

Beginning Object-Oriented
ASP.NET 2.0 with VB.NET
From Novice to
Professional

Brian R. Myers

5386fm_final.qxd 8/18/05 3:15 AM Page i

Beginning Object-Oriented ASP.NET 2.0 with VB.NET: From Novice to Professional

Copyright © 2005 by Brian R. Myers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-538-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewers: Ron Landers, Martin W.P. Reid
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Julie M. Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Linda Weidemann, Wolf Creek Press
Proofreaders: Elizabeth Berry and Linda Seifert
Indexer: Carol Burbo
Artist: Kinetic Publishing Services, LLC
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

5386fm_final.qxd 8/18/05 3:15 AM Page ii

This book is dedicated to my dad, Donald Myers Jr.,
who helped me understand the value of work

and who thought I should “do something
in computers.” I am very glad I took that advice.

In Loving Memory of Donald Myers Jr.
February 18, 1945–April 23, 1998

5386fm_final.qxd 8/18/05 3:15 AM Page iii

5386fm_final.qxd 8/18/05 3:15 AM Page iv

Contents at a Glance

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 An Introduction to .NET and Visual Studio 2005 1

■CHAPTER 2 Object-Oriented Programming . 27

■CHAPTER 3 Attributes and Actions . 41

■CHAPTER 4 Encapsulation . 57

■CHAPTER 5 Inheritance . 71

■CHAPTER 6 Namespaces . 85

■CHAPTER 7 Class Design . 101

■CHAPTER 8 ASP.NET Web Forms . 129

■CHAPTER 9 ASP.NET Controls . 149

■CHAPTER 10 Web Services . 169

■INDEX . 179

v

5386fm_final.qxd 8/18/05 3:15 AM Page v

5386fm_final.qxd 8/18/05 3:15 AM Page vi

Contents

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 An Introduction to .NET and Visual Studio 2005 1

VB.NET and ASP.NET . 1

An Introduction to Microsoft .NET. 1

The Common Language Runtime . 2

Assemblies . 3

An Introduction to Visual Studio 2005 . 3

How to Get Started with Visual Studio 2005 . 4

Creating a New Web Project (ASP.NET) . 6

Opening an Existing Web Site . 16

Building Web Sites . 18

Accessing a Web Site . 19

Navigating the Visual Studio Environment . 21

Debugging . 23

IntelliSense . 25

Conclusion . 26

■CHAPTER 2 Object-Oriented Programming . 27

Introduction to OOP Concepts . 27

Why Objects Exist . 28

Objects As the Building Blocks of OOP . 29

Introduction to Reusability . 30

vii

5386fm_final.qxd 8/18/05 3:15 AM Page vii

Introduction to OOP with .NET. 31

Objects in .NET. 32

Using the Object Browser in Visual Studio 2005 34

Creating a Class with VB.NET . 36

Using a Class in VB.NET . 37

Conclusion . 39

■CHAPTER 3 Attributes and Actions . 41

Attributes . 41

Actions . 42

Attributes and Actions Within VB.NET . 42

VB.NET Properties . 42

Adding Properties to a VB.NET Class . 43

Using a Class Public Property in VB.NET . 45

VB.NET Methods . 49

Parameters in VB.NET . 49

Adding Methods in VB.NET. 50

Using a Method in VB.NET . 51

Overloading . 55

Conclusion . 55

■CHAPTER 4 Encapsulation . 57

A General Overview of Encapsulation and Information Hiding 57

Encapsulation in VB.NET . 58

Getting Started . 58

Information Hiding Example . 64

Encapsulation Example . 66

Conclusion . 69

■CHAPTER 5 Inheritance . 71

Inheritance . 71

Inheritance in VB.NET . 72

Overriding . 76

Conclusion . 84

■CONTENTSviii

5386fm_final.qxd 8/18/05 3:15 AM Page viii

■CHAPTER 6 Namespaces . 85

The Purpose of a Namespace . 85

.NET Framework Class Library . 85

Creating a Namespace . 88

The My Namespace . 98

Conclusion . 100

■CHAPTER 7 Class Design . 101

Class Design Process . 101

Case Study . 101

Business Process Overview . 102

Define the Business Process . 102

Case Study: Define the Business Process . 103

Review the Business Process . 106

Break Down the Business Process . 106

Case Study: Break Down the Business Process 106

Create the Class or Classes . 111

Define the Properties and Methods of Each Class 112

Case Study: Define the Properties and Methods of Each Class . . . 113

Create the Class Structure . 117

Case Study: Create the Class Structure . 118

Conclusion . 128

■CHAPTER 8 ASP.NET Web Forms. 129

Using the Web Forms Designer . 129

Adding Controls . 130

The ASP.NET Page Class . 131

Page Lifecycle . 132

Round Trips . 132

View State . 133

Web Form Processing Stages . 133

Session and Application Objects . 134

Expanding the Help Desk Application . 136

Conclusion . 147

■CONTENTS ix

5386fm_final.qxd 8/18/05 3:15 AM Page ix

■CHAPTER 9 ASP.NET Controls . 149

HTML Server Controls . 149

Web Server Controls . 152

Working with Control Properties and Events 152

Validation Controls . 155

Master Pages . 158

Expanding the Help Desk Application . 162

Conclusion . 168

■CHAPTER 10 Web Services . 169

Introduction to XML, SOAP, and WSDL . 169

Introduction to Web Services. 170

Creating a Web Service. 170

Consuming a Web Service . 174

Conclusion . 177

■INDEX . 179

■CONTENTSx

5386fm_final.qxd 8/18/05 3:15 AM Page x

ac20478e3412082af91ad516b5bf0c90

About the Author

■BRIAN MYERS is a software engineer and database administrator for
a large manufacturing company. He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for
.NET, and a Microsoft Certified Professional. He holds an Associates
Degree in Microcomputer Applications Development from the Penn-
sylvania College of Technology and a Bachelors of Information Systems
from Pennsylvania State University. Along with his professional

accreditations, he is also an Eagle Scout.
He has been working with VB since VB 5 and has been writing OOP applications for

over seven years. He has more than seven years of experience as a software developer,
mostly with Microsoft technologies. Prior to taking his current position in June 2004, he
worked for a consulting company for six years, handling various development projects
as a developer as well as a project manager.

Brian has also written articles for www.AspToday.com as well as teaching courses in
.NET development and SQL Server.

xi

5386fm_final.qxd 8/18/05 3:15 AM Page xi

5386fm_final.qxd 8/18/05 3:15 AM Page xii

About the Technical Reviewer

■RONALD LANDERS is the President and Senior Technical Consultant for IT Professionals, Inc.
(ITP), a staffing, recruiting, development, and IT project services company. Mr. Landers has
over 20 years of experience in the IT field and specializes in database design and implemen-
tation, application design and architecture, and web-based technologies, such as web
services, electronic commerce, and web portals.

In addition to ITP, Mr. Landers has been teaching IT classes for UCLA Extension for
the past 13 years. Currently, Mr. Landers’s courses include beginning and advanced
classes in SQL Server, ASP.NET, Web Services, and Object Oriented Programming.

xiii

5386fm_final.qxd 8/18/05 3:15 AM Page xiii

5386fm_final.qxd 8/18/05 3:15 AM Page xiv

Acknowledgments

First I would like to thank my wife, Catharine Miller, for her support while I wrote this
book. Thank you for giving me the time to write this book as well as teach. Thank you for
allowing me to do what I love and love what I do. A very big thank you goes to Amy Cook
and Jennifer Bitting for reviewing my development drafts, and for giving me feedback.
Without your initial feedback, the revision process would have taken much longer. Thank
you to Jon Hassell, my editor, for helping me along with my first book. Thank you also to
many others at Apress, such as Dominic Shakeshaft for giving me the opportunity to write
this book, Kylie Johnston for helping the book along the process, Julie Smith for the copy
editing, and Ellie Fountain for helping the book through production. Without the whole
team at Apress I would not have been able to write this book.

This book, as well as my career, would not have been started without the help of the
instructors at the Pennsylvania College of Technology. The instructors not only taught me
software development, but also taught me the value of not just concentrating on technol-
ogy. The most important of these instructors was not only my instructor but also my
advisor, Mr. Al Henry. He helped me see that to be a well-rounded software developer, I also
needed to take business courses to understand the business side of any organization. I
used that advice to pursue my Bachelors of Information Systems degree from Penn State,
which required 50% of its credits in IT-related courses and 50% of its credits in business-
related courses. Without Mr. Henry’s urging, I probably wouldn’t have taken more business
courses and I probably would not be where I am today in my professional career. I hope
that is a lesson to other young software developers—to compete in the current environ-
ment, you must understand business.

Finally I want to thank the rest of my family—my mother Betty, my sister Michelle,
and my brother Jim. I am very grateful for everything that you have done for me.

One last thing, to my niece Erica and nephew Ryan: See, this shows you can do any-
thing you want to.

xv

5386fm_final.qxd 8/18/05 3:15 AM Page xv

5386fm_final.qxd 8/18/05 3:15 AM Page xvi

Introduction

This book was born out of a lunch that I had with two colleagues of mine. They both had
an extensive background in mainframe development, but they were struggling to under-
stand what OOP was and how they should apply it. During the conversation, I explained
some of the basics of OOP and afterwards thought about better ways to teach these
developers the concepts of OOP. That lead me to decide that I should write a book, which
lead me to Apress—and the rest is history.

Object-Oriented Programming is important in today’s ever-changing world. More and
more businesses are abandoning mainframe development for client/server development.
Client/server development is greatly enhanced by OOP techniques. OOP techniques teach
developers to build reusable code and to think about a problem in terms of the real world.
OOP is all about modeling the real world to make more user- and business-friendly soft-
ware applications.

In the past couple of years, Microsoft announced a new version of .NET that was to
be delivered in 2005. Visual Basic 2005, Visual Studio 2005, and ASP.NET 2.0 all provide
new functionality and great advantages. This book first teaches the concepts of OOP and
then uses the newest version of .NET to develop ASP.NET web sites. Many companies are
starting to develop most, if not all applications, as web applications. This book helps
position the reader to develop web sites with the newest version of .NET and with OOP
concepts.

If you have developed web sites with traditional ASP, you will learn how to develop
web sites with VB.NET, which is a very big improvement over traditional VBScript and
JavaScript.

Who This Book Is For
There are two main groups that this book was written for. The first is the group of procedural
developers that have spent many years writing software for mainframes. The transition from
procedural programming to OOP can be a difficult one. This book provides a path for that
transition, by first explaining OOP concepts and then explaining how to implement those
concepts with the latest technologies from Microsoft. This book also includes a chapter
(Chapter 1) that introduces Visual Studio and the whole concept of .NET.

The second group this book was written for is the VB6 and traditional ASP develop-
ers. Microsoft is strongly encouraging developers to move to .NET. Whether you agree
with that strategy or not, looking at the newest technology and learning how to use it

xvii

5386fm_final.qxd 8/18/05 3:15 AM Page xvii

to develop new applications may help solve some very difficult problems. As a developer
that first learned VB5, and then VB6, and then made the jump to VB.NET, I know it’s scary.
You are comfortable with the syntax and the concepts. However, as a developer that has
made the transition, I can tell you my development is much quicker now and I can deal
with much more complex problems. There are several hurdles that you need to overcome,
but this book is a very good first step. If you have not worked with OOP with VB6 or ASP,
this book also introduces the concepts. If you have used OOP, then this book will help
you transition from VB6 to VB 2005. If you have developed web sites with traditional ASP,
then this book will help you find the advantages to ASP.NET and show you how to create
web sites with the full VB.NET language, instead of the VBScript or JavaScript languages.

How this Book is Structured
• Chapter 1, “An Introduction to .NET and Visual Studio 2005”

This chapter provides an introduction to the Microsoft .NET strategy, including an
introduction to each of the components, such as the common language runtime.
This chapter also includes an introduction to Visual Studio 2005, the latest version
of the Visual Studio development tools.

• Chapter 2, “Object-Oriented Programming”

This chapter provides an overview and introduction to Object-Oriented Program-
ming. This chapter starts by explaining what an object is and why it is important.
This chapter then briefly introduces the various Object-Oriented Programming
concepts, which are covered in more depth in the remaining chapters.

• Chapter 3, “Attributes and Actions”

This chapter explains the concepts of attributes and actions within the context of
Object-Oriented Programming. After providing an introduction and an Object-
Oriented Programming background for each of these concepts, the chapter
explains how to implement attributes and actions within VB.NET classes.

■INTRODUCTIONxviii

5386fm_final.qxd 8/18/05 3:15 AM Page xviii

• Chapter 4, “Encapsulation”

This chapter explains the concepts of encapsulation and information hiding within
the context of Object-Oriented Programming. This chapter also shows you how
encapsulation and information hiding is implemented with the Microsoft .NET
Framework and how to implement these concepts with VB.NET.

• Chapter 5, “Inheritance”

This chapter explains the concept of inheritance within the context of Object-
Oriented Programming. This chapter also shows how to implement inheritance
within VB.NET. Along with inheritance, this chapter also covers the concepts of
overriding and abstract classes. Finally, this chapter shows you how to imple-
ment overriding and abstract classes.

• Chapter 6, “Namespaces”

This chapter covers the concept of a namespace and discusses how namespaces
are implemented with the .NET Framework. This chapter starts by covering the
purpose of a namespace and then moves into how namespaces are used within
the .NET Framework Class Library. Finally, this chapter shows how to implement
a namespace and nested namespaces within VB.NET.

• Chapter 7, “Class Design”

This chapter begins by providing a list of steps for designing a class. The second
part of this chapter explains how to implement these steps while designing classes
for a Help Desk application. Finally, this chapter shows you how to build the neces-
sary classes within VB.NET for an ASP.NET application, based on the Help Desk
application business process presented within this chapter.

• Chapter 8, “ASP.NET Web Forms”

This chapter shows you how to use the Visual Studio 2005 development environ-
ment along with VB.NET to create ASP.NET web pages and web sites. This chapter
explains how web forms are processed and discusses the application and session
objects. Finally this chapter continues the Help Desk ASP.NET web site begun in
Chapter 7 by showing how to build the necessary web pages.

■INTRODUCTION xix

5386fm_final.qxd 8/18/05 3:15 AM Page xix

• Chapter 9, “ASP.NET Controls”

This chapter explains the different types of controls that can be used within
ASP.NET web sites and how to work with these controls. The chapter also covers
the use of master pages within Visual Studio 2005. Finally, this chapter adds new
controls to the ASP.NET pages created in the previous chapter for the help desk
application.

• Chapter 10, “Web Services”

This chapter covers the basics of web services. This chapter shows you how to
create a web service as well as consume a web service with VB.NET. Finally, this
chapter shows how to integrate web services with the Help Desk application
created in previous chapters.

Prerequisites
• Microsoft Visual Studio 2005

This book uses Visual Studio 2005 Standard Edition. You can also use any other
version including Express.

• Microsoft .NET Framework 2.0

Contacting the Author
The author can be reached at bmyersbook@hotmail.com.

■INTRODUCTIONxx

5386fm_final.qxd 8/18/05 3:15 AM Page xx

An Introduction to .NET and
Visual Studio 2005

This chapter defines VB.NET and ASP.NET and introduces Microsoft .NET and Visual
Studio 2005.

VB.NET and ASP.NET
What is an ASP.NET application and what is VB.NET?

The journey towards writing an ASP.NET application with VB.NET begins with under-
standing those fundamental questions. First of all, some definitions: ASP.NET stands for
Active Server Pages .NET, and VB.NET stands for Visual Basic.NET. VB.NET, put simply, is
a programming language, and ASP.NET is a technology used to render dynamic web con-
tent. An ASP.NET web site is typically made up of code written in either VB.NET or C#
(C Sharp). When creating a web site with VB.NET, you are actually creating an ASP.NET
application using VB.NET. This is different from a traditional Active Server Page (ASP)
page, in that an ASP.NET application is written using fully-featured programming lan-
guages with full functionality, like VB.NET, instead of scripting languages like Visual Basic
Script (VBScript).

An Introduction to Microsoft .NET
Microsoft .NET is a package of software that consists of clients, servers, and development
tools. This package includes the Microsoft .NET Framework (to be discussed later), devel-
opment tools such as Visual Studio 2005 (VS2005), a set of server applications such as
Microsoft Windows Server 2003 and Microsoft SQL Server, and client-side applications
such as Windows XP and Microsoft Office.

An important piece of the .NET puzzle is the Microsoft .NET Framework, the basis for
much of the development part of the .NET strategy. The framework includes many other
subcomponents that allow software that has been written in different languages to work

1

C H A P T E R 1

■ ■ ■

5386c01_final.qxd 8/18/05 3:16 AM Page 1

together by establishing rules for language independence. Using the Microsoft .NET
Framework as a base, software development toolmakers can create development tools for
different languages such as COBOL or C++. Microsoft itself used the .NET Framework to
create VS, which is a development tool used to create software using the VB or C# pro-
gramming languages.

The Microsoft .NET Framework also provides many common functions that previ-
ously needed to be built by the developer. This includes access to the file system, access to
the registry, and easier development when using the Windows Application Programming
Interfaces (API) to access operating system–level functionality. This allows the developer
to concentrate more on business problems, instead of worrying how to access low-level
Windows functionality.

The Common Language Runtime

The Microsoft Common Language Runtime (CLR) is one of the components within the
.NET Framework. The CLR provides runtime services, including loading and execution
of code. The CLR essentially takes the language-specific code that was written and trans-
lates it into what is called Microsoft Intermediate Language (MSIL) code. The resulting
code is the same no matter what language the original code was written in. This is what
allows code written with VB to work with code written in C#. This is also the most impor-
tant aspect of the .NET Framework for a software development company, because one
developer can write code in VB and another developer can write code with C#, but the
application will still work without a problem, allowing companies to use their existing
skill sets. Without this framework and the MSIL, an entire application would need to be
built using the same language. This would require a software development company to
have a full staff of developers that know a specific development language, such as VB.

A single program, written in multiple languages, works mainly because the frame-
work contains a set of common data types that must be used by all languages building
applications with the .NET Framework. This set of data types is the Common Type Sys-
tem (CTS), which defines how types are declared, used, and managed. To accommodate
the CLR, some of the data types within languages such as VB needed to be changed so
they could work better with data types from other languages such as C++. Therefore, if
you are a developer who last used a pre-.NET version of Microsoft languages, you may
notice various changes within the language, which were necessary since the CLR defines
and uses certain rules that must be adhered to by each of the languages that use the
.NET Framework.

There is much more to learn about the .NET Framework and the CLR, but, for now,
this introduction should lay the groundwork that you will need to begin your first soft-
ware development with VB.NET. If you’d like more information, there are a vast number
of books published on the .NET Framework and on VB and other languages. The Micro-
soft web site also has a collection of introductory articles and papers within the MSDN
.NET Framework Developer Center. The ASP.NET Developer Center can be found at

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 20052

5386c01_final.qxd 8/18/05 3:16 AM Page 2

http://msdn.microsoft.com/ASP.NET, and the VS2005 Developer Center can be found at
http://lab.msdn.microsoft.com/VS2005 at the time of this writing.

Assemblies

An assembly is the main component of a .NET Framework application and is a collection
of all of the functionality for the particular application. The assembly is created as either
a .dll file for web sites or an .exe file for Windows applications, and it contains all of the
MSIL code to be used by the framework. Without the assembly there is no application.
The creation of an assembly is automatically performed by VS2005. It is possible to cre-
ate applications for the .NET Framework without VS—however, you need to use the
various tools that come with the .NET Framework Software Development Kit (SDK) to
create the assemblies and perform other tasks that are automatically done by VS. Since
this is a beginning book, I will not address those other tasks or how to create an assem-
bly without VS.

An Introduction to Visual Studio 2005
VS2005 is the latest version of the Microsoft development tools built to extend and use the
.NET Framework. VS2005 is a suite of tools used for developing and designing software
using the .NET Framework. There have been two previous versions of VS for .NET—this
version adds some new features and continues to make the tools easier to use.

With this version of VS, new ways to purchase and use the tools were presented.
Beginning with this version of VS, Microsoft introduced “Express” versions of each Micro-
soft language tool. For example, you can purchase, install, and use Microsoft Visual Basic
Express Edition to write software with VB.NET. There is an advantage to using an Express
Edition if you are only developing software with one language such as VB.NET. In that
case, you only need to purchase that edition. This decreases the cost of the tools and
decreases the amount of space used on your development computer. Also, the Express
Editions are fully compatible with the other VS products (such as Standard Edition), so
any project built in an Express Edition will work in any of the other editions. The Web
Developer Express Edition allows you to create web applications (ASP.NET applications)
with either VB.NET or C#. There are two disadvantages to using the Express Editions,
however. The first is the inverse of the advantage—with the exception of the Web Devel-
oper Edition, you can only create applications with one language when using an Express
Edition. For example, only VB.NET applications can be created with the VB.NET Express
Edition. The second disadvantage is that the feature set for the Express Edition is more
limited than for the Professional or Standard Edition. This version of VS also provides a
Team System Edition of VS, which allows software architects and developers to work side

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 3

5386c01_final.qxd 8/18/05 3:16 AM Page 3

by side with the same tools, while they architect, design, and develop software applica-
tions. VS Standard Edition is the one covered in this book.

How to Get Started with Visual Studio 2005

The first step in getting started with VS2005 is to choose which version you want to use.
There are really two factors to consider when you’re deciding which version you want to
purchase: the first and most important factor is the breadth of what you plan to do. If you
only plan to write Windows applications with VB.NET, then you can use the VB.NET Express
Edition. The same holds true if you want to only create C# Windows applications—in that
case, you can use the C# Express Edition. If you want to write web applications using only
Visual Basic.NET or C#, then you need the Web Developer Express Edition. However, if you
want to create both Windows applications and web applications, then you will need one of
the full versions of VS.

There are three versions of VS. The difference among them is the functionality each
provides. The version with the least amount of functionality is the Standard version. This
version does not support remote debugging or SQL Server Reporting Services, and does
not include integration with SQL Server 2005. The second version is the Professional ver-
sion, which includes the features not included in the Standard version. The third and final
version is the Team System version. The Team System version includes tools for the entire
project lifecycle, including tools for the architect, developer, and tester. The Team System
is broken down into components (Team Architect, Team Developer, Team Test, and Team
Foundation), which can be installed independently of one another or all together.

The second factor in your decision will most likely be the price. Although this might
be the first factor for you, it really shouldn’t be—you should buy the edition that suits
your needs. The Express Editions will cost the least, followed by the Standard Edition,
Professional Edition, and finally the Team System version. If you want to create both
Windows applications and web sites, I suggest using the VS Standard, as I do in this
book. If you want to only create Windows applications, then the VB.NET or C# Express
Edition will provide the necessary functionality. If you want to only create web sites,
then the Web Developer Express Edition will provide the necessary functionality. Unless
you are working with a large team and within a large organization, the Team System is
not necessary for the everyday development of applications.

Once you’ve identified the version of VS you need, next verify that your system meets
the minimum hardware requirements. These requirements are shown in Table 1-1.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 20054

5386c01_final.qxd 8/18/05 3:16 AM Page 4

Table 1-1. Minimum Hardware Requirements for VS2005

Item Requirement

Processor Minimum: 600 megahertz (MHz) Pentium, Itanium, Athlon, or Opteron
processor
Recommended: 1 gigahertz (GHz) Pentium, Itanium, Athlon, or Opteron
processor

Operating System Microsoft Windows 2003 Server
Windows XP Professional
Windows XP Home
Windows 2000
For 64-bit machine, Windows Server 2003 X64 Edition (Build 1184 or later)
Windows XP Professional X64 Edition (Build 1184 or later)

RAM Minimum: 128 MB
Recommended: 256 MB

Hard Disk Without MSDN: 1 GB of available space on system drive
2.5 GB of available space required on installation drive
With MSDN: 1.5 GB of available space on system drive
4.5 GB of available space on installation drive

CD or DVD Drive Required

Display Minimum: 800 × 600 256 Colors
Recommended: 1024 × 786 High Color – 16 bit

Mouse Microsoft mouse or compatible pointing device

Finally, decide whether you want to create web sites (ASP.NET applications) as well as
regular Windows applications. To create web sites, you must first have a web server installed,
which is simply software that will take requests for specific web pages and send them to a
client, such as Internet Explorer. With VS2005 you have a choice of either installing Internet
Information Server (IIS), which is a full blown, industrial strength web server, or using the
built in “personal” web server that is automatically installed with VS. The web server that is
installed with VS will only serve pages to the local computer, so another computer could not
request a page from the web server. This is suitable for development and unit testing.

IIS can be installed and run on Windows 2000 Professional, Windows Server 2003,
and Windows XP Professional.

■Caution IIS cannot be installed on Windows XP Home Edition.

■Note For the rest of this section, I’ll assume you have VS2005, Standard Edition installed and ready
for use.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 5

5386c01_final.qxd 8/18/05 3:16 AM Page 5

Creating a New Web Project (ASP.NET)

After opening VS2005, click File ➤ New ➤ Web Site to create a new web site, as shown in
Figure 1-1.

Choose ASP.NET Web Site, as shown in Figure 1-2. This will create an ASP.NET web
site using VB.NET.

After choosing a type of web site, you will have two choices for the location. You can
either create a local IIS web site or a file system web site. To create a local IIS web site, you
must first have IIS installed and running. If you are using Windows XP Home Edition, you
are not an administrator, or you did not install Internet Information Service, you cannot
create a local IIS web site—so skip to the section on creating a file system web site.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 20056

Figure 1-1. Creating a new web site from the File menu

5386c01_final.qxd 8/18/05 3:16 AM Page 6

Creating a Local IIS Web Site

To create a web site using IIS, click the Browse button on the New Web Site screen, then
click the Local IIS tab in the Choose Location dialog box. This is shown in Figure 1-3.

Click Default Web Site and then click the Create New Web Application button in the
top right, as shown in Figure 1-4.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 7

Figure 1-2. Choosing ASP.NET Web Site

5386c01_final.qxd 8/18/05 3:16 AM Page 7

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 20058

Figure 1-3. Choosing Local IIS as the web site location

Figure 1-4. Choosing Create New Web Application

5386c01_final.qxd 8/18/05 3:16 AM Page 8

Type the name of the web site, as you see in Figure 1-5. This is the name that will be
used to access the web site within the web server. In this example, localhost would be the
web server name. The reason localhost is the web server name is that it is the web server
running on the development computer. If the web site was on another server or was a
domain name like Apress.com, the address would be http://www.apress.com/ followed
by the web site name. In this example, I am going to use localhost as the address, and
I’ll name the web site MyFirstWebApp, so the final URL will be http://localhost/
MyFirstWebApp.

After adding the name, click Open. You will be back to the New Web Site screen with
the URL of the application in the location box.

Click OK to create the web site. The first default page will be created.

Creating a File System Web Site

To create a file system web site, which can be used either without IIS installed or to hold
the web site files in a directory other than the default for IIS, click the Browse button on
the New Web Site screen. Then, click the File System button at the top left, as shown in
Figure 1-6.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 9

Figure 1-5. Setting the web site name

5386c01_final.qxd 8/18/05 3:16 AM Page 9

Choose the folder within the file system that you want to store the files in, and then
click Open. Finally, back on the New Web Site screen, click OK. This will create the new
project and the default first page.

Project Files

After creating a new project, you will notice there is a file within the Solution Explorer
called Default.aspx, with a plus sign (+) beside it. Click the plus sign to expand the

Default.aspx.vb file. You can see an
example of this in Figure 1-7.

The App_Data folder shown in Fig-
ure 1-7 is automatically created when a
new web site project is created. This folder
can hold Microsoft Access database files,
SQL Server Express data files, or XML files.

The difference between Default.aspx
and Default.aspx.vb is that the Default.aspx
file is used for the presentation of your web
site—this could be called the user interface
(UI). The Default.aspx.vb file contains all of

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200510

Figure 1-6. Choosing File System as the Web Site Location

Figure 1-7. Expanded Solution
Explorer with Default.aspx and
Default.aspx.vb

5386c01_final.qxd 8/18/05 3:16 AM Page 10

the actual VB source code that you write for the application, and is called the code file. In
traditional Active Server Pages, both the presentation code (HTML tags) and the program-
ming logic (usually VBScript) were in the same ASP file, which made for a rather awkward
working environment. Attempting to debug an ASP page with both user interface code
(HTML) and logic code (VBScript) could become very difficult to follow. Using the new
method, two different developers could potentially work on the same page at the same
time—one working on the presentation layer and one in the code file writing the logic
that makes the page work. Within VS2005, code files are only defined as partial classes.
A partial class is the same structure as a normal class; however, with the keyword partial,
VS2005 knows to combine this class with any other partial classes with the same name to
create one class when the web site is compiled. This means that multiple developers could
be working on the same code file as a partial class. When the whole web site is compiled,
the partial classes will all be combined into one.

Working with Virtual Directories

If you have IIS installed you can make a virtual directory from the file system folder that
you just created with the IIS Administration Tool. There are two advantages to making a
virtual directory instead of just having the folder with files in it. The first is that the virtual
directory can be accessed more easily. You can type the web site name that points to the
virtual directory (i.e., http://localhost/MyFirstWeApp) instead of having to type the URL
for a specific web page. The second advantage is that the virtual directory allows you to
have the contents of your web site in a different physical location. A virtual directory cre-
ates a web site within the default web site and can be accessed using a URL—however,
the files that make up the web site are outside of the default location. By default, when
IIS is installed, a folder called inetpub is created on the C drive. Typically web site folders
are created as subfolders to the wwwroot folder within the inetpub folder. If you are cre-
ating a local IIS web site with VS2005, the actual files will be located within the following
directory: c:\inetpub\wwwroot\web_site_name. However, with a virtual directory you
could have the folder containing the content on another drive. This helps to move more
files off the root drive.

To create a virtual directory, open the control panel, then click Administrative Tools
(click Performance and Maintenance first if you are using Windows XP). Once the Admin-
istrative Tools are open, select Internet Information Services. If you do not see Internet
Information Services within the Administrative Tools, IIS is not installed and you cannot
create a virtual directory.

After opening Internet Information Services, find your computer’s name, choose
Web Sites, and then expand the Default Web Site.

Create a new Virtual Directory by first right-clicking Default Web Site and then
choosing New ➤ Virtual Directory, as shown in Figure 1-8.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 11

5386c01_final.qxd 8/18/05 3:16 AM Page 11

Click Next on the opening splash window, then type the alias that you want to use.
The alias is what the web site will be called. In the previous example, when you created a
local IIS web site, the web site was called MyFirstWebApp. That would be the alias of the
virtual directory. Enter MyFirstVirtualDirectory as the alias, as shown in Figure 1-9, then
click Next.

When you’re asked for the directory, click the Browse button and browse to the folder
that was created when the File System web site was created earlier, as shown in Figure 1-10.

Click OK on the Browse For Folder pop-up window. Then, click Next on the Directory
window. Accept the defaults for the Access Permissions window and then click Next. This
will allow read access as well as execution of ASP and ASPX pages. This is enough security
for the web site.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200512

Figure 1-8. Creating a new Virtual Directory

5386c01_final.qxd 8/18/05 3:16 AM Page 12

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 13

Figure 1-9. Entering the Virtual Directory alias

Figure 1-10. Choosing the folder containing the web site pages

5386c01_final.qxd 8/18/05 3:16 AM Page 13

This security setup will allow users to read from the web site and execute the code on
an ASP or ASPX page. However, the user will not be able to write to the folder and there-
fore will not be able to send malicious code via file to the web site. Finally, you should see
a window, as shown in Figure 1-11, saying that the Virtual Directory was created success-
fully. Click Finish when this window appears.

If the web site you are creating is for internal use only and all your users are part of
the same domain, you can use Windows Authentication to perform the authentication
for the web site. By default, both Windows Authentication (called Integrated Windows
Authentication) and Anonymous Access are enabled.

To view the Directory Security for the web site, right-click the Virtual Directory you
just created and choose Properties. This is shown in Figure 1-12.

Click the Directory Security tab (shown in Figure 1-13) at the top of the Properties
window.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200514

Figure 1-11. The Virtual Directory has been created.

5386c01_final.qxd 8/18/05 3:16 AM Page 14

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 15

Figure 1-13. Choosing the Directory Security tab

Figure 1-12. Virtual Directory properties

5386c01_final.qxd 8/18/05 3:16 AM Page 15

Within the Directory Security tab, click the Edit button. The Authentication Methods
screen, shown in Figure 1-14, will appear.

Allowing both Integrated Windows Authentication and Anonymous Access permits
users to log on to the web site without being part of the domain. If your application is
an intranet application, it is suggested that you remove the Anonymous Access. How-
ever, if this is an external web site, and username credentials will be handled by the
web site, then unselect Integrated Windows Authentication. If the web site is internal
and you are attempting to determine the currently logged on user, then you can only
select Integrated Windows Authentication. If you attempt to determine the currently
logged on user and the web site allows Anonymous Access, your code will not be able
to determine the logged on user.

Opening an Existing Web Site

There are two ways to open an existing web site from the File menu. If this is a recent web
site (the last four or five projects you worked on), you can click Recent Projects to see a
list. The Recent Projects menu option is shown in Figure 1-15.

The other option is to choose Open ➤Web Site from the File menu, as shown in
Figure 1-16.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200516

Figure 1-14. Authentication methods

5386c01_final.qxd 8/18/05 3:17 AM Page 16

Make a choice from the options on the left, depending on the type of web site that
was created (File System, Local IIS). Then choose the folder the project file is in and click
Open, as shown in Figure 1-17.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 17

Figure 1-15. Recent Projects
from the File menu

Figure 1-16. Open ➤Web Site option from the File menu

Figure 1-17. Choosing the folder with the project to open

5386c01_final.qxd 8/18/05 3:17 AM Page 17

Building Web Sites

After opening a web site, the source code file will most likely be showing. Enter My First
Web App between the HTML tags that say <title>. The source code file with the correct
title is shown in Figure 1-18.

■Note If you do not see a source code page similar to Figure 1-18, then click the View menu and select
Solution Explorer. The Solution Explorer will appear. Double-click the file named Default.aspx, which will
open a page in the middle section. Then click the source button at the bottom of the middle section to see
the HTML source as in Figure 1-18.

The source code that is showing is
HTML. If you click Design at the bottom of
the window, this will take you to the Designer
tool that you will use later to add elements to
the user interface, such as text boxes. From
the menu at the top, choose Build ➤ Build
Web Site, as shown in Figure 1-19.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200518

Figure 1-18. Visual Web Designer

Figure 1-19. Build Web Site menu

5386c01_final.qxd 8/18/05 3:17 AM Page 18

The Output window, shown in Figure 1-20, should appear at the bottom of the screen
and give the build’s status (whether succeeded or failed). If the build failed, a message
will appear and a list of the errors will appear for you to correct.

Accessing a Web Site

After you build the web site, it’s time to test it. If you do not have Internet Information
Services installed, hold down Control and press F5. This will start the application. VS will
automatically use the VS web server to run the web site. You can also use the Debug
menu to debug the web site (see also the "Debugging" section later in this chapter), and
VS will use the VS web server if you do not have Internet Information Services installed.

■Caution Your anti-virus software may alert you to a problem when first running the web site from within
the VS environment. You may need to let your Anti-Virus software know that the VS web server is allowed to
process requests.

If you do have Internet Information Services installed, your web site can be accessed in
several ways. One way is to open the web site within the Visual Web Developer tool. When
the build is completed, an output window should appear at the bottom of the screen, or
you will see at least an output tab that you can click on. You may need to scroll up within
the Output window to see the link to the web site that was just built. To go to the web site
that was just built, hold down the Control key and click the link to the web site in the Out-
put window, as shown in Figure 1-21.

In the previous example, your window within the Visual Web Developer tool should
look like Figure 1-22.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 19

Figure 1-20. Build Output Window

5386c01_final.qxd 8/18/05 3:17 AM Page 19

The second way to access the web site is to open your Web browser and type the URL.
The URL will begin with http://localhost/ (or the name of the server, if you are work-
ing remotely) followed by the web site name. In the examples used so far, the URL will be
http://localhost/MyFirstWebApp. Typing this URL should bring up the Default.aspx page
with the title of My First Web App.

