Yes

Operator overloading Yes Yes (already available)

Partial classes Yes Yes

XML documentation Yes Yes (already available)

Take a look at some of these new features and how to use them in your applications.

Generics
In order to make collections a more powerful feature and also increase their efficiency and usability,
generics were introduced to both Visual Basic and C#. The idea of generics is nothing new. They are simi-
lar to C++ templates. You can also find generics in other languages, such as Java. Their introduction into
the .NET Framework 2.0 languages is a huge benefit for the user.

Generics enable you to make a generic collection that is still strongly typed — providing fewer chances
for errors (because they occur at runtime), increasing performance, and giving you IntelliSense features
when you are working with the collections.

First, look at the problems that can arise in a collection that does not use generics. Listing 15-1 shows a
simple use of the Stack and Array classes.

Listing 15-1: A collection that doesn’t use generics

VB
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myStack As New Stack
myStack.Push(“St. Louis Rams”)
myStack.Push(5)

Dim myArray As Array
myArray = myStack.ToArray()

For Each item As String In myArray
Label1.Text += item & “
”

Next
End Sub

414

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 414

C#
void Page_Load(object sender, EventArgs e)
{

Stack myStack = new Stack();
myStack.Push(“St. Louis Rams”);
myStack.Push(5);

Array myArray;
myArray = myStack.ToArray();

foreach (string item in myArray)
{

Label1.Text += item + “
”;
}

}

In this code example, you can see two distinct items in the Stack: a String with the value of St.
Louis Rams and an Integer with a value of 5. The Stack itself is not the best performing item in the
world simply because it is an object-based list of items — meaning that anything (as you can see in the
preceding listing) can be placed in the list of items. When the For Each section is reached, however, the
items are cast to a String value and displayed in a Label control. The Visual Basic example actually
takes the 5, which should be an Integer, and casts it to a String and displays the St. Louis Rams
and the 5 as a String in the browser. The C# example does not cast the 5 as a String, but instead
throws an exception on the cast at runtime.

Generics enable you to create type-specific collections. The System.Collections.Generic namespace
gives you access to generic versions of the Stack, Dictionary, SortedDictionary, List, and Queue
classes. Again, you can make these collections type-specific to produce collections that perform better
and that have design-time error checks and better IntelliSense features.

Listing 15-2 shows you how to create a generic version of the Stack class that includes a collection of
Strings.

Listing 15-2: A generic Stack class

VB
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myStack As New Generic.Stack(Of String)
myStack.Push(“St. Louis Rams”)
myStack.Push(“Indianapolis Colts”)
myStack.Push(“Minnesota Vikings”)

Dim myArray As Array
myArray = myStack.ToArray()

For Each item As String In myArray
Label1.Text += item & “
”

Next
End Sub

(continued)

415

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 415

Listing 15-2: (continued)

C#
void Page_Load(object sender, EventArgs e)
{

System.Collections.Generic.Stack<string> myStack =
new System.Collections.Generic.Stack<string>();

myStack.Push(“St. Louis Rams”);
myStack.Push(“Indianapolis Colts”);
myStack.Push(“Minnesota Vikings”);

Array myArray;
myArray = myStack.ToArray();

foreach (string item in myArray)
{

Label1.Text += item + “
”;
}

}

In the example in Listing 15-2, the Stack class is explicitly cast to be a collection of type String. In
Visual Basic, you do this by following the collection class with (Of String) or (Of Integer) or what-
ever type you want to use for your collection. In C#, you specify the collection type with the use of
brackets. You cast the Stack class to type string using Stack<string>. If you want to cast it to a
Stack collection of type int, you specify Stack<int>.

Because the collection of items in the Stack class is cast to a specific type immediately as the Stack class
is created, the Stack class no longer casts everything to type Object and then later (in the For Each
loop) to type String. This process is called boxing, and it is expensive. Because you specify the types up
front, you increase performance for your collections.

Remember that when working with generic collections (as shown in the previous code example), you
must import the System.Collections.Generic namespace into your ASP.NET page.

Now, change the Stack class from Listing 15-2 so that instead of working with String objects, it uses
Integer objects in the collection. This change is illustrated in Listing 15-3.

Listing 15-3: A generic Stack class using Integers

VB
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myStack As New Generic.Stack(Of Integer)
myStack.Push(5)
myStack.Push(3)
myStack.Push(10)

Dim myArray As Array
myArray = myStack.ToArray()

Dim x As Integer = 0
For Each item As Integer In myArray

x += item

416

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 416

Next

Label1.Text = x.ToString()
End Sub

C#
void Page_Load(object sender, EventArgs e)
{

System.Collections.Generic.Stack<int> myStack =
new System.Collections.Generic.Stack<int>();

myStack.Push(5);
myStack.Push(3);
myStack.Push(10);

Array myArray;
myArray = myStack.ToArray();

int x = 0;
foreach (int item in myArray)
{

x += item;
}

Label1.Text = x.ToString();
}

The Stack class used in Listing 15-3 specifies that everything contained in its collection must be of type
Integer. In this example, the numbers are added together and displayed in the Label control.

You can also use generics with classes, delegates, methods, and more. This is also an exciting way to
apply generics. For an example, you can create a method that utilizes generics and, therefore, can work
with any type thrown at it. The use of generics in methods is illustrated in Listing 15-4.

Listing 15-4: A generic method

VB
Public Function GenericReturn(Of ItemType)(ByVal item As ItemType) As ItemType

Return item
End Function

C#
public ItemType GenericReturn<ItemType>(ItemType item)
{

return item;
}

This simple method returns the value that is passed to it. The value can be of any type. To construct a
generic method, you must follow the method name with (Of ItemType) in Visual Basic or
<ItemType> in C#. This specifies that the method is indeed a generic method.

417

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 417

The single parameter passed into the method is also of ItemType and the return value is the same as the
type that is established when the method is called. In Listing 15-5, note how you go about calling this
generic method.

Listing 15-5: Invoking the generic method

VB
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = GenericReturn(Of String)(“Hello there!”)
Label2.Text = (GenericReturn(Of Integer)(5) + 5).ToString()

End Sub

C#
void Page_Load(object sender, EventArgs e)
{

Label1.Text = GenericReturn<string>(“Hello there!”);
Label2.Text = (GenericReturn<int>(5) + 5).ToString();

}

This little example in Listing 15-5 shows two separate invocations of the GenericReturn method. The
first instance populates the Label1 control and invokes the GenericReturn method as a String, which
is quickly followed by the String value that is passed in as the item parameter. When called in this
manner, the method is invoked as if it were constructed as

Public Function GenericReturn(ByVal item As String) As String
Return item

End Function

or

public string GenericReturn(string item)
{

return item;
}

The second invocation of the GenericReturn method passes in an object of type Integer, adds 5, and
then uses that value to populate the Label2 control. When called in this manner, the method is invoked
as if it were constructed as

Public Function GenericReturn(ByVal item As Integer) As Integer
Return item

End Function

or

public int GenericReturn(int item)
{

return item;
}

As you can see, you gain a lot of power using generics. You see generics used in both of the main .NET
languages because they can be built into the underlying framework.

