Microsoft
Building Secure ASP.NET Applications

Authentication, Authorization, and Secure Communication

y

Authentication, Authorization and Secure Communication

<

Clients

i

Y

Web Server

IS

ASPNET

!

v

Y

Y

IS
ASP.NET

Web

Services

Enterprise
Services
(COM+)

IS
ASP.NET

.NET
Remoting

i

i

i
Y

SQL Server

Database Server

n practices for predictable

patterns & practlces

ults

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft, MS-DOS, Windows, Active Directory, C#, Visual Basic, Visual Studio, and
Win32 are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

© 2002 Microsoft Corporation. All rights reserved.
Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

About This Book xxi
SUMIMIAIY .ttt it e e e e e e e e e e e e e e e e e e XXi
APPHES TO . . e e XXi
What This Guide is AbOULo e e e XXi
Who Should Read This GUIde? i ettt e et e XXiii
What You MUSt KNowo e e e e e XXiii
Feedback and SUPPOrt o oo e e e XXiii
The Team That Brought You This Guide ittt XXiii

Contributors and ReVIEWEISottt e e XXiv

At a Glance XXvii
Chapter 1 — Introduction e e e XXVii
Chapter 2 — Security Model for ASENET Applications XXVii
Chapter 3 — Authentication and Authorization XXVii
Chapter 4 — Secure Communication XXiX
Chapter 5 — Intranet Securityo i e e e e e e e XXX
Chapter 6 — Extranet Securityo e e e e XXXii
Chapter 7 —Internet Security it i e e e e XXXili
Chapter 8 — ASENET SecCurityot it it i e it et e et it e XXXiV
Chapter 9 — Enterprise Services SecCurity. ittt i XXXV
Chapter 10 — Web Services Securityo it e i e e e e XXXVii
Chapter 11 — .NET Remoting Securityt it it i e XXXViii
Chapter 12 — Data Access SeCurityo oo ittt e e e e e e e XXXiX
Chapter 13 — Troubleshooting Security Issues i it i e e x|
RefereNCe . . e e e e e e X

Introduction 1
The Connected LandsCape . . . v v v ittt e e e e e e e e e e e 1
S0P v v i e e e e e e e e e e e e e 2
What Are the Goals of This Guide? i i e e et e 2
How You Should Read This Guide it it it it it i e 3
Organization of the Guide o i e e e e e e 3

Part |, Security Models o i e e e 3
Part Il, Application Scenarios i i e e 4
Part lll, Securing the Tiers i e e e et e et 4
Part IV, Reference i e e 5
Key TerminNOIOgY . . v vt i e e e e e e e 5
PriNCIplES . . . o e e e 6

SUMIMIAIY .t it et e et e e e e e e e e e e e e 7

iv Contents

Security Model for ASP.NET Applications 9
NET Web Applications e e e e e e 9
Logical TierS . v vttt e e e e e e e e e e e e e 9
Physical Deployment Models it it e e 10
Implementation Technologies i e e et i 12
ASPNET . 12
Enterprise ServiCes e e e e 12
WeEbD SerViCES ... i e e e e e 12
NET REMOtING .« v ot e e e e e e e e e e 13
ADO.NET and SQL Server 2000ottt 13
Internet Protocol Security (IPSeC)o it e e e e e 13
Secure Sockets Layer (SSL) ... v i it e e 13
Security ArchiteCture e e e e e e e 14
Security ACross the Tiers ittt e e e e e e 14
Authenticationo e e e e 15
AUTNONZatioN o e e e e e 18
Gatekeepers and Gates e e e 20
Identities and Principals e e 22
WindowsPrincipal and Windowsldentity i 24
GenericPrincipal and Associated Identity Objects, 24
ASENET and HttpContext.User i it e e i i e e 25
Remoting and Web Services i it e 25
SUMIMIA Y & s i et et et e e e e e e e 26
Authentication and Authorization 29
Designing an Authentication and Authorization Strategy 30
Identify RESOUICES . . . oottt e e e e e e e e e 30
Choose an Authorization Strategy o it i e e e 30
Choose the Identities Used for Resource ACCESS v v i vt i vt i i e i i 31
Consider Identity FIOW i e e e e e 32
Choose an Authentication Approach 32
Decide How to Flow Identity i e e e i e 33
Authorization Approaches i e e e e 33
Role Based i e e e e e e e e 34
Resource Based e e e e e e e 34
Resource Access MOdeElS oottt i e e e e e e 35
The Trusted Subsystem Model i i i 35
The Impersonation / Delegation Model 37
Choosing a Resource Access Model it i i 38
Flowing Identity i e e e e e e e 40
Application vs. Operating System Identity Flow. i ... 40

Impersonation and Delegation i e 40

Contents v

Role-Based Authorization i e e e 42
NET ROIES .o e e e 42
Enterprise Services (COM+) Roles i e i 44
SQL Server User Defined Database Roles, 44
SQL Server Application Roles i e e e 44
.NET Roles versus Enterprise Services (COM+)Roles. 45
Using .NET ROIESo i e e e e e e et e e e e 46

Choosing an Authentication Mechanism i 49
Internet SCeNariosot e e e e e e 51
Intranet / Extranet Scenarios e e 52
Authentication Mechanism Comparison. iieen e 53

SUMIMIAIY .t it e e e e e e e e e e e e e e 53

Secure Communication 55

Know What to Secure. i e e e e e e e e 56

SO/ TS . o o e 57
USING SSL . . oot it e e 57

S T o 58
USINg IPSEC . . . vttt e e e e e e e e 58

RPC ENCryplion . .o i e e e e e e e e 59
Using RPC ENnCryptionot e e e e st st e e e e 59

Point to Point Security i e e e e e 60
Browserto Web Server. e e e e e 60
Web Server to Remote Application Server 61
Application Server to Database Server 61

Choosing Between IPSec and SSL. it e e e e e 63

Farming and Load Balancing i it i e e e e 63
More Informationo e e e e 63

SUMIMIAIY .t ittt e e e e e e e e e e e e e e e 63

Intranet Security 65

ASPNET to SQL Servero e e e e e e e e 66
CharacteristiCso i e e e e e e 66
Secure the Scenario i e e e e e 67
The ReSUIt. . . . o e e e e 67
Security Configuration Steps. oo i i e e e 68
ANAlY SIS . it e e e e e e e e e 70
Q&A . 71

Related Scenarioso it ittt e e e 72

vi

Contents

ASRENET to Enterprise Services to SQL Server i 73
CharacteristiCs v i e e 74
Secure the SCenario i e e e 74
The ResSUlt. . . .o e e e e e e e e 75
Security Configuration Steps. o it e e e 76
ANAlY SIS & ot e e e e 78
PItfalls . .. e 79
ASRENET to Web Services to SQL Server. i e e e 79
CharacteristiCso i e e 80
Secure the SCenario i e e e 80
The ResUIt. . . .o e e e e e e e e 81
Security Configuration Steps. o it e e e e 81
ANAlY SIS & ot e e e e 84
PItfalls . .. e 86
Q&A . e 86
ASPENET to Remoting to SQL Server.ot i e e e e e e e e 87
CharacteristiCs v i e e e 87
Secure the SCenario e e e 87
The ResUIt. . . .o e e e e e e e e 88
Security Configuration Steps. o it e e e 89
ANAlY SIS & ot e e e e 91
PItfalls . .. e 92
Flowing the Original Callerto the Database 93
ASPENET t0 SQL Server e e e e e e e e e e 94
ASENET to Enterprise Services to SQL Server 95
The ResUIt. . . .o e e e e e e e e 96
ANAlYSIS & o i e e 100
PItfalls . .. e e 101
SUMIMAIY o v i e e e et et e e e e 101
Extranet Security 103
Exposing a Web Service oot e e e e 103
CharacteristiCs . .. v vt e e e e e e e 104
Secure the Scenariot e e e e e 105
The ResSUIt. . . .o e e e e 105
Security Configuration Steps. oot e e e 106
ANAlYSIS & o i e e 109
PItfalls . .. e 110
Q&A . e e 110
Exposing a Web Application e e e e 111
Scenario Characteristics i i i e 111
Secure the Scenario e e e e 112
The ResSUIt. . . .o e e e e e 113
ANAlYSIS & o i e e 115
PItfalls . .. e e e 117

SUMIMAIY ot v i e et et e et e e 117

Contents vii

Internet Security 119
ASPNET t0 SQL Server e e e e e e 120
CharacteristiCso it e e e 120
Secure the Scenario i e e e e 121
The ReSUIt. . .. o e e e e e e e 122
Security Configuration Steps. i i e e e e 122
ANAlY SIS . ot e e e e e e e e e e 124
Pitfalls . .. e e e e e 126
Related Scenarioso it e e 126
ASRPNET to Remote Enterprise Servicesto SQL Server 127
CharacteristiCsot e e e e e 128
Secure the Scenario i e e e e 129
The ReSUIt. . .. o e e e e e e e 130
Security Configuration Steps. vt i e e e e 130
ANAlY SIS . ot e e e e e e e e e e 134
Pitfalls . .. e e e e e 135
Related Scenarioso ittt e e 135
SUMIMAIY & o it e e et s et e e e e e e e e e 136
ASP.NET Security 137
ASPNET Security Architecture i e e e it i e 137
GateKEEPEIS . . o i e e 139
Authentication and Authorization Strategies. i i e e 141
Available Authorization Options e 141
Windows Authentication with Impersonation 143
Windows Authentication without Impersonation 145
Windows Authentication Using a Fixed Identity. 147
Forms Authentication i e 147
Passport Authentication e 149
ConfigUring SeCUItY . . . v v e e e e e e e e 150
Configure IS Settingsot e e e e e e 151
Configure ASPNET Settings v i it e e e e e e e e 151
SECUIE RESOUICES . o it ittt et e e et e 154
Secure Communication e e e e e e 157
Programming SecCurity e e e e e 157
An Authorization Pattern e e e 157
Creating a Custom IPrincipal class i e e i 160
Windows Authentication i e e e 161
Forms Authentication i e e 162
Development Steps for Forms Authentication. 163
Forms Implementation Guidelines i .. 167
Hosting Multiple Applications Using Forms Authentication 168

Cookieless Forms Authentication 168

viil

Contents

Passport Authentication e 169
Custom Authenticationo e 170
Process Identity for ASRNET e e 170
Use a Least Privileged Account it e e e 170
Avoid Running as SYSTEM i e e e e 171
Using the Default ASPNET Account e i e e e e 171
IMpPersonNation e e e e e e 173
Impersonation and Local Resources 173
Impersonation and Remote Resources 174
Impersonation and Threading i e e e e e 174
Accessing System ReSOUICES . . . oo v ittt e e e e e 174
Accessingthe Event LOg. oo ittt e e e 174
Accessing the Registry i i i e e e 175
Accessing COM ObjeCts ittt i e e e e e 175
Apartment Model Objects it e e e e 176
Accessing Network Resources i it i e e e e e 177
Using the ASENET Process Identity it i 178
Using a Serviced Component ittt e e e e 179
Using the Anonymous Internet User Account 180
Using LogonUser and Impersonating a Specific Windows Identity 182
Using the Original Caller. i e e e e e i e 182
Accessing Filesona UNC File Share o i it e e i e e 183
Accessing Non-Windows Network Resources it 183
Secure CommuUNICAtION it e 184
StONNg SECrels . .o i e e e e e e e 184
Options for Storing Secrets in ASRNET i e i e e 186
Consider Storing Secrets in Files on Separate Logical Volumes. 186
Securing Sessionand View State i e e e 187
Securing View Stateo it e e e e e 187
SeCUNNE COOKIES . « vt ittt et e i e e e e e e e 187
Securing SQL Session State i e e e e 187
Web Farm Considerations i e 189
SeSSION State e 190
DA . e 190
Using Forms AuthenticationinaWeb Farm 190
The <machineKey> Element i e i e 191
SUMIMIA Y & v it e e e e e e e e e 192
Enterprise Services Security 195
Security ArChiteCture i e e e 195
Gatekeepers and Gates i e e 197
Use Server Applications for Increased Security 198
Security for Server and Library Applications i i e 199

Code Access Security Requirementso it it i e 199

Contents ix

Configuring SeCUItY . . . o vt e e e e e e e 200
Configuring a Server Applicationo i i e e e e 200
Configuring an ASENET Client Application 207
Configuring Impersonation Levels for an Enterprise Services Application 208

Programming SecCurity it e e 209
Programmatic Role-Based Security i e 209
Identifying Callers i e e e e 210

Choosing a Process Identityot i e e e e e 210
Never Run as the Interactive User. it i i it e i 210
Use a Least-Privileged Custom Account it e it e 211

Accessing Network Resourcesttt e e e e e e 211
Using the Original Caller. i e e e e et e 212
Using the Current Process Identity 212
Using a Specific Service Account i i e 213

Flowing the Original Caller e e e e et 213
Calling ColmpersonateClient. i e e e it e 214

RPC ENCryplion .. v i e e e e 215
More Information e e e 215

Building Serviced Componentsttt e e e e e 215
DLL Locking Problemsot e e e e e e 215
VBrSIONING . . ot e e e e e e e e e 216
Querylnterface EXceptions it e e e 217

DCOM and Firewallso e e e e e e e e e e e e e 217
More Information e e e 217

Calling Serviced Components from ASPNET i it i i 218
Caller's ldentity oot i i e e e e 218
Use Windows Authentication and Impersonation Within

the Web-based Application e .. 218
Configure Authentication and Impersonation within Machine.config............ 218
Configuring Interface ProXiest e e e e e 218

Security CoNCePES . . o i i e e e e 221
Enterprise Services (COM+) Rolesand .NETRoles 222
Authentication e e e e 223
Impersonation e e e 224

SUMIMIAIY .t i e e e e e e e e e e e e e e 226

Web Services Security 227

Web Service Security Model e e e e 227
Platform/Transport Level (Point-to-Point) Security 228
Application Level Securityo i i e e e e 229
Message Level (End-to-End) Securityo oo i e e 229

Platform/Transport Security Architecture oo i i 231

GateKEEPEIS . o o i e e 232

X

Contents

Authentication and Authorization Strategies. i i i 233
Windows Authentication with Impersonation 233
Windows Authentication without Impersonation 235
Windows Authentication Using a Fixed Identity. 237

ConfigUring SeCUNTY oottt e e e e e e 238
Configure IIS Settings v it i e e e e 238
Configure ASP .NET Settings.o i i it i e e e e e e et e 239
SECUIE RESOUICES . . . it it it e e e e e e e e e 239
Disable HTTP-GET, HTTP-POST i e e e e 239
Secure CommuNICatioN it e 240

Passing Credentials for Authentication to Web Services 240
Specifying Client Credentials for Windows Authentication 241
Calling Web Services from Non-Windows Clients 243
Proxy Server Authentication i e e 244

Flowing the Original Caller i e e e e e 244
Default Credentials with Kerberos Delegation 245
Explicit Credentials with Basic or Forms Authentication 247

Trusted SUDSYStEM . . . e e e e e 250
Flowing the Caller's Identity i i i i 251
Configuration StepS oo it e e e e 251

Accessing System ReSOUICES oo i it e e e e e e e 252

Accessing Network Resources it e e e e e e 252

Accessing COM ObjeCts v vttt e e e e e e e 253
More Information e 253

Using Client Certificates with Web Services i it 253
Authenticating Web Browser Clients with Certificates 254
Using the Trusted Subsystem Model i 254

Secure CommuUNICAtION it e 257
Transport Level Options e e e 258
Message Level Optionsot e e e e 258

SUMIMIA Y & v it e e e e e e e e e 258

.NET Remoting Security 261

.NET Remoting Architecture i i i i 261
RemMoOting SiNKS i e e e e e e e 262
Anatomy of a Request When Hosting in ASENET. 264
ASPNET and the HTTP Channel e 265

.NET Remoting Gatekeepers oo v ittt et e e e e e et e 266

Authentication e 267
Hosting in ASRNET e e e 267
Hosting in @ Windows Service it e e e e et e e e 268

AUthorization o e 269
Using File Authorization i e e e e 269

Authentication and Authorization Strategies. i i i 270

More Information i i i e e 271

Contents xi

Accessing System ReSOUICES . . . v v it e e e e e 271
Accessing Network Resourcesttt e e e e e e 272
Passing Credentials for Authentication to Remote Objects 272
Specifying Client Credentials i e i it i 272
Flowing the Original Caller e e it et 275
Default Credentials with Kerberos Delegation 276
Explicit Credentials with Basic or Forms Authentication 278
Trusted SUDSYSTEM . . . e e e e e 282
Flowing the Caller's Identity i it it i e 283
Choosing a HOSt i e e e e 284
Configuration StEPS . . . oot e e e e e e e 284
Secure CommMUNICAtION i e 286
Platform Level Options i e e e e 286
Choosing @a HOSt ProCess . . . oo i it e e e e e e e e e 287
Recommendation. e 287
Hosting in ASRNET e 287
Hosting in @ Windows Servicet it e e e e it e et i 288
Hosting in a Console Application. i e e et e e 289
Remoting vs. Web Services i e e e e e 290
SUMIMIAIY .t i e e e e s e e e e e e e e e e 291
Data Access Security 293
Introducing Data Access Securityt e e 293
SQL Server Gatekeeperso e e e 295
Trusted Subsystem vs. Impersonation/Delegation 295
Authentication e 297
Windows Authentication e 297
SQL Authentication e 303
Authenticating Against Non-SQL Server Databases. 305
AUTNONIZatioN e 306
Using Multiple Database Roles it it e e e e 306
Secure ComMmMUNICAtIONt e 310
The OptioNS. . .. e e e e e e e e 310
Choosing an Approach i e e e 310
Connecting with Least Privilege. o i i e e e e e 311
The Database Trusts the Application, 311
The Database Trusts DifferentRoles 312
The Database Trusts the Original Caller. it i 312
Creating a Least Privilege Database Account i it it i 313
Storing Database Connection Strings Securely. i ittt e 314
The OptioNS. . .. e e e e e e e 314
UsiNg DPAPL. . . . e 314

Using Web.config and Machine.config i i 319

xii Contents

Using UDL Files oot e e e e e e e 319
Using Custom Text Filesot e e e e e et e e e 320
Using the Registryo i e e e e st i e i 321
Using the COM+ Catalogo e e e e et e e e 321
Authenticating Users Againsta Database 322
Store One-way Password Hashes (with Salt). 322
SQL Injection AttacKs o oot 323
The Problem e 324
Anatomy of a SQL Script Injection Attack i 324
Protecting Pattern Matching Statements i .. 327
AUAItING . . o e 327
Process Identity for SQL Server i e e 329
SUMIMIA Y & v it e e e e e e e e e 329
Troubleshooting Security Issues 331
Process for Troubleshooting i it i e e e e 331
Searching for Implementation Solutions i ... 332
Troubleshooting Authentication Issues i 333
IIS Authentication ISSUES e 333
Using Windows Authentication i i 334
Using Forms Authentication i i e it i e 335
Kerberos Troubleshooting i e e e e 335
Troubleshooting Authorization Issues it 335
Check WIndows ACLS oo e e e et e 335
Check Identity oo e e e e e e e e 335
Check the <authorization> Element. 336
ASPNET . o e 336
Enable Tracing oo e e e e e e e e e 336
Configuration Settings i i i e e 337
Determining ldentity. i e e e e e 337
Determining IdentityinaWeb Page i e 337
Determining Identity ina Web service i e 339
Determining Identity in a Visual Basic 6 COM Object 340
NET ReEMOtING . . o ot e e e e e e e e 340
More Information e 341
SO e 341
More Information e 342
PSS . ot e 342
Auditing and LoggiNg . . . v v ittt e e e e e e e 342
Windows Security LOZS . . . o v v it i e e e e e e 342
SQL Server Auditing . . . oo it e e 343

HS LOBEING « + v v v e e e e e e e e e e e e e e e e e e e 344

Contents

Troubleshooting TOOIS. i e e e e
File Monitor (FIleMon.exe) e e e e e e e e et e e e i
Fusion Log Viewer (FUSIOBVW.EXE) v v v it it e e e e et e et
I SO BXE . . o i e e e e e e e
Windows Task Managert e e e et e e
Network Monitor (NetMon.exe) i e e e e e
Registry Monitor (regmMON.EXE) . . . v vt i ittt e et e e e e e e e
WERetCh.eXe . . o e e e e e
Visual Studio .NET ToOIS. i e e e e e e e e e
WebServiceStudioo e e e e
Windows 2000 Resource Kit.o oot it e e e e

Index
ASPNET . L e
Authentication and Authorization. i e e e
CryplOBrapNy .« v o e e e e e e
Enterprise Services SecCurityot i e e
Web Services SecCurityot e e e e
Remoting Security i e e e e
Secure Communication i e e e e

Create a Custom Account to Run ASP.NET
ASPNET Worker Process Identity it i e
Impersonating Fixed Identities i e
NOTES . . o e e
SUMIMIAIY .t i e e e e e e e e e e e e e e
1. Create a New Local Accountt e
2. Assign Minimum Privileges oot e e e e
3. Assign NTFS Permissionsottt e e s e e et e i
4. Configure ASENET to Run Using the New Account.

Use Forms Authentication with Active Directory
Requirements e e e
SUMIMAIY . o i e e e e e e e e e e e e e
1. Create a Web Application witha LogonPage
2. Configure the Web Application for Forms Authentication
. Develop LDAP Authentication Code to Look Up the User in Active Directory
. Develop LDAP Group Retrieval Code to Look Up the User’s Group Membership . ..
. Authenticate the User and Create a Forms Authentication Ticket.
. Implement an Authentication Request Handler to Construct
a GenericPrincipal Object i e e e e
.Testthe Application e e

(N6 BF S OV)

~

xiii

Xxiv Contents

Use Forms Authentication with SQL Server 2000

Requirements e e e e e
SUMIMIAIY & v it e e e e e e e e e e e
. Create a Web Application witha LogonPage
. Configure the Web Application for Forms Authentication
. Develop Functions to Generate a Hash and Saltvalue
. Create a User Account Database i
. Use ADO.NET to Store Account Details in the Database
. Authenticate User Credentials Against the Database
.Testthe Application e e
Additional RESOUICES o it e e e e

~NOoO o WNPRE

Create GenericPrincipal Objects with Forms Authentication
Requirements e e e e e
SUMIMIAIY & v it i e e e e e e e e e
1. Create a Web Application witha LogonPage
2. Configure the Web Application for Forms Authentication
3. Generate an Authentication Ticket for Authenticated Users.
4. Construct GenericPrincipal and Formsldentity Objects
5. Test the Application e e

Additional ReSOUICES o it e e e

Implement Kerberos Delegation for Windows 2000
NOTES . .t ot e e e
Requirements e e e e e
SUMIMIA Y & v it e e e e e e e e e
1. Confirm that the Client Account is Configured for Delegation
2. Confirm that the Server Process Account is Trusted for Delegation
References e

Implement IPrincipal
Requirements e e e e
SUMIMIAIY & v it i et e e e e e e e e e e
1. Create a Simple Web Application
2. Configure the Web Application for Forms Authentication
3. Generate an Authentication Ticket for Authenticated Users.
4. Create a Class that Implements and Extends IPrincipal
5. Create the CustomPrincipal Object i i e i
5. Test the Application e e
Additional RESOUICES v i it e e e e

367
368
368
368
369
370
371
372
373
375
376

377
378
378
378
379
379
382
383
384

385
385
386
386
386
386
387

Contents xv
Create a DPAPI Library 399
NO ES . ot e e e e e e e e 399
Requirements e e 400
SUMIMAIY .t it e e e e e e e e e e e e e e e 400
1.Create a CH Class Library.ot e e e e e et e e 400
2. Strong Name the Assembly (Optional) i i it 406
ReferenCes . .. oo e e e e e e e e 407
Use DPAPI (Machine Store) from ASP.NET 409
NO ES . o e e e e e e e 409
Requirements e e 410
SUMIMAIY .t it e e e e e e e e e e e e e e e 410
1. Create an ASENET Client Web Application 410
2. Testthe Application e e e e e 412
3. Modify the Web Application to Read an Encrypted Connection String
from Web.Config e e 413
ReferenCes . .. oo e e e e e e e e 414
Use DPAPI (User Store) from ASP.NET with Enterprise Services 415
NO ES . o e e e e e e e 415
Why Use Enterprise Services?ttt e e e e e 416
Why Use a WIindows Service? i it it e e e e e e e e e 417
Requirements e e e 417
SUMIMAIY . o i e e e e e e e e e e e e e 418
1. Create a Serviced Component that Provides Encrypt and Decrypt Methods 418
2. Call the Managed DPAPI Class Libraryo o oo i e e it i e 419
3. Create a Dummy Class that will Launch the Serviced Component 420
4. Create a Windows Account to Run the Enterprise Services Application and
WiNdows ServiCeo i e e e e 420
5. Configure, Strong Name, and Register the Serviced Component 421
6. Create a Windows Service Application that will Launch the Serviced
CoMPONENt . . . e e e e e e e 422
7. Install and Start the Windows Service Application 424
8. Write a Web Application to Test the Encryption and Decryption Routines 424
9. Modify the Web Application to Read an Encrypted Connection String from
an Application Configuration File i e e e 427
ReferenCes . .. oo e e e e e e e e e 428

Xvi

Contents

Create an Encryption Library
Requirements e e e e e
SUMIMIAIY & v it e e e e e e e e e e e
1.Create a CH# Class Library. oo e e e e e e e e
2. Create a Console Test Application. i
ReferenCeS . . o i e e

Store an Encrypted Connection String in the Registry
NO S . ot i e e e e e e e e e
Requirements e e e e e
SUMIMIA Y & v it e e e e e e e e e
1. Store the Encrypted Data inthe Registry i i i
2. Create an ASENET Web Application i i,
ReferenCes . . o o e

Use Role-based Security with Enterprise Services

NO S . ottt e e e e e e e

Requirements e e e e e

SUMIMIA Y & v it e e e e e e e e e
. Create a C# Class Library Application to Host the Serviced Component.
. Create the Serviced Component i
. Configure the Serviced Component it it it
. Generate a Strong Name forthe Assembly
. Build the Assembly and Add it to the Global Assembly Cache
. Manually Register the Serviced Component.
. Examine the Configured Application i
. Create a Test Client Application i,

0O~NO O WN PR

Call a Web Service Using Client Certificates from ASP.NET

Why Use a Serviced Component? i e e e e

Why is a User Profile Required? i e
Requirements e e e e
SUMIMIAIY & v it i et e e e e e e e e e e
1. Create a Simple Web Service i e e
2. Configure the Web Service Virtual Directory to Require Client Certificates
3. Create a Custom Account for Running the Serviced Component
4. Request a Client Certificate for the Custom Account
5. Test the Client Certificate Usinga Browser

429
429
429
430
437
438

439
439
439
440
440
443
444

445
445
445
446
446
446
447
448
449
449
449
450

453
453
454

Contents xvii

6. Export the Client Certificatetoa File. 459
7. Develop the Serviced Component Used to Call the Web Service 460
8. Configure and Install the Serviced Component. 463
9. Develop a Web Application to Call the Serviced Component 464
Additional RESOUICES o it e e e e e 466
Call a Web Service Using SSL 467
Requirements e e 467
SUMIMAIY . o i e e e e e e e e e e e e e 467
1. Create a Simple Web Service i e 468
2. Configure the Web Service Virtual Directory to Require SSL 468
3. Test the Web Service Using a Browser. ittt it i e i 469
4. Install the Certificate Authority’s Certificate on the Client Computer 470
5. Develop a Web Application to Call the Web Service 471
Additional RESOUICES i i e e e e e e 472
Host a Remote Object in a Windows Service 473
NO ES . o e e e e e e e 473
Requirements e e 473
SUMIMIAIY .t i e e e e e e e e e e e e e e 474
1. Create the Remote Object Classo i it it e e e i i 474
2. Create a Windows Service Host Application. 474
3. Create a Windows Accountto Runthe Service i, 477
4. Install the WIindOwS ServiCe ittt e e e e e et e 477
5. Create a Test Client Application 478
ReferenCes . .. oo e e e e e e e e e 478
Set Up SSL on a Web Server 479
Requirements e e e 479
SUMIMAIY . o i e e e e e e e e e e e e e 479
1. Generate a Certificate Request. e 479
2. Submit a Certificate Request e . 481
3.Issue the Certificate i i i i i i 482
4. Install the Certificate onthe Web Server i i it i 482

5. Configure Resources to Require SSLACCESSo ittt it it i 483

xviii Contents

Set Up Client Certificates 485
Requirements e e e e e 485
SUMIMIAIY & v it e e e e e e e e e e e 485
1. Create a Simple Web Application 486
2. Configure the Web Application to Require Client Certificates. 486
3. Request and Install a Client Certificate, 487
4. Verify Client Certificate Operation it 488
Additional RESOUICES o it e e e e 488

Use IPSec to Provide Secure Communication Between Two Servers 489

NO S . ot i e e e e e e e e e 491
Requirements e e e e e 491
SUMIMIA Y & v it e e e e e e e e e 492
1.Create an IP Filtero e e e e e e 492
2. Create Filter ACtiONS it e e e e e e e e e e 493
3.Create RUIES . . .o e e e e e e e 494
4. Export the IPSec Policy to the Remote Computer 495
B, ASSIgN POliCIES . . e e e e e e e e 495
6. Verify that it WOrks oo e e e e e e 496
Additional RESOUICES o i e e e 498
Use SSL to Secure Communication with SQL Server 2000 499
NO S . ottt e e e e e e e 499
Requirements e e e e e 500
SUMIMIA Y & v it e e e e e e e e e 500
1. Install a Server Authentication Certificate 500
2. Verify that the Certificate Has BeenInstalled. 501
3. Install the Issuing CA’s Certificate onthe Client. 502
4. Force All Clients to Use SSL oot e e e e et 502
5. Allow Clients to Determine WhethertoUse SSL. i, 503
6. Verify that Communication is Encrypted i i i 504
Additional RESOUICES v it e e e e e 507
Base Configuration 509

Configuration Stores and Tools 511

Contents xix

Reference Hub 517
Searching the Knowledge Base. i it e e 517
TIPS v i it e e e e e e e e e e e 518
NET SeCUNTY . . .ot e e e e e e e 518
HUDS . . o e e e e e e e e 518
Active DIreCtory . . . oo e 518
HUDS . . o e e e e e e e e 518
Key NOTES . . .o e e e e e e e e e 519
ArLiCIES . . o e e e e e e e e 519
ADO.NET . .t e e e e e e e e e 519
Roadmaps and OVerVIEWSo ittt i et e e e e e e e e 519
Seminars and WebCasts ittt e e e e e 519
ASPNET . . o e e e e e e 519
HUDS . . o e e e e e e e e 519
Roadmaps and OVerVIEWSo ittt i et e e e e e e e e 520
Knowledge Baset e e e e e 520
ArLiCIES . . o e e e e e e e e 520
HOW TOS . .t it e e e e e e e e e e 520
Seminars and WebCasts ittt e e e e e 521
ENnterprise ServiCes e e e e e 521
Knowledge Baset e e e e 521
Roadmaps and OVerViEWSo i ittt et e e e e e e 521
HOW TOS . .t it e e e e e e e e e e 522
FAQS . . o i e e e e e e e e 522
Seminars and WebCasts ittt e e e e e 522
[IS (Internet Information Server) i e e 522
HUDS . . o e e e e e e e 522
REMOtING . . o e e e e 522
Roadmaps and OVerVIiEWSo ittt i et e e e e e e 522
HOW TOS . .t it e e e e e e e e e e 523
Seminars and WebCasts ittt e e e e 523
SOL SEBIVEN . . ittt e e e e e e 523
HUDS . . o e e e e e e e 523
Seminars and WebCasts ittt e e e e 523
Visual Studio .NET e 523
HUDS . . o e e e e e e e 523
Roadmaps and OVerViEWS:o it ittt e e et e e e e e 523
WEDD SErVICES ... i e e e e e e e 524
HUDS . . o e e e e e e e 524
Roadmaps and OVerViEWSo ittt i et e e e e e e 524
HOW TOS . .t i i e e e s e e e e e e e 524
Seminars and WebCasts ittt e e e e e 524
WiIndows 2000 i e e e e e e e 525

XX

Contents

How Does It Work?

IIS and ASPNET Processing.o iii i i
Application Isolation.
The ASENET ISAPI Extension.covuu...

IIS 6.0 and Windows .NET Server

ASENET Pipeline Processing,
The Anatomy of aWeb Request
EventHandling
Implementing a Custom HTTP Module
Implementing a Custom HTTP Handler

ASP.NET Identity Matrix

Cryptography and Certificates

Keys and Certificateso i i i
X.509 Digital Certificates ot
Certificate Stores i i e e
More Information. i

Cryptography . . . oo i e e
Technical Choices
Cryptography in NET i

SUMMAIY & vt e e e

.NET Web Application Security

Glossary

527
527
528
528
528
529
530
534
535
535

537

541
541
542
542
543
543
543
544
547

549
551

About This Book

Summary

This guide presents a practical, scenario driven approach to designing and building
secure ASP.NET applications for Windows 2000 and version 1.0 of the NET Frame-
work. It focuses on the key elements of authentication, authorization and secure
communication within and across the tiers of distributed .NET Web applications.

Applies To

The information in this guide applies to:

.NET Framework Version 1.0 Service Pack 2
ASP.NET

Enterprise Services

Web Services

.NET Remoting

ADO.NET

Visual Studio .NET

SQL Server 2000 Service Pack 2

Windows 2000 Service Pack 3

Recommendations and sample code in the guide were built and tested using Visual
Studio .NET and validated on servers running Windows 2000 Advanced Server SP 3,
NET Framework SP 2, and SQL Server 2000 SP 2.

What This Guide is About

This guide focuses on:

Authentication (to identify the clients of your application)
Authorization (to provide access controls for those clients)

Secure communication (to ensure that messages remain private and are not
altered by unauthorized parties)

Xxii

Building Secure ASP.NET Applications

Why authentication, authorization, and secure communication?

Security is a broad topic. Research has shown that early design of authentication
and authorization eliminates a high percentage of application vulnerabilities.
Secure communication is an integral part of securing your distributed application to
protect sensitive data, including credentials, passed to and from your application,
and between application tiers.

There are many technologies used to build .NET Web applications. To build effec-
tive application-level authentication and authorization strategies, you need to
understand how to fine-tune the various security features within each product and
technology area, and how to make them work together to provide an effective,
defense-in-depth security strategy. This guide will help you do just that.

Figure 1 summarizes the various technologies discussed throughout the guide.

A Clients IS

4 Authentication Authorization
Anonymous NTFS Perms
* Basic IP Restrictions
Web Server Digest
s Integrated
R Certificates
3
2 ASPNET ASPNET
a Authentication Authorization
25 f Windows URL Auth
c Forms File Auth
o
5 * * * Passport .NET Roles
2 None (Custom)
c
E IS IIs
£ ASP.NET Enterprise ASP.NET Enterprise Services
8 Services
o Web (COM+) NET Authentication Authorization
3 Services Remoting RPC COM+ Roles
& 4 4 * NTFS Perms
* SQL Server
Authentication Authorization
Windows Logins
SQL Server SQL Auth Object Perms
Dbase Roles
User Roles
Database Server App Roles

Figure 1
.NET Web Application Security

About This Book xxiii

Who Should Read This Guide?

If you are a middleware developer or architect, who plans to build, or is currently
building .NET Web applications using one or more of the following technologies,
you should read this guide.

e ASPNET

Web Services
Enterprise Services
Remoting
ADO.NET

What You Must Know

To most effectively use this guide to design and build secure .NET Web applica-
tions, you should already have some familiarity and experience with .NET develop-
ment techniques and technologies. You should be familiar with distributed
application architecture and if you have already implemented .NET Web applica-
tion solutions, you should know your own application architecture and deployment
pattern.

Feedback and Support

Questions? Comments? Suggestions? For feedback on this security guide, please
send e-mail to secguide@microsoft.com.

The security guide is designed to help you build secure .NET distributed applica-
tions. The sample code and guidance is provided as-is. While this material has
undergone testing and is considered a robust set of procedures and recommenda-
tions, it is not supported like a traditional Microsoft product.

The Team That Brought You This Guide

This guide was produced by the following .NET development specialists:

®].D. Meier, Microsoft, Program Manager, Prescriptive Architecture Guidance
(PAG)

® Alex Mackman, Content Master Ltd, Founding member and Principal
Technologist

® Srinath Vasireddy, Microsoft, Developer Support Engineer, Product Support
and Services (PSS)

® Michael Dunner, Microsoft, Developer Support Engineer, Product Support
and Services (PSS)

xxiv Building Secure ASP.NET Applications

Contributors and Reviewers

Many thanks to the following contributors and reviewers:

e Thanks to external reviewers — Keith Brown (DevelopMentor) for review and
feedback on the ASP.NET chapter, Andy Eunson for providing scenarios on
middleware applications, John Langley (KANA Software) for bringing J2EE
and .NET perspectives to the table, Kurt Dillard and Christof Sprenger for
reviewing application scenarios and the authentication and authorization
process,]. K.Meadows and David Alberto for reviewing application scenarios
and individual chapters and Bernard Chen (Sapient) for reviewing the
authentication and authorization process

® Product Group—-Thanks to Manish Prabhu, Jesus Ruiz-Scougall, Jonathan
Hawkins and Doug Purdy from the .NET Remoting team; Keith Ballinger Yann
Christensen and Alexei Vopilov from the Web Services team; Laura Barsan from
the ASP.NET team; Greg Fee (.NET Roles / Principal permission checks), Greg
Singleton and Sebastian Lange (CAS); Tarik Soulami from the CLR team; Erik
Olson (extensive validation and recommendations on ASP.NET); Caesar Samsi
(for sharing in depth e-commerce Internet facing application scenarios), Riyaz
Pishori, Shannon Pahl and Ron Jacobs (Enterprise Services), Dave McPherson
(Windows security architecture and authorization strategies), Christopher Brown
(helping resolve cross product issues), John Banes (DPAPI), Joel Scambray, Girish
Chander (SQL Server security)

® MCS / Field—William Zentmayer (Remote application tier scenarios with Enter-
prise Services), Shantanu Sarkar (validation of application architecture sce-
narios), Carl Nolan (Web services), Samuel Melendez and Jacquelyn Schmidt
(infrastructure and deployment scenarios), Steve Busby, Len Cardinal, Monica
DeZulueta, Paula Paul (Data Access and Web application security), Ed Draper,
Sean Finnegan (pushing Active Directory and Windows authentication with
technical depth and practical scenarios), David Alberto, Kenny Jones (for bring-
ing real world field issues to the table and helping to involve the field), Doug
Orange (real world Extranet authorization scenarios), Alexey Yeltsov (SQL
Injection), Martin Kohlleppel (Architecture review), Joel Yoker (firewalls and
IPSec)

® Special thanks to Jay Nanduri (Microsoft.com) for reviewing and sharing real
world experiences, Ilia Fortunov (Senior Architect) for providing continuous and
diligent feedback and Aaron Margosis (MCS) for thoroughly reviewing several
chapters and making excellent suggestions at various stages of the project.

About This Book Xxxv

® Special thanks to Product Support Services folks for contributing and review
various portions of the guide—Venkat Chilakala (Troubleshooting section), John
Allen and Jeremy Bostron (ASP.NET), Martin Petersen-Frey (simplifying and
helping to structure the Remoting and Web Service portions of the guide), Karl
Westerholm (SSL), Jayaprakasam Siddian Thirunavukkarasu (SQL Roles and
ADO), Wade Mascia (valuable feedback on Enterprise Services, COM threading,
ASP.NET and Web services), Ryan Kivett (IIS6 and ASP.NET), Sarath
Mallavarapu (Data Access), Jerry Bryant (bringing community issues to the
table) and Peter Kyte for resources

® Thanks also, to Philip Teale, Ram Sunkara, Shaun Hayes, Eric Schmidt, Michael
Howard, Rich Benack, Carlos Lyons, Ted Kehl. Thanks to Peter Dampier, Mike
Sherrill and Devendra Tiwari from the Enterprise Alliance team for validating
our application scenarios. Thanks to Tavi Siochi (IT Audit) for feedback on SQL
Injection.

® Finally, thanks to our colleagues on the patterns & practices team: Per Vonge
Nielsen, Andrew Mason, Edward Jezierski, Sandy Khaund, RoAnn Corbisier,
Tina Burden, Edward Lafferty, Peter M. Clift, John Munyan, Mohammad Al-Sabt,
Anandha Murukan and Chris Sfanos

At a Glance

This section allows you to quickly see the scope and coverage of the individual
chapters in the guide.

Chapter 1 - Introduction

This chapter highlights the goals of the guide, introduces key terminology and
presents a set of core principles that apply to the guidance presented in later
chapters.

Chapter 2 - Security Model for ASP.NET Applications

This chapter describes the common characteristics of .NET Web applications from
a security perspective and introduces the .NET Web application security model.
It also introduces the set of core implementation technologies that you will use to
build secure .NET Web applications.

The full range of gatekeepers that allow you to develop defense-in-depth security
strategies are also introduced and the concept of principal-based authorization,
using principal and identity objects is explained.

This chapter will help you answer the following questions:

® What are the typical deployment patterns adopted by .NET Web applications?

® What security features are provided by the various technologies that I use to
build .NET Web applications?

e What gatekeepers should I be aware of and how do I use them to provide a
defense-in-depth security strategy?

® What are principal and identity objects and why are they so significant?

® How does .NET security relate to Windows security?

Chapter 3 — Authentication and Authorization

Designing a coherent authentication and authorization strategy across your
application’s multiple tiers is a critical task. This chapter provides guidance to help
you develop an appropriate strategy for your particular application scenario. It will
help you choose the most appropriate authentication and authorization technique
and apply them at the correct places in your application.

xxviii Building Secure ASP.NET Applications

Read this chapter to learn how to:

Choose an appropriate authentication mechanism to identify users.
Develop an effective authorization strategy.

Choose an appropriate type of role-based security.

Compare and contrast .NET roles with Enterprise Services (COM+) roles.
Use database roles.