If you change the name of the first page in your web site from Default.aspx, you must
change the first document the web server will look for. To do this, open Internet Informa-
tion Services from the Administrative Tools. Right-click the web site you are working on.

Choose Properties to view the properties of the web site. The Documents tab will
appear. The Documents tab is shown in Figure 1-23.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200520

Figure 1-21. The Web Application’s link within the Output window

Figure 1-22. My First Web App running

5386c01_final.qxd 8/18/05 3:17 AM Page 20

If the name of your first web page within the web site is not in the list, add it by click-
ing the Add button and then typing the name of the page, including the extension (for
example, .aspx). Then click OK in the pop-up window, click on the name of the file you
just added, and then click the up arrow to move it to the top of the list. After moving your
page to the top of the list, click OK.

Navigating the Visual Studio Environment

The VS environment can be intimidating at first. However, after you become familiar with
it, you can close many of the windows to give yourself more space to work.

The middle section is for coding and includes the Designer Tool. The Designer Tool
has two views. The first is the Design view, which is blank when a new form is created.
That is where you place controls on the form. The Source view allows you to see the
HTML code that makes up the form and is shown in Figure 1-24.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 21

Figure 1-23. Documents properties tab

5386c01_final.qxd 8/18/05 3:17 AM Page 21

The left side area is called the Toolbox, shown in Figure
1-25. This has all of the controls that can be added to a form.
To add a control to a form, drag the control from the Toolbox
onto the form. There will be more information about creating
and working with web forms and web controls in Chapters 8
and 9.

On the right side of the screen there are two boxes; one is
the Solution Explorer and the other is the Properties Window.
The Solution Explorer, which shows all of the files that are
part of the current web site, is shown in Figure 1-26. Use this
area to move from page to page while working on the code.

The Server Explorer, shown in Figure 1-27, shows other
servers that you have connections to and can be used to con-
nect to and view SQL Server database information. To do
this, click on the Data Connections button. Connecting to a
database is beyond the scope of this book.

The items shown in the Properties Window, shown in
Figure 1-28, will be different depending on the control
selected. When you click on any control, or the form itself,
information about that control or form will appear in the
Properties Window. Use these properties to control all of the
visual parts of the controls, such as font and size.

There are two ways you can hide any or all of the win-
dows on the right side of the Properties Window. The first way
you can hide a window is by clicking the X in the upper-right

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200522

Figure 1-24. Visual Designer Window

Figure 1-25.
The Toolbox

5386c01_final.qxd 8/18/05 3:17 AM Page 22

corner of any of the boxes, closing it completely.
The second way is to click the icon that looks like a
pushpin in the upper-right corner of each box. If
the pushpin is in a downward position, then the
window will stay expanded. If the pushpin is in a
sideways position, the window will collapse to the
side of the screen when not in use. To toggle
between the two, click the pushpin. Also, if you
have clicked the pushpin to make it collapse the
window, and you want to work with the window
again, just move your mouse over to the title of the
window on the right of the screen and the window
will expand again.

Debugging

Debugging is an important step in the software development process. Typical industry
best practices state that code should be written and then unit tested before integrated
with existing code. Unit testing consists of testing the section of code just written with
minimal integration into other code that may already exist. Using this strategy means that
if an error occurs, there is a limited amount of code that could be responsible for the error.

To best test code and find problems, VS2005, like previous versions, has a debugger
included. The debugger allows you to look at each line of code as it is executed and also
see the values that a variable contains during execution. The debugger follows the line-
by-line execution of the application as if it were in production. This way you know exactly
which lines of code will be executed and in what order.

Before using the debugger, a breakpoint must be set. The breakpoint tells the debug-
ger where to stop code execution and begin debugging. Without the breakpoint, the
debugger will execute all of the lines of code without showing the debug process.

To see how this works, you are going to add some code to the Default.aspx.vb code
file page. Open the Default.aspx.vb page from within the Solution Explorer. If you are in

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 23

Figure 1-26. The Solution Explorer Figure 1-27. The Server Explorer

Figure 1-28. Properties Window

5386c01_final.qxd 8/18/05 3:17 AM Page 23

the source code view (meaning you can see the HTML tags), click the Design button at the
bottom. Once you are in design mode, right-click and choose View Code. You can right-
click anywhere on the page. This will take you to the code page. For now ignore the partial
class and inherits lines that are present. These will be covered later. Choose _Default from
the top left drop-down menu and use the right drop-down box at the top of the page to
choose New, as shown in Figure 1-29.

Some new lines of code will be added. After the line Public Sub New() enter the fol-
lowing lines of code:

Dim x as integer

While x<100

X = x + 1

End While

These few lines of code will add 1 to x until x is 100. Now, click the gray area just to
the left of the code While x < 100 (see Figure 1-30). This will establish the breakpoint.

To use the debugger, click the Debug menu and then choose Start. The first time you
attempt to debug a new web site you will get a message box, similar to the one shown in
Figure 1-31, which will explain that debugging is not enabled for the project by default.
There is a web configuration file for each application that you can use. The configuration

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200524

Figure 1-29. Choosing New from the right drop-down menu

Figure 1-30. Add Debugger Breakpoint

5386c01_final.qxd 8/18/05 3:17 AM Page 24

file can contain information about the project and how the application should behave.
Working with the configuration file is outside the scope of this book. For now, click the
OK button and the debugger will build the application and begin to debug.

First your web browser will open and the page will begin to load. Next, the debug win-
dow will appear with a yellow line where the breakpoint is. To move to the next line of
code press the F11 key. Continue to press the F11 key to execute the current line of code
and then move to the next line. After hitting the F11 key several times, place the mouse
over the x in line 7 (either x will do) to get its value at that time. To stop the debugging,
either click the Debug menu, then Stop Debugging, or close the web browser window,
which will automatically stop the debugging session. You’ll use the debugger more in the
next few chapters in order to find out what code is executing when and what that particu-
lar code is doing.

IntelliSense

IntelliSense is a technology within VS (available for any language within VS) that helps to
complete your code. I’ll show you an example next. While you still have the web site open,
remove line 5 (Dim x as integer). While still on line 5 type Dim x as then hit the spacebar.
What you should see is a drop-down list that appears after the space that was added after
“as.” This drop-down gives you a list of all of the possible “things” that x can be created as.
In this case, we are going to create x as an integer. When you type an I, the drop-down list
will automatically move to the first item beginning with I. Type nte after the I so you have
Inte. The drop-down list will stop on Integer, as shown in Figure 1-32. Press the spacebar,
and it will finish the word for you. IntelliSense can be very important for working with
classes within VB.NET. This will be covered in future chapters.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 2005 25

Figure 1-31. Setting up the configuration file to allow debugging

5386c01_final.qxd 8/18/05 3:17 AM Page 25

Conclusion
In this chapter I have provided you with an introduction to .NET and VS.NET and an
explanation of what .NET and the .NET Framework are. I also explained how VS.NET is
used to develop applications that work with the .NET Framework. The next chapters will
introduce the concepts of object-oriented programming and show how those concepts
can be used to build applications with VS.NET and the .NET Framework.

CHAPTER 1 ■ AN INTRODUCTION TO .NET AND VISUAL STUDIO 200526

Figure 1-32. IntelliSense

5386c01_final.qxd 8/18/05 3:17 AM Page 26

Object-Oriented Programming

The concepts of object-oriented programming, also known as OOP, are the basis for many
of today’s programming languages. The languages supported by the .NET Framework and
VS are no different. In fact, the .NET Framework is built completely around the concepts of
OOP. For you to be able to develop software with VS and specifically VB, you must under-
stand the basic concepts of OOP. In this chapter I’ll provide an introduction to OOP concepts
and also present an introduction to the use of OOP concepts within VB .NET.

Introduction to OOP Concepts
The core idea within OOP is the concept of an object. An object within OOP is something
that models a real world entity. An example that I often give is that of a car object. In this
case, a car object could represent a real-world car. A car object within the context of OOP
would have the same characteristics as a real-world car and would also have the ability to
perform actions as a real-world car could. More discussion of the purpose of an object
and how objects can be used will follow in the next several sections.

Most real-world objects have actions that can be taken either on the objects them-
selves or by them. In our car object example, starting the car would be an action. To truly
model the real world, an object must have or perform actions that the corresponding
real-world object would. With the car example, the car object would have an associated
action called “start.” It may also have an action called “drive” and another called “stop.”
Most real-world objects also have attributes that describe the object. For example, an
attribute of a car might be its red color or its size. Attributes can either be changeable or
static. The color of a car can be changed, hence color is a changeable attribute, but the
size of the car will always remain the same, making the attribute static. Both actions and
attributes will be discussed in more detail in Chapter 3.

In the real world, if we are using an object such as a car, we don’t need to know the
actual inner workings of the car in order to get the benefits of allowing us to move from
place to place. In the same way, a key advantage of OOP is the ability to use objects created
by other people without having to know how the object actually performs the requested
actions. There may be a thousand lines of code within an object that you use daily, but

27

C H A P T E R 2

■ ■ ■

5386c02_final.qxd 8/18/05 3:34 AM Page 27

you’ll never be exposed to it or need to understand how it works in the course of develop-
ment. You will only need to know two things:

• Any information you might need to provide to the object

• The kinds of information you will get out of the object

This is a concept called encapsulation, and it will be discussed in greater detail in
Chapter 4.

One object can also be used as a basis for another object. For example, many car
manufacturers use the same frame to make many different brands of cars by just
changing their outside bodies. This is a concept called inheritance and will be dis-
cussed further in Chapter 5.

Why Objects Exist

An object is not based in procedure, meaning in other words, that if you create an object,
you never know when that object will be used within a given program. With a procedural
programming language such as COBOL, you know that the code will be executed in order;
for example, that line one will be executed before the code on line two. With OOP you do
not know when an object will be called or what part of the object will be used.

A good way of explaining these ideas is to consider a web page. Say, for instance, that
you have a web page with two buttons and two text boxes. At the moment, it does not
matter where the buttons or the text boxes are located, but it’s important to understand
that the two buttons and the two text boxes are objects for programming purposes. As a
programmer, you don’t know when or even if either of the buttons will be pushed, nor do
you know if the text boxes will have text placed in them or not. This illustrates the fact
that objects are not procedural in nature.

Within a given object, there will be actions that will be procedural in nature. For
example, going back to the car object example, one action that can be taken on the car is to
start the car. Within the action of starting the car, there are certain steps that must be done
sequentially. So, within an object, there may be procedural-style programming, but the use
of the object itself is not procedural. If you think about it, this very closely models the real
world. Just because you get into your car doesn’t mean that the car will automatically start,
and just because you start the car doesn’t mean the car will go forward immediately. In con-
trast to the real world, with OOP, all of these actions are independent of each other. Each
individual action can be taken or called when necessary. You may want to just get into the
car to get something out that you forgot, and in that case, the car should not start immedi-
ately and start moving forward. You may also be parked behind another car in a parking lot.
You want to be able to start the car and put it in reverse instead of drive.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING28

5386c02_final.qxd 8/18/05 3:34 AM Page 28

Objects As the Building Blocks of OOP

Objects are called the building blocks of OOP because a program written with an OOP
language such as VB.NET may have many objects within it. Take, for example, a web site
for scheduling college courses. There may be a student object with information about
students, a room object with information about classrooms, a course object with infor-
mation about courses, and finally a schedule object that holds information about the
final schedule for each course in each room and the number of students in each course.

These objects are independent of one another but may be loosely tied together. For
example, the schedule object would need to reference the other objects, since the sched-
ule is made up of courses, rooms, and students. All of these objects could be written by
the same programmer or split up to be written by a few different programmers. The pro-
grammer working on the schedule object would only need to know what information to
give to and expect from the course object. She would not need to ask the course object
programmer about the detailed code or how the object actually works. In fact, with the
.NET Framework, it doesn’t even matter which language each object was written in,
because they will all work together as if written with the same language.

When programming the student object, the programmer doesn’t know which particu-
lar actions pertaining to the student object that a future developer might take and in what
order they might be used. For example, the student object might have two actions, one
called CheckPrerequisites and another called CheckGradeLevel, which only come into
play if the student is registering for classes. One or both of these actions might be taken to
determine if the student qualifies for the course. However, it’s also possible the course the
student is attempting to enroll in doesn’t have prerequisites, meaning that the schedule
object wouldn’t need to request that the course object perform the CheckPrerequisites
action. Alternatively, it’s possible that the school in question allows any student at any
grade level to take a specific course. Therefore, the CheckGradeLevel action would not be
required for that particular course, and the schedule object would not need to request
that the course object perform the CheckGradeLevel action.

This has been yet another example showing that objects are not procedural. How-
ever, a programmer would still need to follow certain steps when writing the code for
the CheckPrerequisites action. For example, the CheckPrerequisites action may require
that the program first check to ensure the student is truly enrolled at the college, then
determine if there is any money owed, and finally, make sure the student has passed the
prerequisite course. If you can remember the last time you attempted to enroll in a
course at a college, you will realize that these objects do model the real world. But keep
in mind that for any given problem, the objects required and the actions required may
be different.

The object (or in this case objects) really implements the business rules that are
defined within the real world. For example, the CheckPrerequisites action mentioned

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING 29

5386c02_final.qxd 8/18/05 3:34 AM Page 29

in my college scheduling example performs checks that are defined by business rules.
The business rules help to determine what actions to take and what steps are involved
when performing actions.

Introduction to Reusability

Reusability is the concept of using the same object for multiple purposes and multiple
applications. Reusability is really a by-product of OOP. The idea is that a single object
should not be tied, or at most, very loosely tied, to other objects. This way the object can
be used by any other object or client. (Loosely tied objects are objects that rely on one
another but are not entirely dependent on one another.)

Importance of Reusability

Objects should be built to be reused as often as possible, because reusability helps to
decrease development time. If an object that is known to work well and has been tested
previously can be used in development, then valuable development time can be used for
other purposes, rather than in creating new, redundant objects. As a rule of thumb, if there
are multiple types of applications that are similar, there is a good chance that the code can
be reused. Also, if you find yourself copying and pasting code from one application to
another already, you can probably put that code into an object to be reused. Finally, an
object can be used if an application requires certain services (such as printing services)
that other applications can also use and that can be detailed in general terms. For example,
a printing object could be created to send items to printers, but that particular printing
object could also be used by many applications to send items to a printer, instead of each
application including its own object code for printing.

It’s a fact that in some applications, reusability may not be practical. For many applica-
tions there are multiple layers of objects. For example, you may have an object that is used
to provide all services related to database manipulation. This object can be reused. How-
ever, if the same application has an object that is specific to itself, the object may not be
able to be reused. Using the example of the course scheduling that I discussed in the last
section, consider that the student object could be reused in other applications within the
college if it contains actions other than those specific to scheduling. For example, the stu-
dent object could be used to enroll students in the college or to keep track of financial aid
for a specific student. However, the rooms object probably would not be useful in any other
application within the college. These decisions are best made during the design of the
application and must be looked at closely (I’ll talk more about object design in Chapter 7).

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING30

5386c02_final.qxd 8/18/05 3:34 AM Page 30

Incorporating Reusability

Reusability can be very difficult to implement, especially within larger organizations.
Within a small organization, there may be only one or two programmers, who are likely
familiar with their own code and can easily recognize instances when another program-
mer might be able to use it to solve a specific problem. In larger organizations, reusability
must be looked at from an enterprise level. Someone within the organization must break
down the objects that are required for each application and then decide whether existing
objects can be used or not. To make this easier, a set of reusable objects that perform the
common actions specific to the organization should be kept in a library. This library can
also be considered a framework.

A framework is a group of objects that are reusable and that may or may not depend
on one another. Many companies (like mine) have a framework that includes all com-
mon objects that are used for applications. Objects that fit in this category are usually the
“lower level” objects that provide for tasks that are common across most, if not all, of the
applications within a company. The biggest problem with using a library or framework is
that developers must have a central place to determine which objects exist within the
library or framework and must have access to their documentation. Developers must
also be able to determine whether there is an object that has already been built to per-
form the work that they need. Within the .NET Framework, this organization-specific
library could be a namespace (collections of classes that are similar). I will discuss the
concept of a namespace in Chapter 6.

The .NET Framework also provides an object library called the .NET Class Library.
This is a library of many different objects that perform the common programming func-
tions that most applications need. For example, there is the ActiveX Data Object (ADO)
.NET object that is used for working with databases. This object provides services for
connecting to a database as well as for getting information back out of databases. If this
object did not exist, each application would need to have separate code in order to use
the low level database provider to connect to the database. This would require more time
for each application and would require a programmer with a greater knowledge of the
low-level database provider. Instead, the ADO.NET object hides all of the ugly details
from us. As you now know, this is called encapsulation, and you can find more about it
in Chapter 4.

Introduction to OOP with .NET
The .NET Framework, and all of the programming languages for .NET, are based on the
concepts of OOP. The .NET Framework itself is very reliant on the concepts of OOP. In this
section I’ll discuss which objects are within the .NET Framework and show you how to
create objects within VB.NET.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING 31

5386c02_final.qxd 8/18/05 3:34 AM Page 31

Objects in .NET

Objects in .NET are called classes. Simply put, classes are another name for objects. The
.NET Framework not only includes the Common Language Runtime (CLR), as mentioned
earlier in the book, but also includes a class library. This class library contains a large
number of predefined classes that are included to handle common programming tasks.
These classes reflect the real world, just as any object does. For example, there is a class
called SQLConnection that provides services for connecting to a database. This class sim-
plifies the code that would need to be written each time an application needed to
connect to a database. Therefore, this class is considered to be reusable. Most applications
need to connect to a database and any application that connects to a SQL Server database
will most likely use this class. The SQLConnection class is also a member of a larger organ-
ization of classes called a namespace. The System.Data.SQLClient namespace provides
services for all database functionality. The System.Data.SQLClient.SQLConnection class is
just one of those classes, and provides just a part of the overall functionality. Namespaces
will be covered later in this chapter.

OBJECTS IN ASP.NET WEB APPLICATIONS

When creating ASP.NET web applications, everything is an object or class. The page that will hold user
interface controls is a class, and the user controls themselves are classes. Again, each of the classes
represents the real world. For example, consider the Page class, which is the container for all user
interface elements. This class represents what users will see when interacting with the ASP.NET
application. Any user interface element, such as a text box, is a class. All user interface elements have
attributes and a core set of actions that they perform. Then, each specific type of user interface ele-
ment adds actions and attributes that are specific to that type of element. For example, all of the
elements have an ID attribute that corresponds to the name of the control. However, buttons have
actions that determine what to do when a user clicks the button. The text box user interface element
doesn’t have an action that determines what to do when a user clicks the text box because it isn’t
necessary.

To illustrate this point, create a new file system web site (see Chapter 1 for instruc-
tions on doing this) that points to a folder on your computer called Chapter2, as shown
in Figure 2-1.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING32

5386c02_final.qxd 8/18/05 3:34 AM Page 32

Right-click on the Default.aspx file and choose View
Code, as shown in Figure 2-2. This will open the code file
Default.aspx.vb in the middle of the viewing area.

Click the down arrow for the drop-down on the top-left
side of the page. It should say (General). From that list, choose
(page_events). Now, click the down arrow for the drop-down
list on the right. Choose Load from the right drop-down list.
(The left drop-down is a list of classes, and for each class
chosen from the left drop-down list there is a list of method
or actions on the right.) Actions and attributes will be dis-
cussed in Chapter 3.

After you’ve completed the previous instructions, the
first and last line of code for the action called Page_Load
should have been created, as shown in Figure 2-3. Page_Load
is an action that can be taken on the Page class. Basically any
code you want to be executed when the page is loaded goes
into this Sub.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING 33

Figure 2-1. Creating a new file system web site called Chapter2

Figure 2-2. Choosing
View Code to view
the coding window

5386c02_final.qxd 8/18/05 3:34 AM Page 33

Using the Object Browser in Visual Studio 2005

The Object Browser is a tool within Visual Studio that shows you all of the objects that are
part of a project or application. This includes all of the objects that are part of the .NET
Class Library within the .NET Framework. Using the Object Browser will give you a chance
to see all of the objects that you can use and also give you some insight into how objects
can model the real world.

To access the Object Browser, choose View ➤ Object Browser, as shown in Figure 2-4.
The Object Browser will appear in the middle of the screen.

The first screen of the Object Browser will display all of the namespaces within the
.NET Class Library. A namespace is essentially a collection of classes (and remember that

classes are objects). Namespaces will be covered in
more depth in Chapter 6.

Double-click on the System.Windows.Forms
namespace within the Object Browser, as shown in
Figure 2-5. This will expand the current namespace
and show other namespaces located within that
namespace.

Find the System.Windows.Forms namespace
and double-click it. You will see a long list of items,
as shown in Figure 2-6.

The items with the multicolored icons (such
as AccessibleObject in Figure 2-6) are classes. If
you go down the list and click on some of the vari-
ous classes, you’ll see the area to the right of the
class list fill up with a list of actions and attributes.
Click the class called Button under the System.
Windows.Forms namespace and the list of actions
and attributes for the Button class will appear on
the right, as in Figure 2-7.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING34

Figure 2-3. The Page_Load action

Figure 2-4. Choosing Object
Browser from the View menu

5386c02_final.qxd 8/18/05 3:34 AM Page 34

The items that have a purple icon next to them are actions,
while the items with a hand beside them are “public” attributes. The
items with the blue icons beside them are the “private” attributes of
the classes. If you click on one of these attributes or actions, some
more information about the item will appear in the small box below
the attribute and action list. For example, click on the BorderColor
attribute with the hand icon beside it (meaning the public Border-
Color attribute). You’ll see that more information for that attribute
will appear below the list, as shown in Figure 2-8.

If you continue to scroll up and down, clicking on classes and
namespaces, you will see that there are hundreds of classes and thousands of attributes
and actions. These are all part of the .NET Framework. It’s not necessary to memorize any
of these. Many of these items are used behind the scenes by the .NET Framework. For
example, when you create a new web application, the default page created is automati-
cally based on the Page class.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING 35

Figure 2-5. Choosing
System.Windows.Forms from
the Object Browser

Figure 2-6. Part of the
System.Windows.Forms
namespace

Figure 2-7. The actions
and attributes of the
Button class

Figure 2-8. More infor-
mation about the
BorderColor attribute

5386c02_final.qxd 8/18/05 3:34 AM Page 35

Creating a Class with VB.NET

This is the moment you have been waiting for. You may have been asking yourself, “What
does all of this mean to me? I just want to create a web site!”

Up to this point, I have covered the theory behind the objects that are the classes
within VB.NET, and I’ve covered the objects that exist within the .NET Class Library. Now
that you have some background information, it’s time to create a web site with VB.NET.
The first step is to create your very first class. To create a new class within VB.NET, right-
click the name of the project at the top of the Solution Explorer (should be c:\chapter2)
and choose Add New Item. From the Add New Item window, choose Class, as shown in
Figure 2-9, and then enter MyFirstClass in the name field. Next, click Add.

■Note If you do not see the Solution Explorer, it may be closed or hidden. If the Solution Explorer is closed,
click the View menu, then choose Solution Explorer to view the Solution Explorer again. The Solution Explorer is
hidden at the right edge of the screen. Move your mouse over to the tab for the Solution Explorer to expand it.

After you click Add for the new class, a window will appear (shown in Figure 2-10),
asking if you want to create a code directory. Click Yes.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING36

Figure 2-9. Choosing Class from the Add New Items window

Figure 2-10. Adding a Code directory

5386c02_final.qxd 8/18/05 3:34 AM Page 36

Your new class will be created and the code window will now appear in the middle of
the screen. The actual file name will be MyFirstClass.vb and it will be visible in the Solu-
tion Explorer on the right. Do not remove the two lines of code that are added by default.
Every class must begin with a declaration line that includes the name and access modi-
fier (Public in this case) and every class must end with an End Class.

Enter the following code between the existing lines:

Public Function ReturnString() As String

Return "Myclass"

End Function

This code will create a function (or action) that will return a string value of general
text to the code that requests this action. The first line of this code is the action declara-
tion, which defines what action to take. The first line of this code is the only information
that other code wanting to perform the ReturnString action of the MyFirstClass object
will see.

Using a Class in VB.NET

After adding an action to the class, you can now use the class. To use a class, a variable must
first be created with a data type that matches the class name. Click on the Default.aspx.vb
tab to add code to the page. The Page_Load action of the page should still be visible. If not,
click the left drop-down list at the top of the window, choose Page Events, and then choose
Load from the drop-down list on the right. Add the following lines of code on the line after
the Page_Load declaration line:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs)➥

Handles Form1.Load

Dim clsMy As New MyFirstClass

Dim strReturn As String

End Sub

The first line of code (carrying on to the second line in the previous example) is the
sub declaration. The second line of code (starting with dim clsMy as New MyFirstClass)
declares a variable called clsMy that is an instance of the MyFirstClass class, and this dec-
laration will make an exact copy of MyFirstClass. The third line will declare a variable that
is a string, to hold a string value.

Now add this line of code below the other two:

strreturn = clsMy.ReturnString

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING 37

5386c02_final.qxd 8/18/05 3:34 AM Page 37

This line of code will accept the value from the ReturnString action and will then ask
the MyFirstClass class to perform the action and provide a string value back. I’ll discuss
how actions and attributes are defined and used in Chapter 3.

Now that all of the code has been added, place a breakpoint on the line that requests the
instance of MyFirstClass to perform the ReturnString action (strreturn=clsMy.ReturnString).
This will allow you to walk through the code as the application executes. You can do this by
clicking the gray area to the left of the line so that a maroon bar appears over the line. You
can start to debug the application by choosing Start from the Debug menu. If you do this,
you may be told that a configuration file must be created first. Click OK and the page should
begin to load in a Web browser. Next, the code page should appear with a yellow line over
the breakpoint, as shown in Figure 2-11.

When the breakpoint appears, press the F11 key. This will actually transfer the debug-
ger to within the MyFirstClass file, since the F11 key tells the debugger to move to the next
line of code, as shown in Figure 2-12.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING38

Figure 2-11. Breakpoint on the action callck

Figure 2-12. Debugger transferring to MyFirstClass file

5386c02_final.qxd 8/18/05 3:34 AM Page 38

Press F11 again and the debugger will be on the line ReturnString="MyClass". This
line will assign the string “MyClass” to the action that was performed, which in turn will
send that value (“MyClass”) back to the variable called strreturn within the Page_Load
action. Press F11 two more times to leave both this action and MyFirstClass.

Now the debugger will be back within the Page_Load action again. Press the F11 key
one more time to complete the assignment. Place your mouse over strreturn and you
should see that the value “MyClass” has been assigned to that variable.

A very important point about the use of classes is that each instance of a class is
unique. That is, if you had declared two variables, clsMy and clsMy1, both as an instance
of the MyFirstClass, both would hold an independent copy of MyFirstClass. But remem-
ber that the values assigned to one instance may not be the same as the ones assigned to
the second. For example, if you had a class with an attribute that could provide a random
value, and you created two instances of this class, you would find that both have a differ-
ent random value.

Conclusion
In this chapter I introduced objects, the core concept of OOP. I showed you why objects
are necessary, and discussed the importance of reusability in development. I also gave
you an introduction to classes within VB.NET.

CHAPTER 2 ■ OBJECT-ORIENTED PROGRAMMING 39

5386c02_final.qxd 8/18/05 3:34 AM Page 39

5386c02_final.qxd 8/18/05 3:34 AM Page 40

Attributes and Actions

I’ll begin this chapter by taking a look at what attributes and actions are within OOP and
then show you how to create attributes and actions using VB.NET.

Attributes
Attributes, in OOP, are a way to describe the characteristics of a real-world entity. In my
car example from Chapter 2, the color of the car is an attribute. You can allow attributes
to change, or not, depending on how you use them. When a real-world entity needs to be
translated into an object, the attributes usually follow the descriptive words of the real-
world entity. For example, a business process may state that the car must be red in color,
must have four wheels, and must have mobility. The car, in this case, is the noun, so it’s
the object. The first adjective (descriptive word) I’ve used is “red.” The attribute is the
thing that follows the descriptive word, which in the case of the car is color.

In many business processes the descriptive words may not be actually followed by
an attribute. Instead, you may need to infer the attribute, which makes the job of defin-
ing attributes more difficult. In the previous example, the business process might state
that the car must be red, have four wheels, and be able to both go and not go, as needed.
This business process appears to be very good, because the process is giving you the
specifics of an object. However, the business process mentioned is specific to one instance
of an object (called a class in VB.NET). Given this example, you must determine what the
attribute is. Are the attributes red and four? This is a case where you need to infer the attrib-
utes. Based on your knowledge of the real world, you could probably determine that among
the attributes for a car are color and wheels. However, if you aren’t as familiar with the
business process, you may need to ask more questions, such as, in this case, what “red”
is in terms of the car. I’ll discuss how to design classes based on business process infor-
mation in Chapter 7.

41

C H A P T E R 3

■ ■ ■

5386c03_final.qxd 8/18/05 3:33 AM Page 41

Actions
Actions, in OOP, are a way to define what a real-world entity does. Using the car example
from Chapter 2, let’s consider the idea that the car moves forward and backwards. Actions
are typically verbs within a business process. If the business process dictates that the car
must be red in color, have four wheels, and start and stop, note that start and stop are
verbs, and therefore actions. Based on your knowledge of the real world, you would already
know that a car can start and stop. In this way, actions are a little easier to determine than
attributes when designing a class, because they are typically the verbs in a business process.

As you will see in Chapter 7, there may be other actions required of an object besides
the obvious ones that you get from the business process. There also may be underlying
actions that need to be performed before the actions specified in the business process
can be performed. With the car example, the action of the driver pressing down the brake
pedal may need to be performed before the stop action can take place. That isn’t obvious
from the original business process, but you know that in the real world, if the driver does
not press the brake, the car will neither stop nor attempt to stop (meaning that the stop
action is not taken). Finding these hidden actions can be very difficult and can sometimes
only be defined during the design or development phase of a project.

Attributes and Actions Within VB.NET
In this section, I’ll cover how attributes and actions defined within OOP are implemented
in VB.NET.

VB.NET Properties

Within VB.NET, attributes of an object are called properties. Just like attributes, properties
describe the object. Properties are found the same way that attributes are found within
the business process.

Properties within a class have a data type associated with them, just as variables do.
This data type must be given to the property when it is first defined within a class. The
data type can be any valid data type within the VB.NET language.

■Note The data type you choose for a property may restrict the type of information that can be assigned
to that property. For example, if you have data that can be either whole numbers or decimal numbers, you
need to define that property as decimal. If you previously defined that property as an integer (whole num-
ber), but then attempted to assign a decimal value to it, only the whole number part of the value would be
stored. To help prevent this, set Option Strict on as mentioned in the next section.

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS42

5386c03_final.qxd 8/18/05 3:33 AM Page 42

Properties within a class have an access modifier. Access modifiers are ways to
restrict the use of a property or variable. The four main access modifiers for properties
are public, private, readonly, and writeonly. Public properties are available to any code
using an instance of the class, while private properties are available only to the class.
Readonly properties can only be read from the class and writeonly properties can only
be written to the class.

Adding Properties to a VB.NET Class

Properties are most commonly defined with a variable and a property. I know I’ve said pre-
viously that properties and variables are the same thing, but in this case it’s how you define
the access modifier that determines the difference. A very common way to create proper-
ties is to have a private variable defined within the class. Again, a private variable defined
within a specific class can only be used within that class. Any code attempting to use the
class will not be able to directly manipulate this private variable. The manipulation of this
private variable is allowed via the creation of a public property. Any code wanting to use the
class will use the public property to access the value in the private variable.

A class may be defined in the following manner, with both a public property and pri-
vate variable:

Public Class Car

Private strColor as String

Public Property Color() As String

Get

Return strColor

End Get

Set(ByVal value As String)

strColor = value

End Set

End Property

End Class

In this example, the variable strColor is private to the class and therefore cannot be
accessed from outside the class. If you have created an instance of this class (as we will do
in the following sections), the strColor variable would not be available to you because it has
been marked as private. The Color public property would be available for your use, how-
ever, since it’s marked as public. The public property Color is also defined as a data type
string, which means that it will accept alphanumeric information. The Get group of state-
ments returns a value when an instance of the class attempts to access the Color public
property. When an instance of this class attempts to assign a value to the Color public prop-
erty, the Set group of statements will assign the value given to the private strColor variable.

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 43

5386c03_final.qxd 8/18/05 3:33 AM Page 43

Using the private variable and public property setup, as I’ve just defined, gives you
the advantage of adding more code to the Get and Set statements that validates the
incoming or outgoing data or does other things with the data that you might not be
able to do otherwise.

Another way to present the properties of a class is to just define all variables as
public:

Public Class Car

Public strColor as string

End Class

Defined in this way, an instance of the class would be able to access the strColor vari-
able, because that variable is now public. Any code using an instance of the class in this
situation would have direct access to the variable that the class code will use to perform its
tasks. Many developers use this kind of coding to save time, because defining private vari-
ables and public properties individually takes more time. I prefer not to assign all values
via public variables, but rather define my variables with a standard naming convention.
For example, all string variables begin with str. If I define all of my variables that way, and
define them as public instead of private, then reusability becomes more difficult. Defining
private variables and public properties makes reusability easier because by defining the
public property as private, you can also give the property a more recognizable name. In
my previous examples, you saw that the public property was called Color and the private
variable was strColor. In this example, both the private variable and the public property
would have the same meaning to someone writing code against your class. However, you
may want to define the private variable with one name and the public property with a dif-
ferent one. Here I show the private variable with one name and the public property with
a friendlier name:

Public Class Car

Private blnCarStarted as boolean

Public Property CarIsStarted as boolean

Get

Return blnCarStarted

End Get

Set(ByVal value As String)

blnCarStarted = value

End Set

End Property

End Class

Here you can see that the private variable blnCarStarted might have the same name
as the column in the database holding the value. To make the class easier to use for
others, you may want to change the public property to a more easily understood name,

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS44

5386c03_final.qxd 8/18/05 3:33 AM Page 44

such as CarIsStarted. When another developer using your class wants to let the class
know whether the car is started or not, the developer will assign either true or false to
the CarIsStarted public property.

This code is also an example of the encapsulation concept, which was introduced
in Chapter 2 and will be further explained in Chapter 4. By making your variables
private, you can hide (encapsulate) how the class’s actual work is done.

Using a Class Public Property in VB.NET

Now that you understand how to add a public property to a class, you need to know how
to use the public property. I am now going to move away from the car example and try
to present something more relevant to business. So, for the subsequent sections in this
chapter, I will be working with a common business process: allowing an employee to
enter his or her first name, last name, and date of birth. This could be for any type of
application, such as a help desk ticket, a benefits form, or even payroll information.

In this business process, the employee is the noun, and therefore the object, and will
become the class name. The attributes in this example are the employee’s first name, last
name, and date of birth. These attributes will become the properties of the class.

First, create a new web site called Chapter3 (see Chapter 1 for more information on
how to create a new web site). Leave the Default.aspx page as it is and add a new class,
called Employee, to the web site (see Chapter 2 for details on how to do this).

Within the Public Class Employee and End Class lines, define two string variables:
strFirstName and strLastName. Then, add a private date variable called dteDateOfBirth.
The resulting code would look like

Public Class Employee

Private strFirstName as String

Private strLastName as String

Private dteDateOfBirth as Date

End Class

These are the private variables that will be used by the Employee class, but will not
be accessible to new code using the class. Next, create the public properties within the
Employee class for FirstName, LastName, and DateOfBirth. A quick way to do this is to
type Public Property and then the public property name, followed by “As” and the type
of variable (i.e., Public Property FirstName as String) and hit Enter. VS2005 will create
the required structures for you:

Public Class Employee

Private strFirstName As String

Private strLastName As String

Private dteDateOfBirth As Date

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 45

5386c03_final.qxd 8/18/05 3:33 AM Page 45

Public Property FirstName() As String

Get

Return strFirstName

End Get

Set(ByVal value As String)

strFirstName = value

End Set

End Property

Public Property LastName() As String

Get

Return strLastName

End Get

Set(ByVal value As String)

strLastName = value

End Set

End Property

Public Property DateOfBirth() As Date

Get

Return dteDateOfBirth

End Get

Set(ByVal value As Date)

dteDateOfBirth = value

End Set

End Property

End Class

Note the As Date part of the declaration of the DateOfBirth public property. This is
an example of the restriction of data types that you can implement with public proper-
ties. If a value is passed to the public property that is not of type Date, the call will fail. To
help prevent this error from occurring, set Option Strict On by choosing Options from the
Tools Menu within Visual Studio. Once there, open the Projects and Solutions folder and
choose VB Defaults. Change the Option Strict setting to On.