418

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 418

Iterators
Iterators enable you to specify how your classes or collections work when they are dissected in a
foreach loop. The iterators are used only in C#. Visual Basic 8.0 developers do not have a similar fea-
ture at present.

You can iterate through a collection of items just as you have always been able to do in C# 1.0 because
the item implements the GetEnumerator function. For example, you can just run a foreach loop over
an ArrayList, as shown in Listing 15-6.

Listing 15-6: Running the foreach loop over an ArrayList

void Page_Load(object sender, EventArgs e)
{

ArrayList myList = new ArrayList();

myList.Add(“St. Louis Rams”);
myList.Add(“Indianapolis Colts”);
myList.Add(“Minnesota Vikings”);

foreach (string item in myList)
{

Response.Write(item.ToString() + “
”);
}

}

This code writes all three values that were added to the ArrayList to the browser screen. Iterators
enable you to run a foreach loop on your own items such as classes. To run a foreach loop, you create
a class that implements the IEnumerable interface.

The first step is to create a class in your Web solution. To create a class, create a folder in your solution
and give it the name Code. Then place a new .cs class file in the Code directory. This class is illustrated
in Listing 15-7.

Listing 15-7: Creating a class that works with a foreach loop

using System;
using System.Collections;

public class myList
{
internal object[] elements;
internal int count;

public IEnumerator GetEnumerator()
{

yield return “St. Louis Rams”;
yield return “Indianapolis Colts”;
yield return “Minnesota Vikings”;

}
}

419

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 419

This class, myList, imports the System.Collections namespace so that it can work with the
IEnumerable interface. In its simplest form, the myList class implements the enumerator pattern with
a method called GetEnumerator(), which returns a value defined as IEnumerable. Then each item in
the collection is returned with the yield return command. The yield keyword in C# is used to pro-
vide a value to the enumerator object or to signal the end of the iteration.

Now that the class myList is in place, you can then instantiate the class and iterate through the class col-
lection using the foreach loop. This is illustrated in Listing 15-8.

Listing 15-8: Iterating though the myList class

void Page_Load(object sender, EventArgs e)
{

myList IteratorList = new myList();

foreach (string item in IteratorList)
{

Response.Write(item.ToString() + “
”);
}

}

This ASP.NET Page_Load event simply creates an instance of the myList collection and iterates through
the collection using a foreach loop. This is all possible because an IEnumerable interface was imple-
mented in the myList class. When you run this page, each of the items returned from the myList class
using the yield return command displays in the browser.

One interesting change you can make in the custom myList class is to use the new generics capabilities
provided by C#. Because you know that only string types are being returned from the myList collec-
tion, you can define that type immediately to avoid the boxing and unboxing that occurs using the pre-
sent construction. Listing 15-9 shows the changes you can make to the class that was first presented in
Listing 15-7.

Listing 15-9: Creating a class that works with a foreach loop using generics

using System;
using System.Collections;
using System.Collections.Generic;

public class myList : IEnumerable<string>
{
internal object[] elements;
internal int count;

public IEnumerator<string> GetEnumerator()
{

yield return “St. Louis Rams”;
yield return “Indianapolis Colts”;
yield return “Minnesota Vikings”;

}
}

420

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 420

Anonymous Methods
Anonymous methods enable you to put programming steps within a delegate that you can later execute
instead of creating an entirely new method. This can be handled in a couple different ways. You should
note that anonymous methods are only available in C# and are not present in Visual Basic 8.0.

Without using anonymous methods, create a delegate that is referencing a method found elsewhere in
the class file. In the example from Listing 15-10, when the delegate is referenced (by a button-click
event), the delegate invokes the method that it points to.

Listing 15-10: Using delegates in a traditional manner

public partial class Default_aspx
{

void Page_Load(object sender, EventArgs e)
{

this.Button1.Click += ButtonWork;
}

void ButtonWork(object sender, EventArgs e)
{

Label1.Text = “Welcome to the camp, I guess you all know why you’re here.”;
}

}

In the example in Listing 15-10, you see a method in place called ButtonWork, which is only called by
the delegate in the Page_Load event. Anonymous methods now enable you to avoid creating a separate
method and allow you to place the method directly in the delegate declaration instead. An example of
the use of anonymous methods is shown in Listing 15-11.

Listing 15-11: Using delegates with an anonymous method

public partial class Default_aspx
{

void Page_Load(object sender, EventArgs e)
{

this.Button1.Click += delegate(object myDelSender, EventArgs myDelEventArgs)
{

Label1.Text = “Welcome to the camp, I guess you all know why you’re here.”;
};

}
}

Using anonymous methods, you don’t create a separate method. Instead you place necessary code
directly after the delegate declaration. The statements and steps to be executed by the delegate are
placed between curly braces and closed with a semicolon.

421

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 421

Operator Overloading
Operator overloading enables you to define the +, –, *, / and other operators in your classes just as the
system classes can. This is a feature that has always been present in C#, but is now available in Visual
Basic 8.0 as well. It gives you the capability to provide the objects in your classes with a similar feel
when used with operators as if they were simply of type String or Integer.

Giving your classes this extended capability is a matter of simply creating a new method using the
Operator keyword followed by the operator that you want to overload. An example of the Operator
functions is illustrated in Listing 15-12.

Listing 15-12: Example operator overloading functions

Public Shared Operator +(ByVal Left As Point, ByVal Right As Size) As Point
Return New Point(Left.X + Right.Width, Left.Y + Right.Height)

End Operator

Public Shared Operator -(ByVal Left As Point, ByVal Right As Size) As Point
Return New Point(Left.X – Right.Width, Left.Y – Right.Height)

End Operator

Two different types of operators can be overloaded from Visual Basic — unary and binary operators:

❑ Overloadable unary operators include: + – Not IsTrue IsFalse Widening Narrowing

❑ Overloadable binary operators include: + – * / \ & Like Mod And Or Xor ^ <<
>> = <> > < >= <=

Partial Classes
Partial classes are a new feature included with the .NET Framework 2.0 and available to both C# and
Visual Basic 8.0. These classes allow you to divide up a single class into multiple class files, which are
later combined into a single class when compiled.

Partial classes are the secret of how ASP.NET keeps the new code-behind model simple. In ASP.NET
1.0/1.1, the code-behind model included quite a bit of code labeled as machine-generated code (code
generated by the designer) and hidden within #REGION tags. Now, however, the code-behind file for
ASP.NET 2.0 looks rather simple. A sample of the new code-behind model that uses partial classes is
shown in Listing 15-13.