Choose between the trusted subsystem resource access model and the imperson-
ation/delegation model which is used to flow the original caller’s security
context at the operating system level throughout an application’s multiple tiers.

These two core resource access models are shown below in Figure 1 and Figure 2.

Web or Application Server Database Server
Al i
B! i
E [Trusted - :
C. Role-Based | [Service i
e Authorization | [|dentit > SaL d
D, y s -
] erver 0
E . :
_.->I 1
] :
(A Y
1 Seo N 1
TP T Neaaaa=" 1
1
- Database trusts the E
! T Bound Web server. Web server C
' U [EETe 517 authorizes users. 1
Figure 1

The Trusted Subsystem model

With the trusted subsystem model:

® Downstream resource access is performed using a fixed trusted identity and
security context.

® The downstream resource manager (for example, database) trusts the up-
stream application to properly authenticate and authorize callers.

® The resource manager authorizes the application to access resources. Original
callers are not authorized to directly access the resource manager.

A trust boundary exists between the downstream and upstream components.

Original caller identity (for auditing) flows at the application (not operating
system) level.

At a Glance xxix

Web or Application Database
Server Server
A
A —» B_>
B —P —— -
C —b §—> sQL
D —p E_» Server
E —P ——
Caller

Impersonation/Delegation

Figure 2
The impersonation/delegation model

With the impersonation/delegation model:

® Downstream resource access is performed using the original caller’s security
context.

® The downstream resource manager (for example, database) authorizes indi-
vidual callers.

® The original caller identity flows at the operating system and is available for
platform level auditing and per caller authorization.

Chapter 4 - Secure Communication

This chapter introduces the two core technologies that can be used to provide

message confidentiality and message integrity for data that flows across the net-

work between clients and servers on the Internet and corporate intranet. These are

SSL and IPSec. It also discusses RPC encryption which can be used to secure the

communication with remote serviced components.

Read this chapter to learn how to:

® Apply secure communication techniques throughout the various tiers of your
application.

® Choose between SSL and IPSec.

® Configure secure communication.

® Use RPC encryption.

The chapter addresses the need to provide secure communication channels between
your application’s various physical tiers as shown in Figure 3 on the next page.

xxX Building Secure ASP.NET Applications

cli _| Web _ | Application _ | Database
lents 'd| Server 4 Server 4 Server
AY AY AY U
AY 4 AY 4 AY 4
AY U AY U AY U
AY ’ AY ’ AY ’
A4 A4 A4
7’ 7’ A% 4
SSL IPSec or RPC IPSec or SSL
(Privacy/Integrity) (Privacy/Integrity) (Privacy/Integrity)

Figure 3
A typical Web deployment model, with secure communications

Chapter 5 - Intranet Security

This chapter presents a set of common intranet application scenarios and for each
one presents recommended security configurations. In each case, the configuration
steps necessary to build the secure solution are presented, together with analysis
and related scenario variations.

The application scenarios covered in this chapter are:
® ASPNET to SQL Server

This scenario is shown in Figure 4.

ASP.NET to Enterprise Services to SQL Server
ASP.NET to Web Services to SQL Server

ASPNET to Remoting to SQL Server

Flowing the original caller to the database

This includes multi-tier Kerberos delegation scenarios, as shown in Figure 5.

NTFS File Authorization SQL Permissions
Permissions .NET Roles Database Roles
(Authorization) (Authorization) (Authorization)
]
Alice ASP.NET
¢ —> e Process Identity
s EMayl Asp.NET saL
Bob Server
® —— ® S - P
IPSec
S Web Server (Privacy/integrity) [patabase
sS&L Server
(Privacy/ :
. Integrated Windows .
Integrity) Windows Authentication A Y:Qﬂ%vgﬁon
Authentication Y
Figure 4

Security configuration for ASP.NET to remote SQL Server scenarios

At a Glance xxxi

Integrated
Windows)
(Kerberos) W'”dPW_S
(Authentication) (Authentication)
A
e [—P ®
Internet B s B = ASP.NET
Explorer c c o Impersonation
» > W
N .
. \\ I' ‘\
Clients o *v RPC Packet Windows
S_SL Al Bl ¢ ,} Privacy (Authentication)
(Privacy/ ,*(Privacy/Integrity) I
Integrity) 4'—'—'1, L,
Enterprise Services PY
COM+) Roles
((Authori)zation) Enterprise Services B SQL
Server
Windows ° °® C ®
(Authentication)
Application Server Ys ,'(DRl
N , Server
\\ ’,

A :'
Impersonation IPSec Database Permissions
(Programmatic) (Privacy/ Integrity) (Authorization)

Figure 5
Security configuration for ASP.NET to remote Enterprise Services to remote SQL Server Kerberos
delegation scenario

Read this chapter to lean how to:

® Use the local ASPNET account to make calls from an ASPNET Web application
to a remote SQL Server database.

® Establish trusted database connections to SQL Server using Windows
authentication.

Authorize database access with SQL Server user-defined database roles.
Avoid storing credentials within your application.
Secure sensitive data with a combination of SSL and IPSec.

Implement Kerberos delegation to flow the original caller’s security context
across multiple application tiers to a back-end database.

Flow the original caller’s security context by using Basic authentication.

Authorize users with a combination of ASP.NET file authorization, URL
authorization, .NET roles and Enterprise Services (COM+) roles.

® Effectively use impersonation within an ASP.NET Web application.

xxxii Building Secure ASP.NET Applications

Chapter 6 - Extranet Security

This chapter presents a set of common extranet application scenarios and for each
one presents recommended security configurations, configuration steps and analysis.
This chapter covers the following extranet scenarios.
® Exposing a Web Service (B2B partner exchange)

This scenario is shown in Figure 6.
e Exposing a Web Application (partner application portal)

Partner Company Eie Publisher Company
NTFS authorization
Permissions .NET Roles
—»-{ IS] (Cvii'\:\ig) (Authorization) (Authorization) Certificate
Mapping
* |-| ®)
N d M
Enterprise = s | ASPNET
Services (Web Acti
» 4 Service) Active
5 g Directory
AY
\
\ ',' [‘\ |
s+* Firewalls Certificate .
ifi ~
Pri SSL : Authentication ASPNET \s IP_Sec
(Privacy/Integrity) Identity ,,(Prlvacy/
e Integrity)
éf
Windows °
Authentication SQL
User-defined Server
Database Roles N
(Authorization)
Figure 6

Security configuration for Web Service B2B partner exchange scenario

Read this chapter to lean how to:

Authenticate partner companies by using client certificate authentication against

a dedicated extranet Active Directory.

Map certificates to Windows accounts.

Authorize partner companies by using ASP.NET file authorization and .NET

roles.

Use the ASPNET identity to access a remote SQL Server database located on the

corporate intranet.

At a Glance xxxiii

Chapter 7 - Internet Security

This chapter presents a set of common Internet application scenarios, and for
each one presents recommended security configurations, configuration steps, and

analysis.
This chapter covers the following Internet application scenarios:
e ASPNET to SQL Server
® ASP.NET to Remote Enterprise Services to SQL Server
This scenario is shown in Figure 7.

NTFS URL .
Permissions Authorization Integrart]ed W '.”d°WS
(Authorization) (Authorization) (Authentication)
- Require SSL Windows
] (Privacy/Integrity) (Authentication)
Web Server
_ ’ ASPNET !
Alice L ® ® (Process ®
Mary Identity) SOAP| ASP.NET
> IS | ASPNET H— ——— = IS | (Web
Bob \ 4 Services
> ® 'y k% L Facade)
. X
\\ Ll 4 NS Application Server*
\\ I' \'l
s s Anonymous Forms SSL E ! .
; t
\\ ," Authentication Authentication (Privacy/ Sn erprlie Slervtlc es
’ Integrity) erver Application
SSL (dllhost.exe)
(Privacy/Integrity)
ES Process \\\“L'TS:C?//
Identity /’/ Integrity)
v
User defined o _
database roles | WInde;
(Authorization) Authentication
Database Server
Figure 7

Security configuration for ASP.NET to remote Enterprise Services to SQL Server

Read this chapter to learn how to:

® Use Forms authentication with a SQL Server credential database.
® Avoid storing passwords in the credential database.

® Authorize Internet users with URL Authorization and .NET roles.

xxxiv Building Secure ASP.NET Applications

® Use Windows authentication from an ASPNET Web application to SQL Server
through a firewall.

Secure sensitive data with a combination of SSL and IPSec.

Communicate from an ASPNET Web application to a remote Enterprise Services
application through a firewall by using SOAP.

® Secure calls to serviced component in the application’s middle tier.

Chapter 8 — ASP.NET Security

This chapter provides in-depth security recommendations for ASPNET Web appli-
cations. This chapter covers the range of authentication, authorization and secure
communication services provided by IIS and ASP.NET. These are illustrated in
Figure 8.

Authenticated caller’'s access token
(or IUSR_MACHINE access token)

0 1
1
' s ASPNET i
@ E @ (inetinfo.exe) @ @ (aspnet_wp.exe) @ '
1 1
HTTP 1 | |Authentication Authorization Authentication Authorization i
5 is ¢ || Anonymous Web Permissions Windows File AuthZ i
%» Basic —»| NTFS Permissions |- Forms | URL AuthZ i
R bl Digest IP Address Passport .NET Roles -
N P Integrated Restrictions None ,
R ' Certificate ,
SSL i
(Privacy/ 1 \yep Server :
Integrity) :_ __ !
ASP.NET Process
Original Caller |—Identity @
Fixed Proxy Identity

Local or

Remote

Resource

Figure 8

ASP.NET security services

At a Glance xxxv

Read this chapter to learn how to:

Configure the various ASP.NET authentication modes.
Implement Forms authentication.

Implement Windows authentication.

Work with IPrincipal and IIdentity objects.
Effectively use the IIS and ASPNET gatekeepers.
Configure and use ASP.NET File authorization.
Configure and use ASP.NET URL authorization.

Implement declarative, imperative and programmatic role-based security, using
principal permission demands and IPrincipal.IsInRole.

Know when and when not to use impersonation within an ASPNET Web
application.

Choose an appropriate account to run ASP.NET.

Access local and network resources using the ASP.NET process identity.
Access remote SQL Server databases using the local ASPNET account.
Call COM objects from ASP.NET.

Effectively use the anonymous Internet user account in Web hosting
environments.

® Store secrets in an ASP.NET Web application.
® Secure session and view state.
e Configure ASP.NET security in Web Farm scenarios.

Chapter 9 - Enterprise Services Security

This chapter explains how to secure business functionality in serviced components
contained within Enterprise Services applications. It shows you how and when to
use Enterprise Services (COM+) roles for authorization, and how to configure RPC
authentication and impersonation. It also shows you how to securely call serviced
components from an ASPNET Web application and how to identify and flow the
original caller’s security context through a middle tier serviced component.

xxxvi Building Secure ASP.NET Applications

Figure 9 shows the Enterprise Services security features covered by this chapter.

Role List
“Manager”
“Senior Manager” COM+
“Employee” Catalog
Check role membership
it B |
1 1
. o ! Access : .
Bob Client Application | Bob (DCOM) |, Check 1 Serviced
(e.g. aspnet_wp.exe) 4 T - ® H Component
hS 1 1
T ° . /' ! Interceptor !
S i |) ! . .
‘RP C' Enterprise Services
Windows . Server Application
Authentication P Pl T (dilhost.exe)
+ Impersonation Ej:i(\:/‘;it /Il::ggrriltt);
B Enterprise Services
(COM+) Roles
Machine.config (Authorization)
(DCOM client None
authentication and DCOM/RPC Connect
impersonation (Authentication) all
settings) Packet
Packet Integrity
Packet Privacy
Figure 9
Enterprise Services security overview

Read this chapter to learn how to:

Configure an Enterprise Services application using .NET attributes.
Secure server and library applications.
Choose an appropriate account to run an Enterprise Services server application.

Implement method level Enterprise Services (COM+) role based security both
programmatically and declaratively.

Configure ASPNET as a DCOM client.

Securely call serviced components from ASP.NET.

Compare Enterprise Services (COM+) roles with .NET roles.
Identify callers within a serviced component.

Flow the original caller’s security context through an Enterprise Services applica-
tion by using programmatic impersonation within a serviced component.

Access local and network resources from a serviced component.

At a Glance xxxvii

® Use RPC encryption to secure sensitive data passed to and from serviced
components.

Understand the process of RPC authentication level negotiation.
Use DCOM through firewalls.

Chapter 10 — Web Services Security

This chapter focuses on platform level security for Web services using the underly-
ing features of IIS and ASP.NET. For message level security, Microsoft is developing
the Web Services Development Kit, which allows you to build security solutions
that conform to the WS-Security specification, part of the Global XML Architecture
(GXA) initiative.

The ASP.NET Web services platform security architecture is shown in Figure 10.

Authentication

®

ASP.NET Process
Original Caller
Fixed Service Identity

Web Server |

1

1

SOAP Header s i
(optional @ (inetinfo.exe) @ C
credentials) :
SOAP Body . . !
Authentication Authorization 1

Anonymous NTFS Permissions :

Basic IP Address 1

@ Digest — Restrictions 1
Integrated i

Certificate @ !

:

I Authenticated caller's |

’ access token (or :

* IUSR_MACHINE ,

. access token) -

ASP.NET Web Service |

(aspnet_wp.exe) i

. . Locator i

Authentication Authorization H

Windows File AuthZ — - RF;‘Z?S:; :

None URL AuthZ CHELY C

(Custom) > .NET Roles -

:

1

1

1

1

1

1

1

1

Figure 10
Web services security architecture

xxxviiBuilding Secure ASP.NET Applications

Read this chapter to learn how to:

Implement platform-based Web service security solutions.
Develop an authentication and authorization strategy for a Web service.
Use client certificate authentication with Web services.

Use ASP.NET file authorization, URL authorization, and .NET roles to provide
authorization in Web services.

Flow the original caller’s security context through a Web service.

Call Web services using SSL.

Access local and network resources from Web services.

Pass credentials for authentication to a Web service through a Web service proxy.
Implement the trusted subsystem model for Web services.

Call COM objects from Web services.

Chapter 11 - .NET Remoting Security

The .NET Framework provides a remoting infrastructure that allows clients to
communicate with objects, hosted in remote application domains and processes, or
on remote computers. This chapter shows you how to implement secure .NET
Remoting solutions.

Read this chapter to learn how to:

Choose an appropriate host for remote components.
Use all of the available gatekeepers to provide defense-in-depth security.

Use URL authentication and .NET roles to authorize access to remote
components.

Use File authentication with remoting. This requires you to create a physical .rem
or .soap file that corresponds to the remote component’s object URL

Access local and network resources from a remote component.

Pass credentials for authentication to a remote component through the remote
component proxy object.

Flow the original caller’s security context through a remote component.

Secure communication to and from remote components using a combination of
SSL and IPSec.

Know when to use remoting and when to use Web services.

At a Glance xxxix

Chapter 12 - Data Access Security

This chapter presents recommendations and guidance that will help you develop
a secure data access strategy. The key issues covered by this chapter are shown in
Figure 11. These include storing connection strings securely, using an appropriate
identity for database access, securing data passed to and from the database, using
an appropriate authentication mechanism and implementing authorization in the

database.
Windows or SQL
(Authentication)
1
Client Client @ -’
Identity Application
—_— (for example
ASPNET) > Data ,4
'\ Access [
. Identity
X # SQL Server
\\ Il
NS |
Secure A4 Database
Connection SSL or IPSec Permissions
String Storage (Privacy/Integrity) (Authorization)
Figure 11

Data Access security overview

Read this chapter to learn how to:
® Use Windows authentication from ASP.NET to your database.
® Secure connection strings.

® Use DPAPI from ASPNET Web applications to store secrets such as connection
strings and credentials.

Store credentials for authentication securely in a database.

Validate user input to protect against SQL injection attacks.

Mitigate the security threats associated with the use of SQL authentication.
Know which type of database roles to use.

Compare and contrast database user roles with SQL Server application roles.
Secure communication to SQL Server using IPSec and also SSL.

Create a least privilege database account.

Enable auditing in SQL Server.

xI Building Secure ASP.NET Applications

Chapter 13 - Troubleshooting Security Issues

This chapter provides troubleshooting tips, techniques and tools to help diagnose
security related issues. Read this chapter to learn a proven process for effectively
troubleshooting security issues you may encounter while building your ASP.NET
applications. For example, you'll learn techniques for determining identity in your
ASP.NET pages, which can be used to diagnose authentication and access control
issues. You'll also learn how to troubleshoot Kerberos authentication. The chapter
concludes with a concise list of some of the more useful troubleshooting tools, used
by Microsoft support to troubleshoot customer issues.

Reference

Use the supplementary information in this section of the guide to help further your
understanding of the techniques, strategies and security solutions presented in
earlier chapters. Detailed How Tos provide step-by-step procedures that enable you
to implement specific security solutions. It contains the following information:

Reference Hub

How Tos

How Does it Work?

ASP.NET Identity Matrix

Base Configuration

Configuring Security

Cryptography and Certificates

NET Web Application Security Figure

Glossary

Introduction

Building secure distributed Web applications is challenging. Your application is
only as secure as its weakest link. With distributed applications, you have a lot of
moving parts and making those parts work together in a secure fashion requires
a working knowledge that spans products and technologies.

You already have a lot to consider; integrating various technologies, staying current
with technology, and keeping a step ahead of the competition. If you don’t already
know how to build secure applications, can you afford the time and effort to learn?
More to the point, can you afford not to?

The Connected Landscape

If you already know how to build secure applications, are you able to apply what
you know when you build .NET Web applications? Are you able to apply your
knowledge in today’s landscape of Web-based distributed applications, where Web
services connect businesses to other business and business to customers and where
applications offer various degrees of exposure; for example, to users on intranets,
extranets, and the Internet?

Consider some of the fundamental characteristics of this connected landscape:

® Web services use standards such as SOAP, Extensible Markup Language (XML),
and Hypertext Transport Protocol (HTTP), but fundamentally they pass poten-
tially sensitive information using plain text.

® Internet business-to-consumer applications pass sensitive data over the Web.

® Extranet business-to-business applications blur the lines of trust and allow
applications to be called by other applications in partner companies.

® Intranet applications are not without their risks considering the sensitive nature

of payroll and Human Resource (HR) applications. Such applications are particu-
larly vulnerable to rogue administrators and disgruntled employees.

2

Building Secure ASP.NET Applications

Scope

This guide focuses on:

® Authentication (to identify the clients of your application)

® Authorization (to provide access controls for those clients)

® Secure communication (to ensure that messages remain private and are not
altered by unauthorized parties)

Why authentication, authorization, and secure communication?

Security is a broad topic. Research has shown that early design of authentication
and authorization eliminates a high percentage of application vulnerabilities.
Secure communication is an integral part of securing your distributed application to
protect sensitive data, including credentials, passed to and from your application
and between application tiers.

What Are the Goals of This Guide?

This guide is not an introduction to security. It is not a security reference for the
Microsoft NET Framework—for that you have the .NET Framework Software
Development Kit (SDK) available from MSDN, see the “References” section of this
guide for details. This guide picks up where the documentation leaves off and
presents a scenario-based approach to sharing recommendations and proven
techniques, as gleaned from the field, customer experience, and insight from the
product teams at Microsoft.

The information in this guide is designed to show you how to:
Raise the security bar for your application.

Identify where and how you need to perform authentication.

Identify where and how you need to perform authorization.

Identify where and how you need to secure communication both to your applica-
tion (from your end users) and between application tiers.

Identify common pitfalls and how to avoid them.

Identify top risks and their mitigation related to authentication and authorization.
Avoid opening up security just to make things work.

Identify not only how, but also when to use various security features.

Eliminate FUD (fear, uncertainty, and doubt).

Promote best practices and predictable results.

Chapter 1: Introduction 3

How You Should Read This Guide

The guide has been developed to be modular. This allows you to pick and choose
which chapters to read. For example, if you are interested in learning about the
in-depth security features provided by a specific technology, you can jump straight
to Part III of the guide (Chapters 8 through 12), which contains in-depth material
covering ASPNET, Enterprise Services, Web Services, .NET Remoting, and data
access.

However, you are encouraged to read the early chapters (Chapters 1 through 4) in
Part I of the guide first, because these will help you understand the security model
and identify the core technologies and security services at your disposal. Applica-
tion architects should make sure they read Chapter 3, which provides some key
insights into designing an authentication and authorization strategy that spans the
tiers of your Web application. Part I will provide you with the foundation materials
which will allow you to extract maximum benefit from the remainder of the guide.

The intranet, extranet, and Internet chapters (Chapters 5 through 7) in Part II of the
guide will show you how to secure specific application scenarios. If you know the
architecture and deployment pattern that is or will be adopted by your application,
use this part of the guide to understand the security issues involved and the basic
configuration steps required to secure specific scenarios.

Finally, additional information and reference material in Part IV of the guide will
help further your understanding of specific technology areas. It also contains a
library of How To articles which enable you to develop working security solutions
in the shortest possible time.

Organization of the Guide

The guide is divided into four parts. The aim is to provide a logical partitioning,
which will help you to more easily digest the content.

Part 1, Security Models

Part 1 of the guide provides a foundation for the rest of the guide. Familiarity with
the concepts, principles, and technologies introduced in Part 1 will enable you to
extract maximum value from the remainder of the guide. Part 1 contains the follow-
ing chapters.

® Chapter 1, “Introduction”

e Chapter 2, “Security Model for ASPNET Applications “
® Chapter 3, “Authentication and Authorization”

® Chapter 4, “Secure Communication”

4

Building Secure ASP.NET Applications

Part Il, Application Scenarios

Most applications can be categorized as intranet, extranet, or Internet applications.
This part of the guide presents a set of common application scenarios, each of which
falls into one of the aforementioned categories. The key characteristics of each
scenario are described and the potential security threats analyzed.

You are then shown how to configure and implement the most appropriate authen-
tication, authorization, and secure communication strategy for each application
scenario. Each scenario also contains sections that include a detailed analysis,
common pitfalls to watch out for, and frequently asked questions (FAQ). Part I
contains the following chapters:

® Chapter 5, “Intranet Security”
® Chapter 6, “Extranet Security”
® Chapter 7, “Internet Security”

Part lll, Securing the Tiers

This part of the guide contains detailed information that relates to the individual
tiers and technologies associated with secure .NET-connected Web applications.
Part IIT contains the following chapters:

Chapter 8, “ASP.NET Security”

Chapter 9, “Enterprise Services Security”
Chapter 10, “Web Services Security”
Chapter 11, “.NET Remoting Security”
Chapter 12, “Data Access Security”

Within each chapter, a brief overview of the security architecture as it applies to the
particular technology in question is presented. Authentication and authorization
strategies are discussed for each technology along with configurable security
options, programmatic security options, and actionable recommendations of when
to use the particular strategy.

Each chapter offers guidance and insight that will allow you to choose and imple-
ment the most appropriate authentication, authorization, and secure communica-
tion option for each technology. In addition, each chapter presents additional
information specific to the particular technology. Finally, each chapter concludes
with a concise recommendation summary.

Chapter 1: Introduction 5

Part IV, Reference

This reference part of the guide contains supplementary information to help further
your understanding of the techniques, strategies, and security solutions presented
in earlier chapters. Detailed How Tos provide step-by-step procedures that enable
you to implement specific security solutions. It contains the following information:
Chapter 13, “Troubleshooting Security”

“How Tos”

“Base Configuration”
“Configuration Stores and Tools”
“How Does It Work?”

“ASP.NET Identity Matrix”
“Cryptography and Certificates”
“ASP.NET Security Model”
“Reference Hub”

“Glossary”

Key Terminology

This section introduces some key security terminology used throughout the guide.
Although a full glossary of terminology is provided within the “Reference” section
of this guide, make sure you are very familiar with the following terms:

® Authentication. Positively identifying the clients of your application; clients
might include end-users, services, processes or computers.

® Authorization. Defining what authenticated clients are allowed to see and do
within the application.

® Secure Communications. Ensuring that messages remain private and unaltered
as they cross networks.

® Impersonation. This is the technique used by a server application to access
resources on behalf of a client. The client’s security context is used for access
checks performed by the server.

® Delegation. An extended form of impersonation that allows a server process
that is performing work on behalf of a client, to access resources on a remote
computer. This capability is natively provided by Kerberos on Microsoft®
Windows® 2000 and later operating systems. Conventional impersonation (for
example, that provided by NTLM) allows only a single network hop. When
NTLM impersonation is used, the one hop is used between the client and server
computers, restricting the server to local resource access while impersonating.

6 Building Secure ASP.NET Applications

Security Context. Security context is a generic term used to refer to the collection
of security settings that affect the security-related behavior of a process or
thread. The attributes from a process’ logon session and access token combine to
form the security context of the process.

Identity. Identity refers to a characteristic of a user or service that can uniquely
identify it. For example, this is often a display name, which often takes the form
authority/user name.

Principles

There are a number of overarching principles that apply to the guidance presented
in later chapters. The following summarizes these principles:

Adopt the principle of least privilege. Processes that run script or execute code
should run under a least privileged account to limit the potential damage that
can be done if the process is compromised. If a malicious user manages to inject
code into a server process, the privileges granted to that process determine to

a large degree the types of operations the user is able to perform. Code that
requires additional trust (and raised privileges) should be isolated within sepa-
rate processes.

The ASP.NET team made a conscious decision to run the ASPNET account with
least privileges (using the ASPNET account). During the beta release of the .NET
Framework, ASP.NET ran as SYSTEM, an inherently less secure setting.

Use defense in depth. Place check points within each of the layers and sub-
systems within your application. The check points are the gatekeepers that
ensure that only authenticated and authorized users are able to access the next
downstream layer.

Don’t trust user input. Applications should thoroughly validate all user input
before performing operations with that input. The validation may include
filtering out special characters. This preventive measure protects the application
against accidental misuse or deliberate attacks by people who are attempting to
inject malicious commands into the system. Common examples include SQL
injection attacks, script injection, and buffer overflow.

Use secure defaults. A common practice among developers is to use reduced
security settings, simply to make an application work. If your application de-
mands features that force you to reduce or change default security settings, test
the effects and understand the implications before making the change.

Don’t rely on security by obscurity. Trying to hide secrets by using misleading
variable names or storing them in odd file locations does not provide security. In
a game of hide-and-seek, it’s better to use platform features or proven techniques
for securing your data.

Chapter 1: Introduction 7

® Check at the gate. You don’t always need to flow a user’s security context to the
back end for authorization checks. Often, in a distributed system, this is not the
best choice. Checking the client at the gate refers to authorizing the user at the
first point of authentication (for example, within the Web application on the Web
server), and determining which resources and operations (potentially provided
by downstream services) the user should be allowed to access.

If you design solid authentication and authorization strategies at the gate, you
can circumvent the need to delegate the original caller’s security context all the
way through to your application’s data tier.

® Assume external systems are insecure. If you don’t own it, don’t assume security
is taken care of for you.

® Reduce surface area. Avoid exposing information that is not required. By doing
so, you are potentially opening doors that can lead to additional vulnerabilities.
Also, handle errors gracefully; don’t expose any more information than is re-
quired when returning an error message to the end user.

® Fail to a secure mode. If your application fails, make sure it does not leave
sensitive data unprotected. Also, do not provide too much detail in error
messages; meaning don’t include details that could help an attacker exploit
a vulnerability in your application. Write detailed error information to the
Windows event log.

® Remember you are only as secure as your weakest link. Security is a concern
across all of your application tiers.

® If you don't use it, disable it. You can remove potential points of attack by
disabling modules and components that your application does not require. For
example, if your application doesn’t use output caching, then you should disable
the ASP.NET output cache module. If a future security vulnerability is found in
the module, your application is not threatened.

Summary

This chapter has provided some foundation material to prepare you for the rest of
the guide. It has described the goals of the guide and presented its overall structure.
Make sure you are familiar with the key terminology and principles introduced in
this chapter, because these are used and referenced extensively throughout the
forthcoming chapters.

Security Model for ASP.NET
Applications

This chapter introduces .NET Web application security. It provides an overview
of the security features and services that span the tiers of a typical .NET Web
application.

The goal of the chapter is to:

® Provide a frame of reference for typical .NET Web applications.

® Identify the authentication, authorization, and secure communication security
features provided by the various implementation technologies used to build
.NET Web applications.

® Identify gatekeepers and gates that can be used in your application to enforce
trust boundaries.

.NET Web Applications

This section provides a brief introduction to .NET Web applications and describes
their characteristics both from a logical and physical viewpoint. It also provides an
introduction to the various implementation technologies used to build .NET Web
applications.

Logical Tiers

Logical application architecture views any system as a set of cooperating services
grouped in the following layers:

® User Services

® Business Services

® Data Services

10 Building Secure ASP.NET Applications

The value of this logical architecture view is to identify the generic types of services
invariably present in any system, to ensure proper segmentation, and to drive the
definition of interfaces between tiers. This segmentation allows you to make more
discreet architecture and design choices when implementing each layer, and to
build a more maintainable application.

The layers can be described as follows:

® User Services are responsible for the client interaction with the system and
provide a common bridge into the core business logic encapsulated by compo-
nents within the Business Services layer. Traditionally, User Services are associ-
ated most often with interactive users. However, they also perform the initial
processing of programmatic requests from other systems, where no visible user
interface is involved. Authentication and authorization, the precise nature of
which varies depending upon the client type, are typically performed within the
User Services layer.

® Business Services provide the core functionality of the system and encapsulate
business logic. They are independent from the delivery channel and back-end
systems or data sources. This provides the stability and flexibility necessary to
evolve the system to support new and different channels and back-end systems.
Typically, to service a particular business request involves a number of cooperat-
ing components within the Business Services layer.

® Data Services provide access to data (hosted within the boundaries of the sys-
tem), and to other (back-end) systems through generic interfaces, which are
convenient to use from components within the Business Services layer. Data
Services abstract the multitude of back-end systems and data sources, and
encapsulate specific access rules and data formats.

The logical classification of service types within a system may correlate with, but is
relatively independent from, the possible physical distribution of the components
implementing the services.

It is also important to remember that the logical tiers can be identified at any level
of aggregation; that is, the tiers can be identified for the system as a whole (in the
context of its environment and external interactions) and for any contained sub-
system. For example, each remote node that hosts a Web service consists of User
Services (handling incoming requests and messages), Business Services, and Data
Services.

Physical Deployment Models

The three logical service layers described earlier, in no way imply specific numbers
of physical tiers. All three logical services may be physically located on the same
computer, or they may be spread across multiple computers.

Chapter 2: Security Model for ASP.NET Applications 11

The Web Server as an Application Server

A common deployment pattern for .NET Web applications is to locate business and
data access components on the Web server. This minimizes the network hops, which
can help performance. This model is shown in Figure 2.1.

Web Server Database Server

ul
ASPNET

Component Services

Enterprise Services sQL
Server

Communication
Web Services
Remoting

Data Access
ADO.NET

Figure 2.1

The Web server as an application server

Remote Application Tier

The remote application tier is a common deployment pattern, particularly for
Internet scenarios where the Web tier is self-contained within a perimeter network
(also known as DMZ, demilitarized zone, and screened subnet) and is separated
from end users and the remote application tier with packet filtering firewalls. The
remote application tier is shown in Figure 2.2.

Web Server Application Server Database Server
Ul Component Services
ASP.NET Enterprise Services -
. sQL
Communication
) Data Access Server
Web Services ADO.NET

Remoting

Figure 2.2
The introduction of a remote application tier

12 Building Secure ASP.NET Applications

Implementation Technologies
.NET Web applications typically implement one or more of the logical services by
using the following technologies:

ASP.NET

Enterprise Services

Web Services

.NET Remoting

ADO.NET and Microsoft® SQL Server™ 2000

Internet Protocol Security (IPSec)

Secure Sockets Layer (SSL)

ASP.NET

ASP.NET is typically used to implement User Services. ASP.NET provides a
pluggable architecture that can be used to build Web pages. For more information
about ASP.NET, see the following resources:

® Chapter 8, “ASP.NET Security”
e “ASP.NET” in the “Reference Hub” section of this guide

Enterprise Services

Enterprise Services provide infrastructure-level services to applications. These
include distributed transactions and resource management services such as object
pooling for .NET components. For more information about Enterprise Services, see
the following resources:

® Chapter 9, “Enterprise Services Security”
® “Understanding Enterprise Services (COM+) in .NET” on MSDN
® “Enterprise Services” in the “Reference Hub” section of this guide

Web Services

Web Services enable the exchange of data and the remote invocation of application
logic using SOAP-based message exchanges to move data through firewalls and
between heterogeneous systems. For more information about Web Services, see the
following resources:

® Chapter 10, “Web Services Security”
® “XML Web Services Development Center” on MSDN
® “Web Services” in the “Reference Hub” section of this guide

Chapter 2: Security Model for ASP.NET Applications 13

.NET Remoting

NET Remoting provides a framework for accessing distributed objects across
process and machine boundaries. For more information about .NET Remoting, see
the following resources:

® Chapter 11, “.NET Remoting Security”
® “NET Remoting” in the “Reference Hub” section of this guide

ADO.NET and SQL Server 2000

ADO.NET provides data access services. It is designed from the ground up for
distributed Web applications, and it has rich support for the disconnected scenarios
inherently associated with Web applications. For more information about
ADO.NET, see the following resources:

® Chapter 12, “Data Access Security”

o “ADO.NET” in the “Reference Hub” section of this guide
SQL Server provides integrated security that uses the operating system authentica-
tion mechanisms (Kerberos or NTLM). Authorization is provided by logons and

granular permissions that can be applied to individual database objects. For more
information about SQL Server 2000, see the following resources:

® Chapter 13, “Data Access Security”

Internet Protocol Security (IPSec)

IPSec provides point-to-point, transport level encryption and authentication ser-
vices. For more information about IPSec, see the following resources:

® Chapter 4, “Secure Communication”

® [PSec — The New Security Standard for the Internet, Intranets and Virtual Private
Networks by Naganand Doraswamy and Dan Harkins (Prentice Hall PTR, ISBN;
ISBN: 0-13-011898-2); Chapter 4 is available on TechNet

Secure Sockets Layer (SSL)

SSL provides a point-to-point secure communication channel. Data sent over the
channel is encrypted. For more information about SSL, see the following resources:
® Chapter 4, “Secure Communication”

® Microsoft® Windows® 2000 and IIS 5.0 Administrator’s Pocket Consultant (Microsoft
Press, ISBN: 0-7356-1024-X); Chapter 6 is available on TechNet

14 Building Secure ASP.NET Applications

Security Architecture

Figure 2.3 shows the remote application tier model together with the set of security
services provided by the various technologies introduced earlier. Authentication
and authorization occurs at many individual points throughout the tiers. These
services are provided primarily by Internet Information Services (IIS), ASP.NET,
Enterprise Services, and SQL Server. Secure communication channels are also
applied throughout the tiers and stretch from the client browser or device, right
through to the database. Channels are secured with a combination of Secure Sockets

Layer (SSL) or IPSec.

Authentication

s Wind
Anonymous Ineleres -
Basic Forms, Passport, None (Custom) Au_thentlcatnon
Digest Authorization Windows. SQL
Integrated Windows Web Permissions, Author!zatlon
Certificate NTFS Permissions, URL authz, Logins,
File authz, Principal permissions, Permissions,
.NET Roles Roles
|
® ® ® °
Clients [H» HSIQ,?P'NET IIS/ASP.NET IIS/ASP.NET saL
eb))
L Web Services Remoting Server
Application
Ent ise Servi ° Database
Web Server nierprise Services Server
RPC Authentication
N RPC
one -~
Connect Authorization
ES (COM+) Roles
cal NTFS Permissi
Baala ermissions
Integrity
Privacy
Secure Communication (SSL / IPSec)
Figure 2.3

Security architecture

Security Across the Tiers

The authentication, authorization, and secure communication features provided by
the technologies discussed earlier are summarized in Table 2.1.

Table 2.1: Security features

Technology

IS

ASPNET

Web Services

Remoting

Enterprise
Services

SQL Server
2000

Windows 2000

Authentication

Authentication

Anonymous

Basic

Digest

Windows Integrated
(Kerberos/NTLM)
Certificate

None (Custom)
Windows
Forms
Passport

Windows

None (Custom)
Message level
authentication

Windows

Windows

Windows
(Kerberos/NTLM)
SQL authentication

Kerberos
NTLM

Chapter 2: Security Model for ASP.NET Applications

Authorization

IP/DNS Address
Restrictions

Web Permissions
NTFS Permissions;
Windows Access
Control Lists (ACLs)
on requested files

File Authorization
URL Authorization
Principal Permissions
.NET Roles

File Authorization
URL Authorization
Principal Permissions
.NET Roles

File Authorization
URL Authorization
Principal Permissions
.NET Roles

Enterprise Services
(COM+) Roles
NTFS Permissions

Server logins
Database logins
Fixed database roles
User defined roles
Application roles
Object permissions

Windows ACLs

Secure

Communication
SSL

SSL and Message
level encryption

SSL and message
level encryption

Remote Procedure
Call (RPC)
Encryption

SSL

IPSec

The .NET Framework on Windows 2000 provides the following authentication

options:

e ASPNET Authentication Modes

® Enterprise Services Authentication

® SQL Server Authentication

15

16 Building Secure ASP.NET Applications

ASP.NET Authentication Modes

ASP.NET authentication modes include Windows, Forms, Passport, and None.

® Windows authentication. With this authentication mode, ASP.NET relies on IIS
to authenticate users and create a Windows access token to represent the authen-
ticated identity. IIS provides the following authentication mechanisms:

® Basic authentication. Basic authentication requires the user to supply creden-
tials in the form of a user name and password to prove their identity. It is a
proposed Internet standard based on RFC 2617. Both Netscape Navigator and
Microsoft Internet Explorer support Basic authentication. The user’s creden-
tials are transmitted from the browser to the Web server in an unencrypted
Base64 encoded format. Because the Web server obtains the user’s credentials
unencrypted, the Web server can issue remote calls (for example, to access
remote computers and resources) using the user’s credentials.

Note: Basic authentication should only be used in conjunction with a secure channel
(typically established by using SSL). Otherwise, user names and passwords can be
easily stolen with network monitoring software. If you use Basic authentication you
should use SSL on all pages (not just a logon page), because credentials are passed on
all subsequent requests. For more information about using Basic authentication with
SSL, see Chapter 8, “ASENET Security.”

® Digest authentication. Digest authentication, introduced with IIS 5.0, is
similar to Basic authentication except that instead of transmitting the user’s
credentials unencrypted from the browser to the Web server, it transmits a
hash of the credentials. As a result it is more secure, although it requires an
Internet Explorer 5.0 or later client and specific server configuration.

® Integrated Windows authentication. Integrated Windows Authentication
(Kerberos or NTLM depending upon the client and server configuration) uses
a cryptographic exchange with the user’s Internet Explorer Web browser to
confirm the identity of the user. It is supported only by Internet Explorer (and
not by Netscape Navigator), and as a result tends to be used only in intranet
scenarios, where the client software can be controlled. It is used only by the
Web server if either anonymous access is disabled or if anonymous access is
denied through Windows file system permissions.

® Certificate authentication. Certificate authentication uses client certificates to
positively identify users. The client certificate is passed by the user’s browser
(or client application) to the Web server. (In the case of Web services, the Web
services client passes the certificate by means of the ClientCertificates prop-
erty of the HttpWebRequest object). The Web server then extracts the user’s
identity from the certificate. This approach relies on a client certificate being
installed on the user’s computer and as a result tends to be used mostly in
intranet or extranet scenarios where the user population is well known and
controlled. IIS, upon receipt of a client certificate, can map the certificate to
a Windows account.

Chapter 2: Security Model for ASP.NET Applications 17

® Anonymous authentication. If you do not need to authenticate your clients
(or you implement a custom authentication scheme), IIS can be configured for
Anonymous authentication. In this event, the Web server creates a Windows
access token to represent all anonymous users with the same anonymous (or
guest) account. The default anonymous account is IUSR_MACHINENAME,
where MACHINENAME is the NetBIOS name of your computer specified at
install time.

® Passport authentication. With this authentication mode, ASP.NET uses the
centralized authentication services of Microsoft Passport. ASP.NET provides a
convenient wrapper around functionality exposed by the Microsoft Passport
Software Development Kit (SDK), which must be installed on the Web server.

® Forms authentication. This approach uses client-side redirection to forward
unauthenticated users to a specified HTML form that allows them to enter their
credentials (typically user name and password). These credentials are then
validated and an authentication ticket is generated and returned to the client.
The authentication ticket maintains the user identity and optionally a list of roles
that the user is a member of for the duration of the user’s session.

Forms authentication is sometimes used solely for Web site personalization. In
this case, you need write little custom code because ASP.NET handles much of
the process automatically with simple configuration. For personalization sce-
narios, the cookie needs to hold only the user name.

Note: Forms authentication sends the user name and password to the Web server in plain
text. As a result, you should use Forms authentication in conjunction with a channel
secured by SSL. For continued protection of the authentication cookie transmitted on
subsequent requests, you should consider using SSL for all pages within your application
and not just the logon page.

® None. None indicates that you either don’t want to authenticate users or that
you are using a custom authentication protocol.

More Information
For more details about ASP.NET authentication, see Chapter 8, “ASP.NET Security.”

Enterprise Services Authentication

Enterprises services authentication is performed by using the underlying Remote
Procedure Call (RPC) transport infrastructure, which in turn uses the operating
system Security Service Provider Interface (SSPI). Clients of Enterprise Services
applications may be authenticated using Kerberos or NTLM authentication.

A serviced component can be hosted in a Library application or Server application.
Library applications are hosted within client processes and as a result assume the
client’s identity. Server applications run in separate server processes under their
own identity. For more information about identity, see the “Identities and Princi-
pals” section later in this chapter.

18 Building Secure ASP.NET Applications

The incoming calls to a serviced component can be authenticated at the following
levels:

Default: The default authentication level for the security package is used.
None: No authentication occurs.

Connect: Authentication occurs only when the connection is made.

Call: Authenticates at the start of each remote procedure call.

Packet: Authenticates and verifies that all call data is received.