Now open Default.aspx.vb, the code file for the Default.aspx page. Choose Page Events
from the drop-down list on the top left of the Code Designer and then choose Load from
the drop-down on the top right. Your code page should look like this:

Partial Class Default_aspx

Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

End Sub

End Class

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS46

5386c03_final.qxd 8/18/05 3:33 AM Page 46

Now, declare a local variable called clsEmployee of type Employee within the
Page_Load sub:

Partial Class Default_aspx

Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

Dim clsEmployee as New Employee

End Sub

End Class

This declaration (Dim clsEmployee as New Employee) will create a new instance
of the Employee class. On the next line, you can either type ClsEmployee or clsE, while
holding down the Ctrl key and hitting the space bar. When you hold down the Ctrl key
and hit the space bar, VS2005 automatically completes the variable name for you. Notice
that IntelliSense only shows the public properties, though—it doesn’t show strFirstName,
strLastName, or dteDateofBirth. This is because you have defined those variables as pri-
vate, so they can’t be accessed by other code using the class. After choosing ClsEmployee,

choose FirstName, and then add an equals sign. Next, add your first name in quotes. On
the next line, go through the same process with your last name and date of birth (I’ll use
a fake date of birth):

Partial Class Default_aspx

Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

Dim clsEmployee as New Employee

clsEmployee.FirstName = "Brian"

clsEmployee.LastName = "Myers"

clsEmployee.DateOfBirth = "1/1/1900"

End Sub

End Class

■NOTE After entering the date of birth, you may see a gray squiggle line under the value 1/1/1900. If you
mouse over this you will see that this is an implicit conversion between string and date. The squiggle line
just lets you know that VB.NET will be converting the string value (between quotes) to a date value.

These lines of code will assign a value to each of the public properties of the class.
To better see how this works, place a breakpoint on the first line of the assignment code
(clsEmployee.FirstName = "Brian"). Next, click the Debug menu and choose Start. This

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 47

5386c03_final.qxd 8/18/05 3:33 AM Page 47

will begin debugging the application (click OK when asked to add a web.config file).
When the breakpoint is activated, as shown in Figure 3-1, press the F11 key.

After you press F11, the application execution will go to the Set statement of the
Employee Class Public Property FirstName, as shown in Figure 3-2.

Press F11 to move to the assignment statement, and then press F11 again to move
to the End Set statement. If you mouse over the strFirstName variable in the line
strFirstName = value, you will see that the value of strFirstName is now the name that you
assigned to it (in my case, this is “Brian”). Pressing F11 yet again will take you back to the
Page_Load sub of the Default.aspx page. You can stop debugging by clicking the Debug
menu and then selecting Stop Debugging.

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS48

Figure 3-1. Activated breakpoint

Figure 3-2. Set statement of the FirstName public property

5386c03_final.qxd 8/18/05 3:33 AM Page 48

VB.NET Methods

Actions within OOP are implemented as either functions or subs within VB.NET. Subs and
functions are smaller groupings of code that perform a specific task. Subs do not return a
value, while functions do. A public function or sub is called a Method. For instance, with
our car example, one method might be start and another stop.

Functions and subs within a class have the same class-specific access modifiers that
properties and local variables do. A public function or sub is considered a method because
it is exposed to other code using the class. A private function or sub is still considered a
function or sub, rather than a method, since the private function or sub is not exposed
to any code outside of the class.

Every class has a constructor, which is a sub that is called when an instance of the class
is created. You can add code to this sub if you want a task to be performed each time an
instance of the class is created. For example, you might want to add code to the constructor
that allows the initialization of some values when the class is created. Using our car example
from before, the constructor would be the same as getting in the car. That must be accom-
plished before any of the other car actions (such as start) can take place.

Parameters in VB.NET

Functions and subs within VB.NET were introduced in the last section, but in this section
I’ll expand on what you learned and show you the usage of ByVal and ByRef.

A sample function and sub follow:

Public Function ValueSwitch() as Boolean

Public Sub ValueSwitch()

There are two ways to get data into a function or sub. First, you can define public
properties within the class that will accept values before the function or sub is called. The
problem with this approach is if the function or sub is dependent on the value, and the
public properties are not set before the function or sub is called, the function or sub will
fail. This approach will work, however, if your class is specific to an application and if you
are the only one working on that application.

The other approach is to use parameters, sending a value when calling the function
or sub, to pass important values into the function or sub. If a parameter is defined, the
function or sub can’t be called unless a value is provided for said parameter. Therefore,
there is no chance that the function or sub will be called without a value provided. The
value may not be correct, or even in a correct range, but it must be both provided and
provided in the correct data type in order for the function or sub to be called. Here is
a sub and function that contains a parameter:

Public Function ValueSwitch(ByVal FirstValue as integer) as Boolean

Public Sub ValueSwitch(ByVal FirstValue as integer)

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 49

5386c03_final.qxd 8/18/05 3:33 AM Page 49

Parameters can be passed either ByRef (by reference) or ByVal (by value). The default,
and the option used by programmers most of the time, is ByVal.

ByVal is the code equivalent to a one-way street. Though the value given to the param-
eter is passed into the function or sub to be used, the function or sub doesn’t change the
parameter value. Instead, the function or sub receives a copy of the value in the variable
and therefore cannot change the actual value.

ByRef is the equivalent of a two-way street. The value you give to the parameter may
be changed by the function or sub and used again when calling the code. The parameter
itself is really a pointer to the actual value of the parameter, unlike ByVal, which just gives
a copy of the value. Using parameters within functions and subs will be covered more in
the next section.

Adding Methods in VB.NET

Methods within VB.NET are implemented as either functions or subs. A public function
or sub is considered a method because it is exposed to the code that is using the class.
To create a method, simply create a function or sub as public.

In our car example from previous sections, a function could be created for the
Start action. The class code begins with the declaration of a private variable and a
public property:

Public Class Car

Private strColor as String

Public Property color() As String

Get

Return strcolor

End Get

Set(ByVal value As String)

strcolor = value

End Set

End Property

End Class

Next, a function is added after the public property called Start, which returns a
Boolean value to determine if the car has really started or not:

Public Class Car

Private strColor as String

Public Property Color() As String

Get

Return strcolor

End Get

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS50

5386c03_final.qxd 8/18/05 3:33 AM Page 50

Set(ByVal value As String)

strcolor = value

End Set

End Property

Public Function Start () as Boolean

End Function

End Class

■NOTE Each function or sub declaration must be concluded with an End Function. When you are typing
this into Visual Studio (as I will do in the next section), if you hit the Enter key after typing the function or sub
declaration, the End Function or End Sub will automatically be created.

The code you need to make the car start should go between the declaration state-
ment, Public Function Start() as Boolean, and the End Function statement. Since this
is a function, it must return a value; for that, use the Return statement. In this case, the
value must be either True or False, and the function would look like this:

Public Function Start () as Boolean

Return True

End Function

To create a function or sub that accepts parameters, define the name of the parame-
ter and the data type within the parentheses following the name of the function or sub:

Public Function Start (ByVal NumberofTries as Integer) as Boolean

Return True

End Function

Public Sub Start (ByVal NumberofTries as Integer)

End Sub

Using a Method in VB.NET

This section will expand the employee class that you created in the “Using a Class Public
Property in VB.NET” section. In this business process, there is also a requirement that the
employee’s first and last name be concatenated together (or added together as one string of
characters).

To begin, open the web site called Chapter3 if you haven’t already opened it. If you
didn’t create this web site previously, you’ll need to do so now. Once you open the web
site, click on and open the Employee class file called Employee.vb. At the end of the class,

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 51

5386c03_final.qxd 8/18/05 3:33 AM Page 51

just before the End Class statement, add a function called ConCatNames. This function
should accept two parameters, both the first name and last name, and then return the
concatenated name:

Public Function ConCatNames(FirstName as string,LastName as string) as string

Return Firstname & LastName

End Function

End Class

Now, open the code page for the Default page (Default.aspx.vb). Declare a new vari-
able called strConCatName as a string. Declare a new variable called strFirstName as a
string, and then declare another new variable called strLastName as a string. Add a state-
ment assigning a value to strFirstName and strLastName after the assignment statements
that are already there, then add the following call to the ConCatNames function:

strConCatName = clsEmployee.ConCatNames(strFirstName,strLastName)

Your code under the Page_Load section should look like Figure 3-3.

Next, place a breakpoint on line 14 (strFirstName=“Brian”) and then debug the app-
lication (Debug Menu ➤ Start). When the execution of the application comes to the
breakpoint, hit the F11 key to move to the next line. Next, hit the F11 key to move the call to
the ConCatName function at line 16. Press the F11 key again to move into the ConCatName
function within the Employee class. Then, press the F11 key again to move to the assign-
ment statement, and then again to move to the End Function line. Press F11 again to return

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS52

Figure 3-3. Completed code for Page_Load

5386c03_final.qxd 8/18/05 3:33 AM Page 52

to the code in the Default.aspx page. Finally, press F11 one last time to move off the call and
to the End Sub line (line 18).

Now place your mouse over the variable strConCatName and you will see that the
value is now the concatenation of the strFirstName and strLastName values (in my case,
BrianMyers). You can stop the debugging by clicking the Debug menu and then choosing
Stop Debugging.

You should glean a few important things from this example. First, you will notice that
when you are calling the function on the Default.aspx page, the parameters are strFirstName
and strLastName. Within the Employee class, however, the parameters are FirstName and
LastName:

strConCatName = clsEmployee.ConCatNames(ByVal strFirstName,By Val strLastName)

Public Function ConCatNames➥

(ByVal FirstName as string,ByVal LastName as string) as string

The names of the parameters and variables that are passing the values to the parame-
ters aren’t important to this process. What is important is that both the function declaration
(within the class) and the call to the function (the code using the class) use the same data
types for the parameters. As long as you make sure that the string value is defined with the
function there is little that can cause a problem. But, for example, if the function has a
parameter with a data type of Date and you attempt to pass an integer value to the func-
tion, an error will occur.

Now I am going to change the ConCatNames function to a sub by changing its type
from Function to Sub and removing the return value declaration (as string):

Public Sub ConCatNames(ByVal FirstName as string,ByVal LastName as string)

Within the ConCatNames sub, remove the assignment line (ConCatNames =
strFirstName & strLastName). Add a new parameter, ByRef, to the end of the parame-
ter list called FullName. The sub declaration within the employee class would look like
the following statement:

Public Sub ConCatNames➥

(ByVal FirstName as string,ByValLastName as string,ByRef FullName)

Add a new assignment line that concatenates the FirstName and LastName parame-
ters and assigns that value to the FullName parameter:

FullName = FirstName & LastName

Since FullName is a parameter with a ByRef option, the value passed into the
parameter can be modified by the function and the value doesn’t need to be returned
through a function (remember the two-way street idea). The completed function defi-
nition for ConCatNames would be as follows:

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 53

5386c03_final.qxd 8/18/05 3:33 AM Page 53

Public Sub ConCatName(ByVal FirstName As String, ByVal LastName As➥

String, ByRef FullName As String)

FullName = FirstName & LastName

End Sub

Now go back to the code page for Default.aspx, called Default.aspx.vb. You’ll notice
that there is now a squiggle line under the call to ConCatName. First, add a new assign-
ment line under strLastName, which should read strConCatName = “”, completely
remove the line that calls ConCatName, and then replace it with the new call:

clsEmployee.ConCatName(strFirstName, strLastName, strConCatName)

The completed code will look like Figure 3-4.

Next, place a breakpoint on line 14 (strFirstName = “Brian”) and debug the applica-
tion by choosing Debug Menu ➤ Start. When the execution stops at the breakpoint, hit
the F11 key to move to the strLastName assignment line and then F11 again to move to
the strConCatName assignment line. Hit the F11 key to move to the call to ConCatName
and then move your mouse over the strConCatName variable in the parameter list. Note
that there is no value (value = Nothing). Now, hit the F11 key again to move into the sub
and then again to move into the assignment statement. Next, hit the F11 key to move to
the End Sub statement. Now, place your mouse over the FullName parameter in the
parameter list and notice there is now a value (in my case BrianMyers). Hit the F11 key
one more time to move back to the Default.aspx.vb file, and then again to move to the

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS54

Figure 3-4. Revised code for Page_Load

5386c03_final.qxd 8/18/05 3:33 AM Page 54

End Sub on the Page_Load. Move your mouse over the strConCatName parameter in the
parameters list and notice that it now also has a value, and that the value is the same as
the FullName parameter was when the execution was inside the ConCatName sub.

Overloading

Overloading basically allows multiple functions or subs to exist with the same name but
different parameters. This is most useful when you are unsure of the parameters that will
be provided and there are values that are not required. An example of the code used to
define a set of overloaded functions would look like this:

Public Function OverLoaded () as Boolean

Public Function OverLoaded (By Val Parameter1 as string) as Boolean

You can have more than two functions with the same name when you are overloading.
Actually, there can be as many as you want, as long as they all have the same name, the same
access modifier (public, private, and so on), and the same return value. Using our car exam-
ple again, the car might have two methods for moving forward. The first method might not
have any parameters and would be the same as moving forward in an automatic car. The
second method might have a parameter for gear that would make it the same as moving for-
ward in a standard car (with a gear shift). The gear parameter itself would then have a value
of which gear to put the vehicle into, such as first, second, or third.

Conclusion
In this chapter I covered the implementation of attributes as properties in classes and the
implementation of actions as methods. I also covered the creation of properties and meth-
ods within VB.NET. In the next chapter, I’ll go over the concept of encapsulation and how it
is implemented in VB.NET.

CHAPTER 3 ■ ATTRIBUTES AND ACTIONS 55

5386c03_final.qxd 8/18/05 3:33 AM Page 55

5386c03_final.qxd 8/18/05 3:33 AM Page 56

Encapsulation

In this chapter, I’ll cover the concept of encapsulation and show how it is implemented
within VB.NET.

A General Overview of Encapsulation and
Information Hiding
Encapsulation is a way to group methods (actions) and properties (data) into one unit
and then control how these properties are changed and these methods are used. Infor-
mation hiding is the idea that an object should not expose its data directly, but instead
provide another mechanism to allow clients indirect access to the data.

Encapsulation and information hiding provide two advantages. First, other objects
(sometimes known as client objects) can use an encapsulated object without knowing
the inner workings of the encapsulated object. Even if the inner workings of a properly
encapsulated object change, the encapsulated object will still function as it did before.
This means that the client object will continue to function with the encapsulated object
the same way as well. If the object is not properly encapsulated, the client objects would
break when the object was changed.

The second advantage is that the implementation of the encapsulated object is not
accessible by the client object. In this scenario, all the private variables and subroutines
aren’t known to a client object because of information hiding. If you like, you can think
of an encapsulated object as a black box. You provide information to it, in the form of
necessary parameters, and you receive the return value if there is one. In the meantime,
you don’t know what the encapsulated object is doing to perform the work, but you know
that the work will be completed. The main reason for using information hiding is for
situations where you know that if the method was readily available it might be broken by
another developer who was attempting to tweak it. Information hiding is really a double-
edged sword. If you need to perform an action similar to an action already taken by an
object, but you want a different value returned or you want to provide a different parame-
ter for it, with information hiding implemented on your object you couldn’t do that. More
importantly, you wouldn’t be able to determine how the work was done, so you couldn’t

57

C H A P T E R 4

■ ■ ■

5386c04_final.qxd 8/18/05 3:31 AM Page 57

determine how to retrofit the method to accept your parameter or return a different
value to you in the first place.

Since encapsulation makes the methods and properties of an object work as a unit,
you can create two instances of the same object, provide different values to a given prop-
erty of each instance, and then use that property without the two instances crossing.
Consider this case: object A and object B are both instances of the object called Math.
You assign a value of 4 to a property called InValue for object A, and you assign a value
of 8 to the property called InValue for object B. The Math object has a method called
MultiplyBySelf that multiplies the InValue property and returns the result as an integer.
When you execute the MultiplyBySelf method of object A, the result would be 16. How-
ever, when you execute the MultiplyBySelf method of object B, the result would be 64.
Thus the two objects are completely separate from each other.

Encapsulation in VB.NET
Say you are a developer within a large company. Many of the applications built by the
company will require more complex mathematical equations. You need to create a class
called Math that implements the functionality I mentioned previously. Of course there
is nothing complex about this functionality, but it’s a good way to show you the ideas
behind encapsulation and information hiding. This class could be a part of a much larger
company class library. However, to make the example simpler the class will be a single
class that is built into an assembly (.dll file) to be used by other applications.

Keep in mind, you do not need to create a separate project for each class you want to
create. You could create the class within the same project; however, in this case you want
to create the class for all applications within your company to use. The best way to do
that is to create a single assembly that can be referenced by other projects (referencing
will be covered later in this chapter). You can also follow these steps if you want to create
a class library for your company to facilitate reuse within your organization.

Getting Started

To begin, you need to create a class file and build it into an assembly (.dll file) to be used by
a web application. To do this, open VS2005 and choose File ➤ New ➤ Project. The New Pro-
ject window will then appear. Select Visual Basic as the language from the left-hand side.
Then choose Class Library from the right. Change the project name to Encapsulation and
place this class in a folder called C:\Encapsulation, as shown in Figure 4-1. Click OK when
all the information has been added.

CHAPTER 4 ■ ENCAPSULATION58

5386c04_final.qxd 8/18/05 3:31 AM Page 58

Your class library is now called Encapsulation. Open the Solution Explorer, right-
click on the Class1.vb file, and choose Rename as shown in Figure 4-2.

CHAPTER 4 ■ ENCAPSULATION 59

Figure 4-1. Creating a new class library called Encapsulation

Figure 4-2. Renaming Class1.vb

5386c04_final.qxd 8/18/05 3:31 AM Page 59

Rename the Class1.vb file to Math.vb and notice that the class name changed on the left
side as well (within the code area). Now add a private integer variable called intValue and
then create a public property called InValue that is also an integer. To do this, in the code
window under the class declaration (Public Class Math), add Private intValue as Integer.
On the next line type Public Property InValue as Integer and hit the Enter key. VS2005
will automatically create the Set and Get methods for you. The resulting code should look
like Figure 4-3.

Now between Get and End Get, enter Return intValue. Between the Set and End Set
lines, type intValue = value. The resulting code should look like Figure 4-4.

Figure 4-5 shows the concept of information hiding. There is a private variable called
intValue that the class Math will use. There is a public property called InValue that other
classes wanting to interact with the Math class will use to either provide a value or retrieve
the current value. An advantage to creating public properties this way not yet mentioned
is that you can write validation code in the Get and Set methods if necessary. Figure 4-5
shows the use of validation in the Set method.

CHAPTER 4 ■ ENCAPSULATION60

Figure 4-3. Public and Private property

Figure 4-4. Completed Public Property code

5386c04_final.qxd 8/18/05 3:31 AM Page 60

This additional validation would throw an exception if the value was less than one. By
adding this validation to the public property, the value is guaranteed to be in an acceptable
range to be used within the Math class.

After the End Property line, add a new private function called Multiply that accepts
two integer parameters called FirstNumber and SecondNumber, both of which are ByVal.
The function returns an Integer result:

Private Function Multiply(ByVal FirstValue As Integer,

ByVal SecondValue As Integer) As Integer

End Function

Now you need to multiply the two parameters together and return the result. The
code to do this would be

Return FirstValue * SecondValue

You may ask yourself why this method accepts two parameters for values despite the
fact that there is also a public property called InValue that accepts a multiplied value. The
reason is that the next step is to create a public function called MultiplyBySelf that passes
the intValue variable into the Multiply private method. This way the Multiply method can
be used for more than one use within the class. You might also have a public function
called MultiplyBy10, for example, that takes the value from intValue and the number 10
and passes them into the Multiply private method.

Now you will create the public function called MultiplyBySelf, which doesn’t have
parameters but returns an integer result:

Public Function MultiplyBySelf() as Integer

Return Multiply(intValue,intValue)

End Function

The resulting code is shown in Figure 4-6.

CHAPTER 4 ■ ENCAPSULATION 61

Figure 4-5. Validation added to Set method

5386c04_final.qxd 8/18/05 3:31 AM Page 61

After you create the MultiplyBySelf method, it’s time to build the Encapsulation class
into an assembly that can be used by another application. To do this, click on the Build
menu and then select Build Encapsulation.

Now you’ve created the assembly and it’s ready to be used by another project. Close
the Encapsulation project and create a new web site called Chapter4.

Your first task is to add a reference
to the newly created assembly. This way
the new ASP.NET application knows
where to find the .dll file (assembly) and
can use it. If you create your own assem-
bly, then you must add a reference to
any project that you create that uses that
assembly. To do this, open the Solution
Explorer, right-click the web site URL,
and choose Add Reference as shown in
Figure 4-7.

When the Add Reference window
appears, click on the Browse tab,
change the drive to C:, and then find
the folder called Encapsulation, as
shown in Figure 4-8. The Encapsulation
folder was created at the same time as
the project Encapsulation.

CHAPTER 4 ■ ENCAPSULATION62

Figure 4-6. Complete class code

Figure 4-7. Adding a reference

5386c04_final.qxd 8/18/05 3:32 AM Page 62

Open the Encapsulation folder and then the bin/Debug folder. Click on the
Encapsulation.dll file and click OK as shown in Figure 4-9.

When you open the Encapsulation folder from the C: drive, you’ll see a folder called
bin, which you should then select. Any project that you create will hold its .dll files in the
bin folder. Also, any class library or Windows application will create a single .dll file. To use
that assembly (in this case Encapsulation.dll) in another project, it must be referenced in

CHAPTER 4 ■ ENCAPSULATION 63

Figure 4-8. Finding the Encapsulation folder

Figure 4-9. Choosing Encapsulation.dll

5386c04_final.qxd 8/18/05 3:32 AM Page 63

the following way. When you reference a .dll file in VS2005, it’s copied to the current pro-
ject’s bin folder. To verify this in IIS, you will find Encapsulation.dll in the folder c:\inetpub\
wwwroot\Chapter4\bin. If you create a web site without IIS, then the bin folder will be
inside the folder where the project was created (probably c:\chapter4).

Now that you have referenced the Encapsulation class library, it’s a good time to look
at the class using the Object Browser. You’ll remember that the Object Browser shows all
of the properties and methods of the class. To view the Encapsulation library with the
Object Browser, open the Default.aspx.vb file and then choose Object Browser from the
View menu. The Encapsulation assembly will be at the top. Click the + sign next to the
Encapsulation assembly and the Encapsulation namespace will appear. Click the + sign
next to the Encapsulation namespace and then click the Math class. The methods and
property of the Math class within the Encapsulation namespace will appear on the right
as shown in Figure 4-10.

Information Hiding Example

My next example will show you how information hiding does not allow the client object
(in this case the ASP.NET application) to see the private Multiply method or the intValue
private variable of the Math class. To start this example, double-click the Default.aspx.vb
file from the Solution Explorer. You may need to click the + sign next to the Default.aspx
file within the Solution Explorer in order to view it.

When the Default.vb file opens, add Private clsMath as Encapsulation.Math after
the Inherits System.Web.UI.Page. The resulting code appears in Figure 4-11.

CHAPTER 4 ■ ENCAPSULATION64

Figure 4-10. Encapsulation assembly within the Object Browser

5386c04_final.qxd 8/18/05 3:32 AM Page 64

The clsMath variable is now a variable of type Encapsulation.Math class. To test your
information hiding, create a private sub called Test:

Private Sub Test

End Sub

Between the previous two lines, type clsMath, followed by a period. This will display
a list of the properties and methods of the Math class, as shown in Figure 4-12.

Notice that you don’t see a method called Multiply. If you didn’t create the Math class
yourself, you wouldn’t know that the MultiplyBySelf method doesn’t really do much work
other than passing the public property value to the Multiply private method. Again that is
because the method Multiply is private and only used by the Math class: also called infor-
mation hiding. What you do see here is called the interface of the class.

The interface of a class is made up of all the public properties and methods that are
exposed to other classes when they implement the class. The interface is the mechanism
that allows other developers to know which properties and methods are available from a
class that you’ve created. Within VB.NET, an interface is also an object that can be created
separately from the class. An interface provides even more separation between the com-
munication of other classes and the actual class implementation. Check out the .NET

CHAPTER 4 ■ ENCAPSULATION 65

Figure 4-11. Declaring a variable of type Encapsulation.Math

Figure 4-12. Public properties and methods of the Encapsulation.Math class

5386c04_final.qxd 8/18/05 3:32 AM Page 65

Framework help menu for more information on implementing interfaces, as they are out
of the scope of this book.

Before moving on, delete the private sub called Test that you just created.

Encapsulation Example

My next example will show you how encapsulation can allow the implementation of the
Math class to change without causing a problem with the client—as long as what the
client application knows of the Math class does not change.

To get started, open the Default.aspx file from the Solution Explorer. Within the Tool-
box find the TextBox control and then click and drag the control onto the Default.aspx
page. Add a second TextBox control as well, so that there are two TextBox controls on the
page. Also, click and drag two labels from the Toolbox to the Default.aspx surface. Make
the page look like Figure 4-13 by moving the TextBox and Label controls into position.

Click on the top Label and view the Properties window. The Properties window
allows you to view all exposed properties for the control that you are highlighting. (You
can learn more about web forms and controls in Chapter 9.) Within the Properties win-
dow, change the Text property to Inbound and the ID property to lblInBound as shown
in Figure 4-14.

Click on the TextBox control next to
the Inbound label and then change the
ID property to txtInbound. Next, click
on the other Label, and change the Text
property to Result and the ID property
to lblResult.

Next, change the other TextBox con-
trol’s name property to txtResult. Click
and drag a button control from the Tool-
box onto the Default.aspx page. Change
the ID property to btnMultiply and the
Text property to Multiply. When you’re
finished, Default.aspx should look like
Figure 4-15.

CHAPTER 4 ■ ENCAPSULATION66

Figure 4-13. Default.aspx with two
labels and two text boxes Figure 4-14. Setting the properties

5386c04_final.qxd 8/18/05 3:32 AM Page 66

If you want something to happen when you
click the Multiply button, you must write some
code for the click event. To write this code,
double-click the Multiply button. This will open
the .aspx.vb file, create the click event, and
place the cursor within this event. When you
click the Multiply button, a new instance of the
Math class will be created using the clsMath
variable. At the same time, the value from the
Inbound text box will be assigned to the Value

property of the Math class instance. Next, the MultiplyBySelf method of the clsMath
instance will be called and its result is placed in the Result text box:

clsMath = New Encapsulation.Math

clsMath.InValue = CInt(txtInbound.Text)

txtResult.Text = clsMath.MultiplyBySelf

Let’s go through this code line by line.
The first line of code officially creates an instance of the Encapsulation.Math class.

This is different from the variable declaration created earlier because it only created a
variable of type Encapsulation.Math. The New keyword must be used to create a new
instance of any class.

The second line of code uses the CInt built-in function of VB.Net to convert the value
from the txtInbound text box to an integer and then to assign the result to the InValue
property of the clsMath instance of the Encapsulation.Math class.

The third line calls the MultiplyBySelf method of the clsMath instance of the
Encapsulation.Math class and assigns the result to the txtResults text box.

Now that you’ve completed the application, it’s time to test it out. Make sure you’ve
deleted the private sub called Test that you created in the information hiding section.
Then, start the application by choosing Start Without Debugging from the Debug menu.
When the Default page appears, type 4 in the Inbound text box and then click Multiply.
The number 16 should appear in the result text box, as shown in Figure 4-16.

Changes can be made to the implementa-
tion of the encapsulated class without causing a
problem with the client application. To see this,
delete the reference to the Encapsulation.dll
file while you have the Chapter4 project open.
Go to the Solution Explorer and then delete the
three encapsulation files within the bin folder.
Doing this will remove the reference to the
Encapsulation assembly.

CHAPTER 4 ■ ENCAPSULATION 67

Figure 4-15. Completed labels, text
boxes, and button

Figure 4-16. Result of Multiply

5386c04_final.qxd 8/18/05 3:32 AM Page 67

Next, open the Encapsulation project again. Find the MultiplyBySelf public function
within the Math.vb file. Remove the line Return Multiply(IntValue, IntValue) and
replace it with Return IntValue*IntValue. Now this line will simply multiply the private
variable by itself instead of passing the value to the Multiply private function, which is an
example of the implementation changing. The interface to this class is still the same, but
the implementation has now changed. You can now build the Encapsulation class into an
assembly by clicking the Build menu and choosing Build Encapsulation.

Open the Chapter4 project again and add the reference back for the
Encapsulation.dll file. After you’ve added the reference again, choose Start Without
Debugging from the Debug menu. When the Default page appears, enter 4 as the
Inbound value and then click the Multiply button. The value 16 should appear in the
Result text box.

This example shows that the implementation of the encapsulated class can be
changed, as long as the interface is not broken, which would cause a problem with
the client.

To see how the client application can be affected by the assembly, open up the Encap-
sulation project. When the project opens, open the Math.vb file (if it is not already opened).
Add a parameter called InValue that is defined as an integer to the MultiplyBySelf method
and then change the parameters going into the Multiply method so that they use the
InValue parameter instead of intvalue:

Public Function MultiplyBySelf(ByVal InValue As Integer) As Integer

Return Multiply(InValue, InValue)

End Function

After you make this change, you should build the assembly. Go back to the Chapter4
web site project and choose Start Without Debugging from the Debug menu again.
Provide 4 for the Inbound value again and then click the Multiply button. The result, 16,
should also come back again. You made a change to the MultiplyBySelf method interface
for the Encapsulation.Math class, but the Chapter4 project has a local copy of the assem-
bly stored within its bin folder. (This copy was made when the reference was added.) The
Chapter4 web site is still working with that copy, which is why the Chapter4 web site still
works. The problem comes in when a developer changes the interface like you did in
MultiplyBySelf and makes other changes that require all applications using the assembly
to reload the assembly.

Close the Default.aspx web page if it is still running and go to the Chapter4 project.
Next, go to the Solution Explorer and delete the three files that you find there. This will
remove the reference to the Encapsulation assembly. Now add the reference back in again.
After the reference is added, a blue line will appear under the call txtResult.Text =
clsMath.MultiplyBySelf. If you put your mouse over the blue line, the error will appear,
as shown in Figure 4-17.

CHAPTER 4 ■ ENCAPSULATION68

5386c04_final.qxd 8/18/05 3:32 AM Page 68

The good news is that because of the way the .NET Framework and VS2005 work,
your application did not break immediately as it would have in the past. Your application
has its own copy of the .dll file and wasn’t impacted by the change you made. However,
you can see how a change to the interface or the way that an encapsulated class is imple-
mented can have an impact on any client application that uses it.

Conclusion
In this chapter, I’ve provided an overview of both encapsulation and information hiding.
I’ve also showed you how information hiding is implemented within VB.NET and encapsu-
lation can be used to create class libraries that can be used by other applications. Finally, I
showed you what can happen when the interface of an encapsulated class is changed and
existing clients attempt to use it. Chapter 5 will cover the concept of inheritance and how
it can extend classes and the encapsulation of classes.

CHAPTER 4 ■ ENCAPSULATION 69

Figure 4-17. Error after interface was broken

5386c04_final.qxd 8/18/05 3:32 AM Page 69

5386c04_final.qxd 8/18/05 3:32 AM Page 70

Inheritance

In this chapter, I’ll introduce the concepts of inheritance, overriding, and abstract classes
and how to implement them within VB.NET.

Inheritance
Inheritance within OOP is the ability for one class to copy another class but also add its
own functionality. Inheritance allows you to develop one class, called the base class, which
contains core functionality and properties, and then copy it to another class, called the
derived class. A derived class can include new methods and properties, but its base class
is left unchanged.

Inheritance is important because it allows you to copy core functionality from other
classes to a new class. Without this concept, you would need to maintain all of those
classes if anything changed in the core functionality. However, with inheritance you can
define the core functionality in one class and then inherit the functionality from that
class to make other classes. Any change to the core functionality in the base class (the
one you inherited from) would automatically be reflected in the derived classes (those
inheriting the base class).

One rule of thumb to use when determining if you want to use inheritance is whether
an “is-a” scenario exists. Later in the book I discuss a business process for a help desk appli-
cation. In that case, a user may be a general user, a technician, or a help desk manager. The
core information about a user is the same, but there are additional “features” available for
a technician or help desk manager. So, the technician and the help desk manager are both
general users. Therefore an “is-a” relationship exists between both the technician and user
and the help desk manager and user.

A payroll application can also be a real-world example of inheritance. Say you have
two types of employees: salaried and hourly. Both have some information in common,
such as a first and last name, date of birth, and address. However, salaried employees also
have salaries and per-pay amounts, whereas hourly employees have an hourly wage and
a running count of the number of hours they’ve worked. A salaried employee “is-an”
employee and an hourly employee “is-an” employee. This means that the base class

71

C H A P T E R 5

■ ■ ■

5386c05_final.qxd 8/18/05 3:27 AM Page 71

would be Employee, and two classes (Salaried and Hourly) can be derived from the base
class. You would create the base class (Employee) containing the core data and functional-
ity such as the first name, last name, date of birth, and address. Next you would create a
class called SalaryEmployee that inherits the Employee class and also adds the salary and
per-pay amount as properties. Then create a class called HourlyEmployee that inherits the
Employee class and also adds hourly wage and the number of hours worked as properties.

Inheritance in VB.NET

Within VB.NET, all classes are inheritable by default unless marked with the NotInheritable
keyword. You can inherit from other classes within a project or from classes within other
applications (assemblies) that your project references (see Chapter 4 for more information
on how to add a project reference).

VB.NET allows only single inheritance, which means a class can only inherit from
one other class. You can’t have a class that inherits from more than one class. To prevent
exposing any private items within the base class, the scope of the class (Private, Public,
and so on) of a derived class must be equal to or more restrictive than the base class. This
means a public class can’t inherit from a private class.

The MustInherit class scope (access modifier) can be used in the base class to specify
that the class must be inherited from and can’t be used directly. If a class has the MustInherit
access modifier, you must derive a class from it.

To see how inheritance works in VB.NET, create a new web site called Chapter5. After
you’ve created this project, add a new class file called Employee. Declare three private
variables (strFirstName,strLastName,dteDateofBirth) and define three public properties
(First Name, Last Name, Date of Birth). Finally, add a public sub called ConcatName as
defined in the following code:

Public Class Employee

Private strFirstName As String

Private strLastName As String

Private dteDateOfBirth As Date

Public Property FirstName() As String

Get

Return strFirstName

End Get

Set(ByVal value As String)

strFirstName = value

End Set

End Property

CHAPTER 5 ■ INHERITANCE72

5386c05_final.qxd 8/18/05 3:27 AM Page 72

Public Property LastName() As String

Get

Return strLastName

End Get

Set(ByVal value As String)

strLastName = value

End Set

End Property

Public Property DateOfBirth() As Date

Get

Return DteDateOfBirth

End Get

Set(ByVal value As Date)

DteDateOfBirth = value

End Set

End Property

Public Sub ConCatName(ByVal FirstName As String, ByVal LastName As String, ➥

ByRef FullName As String)

FullName = FirstName & LastName

End Sub

End Class

After you create the Employee class file, create a new class file called SalaryEmployee.vb.
When you’ve created the SalaryEmployee class, add the following line immediately after the
Public Class SalaryEmployee code:

Inherits Employee

This line of code will allow the SalaryEmployee class to inherit the existing Employee
class. Your code file for SalaryEmployee.vb should look like Figure 5-1.

CHAPTER 5 ■ INHERITANCE 73

Figure 5-1. Inheriting the Employee class

5386c05_final.qxd 8/18/05 3:27 AM Page 73

■Tip An alternative to using the two lines is to include both the inherits and the class name on the same
line, such as Public Class SalaryEmployee:Inherits Employee.

At this time, you have two classes, the original Employee class, which is your base
class, and the SalaryEmployee class, which is the derived class.