Listing 15-13: The new code-behind model using partial classes

VB
Imports Microsoft.VisualBasic

Namespace ASP

Partial Class Default_aspx

422

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 422

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = “Hello “ & Textbox1.Text

End Sub
End Class

End Namespace

C#
using System;

namespace ASP {

public partial class Default_aspx
{

void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + Textbox1.Text;
}

}
}

This code-behind file contains a simple button-click event and nothing else. If you compare it to the
designer code (as it was called) from the code-behind files found in ASP.NET 1.0/1.1, you notice a big
difference between the two. What happened to all that code in the original code-behind file? It is still
there, but now with the use of partial classes, all that necessary (but untouchable) code is kept in a sepa-
rate class file. Upon compilation, the class file shown in Listing 15-14 is merged with the other class file.
The result shows you that the code-behind files in ASP.NET 2.0 can consist simply of objects that you
actually work with.

Partial classes are created with the use of the Partial keyword in Visual Basic and with the partial
keyword in C# for any classes that are to be joined with a different class. The Partial keyword pre-
cedes the Class keyword for the classes to be combined with the original class. Besides using partial
classes with every code-behind page that you work with in ASP.NET 2.0, you can also employ the same
techniques with your own class files. You can associate two or more classes as part of the same class by
using the procedure shown in Listings 15-14 and 15-15.

Listing 15-14: The first class

VB
Public Class Calculator

Public Function Add(ByVal a As Integer, ByVal b As Integer)
Return (a + b)

End Function
End Class

(continued)

423

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 423

Listing 15-14: (continued)

C#
public class Calculator
{

public int Add(int a, int b)
{

return a + b;
}

}

Listing 15-15: The second class

VB
Partial Class Calculator

Public Function Subtract(ByVal a As Integer, ByVal b As Integer)
Return (a - b)

End Function
End Class

C#
public partial class Calculator
{

public int Subtract(int a, int b)
{

return a - b;
}

}

When the two separate files are compiled, the two class files appear as a single object. The first class
shown in Listing 15-15 is constructed just as a normal class is, whereas any additional classes that are to
be made a part of this original class use the new Partial keyword. A consumer using the compiled
Calculator class will see no difference. After the consumer of the Calculator class creates an instance
of this class, this single instance has both an Add and a Subtract method to it. This is illustrated in
Figure 15-1.

424

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 424

Figure 15-1

Visual Basic XML Documentation
Like C#, Visual Basic 8.0 now includes the capability to create XML documentation from comments that
are left in your VB files. Visual Basic denotes XML documentation remarks in code with the use of three
successive single quotation marks (‘’’). This is similar to how C# does it. C# uses three forward slashes
for XML documentation (///). Comments left in VB code can then be converted to documentation.
Listing 15-16 shows the use of XML documentation in code.

425

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 425

Listing 15-16: Visual Basic code with comments for XML documentation

Imports Microsoft.VisualBasic

‘’’ <summary>My Calculator Class</summary>
Public Class Class1

‘’’ <summary>This Add method returns the value of two numbers
‘’’ added together</summary>
‘’’ <param name=”a”>First number of the collection of numbers to
‘’’ be added</param>
‘’’ <param name=”b”>Second number of the collection of numbers to
‘’’ be added</param>
Public Function Add(ByVal a As Integer, ByVal b As Integer)

Return (a + b)
End Function

End Class

The Visual Basic 8.0 compiler now includes a new /doc command that is similar to the way C# works
with XML documentation. Compiling your VB code using the /doc command causes the compiler to
produce the XML documentation with the compilation.

New Visual Basic Keywords
Visual Basic 8.0 introduces a couple of new keywords that can be utilized in your ASP.NET 2.0 applica-
tions. The keywords were brought to the language to make it easier to perform some common tasks,
such as working in loops or destroying resources as early as possible. Look at a couple of the new addi-
tions to the Visual Basic language.

Continue
The Continue statement is an outstanding new addition to the Visual Basic language that was brought
on board to enable you to work through loops more logically in some specific situations. When working
in a loop, it is sometimes beneficial to stop the conditional flow and move onto the next item in the col-
lection if the item being examined simply doesn’t fit your criteria. This logic can now be implemented
better because of the new Continue statement. Listing 15-17 shows an example of the use of the
Continue statement.

Listing 15-17: Using the Continue statement

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myString As String
Dim count As Integer = 0
myString = “The St. Louis Rams will go to the Superbowl this year.”

For i As Integer = 0 To (myString.Length() - 1)
If (myString(i).Equals(“ “c)) Then Continue For

count += 1

426

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 426

Next

Label1.Text = “There are “ & count.ToString() & _
“ characters used (minus spaces).”

End Sub

This little example takes a String and counts each character in the complete string that is not a space. If
a space is encountered, the Continue statement finds this in the check and immediately stops execution
of the loop for that particular item in the collection. It then hands over the execution of the loop to the
next item in the collection. In this example, you could easily check for the characters with a nested If
statement, but using multiple nested If statements can get confusing sometimes. The use of the
Continue statement makes the logic contained within the For loop very evident and clean.

The Continue statement is not only meant to be used within a For loop, but you can also use this new
keyword with other language features that loop through a collection of items — such as the Do and
While statements. The following example shows how to use the Continue statement with the four
available options:

For [statement]
...

If [statement] Then Continue For

...
Next

For Each [statement]
...

If [statement] Then Continue For

...
Next

Do While [statement]
...

If [statement] Then Continue Do

...
Loop

While [statement]
...

If [statement] Then Continue While

...
End While

As you can see, you have many ways to use this new keyword to make your code easier to read and
manage.

427

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 427

Using
Although the using keyword in C# is quite prevalent (one use being to import namespaces into a class),
the new Visual Basic Using keyword should not be confused with this C# version. It is similar to the C#
using statement that defines the scope of an object.

You use the Using keyword in Visual Basic to ensure that expensive resources get destroyed as soon as
possible instead of allowing them to sit in memory until the method is executed. You can now destroy
expensive resources, such as connection objects and COM wrappers, immediately when you have fin-
ished using them instead of waiting for the garbage collector to come by and make its rounds. An exam-
ple of working with the Using keyword is illustrated in Listing 15-18.

Listing 15-18: Working with the Using keyword

Using myConn As New SqlConnection

‘ Work with the SqlConnection object

End Using

In Listing 15-18, you can see that instead of using the Dim keyword to create a new instance of the
SqlConnection object, the Using keyword is used in its place. If you utilize the Using keyword, you
must close the Using statement with an End Using statement. The End Using statement is located at the
point where the SqlConnection object is destroyed from memory.

My
My, oh my, what a new keyword! The My keyword is a novel concept to quickly give you access to your
application, the computer, or the network in which the application resides. The My keyword has been
referred to as a way of speed-dialing common but complicated resources that you need access to. Using
the My keyword, you can quickly get access to a wide variety of items such as user details or specific set-
tings of the requestor’s browser.

If you type the My keyword into your application, you will notice that IntelliSense provides you with
three items to work with: Application, Computer, and User. Although this new keyword works best
in the Windows Forms environment, there are still things you can use in the Web Forms world.

If you want to get at the identity of a user, for example, you can use the following construct:

Label1.Text = My.User.Identity.Name.ToString()

Another example is checking whether the browser making the request to the application is a mobile
device. For this, you would use the following construction:

Label1.Text = My.Application.Request.Browser.IsMobileDevice.ToString()

You can get to the information stored in files, system settings, and more in a number of quick ways. The
best way to explore the My namespace is to look through IntelliSense and see what is available.