Packet Integrity: Authenticates and verifies that none of the data has been
modified in transit.

® Packet Privacy: Authenticates and encrypts the packet, including the data and
the sender’s identity and signature.
More Information

For more information about Enterprise Services authentication, see Chapter 9,
“Enterprise Services Security.”

SQL Server Authentication

SQL Server can authenticate users by using Windows authentication (NTLM or
Kerberos) or can use its own built-in authentication scheme referred to as SQL
authentication. The following two options are available:

® SQL Server and Windows. Clients can connect to an instance of Microsoft SQL
Server by using either SQL Server authentication or Windows authentication.
This is sometimes referred to as mixed mode authentication.

® Windows Only. The user must connect to the instance of Microsoft SQL Server
by using Windows authentication.
More Information

The relative merits of each approach are discussed in Chapter 12, “Data Access
Security.”

Authorization

The .NET Framework on Windows 2000 provides of the following authorization
options:

e ASP.NET Authorization Options

® Enterprise Services Authorization

® SQL Server Authorization

ASP.NET Authorization Options

ASP.NET authorization options can be used by ASP.NET Web applications, Web
services and remote components. ASP.NET provides the following authorization
options:

Chapter 2: Security Model for ASP.NET Applications 19

® URL Authorization. This is an authorization mechanism, configured by settings
within machine and application configuration files. URL Authorization allows
you to restrict access to specific files and folders within your application’s
Uniform Resource Identifier (URI) namespace. For example, you can selectively
deny or allow access to specific files or folders (addressed by means of a URL) to
nominated users. You can also restrict access based on the user’s role member-
ship and the type of HTTP verb used to issue a request (GET, POST, and so on).

URL Authorization requires an authenticated identity. This can be obtained by a
Windows or ticket-based authentication scheme.

® File Authorization. File authorization applies only if you use one of the IIS-
supplied Windows authentication mechanisms to authenticate callers and
ASP.NET is configured for Windows authentication.

You can use it to restrict access to specified files on a Web server. Access permis-
sions are determined by Windows ACLs attached to the files.

® Principal Permission Demands. Principal permission demands can be used
(declaratively or programmatically) as an additional fine-grained access control
mechanism. They allow you to control access to classes, methods, or individual
code blocks based on the identity and group membership of individual users.

® .NET Roles. .NET roles are used to group together users who have the same
permissions within your application. They are conceptually similar to previous
role-based implementations, for example Windows groups and COM+ roles.
However, unlike these earlier approaches, .NET roles do not require authenti-
cated Windows identities and can be used with ticket-based authentication
schemes such as Forms authentication.

.NET roles can be used to control access to resources and operations and they can
be configured both declaratively and programmatically.
More Information

For more information about ASP.NET authorization, see Chapter 8, “ASPNET
Security.”

Enterprise Services Authorization

Access to functionality contained in serviced components within Enterprise Services
applications is governed by Enterprise Services role membership. These are differ-
ent from .NET roles and can contain Windows group or user accounts. Role mem-
bership is defined within the COM+ catalog and is administered by using the
Component Services tool.

More Information

For more information about Enterprise Services authorization, see Chapter 9,
“Enterprise Services Security.”

20 Building Secure ASP.NET Applications

SQL Server Authorization

SQL Server allows fine-grained permissions that can be applied to individual
database objects. Permissions may be based on role membership (SQL Server
provides fixed database roles, user defined roles, and application roles), or
permission may be granted to individual Windows user or group accounts.

More Information

For more information about SQL Server authorization, see Chapter 12, “Data Access
Security.”

Gatekeepers and Gates

Throughout the remainder of this document, the term gatekeeper is used to identify
the technology that is responsible for a gate. A gate represents an access control
point (guarding a resource) within an application. For example, a resource might be
an operation (represented by a method on an object) or a database or file system
resource.

Each of the core technologies listed earlier provide gatekeepers for access authoriza-
tion. Requests must pass through a series of gates before being allowed to access the
requested resource or operation. The following describes the gates the requests
must pass through:

e [IS provides a gate when you authenticate users (that is, you disable Anonymous
authentication). IIS Web permissions can be used as an access control mechanism
to restrict the capabilities of Web users to access specific files and folders. Unlike
NTES file permissions, Web permissions apply to all Web users, as opposed to
individual users or groups. NTFS file permissions provide further restrictions on
Web resources such as Web pages, images files, and so on. These restrictions
apply to individual users or groups.

IIS checks Web permissions, followed by NTES file permissions. A user must

be authorized by both mechanisms for them to be able to access the file or folder.
A failed Web permission check results in IIS returning an HTTP 403 — Access
Forbidden response, whereas a failed NTES permission check results in IIS
returning an HTTP 401 — Access Denied.

® ASP.NET provides various configurable and programmatic gates. These include
URL Authorization, File Authorization, Principal Permission demands, and .NET
Roles.

® The Enterprise Services gatekeeper uses Enterprise Services roles to authorize
access to business functionality.

® SQL Server 2000 includes a series of gates that include server logins, database
logins, and database object permissions.

e Windows 2000 provides gates using ACLs attached to secure resources.

Chapter 2: Security Model for ASP.NET Applications 21

The bottom line is that gatekeepers perform authorization based on the identity of
the user or service calling into the gate and attempting to access a specific resource.
The value of multiple gates is in-depth security with multiple lines of defense. Table
2.2 summaries the set of gatekeepers and identifies for each one the gates that they

are responsible for.

Table 2.2: Gatekeepers responsibilities and the gates they provide

Gatekeeper

Windows Operating
System

I

ASPNET

Enterprise Services

Web Services

Remoting

ADO.NET

SQL Server

Gates

Logon rights (positive and negative, for example “Deny logon

locally”)

Other privileges (for example “Act as part of the operating system”)
Access checks against secured resources such as the registry and file
system. Access checks use ACLs attached to the secure resources,
which specify who is and who is not allowed to access the resource
and also the types of operation that may be permitted.

TCP/IP filtering

IP Security

Authentication (Anonymous, Basic, Digest, Integrated, Certificate)
IP address and domain name restrictions (these can be used as an
additional line of defense, but should not be relied upon due to the
relative ease of spoofing IP addresses).

Web permissions

NTFS permissions

URL Authorization

File Authorization

Principal Permission Demands
.NET Roles

Windows (NTLM / Kerberos) authentication
Enterprise Services (COM+) roles
Impersonation levels

Uses gates provided by IIS and ASPNET

Uses gates provided by the host. If hosted in ASENET it uses the
gates provided by IIS and ASPNET. If hosted in a Windows service,
then you must develop a custom solution.

Connection strings. Credentials may be explicit or you may use
Windows authentication (for example, if you connect to SQL Server)

Server logins
Database logins
Database object permissions

By using the various gates throughout the tiers of your application, you can filter
out users that should be allowed access to your back-end resources. The scope of
access is narrowed by successive gates which become more and more granular as
the request proceeds through the application to the back-end resources.

22 Building Secure ASP.NET Applications

Consider the Internet-based application example using IIS that is shown in Figure 2.4.

Anonymous Role Membership
Access Disabled Demands
T = [[J
. ~ T M - Imperative -
o |) - _ L
33, URL File Principal L[
= 8 : 1] AuthZ AuthZ Permission =
< S_I Demands
o O -
OGO O ©
L| — 1
ASP.NET
I
10,000 1,000 100 10
Users Users Users Users
= Gatekeeper
Figure 2.4

Filtering users with gatekeepers

Figure 2.4 illustrates the following:

® You can disable Anonymous authentication in IIS. As a result, only accounts that
IIS is able to authenticate are allowed access. This might reduce the potential
number of users to 10,000.

® Next, in ASPNET you use URL Authorization which might reduce the user count
to 1,000 users.

File authorization might further narrow access down to 100 users.

e Finally, your Web application code might allow only 10 users to access your
restricted resource, based on specific role membership.

Identities and Principals

.NET security is layered on top of Windows security. The user centric concept of
Windows security is based on security context provided by a logon session while
.NET security is based on IPrincipal and IIdentity objects.

In Windows programming when you want to know the security context code is
running under, the identity of the process owner or currently executing thread is
consulted. With .NET programming, if you want to query the security context of
the current user, you retrieve the current IPrincipal object from
Thread.CurrentPrincipal.

Chapter 2: Security Model for ASP.NET Applications 23

The .NET Framework uses identity and principal objects to represent users when
NET code is running and together they provide the backbone of .NET role-based
authorization.

Identity and principal objects must implement the IIdentity and IPrincipal inter-
faces respectively. These interfaces are defined within the System.Security.Principal
namespace. Common interfaces allow the NET Framework to treat identity and
principal objects in a polymorphic fashion, regardless of the underlying implemen-
tation details.

The IPrincipal interface allows you to test role membership through an IsInRole
method and also provides access to an associated IIdentity object.

public interface IPrincipal

{
bool IsInRole(string role);
ITIdentity Identity {get;}

}

The IIdentity interface provides additional authentication details such as the name
and authentication type.

public interface IIdentity

{
string authenticationType {get;}
bool IsAuthenticated {get;}
string Name {get;}

}

The .NET Framework supplies a number of concrete implementations of IPrincipal
and IIdentity as shown in Figure 2.5 and described in the following sections.

IPrincipal
\
GenericPrincipal \ WindowsPrincipal
\
Custom
lidentity
7
Genericldentity e Windowsldentity
7 N
Custom Passportldentity
Formsldentity

Figure 2.5

IPrincipal and Ildentity implementation classes

24 Building Secure ASP.NET Applications

WindowsPrincipal and Windowsldentity

The .NET version of a Windows security context is divided between two classes:

® WindowsPrincipal. This class stores the roles associated with the current Win-
dows user. The WindowsPrincipal implementation treats Windows groups as
roles. The IPrncipal.IsInRole method returns true or false based on the user’s
Windows group membership.

o Windowsldentity. This class holds the identity part of the current user’s security
context and can be obtained from the static WindowsIdentity.GetCurrent()
method. This returns a WindowslIdentity object that has a Token property that
returns an IntPtr that represents a Windows handle to the access token associ-
ated with the current execution thread. This token can then be passed to native
Win32® application programming interface (API) functions such as
GetTokenInformation, SetTokenInformation, CheckTokenMembership and so
on, to retrieve security information about the token.

Note: The static Windowsldentity.GetCurrent() method returns the identity of the currently
executing thread, which may or may not be impersonating. This is similar to the Win32
GetUserName API.

GenericPrincipal and Associated Identity Objects

These implementations are very simple and are used by applications that do not use
Windows authentication and where the application does not need complex repre-
sentations of a principal. They can be created in code very easily and as a result a
certain degree of trust must exist when an application deals with a
GenericPrincipal.

If you are relying upon using the IsInRole method on the GenericPrincipal in
order to make authorization decisions, you must trust the application that sends
you the GenericPrincipal. This is in contrast to using WindowsPrincipal objects,
where you must trust the operating system to provide a valid WindowsPrincipal
object with an authenticated identity and valid group/role names.

The following types of identity object can be associated with the GenericPrincipal
class:

® Formsldentity. This class represents an identity that has been authenticated with
Forms authentication. It contains a FormsAuthenticationTicket which contains
information about the user’s authentication session.

® Passportldentity. This class represents an identity that has been authenticated
with Passport authentication and contains Passport profile information.

® Genericldentity. This class represents a logical user that is not tied to any par-
ticular operating system technology and is typically used in association with
custom authentication and authorization mechanisms.

Chapter 2: Security Model for ASP.NET Applications 25

ASP.NET and HttpContext.User

Typically, Thread.CurrentPrincipal is checked in .NET code before any authoriza-
tion decisions are made. ASP.NET, however, provides the authenticated user’s
security context using HttpContext.User.

This property accepts and returns an IPrincipal interface. The property contains an
authenticated user for the current request. ASP.NET retrieves HttpContext.User
when it makes authorization decisions.

When you use Windows authentication, the Windows authentication

module automatically constructs a WindowsPrincipal object and stores it in
HttpContext.User. If you use other authentication mechanisms such as Forms
or Passport, you must construct a GenericPrincipal object and store it in
HttpContext.User.

ASP.NET Identities

At any given time during the execution of an ASPNET Web application, there may
be multiple identities present during a single request. These identities include:

e HttpContext.User returns an IPrincipal object that contains security information
for the current Web request. This is the authenticated Web client.

® Windowsldentity.GetCurrent() returns the identity of the security context of
the currently executing Win32 thread. By default, this identity is ASPNET; the
default account used to run ASP.NET Web applications. However, if the Web
application has been configured for impersonation, the identity represents the
authenticated user (which if IIS Anonymous authentication is in effect, is
IUSR_MACHINE).

® Thread.CurrentPrincipal returns the principal of the currently executing .NET
thread which rides on top of the Win32 thread.

More Information

® For a detailed analysis of ASPNET identity for a combination of Web application
configurations (both with and without impersonation), see “ASP.NET Identity
Matrix” within the “Reference” section of this guide.

® For more information about creating your own IPrincipal implementation, see
Chapter 8, “ASP.NET Security,” and “How to implement IPrincipal” in the
“Reference” section of this guide.

Remoting and Web Services

In the current version of the NET Framework, Remoting and Web services do not
have their own security model. They both inherit the security feature of IIS and
ASP.NET.

26 Building Secure ASP.NET Applications

Although there is no security built into the remoting architecture, it was designed
with security in mind. It is left up to the developer and/or administrator to incor-
porate certain levels of security in remoting applications. Whether or not principal
objects are passed across remoting boundaries depends on the location of the client
and remote object, for example:

Remoting within the same process. When remoting is used between objects in
the same or separate application domain(s), the remoting infrastructure copies a
reference to the IPrincipal object associated with the caller’s context to the
receiver’s context.

Remoting across processes. In this case, IPrincipal objects are not transmitted
between processes. The credentials used to construct the original IPrincipal must
be transmitted to the remote process, which may be located on a separate com-
puter. This allows the remote computer to construct an appropriate IPrincipal
object based on the supplied credentials.

Summary

This chapter has introduced the full set of authentication and authorization options
provided by the various .NET related technologies. By using multiple gatekeepers
throughout your .NET Web application, you will be able to implement a defense-in-
depth security strategy. To summarize:

ASP.NET applications can use the existing security features provided by Win-
dows and IIS.

A combination of SSL and IPSec can be used to provide secure communications
across the layers of a .NET Web application; for example, from browser to data-
base.

Use SSL to protect the clear text credentials passed across the network when you
use Basic or Forms authentication.

NET represents users who have been identified with Windows authentication
using a combination of the WindowsPrincipal and WindowslIdentity classes.

The GenericPrincipal and Genericldentity or FormsIdentity classes are used to
represent users who have been identified with non-Windows authentication
schemes, such as Forms authentication.

You can create your own principal and identity implementations by creating
classes that implement IPrincipal and IIdentity.

Within ASP.NET Web applications, the IPrincipal object that represents the
authenticated user is associated with the current HTTP Web request using the
HttpContext.User property.

Chapter 2: Security Model for ASP.NET Applications 27

® Gates are access control points within your application through which autho-
rized users can access resources or services. Gatekeepers are responsible for
controlling access to gates.

® Use multiple gatekeepers to provide a defense-in-depth strategy.
The next chapter, Chapter 3, “Authentication and Authorization,” provides addi-

tional information to help you choose the most appropriate authentication and
authorization strategy for your particular application scenario.

Authentication and Authorization

Designing an authentication and authorization strategy for distributed Web appli-
cations is a challenging task. The good news is that proper authentication and
authorization design during the early phases of your application development
helps to mitigate many top security risks.

This chapter will help you design an appropriate authorization strategy for your
application and will also help answer the following key questions:

Where should I perform authorization and what mechanisms should I use?
What authentication mechanism should I use?

Should I use Active Directory® directory service for authentication or should I
validate credentials against a custom data store?

What are the implications and design considerations for heterogeneous and
homogenous platforms?

How should I represent users who do not use the Microsoft® Windows®
operating system within my application?

How should I flow user identity throughout the tiers of my application? When
should I use operating system level impersonation/delegation?

When you consider authorization, you must also consider authentication. The two
processes go hand in hand for two reasons:

First, any meaningful authorization policy requires authenticated users.

Second, the way in which you authenticate users (and specifically the way in
which the authenticated user identity is represented within your application)
determines the available gatekeepers at your disposal.

Some gatekeepers such as ASP.NET file authorization, Enterprise Services
(COMH+) roles, and Windows ACLs, require an authenticated Windows identity
(in the form of a WindowslIdentity object that encapsulates a Windows access
token, which defines the caller’s security context). Other gatekeepers, such as

30 Building Secure ASP.NET Applications

ASP.NET URL authorization and .NET roles, do not. They simply require an
authenticated identity; one that is not necessarily represented by a Windows
access token.

Designing an Authentication and Authorization Strategy

The following steps identify a process that will help you develop an authentication
and authorization strategy for your application:

. Identify resources

. Choose an authorization strategy

. Choose the identities used for resource access
. Consider identity flow

. Choose an authentication approach

o 00k WN R

. Decide how to flow identity

Identify Resources

Identify resources that your application needs to expose to clients. Typical resources
include:

® Web Server resources such as Web pages, Web services, static resources (HTML
pages and images).
Database resources such as per-user data or application-wide data.

Network resources such as remote file system resources and data from directory
stores such as Active Directory.

You must also identify the system resources that your application needs to access.
This is in contrast to resources that are exposed to clients. Examples of system
resources include the registry, event logs, and configuration files.

Choose an Authorization Strategy

The two basic authorization strategies are:

® Role based. Access to operations (typically methods) is secured based on the role
membership of the caller. Roles are used to partition your application’s user base
into sets of users that share the same security privileges within the application;
for example, Senior Managers, Managers and Employees .Users are mapped to
roles and if the user is authorized to perform the requested operation, the appli-
cation uses fixed identities with which to access resources. These identities are
trusted by the respective resource managers (for example, databases, the file
system, and so on).

Chapter 3: Authentication and Authorization 31

® Resource based. Individual resources are secured using Windows ACLs. The
application impersonates the caller prior to accessing resources, which allows
the operating system to perform standard access checks. All resource access
is performed using the original caller’s security context. This impersonation
approach severely impacts application scalability, because it means that connec-
tion pooling cannot be used effectively within the application’s middle tier.

In the vast majority of .NET Web applications where scalability is essential, a role-
based approach to authorization represents the best choice. For certain smaller scale
intranet applications that serve per-user content from resources (such as files) that
can be secured with Windows ACLs against individual users, a resource-based
approach may be appropriate.

The recommended and common pattern for role-based authorization is:

® Authenticate users within your front-end Web application.

® Map users to roles.

® Authorize access to operations (not directly to resources) based on role member-
ship.

® Access the necessary back-end resources (required to support the requested and
authorized operations) by using fixed service identities. The back-end resource

managers (for example, databases) trust the application to authorize callers and
are willing to grant permissions to the trusted service identity or identities.

For example, a database administrator may grant access permissions exclusively
to a specific HR application (but not to individual users).

More Information

® For more information about the two contrasting authorization approaches, see
“Authorization Approaches” later in this chapter.

® For more information about role-based authorization and the various types
of roles that can be used, see “Role-Based Authorization” later in this chapter.

Choose the Identities Used for Resource Access
Answer the question, “who will access resources?”

Choose the identity or identities that should be used to access resources across the
layers of your application. This includes resources accessed from Web-based appli-
cations, and optionally Web services, Enterprise Services, and .NET Remoting
components. In all cases, the identity used for resource access can be:

® Original caller’s identity. This assumes an impersonation/delegation model in
which the original caller identity can be obtained and then flowed through each
layer of your system. The delegation factor is a key criteria used to determine
your authentication mechanism.

32 Building Secure ASP.NET Applications

® Process identity. This is the default case (without specific impersonation). Local
resource access and downstream calls are made using the current process iden-
tity. The feasibility of this approach depends on the boundary being crossed,
because the process identity must be recognized by the target system.

This implies that calls are made in one of the following ways:
® Within the same Windows security domain

® Across Windows security domains (using trust and domain accounts, or
duplicated user names and passwords where no trust relationship exists)

® Service account. This approach uses a (fixed) service account. For example:

® For database access this might be a fixed SQL user name and password
presented by the component connecting to the database.

® When a fixed Windows identity is required, use an Enterprise Services server
application.

® Custom identity. When you don’t have Windows accounts to work with, you can
construct your own identities (using IPrincipal and IIdentity implementations)
that can contain details that relate to your own specific security context. For
example, these could include role lists, unique identifiers, or any other type of
custom information.

By implementing your custom identity with IPrincipal and IIdentity types and
placing them in the current Web context (using HttpContext.User), you immedi-
ately benefit from built-in gatekeepers such as .NET roles and
PrincipalPermission demands.

Consider Identity Flow

To support per-user authorization, auditing, and per-user data retrieval you may
need to flow the original caller’s identity through various application tiers and
across multiple computer boundaries. For example, if a back-end resource manager
needs to perform per-caller authorization, the caller’s identity must be passed to
that resource manager.

Based on resource manager authorization requirements and the auditing require-
ments of your system, identify which identities need to be passed through your
application.

Choose an Authentication Approach

Two key factors that influence the choice of authentication approach are first and
foremost the nature of your application’s user base (what types of browsers are they
using and do they have Windows accounts), and secondly your application’s
impersonation/delegation and auditing requirements.

Chapter 3: Authentication and Authorization 33

More Information

For more detailed considerations that help you to choose an authentication mecha-
nism for your application, see “Choosing an Authentication Mechanism” later in
this chapter.

Decide How to Flow Identity

You can flow identity (to provide security context) at the application level or you
can flow identity and security context at the operating system level.

To flow identity at the application level, use method and stored procedure param-
eters. Application identity flow supports:
® Per-user data retrieval using trusted query parameters

SELECT x,y FROM SomeTable WHERE username="bob"

® Custom auditing within any application tier

Operating system identity flow supports:

® Platform level auditing (for example, Windows auditing and SQL Server
auditing)
® Per-user authorization based on Windows identities

To flow identity at the operating system level, you can use the impersonation/
delegation model. In some circumstances you can use Kerberos delegation, while in
others (where perhaps the environment does not support Kerberos) you may need
to use other approaches such as, using Basic authentication. With Basic authentica-
tion, the user’s credentials are available to the server application and can be used to
access downstream network resources.

More Information

For more information about flowing identity and how to obtain an impersonation
token with network credentials (that is, supports delegation), see “Flowing Iden-
tity” later in this chapter.

Authorization Approaches

There are two basic approaches to authorization:

® Role based. Users are partitioned into application-defined, logical roles. Mem-
bers of a particular role share the same privileges within the application. Access
to operations (typically expressed by method calls) is authorized based on the
role-membership of the caller.

34 Building Secure ASP.NET Applications

Resources are accessed using fixed identities (such as a Web application’s or Web
service’s process identity). The resource managers trust the application to cor-
rectly authorize users and they authorize the trusted identity.

® Resource based. Individual resources are secured using Windows ACLs. The
ACL determines which users are allowed to access the resource and also the
types of operation that each user is allowed to perform (read, write, delete, and
SO on).

Resources are accessed using the original caller’s identity (using impersonation).

Role Based

With a role (or operations) based approach to security, access to operations (not
back-end resources) is authorized based on the role membership of the caller. Roles
(analyzed and defined at application design time) are used as logical containers that
group together users who share the same security privileges (or capabilities) within
the application. Users are mapped to roles within the application and role member-
ship is used to control access to specific operations (methods) exposed by the
application.

Where within your application this role mapping occurs is a key design criterion;
for example:

® On one extreme, role mapping might be performed within a back-end resource
manager such as a database. This requires the original caller’s security context to
flow through your application’s tiers to the back-end database.

® On the other extreme, role mapping might be performed within your front-end
Web application. With this approach, downstream resource managers are ac-
cessed using fixed identities that each resource manager authorizes and is
willing to trust.

® A third option is to perform role mapping somewhere in between the front-end
and back-end tiers; for example, within a middle tier Enterprise Services
application.

In multi-tiered Web applications, the use of trusted identities to access back-end
resource managers provides greater opportunities for application scalability (thanks
to connection pooling). Also, the use of trusted identities alleviates the need to flow
the original caller’s security context at the operating system level, something that
can be difficult (if not impossible in certain scenarios) to achieve.

Resource Based

The resource-based approach to authorization relies on Windows ACLs and the
underlying access control mechanics of the operating system. The application
impersonates the caller and leaves it to the operating system in conjunction with
specific resource managers (the file system, databases, and so on) to perform access
checks.

Chapter 3: Authentication and Authorization 35

This approach tends to work best for applications that provide access to resources
that can be individually secured with Windows ACLs, such as files. An example
would be an FTP application or a simple data driven Web application. The ap-
proach starts to break down where the requested resource consists of data that
needs to be obtained and consolidated from a number of different sources; for
example, multiple databases, database tables, external applications, or Web services.

The resource-based approach also relies on the original caller’s security context
flowing through the application to the back-end resource managers. This can
require complex configuration and significantly reduces the ability of a multi-tiered
application to scale to large numbers of users, because it prevents the efficient use
of pooling (for example, database connection pooling) within the application’s
middle tier.

Resource Access Models

The two contrasting approaches to authorization can be seen within the two most
commonly used resource-access security models used by .NET Web applications
(and distributed multi-tier applications in general). These are:

® The trusted subsystem model
® The impersonation/delegation model

Each model offers advantages and disadvantages both from a security and
scalability perspective. The next sections describe these models.

The Trusted Subsystem Model

With this model, the middle tier service uses a fixed identity to access downstream
services and resources. The security context of the original caller does not flow
through the service at the operating system level, although the application may
choose to flow the original caller’s identity at the application level. It may need to
do so to support back-end auditing requirements, or to support per-user data access
and authorization.

The model name stems from the fact that the downstream service (perhaps a data-
base) trusts the upstream service to authorize callers. Figure 3.1 on the next page
shows this model. Pay particular attention to the trust boundary. In this example,
the database trusts the middle tier to authorize callers and allow only authorized
callers to access the database using the trusted identity.

36 Building Secure ASP.NET Applications

Database trusts the

Web server. Web server
authorizes users.

Web or Application Server Database Server
Al :
— i
E -
- Trusted 1
C. Role-Based | [Service i
= Authorization Identit SQL i
D, y s i
> erver d
E . i
— i
- - N A
1
1
1
1
1
1
1
1
1

Trust Boundary

Figure 3.1

The Trusted Subsystem model

The pattern for resource access in the trusted subsystem model is the following:
® Authenticate users

® Map users to roles

® Authorize based on role membership

® Access downstream resource manager using a fixed trusted identity

Fixed Identities

The fixed identity used to access downstream systems and resource managers is
often provided by a preconfigured Windows account, referred to as a service ac-
count. With a Microsoft SQL Server™ resource manager, this implies Windows
authentication to SQL Server.

Alternatively, some applications use a nominated SQL account (specified by a user
name and password in a connection string) to access SQL Server. In this scenario,
the database must be configured for SQL authentication.

For more information about the relative merits of Windows and SQL authentication
when communicating with SQL Server, see Chapter 12, “Data Access Security.”

Using Multiple Trusted Identities

Some resource managers may need to be able to perform slightly more fine-grained
authorization, based on the role membership of the caller. For example, you may
have two groups of users, one who should be authorized to perform read/write
operations and the other read-only operations.

Chapter 3: Authentication and Authorization

Consider the following approach with SQL Server:

® Create two Windows accounts, one for read operations and one for read /write

operations.

37

More generally, you have separate accounts to mirror application-specific roles.
For example, you might want to use one account for Internet users and another
for internal operators and /or administrators.

® Map each account to a SQL Server user-defined database role, and establish the
necessary database permissions for each role.

® Map users to roles within your application and use role membership to deter-
mine which account to impersonate before connecting to the database.

This approach is shown in Figure 3.2.

Web or Application Server

— L Role1

Trusted |dentity 1

Database Server

Role2

Trusted |dentity 2

Role Mapping

Trust Boundary

Figure 3.2

Using multiple identities to access a database to support more fine-grained authorization

Identity1 has read permissions
Identity2 has read/write permissions

saQL
Server

The Impersonation / Delegation Model

With this model, a service or component (usually somewhere within the logical

business services layer) impersonates the client’s identity (using operating system-

level impersonation) before it accesses the next downstream service. If the next
service in line is on the same computer, impersonation is sufficient. Delegation is
required if the downstream service is located on a remote computer.

As a result of the delegation, the security context used for the downstream resource

access is that of the client. This model is typically used for a couple of reasons:
® It allows the downstream service to perform per-caller authorization using the

original caller’s identity.

® It allows the downstream service to use operating system-level auditing features.

38 Building Secure ASP.NET Applications

As a concrete example of this technique, a middle-tier Enterprise Services compo-
nent might impersonate the caller prior to accessing a database. The database is
accessed using a database connection tied to the security context of the original
caller. With this model, the database authenticates each and every caller and makes
authorization decisions based on permissions assigned to the individual caller’s
identity (or the Windows group membership of the caller). The impersonation/
delegation model is shown in Figure 3.3.

Web or Application Database
Server Server
A
A —P ——
C —» (D:_> sQL
D —p! E_» Server
E —P ——
Caller

Impersonation/Delegation

Figure 3.3

The impersonation/delegation model

Choosing a Resource Access Model

The trusted subsystem model is used in the vast majority of Internet applications
and large scale intranet applications, primarily for scalability reasons. The imper-
sonation model tends to be used in smaller-scale applications where scalability is
not the primary concern and those applications where auditing (for reasons of non-
repudiation) is a critical concern.

Advantage of the Impersonation / Delegation Model

The primary advantage of the impersonation / delegation model is auditing (close

to the data). Auditing allows administrators to track which users have attempted to
access specific resources. Generally auditing is considered most authoritative if the

audits are generated at the precise time of resource access and by the same routines
that access the resource.

The impersonation / delegation model supports this by maintaining the user’s
security context for downstream resource access. This allows the back-end system
to authoritatively log the user and the requested access.

Chapter 3: Authentication and Authorization 39

Disadvantages of the Impersonation / Delegation Model

The disadvantages associated with the impersonation / delegation model include:

Technology challenges. Most security service providers don’t support delega-
tion, Kerberos is the notable exception.

Processes that perform impersonation require higher privileges (specifically the
Act as part of the operating system privilege). (This restriction applies to Windows
2000 and will not apply to Windows .NET Server).

Scalability. The impersonation / delegation model means that you cannot
effectively use database connection pooling, because database access is per-
formed by using connections that are tied to the individual security contexts of
the original callers. This significantly limits the application’s ability to scale to
large numbers of users.

Increased administration effort. ACLs on back-end resources need to be main-
tained in such a way that each user is granted the appropriate level of access.
When the number of back-end resources increases (and the number of users
increases), a significant administration effort is required to manage ACLs.

Advantages of the Trusted Subsystem Model

The trusted subsystem model offers the following advantages:

Scalability. The trusted subsystem model supports connection pooling, an
essential requirement for application scalability. Connection pooling allows
multiple clients to reuse available, pooled connections. It works with this model
because all back-end resource access uses the security context of the service
account, regardless of the caller’s identity.

Minimizes back-end ACL management. Only the service account accesses back-
end resources (for example, databases). ACLs are configured against this single
identity.

Users can’t access data directly. In the trusted-subsystem model, only the
middle-tier service account is granted access to the back-end resources. As a
result, users cannot directly access back-end data without going through the
application (and being subjected to application authorization).

Disadvantages of the Trusted Subsystem Model

The trusted-subsystem model suffers from a couple of drawbacks:

® Auditing. To perform auditing at the back end, you can explicitly pass (at the

application level) the identity of the original caller to the back end, and have the
auditing performed there. You have to trust the middle-tier and you do have a
potential repudiation risk. Alternatively, you can generate an audit trail in the
middle tier and then correlate it with back-end audit trails (for this you must
ensure that the server clocks are synchronized).

40

Building Secure ASP.NET Applications

® Increased risk from server compromise. In the trusted-subsystem model, the
middle-tier service is granted broad access to back-end resources. As a result, a
compromised middle-tier service potentially makes it easier for an attacker to
gain broad access to back-end resources.

Flowing Identity

Distributed applications can be divided into multiple secure subsystems. For
example, a front-end Web application, a middle-tier Web service, a remote compo-
nent, and a database represent four different security subsystems. Each performs
authentication and authorization.

You must identify those subsystems that must flow the caller’s identity (and associ-
ated security context) to the next downstream subsystem in order to support autho-
rization against the original caller.

Application vs. Operating System Identity Flow

Strategies for flowing identities include using the delegation features of the
operating system or passing tickets and/or credentials at the application level.
For example:

e To flow identity at the application level, you typically pass credentials (or tick-
ets) using method arguments or stored procedure parameters.

Note: GenericPrincipal objects that carry the authenticated caller’s identity do not auto-
matically flow across processes. This requires custom code.

You can pass parameters to stored procedures that allow you to retrieve and
process user-specific data. For example:

SELECT CreditLimit From Table Where UserName="Bob"

This approach is sometimes referred to as a trusted query parameter approach.

® Operating system identity flow requires an extended form of impersonation
called delegation.

Impersonation and Delegation

Under typical circumstances, threads within a server application run using the
security context of the server process. The attributes that comprise the process’
security context are maintained by the process’ logon session and are exposed by
the process level Windows access token. All local and remote resource access is
performed using the process level security context that is determined by the
Windows account used to run the server process.

Chapter 3: Authentication and Authorization 41

Impersonation

When a server application is configured for impersonation, an impersonation token
is attached to the thread used to process a request. The impersonation token repre-
sents the security context of the authenticated caller (or anonymous user). Any local
resource access is performed using the thread impersonation token that results in
the use of the caller’s security context.

Delegation

If the server application thread attempts to access a remote resource, delegation is
required. Specifically, the impersonated caller’s token must have network creden-

tials. If it doesn’t, all remote resource access is performed as the anonymous user
(AUTHORITY\ANONYMOUS LOGON).

There are a number of factors that determine whether or not a security context can
be delegated. Table 3.1 shows the various IIS authentication types and for each one
indicates whether or not the security context of the authenticated caller can be
delegated.

Table 3.1: IIS Authentication types

Authentication Type Can Delegate Notes

Anonymous Depends If the anonymous account (by default IUSR_MACHINE) is
configured in IIS as a local account, it cannot be
delegated unless the local (Web server) and remote
computer have identical local accounts (with matching
usernames and passwords).

If the anonymous account is a domain account it can
be delegated.

Basic Yes If Basic authentication is used with local accounts, it
can be delegated if the local accounts on the local and
remote computers are identical. Domain accounts can
also be delegated.

Digest No

Integrated Windows Depends Integrated Windows authentication either results in
NTLM or Kerberos (depending upon the version of
operating system on client and server computer).

NTLM does not support delegation.

Kerberos supports delegation with a suitably configured
environment.

For more information, see “How To: Implement
Kerberos Delegation for Windows 2000” in the
References section of this guide.

(continued)

42 Building Secure ASP.NET Applications

Authentication Type Can Delegate Notes

Client Certificates Depends Can be delegated if used with IIS certificate mapping
and the certificate is mapped to a local account that
is duplicated on the remote computer or is mapped to
a domain account.

This works because the credentials for the mapped
account are stored on the local server and are used to
create an Interactive logon session (which has network
credentials).

Active Directory certificate mapping does not support
delegation.

Important: Kerberos delegation under Windows 2000 is unconstrained. In other words, a user
may be able to make multiple network hops across multiple remote computers. To close this
potential security risk, you should limit the scope of the domain account’s reach by removing
the account from the Domain Users group and allow the account to be used only to log on to
specific computers.

Role-Based Authorization

Most .NET Web applications will use a role-based approach to authorization. You
need to consider the various role types and choose the one(s) most appropriate for
your application scenario. You have the following options:

e .NET roles

® Enterprise Services (COM+) roles

® SQL Server User Defined Database roles

® SQL Server Application roles
-NET Roles

.NET roles are extremely flexible and revolve around IPrincipal objects that contain
the list of roles that an authenticated identity belongs to. .NET roles can be used
within Web applications, Web services, or remote components hosted within
ASP.NET (and accessed using the HttpChannel).

You can perform authorization using .NET roles either declaratively using
PrincipalPermission demands or programmatically in code, using imperative
PrincipalPermission demands or the IPrincipal.IsInRole method.

Chapter 3: Authentication and Authorization 43

.NET Roles with Windows Authentication

If your application uses Windows authentication, ASPNET automatically constructs
a WindowsPrincipal that is attached to the context of the current Web request
(using HttpContext.User). After the authentication process is complete and
ASP.NET has attached to object to the current request, it is used for all subsequent
NET role-based authorization.

The Windows group membership of the authenticated caller is used to determine
the set of roles. With Windows authentication, .NET roles are the same as Windows
groups.

.NET Roles with non-Windows Authentication

If your application uses a non-Windows authentication mechanism such as Forms
or Passport, you must write code to create a GenericPrincipal object (or a custom
IPrincipal object) and populate it with a set of roles obtained from a custom authen-
tication data store such as a SQL Server database.

Custom IPrincipal Objects

The .NET Role-based security mechanism is extensible. You can develop your own
classes that implement IPrincipal and IIdentity and provide your own extended
role-based authorization functionality.

As long as the custom IPrincipal object (containing roles obtained from a custom
data store) is attached to the current request context (using HttpContext.User),
basic role-checking functionality is ensured.

By implementing the IPrincipal interface, you ensure that both the declarative and
imperative forms of PrincipalPermission demands work with your custom identity.
Furthermore, you can implement extended role semantics; for example, by provid-
ing an additional method such as IsInMultipleRoles(string [] roles) which would
allow you to test and assert for membership of multiple roles.

More Information

® For more information about .NET role-based authorization, see Chapter 8,
“ASP.NET Security.”

® For more information about creating GenericPrincipal objects, see “How to use
Forms authentication with GenericPrincipal objects” in the Reference section of
this guide.

44 Building Secure ASP.NET Applications

Enterprise Services (COM+) Roles

Using Enterprise Services (COM+) roles pushes access checks to the middle tier and
allows you to use database connection pooling when connecting to back-end data-
bases. However, for meaningful Enterprise Services (COM+) role-based authoriza-
tion, your front-end Web application must impersonate and flow the original
caller’s identity (using a Windows access token) to the Enterprise Services applica-
tion. To achieve this, the following entries must be placed in the Web application’s
Web.config file.

<authentication mode="Windows" />
<identity impersonate="true" />

If it is sufficient to use declarative checks at the method level (to determine which
users can call which methods), you can deploy your application and update role
membership using the Component Services administration tool.

If you require programmatic checks in method code, you lose some of the adminis-
trative and deployment advantages of Enterprise Services (COM+) roles, because
role logic is hard-coded.

SQL Server User Defined Database Roles

With this approach, you create roles in the database, assign permissions based on
the roles and map Windows group and user accounts to the roles. This approach
requires you to flow the caller’s identity to the back end (if you are using the pre-
ferred Windows authentication to SQL Server).

SQL Server Application Roles

With this approach, permissions are granted to the roles within the database, but
SQL Server application roles contain no user or group accounts. As a result, you lose
the granularity of the original caller.

With application roles, you are authorizing access to a specific application (as
opposed to a set of users). The application activates the role using a built-in stored
procedure that accepts a role name and password. One of the main disadvantages
of this approach is that it requires the application to securely manage credentials
(the role name and associated password).

More Information

For more information about SQL Server user defined database roles and application
roles, see Chapter 12, “Data Access Security.”

Chapter 3: Authentication and Authorization 45

.NET Roles versus Enterprise Services (COM+) Roles

The following table presents a comparison of the features of .NET roles and Enter-
prise Services (COM+) roles.

Table 3.2: Comparing Enterprise Services roles with .NET roles

Feature Enterprise Services Roles .NET Roles
Administration Component Services Custom
Administration Tool
Data Store COM+ Catalog Custom data store (for example, SQL
Server or Active Directory)
Declarative Yes Yes
[SecurityRole(“Manager”)] [PrincipalPermission(

SecurityAction.Demand,
Role="Manager”)]

Imperative Yes Yes
ContextUtil.IsCallerInRole() IPrincipal.lsinRole

Class, Interface Yes Yes

and Method

Level

Granularity

Extensible No Yes

(using custom [Principal
implementation)

Available to all Only for components that Yes

NET derive from ServicedComponent

components base class

Role Roles contain Windows group or When using WindowsPrincipals,

Membership user accounts roles ARE Windows groups — no extra
level of abstraction

Requires Yes No

explicit To obtain method level

Interface authorization, an interface must

implementation be explicitly defined and

implemented

46 Building Secure ASP.NET Applications

Using .NET Roles

You can secure the following items with .NET roles:
Files

Folders

Web pages (.aspx files)

Web services (.asmx files)

Objects

Methods and properties

Code blocks within methods

The fact that you can use .NET roles to protect operations (performed by methods
and properties) and specific code blocks means that you can protect access to local
and remote resources accessed by your application.

Note: The first four items in the preceding list (Files, folders, Web pages, and Web services)
are protected using the UrlAuthorizationModule, which can use the role membership of the
caller (and the caller’s identity) to make authorization decisions.

If you use Windows authentication, much of the work required to use .NET roles is
done for you. ASP.NET constructs a WindowsPrincipal object and the Windows
group membership of the user determines the associated role set.

To use .NET roles with a non-Windows authentication mechanism, you must write
code to:
e Capture the user’s credentials.

e Validate the user’s credentials against a custom data store such as a SQL Server
database.

® Retrieve a role list, construct a GenericPrincipal object and associate it with the
current Web request.

The GenericPrincipal object represents the authenticated user and is used for
subsequent .NET role checks, such as declarative PrincipalPermission demands
and programmatic IPrincipal.IsInRole checks.

More Information

For more information about the process involved in creating a GenericPrincipal

object for Forms authentication, see Chapter 8, “ASP.NET Security.”

Checking Role Membership

The following types of .NET role checks are available:

Chapter 3: Authentication and Authorization 47

Important: .NET role checking relies upon an IPrincipal object (representing the authenti-
cated user) being associated with the current request. For ASENET Web applications, the

IPrincipal object must be attached to HttpContext.User. For Windows Forms applications,
the IPrincipal object must be attached to Thread.CurrentPrincipal.