To see how an inherited class works, save the SalaryEmployee class and then open
the Default.aspx.vb file. Choose Page from the drop-down list at the top left of the page
and then Load from the top right of the page. This will create the Page_Load sub as
shown in Figure 5-2.

Now declare a variable of type SalaryEmployee with the following line of code after
the Private Sub Page_Load code line (place this on line 5):

Dim clsSalaryEmployee as SalaryEmployee

On the next line type clsSalaryEmployee followed by a period, and the IntelliSense
drop-down list will appear as shown in Figure 5-3.

This shows you that the SalaryEmployee class did in fact inherit all of the public
methods and properties of the Employee class. Now the SalaryEmployee class is an exact
copy of the Employee class.

CHAPTER 5 ■ INHERITANCE74

Figure 5-2. Revised Default.aspx.vb file

Figure 5-3. IntelliSense for SalaryEmployee class

5386c05_final.qxd 8/18/05 3:27 AM Page 74

However, this will not complete the functionality that would be required for a salaried
employee. Instead, this will just allow the SalaryEmployee class to have the core function-
ality that is required for all employees. To add the specific functionality that is needed for
a salaried employee, methods and properties must be added to the SalaryEmployee class.

Open the SalaryEmployee.vb file. Add a new private variable called intSalary as an
integer and then an integer public property called Salary. The SalaryEmployee.vb file
should look like Figure 5-4 when you are done.

Return to the Default.aspx.vb file and, if you do not already have clsSalaryEmployee
followed by a period within the page_load sub, add that line again so that the IntelliSense
for clsSalaryEmployee is shown as in Figure 5-5.

As you can see, the public property for Salary is accessible in the SalaryEmployee
class. However, the Salary public property would not be available for an instance of the
Employee class, since the property was only added to the derived SalaryEmployee class.
To show this, create a new variable called clsEmployee as an instance of the Employee
class within the Page_Load sub in the Default.aspx.vb page. The Default.aspx.vb page
should look like Figure 5-6.

CHAPTER 5 ■ INHERITANCE 75

Figure 5-4. Updating the SalaryEmployee class

Figure 5-5. Revised IntelliSense for clsSalaryEmployee

5386c05_final.qxd 8/18/05 3:27 AM Page 75

After the line that was used to show the interface (properties and methods) of the
SalaryEmployee class (clsSalaryEmployee), add a line with just clsEmployee followed by
a period. This will show the IntelliSense for clsEmployee, as shown in Figure 5-7.

Notice that the Salary public property is not available for the Employee class—it is
only available for the SalaryEmployee class, because the public property was added to
the derived class, Salaried, instead of the base class, Employee.

Overriding

A derived class inherits methods and properties from the base class. You can, however,
change the behavior of a base method in the derived class by overriding the base method.
If Object A is the base class and contains a method called DetermineBenefits, and Object
B inherits from Object A, it’s possible for Object B to implement its own method called
DetermineBenefits and that Object B’s DetermineBenefits method will be used. In gen-
eral, the base class implements the default behavior for the method, and if the derived
class requires special implementation details, the derived class will override the default
method provided by the base class. The Overridable keyword allows a property or method
to be overridden in the derived class. In the example I just gave you, Object A would need
to have Overridable as part of its declaration of the DetermineBenefits method. The
Overrides keyword overrides an overridable property or method from the base class.

CHAPTER 5 ■ INHERITANCE76

Figure 5-6. Revised Default.aspx.vb file

Figure 5-7. IntelliSense for clsEmployee class

5386c05_final.qxd 8/18/05 3:27 AM Page 76

In the example I just gave you, Object B would need to use the Overrides keyword as part
of its declaration of the DetermineBenefits method. The NotOverridable keyword pre-
vents a property or method in the base class from being overridden in the inherited class.
Public methods are NotOverridable by default. The MustOverride keyword requires the
derived class to override the property or method from the base class.

Continuing with the employee example used in this chapter, there is typically a dif-
ference in benefits between the hourly employee, salaried employee, and executive. So,
you’ll need to introduce a new class, called ExecutiveEmployee. The hourly and salaried
employees in this example have their benefits determined the same way, but the benefits
of the executives are determined in a different way. To implement this, a method called
DetermineBenefits that is overridable will be added to the Employee class. The Employee
class will provide a default implementation that will work for the salaried and hourly
employees, but that will be overridden for the executive employees.

First, add a new overridable method to the employee base method. Add the following
code to the Employee class:

Public Overridable Function DetermineBenefits() As String

Return "70% paid health care, dental insurance, life insurance"

End Function

Now create a new class called ExecutiveEmployee and call the file ExecutiveEmployee.vb.
Next, add :Inherits Employee at the end of the class declaration so that the class declara-
tion looks like Public class ExecutiveEmployee:Inherits Employee. Add the following
code to the Executive class to implement the DetermineBenefits method:

Public Overrides Function DetermineBenefits() As String

Return "20% bonus, country club membership"

End Function

To demonstrate how this works, open the Default.aspx page and add a new textbox
control called txtsalaried and a label called lblsalaried, with a text of salaried benefits.
Next, add a button called btnsalaried, with a text of salaried. Then, add a new textbox
control called txtexecutive and a label called lblexecutive, with a text of executive bene-
fits. Finally, add a button called btnexecutive with a text of executive. The resulting page
is shown in Figure 5-8.

CHAPTER 5 ■ INHERITANCE 77

Figure 5-8. Completed Default.aspx page

5386c05_final.qxd 8/18/05 3:27 AM Page 77

Double-click the Salaried button. This will open the Default.aspx.vb file and create a
sub for the Salaried button’s button click event. When the page opens, find the Page_Load
sub that was created earlier in the chapter and delete any code fragments that might exist.
Above the Page_Load sub line, and below the class declaration, add two private variables
called clsSalaryEmployee and clsExecutiveEmployee. Each of these will create an instance
of its respective class. The code in Default.aspx.vb should look like Figure 5-9.

After you’ve added the variables, add a line of code to the btnSalaried_Click sub to
create a new instance of the SalaryEmployee class. Next, add a line to assign the value
returned from the DetermineBenefits method of the salaried class to the txtsalaried text
box, as shown in the this code:

clsSalaryEmployee = new SalaryEmployee

txtsalaried.Text = clsSalaryEmployee.DetermineBenefits

Now choose btnexecutive from the left drop-down list at the top of the page. After
choosing btnexecutive, choose Click from the right drop-down list at the top of the page.
This will create a btnexecutive_click sub. Within this newly created sub, add the following
code to create an instance of the executive class and then assign the string returned from
DetermineBenefits:

clsExecutiveEmployee= New ExecutiveEmployee

txtexecutive.Text = clsExecutiveEmployee.DetermineBenefits

To test this out, choose Build web site from the Build menu and then choose Start
without debugging from the Debug menu. The Default.aspx page with the two labels, the
two text boxes, and the two buttons will appear. Click the Salaried button. The text “70%
paid health care, dental insurance, life insurance” will appear in the text box next to the

CHAPTER 5 ■ INHERITANCE78

Figure 5-9. Added variables

5386c05_final.qxd 8/18/05 3:27 AM Page 78

Salaried label and button. Click the Executive button. The text “20% bonus, country club
membership” will appear in the text box next to the Executive label and button. This is
shown in Figure 5-10.

You can see that both classes produced the results that were expected. The
SalaryEmployee class produced the text string that was in the DetermineBenefit
method the salaried class inherited from the Employee class. The ExecutiveEmployee
class produced the text string that was created in the DetermineBenefit method of
the ExecutiveEmployee class, not the text from the Employee class, since the
ExecutiveEmployee class overrode the Employee class.

This is not a completely real-world example, at least not yet. The executive does
receive extra benefits such as a bonus and country club membership, but what the exist-
ing classes don’t take into account is that the executive also receives the same benefits as
the other employees. So the text from the DetermineBenefits base class (employee) must
be added to the text defined within the DetermineBenefits method of the Executive class.
To do this, you’ll use the keyword MyBase.

The MyBase keyword is used to call a method in the base class while overriding that
method in the derived class. This allows you to call the base class’s method while adding
more functionality to it in the derived class. MyBase refers to the immediate base class
and its inherited members, but it can’t be used to access private properties or methods of
the base class. MyBase is a keyword, not an object, so it can’t be assigned to a variable or
passed to a procedure. MyBase can’t be used to call methods from the base class defined
as MustOverride.

To implement the complete executive benefits package, you must add the MyBase
keyword to the DetermineBenefits method of the ExecutiveEmployee class. To do this,
add the code & MyBase.DetermineBenefits to the DetermineBenefits method of the
Executive class. The resulting implementation of the DetermineBenefits method of the
Executive class will have the following code:

Return "20% bonus, country club membership" & MyBase.DetermineBenefits

To test this out, run the application again and click the Executive button. You may
need to move within the text box, but you should see the salaried benefits appear along
with the executive benefits. The resulting text in the Executive text box would be, “20%
bonus, country club membership 70% paid health care, dental insurance, life insurance”.

CHAPTER 5 ■ INHERITANCE 79

Figure 5-10. Results of Salaried and Executive button clicks

5386c05_final.qxd 8/18/05 3:27 AM Page 79

Abstract Classes

Abstract classes provide a simple skeleton of a class with methods and properties, but
most of the methods do not actually have functionality. This creates a more generic class
that can be used by others to implement functionality. In general, unlike overloading,
where the base class provides a default implementation, an abstract class does not pro-
vide (or provides very little) implementation. A method or methods are declared, but they
only provide a shell to be filled in when implemented by the derived class later. They are
most useful when creating components, because they allow you to add functionality to
some of the methods, but leave the functionality of other methods to be added later when
the class is implemented for a specific reason. Abstract classes are implemented within
VB.NET as classes with the MustInherit scope (access modifier). All methods defined
within the abstract class must use the MustOverride key word as mentioned in the previ-
ous section. Each method must receive the same number and type of arguments and have
the same return value as the overridden method in the abstract class.

To further expand on my example of the different types of employees, consider the
possibility of having not just salaried employees and hourly employees but contract and
part-time employees as well. For example, it’s possible that the contract employees would
be paid only a certain percentage of their contract for each time period (such as a
month) or that their pay would be based on a percentage of the contracted work they’ve
completed. A part-time employee may be paid on a different schedule than a full-time
employee. So you see, we could have four different types of employees—maybe an
abstract class that creates a basis for the general employee and then can implement its
own functionality would be better.

Our Employee class from this chapter can be changed to be an abstract class. Since
there are a variety of types of employees and a variety of types of ways to calculate the
pay for an employee, the employee base class may provide a method called CalculatePay
but provide no actual implementation. Each class that derives from the base Employee
class would need to provide the implementation of the CalculatePay method based on
the characteristics of that derived class.

To do this, first delete the Default.aspx file (you will need to create a new web form)
and then delete executive.vb from the app_code folder. These files need to be deleted,
because they implemented the executive class and the client of an override class. You are
now going to make the Employee base class an abstract class, which must be inherited
and can’t be overridden. The two examples would get in each other’s way.

Open the Employee.vb file. Next, add MustInherit between public and class in the class
declaration statement, so that the line looks like Public MustInherit Class Employee. Also,
add MustOverride before the ConcatName sub you created and used earlier in the chapter.
Remove the code that exists within the ConcatName sub and the DetermineBenefits sub.
The resulting sub declarations appear in Figure 5-11.

CHAPTER 5 ■ INHERITANCE80

5386c05_final.qxd 8/18/05 3:27 AM Page 80

Notice that when MustOverride is present, you can’t define an End Function. Since
you can’t define any implementation details, there is no End Function necessary.

Next open the SalaryEmployee.vb file. You will notice the SalaryEmployee class declara-
tion has a blue squiggle line under it. That is VS2005 letting you know that the SalaryEmployee
class must override all of the methods in the abstract class (Employee). Create a sub that
matches the ConCatName sub, a function that matches the DetermineBenefits function,
and a function that matches the CalculatePay function.

As you do this, you will notice if you enter Public Overrides followed by a space, the
method names that you have not yet defined will appear as shown in Figure 5-12. Choose
the name from the list and press the spacebar to have the method declaration automati-
cally fill in.

CHAPTER 5 ■ INHERITANCE 81

Figure 5-11. MustOverride

Figure 5-12. IntelliSense shows methods to override

5386c05_final.qxd 8/18/05 3:27 AM Page 81

After you declare the CalculatePay method, enter the following line of code for the
method:

return cdec(intsalary)/52

This will convert the value of the salary to a decimal value, and divide that value
by 52, which is the number of weeks in a year. This determines the weekly pay for the
salaried employee.

Now you should create a new class called HourlyEmployee that inherits from
employee and overrides the necessary methods. The HourlyEmployee class should have a
private variable called decHours that is declared as a decimal value, and a private variable
called decRate that is declared as a decimal value. Finally, add two public properties to the
class—one called Hours and one called Rate. The completed HourlyEmployee class code
is shown in Figure 5-13. When you create the new class, the class declaration Public Class
HourlyEmployee will be automatically filled in. At the end of the class declaration line add
a colon (:) followed by Inherits Employee and press the spacebar. The class methods will
be automatically filled in for you.

I collapsed the public properties in Figure 5-13, so that I could show you the methods
more clearly. After declaring all of the variables and having the methods created, add the line

Return decHours * decRate

to the CalculatePay method. This will calculate the pay for an hourly employee by multi-
plying the employee’s hours worked by their hourly rate.

CHAPTER 5 ■ INHERITANCE82

Figure 5-13. Completed HourlyEmployee class

5386c05_final.qxd 8/18/05 3:27 AM Page 82

Now you’ve implemented a way to calculate the pay for both the SalaryEmployee class
and the HourlyEmployee class. To see how this works, first create a new web form called
Calculate.aspx. Next, add a new text box to the Calculate.aspx page called txtCalculateSalary,
with a label called lblCalculateSalary and a text
property of Calculate Salary. Next, add a text
box called txtSalary along with a label called
lblSalary and a text property of Salary. Also, add
a text box called txtHours along with a label
called lblHours with a text property of Hours.
Next, add a text box called txtRate along with a
label called lblRate and a text property of Rate.
Add a text box called txtCalculateHourly with
a label called lblCalculateHourly and a text
property of Calculate Hourly. Finally, add a but-
ton called btnCalculate with a text of Calculate.
The resulting page should look like Figure 5-14.

Double-click the Calculate button, which
will take you to the Calculate.aspx.vb file, and
then create a btncalculate_click sub. Enter the
following code in the btncalculate_click sub:

Dim clsSalaried = SalaryEmployee

Dim clsHourly = HourlyEmployee

clsSalaried = New SalaryEmployee

clsHourly = New HourlyEmployee

clsSalaried.Salary = txtSalary.text

txtcalculatesalary.Text = clsSalaried.CalculatePay.ToString

clsHourly.Rate = CDec(Trim(txtrate.Text))

clsHourly.Hours = CDec(Trim(txthours.Text))

txtcalculatehourly.Text = clsHourly.CalculatePay.ToString

This code will allow you to calculate the pay for both a salaried employee (salary
divided by 52) and hourly (hours × rate). The first four lines of the code declare the neces-
sary variables and create instances of the correct classes. The next two lines assign the
value provided as the salary in txtsalary to the SalaryEmployee class, along with calculat-
ing the salary. The final three lines assign the rate and hours, as well as a calculation of
the hourly pay.

To test this out, you may first have to set the Calculate.aspx page as the start page. To
do this, right-click the Calculate.aspx page within the Solution Explorer, and choose Set

CHAPTER 5 ■ INHERITANCE 83

Figure 5-14. Completed Calculate.aspx

5386c05_final.qxd 8/18/05 3:27 AM Page 83

as Start Page. When the application starts, the
calculate.aspx page will be the one to appear.
Click Debug and then Start without debug-
ging to view the page. Next, type a salary
amount in the box next to the label Salary.
My example shows 60,000. Next, enter values
in the boxes next to the labels Hours and
Rate. I entered 40 for the hours and 10 for the
rate. Click the Calculate button. My results
are shown in Figure 5-15.

You can verify these results with a calcula-
tor, but you will find that they are correct. This
example has shown you how one abstract
class with only method declarations can be
used by the client to implement different
functionality in different derived classes.

Conclusion
In this chapter, I’ve provided a definition of inheritance as well as an example of how
inheritance is implemented within VB.NET. I gave you some information about overrid-
ing, and presented an example of how it could be used in a common business process.
I also discussed abstract classes and how you can implement them.

CHAPTER 5 ■ INHERITANCE84

Figure 5-15. Results

5386c05_final.qxd 8/18/05 3:27 AM Page 84

Namespaces

In this chapter I’ll cover the definition of a namespace within the .NET Framework and
how to create a namespace.

The Purpose of a Namespace
A namespace has several different purposes. First, a namespace organizes the objects
that are defined within an assembly. Remember that an assembly is made up of a class.
By default, every executable file you create contains a namespace with the same name
as the project that was used to create it.

Second, a class library is also a namespace. When you choose to create a class library,
you create a namespace. That namespace can then have many classes within it. In this way,
a namespace can be used to organize common functionality. For example, my company
has a namespace that contains all of the classes that are common to the applications that
we build (more on this later in this chapter).

A third purpose of a namespace is to avoid naming conflicts. Namespaces are not an
OOP concept, but instead are a logical way to organize classes in a meaningful way devel-
oped for the .NET Framework.

.NET Framework Class Library
The best way to learn about namespaces and their uses is to look at the .NET Framework
Class Library. The VS2005 Object Browser was introduced in Chapter 2 and will be further
used in this chapter to explain the use of namespaces.

To access the Object Browser, choose View then Object Browser, as shown in Figure 6-1.
The Object Browser will appear in the middle of the screen.

85

C H A P T E R 6

■ ■ ■

5386c06_final.qxd 8/18/05 3:30 AM Page 85

The first screen of the Object Browser will
show all of the assemblies within the .NET Class
Library. Each of these assemblies contains both
namespaces and classes, and may well include
other namespaces and the classes associated with
those namespaces. If you click on one of the assem-
blies, additional information will appear at the
bottom right of the screen. This is shown for the
System namespace in Figure 6-2.

In this example, the first line tells what the
assembly’s name is (System) and where the file for
the assembly is located, in this case the system.dll
file. Below the assembly name and location is other
information about the assembly.

If you click on the System assembly and expand
it, as shown in Figure 6-3, you will see a list of more
namespaces. In this case, the System namespace has

several other namespaces within it. Name-
spaces found within other namespaces are
called nested namespaces. In Figure 6-3, all
of the namespaces shown are nested name-
spaces of the System namespace.

Within the Object Browser, there is a
common technique for distinguishing name-
spaces from classes, methods, and properties.
Each type should display differently, and you
should become familiar with this technique
so that you will know if a type you are looking
at is a namespace, class, or something else.
Notice, for example, the {} next to the name-
space in Figure 6-3. You’ll see that there’s also

a rectangle icon next to the highlighted System in Figure 6-3 that represents an assem-
bly or .dll file. There is an assembly called System (System.dll), which contains all of the
items nested under the System assembly in the Object Browser (shown in Figure 6-3).

CHAPTER 6 ■ NAMESPACES86

Figure 6-1. Choosing Object
Browser from the View Menu

Figure 6-2. Information about the
System namespace

5386c06_final.qxd 8/18/05 3:30 AM Page 86

Within the System assembly, you will notice namespaces such as Win32, CSharp, and
VisualBasic. If you expand the VisualBasic namespace, as shown in Figure 6-4, you will
notice there is a class named VBCodeProvider within that namespace. This is the only
class within this namespace. The icon next to the VBCodeProvider class represents a
class. If you see this icon next to an item within the Object Browser, the item is a class.

If you click on the VBCodeProvider class, you will see a list of the methods and prop-
erties appear in the top right of the Object Browser, as shown in Figure 6-5.

The methods in the list have a small block icon next to them and the properties have
what looks like a card with a hand icon next to them.

CHAPTER 6 ■ NAMESPACES 87

Figure 6-3. Namespaces within the System namespace

Figure 6-4. VBCodeProvider class within the Microsoft VisualBasic namespace

5386c06_final.qxd 8/18/05 3:30 AM Page 87

If you collapse both the System namespace and System assembly (so that you are
back to the top-level assembly view), you will see the other assemblies that make up the
.NET Framework, as shown in Figure 6-6.

Click the + sign next to System.Web. This
is the assembly that contains all of the name-
spaces and classes that can be used for an
ASP.NET application. You will notice a name-
space called System.Web.UI in that list. If you
click the + next to it, you will see a list of
classes. These are the classes that make up
the System.Web.UI namespace and that can
be used to help build your ASP.NET applica-
tion. You will also notice a class called Control.
The Control class is the base class that all
ASP.NET web form controls are derived from.
Even further down the list is the Page class.
This is the class that represents a web form
and performs the request and response nec-
essary for a web page to display.

Creating a Namespace
You can create your own namespace to provide better organization for your classes. For
example, you might create a namespace named after your company, which might contain
the classes with all of the reusable functionality for your company. This may include data
access classes, exception classes, and others. Creating this namespace can be very useful
for your company, because it would provide all your developers with common functional-
ity. Once a namespace is coded and an assembly created, the assembly can be distributed
to all developers and used with all applications. Any changes that need to be made to any
of the functionality would need to be made within this namespace and then redistributed.

To begin creating a namespace, create a new class library project. Click File, then
New Project. When the New Project window appears, choose Class Library, enter Chap-
ter6 as the project name, and then c:\chapter6 as the location, as shown in Figure 6-7.

CHAPTER 6 ■ NAMESPACES88

Figure 6-5. Methods and properties of the VBCodeProvider class

Figure 6-6. Assemblies within the
.NET Class Library

5386c06_final.qxd 8/18/05 3:30 AM Page 88

This class library will now become a namespace, which means that it can contain
multiple classes that provide common functionality to be used by your company. To cre-
ate this class library as a namespace, you don’t really need to do anything. By default, you
could build this class library project into an assembly (called Chapter6) and Chapter6
would become your namespace. For our example, though, the namespace is going to be
changed to MyCompany. You can change the root namespace (the base namespace for
all files within the project) by clicking the My Project folder within the Solution Explorer.
The Project Properties window will then appear. Find the Root Namespace textbox within
the properties window and then enter MyCompany, so that will become the namespace
for this assembly.

After you’ve changed the Root Namespace, close the Project Properties window.
Next, rename the class (.vb) file that was created with the new project to Math.vb. Then
add a class called UserAuth by right-clicking the project name (Chapter6) at the top of
the Solution Explorer and then choosing Add and then Class, as shown in Figure 6-8.

CHAPTER 6 ■ NAMESPACES 89

Figure 6-7. Adding a new project called Chapter6

5386c06_final.qxd 8/18/05 3:30 AM Page 89

When the Add Item window appears,
make sure class is already selected and
enter UserAuth.vb as the file name.

Now there are two classes within the
namespace. I’m going to revert to some
of the prior examples and add a couple
of methods and properties to the Math
class and then to the User Auth class
(UserAuth.vb). Then, I’ll create an
ASP.NET application to use these two
classes.

To do this, you should first create a
public function called AddIntegers that
returns an integer with two integer param-
eters: firstInteger and secondInteger.
Within the new function, return the
value of the firstInteger parameter added

to the secondInteger parameter. Then, create a public function called MultiplyIntegers
that returns an integer with two integer parameters, firstInteger and secondInteger.
Within the new function, return the value of the firstInteger parameter multiplied by the
secondInteger parameter. Next, add a new function called AddDecimal that returns a deci-
mal with two decimal parameters: firstDecimal and secondDecimal. Within the new
function, return the value of the firstDecimal parameter added to the secondDecimal
parameter. Finally, create a new function called MultiplyDecimal that returns a decimal
with two decimal parameters, firstDecimal and secondDecimal. Within the new function,
now return the value of the firstDecimal parameter multiplied by the secondDecimal param-
eter. Your resulting code should look like this:

Public Function AddIntegers(ByVal firstInteger As Integer,

ByVal secondInteger As Integer) As Integer

Return firstInteger + secondInteger

End Function

Public Function MultiplyIntegers(ByVal firstInteger As Integer,

ByVal secondInteger As Integer) As Integer

Return firstInteger * secondInteger

End Function

Public Function AddDecimal(ByVal firstDecimal As Decimal,

ByVal secondDecimal As Decimal) As Decimal

Return firstDecimal + secondDecimal

End Function

CHAPTER 6 ■ NAMESPACES90

Figure 6-8. Adding a class

5386c06_final.qxd 8/18/05 3:30 AM Page 90

Public Function MultiplyDecimal(ByVal firstDecimal As Decimal,

ByVal secondDecimal As Decimal) As Decimal

Return firstDecimal * secondDecimal

End Function

Next open the UserAuth.vb file. Create a new public function called IsUserAdmin, which
will return a Boolean and accept a string parameter called UserName. Within this function,
add code to determine if the username parameter is equal to “Mickey,” (or some other char-
acter that might be your favorite) and if it is, return true; otherwise, return false. The point is
that eventually we will pass in your true user name and this function will return false. Create
a new public function called IsUserValid that returns a Boolean and accepts a string param-
eter called UserName. Within this function add code to determine whether the username
parameter is equal to “Mickey” or your favorite character (the same as the IsUserAdmin
function) and if it is, return true; otherwise, return false. The resulting code should look like:

Public Function IsUserAdmin(ByVal UserName As String) As Boolean

If UserName = "Mickey" Then

Return True

Else

Return False

End If

End Function

Public Function IsUserValid(ByVal UserName As String) As Boolean

If UserName = "Mickey" Then

Return True

Else

Return False

End If

End Function

Now that both classes have methods, build the class library into an assembly by
choosing Build Chapter6 from the Build menu. Close the class library project and then
create a new web site called Chapter6.

Drag a label control onto Default.aspx, and then set the text property to First and the
ID property to lblfirst. Drag a second label onto Default.aspx and set the text property to
Second and the ID property to lblsecond. Finally, drag a third label onto Default.aspx and
set the text property to Answer and the ID property to lblAnswer.

Drag three text box controls onto Default.aspx. The first text box has an ID property of
txtfirst, the second’s ID property is txtSecond, and the third’s ID property is txtAnswer. Add
a button control with an ID property of btnAddIntegers, a text property of Add Integers,
and then a button control with an ID property of btnMultiplyIntegers with a text property
of Multiply Integers. Next, add a button control with an ID property of btnAddDecimals,

CHAPTER 6 ■ NAMESPACES 91

5386c06_final.qxd 8/18/05 3:30 AM Page 91

a text property of Add Decimals, and then a button control with an ID property of btnMul-
tiplyDecimals with a text property of Multiply Decimals. The resulting Default.aspx should
look like Figure 6-9.

To use a namespace or class library,
you need to reference it. To reference a
namespace, you need to reference the
assembly that it belongs to, in this case
Chapter6.dll. Right-click the project
URL at the top of the Solution Explorer
(probably http://localhost/Chapter6/)
and choose Add Reference, as shown in
Figure 6-10.

The Add Reference window will
now appear. Click the Browse tab to
find the .dll file that you want to refer-
ence. Navigate the Look In drop-down

list to the folder where the Chapter6 class
library project was created (probably
c:\chapter6). Open the bin folder and then
the Debug folder. Chapter6.dll should be in
this folder—select it and then click OK.
Now there is a relationship established
between the Chapter6 ASP.NET application
and the chapter6.dll class library.

Right-click the Default.aspx page and
choose View Code. This will show you the
Default.aspx.vb file.

To show that namespaces are a good
way to organize classes and allow you to
create two classes with the same name
within different namespaces, try declaring
a private variable with

Private clsMath as Math

Remember, Math is the name of one of the classes within the MyCompany name-
space. Next, create a private sub called TestClass. Within that private sub, type clsMath
followed by a period. IntelliSense will now show you the items that make up the Math
class, as shown in Figure 6-11.

CHAPTER 6 ■ NAMESPACES92

Figure 6-9. Completed Default.aspx form

Figure 6-10. Adding a Reference

5386c06_final.qxd 8/18/05 3:30 AM Page 92

Notice that the items available in
the Math class (declared as clsMath)
are not the same items you created ear-
lier in the Mycompany.Math class. To
determine which namespace the Math
class is part of, right-click Math in the
declaration of the variable (Private
clsMath as Math) and choose Go To
Definition. This will open the Object
Browser and show you a definition of
the class, as shown in Figure 6-12.

Remember, this is not the Math
class that was created in the
MyCompany namespace. I’ll talk more about
this subject after the next section.

There are two ways to use the referenced
namespace. First, you can type the name of the
namespace, followed by the class, method, or
property, such as MyCompany.Math.AddIntegers.
This option takes more time to code, because you always need to include the method,
property, and class, as well as the namespace. A possible shortcut is to add an Imports
statement. The Imports statement lets the compiler know that this class includes or should
use the following class or namespace. An Imports statement must be at the top of the code
page and a given code page can have multiple Imports statements. To use Imports on the
MyCompany namespace, type Imports, followed by a space, on the very top line of the
Default.aspx.vb file. IntelliSense will provide a list of referenced namespaces, as shown in
Figure 6-13.

All of the namespaces, other than MyCompany,
are referenced by default when a new web site is cre-
ated. This means that you do not need to specifically
import these. Choose MyCompany from the list. Now,
remove the period following clsMath within the
TestClass sub. Type the period again, so that the
IntelliSense will appear again. This time you will
notice that the methods that you added to the
MyCompany.Math class now appear, as shown in
Figure 6-14.

CHAPTER 6 ■ NAMESPACES 93

Figure 6-11. Items available in the Math class

Figure 6-12. Definition of
System.Math class

Figure 6-13. IntelliSense
provides list of namespaces.

5386c06_final.qxd 8/18/05 3:30 AM Page 93

Now you’ve seen that the namespace
can be used as an organizational tool to
allow you to create classes with the same
name as classes that already exist within
other namespaces. Right-click on the
Math part of the variable declaration
(Private clsMath as Math) and choose
Go To Definition. This brings up the
Object Browser again, and shows the
information for the Math class as shown
in Figure 6-15.

Since you can see that the correct
class is referenced from the correct
namespace, close the Object Browser if it
is still open, and delete the TestClass sub.
It is not needed.

Now, it’s time for you to see that the classes within
the namespace can be used like any other class. From
the left drop-down list, on top of the code window,
choose btnAddIntegers. From the right drop-down list
on the top of the code window, choose Click. This will
create a sub called btnAddIntegers_Click, which will

handle the click event of the button btnAddIntegers. When the add integers button is
clicked, the two integers in the text boxes should be passed to the AddIntegers method of
the Math class and the result should be placed in the txtAnswer text box. Use the follow-
ing code to accomplish this:

clsMath = New Math

txtAnswer.Text = clsMath.AddIntegers(txtfirst.Text, txtsecond.Text)

To test this out, start the web
application by choosing Start without
Debugging from the Debug menu. Type
4 for First, type 5 for Second, and then
click the Add Integers button. The
answer 9 should appear in the answer
text box, as shown in Figure 6-16.

You can add the same code to
the other click events for your other
buttons. The resulting code within
Default.aspx.vb would look like this:

CHAPTER 6 ■ NAMESPACES94

Figure 6-15. Definition of
MyCompany.Math class

Figure 6-16. Results

Figure 6-14. MyCompany.Math methods

5386c06_final.qxd 8/18/05 3:30 AM Page 94

Protected Sub btnAddIntegers_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnAddIntegers.Click

clsMath = New Math

txtAnswer.Text = clsMath.AddIntegers(txtfirst.Text, txtsecond.Text)

End Sub

Protected Sub btnAddDecimals_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnAddDecimals.Click

clsMath = New Math

txtAnswer.Text = clsMath.AddDecimal(txtfirst.Text, txtsecond.Text)

End Sub

Protected Sub btnMultiplyDecimals_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnMultiplyDecimals.Click

clsMath = New Math

txtAnswer.Text = clsMath.MultiplyDecimal(txtfirst.Text, txtsecond.Text)

End Sub

Protected Sub btnMultiplyIntegers_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnMultiplyIntegers.Click

clsMath = New Math

txtAnswer.Text = clsMath.AddIntegers(txtfirst.Text, txtsecond.Text)

End Sub

As mentioned before, a particular namespace can have another namespace within
it, called a nested namespace. To create a nested namespace, open the Chapter6 class
library project again. The class library will use MyCompany as a namespace. Now you are
going to add a new namespace. To make this a little more meaningful to you, change the
name of the Math.vb class to Integers.vb. You’ll see that this will also change the name of
the class. Next, add a new class called Decimals. Move the two functions (AddDecimals
and MultiplyDecimals) to the Decimals class. Now you have two classes, one called Inte-
gers and one called Decimals. At the top of each of the two classes, type Namespace Math.
At the end of each class file, type End Namespace. This will create a namespace called Math
with two classes: Integers and Decimals. The Math namespace is already within the
MyCompany namespace. The resulting code for the Integers class is

Namespace Math

Public Class Integers

Public Function AddIntegers(ByVal firstInteger As Integer,

ByVal secondInteger As Integer) As Integer

Return firstInteger + secondInteger

End Function

CHAPTER 6 ■ NAMESPACES 95

5386c06_final.qxd 8/18/05 3:30 AM Page 95

Public Function MultiplyIntegers(ByVal firstInteger As Integer,

ByVal secondInteger As Integer) As Integer

Return firstInteger * secondInteger

End Function

End Class

End Namespace

The resulting code for the Decimals class is

Namespace Math

Public Class Decimals

Public Function AddDecimal(ByVal firstDecimal As Decimal,

ByVal secondDecimal As Decimal) As Decimal

Return firstDecimal + secondDecimal

End Function

Public Function MultiplyDecimal(ByVal firstDecimal As Decimal,

ByVal secondDecimal As Decimal) As Decimal

Return firstDecimal * secondDecimal

End Function

End Class

End Namespace

One useful way to view your namespace and the classes within it is to use the Class
View. You can access this by choosing Class View from the View menu at the top of VS2005.
The Class View will show both the namespace and the classes, as shown in Figure 6-17.

Next, build the Chapter6 class library
again. You’ll need to go back to the Chapter6
web site project, delete the references and
then add them again. To delete the references,
go to the Solution Explorer and expand the
bin folder. Delete the three files that are there.
Then, add the reference again, as discussed
earlier in the chapter. After you’ve added the
reference again, you will notice that the code
on your Default.aspx.vb page looks different.
The Math class declaration will have a blue

squiggle line under it. If you mouse over that blue line, you will get a pop-up message
that says Type Expected. This is because MyCompany.Math is now a namespace instead
of a class.

To correct this problem, find the Imports statement at the top of the code page. Type
another period after Imports MyCompany. You will now see a Math namespace, as shown
in Figure 6-18.

CHAPTER 6 ■ NAMESPACES96

Figure 6-17. Class View of the
namespace

5386c06_final.qxd 8/18/05 3:30 AM Page 96

To correct the remaining issues
with Default.aspx.vb, you will need
to remove the clsMath declaration
and replace it with two private vari-
able declarations. The first, called
clsIntegers, will be of the type Inte-
gers; and the second, called clsDecimals, will be of the type Decimals. Within each sub,
make the necessary changes so that the manipulation of integer values is done by the
Integers class and the manipulation of the decimal values is done by the Decimals class.
The resulting code should look like this:

Private clsIntegers As Integers

Private clsDecimals As Decimals

Protected Sub btnAddIntegers_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnAddIntegers.Click

clsIntegers = New Integers

txtAnswer.Text = clsIntegers.AddIntegers(txtfirst.Text, txtsecond.Text)

End Sub

Protected Sub btnAddDecimals_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnAddDecimals.Click

clsDecimals = New Decimals

txtAnswer.Text = clsDecimals.AddDecimal(txtfirst.Text, txtsecond.Text)

End Sub

Protected Sub btnMultiplyDecimals_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnMultiplyDecimals.Click

clsDecimals = New Decimals

txtAnswer.Text = clsDecimals.MultiplyDecimal(txtfirst.Text, txtsecond.Text)

End Sub

Protected Sub btnMultiplyIntegers_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles btnMultiplyIntegers.Click

clsIntegers = New Integers

txtAnswer.Text = clsIntegers.AddIntegers(txtfirst.Text, txtsecond.Text)

End Sub

This example showed how nested namespaces work and how they can be created.