428

Chapter 15

15_572865 ch15.qxd 7/7/04 9:58 PM Page 428

Global
The Global keyword was added as a top-root namespace to avoid any namespace conflicts that might
arise from similarly named namespaces. Here is an example of how you can use the Global keyword:

Global.System.String

Summary
This short chapter looked at some of the changes to the C# and Visual Basic languages in their latest
releases. When a new version of the .NET Framework comes along, everything associated with it is
refreshed at the same time. With .NET Framework 2.0, not only do you get a new version of ASP.NET,
but new versions of all the Microsoft .NET-compliant languages, Windows Forms, and more.

The new features of C# and VB illustrated in this chapter can be directly used in the ASP.NET 2.0 appli-
cations you are building — giving you applications that contain cleaner and better-performing code.

429

Visual Basic 8.0 and C# 2.0 Language Enhancements

15_572865 ch15.qxd 7/7/04 9:58 PM Page 429

15_572865 ch15.qxd 7/7/04 9:58 PM Page 430

In
de

x

Index

> (greater than), PathSeparator property, 132
| (pipe character), SiteMapPath control, 132

A
accelerator keys, Label control and, 369
Access, personalization provider, 281-282
AccessDataSource control, 96-109
Add Web Reference dialog, 37
administration overview, 6-7
AdRotator server control, 376-380
Advanced tab, MMC ASP.NET tab, 397-399
advertisements, AdRotator control, 377
AllowReturn attribute, Wizard server control, 357
anonymous identification events, 278-279
anonymous methods

C#, 421
Visual Basic, 421

anonymous personalization, 275-278
anonymous identification events, 278-279
cookies, 276-277
identifier storage, 277
options, 279

anonymous users, migrating, 279-280
Application settings option, Authentication tab

(MMC), 394

Application tab
MMC ASP.NET tab, 394-395
WAT, 404

applications
configuration, cache invalidation, SQL Server,

331-332
folders

Code folder, 61-65
Resources folder, 66-69
Themes folder, 66

location
FTP, 44
IIS, 43-44
Web server, 41-43

registration, users, 235-236
roles

adding users, 256
adding/retrieving, 252-255
all user’s roles, displaying, 256-259
checking users in roles, 259-260
deleting, 255
removing users, 259

themes, 205-208
<asp> element

<CheckBoxField>, 93
<HyperLinkField>, 94
<TemplateField>, 95

16_572865bindex.qxd 7/7/04 9:58 PM Page 431

ASP.NET history, 2
ASP.NET tab, MMC, 387

Advanced tab, 397-399
Application tab, 394-395
Authentication tab, 393-394
Authorization tab, 391-392
Custom Errors, 390-391
General tab, 389-390
State Management tab, 395-396

ASP.NET Whidbey, 2
AspNetAccessProvider user registration informa-

tion, 226
<asp.Wizard> element, 355
attributes

page directives, 51
siteMapNode element, XML, 129
Wizard server control

AllowReturn, 357
StepType, 357-358

authentication
definition, 226
forms authentication, 225
users

adding, 229-235
LoginName server control and, 241
LoginStatus server control and, 240-241
number online, displaying, 242-243

Web site membership, 236
<authorization> element, 236
login programmatically, 239-240
Login server control, 237-239
setup, 226-229

web.config file, 227
<forms> element, 228

<authentication> element, web.config file, 227
Authentication tab, MMC ASP.NET tab, 393-394
authorization

definition, 226
LoginView control and, 248-249

<authorization> element, 236
Authorization tab, MMC ASP.NET tab, 391-392

B
banner ads, AdRotator control, 377
beta releases of software, 1
boxing, 416
breadcrumb navigation, 130
built-in styles, TreeView control, 138-139
BulletedList server control, 341-346
Button control, 371-372

C
C#

changes overview, 413-414
classes, partial classes, 422-424
generics, 414-418
methods, anonymous, 421
operator overloading, 422

Cache object
data caching and, 324
dependencies, 324
SQL Server cache dependencies, 335-338

CacheDependency class, 325
caching

data caching, 324
dependencies, 324

Cache object, 335-338
Request object, 334-335
SQL Server, 325-330

invalidation
configuring applications, 331-332
SQL Server databases, 326-330
SQL Server tables, 327-329
tables, adding, 334
testing, 332-338

master pages and, 201
output caching, 323
partial page caching, 324
SQL cache invalidation, 7
SQL Server Enterprise Manager, 327-328

casting, boxing, 416

432

ASP.NET history

16_572865bindex.qxd 7/7/04 9:58 PM Page 432

ChangePassword server control, 244-245
CheckBoxList server control, 372-373
child nodes, 139
Choose Location dialog, 42
classes

C#, partial classes, 422-424
CacheDependency, 325
generics, 417
Portal Framework and, 317-321

WebPart, 320-321
WebPartManager, 317-318
WebPartZone, 319-320

SiteMap, 128, 168-170
Visual Basic, partial classes, 422-424

code
compiling, 15
content pages, 180-193
generating device-specific, 8-9
inline coding, 47-48
master pages, 177-180

code-behind model, 49-51, 422
code-behind pages, 47
code-change notification, Document Window

(Visual Studio), 26
\Code folder, 61-65
collections, generics and, 415
columns, GridView control, 93-96

<asp:CheckBoxField>, 93
<asp:HyperLinkField>, 94
<asp:TemplateField>, 95
bound, 83-87

compilation, 69-73
in-place, 70
precompilation for deployment, 71

compiling code, 15
connection strings, 123-124
container-specific master pages, 199-200
content pages

code, 180-193
controls, 187-193
default content, specifying, 194-195

event order, 200-201
languages, 184-185
master pages and, 176, 186
page types, mixing, 184-185
properties, 187-193
title, 186

Continue keyword, Visual Basic, 426-427
control sections, Toolbox (Visual Studio), 29-30
controls

AccessDataSource, 96-109
AdRotator, 376-380
BulletedList, 341-346
Button, 371-372
ChangePassword, 244-245
CheckBoxList, 372-373
CreateUserWizard, 229-233
custom, themes and, 221-222
data source controls, 75-76
data-bound server controls, 76-77
DataGrid, 18
DataSetDataSource, 117
DetailsView, 96-109
DropDownList, 372-373
DynamicImage, 14, 361-365
FileUpload, 348-351
GridView, 77

bound columns and, 83-87
columns and, 93-96
data deletion, 92-93
paging, 79-82
reading data, 77-78
row editing, 87-92
row sorting, 82

HiddenField, 346-348
Image, 374
ImageButton, 371-372
ImageMap, 366-368
Label, changes in, 369-371
LinkButton, 371-372
ListBox, 372-373
Literal, 376