Manual role checks. For fine-grained authorization, you can call the
IPrincipal.IsInRole method to authorize access to specific code blocks based
on the role membership of the caller. Both AND and OR logic can be used
when checking role membership.

Declarative role checks (gates to your methods). You can annotate methods
with the PrincipalPermissionAttribute class (which can be shortened to
PrincipalPermission), to declaratively demand role membership. These support
OR logic only. For example you can demand that a caller is in at least one specific
role (for example, the caller must be a teller or a manager). You cannot specify
that a caller must be a manager and a teller using declarative checks.

Imperative role checks (checks within your methods). You can call
PrincipalPermission.Demand within code to perform fine-grained authorization
logic. Logical AND and OR operations are supported.

Role Checking Examples

The following code fragments show some example role checks using programmatic,
declarative, and imperative techniques.

1. Authorizing Bob to perform an operation:

Note: Although you can authorize individual users, you should generally authorize based on
role membership which allows you to authorize sets of users who share the same privi-
leges within your application.

® Direct user name check

GenericlIdentity userIdentity = new GenericIdentity("Bob");
if (userIdentity.Name=="Bob")

{

}

® Declarative check

[PrincipalPermissionAttribute(SecurityAction.Demand, User="Bob")]
public void DoPrivilegedMethod()

{

B

® Imperative check

PrincipalPermission permCheckUser = new PrincipalPermission(
"Bob", null);
permCheckUser.Demand() ;

48

Building Secure ASP.NET Applications

2. Authorizing tellers to perform an operation:
® Direct role name check

GenericIdentity userIdentity = new GenericIdentity("Bob");
// Role names would be retrieved from a custom data store

string[] roles = new String[]{"Manager", "Teller"};

GenericPrincipal userPrincipal = new GenericPrincipal(userIdentity,
roles);

if (userPrincipal.IsInRole("Teller"))

{

}

® Declarative check

[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Teller")]
void SomeTellerOnlyMethod()

{

}

® Imperative check

public SomeMethod()
{
PrincipalPermission permCheck = new PrincipalPermission(
null,"Teller");
permCheck.Demand() ;
// Only Tellers can execute the following code
// Non members of the Teller role result in a security exception

3. Authorize managers OR tellers to perform operation:
® Direct role name check

if (Thread.CurrentPrincipal.IsInRole("Teller™) ||
Thread.CurrentPrincipal.IsInRole("Manager™))

{
// Perform privileged operations

}

® Declarative check

[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Teller"),
PrincipalPermissionAttribute(SecurityAction.Demand, Role="Manager")]

public void DoPrivilegedMethod()

{

Chapter 3: Authentication and Authorization 49

® Imperative check

PrincipalPermission permCheckTellers = new PrincipalPermission(
null,"Teller");

PrincipalPermission permCheckManagers = new PrincipalPermission(
null,"Manager");

(permCheckTellers.Union(permCheckManagers)) .Demand() ;

4. Authorize only those people who are managers AND tellers to perform
operation:

® Direct role name check

if (Thread.CurrentPrincipal.IsInRole("Teller") &&
Thread.CurrentPrincipal.IsInRole("Manager"))

{

// Perform privileged operation

}

® Declarative check

It is not possible to perform AND checks with .NET roles declaratively.
Stacking PrincipalPermission demands together results in a logical OR.

® Imperative check

PrincipalPermission permCheckTellers = new PrincipalPermission(
null,"Teller");

permCheckTellers.Demand();

PrincipalPermission permCheckManagers = new PrincipalPermission(
null, "Manager");

permCheckManagers.Demand() ;

Choosing an Authentication Mechanism

This section presents guidance which is designed to help you choose an appropriate
authentication mechanism for common application scenarios. You should start by
considering the following issues:

® Identities. A Windows authentication mechanism is appropriate only if your
application’s users have Windows accounts that can be authenticated by a
trusted authority accessible by your application’s Web server.

® Credential management. One of the key advantages of Windows authentication

is that it enables you to let the operating system take care of credential manage-
ment. With non-Windows approaches, such as Forms authentication, you must

50 Building Secure ASP.NET Applications

carefully consider where and how you store user credentials. The two most
common approaches are to use:

® SQL Server databases
® User objects within Active Directory

For more information about the security considerations of using SQL Server as a
credential store, see Chapter 12, “Data Access Security.”

For more information about using Forms authentication against custom data
stores (including Active Directory), see Chapter 8, “ASP.NET Security.”

® Identity flow. Do you need to implement an impersonation/delegation model
and flow the original caller’s security context at the operating system level across
tiers? For example, to support auditing or per-user (granular) authorization. If
so, you need to be able to impersonate the caller and delegate their security
context to the next downstream subsystem, as described in the “Delegation”
section earlier in this chapter.

® Browser type. Do your users all have Internet Explorer or do you need to sup-
port a user base with mixed browser types? Table 3.3 illustrates which authenti-
cation mechanisms require Internet Explorer browsers, and which support a
variety of common browser types.

Table 3.3: Authentication browser requirements

Authentication Type Requires Notes
Internet
Explorer
Forms No
Passport No
Integrated Windows Yes Kerberos also requires Windows 2000 or later
(Kerberos or NTLM) operating systems on the client and server comput-

ers and accounts configured for delegation. For more
information, see “How To: Implement Kerberos
Delegation for Windows 2000” in the Reference
section of this guide.

Basic No Basic authentication is part of the HTTP 1.1 protocol
that is supported by virtually all browsers

Digest Yes

Certificate No Clients require X.509 certificates

Chapter 3: Authentication and Authorization 51

Internet Scenarios
The basic assumptions for Internet scenarios are:

® Users do not have Windows accounts in the server’s domain or in a trusted
domain accessible by the server.

® Users do not have client certificates.

Figure 3.4 shows a decision tree for choosing an authentication mechanism for
Internet scenarios.

Internet Scenarios

Base Assumption:
Users don’t have Windows
accounts or certificates

Yes | Use Passport OR
Forms
Authentication

Interactive Web
Application?

No - Web Service

Use GXA WS-Security
Authentication

Figure 3.4

Choosing an authentication mechanism for Internet applications

For more information about Web service security and the WS-Security specification,
part of the Global XML Architecture (GXA) initiative, see Chapter 10, “Web Services
Security.”

Forms / Passport Comparison

This section summarizes the relative merits of Forms and Passport authentication.

Advantages of Forms Authentication

® Supports authentication against a custom data store; typically a SQL Server
database or Active Directory.

Supports role-based authorization with role lookup from a data store.
Smooth integration with Web user interface.

ASP.NET provides much of the infrastructure. Relatively little custom code is
required in comparison to classic ASP.

52 Building Secure ASP.NET Applications

Advantages of Passport Authentication
® Passport is a centralized solution.

® [t removes credential management issues from the application.

® [t can be used with role-based authorization schemes.
® [tis very secure as it is built on cryptography technologies.

More Information

® For more information about Web service authentication approaches, see Chapter

10, “Web Services Security.”

® For more information about using Forms Authentication with SQL Server, see
“How To: Use Forms authentication with SQL Server 2000” in the Reference

section of this guide.

Intranet / Extranet Scenarios

Figure 3.5 shows a decision tree that can be used to help choose an authentication

mechanism for intranet and extranet application scenarios.

Extranet / Intranet Scenarios

Do users have Yes
Active Directory

accounts?

Is delegation
required?

Use Passport

Use Basic,
Kerberos OR
Forms + Custom
Mapping

Authentication

No
in2K Servers

+ Clients?

Use Basic, NTLM
or Certificates

nteractive Web
Application?

Users require
passports?

Yes

N =D SRR Use Basic, Digest,

NTLM, Kerberos or
Certificates

Use Forms
Authentication

Use Certificate S

Authentication

Do clients have

Use WS-Security
Authentication

Figure 3.5
Choosing an authentication mechanism for intranet and extranet applications

Chapter 3: Authentication and Authorization 53

Authentication Mechanism Comparison

The following table presents a comparison of the available authentication
mechanisms.

Table 3.4: Available authentication methods

Basic Digest NTLM Kerberos Certs Forms Passport

Users need | Yes Yes Yes Yes No No No
Windows

accounts in

server’s

domain

Supports Yes No No Yes Can do Yes Yes
delegation*

Requires No Yes No Yes No No No
Win2K

clients and

servers

Credentials | Yes No No No No Yes No
passed as

clear text

(requires

SSL)

Supports Yes No No No Yes Yes Yes
non-1E
browsers

* Refer to the “Delegation” topic in the “Flowing Identity” section earlier in this chapter for details.

Summary

Designing distributed application authentication and authorization approaches is

a challenging task. Proper authentication and authorization design during the early
design phases of your application development helps mitigate many of the top
security risks. The following summarizes the information in this chapter:

® Use the trusted subsystem resource access model to gain the benefits of database
connection pooling.

® If your application does not use Windows authentication, use .NET role checking
to provide authorization. Validate credentials against a custom data store,
retrieve a role list and create a GenericPrincipal object. Associate it with the
current Web request (HttpContext.User).

54 Building Secure ASP.NET Applications

e If your application uses Windows authentication and doesn’t use Enterprise
Services, use .NET roles. Remember that for Windows authentication, .NET roles
are Windows groups.

e If your application uses Windows authentication and Enterprise Services, con-
sider using Enterprise Services (COM+) roles.

® For meaningful role-based authorization using Enterprise Services (COM+) roles,
the original caller’s identity must flow to the Enterprise Services application. If
the Enterprise Services application is called from an ASP.NET Web application,
this means that the Web application must use Windows authentication and be
configured for impersonation.

® Annotate methods with the PrincipalPermission attribute to declaratively
demand role membership. The method is not called if the caller is not in the
specified role and a security exception is generated.

e Call PrincipalPermission.Demand within method code (or use
IPrincipal.IsInRole) for fine-grained authorization decisions.

® Consider implementing a custom IPrincipal object to gain additional role-
checking semantics.

Secure Communication

Many applications pass security sensitive data across networks to and from end
users and between intermediate application nodes. Sensitive data might include
credentials used for authentication, or data such as credit card numbers or bank
transaction details. To guard against unwanted information disclosure and to
protect the data from unauthorized modification while in transit, the channel
between communication end points must be secured.

Secure communication provides the following two features:

Privacy. Privacy is concerned with ensuring that data remains private and
confidential, and cannot be viewed by eavesdroppers who may be armed with
network monitoring software. Privacy is usually provided by means of encryp-
tion.

Integrity. Secure communication channels must also ensure that data is protected
from accidental or deliberate (malicious) modification while in transit. Integrity
is usually provided by using Message Authentication Codes (MACs).

This chapter covers the following secure communication technologies:

Secure Sockets Layer / Transport Layer Security (SSL/TLS). This is most com-
monly used to secure the channel between a browser and Web server. However,
it can also be used to secure Web service messages and communications to and
from a database server running Microsoft® SQL Server™ 2000.

Internet Protocol Security (IPSec). IPSec provides a transport level secure
communication solution and can be used to secure the data sent between two
computers; for example, an application server and a database server.

Remote Procedure Call (RPC) Encryption. The RPC protocol used by Distrib-

uted COM (DCOM) provides an authentication level (packet privacy) that results
in the encryption of every packet of data sent between client and server.

56 Building Secure ASP.NET Applications

Know What to Secure

When a Web request flows across the physical deployment tiers of your application,
it crosses a number of communication channels. A commonly used Web application
deployment model is shown in Figure 4.1.

Web Application Database

Clients 9 goryer Server [™| Server

Figure 4.1
A typical Web deployment model

In this typical deployment model, a request passes through three distinct channels.
The client-to-Web server link may be over the Internet or corporate intranet and
typically uses HTTP. The remaining two links are between internal servers within
your corporate domain. Nonetheless, all three links represent potential security
concerns. Many purely intranet-based applications convey security sensitive data
between tiers; for example, HR and payroll applications that deal with sensitive
employee data.

Figure 4.2 shows how each channel can be secured by using a combination of SSL,
IPSec and RPC encryption.

Cii _| Web _ | Application _ | Database
ients 'dl Server 4 Server 4 Server
AY AY ’ AY ’
AY U AY U AY U
\ ’ \ ’ \ ’
\ , \ , \ ,
A4 A4 AY ,
A4 A4 A4
SSL IPSec or RPC IPSec or SSL
(Privacy/Integrity) (Privacy/Integrity) (Privacy/Integrity)
Figure 4.2

A typical Web deployment model, with secure communications

The choice of technology depends on a number of factors including the transport
protocol, end point technologies, and environmental considerations (such as hard-
ware, operating system versions, firewalls, and so on).

Chapter 4: Secure Communication 57

SSL/TLS

SSL/TLS is used to establish an encrypted communication channel between client
and server. The handshake mechanism used to establish the secure channel is well
documented and details can be found in the following articles in the Microsoft
Knowledge Base:

® (257591, “Description of the Secure Sockets Layer (SSL) Handshake”

® (257587, “Description of the Server Authentication Process During the SSL
Handshake”

® (257586, “Description of the Client Authentication Process During the SSL
Handshake”

Using SSL

When you use SSL you should be aware of the following;:

® When SSL is applied, the client uses the HTTPS protocol (and specifies an
https:// URL) and the server listens on TCP port 443.

® You should monitor your application’s performance when you enable SSL.

SSL uses complex cryptographic functions to encrypt and decrypt data and as a
result impacts the performance of your application. The largest performance hit
occurs during the initial handshake, where asymmetric public/private-key
encryption is used. Subsequently (after a secure session key is generated and
exchanged), faster, symmetric encryption is used to encrypt application data.

® You should optimize pages that use SSL by including less text and simple
graphics in those pages.

® Because the performance hit associated with SSL is greatest during session
establishment, ensure that your connections do not time out.

You can fine tune this by increasing the value of the ServerCacheTime registry
entry. For more information, see article Q247658, “HOW TO: Configure Secure
Sockets Layer Server and Client Cache Elements” in the Microsoft Knowledge

Base.

® SSL requires a server authentication certificate to be installed on the Web server
(or database server if you are using SSL to communicate with SQL Server 2000).
For more information about installing server authentication certificates, see
“How to setup SSL on a Web server” within the Reference section of this guide.

58 Building Secure ASP.NET Applications

IPSec

IPSec can be used to secure the data sent between two computers; for example, an
application server and a database server. IPSec is completely transparent to applica-
tions as encryption, integrity, and authentication services are implemented at the
transport level. Applications continue to communicate with one another in the
normal manner using TCP and UDP ports.

Using IPSec you can:

Provide message confidentiality by encrypting all of the data sent between two
computers.

Provide message integrity between two computers (without encrypting data).

Provide mutual authentication between two computers (not users). For example,
you can help secure a database server by establishing a policy that permits
requests only from a specific client computer (for example, an application or Web
server).

Restrict which computers can communicate with one another. You can also
restrict communication to specific IP protocols and TCP/UDP ports.

Note: IPSec is not intended as a replacement for application level security. Today it is used as
a defense-in-depth mechanism or to secure insecure applications without changing them, and
to secure non-TLS protocols from network-wire attacks.

Using IPSec

When you use IPSec you should be aware of the following;:

IPSec can be used for both authentication and encryption.

There are no IPSec APIs for developers to programmatically control settings.
IPSec is completely controlled and configured through the IPSec snap-in, within
the Local Security Policy Microsoft Management Console (MMC).

IPSec in the Microsoft Windows® 2000 operating system cannot secure all types
of IP traffic.

Specifically, it cannot be used to secure Broadcast, Multicast, Internet Key
Exchange, or Kerberos (which is already a secure protocol) traffic.

For more information, see article Q253169, “Traffic That Can and Cannot Be
Secured by IPSec,” in the Microsoft Knowledge Base.

You use IPSec filters to control when IPSec is applied.

To test the IPSec policies, use IPSec Monitor. IPSec Monitor (Ipsecmon.exe)
provides information about which IPSec policy is active and whether a secure
channel between computers is established.

Chapter 4: Secure Communication 59

For more information, see the Knowledge Base articles:
® (Q313195, “HOW TO: Use IPSec Monitor in Windows 2000”

® (231587, “Using the IP Security Monitor Tool to View IPSec Communica-
tions”

® To establish a trust between two servers, you can use IPSec with mutual authen-
tication. This uses certificates to authenticate both computers.

For more information, see the following Knowledge Base articles:
e (248711, “Mutual Authentication Methods Supported for L2TP /IPSec”
® (253498, “HOW TO: Install a Certificate for Use with IP Security”

® If you need to use IPSec to secure communication between two computers that
are separated by a firewall, make sure that the firewall does not use Network
Address Translation (NAT). IPSec does not work with any NAT-based devices.

For more information and configuration steps, see article Q233256, “"HOW TO
Enable IPSec Traffic through a Firewall” in the Microsoft Knowledge Base and
“How To: Use IPSec to Provide Secure Communication between Two Servers” in
the Reference section of this guide.

RPC Encryption

RPC is the underlying transport mechanism used by DCOM. RPC provides a set of
configurable authentication levels that range from no authentication (and no protec-
tion of data) to full encryption of parameter state.

The most secure level (RPC Packet Privacy) encrypts parameter state for every
remote procedure call (and therefore every DCOM method invocation). The level of
RPC encryption, 40-bit or 128-bit, depends on the version of the Windows operating
system that is running on the client and server computers.

Using RPC Encryption

You are most likely to want to use RPC encryption when your Web-based applica-
tion communicates with serviced components (within Enterprise Services server
applications) located on remote computers.

In this event, to use RPC Packet Privacy authentication (and encryption) you must
configure both the client and the server. A process of high-water mark negotiation
occurs between client and server, which ensures that the higher of the two (client
and server) settings are used.

The server settings can be defined at the (Enterprise Services) application level,
either by using .NET attributes within your serviced component assembly, or by
using the Component Services administration tool at deployment time.

60 Building Secure ASP.NET Applications

If the client is an ASPNET Web application or Web service, the authentication level
used by the client is configured using the comAuthenticationLevel attribute on the
<processModel> element within Machine.config. This provides the default authen-
tication level for all ASP.NET applications that run on the Web server.

More Information

For more information about RPC authentication level negotiation and service
component configuration, see Chapter 9, “Enterprise Services Security.”

Point to Point Security

Point-to-point communication scenarios can be broadly categorized into the follow-
ing topics:

® Browser to Web Server

® Web Server to Remote Application Server

® Application Server to Database Server

Browser to Web Server

To secure sensitive data sent between a browser and Web server, use SSL. You need
to use SSL in the following situations:

® You are using Forms authentication and need to secure the clear text credentials
submitted to a Web server from a logon form.

In this scenario, you should use SSL to secure access to all pages (not just the
logon page) to ensure that the authentication cookie, generated as a result on
the initial authentication process, remains secure throughout the lifetime of the
client’s browser session with the application.

® You are using Basic authentication and need to secure the (Base64 encoded) clear
text credentials.

You should use SSL to secure access to all pages (not just the initial log on), as
Basic authentication sends the clear text credentials to the Web server with all
requests to the application (not just the initial one).

Note: Base64 is used to encode binary data as printable ASCII text. Unlike encryption, it
does not provide message integrity or privacy.

® Your application passes sensitive data between the browser and Web server (and
vice-versa); for example, credit card numbers or bank account details.

Chapter 4: Secure Communication 61

Web Server to Remote Application Server

The transport channel between a Web server and a remote application server should
be secured by using IPSec, SSL or RPC Encryption. The choice depends on the
transport protocols, environmental factors (operating system versions, firewalls,
and so on).

Enterprise Services. If your remote server hosts one or more serviced compo-
nents (in an Enterprise Services server application) and you are communicating
directly with them (and as a result using DCOM), use RPC Packet Privacy
encryption.

For more information about how to configure RPC encryption between a Web
application and remote serviced component, see Chapter 9, “Enterprise Services
Security.”

Web Services. If your remote server hosts a Web Service, you can choose
between IPSec and SSL.

You should generally use SSL because the Web service already uses the HTTP
transport. SSL also allows you to only encrypt the data sent to and from the Web
service (and not all traffic sent between the two computers). IPSec results in the
encryption of all traffic sent between the two computers.

Note: Message level security (including data encryption) is addressed by the Global XML
Web Services Architecture (GXA) initiative and specifically the WS-Security specification.
Microsoft provides the Web Services Development Toolkit to allow you to develop message
level security solutions. This is available for download at http://msdn.microsoft.com
/webservices/building/wsdk/.

.NET Components (using .NET Remoting). If your remote server hosts one or
more .NET components and you connect to them over the TCP channel, you can
use IPSec to provide a secure communication link. If you host the NET compo-
nents within ASP.NET, you can use SSL (configured using IIS).

Application Server to Database Server

To secure the data sent between an application server and database server, you can
use IPSec. If your database server runs SQL Server 2000 (and the SQL Server 2000
network libraries are installed on the application server), you can use SSL. This
latter option requires a server authentication certificate to be installed in the data-
base server’s machine store.

62 Building Secure ASP.NET Applications

You may need to secure the link to the database server in the following situations:

® You are connecting to the database server and are not using Windows authenti-
cation. For example, you may be using SQL authentication to SQL Server or you
may be connecting to a non-SQL Server database. In these cases, the credentials
are passed in clear text, which can represent a significant security concern.

Note: One of the key benefits of using Windows authentication to SQL Server is that it
means that the credentials are never passed across the network. For more information
about Windows and SQL authentication, see Chapter 12, “Data Access Security.”

® Your application may be submitting and retrieving sensitive data to and from the
database (for example, payroll data).

Using SSL to SQL Server
Consider the following points if you use SSL to secure the channel to a SQL Server
database:

® For SSL to work, you must install a server authentication certificate in the ma-
chine store on the database server computer. The client computer must also have
a root Certificate Authority certificate from the same (or trusting) authority that
issued the server certificate.

® (lients must have the SQL Server 2000 connectivity libraries installed. Earlier
versions or generic libraries will not work.

® SSL only works for TCP/IP (the recommended communication protocol for SQL
Server) and named pipes.

® You can configure the server to force the use of encryption for all connections
(from all clients).

® On the client, you can:
® Force the use of encryption for all outgoing connections.

e Allow client applications to choose whether or not to use encryption on a per-
connection basis, by using the connection string.

® Unlike IPSec, configuration changes are not required if the client or server IP
addresses change.

More Information

For more information about using SSL to SQL Server, see the following resources:
e “How To: Use SSL to Secure Communication with SQL Server 2000” in the
Reference section of this guide.

® Webcast: “Microsoft SQL Server 2000: How to Configure SSL Encryption (April
23, 2002)”

Chapter 4: Secure Communication 63

Choosing Between IPSec and SSL

Consider the following points when choosing between IPSec and SSL:

IPSec can used to secure all IP traffic between computers; SSL is specific to
an individual application.

IPSec is a computer-wide setting and does not support the encryption of
specific network connections. However, sites can be partitioned to use or
not use SSL. Also, when you use SSL to connect to SQL Server, you can
choose on a per connection basis (from the client application) whether or
not to use SSL.

IPSec is transparent to applications, so it can be used with secure protocols
that run on top of IP such as HTTP, FTP, and SMTP. However, SSL/TLS is
closely tied to the application.

IPSec can be used for computer authentication in addition to encryption.
This is particularly significant for trusted subsystem scenarios, where the
database authorizes a fixed identity from a specific application (running

on a specific computer). IPSec can be used to ensure that only the specific
application server can connect to the database server, in order to prevent
attacks from other computers.

® [PSec requires that both computers run Windows 2000 or later.
® SSL can work through a NAT-based firewall; IPSec cannot.

Farming and Load Balancing

If you use SSL in conjunction with multiple virtual Web sites, you need to use
unique IP addresses or unique port numbers. You cannot use multiple sites with
the same IP address and port number. If the IP address is combined with a server
affinity setting in a load balancer, this will work fine.

More Information

For more information, see Q187504, “HTTP 1.1 Host Headers Are Not Supported
When You Use SSL,” in the Microsoft Knowledge Base.

Summary

This chapter described how a combination of SSL, IPSec, and RPC encryption can
be used to provide an end-to-end secure communication solution for your distrib-
uted application. To summarize:

® Channel security is a concern for data passed over the Internet and on the corpo-
rate intranet.

64 Building Secure ASP.NET Applications

® Consider the security requirements of the Web browser to Web server, Web
server to application server, and application server to database server links.

® Secure communication provides privacy and integrity. It does not protect you
from non-repudiation (for this use, client certificates)

® Channel security options include SSL, IPSec, and RPC Encryption. The latter
option applies when your application uses DCOM to communicate with remote
serviced components.

® If you use SSL to communicate with SQL Server, the application can choose (on a
per-connection basis) whether or not to encrypt the connection.

IPSec encrypts all IP traffic that flows between two computers.

The choice of security mechanism is dependent upon transport protocol, operat-
ing system versions, and network considerations (including firewalls).

® There is always a trade-off between secure communication and performance.
Choose the level of security that is appropriate to your application requirements.

Intranet Security

Access to intranet applications is restricted to a limited group of authorized users
(such as employees that belong to a domain). While an intranet setting limits the
exposure of your application, you may still face several challenges when you
develop authentication, authorization, and secure communication strategies. For
example, you may have non-trusting domains, which make it difficult to flow a
caller’s security context and identity through to the back-end resources within your
system. You may also be operating within a heterogeneous environment with mixed
browser types. This makes it more difficult to use a common authentication
mechanism.

If you have a homogenous intranet where all computers run the Microsoft®
Windows® 2000 operating system or later and you have a domain where users are
trusted for delegation, delegation of the original caller’s security context to the back
end becomes an option.

You must also consider secure communication. Despite the fact that your applica-
tion runs in an intranet environment, you cannot consider the data sent over the
network secure. It is likely that you will need to secure the data sent between
browsers and the Web server in addition to data sent between application servers
and databases.

The following common intranet scenarios are used in this chapter to illustrate key
authentication, authorization, and secure communication techniques:

e ASPNET to SQL Server

® ASP.NET to Enterprise Services to SQL Server

® ASPNET to Web Services to SQL Server

® ASPNET to Remoting to SQL Server

In addition, this chapter describes a Windows 2000 delegation scenario (Flowing the
Original Caller to the Database), in which the original caller’s security context and

identity flows at the operating system level from browser to database using inter-
mediate Web and application servers.

66 Building Secure ASP.NET Applications

Note: Several scenarios described in this chapter either replace the default ASPNET account
used to run ASRNET applications or change its password to allow duplicated accounts to be
created on remote computers. These scenarios update the <processModel> element of
Machine.config. This results in credentials being stored in clear text within machine.config. For
a detailed discussion of this topic, see “Accessing Network Resources” in Chapter 8, “ASRNET
Security.”

ASP.NET to SQL Server

In this scenario, a HR database serves per-user data securely on a homogenous
intranet. The application uses a trusted subsystem model and executes calls on
behalf of the original callers. The application authenticates callers by using Inte-
grated Windows authentication and makes calls to the database using the ASPNET
process identity. Due to the sensitive nature of the data, SSL is used between the
Web server and clients.

The basic model for this application scenario is shown in Figure 5.1.

Web Server Database Server
S
|| 1S | ASP.NET ||| sQL
Server
Figure 5.1
ASP.NET to SQL Server
Characteristics

This scenario has the following characteristics:

® C(lients have Internet Explorer.

User accounts are in Microsoft Active Directory® directory service.
The application provides sensitive, per-user data.

Only authenticated clients should access the application.

The database trusts the application to authenticate users properly (that is, the
application makes calls to the database on behalf of the users).

® Microsoft SQL Server™ is using a single database user role for authorization.

Chapter 5: Intranet Security 67

Secure the Scenario

In this scenario, the Web server authenticates the caller and restricts access to local
resources by using the caller’s identity. You don’t have to impersonate within the
Web application in order to restrict access to resources against the original caller.
The database authenticates against the ASPNET default process identity, which is a
least privileged account (that is, the database trusts the ASPNET application).

Table 5.1: Security measures

Category Details

Authentication ® Provide strong authentication at the Web server to authenticate
original callers by using Integrated Windows authentication in IIS.
® Use Windows authentication within ASENET (no impersonation).
® Secure connections to the database using SQL Server configured
for Windows authentication.
® The database trusts the ASENET worker process to make calls.
Authenticate the ASENET process identity at the database.

Authorization ® Configure resources on the Web server using ACLs tied to the
original callers. For easier administration, users are added to
Windows groups and groups are used within the ACLs.
® The Web application performs .NET role checks against the original
caller to restrict access to pages.

Secure Communication ® Secure sensitive data sent between the Web server and the
database
® Secure sensitive data sent between the original callers and the
Web application

The Result

Figure 5.2 shows the recommended security configuration for this scenario.

NTFS File Authorization SQL Permissions
Permissions .NET Roles Database Roles
(Authorization) (Authorization) (Authorization)
]
Alice ASP.NET
i > b Process Identity
s MYl ASP.NET
Bob S -
s > ® S. et
IPSec
o Web Server (Privacy/Integrity) | Database
SSL Server
(Privacy/ A
) Integrated Windows .
Integrity) Windows Authentication A \t,r\::r?tz:vgzon
Authentication .
Figure 5.2

The recommended security configuration for the ASP.NET to SQL Server intranet scenario

68 Building Secure ASP.NET Applications

Security Configuration Steps

Before you begin, you'll want to see the following;:

® Creating custom ASP.NET accounts (see “How To: Create a Custom Account to
Run ASP.NET” in the Reference section of this guide)

® Creating a least privileged database account (see Chapter 12, “Data Access
Security”)

e Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

® Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

Configuring IS
Step More Information
Disable Anonymous access To work with 1IS authentication settings, use the 1IS MMC
for your Web application’s snap-in. Right-click your application’s virtual directory, and then
virtual root directory click Properties.

Click the Directory Security tab, and then click Edit within the
Enable Integrated Windows Anonymous access and authentication control group.
Authentication
Configuring ASP.NET
Step More Information
Change the ASPNET ASPNET is a least privileged local account used by default to run
password to a known strong ASRNET Web applications.
password value Set the ASPNET account’s password to a known value by using

Local Users and Groups.

Edit Machine.config located in %windir%\Microsoft.NET
\Framework\ v1.0.3705\CONFIG

and reconfigure the password attribute on the <processModel>

element

Default

<!-- userName="machine" password="AutoGenerate" -->
Becomes

<!-- userName="machine"
password="YourNewStrongPassword" -->

Configure your ASRNET Web Edit Web.config in your application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

<authentication mode="Windows" />

Step

Make sure impersonation is
off

Configuring SQL Server

Step

Create a Windows account
on your SQL Server computer
that matches the ASENET
process account (ASPNET)

Configure SQL Server for
Windows authentication

Create a SQL Server Login
for the local ASPNET account

Create a new database user
and map the login name to
the database user

Create a new user-defined
database role and add the
database user to the role

Establish database
permissions for the
database role

Chapter 5: Intranet Security 69

More Information

Impersonation is off by default; however, double check to
ensure that it's turned off in Web.config, as follows:

<identity impersonate="false" />

The same effect can be achieved by removing the <identity>
element.

More Information

The user name and password must match the ASPNET account.
Give the account the following privileges:

- Access this computer from the network

- Deny logon locally
- Log on as a batch job

This grants access to the SQL Server

This grants access to the specified database

Grant minimum permissions
For more information, see Chapter 12, “Data Access Security.”

Configuring Secure Communication

Step

Configure the Web site for
SSL

Configure IPSec between
Web server and database
server

More Information

See “How To: Set Up SSL on a Web Server” in the Reference
section of this guide.

See “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide.

70 Building Secure ASP.NET Applications

Analysis

® Integrated Windows authentication in IIS is ideal in this scenario because all
users have Windows accounts and are using Microsoft Internet Explorer. The
benefit of Integrated Windows authentication is that the user’s password is
never sent over the network. Additionally, the logon is transparent for the user
because Windows uses the current interactive user’s logon session.

® ASP.NET is running as least privileged account, so potential damage from
compromise is mitigated.

® You don’t need to impersonate in ASP.NET to perform .NET role checks or to
secure resources within Windows ACLs against the original caller. To perform
NET role checks against the original caller, the WindowsPrincipal object that
represents the original caller is retrieved from the HTTP context as follows:

WindowsPrincipal wp = (HttpContext.Current.User as WindowsPrincipal);
if (wp.IsInRole("Manager™))
{

// User is authorized to perform manager-specific functionality

}

The ASP.NET FileAuthorizationModule provides ACL checks against the
original caller for ASP.NET file types that are mapped within IIS to the
aspnet_isapi.dll. For static file types such as .jpg, .gif, and .htm files, IIS acts as
the gatekeeper and performs access checks using the original caller’s identity,
based on the NTFS permissions associated with the file.

e Using Windows authentication to SQL Server means that you avoid storing
credentials in files and passing credentials over the network to the database
server.

® The use of a duplicated Windows account on the database server (one that
matches the ASPNET local account) results in increased administration. If a
password is changed on one computer, it must be synchronized and updated on
the other. In some scenarios, you may be able to use a least-privileged domain
account for easier administration.

® The duplicated local account approach also works in the presence of a firewall
where the ports required for Windows authentication may not be open. The use
of Windows authentication and domain accounts may not work in this scenario.

® You'll need to ensure that your Windows groups are as granular as your security
needs. Because .NET role-based security is based on Windows group member-
ship this solution relies on Windows groups being set up at the correct level of
granularity to match the categories of users (sharing the same security privi-
leges) who access the application. The Windows groups that you use here to
manage roles could be local to that computer or domain groups

Chapter 5: Intranet Security 71

® SQL Server database user roles are preferred to SQL server application roles to
avoid the associated password management and connection pooling issues
associated with the use of SQL application roles.

Applications activate SQL application roles by calling a built-in stored procedure
with a role name and a password. Therefore, the password must be stored
securely. Database connection pooling must also be disabled when you use SQL
application roles, which severely impacts application scalability.

For more information about SQL Server database user roles and SQL Server
application roles, see Chapter 12, “Data Access Security.”

® The database user is added to a database user role and permissions are assigned
for the role so that if the database account changes; you don’t have to change the
permissions on all database objects.

Q&A

® Why can’t I enable impersonation for the Web application, so that I can secure
the resources accessed by my Web application using ACLs configured against
the original caller?

If you enable impersonation, the impersonated security context will not have
network credentials (assuming delegation is not enabled and you are using
Integrated Windows authentication). Therefore, the remote call to SQL Server
will use a NULL session, which will result in a failed call. With impersonation
disabled, the remote request will use the ASP.NET process identity.

The preceding scenario uses the ASP.NET FileAuthorizationModule, which
performs authorization using Windows ACLs against the original caller identity
and does not require impersonation.

If you use Basic authentication instead of Integrated Windows authentication
(NTLM) and you do enable impersonation, each call to the database would use
the original caller’s security context. Each user account (or the Windows groups
to which the user belongs) would require SQL Server logins. Permissions on
database objects would need to be secured against the Windows group (or
original caller).

® The database doesn’t know who the original caller is. How can I create an
audit trail?

Audit end user activity within the Web application or pass the identity of the
user explicitly as a parameter of the data access call.

72 Building Secure ASP.NET Applications

Related Scenarios

Non-Internet Explorer Browsers

Integrated Windows authentication to IIS requires Internet Explorer. In a mixed
browser environment, your typical options would include:

® Basic authentication and SSL. Basic authentication is supported by most brows-
ers. Since the user’s credentials are passed over the network, you must use SSL to
secure the scenario.

® Client certificates. Individual client certificates can either be mapped to a
unique Windows account or a single Windows account can be used to represent
all clients. The use of client certificates also requires SSL.

® Forms Authentication. Forms authentication can validate credentials against
a custom data store such as a database or against Active Directory.

If you authenticate against Active Directory, make sure that you retrieve only the
necessary groups that are pertinent to your application. Just like you shouldn’t
issue queries against a database using SELECT * clauses, you shouldn’t blindly
retrieve all groups from Active Directory.

If you authenticate against a database, you need to carefully parse the input used
in SQL commands to protect against SQL injection attacks, and you should store
password hashes (with salt) in the database instead of clear text or encrypted
passwords.

For more information about using SQL Server as a credential store and storing
passwords in the database, see Chapter 12, “Data Access Security.”

Notice that in all cases, if you don’t use Integrated Windows authentication, where
the platform manages credentials for you, you end up using SSL. However, this
benefit pertains strictly to the authentication process. If you are passing security
sensitive data over the network, you must still use IPSec or SSL.

SQL Authentication to the Database

In some scenarios you may be forced to use SQL authentication instead of the
preferred Windows authentication. For example, there may be a firewall between
the Web application and database, or the Web server may not be a member of your
domain for security reasons. This also prevents Windows authentication. In this
case, you might use SQL authentication between the database and Web server. To
secure this scenario, you should:

® Use the Data Protection API (DPAPI) to secure database connection strings that
contain usernames and passwords. For more information, see the following
resources:

Chapter 5: Intranet Security 73

® “Storing Database Connection Strings Securely”, in Chapter 12, “Data Access
Security”

® “How To: Use DPAPI (Machine Store) from ASP.NET” in the Reference section
of this guide

e “How To Use DPAPI (User Store) from ASP.NET with Enterprise Services” in
the Reference section of this guide

e “How To: Create a DPAPI Library” in the Reference section of this guide

® Use IPSec or SSL between the Web server and database server to protect the clear
text credentials passed over the network.

Flowing the Original Caller to the Database

In this scenario, calls are made from the Web application to the database using the
security context of the original caller. With this approach, it’s important to note the
following:

® If you choose this approach, you need to use either Kerberos authentication
(with accounts configured for delegation) or Basic authentication.

A delegation scenario is discussed in the “Flowing the Original Caller to the
Database” section later in this chapter.

® You must also enable impersonation in ASP.NET. This means that local system
resource access is performed using the original caller’s security context and as
a result, ACLs on local resources such as the registry and event log require
appropriate configuration.

® Database connection pooling is limited because original callers won’t be able
to share connections. Each connection is associated with the caller’s security
context.

® An alternate approach to flowing the user’s security context is to flow the
original caller’s identity at the application level (for example, by using method
and stored procedure parameters).

ASP.NET to Enterprise Services to SQL Server

In this scenario, ASP.NET pages call business components hosted in an Enterprise
Services application that in turn connects to a database. As an example, consider an
internal purchase order system that uses transactions over the intranet and allows
internal departments to place orders. This scenario is shown in Figure 5.3 on the
next page.

74 Building Secure ASP.NET Applications

Web Server

ASP.NET
> N Database Server

| I [—
Enterprise SQL
Services [Server

Figure 5.3

ASP.NET calls a component within Enterprise Services which calls the database

Characteristics

This scenario has the following characteristics:
Users have Internet Explorer.
Components are deployed on the Web server.

The application handles sensitive data which must be secured while in transit.

Business components connect to SQL Server using Windows authentication.

Business functionality within these components is restricted based on the
identity of the caller.

Serviced components are configured as a server application (out-of-process).
Components connect to the database using the server application’s process
identity.

® Impersonation is enabled within ASPNET (to facilitate Enterprise Services role-
based security).

Secure the Scenario

In this scenario, the Web server authenticates the original caller and flows the
caller’s security context to the serviced component. The serviced component autho-
rizes access to business functionality based on the original caller’s identity. The
database authenticates against the Enterprise Service application’s process identity
(that is,. the database trusts the serviced components within the Enterprise Services
application). When the serviced component makes calls to the database, it passes
the user’s identity at the application level (by using trusted query parameters).

Table 5.2: Security measures

Category
Authentication

Authorization

Secure Communication

The Result

Chapter 5: Intranet Security 75

Detail

Provide strong authentication at the Web server using Integrated
Windows authentication.

Flow the original caller’s security context to the serviced
component to support Enterprise Services (COM+) role checks.
Secure connections to the database use Windows
authentication.

The database trusts the serviced component’s identity to make
the database calls. The database authenticates the Enterprise
Services application process identity.

Authorize access to business logic using Enterprise Services
(COM+) roles.

Secure sensitive data sent between the users and the Web
application by using SSL.
Secure sensitive data sent between the Web server and the
database by using IPSec.

Figure 5.4 shows the recommended security configuration for this scenario.

& o |o |>

P 4

~ ’
~ ’

N 2

~

SSL
(Privacy/
Integrity)

NTFS
Permissions File Authorization
(Authorization) (Authorization)
1 1
A
o il o
1S _B> ASP.NET . SQL Permissions
© Windows Database Roles
? —— ® Authentication (Authorization)
i + Impersonation
Integrated Al B| C) Database
Windows Enterprise Server
Authentication Services . ®
. Process Identity
Enterprise
Services [N v SQL
RPC Packet RSP Server
utnongontont T [PSec
uthentication, . o
Privacy/Integrity) (CAO::]/H. R?.Ies) (Privacy/integrity t
uthorization 0
Web Server Windows
Authentication

Figure 5.4

The recommended security configuration for the ASP.NET to local Enterprise Services to SQL Server
intranet scenario

76 Building Secure ASP.NET Applications

Security Configuration Steps

Before you begin, you'll want to see the following;:

® Creating a least privileged database account (see Chapter 12, “Data Access
Security”)

e Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

e Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

e Configuring Enterprise Services security (see “How To: Use Role-Based Security
with Enterprise Services” in the Reference section of this guide)

Configuring IS

Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Integrated Windows
Authentication

Configuring ASP.NET

Step More Information

Configure your ASRNET Web Edit Web.config in your application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

<authentication mode="Windows" />

Configure your ASRNET Web Edit Web.config in your Web application’s virtual directory
application for impersonation | Set the <identity> element to:

<identity impersonate="true" />

Configure ASRENET DCOM Edit Machine.config and locate the <processModel> element.
security to ensure that calls Confirm that the comlmpersonationLevel attribute is set to
to Enterprise Services Impersonate (this is the default setting)

support caller impersonation
<processModel
comImpersonationLevel="Impersonate"

Chapter 5: Intranet Security 77

Configuring Enterprise Services

Step

Create a custom account for
running Enterprise Services

Configure the Enterprise
Services application as a
server application

Configure Enterprise
Services (COM+) roles

Configure Enterprise
Services to run as your
custom account

Configuring SQL Server

Step

Create a Windows account
on your SQL Server
computer that matches the
Enterprise Services process
account

Configure SQL Server for
Windows authentication

Create a SQL Server Login
for your Enterprise Services
account

Create a new database user
and map the login name to
the database user

Create a new database user
role and add the database
user to the role

Establish database
permissions for the
database user role

More Information

Note: If you use a local account, you must also create a
duplicate account on the SQL Server computer.