CHAPTER 6 ■ NAMESPACES 97

Figure 6-18. MyCompany.Math namespace

5386c06_final.qxd 8/18/05 3:30 AM Page 97

The My Namespace
The My namespace is a new namespace for VB 2005. You can use My within code to access
several useful classes and features without importing or accessing the specific namespaces.
These useful classes are application, computer, resources, user, and web services. The
application class allows you to access some information about the application. The com-
puter class lets you access information about the computer the application is being run on.
The resources class allows you to set the culture of the application. User class allows you to
get the identity of the user, if you are using Windows NT logins for your application. Finally,
the web services class allows you to access and use web services. Not all of the classes are
available for all of the different types of applications. For example, the application class and
forms class are only available for Windows-based applications.

A good use of the My namespace within an ASP.NET application is to use the My
namespace to get the login name (including the domain) of the currently logged-in user.
This information can be very useful within your application. The first thing you need to
do is to set up the virtual directory to use Windows Domain Authentication. If you have
IIS installed, you can do this by opening the Internet Information Services administra-
tion tool from within the Administration Tools area of the control panel. First, right-click
the virtual directory for the web site that you are working on (in this case Chapter6) and
choose Properties. When the Properties window appears, click the Directory Security tab.
On the Directory Security tab, click the Edit button at the top. If the Anonymous check-

box is checked, uncheck and verify
the Integrated Windows authenti-
cation checkbox is checked, as
shown in Figure 6-19.

If the anonymous access
checkbox is checked, the name
of the domain user cannot be
found even if the Integrated Win-
dows Authentication is checked.
If Anonymous access is left
checked, all users are granted
access regardless of their Windows
credentials. After verifying that
Integrated Windows authentica-
tion is the only box checked, click
the OK button.

CHAPTER 6 ■ NAMESPACES98

Figure 6-19. Authentication methods

5386c06_final.qxd 8/18/05 3:30 AM Page 98

Open the Default.aspx page and drag a label onto the form. Give it an ID property of
lbllogin and leave the text property blank. Now open the Default.aspx.vb file. From the top
left drop-down box choose Page Events, then from the top right drop-down box choose
Load. This will create the Page_Load sub within the Default.aspx.vb file. Add:

lbllogin.text = "Login: " & My.User.Name

to the Page_Load sub.
Start the web application and you should see the name of the currently logged-in

user appear within the label that was just added, as shown in Figure 6-20.

This example shows you how to get and use the name property of the User class within
the My namespace. Now you can use this value to determine if the user is an administrator
using the UserAuth class within the MyCompany namespace. Drag another label onto the
Default.aspx page with an ID property of lblAdmin and with no value in the Text property.
Open the Default.aspx.vb code page again, and then add a new declaration at the top:

Private clsauth as MyCompany.UserAuth

This will create an instance of the UserAuth class from within the MyCompany name-
space and call that instance clsauth. Change the code with the Page_Load sub to be:

Dim strLogin As String

Dim intBegin As Integer

intBegin = InStr(My.User.Name, "\") + 1

strLogin = Mid(My.User.Name, intBegin)

lbllogin.Text = "Login: " & strLogin

clsAuth = New MyCompany.UserAuth

lbladmin.Text = "Admin: " & clsAuth.IsUserAdmin(strLogin)

As you probably noticed from the previous example, the Name property of the User
class provides both the domain name and the user name. This set of code will determine

CHAPTER 6 ■ NAMESPACES 99

Figure 6-20. The login name appears.

5386c06_final.qxd 8/18/05 3:30 AM Page 99

both where the domain name ends and where the user name begins, and it will only
display the user name. The first two lines of code declare variables that are local to the
Page_Load sub. The first (strLogin) will hold the login name, while the second (intBegin)
will be used to determine where the domain name ends and the login name begins. The
third line of code uses the built-in InStr function to determine if the string “\” is con-
tained within the name property of the User class. A value of 1 is added to that number
and assigned to intBegin. intBegin then has the position of the first character of the user
name (not the domain name). The next line uses the built-in function Mid to extract the
characters from the name property of the User class, starting from the position repre-
sented by intBegin. The next line sets the text for the lbllogin control. The sixth line
creates a new instance of the UserAuth class within the MyCompany namespace. The
final line calls the IsUserAdmin method of the UserAuth class within the MyCompany
namespace and passes the user name to determine if the user is an admin or not.

After the code is in place, start the application. The results should look similar to
Figure 6-21, but with your currently logged in user name and False.

This example showed you how to get solely the name of the currently logged-in user
by skipping over the domain name. There are more uses for the My namespace within
ASP.NET applications; however, if you are writing applications for intranet sites, the User
class within the My namespace will be very useful. You can look up more about the My
namespace by searching for My within the MSDN help file.

Conclusion
In this chapter I’ve discussed namespaces in depth. Though namespaces aren’t an OOP
concept, they still provide a useful way to organize classes of functionality when using
VS2005. In Chapter 7, I’ll cover how to design classes based on business processes.

CHAPTER 6 ■ NAMESPACES100

Figure 6-21. Completed form

5386c06_final.qxd 8/18/05 3:30 AM Page 100

Class Design

In the first part of this chapter, I’ll cover how to design classes for an application based on
a business process. In the second part of this chapter, I’ll cover how to create the classes
and then use those classes to lay the groundwork for an ASP.NET web site. The next chap-
ter will cover designing and building web forms, which uses the classes you create in this
chapter to build the web site.

Class Design Process
Class design is the process used to transform the written business processes for an appli-
cation into one or more classes that will be used to implement the application. The input
into this process is an overview of both the application and the business process the
application will facilitate. The output will be code structures for all classes that will be
used for the application.

The class design process is comprised of six steps:

1. Define the business process

2. Review the business process

3. Break down the business process

4. Create the class or classes

5. Define the properties and methods of the class or classes

6. Create the class structure

Case Study
To best illustrate the class design process, I have developed a case study based on a real-
world application. This case study will explain each step in the class design process and
also apply each step to the real-world application. The case study I’ve chosen is based on 101

C H A P T E R 7

■ ■ ■

5386c07_final.qxd 8/18/05 3:35 AM Page 101

a help desk system. But it’s important to note that the application that you will build over
this chapter and the next will not be feature complete. This is because, as this is an intro-
ductory book, I don’t want to go into the use of ADO.NET, which is used to connect to a
database. Instead, for the purposes of this book, some of the methods will be hard-coded
to show the concept. And later, when you are learning about ADO.NET, you can use this
application to write your first ADO.NET code. What follows next is the business process
overview provided as the first input into the class design process.

Business Process Overview

Your company needs a help desk system. The help desk system should allow users to cre-
ate new help desk tickets and then send them to the help desk technicians to be reviewed
and worked on. The user should be able to choose from a list of categories for the ticket.
The user must also provide their login, their first and last names, their phone number,
their location, e-mail address, a category for the ticket, and a description of the problem.
The ticket itself must record the date created, the login that created the ticket, the date
assigned, and the date closed. After the ticket is created (with a status of new), a techni-
cian at the appropriate location must be able to view the ticket. The technician should
then be able to choose a level of importance for the ticket (high, medium, or low) and
add any additional comments. The technician will then assign the ticket to herself and
begin work on the ticket. When the work is completed the technician should be able to
change the status to resolved, provide a resolution, and record her total number of min-
utes spent on the ticket. The user should then be able to either close the ticket or say the
ticket is not resolved, depending on the situation. If a technician is waiting for parts or
other support, the status can be set to pending.

Technicians must be able to see a list of the new tickets for their location, the tickets
they’re assigned to, and the tickets they have resolved. Users must be able to see the list of
tickets they have created, as well as the tickets they have created that have been resolved.
The Help Desk Manager must be able to see all tickets assigned to a specific technician, all
unresolved tickets (not closed), and all tickets for a location. The Help Desk Manager and
technicians should be able to see a list of all new tickets, all assigned tickets, all resolved
tickets, all unresolved (not closed) tickets, and all closed tickets.

Define the Business Process
The first step in the class design process is to define the business process. This may be
simply taking a written document that defines the business process already in use, or it
could be working with the process owner (the person most responsible for the process)
and others to define a new business process. This step is always the same no matter
which state the existing business process is in. You should rewrite the business process in
your own words and define any terms or processes that you are unsure of. The document

CHAPTER 7 ■ CLASS DESIGN102

5386c07_final.qxd 8/18/05 3:35 AM Page 102

that results will be the input for your next step in the class design process. While you are
working on defining the business process, don’t worry about how the application will be
implemented. For example, this case study has the user providing their login and name.
It is true that this information could be retrieved from somewhere else. With the .NET
programming languages, it’s possible to use Active Directory to retrieve information about
a user, as well as the login of the currently logged in user (remember the My namespace
from the previous chapter). However, at this point in the development process you should
not worry about how those things are going to be implemented. You can deal with these
issues when you are ready to actually implement the methods that are being defined dur-
ing this step.

Case Study: Define the Business Process

First, break the business process down into steps, so that you can handle all of the
peripheral actions that need to take place. For example, the business process states that
technicians and the Help Desk Manager must be able to view certain information. While
this not in the sequence of a process flow, it must be captured. The rewritten business
process may look something like the steps listed next.

Help Desk System: Ticket Creation Process

1. The user creates a new help desk ticket providing their login name, their first
name, last name, phone number, location, e-mail address, and problem descrip-
tion. The user chooses a category for the ticket and submits.

2. The date created and the login used must be captured.

3. The status of the ticket is new.

4. The technician views the list of new tickets.

5. The technician views the new ticket.

6. The technician sets an importance of either high, medium, or low.

7. The technician may add any additional comments.

8. The technician assigns the ticket to himself.

9. The status is changed to “assigned” and the assigned date is set.

10. The technician performs work on the ticket.

11. If the technician must wait for parts or other support, the status is set to pending.

CHAPTER 7 ■ CLASS DESIGN 103

5386c07_final.qxd 8/18/05 3:35 AM Page 103

12. The technician completes the work.

13. The technician provides a resolution and records the amount of time spent on the
ticket in minutes.

14. The technician sets the status to “resolved,” and records the date resolved.

15. The user is notified of the resolved ticket.

16. If the user is satisfied with the resolution, the user sets the status to closed, and
the date closed is recorded.

17. If the user is not satisfied with the resolution, the user sets the status to “not
resolved” and a notification is sent to the technician.

Help Desk System: Technician Views

• Technician can see a list of new tickets for their location.

• Technician can see a list of tickets assigned to them.

• Technician can see a list of tickets they resolved.

Help Desk System: User Views

• The user can see a list of tickets they’ve created.

• The user can see a list of tickets they’ve created and resolved.

Help Desk System: Help Desk Manager Views

• The Help Desk Manager can see a list of all the tickets assigned to a specific
technician.

• The Help Desk Manager can see a list of all tickets for any location.

Help Desk System: Help Desk Manager and Technician Views

• The technicians and the Help Desk Manger can see a list of all new tickets.

• The technicians and the Help Desk Manager can see a list of all assigned tickets.

• The technicians and the Help Desk Manager can see a list of all resolved tickets.

CHAPTER 7 ■ CLASS DESIGN104

5386c07_final.qxd 8/18/05 3:35 AM Page 104

• The technicians and the Help Desk Manager can see a list of all unresolved (not
closed) tickets.

• The technicians and the Help Desk Manager can see a list of all closed tickets.

After listing each step of the process, it may be a good idea to create a flowchart that
shows the business process flow as you understand it. The flowchart for the business
process in our case study is shown in Figure 7-1.

CHAPTER 7 ■ CLASS DESIGN 105

Figure 7-1. Business Process Flow Chart

5386c07_final.qxd 8/18/05 3:35 AM Page 105

Review the Business Process

The second step in the class design process begins with the output of the first step that
we just covered—a document in your own words that defines the business process that
the application is to facilitate, along with a flowchart to show the business process flow
visually. This second step involves meeting with the process owner to discuss the busi-
ness process and go over your initial document. There is a chance that you will have
misinterpreted an item in the business process or that after reading your summation of
the process, the process owner will realize that something is missing or incorrect in your
understanding of the process. This could be anything from the result of a miscommuni-
cation to a process owner forgetting a step in the process. Your reviewed document will
be an input for the next step in the class design process.

Break Down the Business Process
The input for this next step is the reviewed business process document written in your
own words, along with any definitions that may be required. In this step, you’ll pull out,
or categorize, the nouns, adjectives, and verbs (or actions) that you‘ll need to complete
the business process.

First, you’ll begin pulling out the various nouns in the business process that may
become classes. Next, you’ll want to pull out all of the adjectives that relate to each noun.
The adjectives may become the properties of a class. Then, continue your breaking down
of the business process by pulling out all of the actions from the business process. These
may become the methods of the class or classes.

Finally, you’ll need to review the business process and your potential classes, proper-
ties, and methods, as well as determine any supporting classes, properties, or methods.
These will be the most difficult to define as they are not listed specifically within the busi-
ness process and must be inferred.

For example, there is required information that must be provided in order to create
a new ticket. The validation that this data is in fact present can be performed in several
ways. One way is to add a method called Validate ticket that includes the validation logic.
The Validate ticket method would then be a supporting method for a class. The resulting
document of classes, properties, and methods will be the input for the next step in the
class design process. Again, at this point in the development process you don’t care about
how the methods that are being defined are going to be implemented. That will come in
time.

Case Study: Break Down the Business Process

Begin the breakdown step by first finding the nouns that appear to represent various
classes. For our case study, the result would be the classes in the following section.

CHAPTER 7 ■ CLASS DESIGN106

5386c07_final.qxd 8/18/05 3:35 AM Page 106

Potential Classes

• Ticket

• User

• Technician

• Help Desk Manager

Next, find all of the adjectives that describe the previous nouns. These will be the
potential properties. In this case the result would be:

• Ticket (noun)

• User login name

• First name

• Last name

• Phone number

• Location

• E-mail address

• Problem description

• Category

• Date created

• Created by login

• Status

• Importance

• Additional comments

• Assigned to

• Resolution

• Time spent in minutes

• Date resolved

CHAPTER 7 ■ CLASS DESIGN 107

5386c07_final.qxd 8/18/05 3:35 AM Page 107

• Date closed

• Ticket ID

• User

• Technician

• Help Desk Manager

As you can see from this breakdown, the adjectives all describe the class called Ticket.
So maybe the other classes are not necessary. This will be determined later. The next step
is to define the actions for each potential class (noun). The resulting list would be:

• Ticket

• Create new ticket

• Assign ticket

• User

• Ticket not resolved

• Close ticket

• List of tickets created

• List of resolved tickets

• Technician

• List of new tickets

• List of tickets assigned to them

• List of tickets they resolved

• List of all new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

CHAPTER 7 ■ CLASS DESIGN108

5386c07_final.qxd 8/18/05 3:35 AM Page 108

• Help Desk Manager

• List of all tickets for a specific technician

• List of all tickets for a specific location

• List of all new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

The actions listed previously are the most obvious actions that need to take place.
However, many other actions must take place that may not be so obvious. These are
called supporting actions. The supporting actions and their potential classes are listed
next:

• Ticket

• Update ticket

• Validate ticket

• Change status

• Resolve ticket

• Notification of resolved ticket

• Notification of not resolved ticket

• User

• Technician

• Help Desk Manager

As you can see, most of the supporting actions are dealing with the Ticket class. This
is because the majority of the business process involves the ticket. It would appear that
the majority of the business process really involves the technician, since the technician
is performing most of the actions. However, there is a difference between the object per-
forming actions and an object having actions performed on it.

CHAPTER 7 ■ CLASS DESIGN 109

5386c07_final.qxd 8/18/05 3:35 AM Page 109

Here’s the resulting complete list of potential classes, properties, and methods that
will be used as input into the next step:

• Ticket

• Create new ticket

• Assign ticket

• Update ticket

• Validate ticket

• Change status

• Resolve ticket

• Notification of resolved ticket

• Notification of not resolved ticket

• User

• Ticket not resolved

• Close ticket

• List of tickets created

• List of resolved tickets

• Technician

• List of new tickets

• List of tickets assigned to them

• List of tickets they resolved

• List of all new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

CHAPTER 7 ■ CLASS DESIGN110

5386c07_final.qxd 8/18/05 3:35 AM Page 110

• Help Desk Manager

• List of all tickets for a specific technician

• List of all tickets for a specific location

• List of all new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

Create the Class or Classes
The input for this next step is a document that groups the potential classes, properties,
and methods together. From this list of potential classes, properties, and methods, you
must determine which classes make the most sense. There may be multiple classes that
are very similar, and it may make sense to create them as one class or as inherited from
a base class. Remember from the inheritance chapter that if an “is a” relationship exists,
then inheritance may be used. From your potential list of classes you must determine
which classes make the most sense for this application and also determine whether
additional classes must be defined. After determining your final list of classes, create a
complete list of those final classes. This list of classes will be the input for the next step
in the class design process.

Now that you have defined all of the potential classes, properties, and methods, you
must make a determination as to the best way to group the functionality required by the
application. There really is no correct set of classes, properties, and methods. No one will
look at your code and say, “You must rewrite this application because you made the wrong
selections.” However, your decision regarding which classes, properties, and methods to
use will have a large effect on the amount of work required to develop the application, not
to mention the amount of effort required later for maintenance. If the class definitions are
either too narrow or too broad, linking the classes together to build the required functional-
ity may be difficult. There is nothing wrong with redefining classes later in the development
process. However, be aware that the later in the development process you redefine your
classes, the more impact that decision will have. Also be aware that if you change the class
definition that will be used by other developers, you must notify them because they are
going from the same initial specification that you started with.

In this case, most of the properties and methods are part of the ticket class. This
should make sense to you, as the majority of actions and adjectives in the business

CHAPTER 7 ■ CLASS DESIGN 111

5386c07_final.qxd 8/18/05 3:35 AM Page 111

process describe the ticket. Again, just because the technician performs the work and
interacts with the ticket does not mean the Technician class should have the majority of
the properties and methods. Think about the Ticket class as being an object in the real
world. If the help desk ticket business process was purely on paper, the majority of the
information would reside on a piece of paper called a ticket. The technician would then
just interact with the piece of paper. The same is true in this case study—the ticket is the
object with the majority of actions and attributes and the technician is simply the object
that interacts with the ticket object the most.

So now take a look at your list of classes, properties, and methods. You’ll notice that
the technician and help desk manager are not that distinct from one another. They share
a lot of the same methods or actions. Should there be two separate objects then? The
answer is no.

In this case study, the technician and the help desk manager are really just security
roles that have different permissions. Technicians, for example, can only see tickets for
their specific location, while the help desk manager can see tickets for all locations. Both
objects can see all new tickets.

The best way to approach this situation is to create a base class called Help Desk
User. From that base class, inherit the core methods that both the technician and help
desk manager share. The resulting derived classes should be called Technician and Help
Desk Manager. The reason that inheritance (derived and base classes) can be used here
is that an “is a” relationship exists. Technicians and help desk managers are both Help
Desk Users. However, the Technician class will have only the methods specific to the
technician role and the Help Desk Manager class will only have the methods specific
to the help desk manager role. The resulting set of classes will be:

• Ticket

• User

• Help Desk User

• Technician (inherits from Help Desk User)

• Help Desk Manager (inherits from Help Desk User)

You will notice that the Technician and Help Desk Manager classes will inherit from
the Help Desk User class. This list of classes will be used as input into the next step in the
process—also known as defining the properties and methods of each class.

Define the Properties and Methods of Each Class
The input for this step is a document that lists the application’s classes and another doc-
ument that groups the potential classes, properties, and methods together. Now you’ll

CHAPTER 7 ■ CLASS DESIGN112

5386c07_final.qxd 8/18/05 3:35 AM Page 112

need to map the potential properties and methods from the document listing the poten-
tial classes to the document listing the application’s classes.

After mapping these properties and methods, you must determine if these proper-
ties and methods make sense for the various classes. If they do, then add them to the
class. If they don’t, then you must determine if another class is required or if the proper-
ties or methods can be placed within another class. You shouldn’t just drop a property or
method that doesn’t appear to fit into any of the classes unless you very sure that prop-
erty or method is not necessary. The next step is to determine if there are additional
properties or methods that must be included with each class for the application. If there
are, add these to the appropriate class. The list of classes, their properties, and methods
will be the input for the next step in the class design process.

Case Study: Define the Properties and Methods of Each Class

Now that you have defined your classes, you must formally determine the properties and
methods. To begin, bring forward the list of potential classes, properties, and methods
from your earlier list. The list of potential classes and methods was:

• Ticket

• Create new ticket

• Assign ticket

• Update ticket

• Validate ticket

• Change status

• Resolve ticket

• Notification of resolved ticket

• Notification of not resolved ticket

• User

• Ticket not resolved

• Close ticket

• List of tickets created

• List of resolved tickets

CHAPTER 7 ■ CLASS DESIGN 113

5386c07_final.qxd 8/18/05 3:35 AM Page 113

• Technician

• List of new tickets

• List of tickets assigned to them

• List of tickets they resolved

• List of all new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

• Help Desk Manager

• List of all tickets for a specific technician

• List of all tickets for a specific location

• List of all new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

The potential list of classes and properties was:

• Ticket

• User login name

• First name

• Last name

• Phone number

• Location

CHAPTER 7 ■ CLASS DESIGN114

5386c07_final.qxd 8/18/05 3:35 AM Page 114

• E-mail address

• Problem description

• Category

• Date created

• Created by login

• Status

• Importance

• Additional comments

• Assigned to

• Resolution

• Time spent in minutes

• Date resolved

• Date closed

• Ticket ID

• User

• Technician

• Help Desk Manager

Now map the original potential classes, properties, and methods to the classes that
were determined to be the best:

• Ticket

• User login name

• First name

• Last name

• Phone number

• Location

CHAPTER 7 ■ CLASS DESIGN 115

5386c07_final.qxd 8/18/05 3:35 AM Page 115

• E-mail address

• Problem description

• Category

• Date created

• Created by login

• Status

• Importance

• Additional comments

• Assigned to

• Resolution

• Time spent in minutes

• Date resolved

• Date closed

• Ticket ID

• Create new ticket

• Assign ticket

• Update ticket

• Validate ticket

• Change status

• Resolve ticket

• Notification of resolved ticket

• Notification of not resolved ticket

• User

• Ticket not resolved

• Close ticket

CHAPTER 7 ■ CLASS DESIGN116

5386c07_final.qxd 8/18/05 3:35 AM Page 116

• List of tickets created

• List of resolved tickets

• Is Technician

• Is Help Desk Manager

• Help Desk User

• List of new tickets

• List of all assigned tickets

• List of all resolved tickets

• List of all unresolved tickets

• List of all closed tickets

• Technician (inherits from Help Desk User)

• List of tickets assigned to them

• List of tickets they resolved

• Help Desk Manager (inherits from Help Desk User)

• List of all tickets for a specific technician

• List of all tickets for a specific location

Notice that this is a complete list of properties and methods for each class. Also
notice that two new properties have been added to the user class. The Is Technician
user class property will be used to determine whether the user is a technician or a gen-
eral user. The Is Help Desk Manager user class property will be used to determine if the
user is a help desk manager. This completed list is now the input for the next and final
step in the class design process, creating the classes in VB.NET.

Create the Class Structure
This is the final step in the class design process and it takes the list of classes, their proper-
ties, and their methods as its input. From the list of classes, you’ll need to create a new class
file for each class listed. Within each class defined within the list, you’ll need to define a
local private variable for each property. For each property that needs to be public, you’ll

CHAPTER 7 ■ CLASS DESIGN 117

5386c07_final.qxd 8/18/05 3:35 AM Page 117

need to create a public property structure. For each property that needs to be private,
you do not create a property structure, but can just leave the variable defined as private.
For each method, determine whether it should be public or private and then define it as
such. Next, determine if each method requires a parameter or not—if so, define that
parameter. Finally, for each method, determine whether the method should return a
value If the method should not return a value, then define the method as a sub. The out-
put of this last step will be the output of the class design process, also known as the
completed class structure.

Now is also a good time to look for reusable classes. If your company has a class
library or namespace that contains common functionality, now is the time to determine
if any preexisting functionality can be used in your application. It’s possible that a class
may already exist for getting user information, for example. You will need to compare
the methods and properties that you need to the methods and properties that exist for
the common class. If your class needs the common functionality along with additional
functionality, then you will want to inherit the common class and then add your own
functionality. That added functionality may come in the form of new methods or proper-
ties or by an overriding of existing methods.

Case Study: Create the Class Structure

To begin this part of the class design process, create a new web site called HelpDesk.
After creating the new web site, create a new class file for each class. To do so, right-click
on the web site URL in the Solution Explorer and choose Add New Item.

When the Add New Item window appears, choose Class. Provide the class name as
shown in the design, but without the spaces.

After clicking Add for each class, you will receive a message similar to the one shown
in Figure 7-2. Click Yes. This message tells you that the class file (.vb file) you are creating
will be created within the App_Code folder within the web site.

After adding all of the classes, your Solution Explorer should look like Figure 7-3.

CHAPTER 7 ■ CLASS DESIGN118

Figure 7-2. A check for where to put the class page

5386c07_final.qxd 8/18/05 3:35 AM Page 118

Now that the classes have been designed
and the .vb files have been created, it’s time to
determine how each method of each class will
be implemented. For example, this is a good
time to determine how to get the user’s infor-
mation, such as name and e-mail address.
There are several ways you can get this infor-
mation based on your environment. You might
look this information up in a database or direc-
tory services such as Active Directory, for
example. Either way, now is the time for you to determine how to implement each method.

Since the Help Desk User class is a base class, it should be created first. It must be
created before the other two can be created, so that they can inherit from the base class.
To begin, open the HelpDeskUser.vb file.

There are several methods that you’ll need to create for the Help Desk User class.
I will define these next. However, I won’t enter any code for them since they require a
connection to a database. Instead, each method will return a Dataset, which is used to
store data:

Public Function RetrieveNewTickets() As Data.DataSet

End Function

Public Function RetrieveAllAssignedTickets() As Data.DataSet

End Function

Public Function RetrieveAllResolvedTickets() As Data.DataSet

End Function

Public Function RetrieveAllUnresolvedTickets() As Data.DataSet

End Function

Public Function RetrieveAllClosedTickets() As Data.DataSet

End Function

After creating the Help Desk User class, you need to create the Technician and Help
Desk Manager classes. As mentioned previously, they need to be created after the Help
Desk User class since they inherit from it. To begin, open the Technician class page. Just
under the opening class line (Public Class Technician), add Inherits helpdeskuser, as
shown in Figure 7-4.

CHAPTER 7 ■ CLASS DESIGN 119

Figure 7-3. Solution Explorer with
classes listed

5386c07_final.qxd 8/18/05 3:35 AM Page 119

After you set the inherits, you need to add the remaining methods. The Technician
class design looked like:

• Technician (inherits from Help Desk User)

• List of tickets assigned to them

• List of tickets they resolved

Declare a private variable called strUserName, which is a string. This will hold the
login name of the user for use within this class. Now you need to build a constructor to
assign the login. You’ll remember that a constructor is a sub that always has the name
New and must always be a sub. A constructor is the first method called when the class is
initiated. This is done automatically when you declare a variable with the New keyword,
such as clsTicket = New Ticket. The purpose of the constructor is to allow you to per-
form some actions when the class is created. Often, constructors are used to set variables
that will be used throughout the class or to set or reset values. You can have multiple con-
structors by defining multiple subs called New, each with a different parameter set. For
this class, there will be one parameter called UserLogin that will be a string.

To create the New sub, select Technician from the top left drop-down list, if it is not
already selected. Next, choose New from the top right drop-down list. This will automati-
cally create the New sub structure. After the New sub structure is in place, add a parameter
called UserName that is defined as a string. Assign the value from the UserLogin parame-
ter to the local variable strUserName as shown here:

Public Sub New(ByVal UserLogin As String)

strUserName = UserLogin

End Sub

CHAPTER 7 ■ CLASS DESIGN120

Figure 7-4. Inheriting from HelpDeskUser

5386c07_final.qxd 8/18/05 3:35 AM Page 120

Next declare the two methods as functions that return a Data.Dataset data type:

Public Function AssignedToMe() As Data.DataSet

End Function

Public Function ResolvedByMe() As Data.DataSet

End Function

Next, open the HelpDeskManager.vb file. Add the Inherits HelpDeskUser line of code
again, just like with the Technician class. The Help Desk Manager class design looked like:

• Help Desk Manager (inherits from Help Desk User)

• List of all tickets for a specific technician

• List of all tickets for a specific location

Create and code a New sub with a parameter of UserLogin, the same way you did for the
Technician class. Next, declare the two methods as functions that return a Data.Dataset data
type. The first method will be RetrieveTicketsForLocation, with a parameter of Location,
which will be a string data type. The second method will be RetrieveTicketsForTechnician,
with a parameter of Technician, which will be a string data type:

Public Function RetrieveTicketsForLocation(ByVal Location As String)

As Data.DataSet

End Function

Public Function RetrieveTicketsForTechnician(ByVal Technician As String)

As Data.DataSet

End Function

Now that the base and derived classes are completed, open the User.vb file. The user
class design was:

• User

• Ticket not resolved

• Close ticket

• List of tickets created

• List of resolved tickets

CHAPTER 7 ■ CLASS DESIGN 121

5386c07_final.qxd 8/18/05 3:35 AM Page 121

• Is Technician

• Is Help Desk Manager

The user class has two properties: Is Technician and Is Help Desk Manager. Both
will be defined as Boolean and will be read-only. The reason these properties will be
read-only is that when the class is created, a determination will be made based on the
user’s login as to whether the user is a technician or a help desk manager. To set this
class up, declare a private variable called blnIsTechnician that is defined as a Boolean,
and declare a private variable called blnIsHelpDeskManager that is defined as a
Boolean. After defining the two variables, create a public read-only property for each
variable called IsTechnician and IsHelpDeskManager, respectively. The code for these
two public properties will look like this:

Private blnIsTechnician As Boolean

Private blnIsHelpDeskManager As Boolean

Public ReadOnly Property IsTechnician() As Boolean

Get

Return blnIsTechnician

End Get

End Property

Public ReadOnly Property IsHelpDeskManager() As Boolean

Get

Return blnIsHelpDeskManager

End Get

End Property

Next, you need to build a constructor to determine whether the user is a technician
or help desk manager. For this class, there will be one parameter called UserLogin that
will be a string. To create the New sub, select User from the top left drop-down list, if it
is not already selected. Next choose New from the top right drop-down list. This will
automatically create the New sub structure. After the New sub structure is in place, add
a parameter called UserLogin that is defined as a string. Typically in this sub, you would
want to write code that will determine whether the user is a technician or help desk
manager. This would probably best include code to retrieve security information from
a database.

Again, since the database interaction is outside the scope of this book, just type
blnIsTechnician = True and blnIsHelpDeskManager=False. This will set the local variable
blnIsTechnician to true and will set the local variable blnIsHelpDeskManager to false,
which results in:

CHAPTER 7 ■ CLASS DESIGN122

5386c07_final.qxd 8/18/05 3:35 AM Page 122

Public Sub New(ByVal UserLogin As String)

blnIsTechnician = True

blnIsHelpDeskManager = False

End Sub

Next create the methods for this class. The first method will require a parameter that is
the ticket id of the ticket to set as “not resolved.” The first method doesn’t require a return
value. The second method will require a parameter that is the ticket id of the ticket to be set
as “closed.” The second method doesn’t require a return value either. The third and fourth
methods will require a UserName parameter that is a string used to provide the name of
the user you want to retrieve records for. Again, the most efficient way to return the list is
to return a Data.DataSet. Therefore, methods three and four will have a return type of
Data.DataSet. The user class code will look like:

Public Sub TicketNotResolved(ByVal TicketID As Integer)

End Sub

Public Sub CloseTicket(ByVal TicketID As Integer)

End Sub

Public Function TicketsCreatedByMe(ByVal UserName As String) As Data.DataSet

End Function

Public Function MyResolvedTickets(ByVal UserName As String) As Data.DataSet

End Function

Finally, the last class to be built will be the Ticket class. This class will require the
most amount of code.

Each of the properties needs to have both a private and public variable defined for it.
To begin, open the Ticket class file. Within the Ticket class structure, add a private vari-
able for the user login. This should be a string value. The declaration should be Private
strUserLogin as string.

After declaring the private variable, you should also create a public property by
typing Public Property UserLoginName as string and pressing Enter. When you press
Enter, the public property structure will appear.

Within the lines Get and End Get, type Return strUserLogin. Between the lines Set
and End Set, type strUserLogin = value.

Continue this pattern for all of the properties. The private variable declarations will
look like this:

CHAPTER 7 ■ CLASS DESIGN 123

5386c07_final.qxd 8/18/05 3:35 AM Page 123

Private strUserLogin As String

Private strFirstName As String

Private strLastName As String

Private strPhoneNumber As String

Private intLocation As Integer

Private strEmailAddress As String

Private strProblemDescription As String

Private strCategory As String

Private strCreatedByLogin As String

Private strStatus As String

Private strImportance As String

Private strAdditionalComments As String

Private strAssignedTo As String

Private strResolution As String

Private decTimeSpent As Decimal

Private dteDateResolved As Date

Private intTicketID as Integer

Private dteDateClosed As Date

After adding all of the public properties, look at the methods. The class design for the
methods is:

• Create new ticket

• Assign ticket

• Update ticket

• Validate ticket

• Change status

• Resolve ticket

• Notification of resolved ticket

• Notification of not resolved ticket

The first method will not require a parameter because it will create the ticket. It’s
a good idea to return a Boolean when creating or updating a ticket, so that the calling
application knows that the code has completed successfully. The Assign Ticket and
Update Ticket methods will require a parameter for the ticket id and return a Boolean value
denoting that they have completed. The Validate Ticket method is a private function to
determine whether the data entered is valid. The Change Status method will require a

CHAPTER 7 ■ CLASS DESIGN124

5386c07_final.qxd 8/18/05 3:35 AM Page 124

parameter for the ticket id and a parameter for the status id. It should also include a
return Boolean value. The Resolve Ticket method will require a parameter for the ticket id
and a return Boolean value. The Notification of Resolved Ticket method and the Notifica-
tion of Not Resolved method will require a parameter for the ticket id, an e-mail address
parameter, and a returned Boolean. The completed method declarations will look like:

Public Function NewTicket() As Boolean

End Function

Public Function AssignTicket(ByVal TicketID As Integer) As Boolean

End Function

Public Function UpdateTicket(ByVal TicketID As Integer) As Boolean

End Function

Private Function ValidateTicket() As Boolean

End Function

Public Function ChangeStatus(ByVal TicketID As Integer,

ByVal StatusID As Integer) As Boolean

End Function

Public Function ResolveTicket(ByVal TicketID As Integer) As Boolean

End Function

Public Function NotificationOfResolved(ByVal TicketID As Integer,

ByVal EmailAddress As String) As Boolean

End Function

Public Function NotificationOfNotResolved(ByVal TicketID As Integer,

ByVal EmailAddress As String) As Boolean

End Function

After you create all of the public properties and the methods you need, you might
notice that the code page gets a little difficult to navigate. You can use a special tag within
VS2005, known as # Region, to create a code region.

For example, prior to the first Public Property statement, you might enter #Region
"Public Properties". (Make sure you have the quotes around the name of the region.)
After the last End Property enter #End Region. This will create a code region. Now go back
to the beginning of the code region, and you should see a minus sign next to the #Region
tag. Clicking that minus sign will collapse the region, so that you will only see the name

CHAPTER 7 ■ CLASS DESIGN 125

5386c07_final.qxd 8/18/05 3:35 AM Page 125

of the region, rather than all of the public property code. This is a nice way to organize
your code.

Now that you’ve built the skeleton for all of your classes, you can concentrate on
implementing each method. Again, since ADO.NET is outside the scope of this book,
many of the methods can’t be implemented. However, other methods can be imple-
mented to a point.

The first method to implement is the AddTicket method. There are several ways to
validate input into a class and subsequently into a database. For one, you can define con-
straints within the database that will validate the data when it is being entered into the
database. The problem with this strategy is that the error messages returned from SQL
Server are not very user-friendly and will need to be interpreted before they are shown
to the user.

Another way to provide validation is to add a private method (like ValidateTicket),
which will verify all necessary data that has been provided to the public properties
before an attempt is made to push the data to the database.