433

controls

In
de

x

16_572865bindex.qxd 7/7/04 9:58 PM Page 433

controls (continued)
Login, 237-239
LoginName, 241
LoginStatus, 240-241
LoginView, 248-249
master pages, 187-193
Menu, 156-157

binding to XML file, 163-165
events, 163
images as dividers in menus, 162
item layout, 160-161
pop-out symbol, 161
pre-defined styles, 157-158
styles, dynamic items, 159
styles, static items, 158-159

MultiView, 351-353
new, 18
ObjectDataSource, 114-116
Panel, 380-382
PasswordRecovery, 245-247
Portal Framework, adding to, 312
RadioButtonList, 372-373
SiteMapDataSource, 116, 165

SiteMapViewType property, 165
StartingNodeType property, 166-167

SiteMapPath, 13, 130-132
child elements, 135
ParentLevelsDisplayed property, 134-135
PathDirection property, 134
PathSeparator property, 132-134
ShowToolTips property, 135

skins, assigning SkinID programmatically, 220
SqlDataSource, 18, 77
Table, 374-376
TreeView, 13, 136-138

binding to XML file, 140-142
built-in styles, 138-139
icons, custom, 145-147
node connection, 147-149
nodes, 139
options, multiple, 142-145

programmatical manipulation, 150-156
ShowCheckBoxes property, 142

validation controls, 382-385
View, 351-353
WebPartManager, 293-294
WebPartPageMenu, 301-309
WebPartZone, 298

default elements, 299-300
LayoutOrientation attribute, 299
<ZoneTemplate> element, 299

Wizard, 355-361
XmlDataSource, 109-114

cookies, anonymous identification and, 276-277
counter system, WAT, 407-410
CreateUserWizard server control, 232-233
cross-page posting, 54-60
CSS (Cascading Style Sheets)

files, themes and, 211-214
themes and, 203

Custom Errors tab, MMC ASP.NET tab, 390-391

D
data caching, 324
data source controls, 75-76

Visual Studio 2005 and, 118-122
data-bound server controls, 76-77
databases, SQL Server

disabling for cache invalidation, 330
enabling for cache invalidation, 326-327

DataGrid control, 18
DataSetDataSource control, 117
delegates

anonymous methods, 421
generics, 417

deleting data, GridView control, 92-93
dependencies

caching, 324
Cache object, 335-338
Request object, 334-335
SQL Server, 325-330

434

controls (continued)

16_572865bindex.qxd 7/7/04 9:58 PM Page 434

Design tab, Document Window (Visual Studio), 24
DetailsView control, 96-109

field display, 101-103
GridView control and, 103-105
row manipulation, 105-109

developers
new infrastructures, 9-14
productivity and, 3-6

device-specific code generation, 8-9
directives, 51-52
Document Window, Visual Studio, 23

code-change notification system, 26
Design tab, 24
error notifications, 27-28
page tabs, 25-26
Source tab, 24
tag navigator, 25

documentation, Visual Basic, 425-426
DropDownList server control, 372-373
Duration attribute, output caching and, 324
dynamic items, styles, 159
DynamicImage control, 14
DynamicImage server control, 361-365

E
Edit/Add Connection String dialog, ASP.NET tab,

MMC, 390
elements

child elements, SiteMapPath control, 135
XML

siteMap, 129
siteMapNode, 129

error notification, Document Window (Visual
Studio), 27-28

events
anonymous identification events, 278-279
content page order, 200-201
master page order, 200-201
Menu control, 163

pages, 53-54
Wizard server control, 360-361

Extensions, Front Page, 45

F
fields

displaying, DetailsView control and, 101-103
hidden, HiddenField server control, 346-348

files, uploading with FileUpload server control,
348-351

FileUpload server control, 348-351
folders

applications
Code folder, 61-65
Resources folder, 66-69
Themes folder, 66

themes
file structure, 208-209
skins, 209-211

foreach loop, iterations, 419
Forms Authentication, 225
<forms> element, web.config file, 228
FrontPage, Extensions, 45
FTP, application location, 44

G
General tab, MMC ASP.NET tab, 389-390
generating code, device-specific, 8-9
GenericReturn method, 418
generics

C#, 414-418
classes, 417
collections and, 415
delegates, 417
methods, 417
Stack class, 415
Visual Basic, 414-418

GetEnumerator function, iterations and, 419

435

GetEnumerator function, iterations and

In
de

x

16_572865bindex.qxd 7/7/04 9:58 PM Page 435

Global keyword, Visual Basic, 429
greater than sign (>), PathSeparator property, 132
GridView control, 77

bound columns and, 83-87
columns and, 93-96

<asp:CheckBoxField>, 93
<asp:HyperLinkField>, 94
<asp:TemplateField>, 95

data deletion, 92-93
DetailsView control and, 103-105
paging, 79-82
reading data, 77-78
row editing, 87-92
row sorting, 82

grouped personalization properties, 271

H
headers, Wizard server control, 358
HiddenField server control, 346-348
Home tab, WAT, 401
hotkeys, Label control and, 369

I
IBuySpy, 10
icons, TreeView control, 145-147
identifiers, storage, 277
IIS, application location, 43-44
image maps, ImageMap server control, 366-368
Image server control, 374
ImageButton control, 371-372
ImageMap server control, 366-368
images

disk, 361
DynamicImage server control, 361-365
generating, 14
menu item separation, Menu control, 162
resizing, 363
streaming, 364-365
themes, 214-217

importing Visual Studio settings, 38-40
in-place precompilation, 70
inline coding, 47-48
integers, Stack class, 416
iterators

foreach loop, 419
GetEnumerator function, 419

K
keywords, Visual Basic

Continue, 426-427
Global, 429
My, 428
Partial, 423
Using, 428

L
Label control

accelerator keys, 369
AccessKey attribute, 370
changes, 369-371
hotkeys, 369

languages, content pages, 184-185
LayoutOrientation attribute, WebPartZone

control, 299
leaf nodes, 139
LinkButton control, 371-372
ListBox server control, 372-373
lists, bulleted lists (BulletedList server control),

341-346
Literal server control, 376
logging in programmatically, 239-240
Login server control, 237-239
LoginName server control, 241
LoginStatus server control, 240-241
LoginView server control, 248-249
loops, foreach, 419
lost windows in Visual Studio, 34

436

Global keyword, Visual Basic

16_572865bindex.qxd 7/7/04 9:58 PM Page 436

M
machine.config file

editing contents, 6
<roleManager> section, 250

management overview, 6-7
master pages, 16-17

caching and, 201
coding, 177-180
container-specific, 199-200
content pages, 176

code, 180-193
default, specifying, 194-195
specifying, 186

controls, 187-193
event order, 200-201
need for, 173-175
nesting, 196-198
properties, 187-193
sample code, 178
specifying, 186
subpages, 176

Membership and Role Management Service, 225
Membership option, Authentication tab (MMC),

394
membership to Web site, 236

<authorization> element, 236
Login server control, 237-239
log in users programmatically, 239-240
setup, 226-229