This can be configured using the Component Services tool, or
via the following .NET attribute placed in the service component
assembly.

[assembly:
ApplicationActivation(ActivationOption.Server)]

Use the Component Services tool or script to add Windows
users and/or groups to roles.

Roles can be defined using .NET attributes within the serviced
component assembly.

This must be configured using the Component Services tool or
script. You cannot use .NET attributes within the serviced
component assembly.

More Information

The user name and password must match your custom
Enterprise Services account.

Give the account the following privileges:
- Access this computer from the network

- Deny logon locally
- Log on as a batch job

This grants access to the SQL Server.

This grants access to the specified database.

Grant minimum permissions
For details, see Chapter 12, “Data Access Security”

78 Building Secure ASP.NET Applications

Configuring Secure Communication
Step More Information

Configure the Web site for See “How To: Set Up SSL on a Web Server” in the Reference
SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server

Analysis

ASPNET and Enterprise Services are running as least privileged accounts, so
potential damage from compromise is mitigated. If either process identity were
compromised, the account’s limited privileges reduce the scope of damage. Also,
in the case of ASP.NET, if malicious script were injected, potential damage is
constrained.

The ASP.NET application must be configured for impersonation in order to flow
the security context of the original caller to the Enterprise Services components
(to support Enterprise Services (COM+) role-based authorization). If you do not
impersonate, role checks are made against the process identity (that is, the
ASP.NET worker process). Impersonation affects who you authorize resources
against.

Without impersonation, system resource checks are against the ASP.NET process
identity. With impersonation, system resource checks are made against the
original caller. For more information about accessing system resources from
ASP.NET, see “Accessing System Resources” in Chapter 8, “ASPNET Security.”

By using Enterprise Services (COM+) roles, access checks are pushed to the
middle tier, where the business logic is located. In this case, callers are checked at
the gate, mapped to roles, and calls to business logic are based on roles. This
avoids unnecessary calls to the back end. Another advantage of Enterprise
Services (COM+) roles is that you can create and administer roles at deployment
rime, using the Component Services Manager.

Windows authentication to SQL means you avoid storing credentials in files and
sending them across the network.

The use of a local account to run the Enterprise Services application, together
with a duplicated account on the database server, also works in the presence of a
firewall where the ports required for Windows authentication may not be open.
The use of Windows authentication and domain accounts may not work in this
scenario.

Chapter 5: Intranet Security 79

Pitfalls

® The use of a duplicated Windows account on the database server (one that matches
the Enterprise Services process account) results in increased administration.
Passwords should be manually updated and synchronized on a periodic basis.

® Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who access
the application.

ASP.NET to Web Services to SQL Server

In this scenario, a Web server that runs ASPNET pages connects to a Web service
on a remote server. This server in turn connects to a remote database server. As an
example, consider a HR Web application that provides sensitive data specific to a
user. The application relies on the Web service for data retrieval. The basic model
for this application scenario is shown in Figure 5.5.

Application
Web Server Server Database Server
Web
| IS [ASP.NET LB sonvice H SQL
Server

Figure 5.5
ASP.NET to remote Web Service to SQL Server

The Web service exposes a method that allows an individual employee to retrieve
his or her own personal details. Details must be provided only to authenticated
individuals using the Web application. The Web service also provides a method that
supports the retrieval of any employee details. This functionality must be available
only to members of the HR or payroll department. In this scenario, employees are
categorized into three Windows groups:

® HRDept (members of the HR department)

Members of this group can retrieve details about any employee.
® PayrollDept (members of the Payroll department)

Members of this group can retrieve details about any employee.
® Employees (all employees)

Members of this group can only retrieve their own details.

Due to the sensitive nature of the data, the traffic between all nodes should be secure.

80 Building Secure ASP.NET Applications

Characteristics

Users have Internet Explorer 5.x or later.

All computers run Windows 2000 or later.

User accounts are in Active Directory within a single forest.

The application flows the original caller’s security context all the way to the
database.

All tiers use Windows authentication.
Domain user accounts are configured for delegation.
The database does not support delegation.

Secure the Scenario

In this scenario, the Web server that hosts the ASP.NET Web application authenti-
cates the original caller’s identity and flows their security context to the remote
server that hosts the Web service. This enables authorization checks to be applied to
Web methods to either allow or deny access to the original caller. The database
authenticates against the Web service process identity (the database trusts the Web
service). The Web service in turn makes calls to the database and passes the user’s
identity at the application level using stored procedure parameters.

Table 5.3: Security measures

Category Detail

Authentication ® The Web application authenticates users by using Integrated

Windows authentication from IIS.

® The Web service uses Integrated Windows authentication from IIS.
It authenticates the original caller’'s security context delegated by
the Web application.

® The Kerberos authentication protocol is used to flow the original
caller security context from the Web application to the Web service
using delegation.

® Windows authentication is used to connect to the database using
the ASENET process account.

Authorization ® The Web application performs role checks against the original
caller to restrict access to pages.
® Access to the Web service methods is controlled by using .NET
roles based on the original caller’'s Windows group membership.

Secure Communication | ® Sensitive data sent between the original callers and the Web
application and Web service is secured by using SSL.
® Sensitive data sent between the Web service and the database is
secure by using IPSec.

Chapter 5: Intranet Security 81

The Result
Figure 5.6 shows the recommended security configuration for this scenario.
NTFS NTFS File Authorization
Permissions File Authorization Permissions .NET Roles
(Authorization) (Authorization) (Authorization) (Authorization)
|
Alice
e [—P))
Mary ASP.NET
IS |——3p|{ ASP.NET 1S ——p» (Web
Bob (Web App) Service) i
® ® ® P Windows
> Authentication
SR Web Server N 4 Application Server | ">
A4 A4 ~
SSL SSL ‘\
(Privacy/ Windows (Privacy/ s, IPSec
Integrity) Authentication Integrity) ntegrated - Agp NET L’ (Privacy/
. Windows Identi " i
. + Impersonation " entity L ntegrity)
Integrated Windows Authentication L,
Authentication y 3
(Kerberos)
>
Windows
o = SQL
Authentication Server

Database Server

Figure 5.6
The recommended security configuration for the ASPNET to Web Service to SQL Server intranet
scenario

Security Configuration Steps

Before you begin, you'll want to see the following:

® Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

® Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

82 Building Secure ASP.NET Applications

Configuring the Web Server (that Hosts the Web Application)

Configure IIS
Step

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated
Authentication for your Web
application’s virtual root

Configure ASP .NET
Step

Configure your ASRNET Web
application to use Windows
authentication

Configure your ASRNET Web
application for impersonation

More Information

More Information

Edit Web.config in your Web application’s virtual directory
Set the <authentication> element to:

<authentication mode="Windows" />

Edit Web.config in your Web application’s virtual directory
Set the <identity> element to:

<identity impersonate="true" />

Configuring the Application Server (that Hosts the Web Service)

Configure IIS
Step

Disable Anonymous access
for your Web service’s virtual
root directory

Enable Windows Integrated
Authentication for your Web
service’s virtual root directory

More Information

Configure ASP .NET
Step

Change the ASPNET
password to a known value

Configure your ASENET Web
service to use Windows
authentication

Make sure impersonation is
off

Configure SQL Server

Step

Create a Windows account
on your SQL Server
computer that matches the
ASRNET process account
used to run the Web service

Configure SQL Server for
Windows authentication

Chapter 5: Intranet Security 83

More Information

ASPNET is a least privileged local account used by default to run
the ASENET Web applications.

Set the ASPNET account’s password to a know value by using
Local Users and Groups.

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\ v1.0.3705\CONFIG

and reconfigure the password attribute on the

<processModel> element:

Default

<!-- userName="machine" password="AutoGenerate" -->
Becomes

<!-- userName="machine"
password="YourNewStrongPassword" -->

Edit Web.config in your Web service’s virtual directory
Set the <authentication> element to:

<authentication mode="Windows" />

Impersonation is off by default; however, double check to ensure
that it’'s turned off in Web.config, as follows:

<identity impersonate="false” />

Note that because impersonation is disabled by default, the
same effect can be achieved by removing the <identity>
element.

More Information

The user name and password must match your custom ASENET
account.

Give the account the following privileges:
- Access this computer from the network
- Deny logon locally

- Log on as a batch job

(continued)

84 Building Secure ASP.NET Applications

Configure SQL Server (continued)

Step More Information

Create a SQL Server Login This grants access to the SQL Server.
for your custom ASENET

account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new database user
role and add the database
user to the role

Establish database Grant minimum permissions
permissions for the
database user role

Configuring Secure Communication

Step More Information

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the Web server for SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server

Analysis

® Integrated Windows authentication in IIS is ideal in this scenario because all
users are using Windows 2000 or later, Internet Explorer 5.x or later, and have
accounts in Active Directory, which makes it possible to use the Kerberos authen-
tication protocol (which supports delegation). This allows you to flow the secu-
rity context of the user across computer boundaries.

® End user accounts must be NOT marked as “Sensitive and cannot be delegated”
in Active Directory. The Web server computer account must be marked as
“Trusted for delegation” in Active Directory. For more details, see “How To:
Implement Kerberos Delegation for Windows 2000” in the Reference section of
this guide.

e ASPNET on the Web server and application server runs with a least privileged
local account (the local ASPNET account), so potential damage from compromise
is mitigated.

® The Web service and Web application are both configured for Windows authenti-
cation. IIS on both computers is configured for Integrated Windows authentication.

Chapter 5: Intranet Security 85

When making a call to the Web service from the Web application, no credentials
are passed by default. They are required in order to respond to the network
authentication challenge issued by IIS on the downstream Web server. You must
specify this explicitly by setting the Credentials property of the Web service
proxy as shown in the following:

wsproxy.Credentials = CredentialCache.DefaultCredentials;

For more information about calling Web services with credentials, see Chapter
10, “Web Services Security.”

The Web application is configured for impersonation. As a result, calls from the
Web application to the Web service flow the original caller’s security context and
allow the Web service to authenticate (and authorize) the original caller.

NET roles are used within the Web service to authorize the users based on the
Windows group to which they belong (HRDept, PayrollDept and Employees).
Members of HRDept and PayrollDept can retrieve employee details for any
employee, while members of the Employees group are authorized to retrieve
only their own details.

Web methods can be annotated with the PrincipalPermissionAttribute class to
demand specific role membership, as shown in the following code sample.
Notice that PrincipalPermission can be used instead of
PrincipalPermissionAttribute. This is a common feature of all .NET attribute

types.

[WebMethod]

[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\HRDept)]

pubTlic DataSet RetrieveEmployeeDetails()

{

}

The attribute shown in the preceding code means that only members
of the DomainName\HRDept Windows group are allowed to call the
RetrieveEmployeeDetails method. If any nonmember attempts to call
the method, a security exception is thrown.

ASP.NET File Authorization (within the Web application and Web service)
performs ACL checks against the caller for any file type for which a mapping
exists in the IIS Metabase that maps the file type to Aspnet_isapi.dll. Static file
types (such as .jpg, .gif, .htm, and so on), for which an ISAPI mapping does not
exist are checked by IIS (again using the ACL attached to the file).

Because the Web application is configured for impersonation, resources accessed
by the application itself must be configured with an ACL that grants at least read
access to the original caller.

86 Building Secure ASP.NET Applications

The Web service does not impersonate or delegate; therefore, it accesses local
system resources and the database using the ASP.NET process identity. As a
result, all calls are made using the single process account. This enables database
connection pooling to be used. If the database doesn’t support delegations (such
as SQL Server 7.0 or earlier), this scenario is a good option.

Windows authentication to SQL Server means you avoid storing credentials on
the Web server and it also means that credentials are not sent across the network
to the SQL Server computer.

SSL between the original caller and Web server protects the data passed to and
from the Web application.

IPSec between the downstream Web server and database protects the data
passed to and from the database.

Pitfalls

The use of a duplicated Windows account on the database server (one that
matches the ASP.NET process account) results in increased administration.
Passwords should be manually updated and synchronized on a periodic basis.

As an alternative, consider using least-privileged domain accounts. For more
information about choosing an ASP.NET process identity, see Chapter 9,
“ASP.NET Security.”

Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who will
access the application.

Kerberos delegation is unrestricted and as a result you must carefully control
which applications identities run on the Web server. To raise the bar on security,
limit the scope of the domain account’s reach by removing the account from
Domain Users group and provide access only from appropriate computers. For
more information, see “Default Access Control Settings” white paper.

Q&A

The database doesn’t know who the original caller is. How can I create an
audit trail?

Audit end user activity within the Web service or pass the identity of the user
explicitly as a parameter of the data access call.

Related Scenarios

If you need to connect to non SQL Server databases, or you currently use SQL
authentication, you must pass database account credentials explicitly using the
connection string. If you do so, make sure that you securely store the connection
string.

Chapter 5: Intranet Security 87

For more information, see “Storing Database Connection Strings Securely” within
Chapter 12, “Data Access Security.”

ASP.NET to Remoting to SQL Server

In this scenario, a Web server that runs ASPNET pages makes secure connections to
a remote component on a remote application server. The Web server communicates
with the component by using .NET Remoting over the HTTP channel. The remote
component is hosted by ASP.NET. This is shown in Figure 5.7.

Web Server Application Server Database Server

ASP.NET
| IS || ASP.NET (| IS [SQL

Q_ Server

- - .NET Remoting - - '

Figure 5.7
ASP.NET to remoting using .NET Remoting to SQL Server

Characteristics
® Users have various types of Web browser.
® The remote component is hosted by ASP.NET.

® The Web application communicates with the remote component using the HTTP
channel.

® The ASP.NET application calls the .NET remote component and passes the
original caller’s credentials for authentication. These are available from Basic
authentication.

® The data is sensitive and therefore must be secured between processes and
computers.

Secure the Scenario

In this scenario, the Web server that hosts the ASP.NET Web application authenti-
cates the original callers. The Web application is able to retrieve the caller’s authen-
tication credentials (user name and password) from HTTP server variables. It can
then use them to connect to the application server that hosts the remote component,
by configuring the remote component proxy. The database uses Windows authenti-
cation to authenticate against the ASPNET process identity (that is, the database
trusts the remote component). The remote component in turn calls the database and
passes the original caller’s identity at the application level using stored procedure
parameters.

88 Building Secure ASP.NET Applications

Table 5.4: Security measures

Category Detail
Authentication ® Authenticate users using Basic authentication from IIS (in addition
to SSL).

® Use Windows authentication from remote component (ASENET/IIS).
® Use Windows authentication to connect to the database using a
least privileged ASRNET account.

Authorization ® ACL checks against original caller on the Web server.
® Role checks within the remote component against original caller.
® Database permissions against the ASRPNET (remote component)
identity.

Secure Communication | ® Secure sensitive data sent between the users and the Web
application and remote objects hosted in IS using SSL.
® Secure sensitive data sent between the Web server and the
database using IPSec.

The Result

Figure 5.8 shows the recommended security configuration for this scenario.

NTFS NTFS File Authorization
Permissions File Authorization Permissions .NET Roles
(Authorization) (Authorization) (Authorization) (Authorization)

|
1
Alice Alice
L _>M ° " ° ASP.NET
s |2V ASP.NET ary s p——m
Bob Bob O— Component
® —— ® ®
«
. ’ X 5 ‘
Web Server SN 4 Application Server N
N7
ssL e
:) (Privacy/ *s. IPSec
I(l3tr|va$y/ A \t?‘,mdtf)wi Integrity) I\r;\;ggé‘ated ASP.NET .7 (Privacy/
ntegrity) uthentication in QWS_ Identity e Integrity)
Basic Authentication L,
Authentication y 3
<> Database
. —Permissions
WlndF)WS. — SQL (Authorization)
Authentication Server

Database Server

Figure 5.8
The recommended security configuration for the ASP.NET to remote Web Service to SQL Server
intranet scenario

Chapter 5: Intranet Security 89

Security Configuration Steps

Before you begin, you'll want to see the following:

® Creating a least privileged database account (see Chapter 12, “Data Access

Security”)

® Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

e Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

Configuring the Web Server

Configure IS
Step
Disable Anonymous access

for your Web application’s
virtual root directory

Enable Basic authentication

Configure ASP.NET
Step
Configure your ASRNET Web

application to use Windows
authentication

More Information

Use SSL to protect the Basic authentication credentials.

More Information

Edit Web.config in your application’s virtual directory root
Set the <authentication> element to:

<authentication mode="Windows" />

Configure the Application Server

Configure IS
Step
Disable Anonymous access

for your Web application’s
virtual root directory

Enable Integrated Windows
authentication

More Information

90 Building Secure ASP.NET Applications

Configure ASP .NET
Step

Configure your remote
component (within ASENET)
to use Windows authenti-
cation

Change the ASPNET
password to a known value

Make sure impersonation is
off

Configure SQL Server

Step

Create a Windows account
on your SQL Server
computer that matches the
ASRNET process account
used to run the Web
service

Configure SQL Server for
Windows authentication

More Information

Edit Web.config in your remote component’s virtual directory
root
Set the <authentication> element to:

<authentication mode="Windows" />

ASPNET is a least privileged local account used by default to run
ASENET Web applications (and in this case the remote compo-
nent host process).

Set the ASPNET account’s password to a know value by using
Local Users and Groups.

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\ v1.0.3705\CONFIG

and reconfigure the password attribute on the <processModel>
element

Default

<!-- userName="machine" password="AutoGenerate" -->
Becomes

<!-- userName="machine"
password="YourNewStrongPassword" -->

Impersonation is off by default; however, double check to ensure
that it's turned off in web.config, as shown below:

<identity impersonate="false" />

The same effect can be achieved by removing the <identity>
element.

More Information

The user name and password must match your custom ASENET
account.

Give the account the following privileges:
- Access this computer from the network
- Deny logon locally

- Log on as a batch job

Chapter 5: Intranet Security 91

Step More Information

Create a SQL Server Login This grants access to the SQL Server

for your custom ASENET

account

Create a new database This grants access to the specified database

user and map the login
name to the database user

Create a new database
user role and add the
database user to the role

Establish database Grant minimum permissions
permissions for the
database user role

Configuring Secure Communication

Step More Information

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the Web server for SSL section of this guide.

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the application server for section of this guide.

SSL

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
application server and Between Two Servers in the Reference section of this guide.”

database server

Analysis

® ASP.NET on the Web server and application sever is running as a least privileged
local account, so potential damage from compromise is mitigated. The default
ASPNET account is used in both cases.

Use of the ASPNET local account (duplicated on the SQL Server computer)
further reduces the potential security risk. A duplicated Windows account on
the database server allows the remote component to run with a least privilege
ASP.NET account on the application server.

® Basic authentication at the Web server allows the user’s credentials to be used by
the Web application to respond to Windows authentication challenges from the
application server.

To call the remote component using the caller’s credentials, the Web application
configures the remote component proxy as shown in the code fragment on the
next page.

92 Building Secure ASP.NET Applications

string pwd Request.ServerVariables["AUTH_PASSWORD"];
string uid Request.ServerVariables["AUTH_USER"];
IDictionary channelProperties =
ChannelServices.GetChannelSinkProperties(proxy);
NetworkCredential credentials;
credentials = new NetworkCredential(uid, pwd);
ObjRef objectReference = RemotingServices.Marshal(proxy);
Uri objectUri = new Uri(objectReference.URI);
CredentialCache credCache = new CredentialCache();
credCache.Add(objectUri, "Negotiate", credentials);
channelProperties["credentials"] = credCache;
channelProperties["preauthenticate"] = true;

For more information about flowing security credentials to a remote component,
see Chapter 11, “.NET Remoting Security.”

® Impersonation is not enabled within the ASPNET Web application, because the
remoting proxy is specifically configured using the user’s credentials obtained
by Basic authentication. Any other resource accessed by the Web application uses
the security context provided by the ASP.NET process account.

® SSL between the user and Web server protects the data passed to and from the
Web server and also protects the Basic credentials passed in clear text during the
authentication process.

® Integrated Windows authentication at the application server provides .NET role
checks against the original caller. The roles correspond to Windows groups.

Role-based checks can be performed, even without impersonation.

® ASP.NET File Authorization performs ACL checks against the caller for any file
type for which a mapping exists in the IIS Metabase that maps the file type to
aspnet_isapi.dllL IIS performs access checks for static files (not mapped to an
ISAPI extension within IIS).

® Because impersonation is not enabled on the application server, any local or
remote resource access performed by the remote component does so using the
ASPNET security context. ACLs should be set accordingly.

® Windows authentication to SQL Server means you avoid storing credentials on
the application server and it also means that credentials are not sent across the
network to the SQL Server computer.

Pitfalls

® The use of a duplicated Windows account on the database server (one that
matches the ASP.NET process account) results in increased administration.
Passwords should be manually updated and synchronized on a periodic basis.

® Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who will
access the application.

Chapter 5: Intranet Security 93

Related Scenarios

The Web server uses Kerberos to authenticate callers. Kerberos delegation is used to
flow the original caller’s security context across to the remote component on the
application server.

This approach requires that all user accounts be configured for delegation. The Web
application would also be configured for impersonation and would use
DefaultCredentials to configure the remote component proxy. This technique is
discussed further in the “Flowing the Original Caller” section of Chapter 11, “.NET
Remoting Security.”

Flowing the Original Caller to the Database

The scenarios discussed earlier have used the trusted subsystem model and in all
cases the database has trusted the application server or Web server to correctly
authenticate and authorize users. While the trusted subsystem model offers many
advantages, some scenarios (perhaps for auditing reasons) may require you to use
the impersonation/delegation model and flow the original caller’s security context
across computer boundaries all the way to the database.

Typical reasons why you may need to flow the original caller to the database
include:

® You need granular access in the database and permissions are restricted by object.
Specific users or groups can read, while others can write to individual objects.

This is in contrast to less granular task-based authorization, where role member-
ship determines read and write capabilities for specific objects.

® You may want to use the auditing capabilities of the platform, rather than flow
identity and perform auditing at the application level.

If you do choose an impersonation/delegation model (or are required to do so due
to corporate security policy) and flow the original caller’s context through the tiers
of your application to the back end, you must design with delegation and network
access in mind (which is nontrivial when spanning multiple computers). The
pooling of shared resources (such as database connections) also becomes a key issue
and can significantly reduce application scalability.

This section shows you how to implement the impersonation/delegation for two of
the most common application scenarios:

e ASPNET to SQL Server

® ASP.NET to Enterprise Services to SQL Server

For more information about the trusted subsystem and impersonation/delegation
models and their relative merits, see Chapter 3, “Authentication and Authorization.”

94 Building Secure ASP.NET Applications

ASP.NET to SQL Server

In this scenario, calls to the database are made using the security context of the
original caller. Authentication options described in this section include Basic and
Integrated Windows authentication. A Kerberos delegation scenario is described
within the “ASP.NET to Enterprise Services to SQL Server” section.

Using Basic Authentication at the Web Server

The following configuration settings for Basic authentication enable you to flow the
original caller all the way to the database.

Table 5.5: Security measures

Category Detail

Authentication ® Authenticate users by using Basic authentication from IIS.
® Use Windows authentication within ASRPNET.
® Turn on impersonation in ASPNET.
o Use Windows authentication to communicate with SQL Server.

Use ACL checks against the original caller on the Web server.

If the original callers are mapped to Windows groups (based on
application requirements, for example, Managers, Tellers, and so
on) then you can use .NET role checks against the original caller
to restrict access to methods.

Authorization

Secure Communication | ® Secure the clear text credentials sent between the Web server
and the database by using SSL.
® To secure all sensitive data sent between the Web application
and database, use IPSec.

With this approach, it’s important to note the following points:
® Basic authentication prompts the user with a pop-up dialog box into which they
can type credentials (user name and password).

® The database must recognize the original caller. If the Web server and database
are in different domains, appropriate trust relationships must be enabled to
allow it to authenticate the original caller.

Using Integrated Windows Authentication at the Web Server

Integrated Windows authentication results in either NTLM or Kerberos authentica-
tion and is dependent upon the client and server computer configurations.

NTLM authentication does not support delegation and as a result does not allow
you to flow the original caller’s security context from the Web server to a physically
remote database. The single network hop allowed for NTLM authentication is used

Chapter 5: Intranet Security 95

between the browser and Web server. To use NTLM authentication, the SQL Server
must be installed on the Web server, which is likely to be appropriate only for very
small intranet applications.

ASP.NET to Enterprise Services to SQL Server

In this scenario, ASP.NET pages call business components hosted in a remote
Enterprise Services application that in turn talk to a database. The original caller’s
security context flows all the way from the browser to the database. This is shown
in Figure 5.9.

Application
Web Server Server Database Server
A
Enterprise
—» IS | ASP.NET H-p! Services SQL
Server

Figure 5.9

ASP.NET calls a component within Enterprise Services which calls the database

Characteristics
Users have Internet Explorer 5.x or later.

All computers are Windows 2000 or later.

User accounts are maintained in Active Directory within a single forest.

The application flows the original caller’s security context (at the operating
system level) all the way to the database.

All tiers use Windows authentication.

Domain user accounts are configured for delegation and the account used to run
the Enterprise Services application must be marked as “Trusted for delegation”
within Active Directory.

Secure the Scenario

In this scenario, the Web server authenticates the caller. You must then configure
ASP.NET for impersonation in order to flow the original caller’s security context to
the remote Enterprise Services application. Within the Enterprise Services applica-
tion, component code must explicitly impersonate the caller (using
CoIlmpersonateClient) in order to ensure the caller’s context flows to the database.

96 Building Secure ASP.NET Applications

Table 5.6: Security measures

Category

Authentication o

Authorization

Secure Communication

Detail

All tiers support Kerberos authentication (the Web server, the
application server, and database server).

Authorization checks are performed in the middle tier with
Enterprise Services (COM+) roles against the original caller’s
identity.

SSL is used between the browser and the Web server to secure
sensitive data.

RPC Packet Privacy (providing encryption) is used between ASRNET
and the serviced components within the remote Enterprise
Services application.

IPSec is used between the serviced components and the
database.

The Result
Figure 5.10 shows the recommended security configuration for this scenario.
Integrated
Windows)
(Kerberos) Wlnd_ow_s
(Authentication) (Authentication)
A
o [—P °®
Internet B s B = ASP.NET
Explorer c C [Impersonation
T
¥ ™.
. \\ " ‘\
Clients N/ BB ERRE *\ RPC Packet ~ Windows
SSL Al Bl C > Privacy (Authentication)
(Privacy/ ,'(Privacy/lntegrity) I
Integrity) 4'—'—'1 L
’
Enterprise Services PY A
(COM+) Roles .) saL
(Authorization) Enterprise Services B
Server
Windows ° ® ®
(Authentication) (
oo Database
Application Server r
s Y‘\ ,’|_Server
N .
S .
Impersonation \IPSec Database Permissions
(Programmatic) (Privacy/ Integrity) (Authorization)
Figure 5.10

ASP.NET calls a component within Enterprise Services which calls the database. The original caller’s
security context flows to the database.

Chapter 5: Intranet Security 97

Security Configuration Steps

Before you begin, you should be aware of the following configuration issues:

® The Enterprise Services process account must be marked “Trusted for delega-
tion” in Active Directory and end user accounts must not be marked “Sensitive
and cannot be delegated.” For more information, see “How To: Implement
Kerberos Delegation for Windows 2000” in the Reference section of this guide.

® Windows 2000 or later is required on all computers. This includes client
(browser) computers and all servers.

® All computers must be in the Active Directory and must be part of a single
forest.

® The application server that hosts Enterprise Services must be running Windows
2000 SP3.

® If you are using Internet Explorer 6.0 on Windows 2000, it defaults to NTLM
authentication instead of the required Kerberos authentication. To enable

Kerberos delegation, see article Q299838, “Can’t Negotiate Kerberos Authentica-
tion After Upgrading to Internet Explorer 6,” in the Microsoft Knowledge Base.

Configure the Web Server (IIS)
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated
authentication

Configure the Web Server (ASP.NET)
Step More Information

Configure your ASRNET Web Edit Web.config in your Web application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

<authentication mode="Windows" />

Configure your ASENET Web Edit Web.config in your Web application’s virtual directory
application for impersonation | Set the <identity> element to:
<identity impersonate="true" />

(continued)

98 Building Secure ASP.NET Applications

Configure the Web Server (ASP.NET) (continued)

Step

Configure the DCOM
impersonation level used by
the ASENET Web application
for outgoing calls

Configure the DCOM
authentication level at the
client

More Information

The ASENET Web application calls the remote serviced
components over DCOM. The default impersonation level used
for outgoing calls from ASENET is Impersonate. This must be
changed to Delegate in Machine.config.

Edit Machine.config, locate the <processModel> element, and
set the comlmpersonatelLevel attribute to “Delegate” as shown
below.

<processModel comImpersonationLevel="Delegate"

DCOM authentication levels are determined by both client and
server. The DCOM client in this case is ASPNET.

Edit Machine.config, locate the <processModel> element and
set the comAuthenitcationLevel attribute to “PktPrivacy” as
shown below.

<processModel comAuthenticationLevel="PktPrivacy"

Configure Serviced Components (and the Application Server)

Step

Managed class(es) must
inherit from the Serviced
Component class

Add code to the serviced
component to impersonate
the caller by calling the
ColmpersonateClient() and
CoRevertToSelf() APls from
OLE32.DLL before accessing
remote resources (for
example, a database) in
order for the caller’s context
to be used. By default, the
Enterprise Services process
context is used for outgoing
calls.

More Information

See article Q306296, “HOW TO: Create a Serviced .NET
Component in Visual C# .NET,” in the Microsoft Knowledge Base.

Add references to OLE32.DLL:

class COMSec

{
[DT1Import("OLE32.DLL", CharSet=CharSet.Auto)]
public static extern long CoImpersonateClient();

[D11Import("OLE32.DLL", CharSet=CharSet.Auto)]
public static extern long CoRevertToSelf();
}

Call these external functions before calling remote resources:

COMSec.CoImpersonateClient();
COMSec.CoRevertToSelf();

For more information, see Chapter 9, “Enterprise Services
Security.”

Chapter 5: Intranet Security 99

Configure Serviced Components (and the Application Server)

Step

Configure the Enterprise
Services application as a
server application

Configure the Enterprise
Services application to use
packet privacy authentication
(to provide secure communi-
cation with encryption)

Configure the Enterprise
Services application for
component level role-based
security

AccessChecksLevelOption.

Create a custom account for
running Enterprise Services
and mark it as Trusted for
delegation in Active Directory

Configure Enterprise
Services to run as your
custom account

More Information

This can be configured using the Component Services tool, or
via the following .NET attribute placed in the service component
assembly.

[assembly:
ApplicationActivation(ActivationOption.Server)]

Add the following .NET attribute to the serviced component
assembly.

[assembly: AppTlicationAccessControl(
Authentication =
AuthenticationOption.Privacy)]

To configure role checks at the process and component level
(including interfaces and classes) use the following attribute.

[assembly: ApplicationAccessControl(AccessChecksLevel=
AppTicationComponent)]

Decorate classes with the following attribute:
[ComponentAccessControl (true)]

For more information about configuring interface and method
level role checks, see “Configuring Security” in Chapter 9,
“Enterprise Services Security.”

The Enterprise Services application needs to run as domain
account marked as Trusted for Delegation in Active Directory.
For more information, see “How To: Implement Kerberos
Delegation for Windows 2000” in the Reference section of this
guide.

This must be configured using the Component Services tool or
script. You can not use .NET attributes within the serviced
component assembly.

100 Building Secure ASP.NET Applications

Configure the Database Server (SQL Server)
Step More Information

Configure SQL Server for
Windows authentication

Create SQL Server Logins This grants access to the SQL Server.

for the Windows groups that The access control policy treats Windows groups as roles. For

the users belong to. example, you may have groups such as Employees, HRDept
and PayrollDept.

Create new database users This grants access to the specified database.

for each SQL Server login

Establish database Grant minimum permissions

permissions for the database | For more information, see Chapter 12, “Data Access Security.”

users

Analysis

® The key to flowing the original caller’s security context is Kerberos authentica-
tion, which generates a delegate-level token. After the server process (IIS) re-
ceives the delegate-level token, it can pass it to any other process, running under
any account on the same computer, without changing its delegation level. It does
not matter whether the worker process is running as a local or domain account.
It does matter what IIS is running as. If it's running as something other than
LocalSystem, the account it is running under needs to be marked as “Trusted for
delegation” in Active Directory.

If IIS is running as LocalSystem, the computer account must be marked as
“Trusted for delegation”. For more information, see “How To: Implement
Kerberos Delegation for Windows 2000” in the Reference section of this guide.

® Integrated Windows authentication (with Kerberos) in IIS is ideal in this scenario
because all users have Windows accounts and they are using Internet Explorer
5.x or later. The benefit of Integrated Windows authentication is that the user’s
password is never sent over the wire. Additionally, the logon will be transparent
because Windows will use the current interactive user’s logon session.

® ASP.NET constructs a WindowsPrincipal object and attaches it to the current
Web request context (HttpContext.User). If you need to perform authorization
checks within the Web application you can use the following code.

WindowsPrincipal wp = (HttpContext.Current.User as WindowsPrincipal);
if (wp.IsInRole("Manager™))
{

// User is authorized to perform manager-specific functionality

}

Chapter 5: Intranet Security 101

The ASP.NET FileAuthorizationModule provides ACL checks against the
original caller for ASP.NET file types that are mapped within IIS to the
Aspnet_isapi.dll. For static file types such as .jpg, .gif and .htm files, IIS acts as
the gatekeeper and performs access checks using the original caller’s identity.

® By using Windows authentication to SQL, you avoid storing credentials in files
on the application server and avoid passing them across the network. For
example include the Trusted_Connection attribute in the connection string:

ConStr="server=YourServer; database=yourdatabase; Trusted_Connection=Yes;"

® The original caller’s context flows across all tiers, which makes auditing
extremely easy. You can use platform-level auditing (for example, auditing
features provided by Windows and SQL Server).

Pitfalls

e If you are using Internet Explorer 6.0 on Windows 2000, the default authentica-
tion mechanism that is negotiated is NTLM (and not Kerberos). For more infor-
mation, see article Q299838, “Can’t Negotiate Kerberos Authentication After
Upgrading to Internet Explorer 6,” in the Microsoft Knowledge Base.

® Delegating users across tiers is expensive in terms of performance and applica-
tion scalability compared to using the trusted subsystem model. You cannot take
advantage of connection pooling to the database, because connections to the
database are tied to original caller’s security context and therefore cannot be
efficiently pooled.

® This approach also relies on the granularity of Windows groups matching your
application’s security needs. That is, Windows groups must be set up at the
correct level of granularity to match the categories of users (sharing the same
security privileges) who access the application.

Summary

This chapter has described how to secure a set of common intranet application
scenarios.

For Extranet and Internet application scenarios, see Chapter 6, “Extranet Security”
and Chapter 7, “Internet Security.”

Extranet Security

Extranet applications are those that share resources or applications across two
different companies or divisions. The applications and resources are exposed over
the Internet. One of the main challenges associated with extranet applications is
developing an authentication approach that both parties agree to. Your choices may
be limited in this respect because you may need to interoperate with existing
authentication mechanisms.

Extranet applications generally share some common characteristics:

® You have tighter control over user accounts, compared to Internet scenarios.

® You may have a higher level of trust for the user accounts, compared to applica-
tions that have Internet users.

The scenarios presented in this chapter that are used to illustrate recommended

authentication, authorization, and secure communication techniques include:

® Exposing a Web Service

® Exposing a Web Application

Exposing a Web Service

Consider a business to business partner exchange scenario where a publisher
company publishes and sells its services over the Internet. It exposes information
to selected partner companies using a Web service. Users within each partner
company access the Web service using an Intranet-based internal Web application.
This scenario is shown in Figure 6.1 on the next page.

104 Building Secure ASP.NET Applications

Partner Company Publisher Company
ASPNET
| s | ASPNET s b (web
(Web App) Sevice)
|
SQL
Server

Figure 6.1

Extranet Web service business to business partner exchange

Characteristics

This scenario has the following characteristics:

The publisher company exposes a Web service over the Internet.

Partner company (not individual user) credentials (X.509 client certificates) are
validated by the publisher to authorize access to resources. The publisher does
not need to know about the user’s individual logins in the partner company.

Client certificates are mapped to Active Directory® directory service accounts
within the publisher company.

The extranet contains a separate Active Directory from the (internal) corporate
Active Directory. The extranet Active Directory is in a separate forest, which
provides a separate trust boundary.

Web service authorization is based on the mapped Active Directory account. You
can use separate authorization decisions based on partner company identity
(represented by separate Active Directory accounts per company).

The database is accessed by a single trusted connection that corresponds to the
ASP.NET Web service process identity.

The data retrieved from the Web service is sensitive and must be secured while
in transit (internally within the publisher company and externally while flowing
over the Internet).

Chapter 6: Extranet Security 105

Secure the Scenario

In this scenario, each partner company’s internal Web application retrieves data
from the publisher company through the Web service and then presents the re-
trieved data to its users. The publisher requires a secure mechanism to authenticate
partner companies, although the identity of individual users within partner compa-
nies is not relevant.

Due to the sensitive nature of the data sent between the two companies over the
Internet, it must be secured using SSL while in transit.

A firewall that permits only inbound connections from the IP address of extranet
partner companies is used to prevent other unauthorized Internet users from
opening network connections to the Web service server.

Table 6.1: Security measures

Category Detail

Authentication ® Partner applications use client certificates with each request to
the Web service.
® (Client certificates from partner companies are mapped to
individual Active Directory accounts.
® Windows® authentication is used at the database. The ASRNET
Web service process identity is used to connect. The database
trusts the Web service.

Authorization ® The Web service uses .NET role-based authorization to check that
authenticated Active Directory accounts are members of a Partner

group.
Secure Communication | ® SSL is used to secure the communication between the partner
Web application and publisher’s Web service.

® |PSec is used to secure all communication between the Web
service and the database.

The Result

Figure 6.2 on the next page shows the recommended security configuration for this
scenario.

106 Building Secure ASP.NET Applications

Publisher Company

Partner Company File
NTFS authorization
Permissions .NET Roles
—»-{ IS (Cvii'\:\ig) (Authorization) (Authorization) Certificate
Mapping
* ” ® °®
N d My
Enterprise | ||= s F ASPNET
Services (Web Acti
» 4 Service) Active
5 g Directory
AY
\
\ ',' I [~ |
. Firewalls Certificate -
ifi B
Pri SSL . Authentication ASPNET \s IP_Sec
(Privacy/Integrity) Identity ,,(Prlvacy/
e Integrity)
éf
Windows
Authentication SQL
User-defined Server
Database Roles ®
(Authorization)
Figure 6.2
The recommended security configuration for the Web service business to business partner exchange
scenario

Security Configuration Steps

Before you begin, you'll want to see the following;:

® Creating custom ASP.NET accounts (see “How To: Create a Custom Account to
Run ASP.NET” in the Reference section of this guide)

® Creating a least privileged database account (see Chapter 12, “Data Access
Security”)

e Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

® Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

® Configuring IPSec through firewalls (see article Q233256, “How to Enable IPSec
Traffic Through a Firewall,” in the Microsoft Knowledge Base).

Chapter 6: Extranet Security 107

® Calling a Web service using SSL (see “How To: Call a Web Service Using SSL” in
the Reference section of this guide); this solution technique is required within the
partner company

® The discussion of certificate management and the infrastructure is beyond the
scope of this topic, for more information search for “Certificates and
Authenticode” on Microsoft TechNet.

Configuring the Partner Application

This chapter does not go into details about the partner application and its security
configuration. However, the following points needs to be considered to facilitate
communication between the partner application and Web service:

® The partner company’s Web application can choose an authentication mecha-
nism that allows it to authenticate and authorize its internal users. Those users
are not passed to the Web service for further authentication.

® The partner company’s Web application makes calls on behalf of its user to the
Web service. Users cannot directly call the Web service.

® The partner company’s Web application uses a client certificate to prove its
identity to the Web service.

® If the partner application is an ASP.NET Web application, then it must use an
intermediate out of process component (an Enterprise Services application or
Windows service) to load the certificate and forward it to the Web service.

For more information about why this is necessary and the steps to achieve this,
see “How to call a Web service using client certificates from ASPNET” in the
Reference section of this guide.

Configuring the Extranet Web Server

Configure IS
Step More Information
Disable Anonymous access To work with 1IS authentication settings, use the IIS MMC
for the Web service’s virtual snap-in. Select your application’s virtual directory, right-click
root directory and then click Properties.
Click the Directory Security tab, and then click Edit within the
Anonymous access and authentication control group.
Enable certificate See “How To: Set Up SSL on a Web Server” in the Reference
Authentication for your Web section of this guide.
application’s and Web See “How To: Call a Web Service Using Client Certificates from

service’s virtual root ASRNET” in the Reference section of this guide.

108 Building Secure ASP.NET Applications

Configure Active Directory (Extranet)

Step More Information

Set up Active Directory A separate extranet Active Directory is used. This is located in
accounts to represent its own forest, and is completely separate from the corporate
partner companies Active Directory.

Configure certificate See the “Step-by-Step Guide to Mapping Certificates to User
mapping Accounts” on Microsoft TechNet.

Also see article Q313070, “HOW TO: Configure Client Certificate
Mappings in 1IS 5.0,” in the Microsoft Knowledge Base.

Configure ASP.NET (Web Service)

Step More Information
Configure the ASENET Web Edit Web.config in the Web service’s virtual root directory
service to use Windows Set the <authentication> element to:

authentication
<authentication mode="Windows" />

Reset the password of the This allows you to create a duplicate local account (with the
ASPNET account (used to same username and password) on the database server. This is
run ASENET) to a known required to allow the ASPNET account to respond to network
strong password authentication challenges from the database server when it

connects using Windows authentication.