The third way to validate data is at the user interface level, by using the validator
control that is discussed in Chapter 9. My personal preference is to combine the last two
options. This way you can create a validation method to make sure the values have been
passed to the necessary properties and also use the validator control to show the user the
data that fails validation. Therefore, the first method that needs to be implemented, even
before the AddTicket method, is the ValidateTicket method.

Within the structure of the ValidateTicket method, add code to make sure that the user
login, first name, last name, e-mail address, location, category, and problem description
public properties all have values. First, there must be some way to collect the list of invalid
properties to be returned. So, create a local string variable within the ValidateTicket method
called strErrors. The code should look like this:

If strUserLogin.Length = 0 Then

strErrors = strErrors & "User Login not provided,"

End If

Continue that pattern for each of the public properties mentioned for testing. After
you add all of the code needed to validate the public properties, you need to have a way
to let the calling method know there was a problem. This is done by determining whether
strErrors contains a string (has error messages) and if it does, throwing it an exception:

If strErrors.length > 0 Then

strErrors = Mid(strErrors, 1, strErrors.length - 1)

Throw New Exception("Errors have occured: " & strErrors)

Else

Return True

End If

CHAPTER 7 ■ CLASS DESIGN126

5386c07_final.qxd 8/18/05 3:35 AM Page 126

This first line determines whether the length of strErrors is greater than zero. If there
were errors, then the length of strErrors would be greater than zero and the next line
would be executed.

The second line removes the last comma from the value of strErrors by reassigning
the value of strErrors from the first character to the character that is one less than the
length (also known as the second to last character). This will produce a string that has the
last character stripped from it. The third line will throw an exception object and give it a
message to pass along. The Else part of the statement will return true if strErrors has no
characters in it.

The ValidateTicket function needs to be called from the NewTicket method within
a Try . . . Catch block in order to be used. The Try . . . Catch block is the way that VB.NET
and C# handle exceptions. The first line is always Try followed by the lines of code that
could cause an exception. After the code that might cause an exception, the Catch block
is added. The Catch block can be used to catch a variety of exceptions. The Catch block is
also used to determine what to do when an exception is encountered. In this case, the
keyword Throw will be used to raise the exception to the code that invoked the current
code. You should have Try . . . Catch blocks within each layer of code, and with each block
within the user interface displaying the exception. I’ll discuss the concept of displaying
the exception in Chapter 8. For now, add the following code to the AddTicket method:

Try

If ValidateTicket() Then

intTicketID = 10

return True

End If

Catch ex As Exception

Throw New Exception(ex.ToString)

End Try

As you can see, the first line starts the Try . . . Catch block. The second line calls the
ValidateTicket private method in order to determine whether the public properties were
provided. Since this sample application will not be tied to a database, I assigned 10 to the
private variable intTicketID. This is the line used to take the database-generated ID and
give it back to the calling code. If everything is all right with the validation, then True can
be returned—otherwise an exception will be thrown. If any of the public properties are
not provided, an exception will be thrown from the ValidateTicket method and will also
be caught within the Catch block. Within the Catch block, the Throw line lets the .NET
Framework know what to do with any exception that the block catches. In this case, the
action is to throw the exception again, but to a higher level where it can be better dealt
with. You will see in Chapter 8 that the higher level (the user interface) will catch the
exception and display it.

CHAPTER 7 ■ CLASS DESIGN 127

5386c07_final.qxd 8/18/05 3:35 AM Page 127

Other methods within this class might also require some validation, but will proba-
bly not need the use of an entire method for their testing. For example, the AssignTicket
method will first validate that the AssignedTo public property has been provided. If the
user that the ticket is assigned to is not provided, then the ticket can’t be assigned. To
accomplish this, use another Try . . . Catch block that throws a new exception if the
AssignedTo public property has not been provided. The code will look like this:

Try

If strAssignedTo.length=0 Then

Throw New Exception("Assigned To not provided")

End If

Catch ex As Exception

Throw New Exception(ex.ToString)

End Try

Conclusion
In this chapter, I’ve defined a process for designing classes as well as provided you with
a step-by-step approach to the process. You also learned, in this chapter, to create a web
site for a help desk application with several classes. You found that all of the classes have
methods, and that some of them have the beginnings of implementation in them.

In the next chapter I’ll show you how to create web forms that can be used within the
web site that use the classes you’ve created here. As I’ve mentioned, there won’t be very
much functionality built into these classes yet, as ADO.NET is outside the scope of this
book. However, you will learn how to code the user interface to make calls to the AddTicket
and AssignTo methods as well as learning how to assign the public properties to the Ticket
class. You will also learn how to step through the code to get a glimpse of how the exception
handling is done.

CHAPTER 7 ■ CLASS DESIGN128

5386c07_final.qxd 8/18/05 3:35 AM Page 128

ASP.NET Web Forms

In this chapter, I’ll provide an introduction to ASP.NET web forms by first providing an
overview of how web forms work and then showing you how to use them to develop a
web site. I’ll expand on the previous chapter by adding forms to the web site that you
created in Chapter 7. The forms will help to create more of a functioning site.

Using the Web Forms Designer
Before you can add a web form to your web site, you need to understand how both the
Web Forms Designer and the Page class works. The Web Forms Designer is the tool
within VS2005 that allows you to design and build web forms. To begin designing and
building your web forms with Web Forms Designer, create a new web site project called
Chapter8. When the web site project is created the area in the center of the screen that
you see is the Web Forms Designer.

Notice that there are several tabs at the bottom of the Web Forms Designer window.
The tab that is highlighted by default is labeled Design. The Design tab of the Web Forms
Designer allows you to design the form by adding controls from the toolbox. The Source
tab displays the HTML source code that will be used by web browsers to display the web
form. You must have clicked on the Source view to see the HTML source. While in the
Source view, you can click on the other tabs at the bottom to the right of the Source tab.
These tabs include HTML and Body by default. When you click one of these tabs the
HTML source within those HTML tags is highlighted.

■Note HTML tags are out of the scope of this book. However, you should be familiar with HTML tags when
creating web forms, although it is not required. HTML tags are simply used to define the web form in a way
that Internet browsers can understand. The Web Forms Designer automatically creates the HTML tags that
are needed for a web form that is defined within VS2005.

129

C H A P T E R 8

■ ■ ■

5386c08_final.qxd 8/18/05 11:11 AM Page 129

For example, if you click the Body tag, all HTML tags between the opening Body tag
and the closing Body tag are highlighted, as shown in Figure 8-1. This allows you to verify
both the opening and closing tags are there and helps with tag organization.

Adding Controls

The Web Forms Designer allows you to design forms without creating the HTML that is
required for the Internet browsers to display the page. Instead, you can drag and drop web
form controls from the Toolbox onto your page. After you drop the control on the form you
can move it around and resize it, as well as provide values for various properties.

The Toolbox appears on the left side of the Web Forms Designer by default and is
shown in Figure 8-2.

CHAPTER 8 ■ ASP.NET WEB FORMS130

Figure 8-1. Content of Body tags

Figure 8-2. Web Forms Designer Toolbox

5386c08_final.qxd 8/18/05 11:11 AM Page 130

The ASP.NET Page Class
A web form created by the Web Forms Designer, along with any code that is associated
with that particular page, makes up an ASP.NET page. When a page is compiled, a new
class derived (inherited from) the base Page class is generated and compiled. The base
class is System.Web.UI.Page. If the page contains controls, the Page class is a container
for the controls. An instance of each control is created at run time and then that control
renders output that the browser can understand. Since the ASP.NET page is a class, it has
properties, methods, and events similar to any other class. The ASP.NET Page class raises
events, and you can write event handlers that execute when an event is raised. To view
the possible events for the page, open the Default.aspx.vb code file.

After the code page appears, click the drop down list at the top left of the Designer
that says General. Select Page Events from the list, as shown in Figure 8-3.

After choosing the Page Events category from the left drop-down list, go to the drop-
down list on the right to see all of the page events as shown in Figure 8-4.

To write code that will be executed when one of the events occurs, click the page
event on the right drop-down list that you want to trigger your code. For example, to add
code to the Load event, choose Load, as shown in Figure 8-5.

CHAPTER 8 ■ ASP.NET WEB FORMS 131

Figure 8-3. Choosing Page Events

Figure 8-4. List of Page Events

5386c08_final.qxd 8/18/05 11:11 AM Page 131

After choosing Load from the drop-down list the sub definition will appear. You can
add your code here to be executed when the load event is triggered.

Page Lifecycle
All web forms have a life cycle, which is the process that each form goes through. Under-
standing this process or life cycle will help you understand where to place your code and
when that code will be executed.

Round Trips

It is also very helpful to remember that all web pages by nature are stateless. Stateless
means that they are not connected to the web server at all times. When an HTML page
is called from a browser client, the web server sends the HTML content to the browser.
Then, the browser interprets the HTML content and displays it. Once the HTML is
received by the browser, the connection to the server is disconnected. This process of
sending HTML content to the client browser and then the client browser responding
back to the server is called a round trip. In web forms, most of the user actions result in
a round trip. For example, the click of a button on a web form by the user generates a
round trip to the server to determine what to do when that button is clicked. Since each
time an event is triggered a round trip is made, most controls do not have an event for
mouse over. This would require too many round trips.

CHAPTER 8 ■ ASP.NET WEB FORMS132

Figure 8-5. Choosing the Load Page Event

5386c08_final.qxd 8/18/05 11:11 AM Page 132

View State

View state is a server control property that allows the saving and restoration of informa-
tion in the control across multiple requests to the same page. The view state property
is enabled for all server controls by default. When a page is processed, the current state
of the page and its controls are combined into a string and then saved in the page as a
hidden field. When the page is sent back to the server, the page parses this string and
restores the property information to the page. Since this is done automatically, you don’t
need to be concerned with losing data from one user action to the next. For example, if a
user clicks a Save button, but you have a validation routine that determines the informa-
tion can’t be saved, there is no need to determine the values that were in any of the
controls on the form when the user clicked the Save button. Those values will appear in
the controls, so the user can view them again if necessary.

To see this working, open the Help Desk web site (if it’s not already open). Then, open
the Default.aspx page. Place a text box control and a button on the form. Start the applica-
tion by choosing Start without debugging from the Debug menu. This action will just start
the application and will not attempt to debug it. When you see that the Default.aspx page
is displayed, type text into the text box and click the button. Notice the data is still there. If
you right-click within the browser window and choose View Source, the HTML source code
will appear. You‘ll notice an input tag of type hidden with a name __VIEWSTATE. This is a
hidden text box that contains a hash of the contents of the form. This text box stores the
information that is kept between page uses. (In previous versions of ASP the developer
needed to move those values forward from one page to the next.)

Web Form Processing Stages

Here’s an outline of the most common processing scenario:

• ASP.NET Page Framework initialized

• The Page Init event is executed.

• The page and control view state are restored.

• User code initialized

• The Page Load event is executed.

• Stored values are read and restored.

• Validation

• The Validate method of any validator control is executed.

CHAPTER 8 ■ ASP.NET WEB FORMS 133

5386c08_final.qxd 8/18/05 11:11 AM Page 133

• Event Handling

• Any events triggered by the user are handled and their actions taken.

• Clean Up

• The Unload event is executed.

• Close any database connections and discard objects no longer needed.

One interesting detail about the Page Load event is you can use the IsPostBack property
of the Page class to determine whether the page is being loaded at the request of a con-
trol on the form or the page is being loaded for the first time. Each control also has an
AutoPostBack property. By default, buttons are set to true and all other controls are set
to false. But when a control with an Autopostback property (which is false by default)
has a value of true and is interacted with (either by clicking a button or selecting an item
from a drop-down list) the page is requested again and the IsPostBack property of the
page is true. This is best used if you have actions such as retrieving default data or set-
ting control properties that you want to have happen the first time the page is displayed
but not when the page is loaded at any time afterwards. To use IsPostBack, the following
lines of code can be placed within the Page Load event handler:

If Not IsPostBack then

'Retrieve initial data to display

End If

You can also add an Else clause to perform some work if the page has been requested
by a control (posted back).

Session and Application Objects

ASP.NET maintains information about various processes while a web site is running. These
include the current application and each user session. The information about user sessions
maintained by ASP.NET and the application is stored in classes. The HTTPApplicationState
class provides application-wide methods and events for all sessions as well as access to the
application-wide cache that stores information. The HTTPSessionState object provides
information to the current user session and provides a session-wide cache you can use
to store information in.

Application Object

An instance of the HTTPApplicationState class is created the first time any client requests
a page within the virtual directory of an ASP.NET application. The HTTPApplicationState

CHAPTER 8 ■ ASP.NET WEB FORMS134

5386c08_final.qxd 8/18/05 11:11 AM Page 134

is very similar to a global variable from VB6. The value is held across the entire applica-
tion, no matter where it was assigned. The value can also be changed from anywhere
within the application. The HTTPApplicationState class allows you to add key value pairs
that store and retrieve information about the application. You can use this to store and
retrieve information that is specific to the entire application, such as a connection string
to a certain database. If you do choose to use the application object, be very careful.
Remember, the application object holds information that can be changed from anywhere
within the application. So you might have code on one page that changes the value and
then you might call another page that changes the value as well. If you were looking for
the first value you would not get it, you would get the second value. So, if you want to use
the application object, use it for information that won’t change. For example, you can use
the application object to hold the company name to assign to the text property on a
label. In the last section of this chapter, which will expand on the existing Help Desk web
site, I’ll show you how to set an application object to the company name and how to use
that application object to retrieve the company name. You can use the intrinsic Applica-
tion object to access the methods and properties of the HttpApplicationState class.

Session Object

The Session object can be accessed by just typing Session. You can use the Session object
to store information about the specific user session. Each time a user accesses an ASP.NET
site, a session is started. The session remains active until the user closes the browser. Each
session is identified and tracked by ASP.NET by a session id string. The session id string
can then be used to communicate across client-server requests either by using an HTTP
cookie or a modified URL. The session id is generated by an algorithm and makes it diffi-
cult for a malicious user to get a new session id and determine an existing session id from
that new session id. To use the session object you can use the contents collection to add
the new items that you want to store information about. To do so just use the syntax:

Session.Contents("UserLogin") = "bmyers"

To retrieve the value, you can set a variable equal to the item in session.contents,
such as:

StrLogin = Session.Contents("UserLogin").ToString

The ToString method needs to be used in this instance, because otherwise a warning
will appear that an implicit conversion from System.Object to String is being performed. You
do not need to use the ToString method, as the lack of it will not generate a compiler error,
but it’s best to perform this conversion. This warning occurs because Session.Contents is an
object and you are attempting to assign the value of that object to a string.

CHAPTER 8 ■ ASP.NET WEB FORMS 135

5386c08_final.qxd 8/18/05 11:11 AM Page 135

Cookies

A cookie is data stored either in a text file on the client’s file system or in memory in the
browser. It contains a small amount of page-specific information that the server sends to
the client along with page output. Cookies can be either temporary (set to expire) or per-
sistent. Use cookies to store information about a client, session, or application. Most of
the time, cookies are used to store the user names (and potentially the password of the
user on the client) or to store the last page visited by the user in order to jump back into
a large application. However, you should not store the password for a user within a cookie
on the client computer. It’s not a problem to store user names, or preferably an ID, for the
user in the cookie, but it’s bad practice to store the password. The reason is that the cookie
is in plain text and can easily be found by a hacker who has control of a client computer.

A good use of a cookie is to record when the user was last on the site. Use the follow-
ing code to create a new cookie that stores the last visit date:

Dim MyCookie As New HttpCookie("LastVisit")

Dim now As DateTime = DateTime.Now

MyCookie.Value = now.ToString()

MyCookie.Expires = now.AddHours(1)

Response.Cookies.Add(MyCookie)

To retrieve the contents of cookies that are stored on the client:

Dim MyCookieColl As HttpCookieCollection

Dim MyCookie As HttpCookie

Dim LastVisit as Date

MyCookieColl = Request.Cookies

MyCookie = MyCookieColl("LastVisit")

LastVisit = MyCookie("LastVisit").ToString

Expanding the Help Desk Application
Now I’ll expand on the Help Desk web site that you created in Chapter 7. In that chapter
you created the web site, the classes for the web site, and then you implemented some of
the methods. This section will also add some of the implementation details for the busi-
ness process defined in Chapter 7. This will include determining whether the currently
logged-in user is a technician, help desk manager, or general user. Based on that determi-
nation, a page will be displayed for either the user console or the technician console. Next,
some code will be used to either display a button if the user is a help desk manager or not
display it if the user is just a help desk employee. Finally, I’ll show you how to add text
boxes to a form in order to gather information for a ticket, pass the values to the tickets
class, and validate the information.

CHAPTER 8 ■ ASP.NET WEB FORMS136

5386c08_final.qxd 8/18/05 11:11 AM Page 136

The first task you need to accomplish is to set the company name when the applica-
tion starts and then use the application object to retrieve the company name on each page.
The first step in this task is to create a global.asax file. This page will be executed the first
time the application is executed and can be used to set application level variables when the
application starts. To add the global.asax page, right-click the web site URL within the Solu-
tion Explorer and choose Add Item. When the Add Item window appears, choose Global
Application Class. The name will default to Global.asax; leave this as the name. Click Add
to add the file to the web site.

■Note Once you add a Global Application Class file to a web site it won’t be available to add again. A web
site can only have one Global Application Class file.

When the Global.asax page has been added to the application, open the file (if it isn’t
already opened). You will notice an Application_Start sub. This sub will be executed each
time the application is started. Notice there are also other subs such as Application_End
and Application_Error. The Application_End sub will be executed when the application is
shut down. You could use this to send e-mails or write to the event log if the application
stops. The Application_Error sub will be executed when an error occurs anywhere within
the application and is unhandled. You will also see Session subs that occur when a user
session is started and ended.

Within the Application_Start sub add the following line of code:

Application.contents("CompanyName")="My Company Name"

This line of code will add a key value pair to an instance of the HTTPApplicationState
class. The key is CompanyName and the value is “My Company Name”. When the application
is started, this line of code will be executed and the instance of the HTTPApplicationState
class represented by the Application object will have this key value pair available to it.

The next step in this task is to add two “console” pages. These pages will give users a
way to see a list of help desk tickets. The first console is the Technician Console. Add a new
web form to the web site called TechConsole. Drag a label onto the TechConsole form and
change the ID to lblPageName and set the text property to “Technician Console”. The sec-
ond console is the User Console. Add a new web form to the web site called UserConsole.
Drag a label onto the UserConsole form, change the ID to lblPageName and then set the
text property to User Console. Now there are a total of three forms within the web site
(Default, TechConsole, and UserConsole). On both pages, drag a label to the form, set the
ID property to lblCompanyName and then remove any value within the Text property. On
each form, place this new label above the lblPageName label that you added previously.

CHAPTER 8 ■ ASP.NET WEB FORMS 137

5386c08_final.qxd 8/18/05 11:11 AM Page 137

■Tip You can add the label lblCompanyName to just one of the forms and copy and paste the label to the
other form. The label will retain the ID and text properties when pasted on the second form.

The Technician Console page should look like Figure 8-6.

■Note Notice the lblCompanyName that appears within the lblCompanyName label. When the text prop-
erty of a label is blank, the ID property of the label appears within the label so you know which label it is.

View the code for the TechConsole page. Choose Page Events from the left drop-
down list at the top of the page and then choose Load from the right drop-down list at
the top of the page. This will create the Page_Load sub. Within the Page_Load sub, add

lblCompanyName.Text = Application("CompanyName").ToString

This line of code will use the Application instance of the HTTPApplicationState class
to find the key value CompanyName and return the value portion of the key value pair to
the text property of the lblCompanyName control. This is a way of getting the value using
a short notation, but you could also have used the Item property:

lblCompanyName.Text = Application.Item("CompanyName").ToString

Also, you don’t need to use the name of the key—you can use the index, such as 1.
However, this isn’t recommended as you might change the order of the items within the
Application_Start sub and cause an issue with the numbering. So it’s always best to use
the name of the key.

Now, copy the line of code that you just entered. Open the UserConsole page, create
the Page_Load sub, and then paste the code within the Page_Load sub.

Now it is time to test the results of this task. Both the TechConsole and the UserConsole
pages should have the name of the company and the name of the page at the top. Click on
the TechConsole.aspx page within the Solution Explorer and then start the application

CHAPTER 8 ■ ASP.NET WEB FORMS138

Figure 8-6. Technician Console

5386c08_final.qxd 8/18/05 11:11 AM Page 138

without debugging. The TechConsole.aspx page should now appear. The company name
should be displayed along with Technician Console, as shown in Figure 8-7.

The next task is to gather the user name
and determine whether that user is a techni-
cian, help desk manager, or general user. To
accomplish this, a session variable will be cre-
ated to hold the user’s login name. Also, the
Default.aspx page will be set as the default
page for the web site and will determine the
user’s type. If the user is a technician or help
desk manager they will be redirected from the
Default.aspx page to the Technician Console (TechConsole) page. If the user is a general user
they will be redirected from the Default.aspx page to the User Console (UserConsole) page.

The first step for this task is to get the user’s login name when the session starts (or
when the user accesses the web site). To do this, open the Global.asax page again and
find the Session_Start sub. This sub will be executed when the user accesses the web site.
Each user who logs in will get their own session. To access the user’s login, the virtual
directory within IIS must be setup for Integrated Windows Authentication only. (This was
covered in Chapter 6.) Add the following code to the Session_Start sub:

Dim intBegin As Integer

Dim strName As String

intBegin = InStr(My.User.Name, "\")

If intBegin > 0 Then

strName = Mid(My.User.Name, intBegin + 1, Len(My.User.Name) - intBegin)

Else

strName = My.User.Name

End If

Session.Add("UserLogin", strName)

Let’s go through this code line by line. The first two lines of code declare variables that
are to be used just within this sub. The remainder of the code tries to determine if the user
name has a slash in it. The importance of this is that the name property of the User class
within the My namespace will provide the windows login which includes the domain. In
most cases, you do not need the domain’s name, just the user’s login as you are only work-
ing with one domain. (This example assumes you are only working with one domain.)
Line 3 determines if there is a \ in the user name. Remember, you can get the currently
logged in user’s login name by using the User class within the My namespace. intBegin in
line 3 will have a value of 0 if there isn’t a slash in the name. Line 4 determines if there was
a slash by determining if intBegin is greater than 0.

Line 5 is a little tricky. This line uses the built-in Mid function to get part of the Name
property after the domain’s name and the slash. The first parameter to the Mid function

CHAPTER 8 ■ ASP.NET WEB FORMS 139

Figure 8-7. Testing the Technician
Console

5386c08_final.qxd 8/18/05 11:11 AM Page 139

is the string to break apart, in this case My.User.Name. The second parameter to the Mid
function is where to begin, so in this case you need to add one to intBegin. Remember
intBegin will be the position of the slash within the My.User.Name string. The last param-
eter to the Mid function is how many characters to advance.

Use the Len function to make sure all characters are accounted for. The Len built-in
function returns the length of the parameter passed to it, in this case My.User.Name. After
Len returns its value, the value of intBegin is subtracted. For example, if the length of a
string was 10 and intBegin was 2 the value passed as the final parameter to the Mid func-
tion would be 8. This will allow Mid to start at the position represented by intBegin and get
the remaining characters of the first parameter. In the end, this will just provide the user’s
login name, which follows the domain’s name and the slash.

Line 7 will just assign the value from the Name property of the User class of the My
namespace instead of removing the domain’s name.

Finally, Line 9 will add a key value pair to the Session object with a key of UserLogin.
This key can be used later to get the currently logged in user.

The next step is to verify that this is working correctly. To do this, add a text box to the
Default.aspx page with an ID property of txtUserName. View the code for Default.aspx or
open the Default.aspx.vb file. Create the Page_Load sub by using the drop-down lists at
the top of the code page. Add

txtUserName.Text = Session("UserLogin").ToString

to the Page_Load sub.
This code will find the UserLogin key within the Session object and provide the value

from that key value pair to the text property of the txtUserName control. This will verify that
only the user’s login name is being stored in the session variable, rather than the whole user
name and the domain name. Start without debugging to verify that the steps of the task
were completed correctly.

After verifying that the user’s login is the only part being retrieved and stored in the ses-
sion object, delete the text box control and any other controls you may have placed on the
Default.aspx page. View the code for the Default.aspx page or open the Default.aspx.vb file
and then delete the code within the Page_Load sub. The next step in this task is to deter-
mine whether the user that is currently logged in is a technician, help desk manager, or
general user. If you remember in Chapter 7, you created the clsUser class which contains a
New sub to make this very determination. The code that we entered there set the Is Techni-
cian public property to True and the IsHelpDeskManager public property to False. Now
that needs to be tested. Add the following code to the Page_Load sub within Default.aspx.vb:

Dim clsUser As New User(Session("UserLogin").ToString)

If clsUser.IsTechnician Or clsUser.IsHelpDeskManager Then

Response.Redirect("TechConsole.aspx")

Else

Response.Redirect("UserConsole.aspx")

End If

CHAPTER 8 ■ ASP.NET WEB FORMS140

5386c08_final.qxd 8/18/05 11:11 AM Page 140

The first line of code declares an instance of the User class and passes the UserLogin
value from the Session object as the userlogin parameter. Remember that the New sub
within the User class sets the public properties IsTechnician and IsHelpDeskManager.
Either one of those two types of users is directed to the Technician Console form.

The second line determines whether one of the two public properties of the User
class is true.

The third line uses the Redirect method of the Request object to actually send the
user to the TechConsole.aspx page. The Redirect method sends the user’s browser to
a new page that is provided as a parameter. In this case, the user will be sent to the
TechConsole.aspx page.

The last three lines of code are the Else clause that is executed if the user fails both
public property tests (meaning the user is a general user). General users are redirected
to the User Console page instead of the Technician Console page.

The next step is to test this out. Start without debugging. You should see the
Default.aspx web page appear and then immediately transfer to the TechConsole.aspx
page. If you close the browser and start without debugging again, you probably won’t
see Default.aspx page appear at all, but instead see the Technician Console right off. The
reason is that the first time the application is started the .NET Framework does a just-in-
time compile of the forms and this may take several seconds. But, after the first loading
of the application, it will load much more quickly and so the second time you’ll only see
the Technician Console page instead of the Default.aspx page first. This shows that the
task has been tested successfully. The session object holds the user’s login name and then
passes it to the user class to determine if the user’s login is a technician, help desk man-
ager, or general user.

The next task is to add a button to the Technician Console that will allow help desk
managers to access the administration forms for the application. This should be restricted
to help desk managers only. To do this, the technician console page must be opened and
the user must be examined again to determine their status of either technician or help
desk manager. It’s also possible for a user to jump into the middle of the application and
figure out where the Technician Console is and therefore see tickets that they should not
see. In the help desk application this is not a major issue. However, this task will also show
how to redirect a user that may have jumped into the middle of your application.

The first step in this task is to open the Technician Console (TechConsole.aspx) page,
add a button with an ID of btnAdministration, and then add a text of Administration.
Next, view the code for the page or open TechConsole.aspx.vb from the Solution Explorer.
The Page_Load sub should already exist and have code to assign the company name to
the company name label. Within the Page_Load sub add

Dim clsuser As New User(Session("UserLogin").ToString)

If Not clsuser.IsHelpDeskManager Then

If Not clsuser.IsTechnician Then

Response.Redirect("UserConsole.aspx")

CHAPTER 8 ■ ASP.NET WEB FORMS 141

5386c08_final.qxd 8/18/05 11:11 AM Page 141

Else

btnAdministration.Visible = False

End If

Else

btnAdministration.Visible = True

End If

The first line of code will create a new instance of the User class and pass the value
from the UserLogin session object as a parameter.

The second line will determine if the user is a help desk manager by checking the
IsHelpDeskManager property of the User class.

The third line will only be executed if the user is not a help desk manager and will
determine whether the user is a technician.

The fourth line will only be executed if the user is neither a technician nor a help
desk manager. This line will redirect the user’s browser to the User Console. This takes
care of a user that may attempt to jump into the middle of the application without the
correct security.

Line 6 will only be executed if the user is a technician and will set the visible property
of the Administration button to false, making the Administration button invisible to the
technician.

Line 9 will only be executed if the user is a help desk manager, and will set the visible
property of the Administration button to true, making the Administration button visible
to the help desk manager.

Now it is time to test this task. Start without debugging. The Technician Console page
will appear, but the Administration button will not.

To test the scenario of the user being the help desk manager, open the clsUser.vb file
and change the assignment statement blnIsHelpDeskManager = False within the New Sub
to blnIsHelpDeskManager = True. The user will now be recognized as both a technician and
a help desk manager and the Administration button should appear. Start without debug-
ging again and the Technician Console will appear along with the Administration button.

Finally, to test the scenario where the user is neither a technician nor a help desk
manager, change both lines within the New Sub in the User class to assign false. Start
without debugging again. This time the User Console screen should appear instead of
the Technician Console. This shows the redirect is working correctly for a user that is
neither a technician nor a help desk manager.

The next task is to provide a form to allow users to add a new ticket. This includes
adding a form, the necessary controls, and the code to provide the inputted values to the
Ticket class. The first step is to create a new web form called AddTicket. On the form, add
labels and text box controls for user login, first name, last name, phone number, location,
e-mail address, problem description, and category. Also, add a button with an ID prop-
erty of btnSave and a text property of Save. The completed form design should look like
Figure 8-8.

CHAPTER 8 ■ ASP.NET WEB FORMS142

5386c08_final.qxd 8/18/05 11:11 AM Page 142

Now that the form is laid out, it’s time to add the code to save the ticket. To do this,
double-click the Save button. This will open up the AddTicket.aspx.vb file and automati-
cally create a Click event for the Save button. Before adding the necessary code to the
click event, a variable of type Ticket class needs to be created. To do this, move to the top
of the code page (just under the class name) and add Private clsTicket as Ticket. The
class needs to be initiated within the Save click event and the information needs to be
added from the form to the class. To do this, use the following code:

clsTicket = New Ticket

clsTicket.UserLogin = Trim(txtUserLogin.Text)

clsTicket.FirstName = Trim(txtFirstName.Text)

clsTicket.LastName = Trim(txtLastName.Text)

clsTicket.PhoneNumber = Trim(txtPhoneNumber.Text)

clsTicket.LocationID = Trim(txtLocation.Text)

clsTicket.EmailAddress = Trim(txtEmailAddress.Text)

clsTicket.Category = Trim(txtCategory.Text)

clsTicket.ProblemDescription = Trim(txtProblemDescription.Text)

The first line of code creates a new instance of the Ticket class and assigns it to the
variable of type Ticket. The remaining lines assign the values from the form to the public
properties of the Ticket class. Notice the use of the built-in Trim function. This function
takes one parameter and returns a value that has stripped any blank spaces from the text.
You should use this when passing data to a database. If, for example, the text box will hold
20 characters, and the user only types 5 but then presses the space bar 10 times, the value
of the text property of the text box would still be 15 characters long. The Trim function
would change that to only 5 characters long by removing the extra spaces.

You will probably also notice a squiggly line under txtlocation.text. The reason for
this is that the public property of the Ticket class for location is expecting an integer. For
now this is fine, but in Chapter 9 the location text box will be changed to a drop-down
box, which will in turn provide a number value.

CHAPTER 8 ■ ASP.NET WEB FORMS 143

Figure 8-8. Design View of Add Ticket web form

5386c08_final.qxd 8/18/05 11:11 AM Page 143

After adding the previous code, the public properties of the Ticket class have all been
set. The next step is to call the NewTicket method of the Ticket class. When a user is adding
an item, whatever that item might be, it’s a good idea to let the user know that the informa-
tion has been added. For that reason, open the AddTicket.aspx page again and add a label
control with an ID property of lblStatus and a blank text property. This label will be used to
let the user know whether the ticket was added or not and if the ticket was added what the
ticket number was. Remember, the NewTicket method will return a Boolean value and the
TicketID public property will contain the ID of the newly added ticket (this is hardcoded for
now). Go back to the AddTicket.aspx.vb page and add

If clsTicket.NewTicket Then

lblStatus.Text = "Ticket added. Ticket number is " & clsTicket.TicketID

Else

lblStatus.Text = "Ticket was not added"

End If

to the end of the click event for the Save button.
The first line of code makes a call to the NewTicket method of the Ticket class. The

NewTicket method is going to return either true or false. Based on the returned value,
either line 2 or line 4 will be executed next. Notice line 2 includes the ticketid public
property of the Ticket class.

The next step is to allow the user to cancel the inputted values and start again. To do
this, add a new private sub called ClearValues within the AddTicket.aspx.vb file. Within
the ClearValues sub set the text property of each control on the form to "" which will leave
them blank. The code will look like

Private Sub ClearValues()

txtUserLogin.Text = string.empty

txtFirstName.Text = String.Empty

txtLastName.Text = String.Empty

txtPhoneNumber.Text = String.Empty

txtLocation.Text = String.Empty

txtEmailAddress.Text = String.Empty

txtCategory.Text = String.Empty

txtProblemDescription.Text = String.Empty

End Sub

The ClearValues sub needs to be called from the click event of the Cancel button. To
do this, choose btnCancel (or your own name for the Cancel button) from the top left drop-
down list and then choose Click from the top right drop-down list. The btnCancel_Click
sub should appear. Within that sub, add the following line of code, ClearValues. When the
Cancel button is clicked, the ClearValues sub will be called. This example also shows that

CHAPTER 8 ■ ASP.NET WEB FORMS144

5386c08_final.qxd 8/18/05 11:11 AM Page 144

the code for an event does not necessarily need to be within the event handlers declara-
tion. You can also use this type of separation if you have a sub or function that needs to be
called from multiple events. For example, you may want to clear all of the values on the
form after the ticket is saved to allow the user to add another ticket immediately. Since you
already have the ClearValues sub defined you would only need to call the ClearValues sub
at the end of the click event for the Save button.

The last step in this task is to test the code. To do this, click on the AddTicket.aspx file
in the Solution Explorer and choose Start without debugging from the Debug menu. Usu-
ally during the first test of a form, class, and, ultimately, database, I will type the name of
the field into the text box so that I can make sure that each public property (and database
column) is getting the correct value. For example, I would type User Login into the text
box next to the User Login label. The only exception for this form is the location. Type 1
into the location field. The resulting test data should look like Figure 8-9.

After the test data is added, click the Save button. After the Save button has been
clicked, the information from the form will be assigned to the public properties of the
Ticket class and then the NewTicket method will be called. Also, within the NewTicket
method the private function ValidateTicket will be called. You can verify this by adding
a breakpoint to the first line of code within the Save button click event on the form and
then debugging and stepping through the code. After the button is clicked, the label that
was added should show that the ticket has been added and then give the ticket ID value
of 10.

Also notice that the information entered is still within the text boxes. Again this is an
example of the view state which holds the data for each control and posts it back to the
form automatically, without the developer needing to do it specifically.

The last test to be conducted for this task would be to click the Cancel button. When
you click the Cancel button all of the fields should be blanked out. Remember the click
event of the Cancel button calls the ClearValues sub which assigns a blank value to the
text property of each text control.

CHAPTER 8 ■ ASP.NET WEB FORMS 145

Figure 8-9. Test data in AddTicket form

5386c08_final.qxd 8/18/05 11:11 AM Page 145

The last task for this chapter will be to make sure the validation of the public proper-
ties is correct and, if the validation fails, that the user is notified. Remember the NewTicket
method of the Ticket class has a Try…Catch pair within it that throws any exceptions.
Since the NewTicket method is called from the Save button’s click event, the click event
would receive any thrown exceptions and must be able to handle them.

To first show what happens when an exception is thrown but not handled, choose
Start without debugging from the Debug menu. Enter a value for each field on the
AddTicket.aspx form except the First Name text box (make sure you enter a number for
location). Click the Save button. You will see a page that looks similar to Figure 8-10.