Menu control, 156-157
events, 163
images as dividers in menus, 162
item layout, 160-161
pop-out symbol, 161
styles

dynamic items, 159
pre-defined, 157-158
static items, 158-159

XML files, binding to, 163-165

methods
anonymous

C#, 421
Visual Basic, 421

GenericReturn, 418
generics, 417

migration, anonymous users, 279-280
MMC (Microsoft Management Console), 6, 387

ASP.NET tab, 389
Advanced tab, 397-399
Application tab, 394-395
Authentication tab, 393-394
Authorization tab, 391-392
Custom Errors tab, 390-391
General tab, 389-390
Site Management tab, 395-396

MultiView server control, 351-353
My keyword, Visual Basic, 428

N
navigation

breadcrumb navigation, 130
SiteMapPath control and, 130
tag navigator, Document Window (Visual Studio),

25
Wizard server control, 357-360

nesting master pages, 196-198
new features, infrastructures, 9-14
nodes, TreeView control, 139

adding, 153-156
connection, 147-149
expanding/collapsing programmatically, 150-153

O
ObjectDataSource control, 114-116
object references, 35-37
operators, overloading

C#, 422
Visual Basic, 422

437

operations, overloading

In
de

x

16_572865bindex.qxd 7/7/04 9:58 PM Page 437

options, TreeView control, 142-145
ordering events

content pages, 200-201
master pages, 200-201

output caching, 323
OutputCache page directive, 324
overloading operators

C#, 422
Visual Basic, 422

P
page directives, OutputCache, 324
page tabs, Document Window (Visual Studio),

25-26
page title, 186
pages

code-behind, 47
cross-page posting, 54-60
directives, 51-52
events, 53-54
master pages, 16-17
structure, 45-51
themes, 17, 220
Web Parts, adding, 302-304

paging, GridView control, 79-82
Panel server control, 380-382
parent node, 139
ParentLevelsDisplayed property, SiteMapPath

control, 134-135
partial classes

code-behind model and, 422
Visual Basic/C#, 422-424

Partial keyword, 423
partial page caching, 324
PasswordRecovery server control, 245-247
passwords

ChangePassword server control, 244-245
PasswordRecovery server control, 245-247

PathDirection property, SiteMapPath control, 134

PathSeparator property, SiteMapPath control,
132-134

performance overview, 7-8
personalization

providers
Access, 281-282
multiple, 289-290
SQL, 282-288

SQL scripts, 286-288
SQL Server Setup Wizard, 282-286
users and, 10

Personalization model, 263-264
personalization properties

anonymous personalization, 275-278
anonymous identification events, 278-279
cookies and, 276-277
identifier storage, 277
options, 279

creating, 265-266
default values, 275
grouped, uses, 271
groups, 270-271
types, 271-272

custom, 272-274
uses, 266-269

pipe character (|), SiteMapPath control, 132
pop-out symbol, Menu control and, 161
Portal Framework, 10

classes, 317-321
WebPart class, 320-321
WebPartManager class, 317-318
WebPartZone class, 319-320

controls, adding, 312
modes, 292
Web Parts, 292

adding to pages, 302-304
connecting, 309
moving, 305-306
settings, editing, 306-309
verbs, 314-317

438

options, TreeView control

16_572865bindex.qxd 7/7/04 9:58 PM Page 438

WebPartManager control, 293-294
WebPartPageMenu control, 301-309

customizing, 309
WebPartZone control, 298

default elements, 299-300
LayoutOrientation attribute, 299
<ZoneTemplate> element, 299

zones, modification capability, 310-311
posting, cross-page posting, 54-60
pre-defined styles, Menu control, 157-158
precompilation for deployment, 71
productivity, developers and, 3-6
Profile API, 264
Profile tab, WAT, 403-404
projects, Visual Studio, 35
properties

master page, 187-193
ParentLevelsDisplayed (SiteMapPath control),

134-135
PathDirection (SiteMapPath control), 134
PathSeparator (SiteMapPath control), 132-134
personalization

anonymous, 275-279
creating, 265-266
custom types, 272-274
default values, 275
grouped, 271
groups, 270-271
types, 271-272
uses, 266-269

ShowCheckBoxes (TreeView control), 142
ShowToolTips (SiteMapPath control), 135
SiteMapViewType, SiteMapDataSource

control, 165
StartingNodeType, SiteMapDataSource

control, 166-167
ValidationGroup, 383

Properties Window, Visual Studio, 33
Property Pages dialog, 35-36
Provider tab, WAT, 405-406

R
RadioButtonList server control, 372-373
references to objects, 35-37
registering users, 235-236
Request object, SQL Server cache dependencies,

334-335
resizing images, DynamicImage control, 363
\Resources folder, 66-69
role management

adding users, 256
adding/retrieving roles, 252-255
all user’s roles, displaying, 256-259
checking users in roles, 259-260
deleting roles, 255
removing users, 259
Web site setup, 249

adding users to roles, 256
adding/retrieving application roles, 252-255
all user’s roles, displaying, 256-259
checking users in roles, 259-260
deleting roles, 255
removing users, 259
<roleManager> section of config file, 250
web.config file edits, 252

<roleManager> section, configuration file, 250
Roles option, Authentication tab (MMC), 394
root node, 139
rows

DetailsView control, 105-109
GridView control,

editing, 87-92
sorting, 82

S
scalability overview, 7-8
scrolling, Panel control and, 380
Security tab, WAT, 402-403
server controls. See also controls

AdRotator, 376-380
BulletedList, 341-346

439

server controls

In
de

x

16_572865bindex.qxd 7/7/04 9:58 PM Page 439

server controls (continued)
Button, 371-372
ChangePassword, 244-245
CheckBoxList, 372-373
counter system, 409
CreateUserWizard, 229-233
data-bound server controls, 76-77
DropDownList, 372-373
DynamicImage, 361-365
FileUpload, 348-351
HiddenField, 346-348
Image, 374
ImageButton, 371-372
ImageMap, 366-368
Label, changes in, 369-371
LinkButton, 371-372
ListBox, 372-373
Literal, 376
Login, 237-239
LoginView, 248-249
MultiView, 351-353
new, 18
Panel, 380-382
PasswordRecovery, 245-247
RadioButtonList, 372-373
Table, 374-376
themes, removing from, 206-207
validation controls, 382-385
View, 351-353
Wizard, 355-361

Server Explorer, Visual Studio, 33
ShowCheckBoxes property, TreeView control, 142
ShowToolTips property, SiteMapPath control, 135
site maps, 128
SiteMap class, 128, 168-170
siteMap element, XML, 129
SiteMapDataSource control, 116, 165

SiteMapViewType property, 165
StartingNodeType property, 166-167

siteMapNode element, XML, 129

SiteMapPath control, 13, 130-132
| (pipe character), 132
child elements, 135
navigation, breadcrumb navigation, 130
ParentLevelsDisplayed property, 134-135
PathDirection property, 134
PathSeparator property, 132-134
ShowToolTips property, 135