An alternative here is to use a least privileged domain account
(if Windows authentication is permitted through the firewall).
For more information, see “Process Identity for ASPNET” in
Chapter 8, “ASRNET Security.”

Edit Machine.config located in
%windir%\Microsoft. NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes on
the <processModel> element

Default

<!-- userName="machine" password="AutoGenerate" -->
Becomes

<!-- userName="machine"

password="YourStrongPassword" -->

Configuring SQL Server

Step

Create a Windows account
on the computer running
Microsoft SQL Server™ that
matches the ASENET
process account used to
run the Web service (by
default ASPNET)

Configure SQL Server for
Windows authentication

Create a SQL Server Login
for the ASPNET account

Create a new database user
and map the login name to
the database user

Create a new user-defined
database role within the
database and place the data-
base user into the role

Establish database
permissions for the
database role

Chapter 6: Extranet Security 109

More Information

The user name and password must match your ASENET process

account.
Give the account the following privileges:
- Access this computer from the network

- Deny logon locally
- Log on as a batch job

This grants access to the SQL Server.

This grants access to the specified database.

Grant minimum permissions
See Chapter 12, “Data Access Security.”

Configuring Secure Communication

Step

Configure the Web site on
the Web server for SSL

Configure IPSec between
Web server and database
server

Analysis

More Information

See “How To: Set Up SSL on a Web Server” in the Reference
section of this guide.

See “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide.

e ASP.NET on the Web server is running as a least privileged local account (the
default ASPNET account), so potential damage from compromise is mitigated.

® The ASPNET Web applications within the partner companies use Windows
Integrated authentication and perform authorization to determine who can

access the Web service.

110 Building Secure ASP.NET Applications

The ASP.NET Web application within the partner company uses an intermediate
Enterprise Services application to retrieve client certificates and make calls to the
Web service.

The publisher company uses the partner organization name (contained in the
certificate) to perform certificate mapping within IIS.

The Web service uses the mapped Active Directory account to perform authori-
zation, using PrincipalPermission demands and .NET role checks.

Windows authentication to SQL Server means you avoid storing credentials on
the Web server and it also means that credentials are not sent across the internal
network to the SQL Server computer. If you use SQL authentication, it is impor-
tant to secure the connection string (containing a user name and password)
within the application and as it is passed across the network. Use DPAPI or one
of the alternative secure storage strategies discussed in Chapter 12, “Data Access
Security,” to store connection strings and use IPSec to protect the connection
string (and sensitive application data) as it is passed between the Web service
and database.

SSL between partner companies and Web service protects the data passed across
the Internet.

IPSec between the Web service and database protects the data passed to and
from the database on the corporate network. In some scenarios where the partner
and publisher communicate over a private network, it may be possible to use
IPSec for machine authentication in addition to secure communication.

Pitfalls

The use of a duplicated local Windows account on the database server (one that
matches the ASP.NET process account local to IIS) results in increased adminis-
tration. Passwords must be manually updated and synchronized on a periodic
basis.

Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who will
access the application. In this scenario, Active Directory accounts must be a
member of a Partner group.

Q&A

The database doesn’t know who the original caller is. How can I create an
audit trail?

Audit end user (partner company) activity within the Web service. Pass the
partner company identity at the application level to the database using stored
procedure parameters.

Chapter 6: Extranet Security 111

Related Scenarios

The publisher company might publish non sensitive data such as soft copies of
magazines, newspapers, and so on. In this scenario, the publisher can provide a
unique username and password for each partner to connect with to retrieve the
data from the Web service.

In this related scenario, the publisher’s Web site is configured to authenticate users
with Basic authentication. The partner application uses the username and password
to explicitly set the credentials for the Web service proxy.

More Information

For more information about configuring Web service proxies, see Chapter 10, “Web
Services Security.”

Exposing a Web Application

In this scenario the publisher company gives its partners exclusive access to its
application over the Internet and provides a partner-portal application; for ex-
ample, to sell services, keep partners updated with product information, and
provide online collaboration and so on. This scenario is shown in Figure 6.3.

Publisher Company

Partner
Company
ASPNET
Browser -1 1S e (Web
Application)
|
SQL
Server
Figure 6.3

Partner portal scenario

Scenario Characteristics

This scenario has the following characteristics:

® The partner Web application accepts credentials either by using a Forms login
page or it presents a login dialog using Basic authentication in IIS.

112 Building Secure ASP.NET Applications

® The credentials are validated against a separate Active Directory within the
extranet perimeter network (also known as DMZ, demilitarized zone, and
screened subnet). The extranet Active Directory is in a separate forest, which
provides a separate trust boundary.

® The database is accessed by a single trusted connection that corresponds to the
ASP.NET Web application process identity.

® Web application authorization is based on either a GenericPrincipal object
(created as part of the Forms authentication process) or a WindowsPrincipal
object (if Basic authentication is used).

® The data retrieved from the Web application is sensitive and must be secured
while in transit (internally within the publisher company and externally while
flowing over the Internet).

Secure the Scenario

Due to the sensitive nature of the data sent between the two companies over the
Internet, it must be secured using SSL while in transit.

A firewall that permits only inbound connections from the IP address of extranet
partner companies is used to prevent other unauthorized Internet users from
opening network connections to the Web server.

Table 6.2: Security measures

Category Detail

Authentication ® Users within partner companies are authenticated by the Web
application using either Basic or Forms authentication against the
extranet Active Directory.

® Windows authentication is used at the database. The ASRNET
Web application process identity is used to connect. The
database trusts the Web application.

Authorization ® The Web application uses .NET role-based authorization to
check that the authenticated user (represented by either a
GenericPrincipal object or a WindowsPrincipal object, for Forms
and Basic authentication respectively) are members of a Partner
group.

Secure Communication | ® SSL is used to secure the communication between the partner
Web browser and publisher’s Web application.
® |PSec is used to secure all communication between the Web
application and the database.

The Result

Chapter 6: Extranet Security

113

Figure 6.4 shows the recommended security configuration for this scenario.

File Publisher Company

NTFS authorization
Permissions .NET Roles
(Authorization) (Authorization)

Partner ! !
Company P P
ASPNET
IS Hw
Browser (Web App) Active
® ® Directory
S :
S = ; Windows or % IPSec
ggL MeRElE Forms ASPNET s Cris)
(Privacy/Integrity) Authentication Identity .-7 |10 grity)

Basic or I
Anonymous V'
Authentication
User-defined _Alngg‘;vﬁson

Database Roles —
(Authorization)
Figure 6.4

The recommended security configuration for the partner portal scenario

Configuring the Extranet Web Server

Configure IS
Step

To use Forms authentication,

enable Anonymous access
for the Web application’s
virtual root directory

- Or -

To use Basic authentication,

disable Anonymous access
and select Basic
authentication

More Information

(continued)

114 Building Secure ASP.NET Applications

Configure Active Directory (Extranet)

Step

Set up Active Directory
accounts to represent
partner users

Configure ASP.NET
Step

Configure the ASENET Web
application to use Windows
authentication (for IS Basic)
- or -

Configure ASPNET to use
Forms authentication

Reset the password of the
ASPNET account (used to
run ASPENET) to a known
strong password

More Information

A separate extranet Active Directory is used. This is located in
its own forest and is completely separate from the corporate
Active Directory.

More Information

Edit Web.config in the Web service’s virtual root directory
Set the <authentication> element to either:

<authentication mode="Windows" />
- or -

<authentication mode="Forms" />

This allows you to create a duplicate local account (with the
same user hame and password) on the database server. This is
required to enable the ASPNET account to respond to network
authentication challenges from the database server, when it
connects using Windows authentication.

An alternative here is to use a least privileged domain account
(if Windows authentication is permitted through the firewall).
For more information, see “Process Identity for ASPNET” in
Chapter 8, “ASRNET Security.”

Edit Machine.config located in
%windir%\Microsoft. NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes on
the <processModel> element

Default

<!-- userName="machine" password="AutoGenerate" -->
Becomes

<!-- userName="machine"

password="YourStrongPassword" -->

Configuring SQL Server

Step

Create a Windows account
on the SQL Server computer
that matches the ASENET
process account used to run
the Web service (by default
ASPNET)

Configure SQL Server for
Windows authentication

Create a SQL Server Login
for the ASPNET account

Create a new database user
and map the login name to
the database user

Create a new user-defined
database role within the
database and place the data-
base user into the role

Establish database
permissions for the database
role

Chapter 6: Extranet Security 115

More Information

The user name and password must match your ASENET process
account.

Give the account the following privileges:
- Access this computer from the network

- Deny logon locally
- Log on as a batch job

This grants access to the SQL Server.

This grants access to the specified database.

Grant minimum permissions
See Chapter 12, “Data Access Security.”

Configuring Secure Communication

Step

Configure the Web site on
the Web server for SSL

Configure IPSec between
Web server and database
server

Analysis

More Information

See “How To: Set Up SSL on a Web Server” in the Reference
section of this guide.

See “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide.

® ASP.NET on the Web server is running as a least privileged local account (the
default ASPNET account), so potential damage from compromise is mitigated.

® SSL is used between browser and Web application to protect the Forms or Basic
authentication credentials (both passed in clear text, although Basic uses Base64
encoding). SSL also protects the application-specific data returned from the Web

application.

116 Building Secure ASP.NET Applications

e For Forms authentication, SSL is used on all pages (not just the logon page) to
protect the authentication cookie passed on all subsequent Web requests after the
initial authentication.

e [f SSL is used only on the initial logon page to encrypt the credentials passed
for authentication, you should ensure that the Forms authentication ticket
(contained within a cookie) is protected, because it is passed between client and
server on each subsequent Web request. To encrypt the Forms authentication
ticket, configure the protection attribute of the <forms> element as shown below
and use the Encrypt method of the FormsAuthentication class to encrypt the
ticket.

<authentication mode="Forms">
<forms name="MyAppFormsAuth"
ToginUrl="Togin.aspx"
protection="A11"

timeout="20"
path="/" >
</forms>

</authentication>

The protection="All" attribute specifies that when the application calls
FormsAuthentication.Encrypt, the ticket should be validated (integrity checked)
and encrypted. Call this method when you create the authentication ticket,
typically within the application’s Login button event handler.

string encryptedTicket = FormsAuthentication.Encrypt(authTicket);

For more information about Forms authentication and ticket encryption, see
Chapter 8, “ASP.NET Security.”

e Similarly, SSL is used on all pages for Basic authentication because the Basic
credentials are passed on all Web page requests and not just the initial one where
the Basic credentials are supplied by the user.

® For Basic authentication, ASP.NET automatically creates a WindowsPrincipal
object to represent the authenticated caller and associates it with the current Web
request (HttpContext.User) where it is used by .NET authorization including
PrincipalPermission demands and .NET roles.

® For Forms authentication, you must develop code to validate the supplied
credentials against Active Directory and construct a GenericPrincipal to repre-
sent the authenticated user.

® Windows authentication to SQL Server means you avoid storing credentials on
the Web server and it also means that credentials are not sent across the internal
network to the SQL Server computer.

® [PSec between the Web service and database protects the data passed to and
from the database on the corporate network.

Chapter 6: Extranet Security 117

Pitfalls

® The use of a duplicated local Windows account on the database server (one that
matches the ASPNET process account local to IIS) results in increased adminis-
tration. Passwords must be manually updated and synchronized on a periodic
basis.

® Basic authentication results in a pop-up dialog within the browser. To provide
a more seamless logon experience, use Forms authentication.

Related Scenarios

No Connectivity from Extranet to Corporate Network

For additional security, the extranet application can be built to require no connectiv-
ity back into the corporate network. In this scenario:

® A separate SQL Server database is located in the extranet and replication of data
occurs from the internal database to the extranet database.

® Routers are used to refuse connections from the extranet to the corporate net-
work. Connections can be established the other way using specific high ports.

® Connections from the corporate network to the extranet should always be per-
formed through a dedicated server that has strong auditing and logging and
through which users must authenticate before accessing the extranet.

More Information

® See the following Microsoft TechNet articles:
e “Extending Your Network to Business Partners”
® “Deploying SharePoint Portal Server in an Extranet Environment”

® For more information about using Forms authentication with Active Directory,
see “How To: Use Forms Authentication with Active Directory” in the Reference
section of this guide.

Summary

This chapter has described how to secure two common extranet application
scenarios.

For intranet and Internet application scenarios, see Chapter 5, “Intranet Security,”
and Chapter 7, “Internet Security.”

Internet Security

Internet applications have large audiences, many potential uses, and varied security
requirements. They range from portal applications that require no user authentica-
tion, through Web applications that provide content for registered users, to large
scale e-commerce applications that require full authentication, authorization, credit
card validation, and secure communication of sensitive data over public and inter-
nal networks.

As Internet application developers, you face a challenge to ensure that your applica-
tion uses appropriate defense mechanisms and is designed to be scalable, high
performance, and secure. Some of the challenges you face include:

® Choosing an appropriate user credential store, for example, a custom database or
Active Directory® directory service.

Making your application work through firewalls.
Flowing security credentials across the multiple tiers of your application.
Performing authorization.

Ensuring the integrity and privacy of data as it flows across public and internal
networks.

® Securing your application’s state with a database.

® Ensuring the integrity of your application’s data.

® Implementing a solution that can scale to potentially huge numbers of users.
The two common Internet application scenarios presented in this chapter, which are

used to illustrate recommended authentication, authorization, and secure commu-
nication techniques are:

® ASPNET to SQL Server
® ASP.NET to Remote Enterprise Services to SQL Server

120 Building Secure ASP.NET Applications

ASP.NET to SQL Server

In this scenario with two physical tiers, registered users securely log in to the Web-
based application using a Web browser. The ASPNET-based Web application makes
secure connections to a Microsoft® SQL Server™ database to manage predomi-
nantly data retrieval tasks. An example is a portal application that provides news
content to registered subscribers. This is shown in Figure 7.1.

Database
M Web Server — Server

—{ s s e AsPNET [
Firowall ™% 217 » Firewall
Figure 7.1

An ASP.NET Web application to SQL Server Internet scenario

Characteristics

This scenario has the following characteristics:
® Users have a number of different browser types.
® Anonymous users can browse the application’s unrestricted pages.

® Users must register or log on (through an HTML form) before being allowed to
view restricted pages.

User credentials are validated against a SQL Server database.

All user input (such as user credentials) that is used in database queries is
validated to mitigate the threat of SQL injection attacks.

® The front-end Web application is located within a perimeter network (also
known as DMZ, demilitarized zone, and screened subnet), with firewalls
separating it from the Internet and the internal corporate network (and the
SQL Server database).

Chapter 7: Internet Security 121

® The application requires strong security, high levels of scalability, and detailed

auditing.

® The database trusts the application to authenticate users properly (that is, the
application makes calls to the database on behalf of the users).

® The Web application connects to the database by using the ASP.NET process

account.

® A single user-defined database role is used within SQL Server for database

authorization.

Secure the Scenario

In this scenario, the Web application presents a logon page to accept credentials.
Successfully validated users are allowed to proceed, all others are denied access.
The database authenticates against the ASPNET default process identity, which is
a least privileged account (that is, the database trusts the ASP.NET application).

Table 7.1: Security summary

Category Detail

Authentication °

Authorization °

Secure Communication | @

IIS is configured to allow anonymous access; the ASPNET Web
application authenticates users with Forms authentication to
acquire credentials. Validation is against a SQL Server database.
Users’ passwords are not stored in the database. Instead pass-
word hashes with salt values are stored. The salt mitigates the
threat associated with dictionary attacks.

Windows® authentication is used to connect to the database using
the least privileged Windows account used to run the ASENET Web
application.

The ASRENET process account is authorized to access system
resources on the Web server. Resources are protected with
Windows ACLs.

Access to the database is authorized using the ASPNET application
identity.

Secure sensitive data sent between the users and the Web
application by using SSL.

Secure sensitive data sent between the Web server and the
database server by using IPSec.

122 Building Secure ASP.NET Applications

The Result

Figure 7.2 shows the recommended security configuration for this scenario.

NTFS URL authorization .
Permissions .NET Roles User-Defined
(Authorization) (Authorization) Role
— — (Authorization)
|
. ASPNET
Alice ® ® (Process
Identity)
Mar
v S | ASPNET H—
Bob \\
‘ ® ®
. | o i
\R K N/
AN e IPSec
\ ’ Anonymous Forms . 1
N ," Authentication Authentication |(Ptnva-(:y/ Wlnd_ows_
S\é . ntegrity) Authentication
(Privacy/Integrity)
Figure 7.2

The recommended security configuration for the ASPNET to SQL Server Internet scenario

Security Configuration Steps

Before you begin, you'll want to see the following;:

® Creating custom ASP.NET accounts (see “How To: Create a Custom Account to
Run ASP.NET” in the Reference section of this guide)

® Creating a least privileged database account (see Chapter 12, “Data Access
Security”)

® Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

e Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

Configure the Web Server

Configure IIS

Step More Information

Enable Anonymous access To work with IIS authentication settings, use the 1IS MMC

for your Web application’s snap-in. Right-click your application’s virtual directory, and then
virtual root directory click Properties.

Click the Directory Security tab, and then click Edit within the
Anonymous access and authentication control group.

Configure ASP.NET
Step

Reset the password of the
ASPNET account (used to
run ASENET) to a known
strong password

Configure your ASRNET
Web application to use
Forms authentication
(with SSL)

Chapter 7: Internet Security 123

More Information

This allows you to create a duplicate local account (with the
same user name and password) on the database server. This is
required to allow the ASPNET account to respond to network
authentication challenges from the database server when it
connects using Windows authentication.

An alternative here is to use a least privileged domain account
(if Windows authentication is permitted through the firewall).
For more information, see “Process Identity for ASRNET” in
Chapter 8, “ASRNET Security.”

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account user name and password attributes on
the <processModel> element

Default

<!-- userName="machine" password="AutoGenerate" -->

Becomes

<!-- userName="machine"
password="YourStrongPassword" -->

Edit Web.config in your application’s virtual directory root
Set the <authentication> element to:

<authentication mode="Forms" >
<forms name="MyAppFormsAuth"
loginUrl="Togin.aspx"
protection="A11"
timeout="20"
path="/" >
</forms>
</authentication>

For more information about using Forms authentication against
a SQL Server database, see “How To: Use Forms Authentication
with SQL Server 2000” in the Reference section of this guide.

124 Building Secure ASP.NET Applications

Configuring SQL Server

Step More Information

Create a Windows account The user name and password must match your custom ASENET
on your SQL Server computer | application account or must be ASPNET if you are using the
that matches the ASPNET default account.

process account

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to SQL Server.
for your custom ASENET
application account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new user-defined
database role within the
database and place the data-
base user into the role

Establish database Grant minimum permissions. For more information, see Chapter
permissions for the 12, “Data Access Security.”
database role

Configuring Secure Communication

Step More Information

Configure the Web site for See “How To: Setup SSL on a Web Server” in the Reference
SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
application server and Between Two Servers” in the Reference section of this guide.

database server

Analysis

® Forms authentication is ideal in this scenario because the users do not have
Windows accounts. The Forms login page is used to acquire user credentials.
Credential validation must be performed by application code. Any data store can
be used. A SQL Server database is the most common solution, although Active
Directory provides an alternate credential store.

Chapter 7: Internet Security 125

With Forms authentication, you must protect the initial logon credentials with
SSL. The Forms authentication ticket (passed as a cookie on subsequent Web
requests from the authenticated client) must also be protected. You could use SSL
for all pages in order to protect the ticket, or alternatively you can encrypt the
Forms authentication ticket by configuring the protection attribute of the
<forms> element (to All or Encrypt) and use the Encrypt method of the
FormsAuthentication class to encrypt the ticket.

The protection="All" attribute specifies that when the application calls
FormsAuthentication.Encrypt, the ticket should be validated (integrity checked)
and encrypted. Call this method when you create the authentication ticket,
typically within the application’s Login button event handler.

string encryptedTicket = FormsAuthentication.Encrypt(authTicket);

For more information about Forms authentication and ticket encryption, see
Chapter 8, “ASP.NET Security.”

ASP.NET runs as the least privileged local ASPNET account, so potential damage
from compromise is mitigated.

URL authorization on the Web server allows unauthenticated users to browse
unrestricted Web pages and forces authentication for restricted pages.

Because impersonation is not enabled, any local or remote resource access
performed by the Web-based application is performed using the ASPNET
account security context. Windows ACLs on secure resources should be set
accordingly.

User credentials are validated against a custom SQL Server database. Password
hashes (with salt) are stored within the database. For more information, see
“Authenticating Users against a Database” in Chapter 12, “Data Access Security.”

By using Windows authentication to SQL Server, you avoid storing credentials in
files on the Web server and also passing them over the network.

If your application currently uses SQL authentication, you must securely store
the database connection string as it contains user names and passwords. Con-
sider using DPAPI. For more details, see “Storing Database Connection Strings
Securely”, in Chapter 12, “Data Access Security.”

The use of a duplicated Windows account on the database server (one that
matches the ASP.NET process account) results in increased administration. If a
password is changed on one computer, it must be synchronized and updated on
all computers. In some scenarios, you may be able to use a least-privileged
domain account for easier administration.

126 Building Secure ASP.NET Applications

® [PSec between the Web server and database server ensures the privacy of the
data sent to and from the database.

® SSL between browser and Web server protects credentials and any other security
sensitive data such as credit card numbers.

® If you use a Web farm, ensure that the encryption keys, for example those used
to encrypt the Forms authentication ticket (and specified by the <machineKey>
element in Machine.config), are consistent across all servers in the farm. See
Chapter 8, “ASP.NET Security,” for further details about using ASPNET in a
Web farm scenario.

Pitfalls

The application must flow the original caller’s identity to the database to support
auditing requirements. Caller identity may be passed using stored procedure
parameters.

Related Scenarios

Forms Authentication against Active Directory

The user credentials that are accepted from the Forms login page can be authenti-
cated against various stores. Active Directory is an alternate to using a SQL Server
database.

More Information

For more information, see “How To: Use Forms Authentication with Active Direc-
tory” in the Reference section of this guide.

.NET Roles for Authorization

The preceding scenario doesn’t take into consideration the different types of users
accessing the application. For example, a portal server could have different sub-
scription levels such as Standard, Premier, and Enterprise.

If role information is maintained in the user store (SQL Server database), the appli-
cation can create a GenericPrincipal object in which role and identity information
can be stored. After the GenericPrincipal is created and added to the Web request
context (using HttpContext.User), you can add programmatic role checks to
method code or you can decorate methods and pages with PrincipalPermission
attributes to demand role membership.

More Information

® For more information about creating GenericPrincipal objects that contain role
lists, see “How To: Use Forms Authentication with GenericPrincipal Objects” in
the Reference section of this guide.

Chapter 7: Internet Security 127

® For more information about PrincipalPermission demands and programmatic
role checks, see Chapter 8, “ASP.NET Security.”

Using a Domain Anonymous Account at the Web Server

In this scenario variation, the default anonymous Internet user account (a local
account called IUSR_MACHINE) is replaced by a domain account. The domain
account is configured with the minimum privileges necessary to run the application
(you can start with no privilege and incrementally add privileges). If you have
multiple Web-based applications, you can use different domain accounts (one for
each Web-based application or virtual directory).

In order to flow the security context of the anonymous domain account from IIS to
ASP.NET, turn on impersonation for the Web-based application by using the follow-
ing web.config file setting

<identity impersonate="true" />

If the Web-based application communicates with a remote resource such as a data-
base, the domain account must be granted the necessary permissions to the re-
source. For example, if the application accesses a remote file system, ACLs must be
configured appropriately to give (at minimum) read access to the domain account.
If the application accesses a SQL Server database, the domain account must be
mapped using a SQL login to a database login.

As the security context that flows through the application is that of the anonymous
account, the original caller’s identity (captured through Forms authentication) must
be passed at the application level from tier to tier; for example, through method and
stored procedure parameters.

More Information

® For more information regarding this approach, see “Using the Anonymous
Internet User Account” within Chapter 8, “ASP.NET Security.”

® Before implementing this scenario, see article Q259353, “Must Enter Password
Manually After You Set Password Synchronization” in the Microsoft Knowledge
Base.

ASP.NET to Remote Enterprise Services to SQL Server

In this scenario, a Web server running ASP.NET pages makes secure connections to
serviced components, located on a remote application server that in turn connects to
a SQL Server database. In common with many Internet application infrastructures,
the Web server and application server are separated by a firewall (and the Web
server is located within a perimeter network). Serviced components make secure
connections to SQL Server.

128 Building Secure ASP.NET Applications

As an example, consider an Internet banking application that provides sensitive
data, (for example, private financial details) to users. All banking transactions from
the client to the database must be secured and data integrity is critical. Not only
does the traffic to and from the user need to be secured but the traffic to and from
the database needs to be secured as well. This is shown in Figure 7.3.

Database
— Web Server — Application Server Server
IS ASPNET SO Web Enterprise

- = ' 1| service [®| Services []
Firewall DMz ™ Firewall

Figure 7.3

An ASP.NET to remote Enterprise Services to SQL Server Internet scenario

Characteristics

® Users have a number of different browser types.

® Anonymous users can browse the application’s unrestricted pages.

® Users must register or log on (through an HTML form) before being allowed to
view restricted pages.

® The front-end Web-based application is located within a perimeter network, with
firewalls separating it from the Internet and the internal corporate network (and
the application server).

® The application requires strong security, high levels of scalability, and detailed
auditing.

® The Web-based application uses SOAP to connect to a Web services layer, which
provides an interface to the serviced components that run within an Enterprise
Services application on the application server. SOAP is preferred to DCOM due
to firewall restrictions.
SQL Server is using a single user-defined database role for authorization.

e Data is security sensitive and integrity and privacy must be secured over the
network and in all persistent data stores.

® Enterprise Services (COM+) transactions are used to enforce data integrity.

Chapter 7: Internet Security 129

Secure the Scenario

In this scenario, the Web service accepts credentials from a Forms login page and
then authenticates the caller against a SQL Server database. The login page uses SSL
to protect the user’s credentials passed over the Internet.

The Web-based application communicates with a Web service, which provides an
interface to the business services implemented within serviced components. The
Web service trusts the Web-based application (inside the perimeter network) and
authenticates the ASP.NET process identity. The user’s identity is passed through all
tiers at the application level using method and stored procedure parameters. This
information is used for auditing the users’ actions across the tiers.

Table 7.2: Security measures

Category Detail
Authentication ® Provide strong authentication at the Web server.
® Authenticate the Enterprise Services application identity at the
database.

® |IS is configured for anonymous access and the Web-based
application authenticates users with Forms authentication
(against a SQL Server database).

® The Web service’s virtual directory is configured for Integrated
Windows authentication. Web services authenticate the
Web-based application’s process identity.

® Windows authentication is used to connect to the database. The
database authenticates the least privileged Windows account
used to run the Enterprise Services application.

Authorization ® The trusted subsystem model is used and per-user authorization

occurs only within the Web application.

® User access to pages on the Web server is controlled with URL
authorization.

® The ASENET process account is authorized to access system
resources on the Web server. Resources are protected with ACLs.

® Permissions within the database are controlled by a user-defined
role. The Enterprise Services application identity is a member of
the role.

® The Enterprise Services process account is authorized to access
system resources on the application server. Resources are
protected ACLs.

Secure Communication ® Sensitive data sent between the users and the Web-based
application is secured with SSL.
® Sensitive data sent between the Web server and Web service
is secured with SSL.
® Sensitive data sent between serviced components and the data
base is secured with IPSec.

130 Building Secure ASP.NET Applications

The Result

Figure 7.4 shows the recommended security configuration for this scenario.

MU e Integrated Windows
Permissions Authorization (guthentication)
(Authorization) (Authorization) _ Rlequire SS_L Windows
B Wen s (Privacy/Integrity) (Authentication)
eb Server
_ ASPNET |
Alice L— ® ® (Process ®
Mary Identity) SOAP ASPNET
|| 1IS (| ASPNET Ho ———B IS (| (Web
Bob \\ 4 Services
> ° ® . Lo Fagade)
> = N Application Server+
N ’ "'
., Anonymous Forms SSL Enterorise Servi
\\ ,/ Authentication Authentication (Privacy/ ge(:\:g:ie E;thi(;ens
Sé'— Integrity) (dIIhostpexe)
(Privacy/Integrity) :
ES Process \\\(L':i?;‘; /
Identity /’/ Integrity)
v
User defined 0 ,
database roles | Windows
(Authorization) Authentication
Database Server
Figure 7.4

The recommended security configuration for the ASP.NET to remote Enterprise Services to SQL Server
Internet scenario

Security Configuration Steps

Before you begin, you'll want to see the following;:

® Creating a least privileged database account (see Chapter 12, “Data Access
Security”)

® Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in
the Reference section of this guide)

® Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide)

e Configuring Enterprise Services security (see “How To: Use Role-based Security
with Enterprise Services” in the Reference section of this guide)

Configure the Web Server

Configure IS
Step

Enable Anonymous access
for your Web-based
application’s virtual root
directory

Configure ASP.NET
Step

Reset the password of the
ASPNET account (used to
run ASENET) to a known
strong password

Chapter 7: Internet Security 131

More Information

More Information

This allows you to create a duplicate local account (with the
same user name and password) on the application server. This
is required to enable the ASPNET account to respond to network
authentication challenges from the application server.

An alternative is to use a least privileged domain account (if
Windows authentication is permitted through the firewall).

For more information, see “Process Identity for ASPNET” in
Chapter 8, “ASRNET Security.”

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes
on the <processModel> element.

Default

<!-- userName="machine" password="AutoGenerate" -->

Becomes

<!-- userName="machine"
password="YourStrongPassword" -->

(continued)

132 Building Secure ASP.NET Applications

Configure ASP.NET (continued)
Step
Configure your Web-based

application to use Forms
authentication (with SSL)

More Information

Edit Web.config in your application’s virtual directory root
Set the <authentication> element to:

<authentication mode="Forms" >
<forms name="MyAppFormsAuth"
loginUr1="Togin.aspx"
protection="A11"
timeout="20"
path="/" >
</forms>
</authentication>

For more information about using Forms authentication against
a SQL Server database, see “How To: Use Forms Authentication
with SQL Server 2000” in the Reference section of this guide.

Configure the Application Server

Configure IIS
Step

Disable anonymous access

Configure Integrated
Windows authentication

Configure ASP.NET
Step

Use Windows authentication

Configure Enterprise Services
Step

Create a least privileged
custom account for running
the Enterprise Services
server application

Configure the Enterprise
Services application to use
the custom account

Enable role-based access
checking

More Information

IIS authenticates the ASRNET process identity from the Web-
based application on the Web server.

More Information

Edit Web.config in your Web service’s virtual directory root.
Set the <authentication> element to:

<authentication mode="Windows" />

More Information

Note: If you use a local account, you must also create
a duplicate account on the database server computer.

Refer to “Configuring Security” within Chapter 9, “Enterprise
Services Security.”

Refer to “Configuring Security” within Chapter 9, “Enterprise
Services Security.”

Configure Enterprise Services
Step

Add a single Enterprise
Services (COM+) role to the
application called (for
example Trusted Web
Service)

Add the local ASPNET
account to the Trusted Web
Service role

Configuring SQL Server

Step

Create a Windows account
on your SQL Server
computer that matches the
Enterprise Services
application account

Configure SQL Server for
Windows authentication

Create a SQL Server Login
for your custom Enterprise
Services account

Create a new database user
and map the login name to
the database user

Create a new user-defined
database role and add the
database user to the role

Establish database permis-
sions for the database role

Chapter 7: Internet Security 133

More Information

Full end-user authorization is performed by the Web-based
application. The Web service (and serviced components) only
allows access to members of the Trusted Web Service role.

Refer to “Configuring Security” within Chapter 9, “Enterprise
Services Security.”

More Information

The user name and password must match your custom Enter-
prise Services account.

This grants access to the SQL Server.

This grants access to the specified database.

Grant minimum permissions
For details, see Chapter 12, “Data Access Security.”

Configuring Secure Communication

Step

Configure the Web site for
SSL

Configure SSL between the
Web server and application
server.

Configure IPSec between
application server and
database server

More Information

See “How To: Setup SSL on a Web Server” in the Reference
section of this guide.

See “How To: Call a Web Service Using SSL” in the Reference
section of this guide.

See “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the Reference section of this guide.

134 Building Secure ASP.NET Applications

Analysis

Forms authentication is ideal in this scenario because the users do not have
Windows accounts. The Forms login page is used to acquire user credentials.
Credential validation must be performed by application code. Any data store
can be used. A SQL Server database is the most common solution, although
Active Directory provides an alternate credential store.

The Web-based application is running as the least privileged local ASPNET
account, so potential damage from compromise is mitigated.

URL authorization on the Web server allows unauthenticated users to browse
unrestricted Web pages and forces authentication for restricted pages.

Because impersonation is not enabled, any local or remote resource access
performed by the Web-based application does so using the ASPNET account
security context. ACLs should be configured accordingly.

User credentials are validated against a custom SQL Server database. Password
hashes (with salt) are stored within the database. For more information, see
“Authenticating Users against a Database” in Chapter 12, “Data Access Security.”

Windows authentication to SQL Server means you avoid storing credentials in
tiles on the application server and avoid passing them across the network.

The use of a duplicated Windows account on the database server (one that
matches the Enterprise Services process account) results in increased administra-
tion. If a password is changed on one computer, it must be synchronized and
updated on all computers. In some scenarios, you may be able to use a least-
privileged domain account for easier administration.

When the Web application calls the Web service, it must configure the Web
service proxy using DefaultCredentials (that is, the ASPNET process account;
ASPNET).

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

For more information, see “Passing Credentials For Authentication to Web
Services” in Chapter 10, “Web Services Security.”

SSL between the Web server and Web service layer (that fronts the serviced
components on the application server) ensures the privacy of the data sent
between the two servers.

The Enterprise Services application is configured for application-level role-based
security. The configuration permits only the local ASPNET account (used to run
the Web service) to access the serviced components.

Chapter 7: Internet Security 135

® [PSec between the application server and database server ensures the privacy of
the data sent to and from the database.

® SSL between browser and Web server protects credentials and bank account
details.

Pitfalls

The application must flow the original caller’s identity to the database to support
auditing requirements. Caller identity may be passed using stored procedure
parameters.

Related Scenarios

Forms Authentication Against Active Directory

The user credentials that are accepted from the Forms login page can be authenti-
cated against various stores. Active Directory is an alternate to using a SQL Server
database.

More Information

For more information, see “How To: Use Forms Authentication with Active Direc-
tory” in the Reference section of this guide.

Using DCOM

Windows 2000 (SP3 or SP2 with QFE 18.1) or Windows .NET Server allows you
to configure Enterprise Services applications to use a static endpoint. If a firewall
separates the client from the server, this means that you need to open only two
ports in the firewall. Specifically, you must open port 135 for RPC and a port for
your Enterprise Services application.

This enhancement to DCOM makes it a valid choice of communication protocol
between Web server and application server and removes the requirement to have
a Web services layer.

Important: If your application requires distributed transactions to flow between the two
servers, DCOM must be used. Transactions cannot flow over SOAR In the SOAP scenario,
transactions must be initiated by the serviced components on the application server.

More Information

For more information, see Chapter 9, “Enterprise Services Security.”

136 Building Secure ASP.NET Applications

Using .NET Remoting

Remoting can be a valid choice when you don’t need services provided by Enter-
prise Services such as transactions, queued components, object pooling, and so on.
.NET Remoting solutions also support network load balancing at the middle tier.
Note the following when you use .NET Remoting:

For ultimate performance, use the TCP channel and host in a Windows service.
Note that this channel provides no authentication and authorization mechanism
by default. The TCP channel is designed for trusted subsystem scenarios. You
can use an IPSec policy to establish a secure channel and to ensure that only the
Web server communicates with the application server.

If you need authentication and authorization checks using IPrincipal objects,
you should host the remote objects in ASP.NET and use the HTTP channel. This
allows you use the IIS and ASP.NET security features.

The remote object can connect to the database using Windows authentication
and can use the host process identity (either ASPNET or a Windows service
identity).

More Information

For more information about .NET Remoting security, see Chapter 11, “.NET
Remoting Security.”

Summary

This chapter has described how to secure a set of common Internet application
scenarios.

For Intranet and extranet application scenarios, see Chapter 5, “Intranet Security,”
and Chapter 6, “Extranet Security.”

ASP.NET Security

ASP.NET Security Architecture

ASP.NET works in conjunction with IIS, the NET Framework, and the underlying
security services provided by the operating system, to provide a range of authenti-
cation and authorization mechanisms. These are summarized in Figure 8.1.

Authenticated caller’s access token
(or IUSR_MACHINE access token)

1
1 1
L s ASPNET :
@ , @ (inetinfo.exe) @ @ (aspnet_wp.exe) @ i
1 1
1 1
HTTP i | | Authentication Authorization Authentication Authorization :
Requests | | | Anonymous Web Permissions Windows File AuthZ i
_qﬁ.b Basic —p»-| NTFS Permissions - Forms L] URL AuthZ i
» - Digest IP Address Passport .NET Roles -
N Integrated Restrictions None !
4 v Certificate ,
SSL : :
(Privacy/ 1 \yep Server :
Integrity) b e e,

ASP.NET Process
Original Caller |—Identity @
Fixed Proxy ldentity
Local or
Remote
Resource
Figure 8.1

ASP.NET security services

138 Building Secure ASP.NET Applications

Figure 8.1 illustrates the authentication and authorization mechanisms provided by
IIS and ASP.NET. When a client issues a Web request, the following sequence of
authentication and authorization events occurs:

1. The HTTP(S) Web request is received from the network. SSL can be used to
ensure the server identity (using server certificates) and, optionally, the client
identity.

Note: SSL also provides a secure channel to protect sensitive data passed between client
and server (and vice-versa).

2. IIS authenticates the caller by using Basic, Digest, Integrated (NTLM or
Kerberos), or Certificate authentication. If all or part of your site does not require
authenticated access, IIS can be configured for anonymous authentication. IIS
creates a Windows access token for each authenticated user. If anonymous
authentication is selected, IIS creates an access token for the anonymous Internet
user account (which, by default, is [USR_MACHINE).

3. IIS authorizes the caller to access the requested resource. NTES permissions
defined by ACLs attached to the requested resource are used to authorize access.
IIS can also be configured to accept requests only from client computers with
specific IP addresses.

4. IIS passes the authenticated caller’s Windows access token to ASP.NET (this may
be the anonymous Internet user’s access token, if anonymous authentication is
being used).

5. ASP.NET authenticates the caller.

If ASP.NET is configured for Windows authentication, no additional authentica-
tion occurs at this point. ASP.NET will accept any token it receives from IIS.

If ASP.NET is configured for Forms authentication, the credentials supplied by
the caller (using an HTML form) are authenticated against a data store; typically
a Microsoft® SQL Server™ database or Active Directory® directory service. If
ASP.NET is configured for Passport authentication, the user is redirected to a
Passport site and the Passport authentication service authenticates the user.

6. ASP.NET authorizes access to the requested resource or operation.

The UrlAuthorizationModule (a system provided HTTP module) uses authori-
zation rules configured in Web.config (specifically, the <authorization> element)
to ensure that the caller can access the requested file or folder.

With Windows authentication, the FileAuthorizationModule (another HTTP
module) checks that the caller has the necessary permission to access the re-
quested resource. The caller’s access token is compared against the ACL that
protects the resource.

NET roles can also be used (either declaratively or programmatically) to ensure
that the caller is authorized to access the requested resource or perform the
requested operation.

Chapter 8: ASP.NET Security 139

7. Code within your application accesses local and/or remote resources by using a
particular identity. By default, ASPNET performs no impersonation and as a
result, the configured ASP.NET process account provides the identity. Alternate
options include the original caller’s identity (if impersonation is enabled), or a
configured service identity.

Gatekeepers

The authorization points (or gatekeepers) within an ASPNET Web application are
provided by IIS and ASP.NET:

s

With anonymous authentication turned off, IIS permits requests only from users
that it can authenticate either in its domain or in a trusted domain.

For static file types (for example .jpg, .gif and .htm files—files that are not mapped
to an ISAPI extension), IIS uses the NTFS permissions associated with the requested
file to perform access control.

ASP.NET

The ASP.NET gatekeepers include the UrlAuthorizationModule,
FileAuthorizationModule and Principal permission demands and role checks.

UrlAuthorizationModule

You can configure <authorization> elements within your application’s Web.config
file to control which users and groups of users should have access to the applica-
tion. Authorization is based on the IPrincipal object stored in HttpContext.User.

FileAuthorizationModule

For file types mapped by IIS to the ASP.NET ISAPI extension (Aspnet_isapi.dll),
automatic access checks are performed using the authenticated user’s Windows
access token (which may be IUSR_MACHINE) against the ACL attached to the
requested ASP.NET file.

Note: Impersonation is not required for file authorization to work.

The FileAuthorizationModule class only performs access checks against the re-
quested file, and not for files accessed by the code in the requested page, although
these are access checked by IIS.

For example, if you request Default.aspx and it contains an embedded user control
(Usercontrol.ascx), which in turn includes an image tag (pointing to Image.gif), the
FileAuthorizationModule performs an access check for Default.aspx and
Usercontrol.ascx, because these file types are mapped by IIS to the ASPNET ISAPI
extension.

140 Building Secure ASP.NET Applications

The FileAuthorizationModule does not perform a check for Image.gif, because this
is a static file handled internally by IIS. However, as access checks for static files are
performed by IIS, the authenticated user must still be granted read permission to
the file with an appropriately configured ACL.

This scenario is shown in Figure 8.2.

Note to system administrators: The authenticated user requires NTFS read permissions to all
of the files involved in the scenario. The only variable is regarding which gatekeeper is used to
enforce access control. The ASENET process account only requires read access to the ASENET
registered file types.

! FileAuthorizationModule !
0 Gatekeeper 0
1 (Files handled by ASPNET 1
: :
1 1
1 1

ISAPI including .aspx and ;] !

.ascx files) 1 Gatekeeper !