This type of message is not very easy for a user to understand. So you’ll need to add
some exception handling to the Save button click event to handle any exceptions. To do
this, add the word Try above the clsTicket = new Ticket line within the Save button click
event. At the end of the code for the save button click event add

Catch ex As Exception

lblStatus.Text = ex.Message

End Try

This first line of code will catch any exceptions thrown from the code being executed.
This catch statement will find any exceptions within the code that are between the try
statement and this catch statement, including nested calls. Since the call to the NewTicket
method of the Ticket class is between the Try and Catch statements, any exception thrown
from the NewTicket method will be caught by this Catch statement. The second line of

CHAPTER 8 ■ ASP.NET WEB FORMS146

Figure 8-10. Exception not handled

5386c08_final.qxd 8/18/05 11:11 AM Page 146

code assigns the message property of the exception to the text property of the label that is
on the form. This will basically display the error message for the user to see.

To test this out, choose Start without debugging and then, when the form opens, again
enter information for all fields except the First Name field (making sure to enter a number
for location). This time a more readable message will appear, as shown in Figure 8-11, and
the form will still be displayed.

Now you know that the ValidateTicket method within the Ticket class is working cor-
rectly and that the exceptions are moved from the class code to the user interface.

Conclusion
In this chapter I provided an overview of the use of the Web Form Designer as well as an
explanation of the life cycle of an ASP.NET page. I also expanded the Help Desk applica-
tion you created in the previous chapter.

In the next chapter I’ll provide more information about controls and use that infor-
mation to improve the Help Desk application.

CHAPTER 8 ■ ASP.NET WEB FORMS 147

Figure 8-11. New Exception message

5386c08_final.qxd 8/18/05 11:11 AM Page 147

5386c08_final.qxd 8/18/05 11:11 AM Page 148

ASP.NET Controls

In this chapter, I’ll cover ASP.NET controls, which are used to create a user interface on
a web form. After an introduction, I’ll also expand on the Help Desk application from
Chapter 8.

HTML Server Controls
HTML elements are not available to the server, because they are text that is passed through
to the browser. HTML server controls are HTML elements (grouping of tags) that contain
attributes that make them both visible to and programmable on the server. By creating
HTML server controls and adding HTML elements to those controls, the HTML elements
are exposed and can be programmed on the server. HTML attributes, such as Width for the
<td> tag, are exposed in an HTML server control as a property (properties will be covered
later in this chapter).

Any HTML element on a page can be converted to an HTML server control. To make
an HTML element a server control, add the attribute RUNAT="SERVER", as in the follow-
ing examples.

HTML Input element:

<input id="Button1" type="button" value="button" />

HTML Input server control:

<input id="Button1" type="button" value="button" runat="server" />

The runat attribute tells the ASP.NET page framework that it should create an instance
of the control for server-side page processing. You can also use the form designer to change
an HTML element into a server control. To show this, open the Help Desk application you
previously created and then open the TechConsole.aspx page. Within the Toolbox, find the
HTML section of the Toolbox as shown in Figure 9-1. To find the HTML Section, you may
need to scroll up or down the Toolbox. The HTML section of the Toolbox will have a title
of HTML.

149

C H A P T E R 9

■ ■ ■

5386c09_final.qxd 8/18/05 3:22 AM Page 149

Drag and drop the Input (Button) HTML element from the toolbox onto the
TechConsole.aspx page. After dragging the element onto the form, click the Source but-
ton at the bottom of the Designer, if you are not already in Source mode (see Chapter 8
for more instructions). The HTML source for the page will appear, as shown in Figure 9-2.

CHAPTER 9 ■ ASP.NET CONTROLS150

Figure 9-1. HTML section of the toolbox

Figure 9-2. Source for HTML Input element

5386c09_final.qxd 8/18/05 3:22 AM Page 150

Notice that there is an HTML tag that begins with asp:Button. This tag is for the Admin-
istration button that was placed on TechConsole.aspx previously. The tag that begins with
input is the HTML element that was just placed there. Also notice the asp:Button tag has a
runat attribute with a value of “server”, while the input tag does not. This tells the .NET
Framework that this is a server control.

To convert this HTML element to an HTML
server control, which can then be used at the
server, click on the Design button at the bottom
of the Designer to move back to Design mode.
After doing this, right-click on the HTML Input
button on the form and then choose Run As
Server Control, as shown in Figure 9-3.

This will add the necessary attribute to the
HTML element, in order to make the element a
server control, and therefore allow it to be exe-
cuted from the server. Click the Source button
at the bottom of the Designer again to view the
updated HTML element. The revised source
includes the runat attribute, as shown in
Figure 9-4.

CHAPTER 9 ■ ASP.NET CONTROLS 151

Figure 9-3. Choosing Run As
Server Control

Figure 9-4. Revised HTML element with runat attribute

5386c09_final.qxd 8/18/05 3:22 AM Page 151

Notice the tag is still an Input tag, not an asp:Button tag. This is because the HTML ele-
ment is being run at the server instead of being a full-blown server control. After adding the
runat attribute, you can reference a control within your code if you assign an ID attribute to
it. In this example the ID is Button1. I’ll cover working with the methods and properties of
a control, along with a description of the property differences between an HTML element
and a standard sever control later in this chapter.

Web Server Controls
Web server controls are similar to HTML server controls, except the web server control
does not map directly to an HTML server control. The HTML rendered by the control
may be different than what you write program code to interact with. When you’re using
the HTML server control, you can change and program the exact HTML attributes. But
with the web server control you are dealing with properties and methods of the control,
which in turn generates the necessary HTML attributes and tags. Web server controls
include normal form controls, such as buttons and text boxes, as well as controls that
can display data in grids and choose a date.

Web server controls also provide a more complete object model and automatic
browser detection, in order to determine the best output for a browser. Some controls
include the ability to define a customized look for the control through the use of a tem-
plate. Also, some controls allow you to determine whether the events on the control
cause an immediate postback to the server or instead wait for the form to be submitted.

As shown in both Figure 9-3 and Figure 9-4, the web server controls all begin their
tags with asp: followed by the type of control they represent (button, textbox, and so on).
When the page runs, the web server control is rendered to the page using appropriate
HTML. The control determines which HTML to render, based on the browser type and
the settings that have been provided as properties for the control.

Working with Control Properties and Events

Both HTML server controls and web server controls allow you to manipulate some
of the attributes of the HTML to be rendered, as well as defining what happens when
events occur. There is a large difference between properties that can be changed for an
HTML server control, shown in Figure 9-5, and the properties that can be changed for
a web server control, shown in Figure 9-6.

In Figure 9-5 notice the limited properties that can be changed. These are a direct
match to the possible HTML attributes for a button. In Figure 9-6, the list of properties is
much richer in features and goes well beyond the possible HTML attributes for a button.

CHAPTER 9 ■ ASP.NET CONTROLS152

5386c09_final.qxd 8/18/05 3:22 AM Page 152

CHAPTER 9 ■ ASP.NET CONTROLS 153

Figure 9-5. HTML server control
properties

Figure 9-6. Web server control
properties

Change the ID property of the new HTML button control to btnAddNew. Notice
there isn’t a text property for the HTML button control. Instead there is a value property.
The value property of an HTML control is the same as the Text property of a server con-
trol. Change the Value property of the same control to New Ticket.

Click the Administration button and view the Properties window. Again, notice the
number of properties that can be changed. These properties are broken down into cate-
gories. The first is Accessibility, which are the properties that can be used to make the
button accessible through the keyboard as well as the tab index. You can use the Tab Index
property of each control on a form to set the order in which controls are given focus when
the Tab key is used. This allows the user to tab through the controls. You should incorpo-
rate this functionality when doing a data entry form (like AddTicket.aspx), so that the user
can enter information using the keyboard and then tab to the next control, where they can
enter more information, and continue that cycle.

The next category of properties is Appearance. Use these properties to determine
how the control will look to the user. This includes the background and foreground color
as well as font. You can change the font by expanding the font section within this cate-
gory. Many of the common fonts are listed in a drop-down list. You can also choose the

5386c09_final.qxd 8/18/05 3:22 AM Page 153

size of the font and whether the font should be in bold or italics or neither. When choos-
ing a font, be careful to choose a common font. Be aware that some browsers may not
support certain types of fonts, so it is a good idea to use the most common fonts, such
as Arial and Times New Roman.

The next category of properties is Behavior. This category contains properties that
determine some action or behavior of the control. This includes the enabled property,
which can be used to either enable or disable a control. A disabled control will appear
gray on the screen and the user will not be able to interact with it, either by clicking it,
if it’s a button, or by typing in a text box. The Visible property determines whether the
control can be seen or not. As shown in the previous chapter there are cases when you
may want to show a button (visible = true) when a certain criterion is met, but then
not show the button (visible = false) when that criterion is not met. The Tooltip prop-
erty within this section can be used to display a message when the mouse is over the
control. This can be used to give directions to a user or to provide a name for a control
that a user can understand.

The next category of properties is Data. For a button control, this property can be
used to bind a certain value to the text property. It can also be used to assign a config-
uration or application setting to the text property, so that it can be changed later. You can
use configuration and application files and settings to hold text that will be assigned to
the text property of a control. This way that text value can be changed when necessary
without having to recompile and redeploy the application. (Compiling and redeploying
are outside the scope of this book.)

The next category of properties is Layout. There are two properties here, height and
width. You can use these properties to define a default height and width for the control
instead of resizing the control manually on the screen. If you want all of the controls to
be the same size you could use this to make sure they are all the same size.

The last category of properties is Misc. This category will list any properties that did
not fit into the other categories. For the Administration button the only property here is
the ID property. The ID property is the name of the control to be used in code. By default
each control has a name based on the control type and how many of those controls exist
on the same form. You can’t have more than one control on the same page with the same
name. If you attempt to do this, you will receive an error message when you move away
from the Properties window.

Not all server controls have the same properties. This is the advantage to using web
server controls versus HTML controls. The web server controls have been built to gener-
ate the necessary HTML for a set of properties and therefore have been customized for
that type of control. If you click the label “Technician Console” on the TechConsole.aspx
page and view the properties you will notice the list of properties is slightly different. For
example the label control does not have a Causesvalidation property and some other
properties within the Behavior category. The reason is these properties are not relevant
to the label control. They are relevant to the button control and some others but not
the label.

CHAPTER 9 ■ ASP.NET CONTROLS154

5386c09_final.qxd 8/18/05 3:22 AM Page 154

Both HTML and web server controls have events as well as properties. You can view
the events for either type of control by being both in the Designer and in Design mode
(not Source mode), right-clicking, and then choosing View Code. You can write code to
be executed each time one of these events occurs by choosing the server control and
then the event. The events do vary based on the type of control (HTML versus web
server control). For example, right-click the TechConsole.aspx page anywhere on the
form and choose View Code. From the top left drop-down list choose btnAddNew.
From the top right drop-down list choose ServerClick. This will create a server click
event for btnAddNew. Notice there is already a Click event for btnAdministration.
Again the difference is that btnAddNew is an HTML control. Within the ServerClick
event of the btnAddNew control type Response.Redirect("AddTicket.aspx"). This will
redirect the browser to AddTicket.aspx when the New Ticket button is clicked.

Validation Controls

Validation controls are controls that include logic that allows you to test a user’s input.
Validation controls can be used to check for a required field, test against a specific value
or pattern, verify that entered data falls within a range, as well as for allowing custom
validation.

To show this in action, you are going to add validation controls to the
AddTicket.aspx page within the Help Desk application. Save the changes you’ve made
to the TechConsole.aspx page and close it. Then, open the AddTicket.aspx page. To use
a validation control, find the Validation section of the toolbox, as shown in Figure 9-7.

From the Toolbox choose the RequiredFieldValidator
control and drag it next to the User Login text box on the
AddTicket.aspx (you may need to move other controls
around). The resulting Design View is shown in Figure 9-8.

Next, view the properties for the control, shown in
Figure 9-9.

There are two properties that you should look for. The
first is the Error Message property, which is the property
that controls the error message that will be displayed.
Enter User Login is required in the Error Message Prop-
erty box.

The second property is the ControlToValidate prop-
erty. This property provides a drop-down list of all the
possible controls that you can validate on the form, as
shown in Figure 9-10.

CHAPTER 9 ■ ASP.NET CONTROLS 155

Figure 9-7. Validation
section of the Toolbox

5386c09_final.qxd 8/18/05 3:22 AM Page 155

CHAPTER 9 ■ ASP.NET CONTROLS156

Figure 9-8. Form after RequiredFieldValidator control added

Figure 9-9. Validation control
properties

Figure 9-10. ControlToValidate
property

5386c09_final.qxd 8/18/05 3:22 AM Page 156

Next, choose txtUserLogin from the list. Also, change the ID property to
UserLoginRequired. Now, to show how the validation control works, choose Start without
Debugging from the Debug menu. Do not enter any values for any of the fields and then
click the Save button. You’ll see text appear next to the User Login text box, which matches
the ErrorMessage property of the validation control, as shown in Figure 9-11.

You’ll notice that the error message stating that none of the values were provided was
not displayed, as it was in the same situation in Chapter 8. The reason for this is that the vali-
dation control is fired prior to the code for the button event. Therefore, this validation occurs
before any of the code in the click event of the Save button is run. This is a good way to make
sure that the user sees any errors before they move off the page. This also saves round trip
(transfer to the server and back) work as your code on the server, within the Ticket class, is
never executed because the error is found at the client instead of the server.

The RangeValidator control is another useful validation control. This control can be
used to verify that your values are within acceptable ranges. For example, if you want a
user to enter a value that should be between 1 and 10, this control will display an error
message if the value is outside of that range.

To show this, drag and drop the RangeValidator control to the AddTicket.aspx page
and then place it next to the Location text box control. For now, the Location control is
gathering a number and passing it to an integer public property of the Ticket class. Click
on the RangeValidator control and view the properties. Change the ErrorMessage property
to Location is out of Range, change the control to validate to txtLocation, and change the
ID property to LocationRange. Notice that there is a MaximumValue and MinimumValue
property. These are the lowest and highest values that can be entered into the validated
control. Enter 1 as the MinimumValue and 10 as the MaximumValue.

CHAPTER 9 ■ ASP.NET CONTROLS 157

Figure 9-11. Validation message returned

5386c09_final.qxd 8/18/05 3:22 AM Page 157

Another useful validation control is the RegularExpressionValidator. This control can be
used to verify that the fields have the correct type of information entered, whether phone
number, zip code, or e-mail address. The control does this by making sure that the informa-
tion entered into the control matches the pattern for each of these types of values. To use
this control, drag and drop the RegularExpressionValidator control to the AddTicket.aspx
form, next to the Email Address text box. Set the ErrorMessage property to Email Address is
not valid, and the ID property to EmailMailExpression. Set the Controltovalidate property to
Txtemailaddress. Also, notice that there is a Validationexpression property. Click the ellipses
next to this property to get a box that allows you to choose which expression to use. When
you find the one called Internetemailaddress, choose it.

To test out the validation controls, choose Start without debugging from the Debug
menu. This time enter any value for User Login, enter 15 into the Location text box, and
then tab off the text box. You will get an error message, telling you that the Location is not
in range, immediately. Type emailaddress into the e-mail address text box and then tab
off. This time you’ll get the Email Address is not valid error message immediately.

You can use all of the validation controls that I’ve covered to give the user feedback
as quickly as possible.

Master Pages

Master pages allow you to create a consistent look for all pages within an application.
A single master page defines a standard look and feel for either a group of pages or an
entire application. Individual content pages can contain specific content as needed
though—when a user requests the individual content page it’s merged with the master
page to produce the output. A master page has a file extension of .master and has a pre-
defined layout that includes static text, HTML elements, and/or server controls. Master
pages allow centralized common functionality, which allows you to make updates in one
place, use one set of controls and code for multiple pages, and allow you to control the
layout of the final page by giving you control of the placeholders.

To try this out, you’re going to add a master page to the Help Desk application.
First, add a new master page, the same way that you would add any new form. Give

your page the name HD.Master (the default extension of a master page). Next, you’re
going to add a company logo to the master page so that it appears on each page. To do
this, you need to copy the image file that you want to use into the same folder as your
web site (most likely c:\inetpub\wwwroot\HelpDesk). After the image file is within the
web site folder, click the web site URL within the Solution Explorer and choose Add Exist-
ing Item. When the Add Existing Item window appears, choose the image file. Now that

CHAPTER 9 ■ ASP.NET CONTROLS158

5386c09_final.qxd 8/18/05 3:22 AM Page 158

the image is within the project structure, place your cursor at the top of the master page
and press enter a couple of times. This will move the contentplaceholder control down
the page. The contentplaceholder is a control that will hold the content that you want to
create for the child pages. After the contentplaceholder is moved, click and drag the image
file from the Solution Explorer to the top left corner of the master page. Add a label with
an ID of lblCompanyName and do not add a text property. The results should look like
Figure 9-12.

The master page is now complete. The problem is that you can’t associate a master
page with an existing page. So, each of the pages that you’ve already created will need to
be re-created to be used with the master page. For now though, you’re only going to cre-
ate new pages to work alongside your master page.

Next add a new web form called ViewTickets to the web site. When the Add New Item
window appears, check the box Select master page, as shown in Figure 9-13.

When you click the Add button, the Select a Master Page window will appear. All
master pages within the web site will also appear. Select the master page you want asso-
ciated with this web form (in this case HD.master), and click OK, as shown in Figure 9-14.

CHAPTER 9 ■ ASP.NET CONTROLS 159

Figure 9-12. Design of master page, HD.master

5386c09_final.qxd 8/18/05 3:22 AM Page 159

CHAPTER 9 ■ ASP.NET CONTROLS160

Figure 9-13. Check Select master page

Figure 9-14. Select the master page to use

5386c09_final.qxd 8/18/05 3:22 AM Page 160

You’ll notice the layout of the master page can be seen when the new page is opened,
but that the master page content is grayed out, as shown in Figure 9-15.

Next, drag and drop a label from the toolbox onto the ViewTicket page. Set the ID
property to lblTicketID and the text property to Ticket ID. Drag and drop a text box from
the toolbox onto the ViewTicket page and then set the ID property to txtTicketID. You’ll
use these properties to show how the content page works.

You can also make sure that all the pages that use the master page get the same code,
by adding this code to the master page. This is a useful strategy for doing something like
populating the company name label on each page at once, rather than adding the code
to do this on each individual page.

To do this, open the HD.master.vb file. Choose Page Events from the top left drop-
down list and then choose load from the top right drop-down list. This will create the
page load sub.

Within the page load sub add

lblCompanyName.Text = Application("CompanyName").ToString

This code will be executed each time a page that is associated with the master page is
loaded. To see this in action, click the ViewTicket.aspx page again and choose Start with-
out debugging from the Debug menu. The resulting page will look similar to Figure 9-16.

CHAPTER 9 ■ ASP.NET CONTROLS 161

Figure 9-15. ViewTicket.aspx with grayed out master page content

5386c09_final.qxd 8/18/05 3:22 AM Page 161

CHAPTER 9 ■ ASP.NET CONTROLS162

Figure 9-16. ViewTicket.aspx file showing content and master file

Notice that both the master page content and the ViewTicket.aspx page content are
present and that the name of the company was loaded when the master page was loaded.

Expanding the Help Desk Application
In this section I’ll take the existing Help Desk application and use some of the informa-
tion I’ve presented in this chapter to add more to the web site. This will include setting
the tab order for fields, making the problem description field a multiple line text box,
changing fonts, aligning controls, and using drop-down lists.

Your first task is to order the tabs of the controls on the AddTicket.aspx page. The
reason you should order the controlsy is so that the user entering information into your
form can tab from one control to the next. The flow of your controls should be logical and
follow the most common order—for example, your State field should follow your City
field, rather than the other way around. Only controls that require user interaction such
as buttons or text boxes should have a value in their tab index property.

To do this, open AddTicket.aspx and click the User Login control. Next, view the prop-
erties page for the control. Then, find the tab index property and enter 1. You should always
start the tab order with 1. Click on the FirstName text box and change the tab index to 2.
Repeat this for all of the text boxes and then do the same for the buttons. The Save button
should have a tab index before the Cancel button.

■Tip When working with the properties of multiple controls you might find it useful to pin the Properties
window open. To do this, click the icon that looks like a pin at the top of the Properties window (it will say
Auto Hide when you mouse over it). Clicking the pin should point it downwards instead of sideways. This
will keep the Properties window visible, rather than hidden, when you’re not working with it.

When you have added the tab index to each control, it’s time to test your work! Start
without debugging. Then, click the mouse into the first text box and hit the Tab key.

5386c09_final.qxd 8/18/05 3:22 AM Page 162

When the Tab key is hit, the cursor should move to the next text box. Continue doing this
until you reach the Cancel button. If hitting the tab key did result in the correct text box
getting the cursor, verify the tab index property of the controls in question.

Your next task is to make a problem description field with multiple lines. The default
behavior of a text box control is to only accept one line of text, which means under nor-
mal circumstances you can’t hit the Enter key and that you have limited space for typing.

For example, while you have the AddTicket.aspx file open, type something into the
Problem Description text box. Continue typing until you reach the end of the text box.
You will notice that what you have already typed will scroll to the left, and that this will
continue to happen as you continue to type.

To fix this problem, you can set the text box control’s Textmode property set to
Multiline. To do this, close the web site and open the AddTicket.aspx page. First, expand
the Problem Description text box so that it’s wider. Next, view the properties for the Prob-
lem Description text box and find the Textmode property. Click the drop-down list and
choose Multiline. This will allow the text box to accept multiple lines of text and will also
allow the user to hit Enter. This will also allow your user to view all of the content at once,
until the content is below the bottom of the text box.

When there is more content than can be viewed within the text box, scroll bars will
automatically appear. To see this happen, start without debugging and enter a large
amount of text into the Problem Description text box, as shown in Figure 9-17.

Notice that not only are the scroll bars present, but also that there are multiple lines
of text. You can’t see from Figure 9-17, but there is a carriage return (made using the Enter
key) at the end of each line. This can’t be done in a single line text box.

Your next task is to change the font of all of the label controls. First, click each label
while holding down the Control key. This will allow you to select all of the labels at one
time. Next view the Properties window and find the Font property under the appearance
category. Click the + sign next to the font property to expand the set. From there, click the
drop-down list next to the Name property. This is the Font Name property. Choose Arial

CHAPTER 9 ■ ASP.NET CONTROLS 163

Figure 9-17. Multiline text box with scroll bars

5386c09_final.qxd 8/18/05 3:22 AM Page 163

from the list. Next, find the Size property within the Font set and use the drop-down
menu to choose Small. The resulting properties window is shown in Figure 9-18.

While you have all of the labels selected, you can also choose to align all of the labels.
To do this, choose the Format menu and Align, and then Lefts, as shown in Figure 9-19.

This technique can be used to align any set of controls. As you can see from the
menu, you can align the lefts, centers, rights, tops, middles, and bottoms of a set of con-
trols. All you need to do is just select the controls you want to align by holding down the
Control button and clicking on the controls that you want to include in the grouping.

Your final task is to change the Location text box to a drop-down list. A drop-down
list can be loaded dynamically from a database, manually added within the Properties
window, or item by item via added code. Again, since ADO.NET is outside the scope of
this book, you will only be adding items from the Properties window and then with code.

The first step is to remove the Location text box and then drag and drop a drop-down
list control from the toolbox. When you drag the drop-down list control onto the form,
you’ll see a small box with two tasks listed, as shown in Figure 9-20.

You can click on the first task, if you are using
ADO.NET, to determine where the data for the list
should come from. You can choose the second task
to add items to the list manually through the Property
window. The check box at the end of the list deter-
mines whether you want the drop-down list to force
the page to refresh (postback) when you select an
item from the drop-down list. For the Help Desk

CHAPTER 9 ■ ASP.NET CONTROLS164

Figure 9-18. Font properties Figure 9-19. Align Lefts

Figure 9-20. Drop-down list
tasks

5386c09_final.qxd 8/18/05 3:22 AM Page 164

application this isn’t necessary. However, you could use this to post back the results of the
drop-down list if that specific information is needed for another control on the form. For
example, if one drop-down list depended on another, you could enable the Autopostback
control for the first drop-down list and then populate the second drop-down list on page
load, if there was a postback.

Click the Edit Items task to manually add the items to the drop-down list. When the
ListItem Collection Editor window appears click the Add button. This will add an item to
the list and allow you to manipulate some of the properties of the list item as shown in
Figure 9-21.

The first property on the list determines whether the list item is enabled or not
(grayed out). The second property determines whether the item is selected when the
list is first shown. Only one item can have the Selected property set to True.

The third and fourth properties are the most important. The third property is the text
to be displayed, while the fourth property is the value that will be provided when the item
is selected. Enter PA as the text and 0 (zero) as the value. Next, add another list item with a
text of NY and a value of 1. Finally, add a third list item with a text of NJ and a value of 2.

You’ll also notice a Remove button. You can use this button to remove an existing list
item. Just click on the list item you want to remove, and then click the Remove button.
When you have added all three items, click OK and then move the drop-down list next to
the Location label.

■Note The Text and Value properties of a list item are represented as strings. Either one can contain
alphanumeric values. If you wanted to, you could use PA as both the text and the value. In this case, the
class Ticket is expected an integer value, so 0 (zero) was assigned to the value.

CHAPTER 9 ■ ASP.NET CONTROLS 165

Figure 9-21. ListItem Collection Editor after Add

5386c09_final.qxd 8/18/05 3:22 AM Page 165

To test this out, first delete the Rangevalidator control that is associated with the
Location text box. Since the text box is no longer on the page, the validation control will
cause an error when building the web site. Also, the drop-down list guarantees that the
values for the location are valid. Since the text box doesn’t exist anymore, the value from
the text box control can’t be determined. This means you also need to change the code
that assigns the value from the Location text box control to the Location Public property
within the Ticket class. To do this, double-click the Save button, which will bring you to
the Button save click event. You will now see a line of code with a squiggly line under it,
which will be the line that assigns the text property of the Location text box to the Loca-
tion Public property of the Ticket class:

clsTicket.LocationID = txtLocation.Text.Trim()

For now, place a single quote before this line, which will comment the line out. (All of
the characters will be green in a commented-out line.) A commented line of code will not
be executed when the other code is executed. You will also find a reference to txtlocation
in the ClearValues sub. Place a single quote before that line to comment it out also.

Next, choose Start without debugging from the Debug menu. The AddTicket page
will appear and you will see the drop-down list, as shown in Figure 9-22.

Notice that PA is the selected item. PA
is the first item in the list so it’s automati-
cally selected.

The next step is to assign the value
from the drop-down list to the location
property of the Ticket class. To do this,
close the web site and view AddTicket.
aspx in Design Mode again. Click on the
drop-down list and view its properties.
Change the ID property to DDLocation.
Double-click the Save button to go to the
Button save click event. Remove the sin-
gle quote that was used to comment out

the line of code assigning the public property of the Ticket class. Remove the assignment
part of the statement:

trim(txtlocation.text)

Next, type DDLocation followed by a period. This will show you all of the various
drop-down list properties and methods that are available to you. Find the property called
SelectedValue and then select it. The SelectedValue property of a drop-down control
holds the value property of the selected item. Your code will look like

clsTicket.LocationID = cint(ddlocation.SelectedValue)

CHAPTER 9 ■ ASP.NET CONTROLS166

Figure 9-22. AddTicket.aspx with
drop-down list for location

5386c09_final.qxd 8/18/05 3:22 AM Page 166

The cint built-in function will convert the string value from the SelectedValue prop-
erty to an integer required for the public property LocationID of the Ticket class.

To test this out, place a breakpoint on the line of code that was just changed (the
location assignment line). Then, choose Start debugging from the Debug menu. You will
receive the error message that is shown in Figure 9-23. Never fear—this message just
enables debugging. Click OK to continue.

Enter a value for each of the fields, and be sure to put in a valid e-mail address. Choose
NY from the drop-down list and then click Save. When the breakpoint is hit, place your
mouse over the cint(DDLocation.SelectedValue) statement. You will see that the value is 1.
Remember that the list item with a text of NY had a value of 1 so you know that this is cor-
rect. You can now stop the execution of the web site.

The final step in this task is to add an item programmatically. I like to add an item to the
beginning of the list that lets the user know what to select. For example, in this case I would
add “Select a Location” to the list. To do this, create a new private sub called AddItem within
the AddTicket.aspx.vb file. First, you need to declare a variable of type New ListItem called
NItem. The ListItem object represents one item in a list. Next, set the Text property of the
NItem object to “Select a location”, set the value property of the NItem object to “999”, and
set the Selected property of the NItem object to True. Finally, you must add the NItem object
to the drop-down list’s items collection. To do that use DDLocation.Items.Add(NItem). This
line of code calls the Add method of the Items collection for the drop-down list. The finished
sub will look like this:

Private Sub AddItem()

Dim NItem As New ListItem

NItem.Text = "Select a Location"

NItem.Value = "999"

NItem.Selected = True

DDLocation.Items.Add(NItem)

End Sub

CHAPTER 9 ■ ASP.NET CONTROLS 167

Figure 9-23. Debugging not enabled message

5386c09_final.qxd 8/18/05 3:22 AM Page 167

Next, a call to this sub must be placed in the Page Load event. To do this, choose
Page Events from the top left drop-down list and then choose Load from the top right
drop-down list. Within the Page Load event enter AddItem. This will call the AddItem
sub when the page is first loaded. To test this, choose Start without debugging from the
Debug menu. The resulting page will look like Figure 9-24.

Notice that the Select a Location item
is the one that is visible. That’s because the
Selected property was set to True. If you use
the drop-down list, you’ll see that Select a
Location is last in the list. This is because
the Value property of the list item was set
to 999, so it will be last in the list and will be
out of the range for the value.

Now all of the new controls and fea-
tures have been added to the Help Desk
application. The next chapter will use a
web service to retrieve information about
the requester.

Conclusion
In this chapter, I explained the difference between the various ASP.NET controls that can
be used on a web form. I also covered how to use the properties of ASP.NET controls and
how to use a master page to define the layout of all the pages within an application.
Finally, I expanded on the Help Desk application that we started previously, by adding
controls and setting properties for those controls. In the next chapter I’ll cover what a
web service is and how to implement a very simple web service.

CHAPTER 9 ■ ASP.NET CONTROLS168

Figure 9-24. AddTicket with Select
a Location item added

5386c09_final.qxd 8/18/05 3:22 AM Page 168

Web Services

In this chapter, I’ll introduce you to XML,SOAP, WSDL, and web services. I’ll also explain
how to create a web service and then deploy that web service. I’ll expand on the Help Desk
application by showing you how to create a web service to retrieve user information and
then add code to use this web service.

Introduction to XML, SOAP, and WSDL
XML, or Extensible Markup Language, is a markup language that provides a format for
describing data. XML is similar to HTML in that both are markup languages and both use
the concept of a tag. However, XML only has a handful of standard tags, and you can also
create your own tags, which you can’t do with HTML. Also, XML tags are used to define
the structure and the data types of the data itself. As I just mentioned, the advantage of
XML is that you can create your own tags to describe your data. XML is used mostly to
move data between different systems when the two systems involved don’t need to under-
stand how the data was created. Unlike a comma delimited file, an XML file is grouped by
the XML tags and doesn’t need to be in the same order all of the time. For more informa-
tion about XML, check out the XML Developer Center at http://msdn.Microsoft.com/xml.

SOAP is a simple, XML-based protocol for exchanging structured and type informa-
tion on the web. This protocol is highly modular and extensible. Web services use the SOAP
protocol, which is similar to TCP/IP and HTTP, to communicate with clients. The SOAP
messages sent to and from a web service must be in XML with a required Body and Enve-
lope element and an optional Header element.

WSDL stands for Web Services Description Language, which is an XML grammar that is
used to create an XML document. The XML document created by WSDL is a service descrip-
tion that describes a web service and defines the format of messages that the web service
understands. The service description serves as an agreement that defines the behavior of a
web service and instructs potential clients on how to interact with the service. The WSDL
specification can be found at http://www.w3.org/TR/wsdl.

169

C H A P T E R 1 0

■ ■ ■

5386c10_final.qxd 8/18/05 3:20 AM Page 169

Introduction to Web Services
Web services have received plenty of attention in the past few years. A web service is
essentially an application that can be accessed by other applications via the web. Usually
web services provide small amounts of functionality that are specific. One example of a
web service would be a mailing address verifier. This kind of web service would have the
functionality to determine whether a mailing address is in the correct format. In practice,
the web service might receive a request via HTTP (internet protocol) that contains a
mailing address. The web service would then perform the work to determine whether the
mailing address was valid and would return either a true or false value, depending on the
outcome. The advantage to a web service is that it is loosely coupled and can be reached
over the internet. Loosely coupled means that the two systems (the web service and the
client) only need to understand self-describing, text-based messages (XML). A company
could use a web service to provide invoice information to customers very similar to the
EDI (Electronic Data Interchange).

To use the functionality of a web service, a client application must exist. This client
application can be a Windows client or a web client. The client application must refer-
ence the web service and must understand what to present to the web service and what
the web service will return.

Creating a Web Service

To show you how a web service is created and then used, you’re going to create a web
service, called UserInformation. The UserInformation web service will provide user infor-
mation for other applications. In this case, it will be used by the Help Desk application to
provide information about a user. In real life, this could be used as a way to retrieve user
information about all users for all applications within a company. The web service could
interact with either a database or a directory service like Active Directory to provide this
information. The advantage is that you can build one web service and use it for multiple
applications, instead of needing to include the classes necessary to retrieve user data in
either a namespace for the company to use or in each individual application.

The first step in creating a web service is to install Internet Information Service (IIS)
on the local computer. If you do not have IIS installed, you will not be able to create a web
service. If you do have IIS installed, open Visual Studio 2005 and choose File ➤ New Web
Site. In the New Web Site window, choose ASP.NET Web Service and enter UserInformation
as the name of the web service, as shown in Figure 10-1.

CHAPTER 10 ■ WEB SERVICES170

5386c10_final.qxd 8/18/05 3:21 AM Page 170

When the project opens, a file called Service.vb will be automatically created and
displayed. You can close this window. Next, open the Solution Explorer, find the file
called Service.asmx, and delete it along with the Service.vb file. After deleting those
two files, right-click on the URL at the top of the Solution Explorer and choose Add
New Item. When the Add New Item window appears, choose Web Service and then
give it the name UserInformation. A vb file is also created with the code itself. Now,
open the UserInformation.vb file. The first line after the Imports line is a line that
starts with WebService. Change that line so that it’s the same as Figure 10-2.

This changes the namespace from the default name and adds a description that can
be viewed by a user of the web service. There are several different items of information
about a user. For each item, a method will be defined. Use the following code to define
each method (GetFirstName, GetLastName, GetPhoneNumber, GetEmailAddress,
GetLocation):

CHAPTER 10 ■ WEB SERVICES 171

Figure 10-1. Entering UserInformation as the new application name

Figure 10-2. Updated UserInformation.vb file

5386c10_final.qxd 8/18/05 3:21 AM Page 171

<WebMethod(Description:="Retrieves the First Name of the user")> _

Public Function GetFirstName(ByVal UserLogin As String) As Boolean

End Function

The first line of the previous code declares this as a WebMethod and provides a
description of the method for users of the web service. The WebMethod line of code
must be entered prior to any method that is to be exposed as part of the web service.
After the WebMethod line, any function or sub can be written. Within each method,
determine whether the login is equal to the login that you are going to test within. If
it is, return a value—otherwise return an empty string. The resulting code should look
like this:

<WebMethod(Description:="Get the first name for the user")> _

Public Function GetFirstName(ByVal UserLogin As String) As String

If UserLogin = "Brian" Then

Return "Brian"

Else

Return ""

End If

End Function

<WebMethod(Description:="Get the last name for the user")> _

Public Function GetLastName(ByVal UserLogin As String) As String

If UserLogin = "Brian" Then

Return "Myers"

Else

Return ""

End If

End Function

<WebMethod(Description:="Get the phone number for the user")> _

Public Function GetPhoneNumber(ByVal UserLogin As String) As String

If UserLogin = "Brian" Then

Return "555-5555"

Else

Return ""

End If

End Function

<WebMethod(Description:="Get the email address for the user")> _

Public Function GetEmailAddress(ByVal UserLogin As String) As String

If UserLogin = "Brian" Then

Return "email@company.com"

Else

Return ""

End If

CHAPTER 10 ■ WEB SERVICES172

5386c10_final.qxd 8/18/05 3:21 AM Page 172

End Function

<WebMethod(Description:="Get the location id for the user")> _

Public Function GetLocation(ByVal UserLogin As String) As Integer

If UserLogin = "Brian" Then

Return 2

Else

Return 0

End If

End Function

To test this out, switch to the Test.asmx file and execute the application (Debug ➤
Start without debugging). The .asmx file will appear and display the available methods
for the service, along with a description of each, as shown in Figure 10-3.