SiteMapViewType property, SiteMapDataSource
control, 165

skins, 209-211
multiple, 218-220
SkinID, assigning programmatically, 220

smart tags, Visual Studio, 37
<Smtp> element, PasswordRecovery control

and, 246
Solution Explorer, Visual Studio

introduction, 31-33
toolbar, 31

source controls, data source controls, 75-76
Source tab, Document Window (Visual Studio), 24
SQL (Structured Query Language)

personalization provider, 282-288
scripts, personalization and, 286-288

SQL cache invalidation, 7
SQL Server

cache dependency, 325-330
databases, disabling for cache invalidation, 330
databases, enabling for cache invalidation,

326-327
tables, disabling for cache invalidation, 329-330
tables, enabling for cache invalidation, 327-329

cache invalidation
application configuration, 331-332
tables, adding, 334
testing, 332-338

caching
Cache object, 335-338
Enterprise Manager and, 327-328
Request object, 334-335

SQL Server Setup Wizard, 282-286

440

server controls (continued)

16_572865bindex.qxd 7/7/04 9:58 PM Page 440

SqlDataSource control, 18, 77
Stack class

generic version, 415
integers and, 416

StartingNodeType property, SiteMapDataSource
control, 166-167

State Management tab, MMC ASP.NET tab,
395-396

static items, styles (Menu control), 158-159
StepType attribute, Wizard server control,

357-358
storage, users, 231
streaming images, DynamicImage server control,

364-365
strings, connection strings, 123-124
styles

built-in, TreeView control, 138-139
Menu control

dynamic items, 159
pre-defined, 157-158
static items, 158-159

subpages, master pages and, 176

T
Table server control, 374-376
tables, SQL Server

cache invalidation, 334
disabling for cache invalidation, 329-330
enabling for cache invalidation, 327-329

tag navigator, Document Window (Visual
Studio), 25

tags, smart tags (Visual Studio), 37
themes, 17, 203

applications, removing from, 208
applying

to application, 205
to applications on server, 206
to page, 204-205

assigning to pages programmatically, 220
controls and, custom, 221-222

creating, folder structure, 208-209
CSS files, including, 211-214
images in, 214-217
removing from Web pages, 207
server controls, removing from, 206-207
skins, 209-211

\Themes folder, 66
title, page title, 186
tool tips, 135
Toolbox, Visual Studio, 29-30
TreeView control, 13, 136-138

icons, custom, 145-147
images, themes and, 215
nodes, 139

adding, 153-156
connection, 147-149
expanding/collapsing programmatically,

150-153
options, multiple, 142-145
programmatical manipulation, 150-156
ShowCheckBoxes property, 142
styles, built-in, 138-139
XML files, binding to, 140-142

U
uploading files, FileUpload server control and,

348-351
users

adding, 229
CreateUserWizard server control, 229-231
programmatically, 233-235
storage, 231

anonymous, migrating, 279-280
authenticated

LoginName server control and, 241
LoginStatus server control and, 240-241
number online, displaying, 242-243

log in, programmatical, 239-240
membership, 9
number online, displaying, 242-243

441

users

In
de

x

16_572865bindex.qxd 7/7/04 9:58 PM Page 441

users (continued)
personalization and, 10
registration, 235-236
roles, managing, 9

Using keyword, Visual Basic, 428

V
validation, SQL cache invalidation, 7
validation server controls, 382-385
ValidationGroup property, 383
verbs, Web Parts, 314-317
View server control, 351-353
Visual Basic

changes overview, 413-414
classes, partial classes, 422-424
generics, 414-418
keywords

Continue, 426-427
Global, 429
My, 428
Using, 428

methods, anonymous, 421
operator overloading, 422
XML, documentation, 425-426

Visual Studio
Document Window, 23-28
importing settings, 38-40
lost windows, 34
objects, references, 35-37
projects, creating, 35
Properties Window, 33
saving settings, 38-40
Server Explorer, 33
smart tags, 37
Solution Explorer, 31-33
Toolbox, 29-30

Visual Studio 2005, 19-20
data source controls and, 118-122

W
WAT (Web Site Administration Tool), 399

accessing, 400
Application tab, 404
counter system, 407-410
Home tab, 401
Profile tab, 403-404
Provider tab, 405-406
Security tab, 402-403

Web Parts
adding to pages, 302-304
connecting, 309
moving, 305-306
overview, 291-292
settings, editing, 306-309
verbs, 314-317

Web server, application location, 41-43
Web site, role management setup, 249

adding users to roles, 256
adding/retrieving application roles, 252-255
all user’s roles, displaying, 256-259
checking users in roles, 259-260
deleting roles, 255
removing users, 259
<roleManager> section of config file, 250
web.config file edits, 252

Web Site Administration Tool, 261
web.config file

<authentication> element, 227
counter system, 408
editing, 252
editing contents, 6
<forms> element, 228
personalization properties, 265

groups, 270-271
<roleManager> section, 250
SQL Server cache and, 331

web.sitemap file example, 128
WebPart class, 320-321

442

users (continued)

16_572865bindex.qxd 7/7/04 9:58 PM Page 442

WebPartManager class, 317-318
WebPartManager control, 293-294

zone layouts, 294-298
WebPartPageMenu control, 301-309
WebPartZone class, 319-320
WebPartZone control, 298

elements, default, 299-300
LayoutOrientation attribute, 299
<ZoneTemplate> element, 299

Whidbey, 2
windows

Design Window
page tabs, 25-26
tag navigator, 25

Document Window
code-change notification sysem, 26
error notification, 27-28

Document Window, Visual Studio, 23-24
lost windows in Visual Studio, 34
Properties Window (Visual Studio), 33

Wizard server control, 355-361
<asp.Wizard> element, 355
attributes

AllowReturn, 357
StepType, 357-358

events, 360-361
headers, 358
navigation and, 359-360

side navigation, 357

X–Y–Z
XML (eXtensible Markup Language)

documentation, Visual Basic, 425-426
elements

siteMap, 129
siteMapNode, 129

files
binding Menu control to, 163-165
binding TreeView control to, 140-142

XML advertisement files, AdRotator server con-
trol, 377

XmlDataSource control, 109-114
zones

Portal Framework, modification capability,
310-311

WebPartManager control, layout, 294-298
<ZoneTemplate> element, WebPartZone

control, 299

443

<ZoneTemplate> element, WebPartZone control

In
de

x

16_572865bindex.qxd 7/7/04 9:58 PM Page 443

	ASP.NET 2.0 Beta Preview
	Cover

	Contents
	Introduction
	Acknowledgments
	Chapter 1: Introduction to ASP.NET 2.0
	A Little Bit of History
	The Goals of ASP.NET 2.0
	Developer productivity
	Administration and management
	Performance and scalability
	Device-specific code generation

	Additional New Features of ASP.NET 2.0
	New developer infrastructures
	New compilation system
	Additions to the page framework
	New objects for accessing data
	New server controls

	A New IDE for Building ASP.NET 2.0 Pages
	Summary

	Chapter 2: Visual Studio 2005
	The Document Window
	Views in the Document Window
	The tag navigator
	Page tabs
	Code change status notifications
	Error notifications and assistance