1 . . 1

_ 1 (Static files 1

Authenticated default.aspx 1 including .gif |

User ! files) !
(Bob)

——— »—| UserControl.ascx ° P image.gif
Request for
default.aspx ®

default.aspx UserControl.aspx image.gif
ASPNET:R ASPNET:R Bob:R
Bob:R Bob:R ASPNET does not

. . require permissions
Required NTFS Permissions

Figure 8.2
IIS and ASP.NET gatekeepers working together

In this scenario you can prevent access at the file gate. If you configure the ACL
attached to Default.aspx and deny access to a particular user, the user control or
any embedded images will not get a chance to be sent to the client by the code in
Default.aspx. If the user requests the images directly, IIS performs the access checks
itself.

Principal Permission Demands and Explicit Role Checks

In addition to the IIS and ASP.NET configurable gatekeepers, you can also use
principal permission demands (declaratively or programmatically) as an additional
fine-grained access control mechanism. Principal permission checks (performed by
the PrincipalPermissionAttribute class) allow you to control access to classes,
methods, or individual code blocks based on the identity and group membership of
individual users, as defined by the IPrincipal object attached to the current thread.

Chapter 8: ASP.NET Security 141

Note: Principal permission demands used to demand role membership are different from
calling IPrincipal.lsinRole to test role membership; the former results in an exception if the
caller is not a member of the specified role, while the latter simply returns a Boolean value
to confirm role membership.

With Windows authentication, ASPNET automatically attaches a WindowsPrincipal
object that represents the authenticated user to the current Web request (using
HttpContext.User). Forms and Passport authentication create a GenericPrincipal
object with the appropriate identity and no roles and attaches it to the
HttpContext.User.

More Information

® For more information about configuring security, see “Configuring Security”
later in this chapter.

® For more information about programming security (and IPrincipal objects), see
“Programming Security” later in this chapter.

Authentication and Authorization Strategies

ASPNET provides a number of declarative and programmatic authorization mecha-
nisms that can be used in conjunction with a variety of authentication schemes. This
allows you to develop an in depth authorization strategy and one that can be con-
figured to provide varying degrees of granularity; for example, per-user or per-user
group (role-based).

This section shows you which authorization options (both configurable and pro-
grammatic) are available for a set of commonly used authentication options.
The authentication options that follow are summarized here:

Windows authentication with impersonation

Windows authentication without impersonation

Windows authentication using a fixed identity

Forms authentication

Passport authentication

Available Authorization Options

The following table shows you the set of available authorization options. For each
one the table indicates whether or not Windows authentication and/or imperson-
ation are required. If Windows authentication is not required, the particular authori-
zation option is available for all other authentication types. Use the table to help
refine your authentication/authorization strategy.

142 Building Secure ASP.NET Applications

Table 8.1: Windows authentication and impersonation requirements

Authorization Option Requires Windows Requires Impersonation
Authentication

FileAuthorizationModule Yes No

UrlAuthorizationModule No No

Principal Permission Demands No No

.NET Roles No No

Enterprise Services Roles Yes Yes (within the ASENET Web

application)

NTFS Permissions (for directly N/A — These files are not No (IS performs the access

requested static files types; not | handled by ASPNET. check.)

mapped to an ISAPI extension) With any (non-Anonymous)
IIS authentication mecha-
nism, permissions should be
configured for individual
authenticated users.
With Anonymous authenti-
cation, permissions should
be configured for

IUSR_MACHINE.
NTFS Permissions (for files No No
accessed by Web application If impersonating, configure
code) ACLs against the imperson-

ated Windows identity, which
is either the original caller or
the identity specified on the
<identity> element in
Web.config*.

* The impersonated identity may be the original caller or the identity specified on
the <identity> element in Web.config. Consider the following two <identity>
elements.

<identity impersonate="true" />
<identity impersonate="true" userName="Bob" password="pwd" />

The first configuration results in the impersonation of the original caller (as authen-
ticated by IIS), while the second results in the identity Bob. The second configura-
tion is not recommended for two reasons:

® [t requires that you grant the ASP.NET process identity the “Act as part of the
operating system” privilege on the Microsoft Windows® 2000 operating system.

® [t also requires you to include a plain text password in Web.config.

Both of these restrictions will be lifted in the next release of the .NET Framework.

Chapter 8: ASP.NET Security 143

Windows Authentication with Impersonation

The following configuration elements show you how to enable Windows (IIS)
authentication and impersonation declaratively in Web.config or Machine.config.

Note: You should configure authentication on a per-application basis in each application’s
Web.config file.

<authentication mode="Windows" />
<identity impersonate="true" />

With this configuration, your ASPNET application code impersonates the IIS-
authenticated caller.

Configurable Security

When you use Windows authentication together with impersonation, the following
authorization options are available to you:

® Windows ACLs

® Client Requested Resources. The ASPNET FileAuthorizationModule
performs access checks for requested file types that are mapped to the
ASP.NET ISAPL. It uses the original caller’s access token and ACL attached
to requested resources in order to perform access checks.

For static files types (not mapped to an ISAPI extension), IIS performs access
checks using the caller’s access token and ACL attached to the file.

® Resources Accessed by Your Application. You can configure Windows ACLs
on resources accessed by your application (files, folders, registry keys, Active
Directory objects, and so on) against the original caller.

® URL Authorization. Configure URL authorization in Web.config. With Windows
authentication, user names take the form DomainName\UserName and roles
map one-to-one with Windows groups.

<authorization>
<deny user="DomainName\UserName" />
<allow roles="DomainName\WindowsGroup" />
</authorization>

® Enterprise Services (COM+) Roles. Roles are maintained in the COM+ catalog.
You can configure roles with the Component Services administration tool or
script.

144 Building Secure ASP.NET Applications

Programmatic Security

Programmatic security refers to security checks located within your Web applica-
tion code. The following programmatic security options are available when you use
Windows authentication and impersonation:

PrincipalPermission Demands
® Imperative (in-line within a method’s code)
PrincipalPermission permCheck = new PrincipalPermission(

null, @"DomainName\WindowsGroup™);
permCheck.Demand();

® Declarative (attributes preceding interfaces, classes and methods)

[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\WindowsGroup)]

Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup™);

Enterprise Services (COM+) Roles. You can perform role checking program-
matically using the ContextUtil class.

ContextUtil.IsCallerInRole("Manager")

When to Use

Use Windows authentication and impersonation when:

Your application’s users have Windows accounts that can be authenticated by
the server.

You need to flow the original caller’s security context to the middle tier and/or
data tier of your Web application to support fine-grained (per-user) authoriza-
tion.

You need to flow the original caller’s security context to the downstream tiers to
support operating system level auditing.

Before using impersonation within your application, make sure you understand the

relative trade-offs of this approach in comparison to using the trusted subsystem
model. These were elaborated upon in “Choosing a Resource Access Model” in
Chapter 3, “Authentication and Authorization.”

Chapter 8: ASP.NET Security 145

The disadvantages of impersonation include:

® Reduced application scalability due to the inability to effectively pool database
connections.

® Increased administration effort as ACLs on back-end resources need to be config-
ured for individual users.

® Delegation requires Kerberos authentication and a suitably configured environ-
ment.

More Information

® For more information about Windows authentication, see “Windows Authentica-
tion” later in this chapter.

® For more information about impersonation, see “Impersonation” later in this
chapter.

® For more information about URL authorization, see “URL Authorization Notes”
later in this chapter.

® For more information about Enterprise Services (COM+) roles, see Chapter 9,
“Enterprise Services Security.”

® For more information about PrincipalPermission demands, see “Identities and
Principals” in Chapter 2, “Security Model for ASPNET Application.”

Windows Authentication without Impersonation

The following configuration elements show how you enable Windows (IIS) authen-
tication with no impersonation declaratively in Web.config.

<authentication mode="Windows" />
<!-- The following setting is equivalent to having no identity element -->
<identity impersonate="false" />

Configurable Security

When you use Windows authentication without impersonation, the following
authorization options are available to you:

® Windows ACLs

® Client Requested Resources. The ASPNET FileAuthorizationModule
performs access checks for requested file types that are mapped to the
ASP.NET ISAPL. It uses the original caller’s access token and ACL attached to
requested resources in order to perform access checks. Impersonation is not
required.

For static files types (not mapped to an ISAPI extension) IIS performs access
checks using the caller’s access token and ACL attached to the file.

146 Building Secure ASP.NET Applications

® Resources accessed by your application. Configure Windows ACLs on
resources accessed by your application (files, folders, registry keys, Active
Directory objects) against the ASPNET process identity.

® URL Authorization. Configure URL Authorization in Web.config. With Windows
authentication, user names take the form DomainName\UserName and roles
map one-to-one with Windows groups.

<authorization>
<deny user="DomainName\UserName" />
<allow roles="DomainName\WindowsGroup" />
</authorization>

Programmatic Security
The following programmatic security options are available:
® Principal Permission Demands
® Imperative
PrincipalPermission permCheck = new PrincipalPermission(

null, @"DomainName\WindowsGroup");
permCheck.Demand() ;

® Declarative

[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\WindowsGroup")]

® Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup");

When to Use

Use Windows authentication without impersonation when:

® Your application’s users have Windows accounts that can be authenticated by
the server.

® You want to use a fixed identity to access downstream resources (for example,
databases) in order to support connection pooling.

Chapter 8: ASP.NET Security 147

More Information

® For more information about Windows authentication, see “Windows Authentica-
tion” later in this chapter.

® For more information about URL authorization, see “URL Authorization Notes”,
later in this chapter.

® For more information about PrincipalPermission demands, see “Principals”
within the “Getting Started” section of this guide.

Windows Authentication Using a Fixed Identity

The <identity> element in Web.config supports optional user name and password
attributes, which allows you to configure a specific fixed identity for your applica-
tion to impersonate. This is shown in the following configuration file fragment.

<identity impersonate="true" userName="DomainName\UserName"
password="ClearTextPassword" />

When to Use

This approach is not recommended for the current version (version 1) of the NET
Framework in secure environments for two reasons:

® User names and passwords should not be stored in plain text in configuration
tiles, particularly configuration files stored in virtual directories.

® On Windows 2000, this approach forces you to grant the ASP.NET process
account the “Act as part of the operating system” privilege. This reduces the
security of your Web application and increases the threat should an attacker
compromise the Web application process.

The .NET Framework version 1.1 will provide an enhancement for this scenario on
Windows 2000:
® The credentials will be encrypted.

® The log on will be performed by the IIS process, so that ASP.NET does not
required the “Act as part of the operating system” privilege.

Forms Authentication

The following configuration elements show how you enable Forms authentication
declaratively in Web.config.

<authentication mode="Forms">
<forms ToginUrl="Togon.aspx" name="AuthCookie" timeout="60" path="/">
</forms>

</authentication>

148 Building Secure ASP.NET Applications

Configurable Security

When you use Forms authentication, the following authorization options are avail-
able to you:

® Windows ACLs

® C(Client Requested Resources. Requested resources require ACLs that allow
read access to the anonymous Internet user account. (IIS should be configured
to allow anonymous access when you use Forms authentication).

ASP.NET File authorization is not available because it requires Windows
authentication.

® Resources Accessed by Your Application. Configure Windows ACLs on
resources accessed by your application (files, folders, registry keys, and
Active Directory objects) against the ASP.NET process identity.

® URL Authorization
Configure URL Authorization in Web.config. With Forms authentication, the

format of user names is determined by your custom data store; a SQL Server
database, or Active Directory.

® If you are using a SQL Server data store:

<authorization>
<deny users="?" />

<allow users="Mary,Bob,Joe" roles="Manager,Sales" />
</authorization>

® If you are using Active Directory as your data store, user names, and group
names appear in X.500 format:

<authorization>
<deny users="someAccount@domain.corp.yourCompany.com" />
<allow roles ="CN=Smith James,CN=FTE_northamerica,CN=Users,
DC=domain,DC=corp,DC=yourCompany,DC=com" />
</authorization>

Programmatic Security
The following programmatic security options are available:
® Principal Permission Demands
® Imperative
PrincipalPermission permCheck = new PrincipalPermission(

null, "Manager™);
permCheck.Demand() ;

Chapter 8: ASP.NET Security 149

® Declarative

[PrincipalPermission(SecurityAction.Demand,
RoTe="Manager'")]

® Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole("Manager™);

When to Use

Forms authentication is most ideally suited to Internet applications. Use Forms

authentication when:

® Your application’s users do not have Windows accounts.

® You want users to log on to your application by entering credentials using an
HTML form.

More Information

® For more information about Forms authentication, see “Forms Authentication”
later in this chapter.

® For more information about URL authorization, see “URL Authorization Notes”
later in this chapter.

Passport Authentication

The following configuration elements show how you enable Passport authentication
declaratively in Web.config.

<authentication mode="Passport" />

When to Use

Passport authentication is used on the Internet when application users do not have
Windows accounts and you want to implement a single-sign-on solution. Users who
have previously logged on with a Passport account at a participating Passport site
will not have to log on to your site configured with Passport authentication.

150 Building Secure ASP.NET Applications

Configuring Security

This section shows you the practical steps required to configure security for an
ASP.NET Web application. These are summarized in Figure 8.3.

1. Configure IIS
(IS Metabase)

Install server certificate (SSL)
Set ISS Authentication

Configure client certificate mapping
(Optional)

2. Configure ASP.NET
(web.config, machine.config)

Set authentication mode
Set impersonation
Configure URL authorization

3. Secure Resources
(wWindows ACLs)

Secure files, folders, registry keys
Secure web and machine.config
Log web.config settings

4. Secure Communication
(IPSec/SSL)

Secure communication links using a
combination of IPSec and SSL

Figure 8.3

Configuring ASP.NET application security

e Aie Ve Heb

-+ BB EA e
:ta\uw e :-ui‘l'H-
- M BT RTOR i dlegie) || L el PO (e ot |] i

L et S

Internet Services Manager

[Flerniora e P

») semrisions B Rt e | e ey Liimiand, Lot T deta st ¢

i -I"_"-"'-';" B ecryterer Rag . P ol P, sheaen ey et arg fartaron g

& P iy ks T

o Lt [T WRNTIY RNT TS S URRp——— S—
N P Gty P o 08 £ o N

i ¥ |4 ¥

Security Policy and Configuration Tools

Chapter 8: ASP.NET Security 151

Configure IS Settings

To configure IIS security, you must perform the following steps:
1. Optionally install a Web server certificate (if you need SSL).

For more information, see “How To: Set Up SSL on a Web Server” in the Refer-
ence section of this guide.

2. Configure IIS authentication.

3. Optionally configure client certificate mapping (if using certificate authentica-
tion).
For more information about client certificate mapping, see article Q313070,
“How to Configure Client Certificate Mappings in Internet Information Services
(IIS) 5.0” in the Microsoft Knowledge Base.

4. Set NTFS permissions on files and folders. Between them, IIS and the ASPNET
FileAuthorizationModule check that the authenticated user (or the anonymous
Internet user account) has the necessary access rights (based on ACL settings) to
access the requested file.

Configure ASP.NET Settings

Application level configuration settings are maintained in Web.config files, which
are located in your application’s virtual root directory and optionally within addi-
tional subfolders (these settings can sometimes override the parent folder settings).

1. Configure authentication. This should be set on a per-application basis (not in
Machine.config) in the Web.config file located in the application’s virtual root
directory.

<authentication mode="Windows |Forms|Passport|None" />

2. Configure Impersonation. By default, ASPNET applications do not imperson-
ate. The applications runs using the configured ASP.NET process identity (usu-
ally ASPNET) and all resource access performed by your application uses this
identity. You only need impersonation in the following circumstances:

® You are using Enterprise Services and you want to use Enterprise Services
(COMH+) roles to authorize access to functionality provided by serviced
components.

e [IS is configured for Anonymous authentication and you want to use the
anonymous Internet user account for resource access. For details about this
approach, see “Accessing Network Resources” later in this chapter.

® You need to flow the authenticated user’s security context to the next tier (for
example, the database).

® You have ported a classic ASP application to ASP.NET and want the same
impersonation behavior. Classic ASP impersonates the caller by default.

152 Building Secure ASP.NET Applications

To configure ASP.NET impersonation use the following <identity> element in
your application’s Web.config.

<identity impersonate="true" />

. Configure Authorization. URL authorization determines whether a user or role

can issue specific HTTP verbs (for example, GET, HEAD, and POST) to a specific
file. To implement URL authorization, you perform the following tasks.

a. Add an <authorization> element to the Web.config file located in your
application’s virtual root directory.

b. Restrict access to users and roles by using allow and deny attributes. The
following example from Web.config uses Windows authentication and allows
Bob and Mary access but denies everyone else.

<authorization>
<allow users="DomainName\Bob, DomainName\Mary" />
<deny users="*" />

</authorization>

Important: You need to add either <deny users="?"/> or <deny users="*"/> at the
end of the <authorization> element, otherwise access is granted to all authenticated
identities.

URL Authorization Notes

Take note of the following when you configure URL authorization:

1"

refers to all identities.
“?” refers to unauthenticated identities (that is, the anonymous identity).
You don’t need to impersonate for URL authorization to work.

Authorization settings in Web.config usually refer to all of the files in the current
directory and all subdirectories (unless a subdirectory contains its own
Web.config with an <authorization> element. In this case the settings in the
subdirectory override the parent directory settings).

Note: URL authorization only applies to file types that are mapped by IIS to the ASRNET
ISAPI extension, aspnet_isapi.dll.

Chapter 8: ASP.NET Security 153

You can use the <location> tag to apply authorization settings to an individual
file or directory. The following example shows how you can apply authorization
to a specific file (Page.aspx).

<location path="page.aspx" />
<authorization>
<allow users="DomainName\Bob, DomainName\Mary" />
<deny users="*" />
</authorization>
</location>

Users and roles for URL authorization are determined by your authentication
settings:

® When you have <authentication mode="Windows” /> you are authorizing
access to Windows user and group accounts.

User names take the form “DomainName\ WindowsUserName”
Role names take the form “DomainName\ WindowsGroupName”

Note: The local administrators group is referred to as “BUILTIN\Administrators”. The
local users group is referred to as “BUILTIN\Users”.

® When you have <authentication mode="Forms” /> you are authorizing
against the user and roles for the IPrincipal object that was stored in the
current HTTP context. For example, if you used Forms to authenticate users
against a database, you will be authorizing against the roles retrieved from
the database.

® When you have <authentication mode="Passport” /> you authorize against
the Passport User ID (PUID) or roles retrieved from a store. For example, you
can map a PUID to a particular account and set of roles stored in a SQL Server
database or Active Directory.

Note: This functionality will be built into the Microsoft Windows .NET Server 2003
operating system.

® When you have <authentication mode="None” /> you may not be perform-
ing authorization. “None” specifies that you don’t want to perform any
authentication or that you don’t want to use any of the .NET authentication
modules and want to use your own custom mechanism.

However, if you use custom authentication, you should create an IPrincipal
object with roles and store it into the HttpContext.User. When you subse-
quently perform URL authorization, it is performed against the user and roles
(no matter how they were retrieved) maintained in the IPrincipal object.

154 Building Secure ASP.NET Applications

URL Authorization Examples

The following list shows the syntax for some typical URL authorization examples:
® Deny access to the anonymous account

<deny users="?" />

® Deny access to all users

<deny users="*"/>

® Deny access to Manager role

<deny roles="Manager"/>

® Forms authentication example

<configuration>
<system.web>
<authentication mode="Forms">
<forms name=".ASPXUSERDEMO"
ToginUrl="Togin.aspx"
protection="AT1" timeout="60" />
</authentication>
<authorization>
<deny users="jdoe@somewhere.com" />
<deny users="?" />
</authorization>
</system.web>
</configuration>

More Information

The <authorization> element works against the current IPrincipal object stored in
HttpContext.User and also the HttpContext.Request.RequestType.

Secure Resources

1. Use Windows ACLs to secure resources that include files, folders, and registry
keys.
If you are not impersonating, any resource your application is required to access
must have an ACL that grants at least read access to the ASP.NET process ac-
count.

If you are impersonating, files and registry keys must have an ACL that grants at
least read access to the authenticated user (or the anonymous Internet user
account, if anonymous authentication is in effect).

Chapter 8: ASP.NET Security 155

2. Secure Web.config and Machine.config:

® Use the Correct ACLs. If ASPNET is impersonating, the impersonated iden-
tity requires read access. Otherwise, the ASPNET process identity requires
read access. Use the following ACL on Web.config and Machine.config.

System: Full Control
Administrators: Full Control
Process Identity or Impersonated Identity : Read

If you are not impersonating the anonymous Internet user account
(IUSR_MACHINE), you should deny access to this account.

Note: If your application is mapped to a UNC share then the UNC identity requires read
access to the configuration files as well.

® Remove Unwanted HTTP Modules. Machine.config contains a set of default
HTTP modules (within the <httpModules> element. These include:

WindowsAuthenticationModule
FormsAuthenticationModule
PassportAuthenticationModule
UrlAuthorizationModule
FileAuthorizationModule
OutputCacheModule
SessionStateModule

If your application doesn’t use a specific module, remove it to prevent any
potential future security issues associated with a particular module from
being exploited within your application.

3. Optionally, lock configuration settings by using the <location> element together
with the allowOverride="false” attribute as described below.

Locking Configuration Settings

Configuration settings are hierarchical. Web.config file settings in subdirectories
override Web.config settings in parent directories. Also, Web.config settings over-
ride Machine.config settings.

You can lock configuration settings to prevent them being overridden at lower
levels, by using the <location> element coupled with the allowOverride attribute.
For example:

<location path="somepath" allowOverride="false" />
. arbitrary configuration settings . . .
</Tocation>

156 Building Secure ASP.NET Applications

Note that the path may refer to a Web site or virtual directory and it applies to the
nominated directory and all subdirectories. If you set allowOverride to false, you
prevent any lower level configuration file from overriding the settings specified in
the <location> element. The ability to lock down configuration settings applies to
all types of setting and not just security settings such as authentication modes.

Preventing Files from Being Downloaded

You can use the HttpForbiddenHandler class to prevent certain file types from
being downloaded over the Web. This class is used internally by ASP.NET to pre-
vent the download of certain system level files (for example, configuration files
including web.config). For a complete list of file types restricted in this way, see the
<httpHandlers> section in machine.config.

You should consider using the HttpForbiddenHandler for files that your applica-
tion uses internally, but are not intended for download.

Note: You must also secure the files with Windows ACLs to control which users can access the
files, when logged on to the Web server.

» To use the HttpForbiddenHandler to prevent a particular file type from being downloaded

1. Create an application mapping in IIS for the specified file type to map it to
Aspnet_isapi.dll.

a. On the taskbar, click the Start button, click Programs, click Administrative
Tools, and then select Internet Information Services.

b. Select your application’s virtual directory, right-click, and then click Proper-
ties.

c. Select Application Settings, click Configuration..

d. Click Add to create a new application mapping.

e. Click Browse, and select
c:\winnt\Microsoft. NET \Framework\v1.0.3705\aspnet_isapi.dll.

f. Enter the file extension for the file type you want to prevent being down-
loaded (for example, .abc) in the Extension field.

g. Ensure All Verbs and Script engine is selected and Check that file exists is
not selected.

h. Click OK to close the Add/Edit Application Extension Mapping dialog box.

i. Click OK to close the Application Configuration dialog box, and then click
OK again to close the Properties dialog box.

Chapter 8: ASP.NET Security 157

2. Add an <HttpHandler> mapping in Web.config for the specified file type.
An example for the .abc file type is shown below.

<httpHandlers>
<add verb="*" path="*.abc"
type="System.Web.HttpForbiddenHandler"/>
</httpHandlers>

Secure Communication

Use a combination of SSL and Internet Protocol Security (IPSec) to secure communi-
cation links.

More information

® For information about using SSL to secure the link to the database server, see
“How To: Use SSL to Secure Communication with SQL Server 2000.”

® For information about using IPSec between two computers, see “How To: Use
IPSec to Provide Secure Communication Between Two Servers.”

Programming Security

After you establish your Web application’s configurable security settings, you need
to further enhance and fine-tune your application’s authorization policy program-
matically. This includes using declarative .NET attributes within your assemblies
and performing imperative authorizing checks within code.

This section highlights the key programming steps required to perform authoriza-
tion within an ASPNET Web application.

An Authorization Pattern

The following summarizes the basic pattern for authorizing users within your Web
application:

. Retrieve credentials

. Validate credentials

. Put users in roles

. Create an IPrincipal object

. Put the IPrincipal object into the current HTTP context

o 00 WIN BB

. Authorize based on the user identity / role membership

158 Building Secure ASP.NET Applications

Important: Steps 1 to 5 are performed automatically by ASENET if you have configured
Windows authentication. For other authentication mechanisms (Forms, Passport and custom
approaches), you must write code to perform these steps, as discussed below.

Retrieve Credentials

You must start by retrieving a set of credentials (user name and password) from the
user. If your application does not use Windows authentication, you need to ensure
that clear text credentials are properly secured on the network by using SSL.

Validate Credentials

If you have configured Windows authentication, credentials are validated automati-
cally using the underlying services of the operating system.

If you use an alternate authentication mechanism, you must write code to validate
credentials against a data store such as a SQL Server database or Active Directory.

For more information about how to securely store user credentials in a SQL Server
database, see “Authenticating Users Against a Database” within Chapter 12, “Data
Access Security.”

Put Users in Roles

Your user data store should also contain a list of roles for each user. You must write
code to retrieve the role list for the validated user.

Create an IPrincipal Object

Authorization occurs against the authenticated user, whose identity and role list is
maintained within an IPrincipal object (which flows in the context of the current
Web request).

If you have configured Windows authentication, ASPNET automatically constructs
a WindowsPrincipal object. This contains the authenticated user’s identity together
with a role list, which equates to the list of Windows groups to which the user
belongs.

If you are using Forms, Passport, or custom authentication, you must write code
within the Application_AuthenticateRequest event handler in Global.asax to create
an IPrincipal object. The GenericPrincipal class is provided by the .NET Frame-
work, and should be used in most scenarios.

Put the IPrincipal Object into the Current HTTP Context

Attach the IPrincipal object to the current HTTP context (using the
HttpContext.User variable). ASP.NET does this automatically when you use
Windows authentication. Otherwise, you must attach the object manually.

Chapter 8: ASP.NET Security 159

Authorize Based on the User Identity and/or Role Membership

Use .NET roles either declaratively (to obtain class or method level authorization),
or imperatively within code if your application requires more fine-grained authori-
zation logic.

You can use declarative or imperative principal permission demands (using the
PrincipalPermission class), or you can perform explicit role checks by calling the
IPrincipal.IsInRole() method.

The following example assumes Windows authentication and shows a declarative
principal permission demand. The method that follows the attribute will only be
executed if the authenticated user is a member of the Manager Windows group. If
the caller is not a member of this group, a SecurityException is thrown.

[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\Manager")]

public void SomeMethod()

{

}

The following example shows an explicit role check within code. This example
assumes Windows authentication. If a non-Windows authentication mechanism is
used, the code remains very similar. Instead of casting the User object to a
WindowsPrincipal object, it should be cast to a GenericPrincipal object.

// Extract the authenticated user from the current HTTP context.
// The User variable is equivalent to HttpContext.Current.User if you are
using // an .aspx or .asmx page
WindowsPrincipal authenticatedUser = User as WindowsPrincipal;
if (null != authenticatedUser)
{
// Note: To retrieve the authenticated user's username, use the
// following line of code
// string username = authenticatedUser.Identity.Name;

// Perform a role check
if (authenticatedUser.IsInRole(@"DomainName\Manager™))

{
// User is authorized to perform manager functionality

}
}
else
{

// User is not authorized to perform manager functionality
}

More Information

For a practical implementation of the above pattern for Forms authentication, see
the “Forms Authentication” section later in this chapter.

160 Building Secure ASP.NET Applications

Creating a Custom IPrincipal class

The GenericPrincipal class provided by the .NET Framework should be used in
most circumstances when you are using a non-Windows authentication mechanism.
This provides role checks using the IPrincipal.IsInRole method.

On occasion, you may need to implement your own IPrincipal class. Reasons for
implementing your own IPrincipal class include:

You want extended role checking functionality. You might want methods that
allow you to check whether a particular user is a member of multiple roles. For
example:

CustomPrincipal.IsInAlTRoTes("Role", "Role2", "Role3")
CustomPrincipal.IsInAnyRole("Rolel", "Role2", "Role3")

You may want to implement an extra method or property that returns a list of
roles in an array. For example:

string[] roles = CustomPrincipal.Roles;

You want your application to enforce role hierarchy logic. For example, a Senior
Manager may be considered higher up in the hierarchy than a Manager. This
could be tested using methods like the ones shown below.

CustomPrincipal.IsInHigherRole("Manager™);
CustomPrincipal.IsInLowerRole("Manager");

You may want to implement lazy initialization of the role lists. For example, you
could dynamically load the role list only when a role check is requested.

You may want to implement the IIdentity interface to have the user identified by
an X509ClientCertificate. For example:

CustomIdentity id = CustomPrincipal.Identity;
X509CTientCertificate cert = id.ClientCertificate;

More Information

For more information about creating your own IPrincipal class, see “How To:
Implement IPrincipal” in the Reference section of this guide.

Chapter 8: ASP.NET Security 161

Windows Authentication

Use Windows authentication when the users of your application have Windows
accounts that can be authenticated by the server (for example, in intranet scenarios).

If you configure ASP.NET for Windows authentication, IIS performs user authenti-
cation by using the configured IIS authentication mechanism. This is shown in

Figure 8.4.
Web Server Authenticated
caller’'s access
token (or
IUSR_MACHINE
) t'”fs access token)
HTTP (inetinfoexe) - _______
Requests - A ASPNET
——— | aspnet_isapi.dil ‘ (aspnet_wp.exe)
°)
Basic henticati de="Windows" /
1S Autleniesicn Digest <authentication mode="Windows" />
Integrated
Certificate
Figure 8.4

ASP.NET Windows authentication uses IIS to authenticate callers

The access token of the authenticated caller (which may be the Anonymous Internet
user account if IIS is configured for Anonymous authentication) is made available to
the ASP.NET application. Note the following:

® This allows the ASPNET FileAuthorizationModule to perform access checks
against requested ASP.NET files using the original caller’s access token.

Important: ASENET File authorization only performs access checks against file types that
are mapped to Aspnet_isapi.dll.

® File authorization does not require impersonation. With impersonation enabled
any resource access performed by your application uses the impersonated
caller’s identity. In this event, ensure that the ACLs attached to resources contain
an Access Control Entry (ACE) that grants at least read access to the original
caller’s identity.

Identifying the Authenticated User

ASP.NET associates a WindowsPrincipal object with the current Web request. This
contains the identity of the authenticated Windows user together with a list of roles
that the user belongs to. With Windows authentication, the role list consists of the
set of Windows groups to which the user belongs.

162 Building Secure ASP.NET Applications

The following code shows how to obtain the identity of the authenticated Windows
user and to perform a simple role test for authorization.

WindowsPrincipal user = User as WindowsPrincipal;
if (null != user)
{

string username = user.Identity.Name;

// Perform a role check

if (user.IsInRole(@"DomainName\Manager"))

{
// User is authorized to perform manager functionality

}
}
else
{

// Throw security exception as we don't have a WindowsPrincipal
}

Forms Authentication

When you are using Forms authentication, the sequence of events triggered by an
unauthenticated user who attempts to access a secured file or resource (where URL
authorization denies the user access), is shown in Figure 8.5.

Web Browser IIS/ASP.NET Custom Data Store

(SQL Server / Active Directory)
@ Get default.aspx
< 302 Redirect @
Location: Login.aspx

@ Post login.aspx >
(Credentials) Application authentication
(Validate credentials)
(Retrieve roles)

200 OK Set Cookie @
(inc auth ticket)

Get default.aspx
@ — - [Global.asax
R RETAE T Application_AuthenticateRequest()

Create Principal
Retrieve identity + roles from ticket
Attach Principal to HTTP Context

Figure 8.5

Forms authentication sequence of events

Chapter 8: ASP.NET Security 163

The following describes the sequence of events shown in Figure 8.5:
1. The user issues a Web request for Default.aspx.

IIS allows the request because Anonymous access is enabled. ASP.NET checks the
<authorization> elements and finds a <deny users=?" /> element.

2. The user is redirected to the login page (Login.aspx) as specified by the LoginUrl
attribute of the <forms> element.

3. The user supplies credentials and submits the login form.

4. The credentials are validated against a store (SQL Server or Active Directory)
and roles are optionally retrieved. You must retrieve a role list if you want to use
role-based authorization.

5. A cookie is created with a FormsAuthenticationTicket and sent back to the
client. Roles are optionally stored in the ticket. By storing the role list in the
ticket, you avoid having to access the database to re-retrieve the list for each
successive Web request from the same user.

6. The user is redirected with client-side redirection to the originally requested
page (Default.aspx).

7. In the Application_AuthenticateRequest event handler (in Global.asax), the
ticket is used to create an IPrincipal object and it is stored in HttpContext.User.

ASP.NET checks the <authorization> elements and finds a <deny users=?" />
element. However, this time the user is authenticated.

ASP.NET checks the <authorization> elements to ensure the user is in the
<allow> element.

The user is granted access to Default.aspx.

Development Steps for Forms Authentication

The following list highlights the key steps that you must perform to implement
Forms authentication:

. Configure IIS for anonymous access.

. Configure ASP.NET for Forms authentication.

. Create a logon Web form and validate the supplied credentials.

. Retrieve a role list from the custom data store.

. Create a Forms authentication ticket (store roles in the ticket).

. Create an IPrincipal object.

. Put the IPrincipal object into the current HTTP context.

0 ~N O O & WDN B

. Authorize the user based on user name/role membership.

164 Building Secure ASP.NET Applications

Configure IIS for Anonymous Access
Your application’s virtual directory must be configured in IIS for anonymous access.

» To configure IIS for anonymous access
1. Start the Internet Information Services administration tool.
2. Select your application’s virtual directory, right-click, and then click Properties.
3. Click Directory Security.
4. In the Anonymous access and authentication control group, click Edit.
5. Select Anonymous access.

Configure ASP.NET for Forms Authentication

A sample configuration is shown below.

<authentication mode="Forms">
<forms name="MyAppFormsAuth"
ToginUrl="1ogin.aspx"
protection="Encryption"
timeout="20"
path="/" >
</forms>
</authentication>

Create a Logon Web Form and Validate the Supplied Credentials
Validate credentials against a SQL Server database, or Active Directory.

More Information

® See “How To: Use Forms Authentication with SQL Server 2000” in the Reference
section of this guide.

® See “How To: Use Forms Authentication with Active Directory” in the Reference
section of this guide.

Retrieve a Role List from the Custom Data Store

Obtain roles from a table within a SQL Server database, or groups/distribution lists

configured within Active Directory. Refer to the preceding resources for details.

Create a Forms Authentication Ticket

Store the retrieved roles in the ticket. This is illustrated in the following code.

// This event handler executes when the user clicks the Logon button
// having supplied a set of credentials
private void Logon_Click(object sender, System.EventArgs e)

{

Chapter 8: ASP.NET Security

// Validate credentials against either a SQL Server database

// or Active Directory

bool isAuthenticated = IsAuthenticated(txtUserName.Text,

txtPassword.Text);

if (isAuthenticated == true)

{
// Retrieve the set of roles for this user from the SQL Server
// database or Active Directory. The roles are returned as a
// string that contains pipe separated role names
// for example "Manager|Employee|Sales|"
// This makes it easy to store them in the authentication ticket

string roles = RetrieveRoles(txtUserName.Text, txtPassword.Text);

// Create the authentication ticket and store the roles in the

// custom UserData property of the authentication ticket

FormsAuthenticationTicket authTicket = new
FormsAuthenticationTicket(

1, // version
txtUserName.Text, // user name
DateTime.Now, // creation
DateTime.Now.AddMinutes(20),// Expiration
false, // Persistent
roles); // User data

// Encrypt the ticket.
string encryptedTicket = FormsAuthentication.Encrypt(authTicket);
// Create a cookie and add the encrypted ticket to the
// cookie as data.
HttpCookie authCookie =
new HttpCookie(FormsAuthentication.FormsCookieName,
encryptedTicket);

// Add the cookie to the outgoing cookies collection.
Response.Cookies.Add(authCookie);

// Redirect the user to the originally requested page
Response.Redirect(FormsAuthentication.GetRedirectUrl(
txtUserName.Text,

false));

Create an IPrincipal Object

Create the IPrincipal object in the Application_AuthenticationRequest event

165

handler in Global.asax. Use the GenericPrincipal class, unless you need extended

role-based functionality. In this case create a custom class that implements
IPrincipal.

166 Building Secure ASP.NET Applications

Put the IPrincipal Object into the Current HTTP Context

The creation of a GenericPrincipal object is shown below.

protected void Application_AuthenticateRequest(Object sender, EventArgs e)
{

// Extract the forms authentication cookie

string cookieName = FormsAuthentication.FormsCookieName;

HttpCookie authCookie = Context.Request.Cookies[cookieName];

if(null == authCookie)

{
// There 1is no authentication cookie.
return;
}
FormsAuthenticationTicket authTicket = null;
try
{
authTicket = FormsAuthentication.Decrypt(authCookie.Value);
}
catch(Exception ex)
{
// Log exception details (omitted for simplicity)
return;
}
if (null == authTicket)
{
// Cookie failed to decrypt.
return;
}

// When the ticket was created, the UserData property was assigned a
// pipe delimited string of role names.
string[] roles = authTicket.UserData.Split(new char[]J{'|'});

// Create an Identity object

FormsIdentity id = new FormsIdentity(authTicket);

// This principal will flow throughout the request.

GenericPrincipal principal = new GenericPrincipal(id, roles);

// Attach the new principal object to the current HttpContext object
Context.User = principal;

Authorize the User Based on User Name or Role Membership

Use declarative principal permission demands to restrict access to methods. Use
imperative principal permission demands and/or explicit role checks
(IPrincipal.IsInRole) to perform fine-grained authorization within methods.

Chapter 8: ASP.NET Security 167

Forms Implementation Guidelines

Use SSL when capturing credentials using an HTML form.

In addition to using SSL for the login page, you should also use SSL for other
pages, whenever the credentials or the authentication cookie is sent across the
network. This is to mitigate the threat associated with cookie replay attacks.

Authenticate users against a custom data store. Use SQL Server or Active
Directory.

Retrieve a role list from the custom data store and store a delimited list of roles
within the UserData property of the FormsAuthenticationTicket class. This
improves performance by eliminating repeated access to the data store for each
Web request and also saves you from storing the user’s credentials in the authen-
tication cookie.

If the list of roles is extensive and there is a danger of exceeding the cookie size
limit, store the role details in the ASP.NET cache object or database and retrieve
them on each subsequent request.

For each request after initial authentication:

® Retrieve the roles from the ticket in the Application_AuthenticateRequest
event handler.

® Create an IPrincipal object and store it in the HTTP context
(HttpContext.User). The INET Framework also associates it with the current
.NET thread (Thread.CurrentPrincipal).

® Use the GenericPrincipal class unless you have a specific need to create a
custom IPrincipal implementation; for example, to support enhanced role-
based operations.

Use two cookies; one for personalization and one for secure authentication and
authorization. Make the personalization cookie persistent (make sure it does not
contain information that would permit a request to perform a restricted opera-
tion; for example, placing an order within a secure part of a site).

Use a separate cookie name (using the Forms attribute of the <forms> element)
and path for each Web application. This will ensure that users who are authenti-
cated against one application are not treated as authenticated when using a
second application hosted by the same Web server.

Ensure cookies are enabled within client browsers. For a Forms authentication
approach that does not require cookies, see “Cookieless Forms Authentication”
later in this chapter.

168 Building Secure ASP.NET Applications

More Information

® See “How To: Use Forms Authentication with SQL Server 2000” in the Reference
section of this guide.

® See “How To: Use Forms Authentication with Active Directory” in the Reference
section of this guide.

® See “How To: Use Forms Authentication with GenericPrincipal Objects” in the
Reference section of this guide.

Hosting Multiple Applications Using Forms Authentication

If you are hosting multiple Web applications that use Forms authentication on the
same Web server, it is possible for a user who is authenticated in one application to
make a request to another application without being redirected to that application’s
logon page. The URL authorization rules within the second application may deny
access to the user, without providing the opportunity to supply logon credentials
using the logon form.

This only happens if the name and path attributes on the <forms> element are
the same across multiple applications and each application uses a common
<machineKey> element in Web.config.

More Information

For more information about this issue, and for resolution techniques, see the follow-

ing Knowledge Base articles:

e (313116, “PRB: Forms Authentication Requests Are Not Directed to loginUrl
Page”

e (310415, “PRB: Mobile Forms Authentication and Different Web Applications”

Cookieless Forms Authentication

If you need a cookieless Forms authentication solution, consider using the approach
used by the Microsoft Mobile Internet Toolkit. Mobile Forms Authentication builds
upon Forms Authentication but uses the query string to convey the authentication
ticket instead of a cookie.

More Information

For more information about Mobile Forms Authentication, see article Q311568,
“INFO: How To Use Mobile Forms Authentication with Microsoft Mobile Internet
Toolkit,” in the Microsoft Knowledge Base.

Chapter 8: ASP.NET Security 169

Passport Authentication

Use Passport authentication when the users of your application have Passport
accounts and you want to implement a single-sign-on solution with other Passport
enabled sites.

When you configure ASP.NET for Passport authentication, the user is prompted to
log in and then is redirected to the Passport site. After successful credential valida-
tion, the user is redirected back to your site.

Configure ASP.NET for Passport authentication

To configure ASP.NET for Passport authentication, use the following Web.config
settings.

<authentication mode="Passport">
<passport redirectUrl="internal" />
</authentication>
<authorization>
<deny users="?" />
<allow users="*" />
</authorization>

Map a Passport Identity into Roles in Global.asax

To map a Passport identity into roles, implement the
PassportAuthentication_OnAuthentication event handler in Global.asax as shown
below.

void PassportAuthentication_OnAuthenticate(Object sender,
PassportAuthenticationEventArgs e)

{
if(e.Identity.Name == "0000000000000001™)
{
string[] roles = new String[]{"Developer", "Admin", "Tester"};
Context.User = new GenericPrincipal(e.Identity, roles);
]
}

Test Role Membership

The following code fragment shows how to retrieve the authenticated Passport
identity and check role membership within an aspx page.