You can test any of the web methods by clicking on its name, for example, GetFirstName.
When you do this, another page will ask you to provide a parameter. Provide your login name
and click Invoke. This will open another window, and will show you an XML result that should
include the name that was provided by the method, as shown in Figure 10-4.

CHAPTER 10 ■ WEB SERVICES 173

Figure 10-3. .asmx file for the UserInformation service

Figure 10-4. XML returned when GetFirstName invoked

5386c10_final.qxd 8/18/05 3:21 AM Page 173

This result shows that the web service will be returning XML to the client that calls it.
This also shows that the method is working correctly. To further test this, you can enter
an invalid name in the UserLogin parameter and invoke the method again. If you do this,
you should see an empty string in the XML results. Close the browser and the project.

Consuming a Web Service

Using a web service from a client application is called consuming the web service. This is
done by first adding a web reference to the project and then using the exposed methods
of the service.

Open the Help Desk web site you created previously. When the project appears, open
the Solution Explorer and right-click the project name. Choose Add Web Reference from
the menu. There are several ways to find the web service you want to reference. In the Add
Web Reference window type http://localhost/UserInformation/UserInformation.asmx
(using forward slashes) and click the Go button. VS will attempt to find the web service—
if it does, the web methods available will appear, as shown in Figure 10-5.

CHAPTER 10 ■ WEB SERVICES174

Figure 10-5. Add Web Reference Dialog box

5386c10_final.qxd 8/18/05 3:21 AM Page 174

Along with the displaying of the web methods, you can now also see a link called Ser-
vice Description. This is the WSDL file that was discussed at the beginning of the chapter.
If you click on the link you will see an XML file that describes the service.

Another way to find the web service is to search for all the web services on the local
computer or on the local network. To test this out, click the Home button at the top of the
Add Web Reference window (the Home button is the house icon). This will take you back
to the original screen that appeared when you first attempted to add a web reference, as
shown in Figure 10-6.

Click the Web services on the local machine link. This will display a list of all of the
web services on the local computer. Next, find the correct UserInformation web service
and click that link. You should see the list of methods for the web service again. To add
the web reference to the project, change the web reference name from localhost to
UserInformation and then click the Add Reference button. You will now see a new
folder within the project called App_Webreferences, with a folder inside it called
UserInformation. The App_Webreferences folder contains all of the web references
within the web site. The UserInformation folder contains all of the files necessary to

CHAPTER 10 ■ WEB SERVICES 175

Figure 10-6. Ways to find a web service

5386c10_final.qxd 8/18/05 3:21 AM Page 175

work with the web service from within the web site. Notice the .wsdl file within this
second folder.

Next, you need to use the web service. The best place to use this web service is within
the AddTicket.aspx page. When the page is loaded, you’ll determine the user’s login, pass
that to each method and then assign the results to the appropriate text box. If you remem-
ber from previously, the Session object already contains the user’s login, so you don’t need
to determine that. Within the Page Load event add the following code:

Dim wsUserInformation As New UserInformation.UserInformation

This line of code will declare a variable to represent the web service. Next, add the
following line of code to assign the value from the Session variable for the user login to
the user login text box:

txtUserLogin.Text = Session("UserLogin").ToString

Now add one line for each control and method in order to call the web method and
assign the returned value to the appropriate text box. The resulting code will be:

Dim wsUserInformation As New UserInformation.UserInformation

txtUserLogin.Text = Session("UserLogin").ToString

txtFirstName.Text =

wsUserInformation.GetFirstName(Session("UserLogin").ToString)

txtLastName.Text = wsUserInformation.GetLastName(Session("UserLogin").ToString)

txtPhoneNumber.Text = wsUserInformation.GetPhoneNumber

(Session("UserLogin").ToString)

txtEmailAddress.Text = wsUserInformation.GetEmailAddress

(Session("UserLogin").ToString)

To test this out, choose Start without debugging from the Debug menu. The
AddTicket.aspx page will appear with all of the information filled in, as shown in
Figure 10-7.

CHAPTER 10 ■ WEB SERVICES176

Figure 10-7. Data is displayed.

5386c10_final.qxd 8/18/05 3:21 AM Page 176

The location assignment was left out of the previous code because it’s a little different.
You need to make the drop-down list use the value from the web service. To do this, add
the following lines of code to the page load event after the call to AddItem:

Dim intLocation As Integer

intLocation = wsUserInformation.GetLocation(Session("userlogin").ToString)

If intLocation > 0 Then

DDLocation.SelectedValue =

DDLocation.Items.FindByValue(intLocation.ToString).Value

Else

DDLocation.SelectedValue = "999"

End If

The first line declares a holding variable, which is used on the second line to receive
the value from the web method. The third line determines whether the value from the
web method was greater than 0. The fourth line selects the value from the drop-down list,
(found by using the FindByValue method of the items collection within the drop-down
list). The FindByValue method requires a parameter telling it which value to find. Basi-
cally the FindByValue method tries to find a value within the collection and then provide
its value. If the value from the web method isn’t greater than 0 then the Select a location
item is selected.

To test what happens when the login is not found, open the Global.asax page and
change the Session assignment to Session.Add("UserLogin", strName & "1"). This is an
easy way to test what happens if the user login is not a value and it’s easy to reverse. Now,
choose Start without debugging from the Debug menu. No information (other than the
login name) will appear, since the login name now has a 1 attached to the end and is
therefore invalid.

Conclusion
In this chapter, I introduced the concepts behind web services and expanded the Help
Desk application by creating a web service. I showed you how to use this web service to
provide user information and how to consume that web service within the Help Desk
application.

CHAPTER 10 ■ WEB SERVICES 177

5386c10_final.qxd 8/18/05 3:21 AM Page 177

5386c10_final.qxd 8/18/05 3:21 AM Page 178

■Numbers and Symbols
#Region tag

for creating a code region, 125–126
‘ (single quote)

using to comment out a line of code,
166

■A
abstract classes

function of in inheritance, 80–84
access modifiers

main for properties, 43
Accessibility properties

for making buttons accessible, 153
action declaration

defining what action to take, 37
actions

and attributes, 41–55
for defining what a real-world entity

does in OOP, 42
in OOP, 27

Active Server Pages. See ASP.NET
ActiveX Data Object (ADO)

in .NET Class Library, 31
Add New Item window

creating a new class in, 36–37
selecting master page in, 160

Add Reference window
for adding a reference to a namespace,

92
choosing the Encapsulation.dll in, 63
in Solution Explorer, 63

Add Web Reference dialog box
finding the web service you want to

reference in, 174–175
AddDecimal function

creating for returning a decimal with
two decimal parameters, 90

AddIntegers public function
creating, 90

AddTicket method
implementing, 126

AddTicket web form
adding exception handling for, 146–147
adding to HelpDesk web site, 142–147
code for allowing user to cancel entered

values and start again, 144–145
Design View of, 143
example of test data in, 145
testing the code for, 145
verifying that validation of public

properties is correct, 146
AddTicket.aspx page

adding validation controls to, 155–158
with drop-down list for location, 166
with Select a Location item added, 168

alias
creating for your virtual directory, 12–13

App_Data folder
automatically created when a new web

site project is created, 10–11
App_Webreferences folder

containing all web references within a
web site, 175

Appearance properties
for determining how controls will look

to the user, 153–154
Application class

in the My namespace, 97
Application object. See also

HTTPApplicationState class
function of, 134

Application_End sub
function of, 137

Application_Error sub
function of, 137

Application_Start sub
function of, 137

.asmx file
for the UserInformation service, 173

Index

179

5386idx_final.qxd 8/18/05 3:18 AM Page 179

asp: tags
use of by web server controls, 152

ASP.NET
defined, 1
Development Center web site address,

2–3
introduction to web forms, 129–147
objects in web applications, 32
Page class, 131–132
and VB.NET, 1

ASP.NET application
creating to use UserAuth.vb class and

Math.vb class, 90–96
using the My namespace to get the

login name of currently logged-in
user, 98

ASP.NET controls
used to create a user interface on a web

form, 149–168
ASP.NET web site

creating using VB.NET, 6–16
assemblies

in a .NET Framework application, 3
automatic creation of with VS2005, 3

attributes
and actions, 41–55
for describing real-world entity

characteristics in OOP, 41
that describe real-world objects, 27

Authentication Methods screen
setting security access in, 16
for setting up Windows Domain

Authentication, 98–100
AutoPostBack property

for each Web Form control, 134
enabling for a drop-down list, 165

■B
base class

development of within VB.NET, 71
Behavior properties

for determining some action or
behavior of a control, 154

bin debug folder
opening and referencing a .dll folder in,

63–64

blnIsHelpDeskManager
creating a public read-only property for,

122
declaring, 122

blnIsTechnician private variable
creating a public read-only property for,

122
declaring, 122

blue icon
denoting private attributes of classes in

Object Browser, 35
Body tags

example of content of, 130
BorderColor attribute

information about, 35
btnAddNew

adding new server click event for, 155
Build Web Site menu

Build Output window showing build
status, 19

business process
case study: break down the business

process, 106–111
defining, 102–106
flow chart in help desk system case

study, 105
list of potential classes, properties, and

methods, 110–111
overview, 102
potential classes, 107

Button class
actions and attributes of, 35

ByRef (by reference)
using in VB.NET, 49–50

ByVal (by value)
using in VB.NET, 49–50

■C
C# (C Sharp), 1, 2
Calculate.aspx web page

adding a new text box to, 83
setting as the start page and debugging,

83–84
Calculate.aspx.vb file

adding code to the btncalculate_click
sub, 83

■INDEX180

5386idx_final.qxd 8/18/05 3:18 AM Page 180

CalculatePay method
adding code to for calculating the pay

for an hourly employee, 82
callck action

example of breakpoint on, 38
case study

for the class design process, 101–128
creating the class structure in the class

design process, 118–128
defining the business process, 103–105
defining the properties and methods of

each class, 112–117
Choose Location dialog box

choosing Create a new web application
in, 8

choosing File System as the web site
location, 9–10

choosing Local IIS as web site location
in, 7–8

setting the web site name in, 9
CInt built-in function

for converting a string value to an
integer, 167

class design, 101–128
class design process

business process overview, 102
case study, 101–102
case study: defining the properties and

methods of each class, 112–117
creating the class structure, 117–128
defining the business process in, 102–106
for help desk system, 101–128
steps for, 101

class file
creating in VB.NET, 58–64

class library
creating a new called Encapsulation, 59
as a namespace, 85

class library project
creating new to begin creating a

namespace, 88–89
class structure

creating in the class design process,
117–128

Class view
using to view your namespace and the

classes within it, 96

Class1.vb file
renaming to Math.vb, 59–60

classes
creating for the business process,

111–112
creating with VB.NET, 36–37
defining the properties and methods of,

112–117
displaying within the Object Browser,

34–35
in .NET, 32
using in VB.NET, 37–39

CLR. See Microsoft Common Language
Runtime (CLR)

clsMath declaration
removing and replacing with two

private variable declarations, 96
clsMath variable

as a variable of type
Encapsulation.Math class, 65

Code directory
adding, 36

code example
added to Session_Start sub for user

login verification, 139
adding a function after the public

property called Start, 50–51
for adding a function called

ConCatNames, 52
for adding and naming a button in

Technician Console, 141–142
for adding an overridable method to

employee base method, 77
for adding a Try...Catch block to the

AddTicket method, 127
adding for making the car start, 51
for allowing user to cancel entered

values and start again, 144
of ASP.NET application for namespaces,

90
assigning value from UserLogin

parameter to strUserName, 120
for blnIsTechnician and

blnIsHelpDeskManager public
properties, 122

for calculating pay for salaried and
hourly employees, 83

■INDEX 181

5386idx_final.qxd 8/18/05 3:18 AM Page 181

code example (continued)
for calling the NewTicket method of the

Ticket class, 144
Car class code declaration of a private

variable and a public property, 50
for changing the ConCatNames

function to a sub, 53
of complete class code for Math class,

62
for converting value of salary to a

decimal value, 82
creating a function or sub that accepts

parameters, 51
for creating a function that will return a

string value, 37
for creating a new cookie that stores the

last visit date, 136
for creating an instance of the

SalaryEmployee class, 78
for creating an instance of the Executive

class, 78
for creating an instance of UserAuth

class within MyCompany
namespace, 99

for creating a variable of type Ticket
class, 143

creating public function called
MultiplyBySelf, 61

for creating public properties within the
Employee class, 45–46

for creating the methods for the User
class, 123

for Decimals class in Math namespace,
96

declaring a local variable within the
Page_Load sub, 47–48

for declaring a variable called
strConCatName as a string, 52

for declaring a WebMethod, 172–173
declaring two methods as functions

that return Data.DataSet data type,
121

defining a class with a public property
and private variable, 43–44

defining two private string variables
and a private date variable, 45

for determining if strErrors contains a
string, 126–127

for determining if user is a technician,
help desk manager, or general
user, 140–141

for determining if user is a technician or
help desk manager, 123

for finding the UserLogin key within the
Session object, 140

of function definition for
ConCatNames, 54

for implementing the
DetermineBenefits method for
executive class, 77

including the inherits and the class
name on the same line, 74

inheriting the Employee class, 73
for Integers class in Math namespace,

95
for making drop-down list use value

from web service, 177
for making Multiply button work in

encapsulation example, 67
for Math.vb public and private

properties, 60
for method declarations for the Ticket

class, 125
of methods you’ll need to create for the

Help Desk User class, 119
for multiplying two parameters and

returning the result, 61
presenting the properties of a class by

defining all variables as public, 44
of a private variable with one name and

a public property with a friendlier
name, 44–45

for public property code for Math.vb
file, 60

to retrieve the contents of cookies
stored on the client, 136

for retrieving a Session object value, 135
to see how inheritance works in VB.NET,

72–76
showing added variable in the

Default.aspx.vb file, 78
showing completed HourlyEmployee

class, 82

■INDEX182

5386idx_final.qxd 8/18/05 3:18 AM Page 182

showing finished sub for
programmatically adding a drop-
down list item, 167

showing how nested namespaces work
and are created, 96

showing use of Add Integers button to
add integers in text boxes, 94

of the sub declaration with the
Employee class, 53

that concatenates the FirstName and
LastName parameters, 53

for Ticket class private variable
declarations, 124

Try...Catch block that throws exception
if AssignedTo public property not
provided, 128

used to define a set of overload
functions, 55

for using contents collection to add new
session items to store, 135

using IsUserAdmin and IsUserValid
public functions, 91

for validating that all ValidateTicket
method properties have values, 126

code file
Default.aspx.vb file as, 10–11

code region
using #Region tag to create, 125–126

Common Language Runtime (CLR). See
Microsoft Common Language
Runtime (CLR)

Common Type System (CTS)
contained in .NET Framework, 2–3

company name
setting in the HelpDesk web site, 137

Computer class
for accessing information about

computer application is running
on, 98

ConcatName sub
removing the code that exists within,

80–81
ConCatNames function

changing to a sub, 53
“console pages”

adding so users can see a list of help
desk tickets, 137

constructor
of a class, 49

consuming a web service
defined, 174

contentplaceholder control
in HD.master, 159

controls. See also ASP.NET controls;
contentplaceholder control;
HTML server controls; label
controls; web server controls

adding in the Web Forms Designer, 130
ordering so users can tab from one to

the next, 162
ControlToValidate property

showing drop-down list of all controls
you can validate on a form,
155–156

cookies
code for creating new that stores the

last visit date, 136
Ctrl+F5 keys

starting the web site application with,
19–21

CTS. See Common Type System (CTS)

■D
Data properties

for binding a certain value to the text
property, 154

Debug menu
closing, 25
using to debug your web site, 19–21

Debugger Breakpoint
adding, 23–24

debugging
as important step in software

development process, 23–25
stopping, 48

Debugging not enabled message
meaning of, 167

Decimals class
code for in the Math namespace, 96

Default.aspx file
adding textbox controls and labels to,

91–92
vs. Default.aspx.vb file, 10–11

■INDEX 183

5386idx_final.qxd 8/18/05 3:18 AM Page 183

Default.aspx page
adding a text box to with ID property of

txtUserName, 140
adding Salaried and Executive buttons

and text boxes to, 77
Default.aspx.vb file

adding variables in, 78
code for adding click events to buttons,

94–95
creating a sub for the Salaried button’s

button click event in, 78
vs. Default.aspx file, 10–11
revised showing how an inherited class

works, 74
revised with new variable clsEmployee

as instance of Employee class,
75–76

testing the Salaried and Executive
button clicks, 78–79

derived class
changing behavior of a base method in,

76–84
copying of base class to, 71

Design tab
designing web forms by adding controls

from the toolbox, 129
Design view

in Designer Tool, 21–22
Designer Tool

Toolbox in, 22
views in, 21–23

DetermineBenefits method
code for implementing for the

Executive class, 77
DetermineBenefits sub

removing the code that exists within,
80–81

dialog boxes
HTML server control properties, 153
New Project, 88–89
web server control properties, 153

Directory Security
viewing for your web site, 14–16

Directory Security tab
at top of Properties window, 14–16

Documents Properties tab
adding the name of first page of your

web page in, 21
drop-down list

adding an item programmatically,
167–168

changing Location text box to, 164–165
showing all properties and methods

available for, 166
testing after changing Location text box

to, 166

■E
Edit Items task

using to manually add items to the
drop-down list, 165

Employee class
adding an overridable method to

employee base method, 77
inheriting, 73
making an abstract class, 80–84

Employee.vb file
adding MustInherit to, 80–81
adding MustOverride to, 80–81

encapsulation
general overview of, 57–58
getting started with, 58–64
of objects, 28
in VB.NET, 58–69

Encapsulation class
building into an assembly, 68–69
building into an assembly for use by

another application, 62–64
Encapsulation class library

using Object Browser to look at after
referencing, 64

encapsulation example, 66–69
completed labels, text boxes, and

button in, 67
creating text boxes and text box labels

in, 66
setting the properties, 66

Encapsulation folder
finding in the Add Reference window,

63
Encapsulation.Math class

public properties and methods of, 65

■INDEX184

5386idx_final.qxd 8/18/05 3:18 AM Page 184

Encapsulation.Math variable
declaring, 64–65

End Function command
concluding each function or sub

declaration with, 51
Error Message property

entering text into, 155
exception handling

adding and testing for AddTicket web
form, 146–147

executive benefits package
requirements for implementing, 79

ExecutiveEmployee class
creating, 77

Express Editions
purchasing for software development,

3–4
Extensible Markup Language (XML).

See XML (Extensible Markup
Language)

■F
F11 key

for moving to next line of code for
debugging, 25, 38–39

File menu
Open Web Site option from, 16–17

file system web site
creating, 9–10, 32–33

FirstName public property
set statement of, 48

Format menu
setting alignment of all control labels

in, 164
framework

a group of objects as, 31

■G
global.asax file

creating for the HelpDesk web site, 137

■H
hand icon

denoting public attributes in the Object
Browser, 35

HD.master
creating for the Help Desk application,

158–159

HD.master.vb file
creating the page load sub, 161–162

Help Desk application
adding a new master page to, 158–159
adding validation controls to

AddTick.aspx page in, 155–158
creating a UserInformation web service

for use by, 170–174
expanding, 162–168

Help Desk Manager class
creating and coding a New sub with a

parameter of UserName, 121
declaring two methods as functions

that return Data.DataSet data type,
121

mapping original potential classes,
properties, and methods to, 117

potential methods, 114
help desk system

breaking down the business process,
106–111

class design process for, 101–128
Help Desk Manager and technician

views, 104–105
review the business process, 106
ticket creation process, 103–104
user views, 104

Help Desk User class
function of classes within, 112
methods you’ll need to create for, 119

HelpDesk classes
listed in Solution Explorer, 119

HelpDesk web site
adding new tickets to, 142–147
creating the class structure in, 118–128
determining how to implement each

method in, 119
determining if user is a technician, help

desk manager, or general user,
138–142

expanding, 136–147
forms created within, 137
setting the company name and

retrieving on each page, 137
HelpDeskManager.vb file

adding Inherits HelpDeskUser line of
code to, 121

■INDEX 185

5386idx_final.qxd 8/18/05 3:18 AM Page 185

hourly employee
calculating the pay for, 82

HourlyEmployee class
creating, 82
example of completed code for, 82

HTML elements
converting to HTML server controls,

149–152
HTML Input element

example of HTML source for, 150–151
revised with runat attribute, 151

HTML server control properties
vs. web server control properties, 153

HTML server controls
creating and adding HTML elements to,

149–152
HTTPApplicationState class

function of, 134–135
HTTPSessionState object

function of, 134–135

■I
icons

for identifying namespaces, classes,
methods, and properties, 87–88

IIS Administration Tool
advantages of creating virtual

directories with, 11
Imports statement

using on the MyCompany namespace,
93

inetpub folder
created on the C drive when IIS is

installed, 11
information hiding

code showing use of validation in the
Set method, 61

creating a private sub called Test to test,
65

example, 64–66
general overview of, 57–58

inheritance
in object-oriented programming, 28
payroll application as real-world

example of, 71–72
within VB.NET, 71–84

Integers class
code in the Math namespace, 95

IntelliSense
for clsEmployee class, 76
list of namespaces provided by, 93
revised for clsSalaryEmployee, 75
for SalaryEmployee class, 74–75
showing methods to override, 81
technology within Visual Studio that

helps complete your code, 25–26
interface of a class

function of, 65–66
Internet Information Service (IIS)

installing as your web server, 5
needed for creating a web service, 170

Is Help Desk Manager user class property
for determining if user is a help desk

manager, 117
Is Technician user class property

for determining if user is a technician or
general user, 117

IsPostBack property
of the Page class, 134

IsUserAdmin public function
creating and using, 91

IsUserValid public function
creating and using, 91

■L
label controls

changing the font of all, 163–164
Layout properties

for defining default height and width
for the control, 154

lblCalculateHourly label
creating, 83

lblCalculateSalary label
creating, 83

library of reusable objects, 31
ListItem Collection Editor window

for adding an item to the drop-down list
and manipulating item properties,
165

Remove button in, 165
Load Page Event

choosing from the drop-down list of
Page Events, 132

■INDEX186

5386idx_final.qxd 8/18/05 3:18 AM Page 186

local IIS web site
creating, 7–9
requirements for creating, 6

Location text box
changing to a drop-down list, 164–165

loosely coupled
defined, 170

■M
mailing address verifier

as example of a web service, 170
master pages

for creating a consistent look for all
application pages, 158–162

filename extension for, 158
Math.vb file

complete class code for, 62
setting public and private properties

for, 60
methods

creating and using in VB.NET, 51–55
Microsoft Common Language Runtime

(CLR)
one of components in .NET Framework,

2–3
services provided by, 2–3

Microsoft Intermediate Language (MSIL)
code

conversion of language-specific code
into by CLR, 2–3

Microsoft .NET
an introduction to, 1–3

Microsoft .NET and Visual Studio 2005
an introduction to, 1–26

Microsoft .NET Framework
included in Microsoft .NET, 1–2

Misc properties
ID property for the Administration

button located in, 154
MSIL code. See Microsoft Intermediate

Language (MSIL) code
Multiply button

testing the code for, 67
MultiplyDecimal function

creating, 90
MultiplyIntegers public function

creating, 90

My namespace
new in VB 2005, 98–100

MyBase keyword
calling a method in base class while

overriding it in derived class, 79
MyCompany namespace

creating and using, 89–96
MyCompany.Math methods

definition of, 94
example of, 93

MyCompany.Math namespace
example of, 96

■N
namespace

avoiding naming conflicts with, 85
a class library as, 85
creating for better organization for your

classes, 88–96
as organization-specific library in the

.NET Framework, 31
for organizing objects defined within an

assembly, 85
nested namespace

creating within a namespace, 95
.NET Class Library

assemblies within, 88
displaying all namespaces within in the

Object Browser, 34
object library provided by .NET

Framework, 31
.NET Framework

class library included in, 32
.NET Framework Class Library

learning about namespaces from,
85–88

New Project dialog box
adding a new project in, 88–89

New Web Site screen
choosing ASP.NET web site in, 7
creating a File System web site in,

9–10
for creating a new file system web site,

33
entering UserInformation as the

application name in, 170–171

■INDEX 187

5386idx_final.qxd 8/18/05 3:18 AM Page 187

NotInheritable keyword
for making classes within VB.NET not

inheritable, 72
NotOverridable keyword

function of, 77

■O
Object Browser

accessing from the View menu, 34, 85–86
distinguishing namespace from classes,

methods, and properties in, 86–87
Encapsulation assembly within, 64
purple icon denoting actions, 35
using in Visual Studio 2005, 34–35
viewing the Encapsulation library with,

64
object-oriented programming (OOP), 27–39

inheritance within, 71–84
introduction to concepts, 27–31
with .NET, 31–39
objects as the building blocks of, 29–30

objects
as the building blocks of OOP, 29–30
in .NET, 32–34
within OOP, 27
why they exist, 28

OOP (object-oriented programming).
See object-oriented programming
(OOP)

OOP with .NET
introduction to, 31–39

Option Strict
setting, 42, 46

Output window
web application’s link within, 20

overload functions
code used to define a set of, 55

overloading
function of, 55

Overridable keyword
for allowing a property or method to

be overridden, 76
Overrides keyword

for overriding an overridable property
or method from the base class, 76

overriding
the base class, 76–84

■P
Page class

choosing Page Events in
Default.aspx.vb code file General
list, 131

Page Events
choosing from list of, 131

page lifecycle, 132–136
Page Load event handler

code within to use IsPostBack property,
134

Page_Load action
creation of, 33–34

Page_Load sub
copying to TechConsole and

UserConsole pages, 137
creating within the Application_Start

sub, 137
debugging, 52–53
debugging revised code for, 54–55
declaring a local variable within, 47–48
example of completed code for, 52
revised code for, 54
setting a breakpoint and debugging the

application, 47–48
private properties, 43
Problem Description text box

creating with multiple lines, 163
process owner, 102
project files, 10–11
Project Properties window

changing namespace name in Root
Namespace textbox, 89

properties
setting in the encapsulation example,

66
Properties window

changing font properties in, 163–164
pinning open when working with

properties of multiple controls,
162

in Visual Studio 2005, 22–23
public functions or subs

reason they are considered a method,
49

public properties, 43

■INDEX188

5386idx_final.qxd 8/18/05 3:18 AM Page 188

purple icon
denoting actions in Object Browser, 35

pushpin icon, 23

■R
RangeValidator control

for verifying that your values are within
acceptable ranges, 157

readonly properties, 43
Recent Projects menu

opening an existing web site from,
16–17

RegularExpressionValidator control
for verifying that fields have correct

type of information entered, 158
Remove button

In ListItemCollection Editor window,
165

RequiredFieldValidator control
Help Desk application form after

adding, 156
Resources class

setting the culture of the application in
the My namespace, 97

RetrieveTicketsForLocation method
creating for Help Desk Manager class,

121
RetrieveTicketsForTechnician method

creating for Help Desk Manager class,
121

reusability
importance of, 30
introduction to, 30–31

root namespace
changing, 89

Root Namespace textbox
changing namespace name in, 89

round trips
function of in page lifecycle, 132

RUNAT=“Server” attribute
adding to convert HTML elements to

HTML server controls, 149

■S
SalaryEmployee class

example of updating, 75–76
SalaryEmployee.vb file

opening and changing, 81

security
setting up for virtual directories, 12–16

Select a Master Page window
selecting a master page to use in, 160

Server Explorer
in Visual Studio 2005, 22–23

ServerClick event
of btnAddNew control, 155

Session object
accessing and using to store specific

user session information, 135
retrieving a value, 135

Session_Start sub
executed when a user accesses the web

site, 139
Set method

validation added to, 61
single inheritance

allowed by VB.NET, 72
single quote (‘)

using to comment out a line of code, 166
SOAP

introduction to, 169
Solution Explorer

building the Encapsulation class in,
62–64

choosing Web Service in Add New Item
window, 171

creating a new class file for each
HelpDesk web site class in,
118–119

expanded with Default.aspx and
Default.aspx.vb, 10–11

with HelpDesk classes listed, 119
opening, 36
in Visual Studio 2005, 22–23

Source tab
for displaying the HTML source code to

display the web form, 129
Source view

in Designer Tool, 21–22
SQLConnection class

providing services for connecting to a
database, 32

strErrors string variable
creating within the ValidateTicket

method, 126

■INDEX 189

5386idx_final.qxd 8/18/05 3:18 AM Page 189

strUserName private variable
declaring for Technician class, 120–121

sub declaration
using in VB.NET, 37–39

supporting actions
in business process, 109

System namespace
namespaces within, 86–87
viewing information about, 86

System.Data.SQLClient namespace
services for all database functionality

provided by, 32
System.Math class

items available in and definition of,
92–93

System.Windows.Forms
displaying from the Object Browser,

34–35

■T
tab index

adding to controls, 162
TechConsole page

testing, 137–138
TechConsole.aspx page

adding an Input (Button) HTML ele-
ment from toolbox onto, 150–151

Technician class
after you set the inherits, 120
creating after the Help Desk User class,

119–120
mapping original potential classes,

properties, and methods to, 117
potential methods, 114

Technician Console
adding button for help desk manager’s

access to administration forms,
141–142

creating for HelpDesk web site, 137
testing the new Administration button

in, 142
text boxes

creating in encapsulation example, 66
text box labels

creating in encapsulation example, 66
textCalculateSalary text box

adding to Calculate.aspx web page, 83

Ticket class
adding a private variable for the user

login name, 123
building, 123–128
calling the NewTicket method of, 144
class design for the methods, 124–125
code for the completed method

declarations, 125
creating and initiating within the Save

click event, 143–144
creating a public property for the user

login name, 123
Help Desk Manager actions in business

process, 109
mapping potential classes, properties,

and methods to, 115–116
potential methods, 113
potential properties, 114–115
potential properties in business

process, 107–108
supporting actions in business process,

109
technician actions in business process,

108
ticket actions in business process, 108
user actions in business process, 108

Toolbox
finding the HTML section on, 149–150
Validation section of, 155

ToString method
using with Session.Contents, 135

Try...Catch block
used by VB.NET and C# to handle

exceptions, 127
txtCalculateHourly text box

creating, 83
txtUserLogin

changing ID property for, 157

■U
URL

using to access your web site, 20
User class

building a constructor to determine if
user is technician or help desk
manager, 122–123

code for creating methods for the class,
123

■INDEX190

5386idx_final.qxd 8/18/05 3:18 AM Page 190

for getting the identity of the user in the
My namespace, 97

mapping original potential classes,
properties, and methods to,
116–117

potential methods, 113
properties, 122

User Console
creating for HelpDesk web site, 137
redirecting users to from the Technician

Console, 142
user interface

Default.aspx file as, 10–11
UserAuth class

creating an instance of within the
MyCompany namespace, 99

UserAuth.vb class
adding in Add Item window in Solution

Explorer, 89–90
UserConsole page

testing, 137–138
UserInformation folder

files contained in, 175–176
UserInformation service

.asmx file displaying available methods
for, 173

XML returned when GetFirstName
invoked, 173–174

UserInformation web service
creating, 170–174

UserInformation.vb file
code for defining each method in,

171–172
example of updated file, 171

User.vb file
user class design, 121–122

■V
ValidateTicket method

adding and testing for AddTicket web
form, 146–147

implementing, 126
validation control properties

example screen showing, 156
validation controls

that allow you to test a user’s input,
155–158

validation method
creating, 126

VBCodeProvider class
methods and properties for, 88
within the Microsoft VisualBasic

namespace, 87
VB.NET

adding methods in, 50–51
adding properties to classes, 43–45
and ASP.NET, 1
attributes and actions within, 42–55
choosing the data type for a property,

42–43
creating a class with, 36–37
defined, 1
inheritance within, 71–84
interface in, 65–66
properties for describing an object,

42–43
using a class in, 37–39
using a class public property in, 45–48
using a method in, 51–55
using ByVal and ByRef in, 49–50
using parameters in, 49–50

VB.NET methods
public functions or subs as, 49

View menu
choosing Object Browser from, 86

View state property
function of in page lifecycle, 133

ViewTicket web form
setting the ID property and the Ticket

ID for, 161
ViewTicket.aspx file

showing content and master file, 162
with grayed-out master page content,

161
ViewTickets web form

adding to the web site, 159–162
virtual directories

creating an alias for, 12–13
creating in Internet Information

Services window, 11–16
setting up security for, 12–16
setting up to use Windows Domain

Authentication, 98–100
working with, 11–16

■INDEX 191

5386idx_final.qxd 8/18/05 3:18 AM Page 191

Virtual Directory Creation Wizard
showing successful creation of virtual

directory, 14
Visual Basic .NET. See VB.NET
Visual Studio 2005 (VS2005), 1

creating a new web site from the File
menu, 6–16

debugger included in, 23–25
deciding which version to purchase, 4–5
Designer Tool, 21–23
getting started with, 4–5
introduction to, 3–26
minimum hardware requirements for, 5
navigating the environment, 21–23
new ways to purchase and use the tool,

3–4
using the Object Browser in, 34–35
versions available, 4–5

Visual Studio 2005 and Microsoft .NET
an introduction to, 1–26

Visual Studio 2005 Professional Version
functionality of, 4

Visual Studio 2005 Standard Version
functionality of, 4

Visual Studio 2005 Team System Version
functionality of, 4

Visual Web Designer
example of, 18–19

Visual Web Developer tool
using to access your web site, 19–21

VS2005. See Visual Studio 2005 (VS2005)
VS2005 Developer Center

web site address for, 3
VS Standard Edition

covered in this book, 3–4

■W
web applications

purchasing Web Developer Express
Edition for, 4–5

web configuration file
setting up to allow debugging, 24–25

Web Developer Express Edition
purchasing for developing web

applications, 4–5
Web Form processing stages

outline of, 133–134

Web Forms Designer
adding controls in, 130
HTML and Body tabs in, 129

Web Forms Designer Toolbox
adding controls from, 130

web project
creating new, 6–16

web server
needed for creating web sites, 5

web server control properties
categories of, 153
vs. HTML server control properties, 153

web server control properties dialog box
choosing properties in, 153

web server controls
control properties and events, 152–155
use of asp: tags by, 152
working with, 152–162

web services, 169–177
consuming, 174–177
creating, 170–174
defined, 170
displaying a list of on the local

computer, 175–176
using within AddTicket.aspx page,

176–177
Web Services class

allowing you access and use of web
services in the My namespace, 98

Web Services Description Language
(WSDL). See WSDL (Web Services
Description Language

web sites
accessing, 19–21
building, 18–19
changing the name of the first page of,

20–21
opening existing from the File menu,

16–17
system requirements for creating, 5

WebMethod code
for providing a description of methods

for web service users, 172–173
testing, 173

web site address
for ASP.NET Developer Center, 2–3
for information about WSDL, 169

■INDEX192

5386idx_final.qxd 8/18/05 3:18 AM Page 192

for information about XML, 169
for VS2005 Developer Center, 3

writeonly properties, 43
WSDL (Web Services Description

Language)
introduction to, 169

■X
XML (Extensible Markup Language)

introduction to, 169
web site address for information about,

169

■INDEX 193

5386idx_final.qxd 8/18/05 3:18 AM Page 193

5386idx_final.qxd 8/18/05 3:18 AM Page 194

5386idx_final.qxd 8/18/05 3:18 AM Page 195

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

5386idx_final.qxd 8/18/05 3:18 AM Page 196

	Beginning Object-Oriented ASP.NET 2.0 with VB.NET: From Novice to Professional
	Table of Content
	Chapter 1 An Introduction to .NET and Visual Studio 2005
	Chapter 2 Object-Oriented Programming
	Chapter 3 Attributes and Actions
	Chapter 4 Encapsulation
	Chapter 5 Inheritance
	Chapter 6 Namespaces
	Chapter 7 Class Design
	Chapter 8 ASP.NET Web Forms
	Chapter 9 ASP.NET Controls
	Chapter 10 Web Services.
	Index