	The Toolbox
	The Solution Explorer
	The Server Explorer
	The Properties Window
	Lost Windows
	Other Common Visual Studio Activities
	Creating new projects
	Making references to other objects
	Using smart tags
	Saving and importing Visual Studio settings

	Summary

	Chapter 3: Application and Page Frameworks
	Application Location Options
	Built-in Web server
	IIS
	FTP
	Web site requiring FrontPage Extensions

	The ASP.NET Page Structure Options
	Inline coding
	New code-behind model

	New Page Directives
	New attributes
	New directives

	New Page Events
	Cross-Page Posting
	New Application Folders
	\Code folder
	\Themes folder
	\Resources folder

	Compilation
	Summary

	Chapter 4: New Ways to Handle Data
	The New Data Source Controls
	The Data-Bound Server Controls
	The SqlDataSource and GridView Controls
	Reading data
	Applying paging in the GridView
	Sorting rows in the GridView control
	Defining bound columns in the GridView control
	Enabling the editing of rows in the GridView control
	Deleting data from the GridView
	Dealing with other column types in the GridView

	The AccessDataSource and DetailsView Controls
	Selecting which fields to display in the DetailsView control
	Using the GridView and DetailsView together
	Updating, inserting, and deleting rows

	XmlDataSource Control
	ObjectDataSource Control
	SiteMapDataSource Control
	DataSetDataSource Control
	Visual Studio 2005
	Connection Strings
	Summary

	Chapter 5: Site Navigation
	Site Maps
	SiteMapPath Server Control
	The PathSeparator property
	The PathDirection property
	The ParentLevelsDisplayed property
	The ShowToolTips property
	The SiteMapPath control's child elements

	TreeView Server Control
	Identifying the TreeView control's built-in styles
	Examining the parts of the TreeView control
	Binding the TreeView control to an XML file
	Selecting multiple options in a TreeView
	Specifying custom icons in the TreeView control
	Specifying lines used to connect nodes
	Working with the TreeView control programmatically

	Menu Server Control
	Applying different styles to the Menu control
	Menu Events
	Binding the Menu control to an XML file

	SiteMap Data Provider
	SiteMapViewType
	StartingNodeType

	SiteMap API
	Summary

	Chapter 6: Working with Master Pages
	Why Do You Need Master Pages?
	The Basics of Master Pages
	Coding a Master Page
	Coding a Content Page
	Mixing page types and languages
	Specifying which master page to use
	Working with the page title
	Working with controls and properties from the master page

	Specifying Default Content in the Master Page
	Nesting Master Pages
	Container-Specific Master Pages
	Event Ordering
	Caching with Master Pages
	Summary

	Chapter 7: Themes and Skins
	Using ASP.NET 2.0 Packaged Themes
	Applying a theme to a single ASP.NET page
	Applying a theme to an entire application
	Applying a theme to all applications on a server
	Removing themes from server controls
	Removing themes from Web pages
	Removing themes from applications

	Creating Your Own Themes
	Creating the proper folder structure
	Creating a skin
	Including CSS files in your themes
	Having your themes include images

	Defining Multiple Skin Options
	Programmatically Working with Themes
	Assigning the page's theme programmatically
	Assigning a control's SkinID programmatically

	Themes and Custom Controls
	Summary

	Chapter 8: Membership and Role Management
	Authentication
	Authorization
	ASP.NET 2.0 Authentication
	Setting up your Web site for membership
	Adding users
	Asking for credentials
	Working with authenticated users
	Showing the number of users online
	Dealing with passwords

	ASP.NET 2.0 Authorization
	Using the LoginView server control
	Setting up your Web site for role management
	Adding and retrieving application roles
	Deleting roles
	Adding users to roles
	Getting all the users of a particular role
	Getting all the roles of a particular user
	Removing users from roles
	Checking users in roles

	Using the Web Site Administration Tool
	Summary

	Chapter 9: Personalization
	The Personalization Model
	Creating Personalization Properties
	Adding a simple personalization property
	Using personalization properties
	Adding a group of personalization properties
	Using grouped personalization properties
	Defining types for personalization properties
	Using custom types
	Providing default values
	Making personalization properties read-only

	Anonymous Personalization
	Enabling anonymous identification of the end user
	Working with anonymous identification events
	Anonymous options for personalization properties

	Migrating Anonymous Users
	Personalization Providers
	Working with the Access personalization provider
	Working with the SQL Server personalization provider
	Using multiple providers

	Summary

	Chapter 10: Portal Frameworks and Web Parts
	Introducing Web Parts
	Building Dynamic and Modular Web Sites
	Introducing the WebPartManager control
	Working with zone layouts
	Understanding the WebPartZone control
	Explaining the WebPartPageMenu control
	Modifying zones

	Working with Classes in the Portal Framework
	Summary

	Chapter 11: SQL Cache Invalidation
	Caching in ASP.NET 1.0/1.1
	Output caching
	Partial page caching
	Data caching using the Cache object
	Cache dependencies
	ASP.NET 2.0 unseals the CacheDependency class

	Using the SQL Server Cache Dependency
	Enabling databases for SQL Server cache invalidation
	Enabling tables for SQL Server cache invalidation
	Looking at SQL Server
	Looking at the tables that are enabled
	Disabling a table for SQL Server cache invalidation
	Disabling a database for SQL Server cache invalidation

	Configuring your ASP.NET Application
	Testing SQL Server Cache Invalidation
	Adding more than one table to a page
	Attaching SQL Server cache dependencies to the Request object
	Attaching SQL Server cache dependencies to the Cache object

	Summary

	Chapter 12: Additional New Controls
	BulletedList Server Control
	HiddenField Server Control
	FileUpload Server Control
	MultiView and View Server Controls
	Wizard Server Control
	Customizing the side navigation
	Examining the AllowReturn attribute
	Working with the StepType attribute
	Adding a header to the Wizard control
	Working with the Wizard's navigation system
	Utilizing Wizard control events

	DynamicImage Server Control
	Working with images from disk
	Resizing images
	Displaying images from streams

	ImageMap Server Control
	Summary

	Chapter 13: Changes to ASP.NET 1.0 Controls
	Label Server Control
	Button, LinkButton, and ImageButtonServer Controls
	DropDownList, ListBox, CheckBoxList, and RadioButtonList Server Controls
	Image Server Control
	Table Server Control
	Literal Server Control
	AdRotator Server Control
	Panel Server Control
	Validation Server Controls
	Summary

	Chapter 14: Administration and Management
	The MMC ASP.NET Snap-In
	General
	Custom Errors
	Authorization
	Authentication
	Application
	State Management
	Advanced

	ASP.NET Web Site Administration Tool
	Home
	Security
	Profile
	Application
	Provider

	Managing the Site Counter System
	Summary

	Chapter 15: Visual Basic 8.0 and C# 2.0 Language Enhancements
	Overview of Changes
	Generics
	Iterators
	Anonymous Methods
	Operator Overloading
	Partial Classes
	Visual Basic XML Documentation
	New Visual Basic Keywords
	Continue
	Using
	My
	Global

	Summary

	Index
	Team DDU