PassportIdentity passportld = Context.User.Identity as PassportIdentity;
if (null == passportId)
{
Response.Write("Not a PassportIdentity
");
return;
}

Response.Write("IsInRole: Develeoper? " + Context.User.IsInRole('"Developer™));

170 Building Secure ASP.NET Applications

Custom Authentication

If none of the authentication modules supplied with the NET Framework meet
your precise authentication needs, you can use custom authentication and imple-
ment your own authentication mechanism. For example, your company may
already have a custom authentication strategy that is widely used by other applica-
tions.

To implement custom authentication in ASP.NET:

e Configure the authentication mode in Web.config as shown below. This notifies
ASP.NET that it should not invoke any of its built-in authentication modules.

<authentication mode="None" />

® Create a class that implements the System.Web.IHttpModule interface to create
a custom HTTP module. This module should hook into the
HttpApplication.AuthenticateRequest event and provide a delegate to be called
on each request to the application when authentication is required.
An authentication module must:

® Obtain credentials from the caller.

Validate the credentials against a store.

Create an IPrincipal object and store it in HttpContext.User.

Create and protect an authentication token and send it back to the user
(typically in a query string, cookie, or hidden form field).

® Obtain the authentication token on subsequent requests, validate it, and
reissue it.

More Information

For more information about how to implement a custom HTTP Module, see article
Q307996, “HOW TO: Create an ASPNET HTTP Module Using Visual C# .NET,” in
the Microsoft Knowledge Base.

Process Identity for ASP.NET

Run ASP.NET (specifically the Aspnet_wp.exe worker process) by using a least
privileged account.

Use a Least Privileged Account

Use a least privileged account to lessen the threat associated with a process compro-
mise. If a determined attacker manages to compromise the ASPNET process that
runs your Web application, they can easily inherit and exploit the privileges and
access rights granted to the process account. An account configured with minimum
privileges restricts the potential damage that can be done.

Chapter 8: ASP.NET Security 171

Avoid Running as SYSTEM

Don’t use the highly-privileged SYSTEM account to run ASP.NET and don’t grant
the ASP.NET process account the “Act as part of the operating system” privilege.
You may be tempted to do one or the other to allow your code to call the
LogonUser API to obtain a fixed identity (typically for network resource access).
For alternate approaches, see “Accessing Network Resources” later in this chapter.

Reasons for not running as SYSTEM, or granting the “Act as part of the operating

system privilege” include:

® It significantly increases the damage that an attacker can do when the system is
compromised, but it doesn’t affect the ability to be compromised.

® It defeats the principle of least privilege. The ASPNET account has been specifi-
cally configured as a least privileged account designed to run ASPNET Web
applications.

More Information

For more information about the “Act as part of the operating system” privilege, see
the Microsoft Systems Journal August 1999 Security Briefs column.

Domain Controllers and the ASP.NET Process Account

In general, it is not advisable to run your Web server on a domain controller, be-
cause a compromise of the server is a compromise of the domain. If you need to run
ASP.NET on a domain controller, you need to give the ASPNET process account
appropriate privileges as outlined in article Q315158, “BUG: ASP.NET Does Not
Work with the Default ASPNET Account on a Domain Controller,” in the Microsoft
Knowledge Base.

Using the Default ASPNET Account

The local ASPNET account has been configured specifically to run ASPNET Web
applications with the minimum possible set of privileges. Use ASPNET whenever
possible.

By default, ASPNET Web applications run using this account, as configured by the
<processModel> element within Machine.config.

<processModel userName="machine" password="AutoGenerate" />

Note: The machine user name indicates the ASPNET account. The account is created with a
cryptographically strong password when you install the .NET Framework. In addition to being
configured within the Security Account Manager (SAM) database, the password is stored within
the Local System Authority (LSA) on the local computer. The system retrieves the password
from the LSA, when it launches the ASENET worker process.

172 Building Secure ASP.NET Applications

If your application accesses network resources, the ASPNET account must be
capable of being authenticated by the remote computer. You have two choices:

® Reset the ASPNET account’s password to a known value and then create a
duplicate account (with the same name and password) on the remote computer.
This approach is the only option in the following circumstances:

® The Web server and remote computer are in separate domains with no trust
relationship.

® The Web server and remote computer are separated by a firewall and you do
not want to open the necessary ports to support Windows authentication.

® If ease of administration is your primary concern, use a least privileged, domain
account.

To avoid having to manually update and synchronize passwords, you can use
a least privileged domain account to run ASP.NET. It is vital that the domain
account is fully locked down to mitigate the process compromise threat. If an
attacker manages to compromise the ASP.NET worker process, he or she will
have the ability to access domain resources, unless the account is fully locked
down.

Note: If you use a local account and the account becomes compromised, the only computers
subject to attack are the computers on which you have created duplicate accounts. If you use
a domain account, the account is visible to each computer on the domain. However, the
account still needs to have permission to access those computers.

The <processModel> Element

The <processModel> element in the Machine.config file contains the userName
and password attributes which specify the account that should be used to run the
ASP.NET worker process (Aspnet_wp.exe). You have a number of options for
configuring this setting. For example:

® “machine”. The worker process runs as the default least privileged ASPNET
account. The account has network access but cannot be authenticated to any
other computer on the network because the account is local to the computer and
there is no authority to vouch for the account. On the network, this account is
represented as “MachineName\ASPNET”.

e “system”. The worker process runs as the local SYSTEM account. This account
has extensive privileges on the local computer and also has the ability to access
the network using the credentials of the computer. On the network, this account
is represented as “DomainName\MachineName$”.

Chapter 8: ASP.NET Security 173

® Specific credentials. When you supply credentials for userName and password,
remember the principle of least privilege. If you specify a local account, the Web
application cannot be authenticated on the network unless you create a duplicate
account on the remote computer. If you elect to use a least privileged domain
account, ensure it is not an account that has permission to access more comput-
ers on the network than it needs to.

In the .NET Framework version 1.1 you will have the ability to store encrypted
userName and password attributes in the registry.

Note: In contrast to the way classic ASP applications run, ASENET code never runs in the
dllhost.exe process or as the INAM_MACHINENAME account even when the application
protection level is set to High (Isolated) in IIS.

ASENET requests sent to IS are directly routed to the ASENET worker process
(Aspnet_wp.exe). The ASENET ISAPI extension, Aspnet_isapi.dll, runs in the IS (Inetinfo.exe)
process address space. (This is controlled by the InProcesslsapiApps Metabase entry, which
should not be modified). The ISAPI extension is responsible for routing requests to the ASRNET
worker process. ASENET applications then run in the ASRNET worker process, where applica-
tion domains provide isolation boundaries.

In IS 6, you will be able to isolate ASPNET applications by configuring application pools, where
each pool will have its own application instance.

More Information

® For more information about accessing network resources from ASPNET Web
applications, see “Accessing Network Resources,” later in this chapter.

® For detailed information about how to create a custom account for running
ASP.NET, see “How To: Create a Custom Account to Run ASPNET” in the
Reference section of this guide.

Impersonation

With the introduction of the FileAuthorizationModule, and with the efficient use of
gatekeepers and trust boundaries, impersonation may prove more of a disadvan-
tage than a benefit in ASPNET.

Impersonation and Local Resources

If you use impersonation and access local resources from your Web application
code, you must configure the ACLs attached to each secured resource to contain an
ACE that grants at least read access to the authenticated user.

174 Building Secure ASP.NET Applications

A better approach is to avoid impersonation, grant permissions to the ASPNET
process account, and use URL authorization, File authorization, and a combination
of declarative and imperative role-based checks.

Impersonation and Remote Resources

If you use impersonation and then access remote resources from your Web applica-
tion code, the access will fail unless you are using Basic, Forms, or Kerberos authen-
tication. If you use Kerberos authentication, user accounts must be suitably
configured for delegation. They must be marked as “ Sensitive and cannot be
delegated” within Active Directory.

More Information

For more information about how to configure Kerberos delegation, see:
® “Flowing the Original Caller to the Database” in Chapter 5, “Intranet Security.”

e “How To: Implement Kerberos Delegation for Windows 2000” in the Reference
section of this guide.

Impersonation and Threading

If a thread that is impersonating creates a new thread, the new thread inherits the
security context of the ASP.NET process account and not the impersonated account.

Accessing System Resources

ASP.NET performs no impersonation by default. As a result, if your Web applica-
tion accesses local system resources, it does so using the security context associated
with the Aspnet_wp.exe worker process. The security context is determined by the
account used to run the worker process.

Accessing the Event Log

Least privileged accounts have sufficient permissions to be able to write records to
the event log by using existing event sources. However, they do not have sufficient
permissions to create new event sources, This requires a new entry to be placed
beneath the following registry hive.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\<log>

To avoid this issue, create the event sources used by your application at installation
time, when administrator privileges are available. A good approach is to use a .NET
installer class which can be instantiated by the Windows Installer (if you are using
.msi deployment) or by the InstallUtil.exe system utility if you are not.

Chapter 8: ASP.NET Security 175

If you are unable to create event sources at installation time, you must add permis-
sion to the following registry key and grant access to the ASPNET process account
(of any impersonated account if your application uses impersonation).

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog

The account(s) must have the following minimum permissions:
Query key value

Set key value

Create subkey

Enumerate subkeys

Notify

Read

The following code can be used to write to the Application event log from ASPNET
once permissions have been applied to the registry:

string source = "Your Application Source";
string logToWriteTo = "Application";
string eventText = "Sample Event";

if (!EventlLog.SourceExists(source))
{

EventLog.CreateEventSource(source, TogToWriteTo);

}
EventLog.WriteEntry(source, eventText, EventLogEntryType.Warning, 234);

Accessing the Registry

Any registry key accessed by your application requires an ACE in the ACL that
grants (at minimum) read access to the ASP.NET process account.

More Information

For more information about installer classes and the InstallUtil.exe utility, see the
NET Framework Tools on MSDN.

Accessing COM Objects

In classic ASP, requests are processed using threads from the Single Threaded
Apartment (STA) thread pool. In ASP.NET, requests are processed using threads
from the Multithreaded Apartment (MTA) thread pool. This has implications for
ASP.NET Web applications that call Apartment model objects.

176 Building Secure ASP.NET Applications

Apartment Model Objects

When an ASP.NET Web application calls an Apartment model object (such as a
Visual Basic 6 COM object) there are two issues to note:

® You must mark your ASPNET page with the AspCompat directive, as shown
below.

<%@ Page Language="C#" AspCompat="True" %>

® Don't create your COM objects outside of specific Page event handlers. Always
create COM objects in Page event handlers (such as Page_Load and Page_Init).
Don’t create COM objects in the page’s constructor.

The AspCompat Directive is Required

By default, ASPNET uses MTA threads to process requests. This results in a thread-
switch when an Apartment model object is called from ASP.NET, because the
Apartment model object can’t be accessed directly by MTA threads (COM would
use an STA thread).

Specifying AspCompat causes the page to be processed by an STA thread. This
avoids a thread switch from MTA to STA. This is important from a security perspec-
tive if your Web application is impersonating because a thread switch results in a
lost impersonation token. The new thread would not have the impersonation token
associated with it.

The AspCompat directive is not supported for ASPNET Web services. This means
that when you call Apartment model objects from Web service code, a thread switch
does occur and you lose the thread impersonation token. This typically results in an
Access Denied exception.

More Information
® See the following Knowledge Base articles for more information:
® Article Q303375, “INFO: XML Web Services and Apartment Objects”

® Article Q325791, “PRB: Access Denied Error Message Occurs When Imperson-
ating in ASPNET and Calling STA COM Components”

® For more information about how to determine the identity of the currently
executing code, see the “Determining Identity” section of Chapter 13, “Trouble-
shooting Security Issues.”

Don’t Create COM Objects Outside of Specific Page Events

Don’t create COM object outside of specific Page event handlers. The following
code fragment illustrates what not to do.

Chapter 8: ASP.NET Security 177

<%@ Page Language="C#" AspCompat="True" %>
<script runat="server">
// COM object created outside of Page events
YourComObject obj = new apartmentObject();
public void Page_Load()

{
obj.Foo()

}

</script>

When you use Apartment model objects, it is important to create the object within
specific Page events such as Page_Load, as shown below.

<%@ Page Language="C#" AspCompat="True" %>
<script runat="server">
public void Page_Load()

{
YourComObject obj = new apartmentObject();
obj.Foo()

}

</script>

More Information

For more information, see article Q308095, “PRB: Creating STA Components in the
Constructor in ASPNET ASPCOMPAT Mode Negatively Impacts Performance” in
the Microsoft Knowledge Base.

C# and VB .NET Objects in COM+

Microsoft C#® development tool and Microsoft Visual Basic® .NET development
system support all threading models (Free-threaded, Neutral, Both, and Apart-
ment). By default, when hosted in COM+, C# and Visual Basic .NET objects are
marked as Both. As a result, when they are called by ASP.NET, access is direct and
you do not incur a thread switch.

Accessing Network Resources
Your application may need to access network resources. It is important to be able to
identify:
® The resources your application needs to access.

For example, files on file shares, databases, DCOM servers, Active Directory
objects, and so on.

® The identity used to perform the resource access.

If your application accesses remote resources, this identity must be capable of
being authenticated by the remote computer.

178 Building Secure ASP.NET Applications

Note: For information specific to accessing remote SQL Server databases, see Chapter 12,
“Data Access Security.”

You can access remote resources from an ASP.NET application by using any of the
following techniques:

Use the ASP.NET process identity.

Use a serviced component.

Use the Anonymous Internet user account (for example, IUSR_MACHINE).
Use the LogonUser API and impersonating a specific Windows identity.
Use the original caller.

Using the ASP.NET Process Identity

When the application is not configured for impersonation, the ASP.NET process
identity provides the default identity when your application attempts to access
remote resources. If you want to use the ASPNET process account for remote
resource access, you have three options:

Use mirrored accounts.

This is the simplest approach. You create a local account with a matching user
name and password on the remote computer. You must change the ASPNET
account password in User Manager to a known value (always use a strong
password). You must then explicitly set this on the <processModel> element in
Machine.config, and replace the existing “AutoGenerate” value.

Important: If you change the ASPNET password to a known value, the password in the LSA
will no longer match the SAM account password. If you need to revert to the
“AutoGenerate” default, you will need to do the following:

Run Aspnet_regiis.exe, to reset ASRNET to its default configuration. For more information,
see article Q306005, “HOWTO: Repair IIS Mapping After You Remove and Reinstall 1IS” in
the Microsoft Knowledge Base.

Create a custom, least privileged local account to run ASP.NET and create
a duplicate account on the remote computer.

Run ASP.NET using a least-privileged domain account.

This assumes that client and server computers are in the same or trusting
domains.

More Information

For more information about configuring an ASP.NET process account, see “How To:
Create a Custom Account to Run ASPNET” in the Reference section of this guide.

Chapter 8: ASP.NET Security 179

Using a Serviced Component

You can use an out of process serviced component, configured to run as a fixed
identity to access network resources. This approach is shown in Figure 8.6.

Web Server
ASP.NET
(aspnet_wp.exe) .
. Running as
ASPNET
Enterprise Services
Server Application
(dllhost.exe) Remote
Fixed ldentity Computer
Serviced “MyServAccount”
Component P Remote
Resource
®

Running as “MyServAccount”
(configured in the COM+ Catalog)
Figure 8.6

Using an out of process serviced component to provide a fixed identity for network resource access

Using an out of process serviced component (in an Enterprise Services server
application) has the following advantages:

® Flexibility in terms of the identity used. You don’t just rely on the ASPNET
identity.

® Trusted or higher-privileged code can be isolated from your main Web
application.

® An additional process hop raises the bar from a security perspective. It makes it
much tougher for an attacker to cross the process boundary to a process with
raised privileges.

e If you need to hand-craft impersonation with LogonUser API calls, you can do
so in a process that is separated from your main Web application.

Note: To call LogonUser you must give the Enterprise Services process-account the “Act as
part of the operating system” privilege. Raising the privileges for a process that is separate
from your Web application is less of a security concern.

180 Building Secure ASP.NET Applications

Using the Anonymous Internet User Account

You can use the anonymous Internet user account to access network resources if IIS
is configured for Anonymous authentication. This is the case if one of the following
is true:

Your application supports anonymous access.

Your application uses Forms, Passport, or Custom authentication (where IIS is
configured for anonymous access).

» To use the anonymous account for remote resource access

1.

Configure IIS for Anonymous authentication. You can set the ASP.NET authenti-
cation mode to Windows, Forms, Passport, or None, depending upon the
authentication requirements of your application.

. Configure ASP.NET for impersonation. Use the following setting in Web.config:

<identity impersonate="true" />

. Configure the anonymous account as a least privileged domain account,

—or—
Duplicate the anonymous account by using the same user name and password
on the remote computer. This approach is necessary when you are making calls
across non-trusting domains or through firewalls where the necessary ports to

support Integrated Windows authentication are not open.

To support this approach, you must also:

a. Use Internet Services Manager to clear the Allow IIS to Control Password
checkbox for the anonymous account.

If you select this option, the logon session created using the specified anony-
mous account ends up with NULL network credentials (and therefore cannot
be used to access network resources). If you don’t select this option, the logon
session is an interactive logon session with network credentials.

b. Set the account’s credentials both in User Manager and in Internet Services
Manager.

Important: If you impersonate the anonymous account (for example, IUSR_MACHINE),
resources must be secured against this account (using appropriately configured ACLS).
Resources that your application needs to access must grant read access (at minimum) to the
anonymous account. All other resources should deny access to the anonymous account.

Chapter 8: ASP.NET Security 181

Hosting Multiple Web Applications

You can use a separate anonymous Internet user account for each virtual root
within your Web site. In a hosted environment, this allows you to separately autho-
rize, track, and audit requests that originate from separate Web applications. This
approach is shown in Figure 8.7.

Web Server Remote Computer(s)
IIs ASPNET
(inetinfo.exe) (aspnet_wp.exe)
IUSR_1
v-dirt Ush 11| AppDomain IUSR_1
IUSR_2
v-dir2 pt-| AppDomain2 IUSR_2
AL IUSR_3
v-dir3 - AppDomain3 =
))
Anonymous Impersonation
Authentication
Figure 8.7

Impersonating separate anonymous Internet user accounts per application (v-dir)

To configure the anonymous Internet user account for a specific virtual directory

1. Start Internet Services Manager from the Administrative Tools programs
group.

2. Select the virtual directory you want to configure, right-click, and then click
Properties.

. Click the Directory Security tab.
. Click Edit within the Anonymous access and authentication control group.
. Select Anonymous access, and then click Edit.

o O~ W

. Enter the user name and password of the account that you want IIS to use when
anonymous users connect to the site.

7. Make sure that Allow IIS to control password is NOT selected.

182 Building Secure ASP.NET Applications

Using LogonUser and Impersonating a Specific Windows Identity

You can impersonate a specific identity by configuring user name and password
attributes on the <identity> element in Web.config, or by calling the Win32®
LogonUser API in your application code.

Important: These approaches are not recommended. You should avoid them both on Windows
2000 servers, because it forces you to grant the “Act as part of the operating system”
privilege to the ASERNET process account. This significantly reduces the security of your Web
application.

Windows .NET Server 2003 will lift this restriction.

Using the Original Caller

To use the original caller’s identity for remote resource access, you must be able to
delegate the caller’s security context from the Web server to the remote computer.

Scalability Warning: If you access the data services tier of your application using the original
caller’s impersonated identity, you severely impact the application’s ability to scale, because
database connection pooling is rendered ineffective. The security context for database
connections is different for each user.

The following authentication schemes support delegation:

® Kerberos. For more information, see “How To: Implement Kerberos Delegation
for Windows 2000” within the Reference section of this guide.

® C(lient certificates mapped to Windows accounts. The mapping must be per-
formed by IIS.

® Basic. Basic authentication supports remote resource access because the original
caller’s credentials are available in clear text at the Web server. These can be used
to respond to authentication challenges from remote computers.

Basic authentication must be used in conjunction with an interactive or batch
logon session. The type of logon session that results from Basic authentication is
configurable in the IIS Metabase. For more information, see the Platform SDK:
Internet Information Services 5.1 on MSDN.

Important: Basic authentication is the least secure of the approaches that support
delegation. This is because a clear text user name and password are passed from the
browser to the server over the network and they are cached in memory at the Web server.
You can use SSL to protect credentials while in transit but you should avoid caching clear
text credentials at the Web server where possible.

Chapter 8: ASP.NET Security 183

» To use the original caller for remote resource access
1. Configure IIS for Integrated Windows (Kerberos), Certificate (with IIS certificate
mapping), or Basic authentication.
2. Configure ASPNET for Windows authentication and impersonation.

<authentication mode="Window" />
<identity impersonate="true" />

3. If you use Kerberos delegation, configure Active Directory accounts for
delegation.

More Information

® For more information about configuring Kerberos delegation, see “How To:
Implement Kerberos Delegation for Windows 2000” in the Reference section of
this guide.

® For more information about IIS certificate mapping, see http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/prodtechnol/ad/windows2000/howto
/mapcerts.asp.

® For more information about ASPNET Impersonation, see the .NET Framework
Developers Guide on MSDN.

Accessing Files on a UNC File Share

If your application needs to access files on a Universal Naming Convention (UNC)
share using ASP.NET, it is important to add NTFS permissions to the share’s folder.
You will also need to set the share’s permissions to grant at least read access to
either the ASP.NET process account or the impersonated identity (if your applica-
tion is configured for impersonation).

Accessing Non-Windows Network Resources

If your application needs to access non-Windows resources such as databases
located on non-Windows platforms or mainframe applications, you need to con-
sider the following questions:

® What are the gatekeepers and trust boundaries associated with the resource?
® What credentials are required for authentication?

® Does the resource need to know the original caller identity, or does it trust the
calling application (using a fixed process or service identity)?

® What is the performance cost associated with establishing connections? If the
cost is significant you may need to implement connection pooling; for example,
by using the object pooling feature of Enterprise Services.

184 Building Secure ASP.NET Applications

If the resource needs to be able to authenticate the original caller (and Windows
authentication is not an option), you have the following options:

® Pass credentials using (method call) parameters.

® Pass credentials in a connection string. Use SSL or IPSec to secure clear text

credentials passed over a network.

Store credentials securely within your application, for example by using DPAPI.
For more information about securely storing database connection strings, see
“Storing Database Connection Strings Securely” in Chapter 12, “Data Access
Security.”

® Use a centralized data store for authentication that both platforms can access; for

example, an LDAP directory.

Secure Communication

Use SSL to secure the communication link between browser and Web server. SSL
provides message confidentiality and message integrity. Use SSL and/or IPSec to
provide a secure channel from Web server to application server or database server.

More Information

For more information about secure communication, see “Chapter 4, “Secure Com-
munication.”

Storing Secrets

Web applications often need to store secrets. These need to be secured against rogue
administrators and malicious Web users, such as:

Rogue administrators. Administrators and other unscrupulous users should not
be able to view privileged information. For example, the administrator of the
Web server should not be able to read the password of a SQL Server login ac-
count on a SQL Server computer located across the network.

Malicious Web users. Even though there are components (such as the
FileAuthorizationModule) that prevent users from accessing privileged files, if
an attacker does gain access to a configuration file, the secret in the file should
not be in plain text.

Typical examples of secrets include:

SQL connection strings. A common mistake is to store the user name and
password in plain text. The recommendation is to use Windows authentication
instead of SQL authentication. If you can’t use Windows authentication, see the

Chapter 8: ASP.NET Security 185

following sections in Chapter 12, “Data Access Security,” which present secure
alternatives:

e “Storing Database Connections Securely”

® “Secure Communications”
Credentials used for SQL application roles. SQL Application roles must be
activated with a stored procedure that requires the role name and associated

password. For more information, see “Authorization” in Chapter 12, “Data
Access Security.”

Fixed identities in Web.config. For example:

<identity impersonate="true" userName="bob" password="inClearText"/>

In the NET Framework version 1.1, ASPNET provides the ability to encrypt the
username and password and store it safely in a registry key.

Process identity in Machine.config. For example:

<process userName="cUsTuMUzerName" password="kUsTumPazzWerD" >

By default ASPNET manages the secret if you use the “Machine” user name and
“AutoGenerate” password.

In the NET Framework version 1.1, ASPNET provides the ability to encrypt the
user name and password and store it safely in a registry key.

Keys used to store data securely. It is impossible to safely store keys in soft-
ware. However, certain tasks can mitigate the risk. An example is to create a
custom configuration section handler which uses asymmetric encryption to
encrypt a session key. The session key can then be stored in a configuration file.

SQL Server session state. To use SQL server to manage ASP.NET Web applica-
tion session state, use the following Web.config settings.

<sessionState .. stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;
user id=UserName;password=MyPassword" />

In the NET Framework 1.1, ASPNET provides the ability to encrypt this infor-
mation.

Passwords used for Forms authentication against a database.

If your application validates authentication credentials against a database, don’t

store passwords in the database. Use a hash of the password with a salt value
and compare hashes.

For more information, see “Authenticating Users against a Database” in Chapter
12, “Data Access Security.”

186 Building Secure ASP.NET Applications

Options for Storing Secrets in ASP.NET

A number of approaches are available to .NET Web application developers to store
secrets. These include:

® .NET cryptography classes. The .NET Framework includes classes that can be
used for encryption and decryption. These approaches require that you safely
store the encryption key.

e Data Protection API (DPAPI). DPAPI is a pair of Win32 APIs that encrypt and
decrypt data by using a key derived from the user’s password. When using
DPAPI, you do not deal with key management. The operating system manages
the key which is the user’s password.

® COM-+ Constructor Strings. If your application uses serviced components, you
can store the secret in an object construction string. The string is stored in the
COMH+ catalog in a clear text form,

e CAPICOM. This is a Microsoft COM object which provides COM-based access
to the underlying Crypto APIL

® Crypto API These are low level Win32 APIs that perform encryption and
decryption.

More Information

For more information, see the entry for Cryptography, CryptoAPI and CAPICOM in
the Platform SDK on MSDN.

Consider Storing Secrets in Files on Separate Logical Volumes

Consider installing Web application directories on a separate logical volume from
the operating system (for example, E: instead of C:). This means that Machine.config
(located under C:\WINNT \Microsoft.NET) and potentially other files that contain
secrets such as, Universal Data Link (UDL) files, are located on a separate logical
volume from the Web application directories.

The rationale for this approach is to protect against possible file canonicalization
and directory traversal bugs because:

® File canonicalization bugs can expose files in the Web application folders.
Note: File canonicalization routines return the canonical form of a file path. This is usually

the absolute pathname in which all relative references and references to the current
directory have been completely resolved.

® Directory traversal bugs can expose files in other folders on the same logical
volume.

No bugs of the sort described above have yet been published that exposed files on
other logical volumes.

Chapter 8: ASP.NET Security 187

Securing Session and View State

Web applications must manage various types of state including view state and
session state. This section discusses secure state management for ASP.NET Web
applications.

Securing View State

If your ASP.NET Web applications use view state:

® Ensure the integrity of view state (to ensure it is not altered in any way while in
transit) by setting the enableViewStateMac to true as shown below. This causes
ASP.NET to generate a Message Authentication Code (MAC) on the page’s view
state when the page is posted back from the client.

<% @ Page enableViewStateMac=true >

® Configure the validation attribute on the <machineKey> element in
Machine.config, to specify the type of encryption to use for data validation.
Consider the following:

® Secure Hash Algorithm 1 (SHA1) produces a larger hash size than Message
Digest 5 (MD5) so it is considered more secure. However, view state protected
with SHA1 or MD5 can be decoded in transit or on the client side and can
potentially be viewed in plain text

® Use 3 Data Encryption Standard (3DES) to detect changes in the view state
and to also encrypt it while in transit. When in this state, even if view state is
decoded, it cannot be viewed in plain text.

Securing Cookies

Cookies that contain authentication or authorization data or other sensitive

data should be secured in transit by using SSL. For Forms authentication, the
FormsAuthentication.Encrypt method can be used to encrypt the authentication
ticket, passed between client and server in a cookie.

Securing SQL Session State

The default (in-process) ASP.NET session state handler has certain limitations. For
example, it cannot work across computers in a Web farm. To overcome this limita-
tion, ASP.NET allows session state to be stored in a SQL Server database.

188 Building Secure ASP.NET Applications

SQL session state can be configured either in Machine.config or Web.config.
The default setting in machine.config is shown below.

<sessionState mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
stateNetworkTimeout="10"
sglConnectionString="data source=127.0.0.1;user id=sa;password="
cookieless="false" timeout="20"/>

By default, the SQL script InstallSqlState.sql, which is used for building the data-
base used for SQL session state is installed at the following location:

C:\WINNT\Microsoft.NET\Framework\v1l.0.3705

When you use SQL session state there are two problems to consider.
® You must secure the database connection string.
® You must secure the session state as it crosses the network.

Securing the Database Connection String

If you use SQL authentication to connect to the server, the user ID and password
information is stored in plain text in web.config as shown below.

<sessionState
cookieless="false"
timeout="20"

mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
sglConnectionString=
"data source=127.0.0.1;user id=UserName;password=ClearTxtPassword"

/>

By default the HttpForbiddenHandler protects configuration files from being
downloaded. However, any user who has direct access to the folders where the
configuration files are stored can still see the user name and password. A better
practice is to use Windows authentication to SQL Server.

» To use Windows authentication, you can use the ASP.NET process identity (typically
ASPNET)

1. Create a duplicate account (with the same name and password) on the database
server.

2. Create a SQL login for the account.

3. Create a database user in the ASPState database and map the SQL login to the
new user.

The ASPState database is created by the InstallSQLState.sql script.

Chapter 8: ASP.NET Security 189

5. Create a user defined database role and add the database user to the role.
6. Configure permissions in the database for the database role.

You can then change the connection string to use a trusted connection, as shown
below:

sqlConnectionString="server=127.0.0.1;
database=StateDatabase;
Integrated Security=SSPI;"

Securing Session State Across the Network

You may need to protect the session state as it crosses the network to the SQL Server
database. This depends on how secure the network hosting the Web server and data
servers is. If the database is physically secured in a trusted environment, you may
be able to do without this extra security measure.

You can use IPSec to protect all IP traffic between the Web servers and SQL Server,
or alternatively, you can use SSL to secure the link to SQL Server. With this ap-
proach, you have the option of encrypting just the connection used for the session
state, and not all traffic that passes between the computers.

More Information

® For more information about how to set up SQL Session State, see article Q317604,
“HOW TO: Configure SQL Server to Store ASPNET Session State,” in the
Microsoft Knowledge Base.

® For more information about using SSL to SQL Server, see “How To: Use SSL to
Secure Communication with SQL Server 2000” in the Reference section of this
guide.

® For more information about using IPSec, see “How To: Use IPSec to Provide
Secure Communication Between Two Servers” in the Reference section of this
guide.

Web Farm Considerations

In a Web farm scenario, there is no guarantee that successive requests from the
same client are serviced by the same Web server. This has implications for state
management and for any encryption that relies on attributes maintained by the
<machineKey> element in Machine.config.

190 Building Secure ASP.NET Applications

Session State

The default ASPNET in-process session state handling (which mirrors previous ASP
functionality) results in server affinity and cannot be used in a Web farm scenario.
For Web farm deployments, session state must be stored out of process in either the
ASP.NET State service or a SQL Server database as described earlier.

Note: You cannot rely on application state for maintaining global counters or unique values in
Web farm (Web application configured to run on multiple servers) or Web garden (Web applica-
tion configured to run on multiple processors) scenarios because application state is not
shared across processes or computers.

DPAPI

DPAPI can work with either the machine store or user store (which requires a
loaded user profile). If you use DPAPI with the machine store, the encrypted string
is specific to a given computer and therefore you must generate the encrypted data
on every computer. Do not copy the encrypted data across computers in a Web farm
or cluster.

If you use DPAPI with the user store, you can decrypt the data on any computer
with a roaming user profile.

More Information

For more information about DPAPI, see Chapter 12, “Data Access Security.”

Using Forms Authentication in a Web Farm

If you are using Forms authentication, it is essential that all of the servers in the
Web farm share a common machine key, which is used for encryption, decryption,
and validation of the authentication ticket.

The machine key is maintained by the <machineKey> element within
Machine.config. The default setting is shown below.

<machineKey validationKey="AutoGenerate"
decryptionKey="AutoGenerate"
validation="SHA1" />

This setting results in every machine generating a different validation and
decryption key. You must change the <machineKey> element and place common
key values across all servers in the Web farm.

Chapter 8: ASP.NET Security 191

The <machineKey> Element

The <machineKey> element located in Machine.config is used to configure the keys
used for encryption and decryption of Forms authentication cookie data and view
state.

When the FormsAuthentication.Encrypt or FormsAuthentication.Decrypt methods
are called, and when view state is created or retrieved, the values in the
<machineKey> element are consulted.

<machineKey validationKey="autogenerate|value"
decryptionKey="autogenerate|value"
validation="SHA1|MD5|3DES" />

The validationKey Attribute

The value of the validationKey attribute is used to create and validate MAC codes
for view state and Forms authentication tickets. The validation attribute signifies
what algorithm to use when performing the MAC generation. Note the following:

e With Forms authentication, this key works in conjunction with the <forms>
protection attribute. When the protection attribute is set to Validation, and then
when the FormsAuthentication.Encrypt method is called, the ticket value and
the validationKey are used to compute a MAC which is appended to the cookie.
When the FormsAuthentication.Decrypt method is called, the MAC is computed
and compared to the MAC that is appended to the ticket.

e With view state, the value of a control’s view state and the validationKey are
used to compute a MAC, which is appended to the view state. When the view
state is posted back from the client, the MAC is recomputed and compared to the
MAC that is appended to the view state.

The decryptionKey Attribute

The value of the decryptionKey attribute is used to encrypt and decrypt Forms
authentication tickets and view state. The DES or Triple DES (3DES) algorithms are
used. The precise algorithm depends on whether or not the Windows 2000 High
Encryption Pack is installed on the server. If it is installed 3DES is used, otherwise
DES is used. Note the following:

e With Forms authentication, the key works in conjunction with the <forms>
protection attribute. When the protection attribute is set to Encryption, and the
FormsAuthentication.Encrypt or Decrypt methods are called, the ticket value is
encrypted or decrypted with the specified decryptionKey value.

192 Building Secure ASP.NET Applications

e With view state, the value of a controls view state is encrypted with the
decryptionKey value when sent to the client and is decrypted when the client
posts the data back to the server.

The Validation Attribute

This attribute dictates what algorithm to use when validating, encrypting, or
decrypting. It can take the values SHA1, MD5, or 3DES. The following describes
these values:

e SHAI1 The HMACSHALI algorithm is actually used when the setting is SHA1. It
produces a 160 bit (20 byte) hash or digest of the input. HMACSHAL1 is a keyed
hashing algorithm. The key used as the input for this algorithm is specified by
the validationKey attribute.

SHAL is a popular algorithm because of its larger digest size compared to other
algorithms.

® MDS5. This produces a 20 byte hash using the MD5 algorithm.
e 3DES. This encrypts data using the Triple DES (3DES) algorithm.

Note: When the validation attribute is set to 3DES, it is not actually used by Forms authen-
tication. SHA1 is used instead.

More Information

® For information about how to create keys suitable for placing in Machine.config,
see article Q312906, “HOW TO: Create Keys w/ C# .NET for Use in Forms
Authentication,” in the Microsoft Knowledge Base.

® For more information about the Windows 2000 High Encryption Pack, see http:
/fwww.microsoft.com/windows2000/downloads/recommended/encryption.

Summary

This chapter has described a variety of techniques and approaches for securing
ASPNET Web applications. Much of the guidance and many of the recommenda-
tions presented in this chapter also apply to the development of ASP.NET Web
services and .NET Remoting objects hosted by ASP.NET. To summarize:

® If your application uses Forms authentication and if performance is an issue
when authenticating the user, retrieve a list of roles and store them in the authen-
tication ticket.

® If you use Forms authentication, always create a principal and store it in the
context on each request.

® [f there are too many roles to store in an authentication cookie, then use the
global application cache to store the roles.

Chapter 8: ASP.NET Security 193

Don’t create a custom least privileged account to run ASP.NET. Instead, change
the ASPNET account password and create a duplicate account on any remote
Windows server that your application needs to access.

If you must create a custom account to run ASP.NET, use the principle of least
privilege. For example:

® Use a least privileged domain account if administration is the main concern.

® If you use a local account. you must create a duplicated account on any
remote computer that the Web application needs to access, You must use local
accounts when your application needs to access resources in non-trusting
domains, or where a firewall prevents Windows authentication.

® Don’t run ASP.NET using the local SYSTEM account.

® Don’t give the ASPNET account “Act as part of the operating system” privilege.
Use SSL when:

® Security sensitive information is passed between browser and Web server.

® When Basic authentication is used (to protect credentials).

® When Forms authentication is used for authentication (as opposed to person-
alization).

Avoid storing secrets in plain text.

Enterprise Services Security

Traditional COM+ services such as distributed transactions, just-in-time activation,
object pooling, and concurrency management are available to .NET components.
With .NET, such services are referred to as Enterprise Services. They are essential
for many middle-tier .NET components running within .NET Web applications.

To add services to a .NET component, you must derive the component class from
the EnterpriseServices.ServicedComponent base class and then specify precise
service requirements using .NET attributes compiled into the assembly that hosts
the component.

This chapter describes how to build secure serviced components and how to call
them from ASP.NET Web applications.

Security Architecture

The authentication, authorization, and secure communication features supported by
Enterprise Services applications are shown in Figure 9.1 on the next page. The client
application shown in Figure 9.1 is an ASP.NET Web application.

196 Building Secure ASP.NET Applications

Role List -

“Manager”
“Senior Manager” COM+
“Employee” Catalog

Check role membership

it B |
1 1
Bob Client Application | Bob (DCOM) : Aocess : Serviced
) 0 1 Check 1 ervice!
L (e.g. aspnet_wp.exe) 4 T L H Component
hS 1 1
? ° . /| Interceptor H
\\ /' | Y 1
| ‘RPC. Enterprise Services
Windows Packet Pri Server Application
Authentication ey, T (dllhost.exe)
Packet Integrity

+ Impersonation

Privacy/Integrit . -
WIESEEEAT) Enterprise Services
(COM+) Roles
Machine.config (Authorization)
(DCOM client None
authentication and DCOM/RPC CornEsEn
LSt el (Authentication) | Call
szl Packet
Packet Integrity

Packet Privacy

Figure 9.1

Enterprise Services role-based security architecture

Notice that authentication and secure communication features are provided by the
underlying RPC transport used by Distributed COM (DCOM). Authorization is
provided by Enterprise Services (COM+) roles.

The following summarizes the main elements of the Enterprise Services security
architecture:

® Enterprise Services applications use RPC authentication to authenticate callers.
This means that unless you have taken specific steps to disable authentication,
the caller is authenticated using either Kerberos or NTLM authentication.

® Authorization is provided through Enterprise Services (COM+) roles, which can
contain Microsoft® Windows® operating system group or user accounts. Role
membership is defined within the COM+ catalog and is administered by using
the Component Services tool.

Note: If the Enterprise Services application uses impersonation, caller authorization using
Windows ACLs on secured resources is also available.

® When a client (for example, an ASPNET Web application) calls a method on a
serviced component, after the authentication process is complete, the Enterprise
Services interception layer accesses the COM+ catalog to determine the client’s
role membership. It then checks whether membership of the role or roles permits
authorized access to the current application, component, interface, and method.

Chapter 9: Enterprise Services Security 197

e [f the client’s role membership permits access, the method is called. If the client
doesn’t belong to an appropriate role, the call is rejected, and a security event is
optionally generated to reflect the failed access attempt.

Important: To implement meaningful role-based authorization within an Enterprise Services
application called by an ASENET Web application, Windows authentication and imperson-
ation must be used within the ASENET Web application in order to ensure that the original
caller’s security context flows through to the serviced component.

® To secure the DCOM communication link between client and server applications,
either the RPC Packet Integrity authentication level can be used (to provide
message integrity), or the RPC Packet Privacy authentication level can be used
(to provide message confidentiality).

Gatekeepers and Gates

The Enterprise Services runtime acts as the gatekeeper for serviced components.
The individual gates (authorization points) within an Enterprise Services applica-
tion are shown in Figure 9.2. You configure these gates by using Enterprise Services
roles, which you must populate with the appropriate Windows group and user
accounts.

Note: You must also ensure that access checking (role-based security) is enabled for your
Enterprise Services application and that the appropriate level of authentication is being used.
For more information about how to configure security, see “Configuring Security” later in this
chapter.

dilhost.exe @
Serviced
@ Component C
' 1

JOEET SOM r-p Library Application

1

' ®

} Serviced

Client @ Component A
Serviced
Component B
Server Application
Figure 9.2

Gatekeepers within an Enterprise Services application

198 Building Secure ASP.NET Applications

There are three distinct access checks performed in response to a client issuing
a method call on a serviced component. These are illustrated in Figure 9.2 and
described below:

1. An initial access check is performed by the subsystem responsible for activating
Enterprise Services applications—the COM Service Control Manager (SCM)—
when a call to a serviced component results in an activation request (and the
creation of a new instance of the COM+ surrogate process, Dllhost.exe).

To successfully pass this access check, the caller must be a member of at least one
role defined within the application.

2. A second access check is performed when the client’s call enters the Dllhost.exe
process instance.

Once again, if the caller is a member of at least one role defined within the
application, this access check succeeds.

3. The final access check occurs when the client’s call enters either a server or
library application.

To successfully pass this access check, the caller must be a member of a role that
is associated with either, the interface, class, or method that is the target of the
client’s call.

Important: After a call invokes a method on a serviced component, no further access checks
are made if the component communicates with other components located in the same applica-
tion. However, access checks do occur if a component calls another component within a
separate application (library or server).

Use Server Applications for Increased Security

If your application needs to enforce an authentication level, for example because it
requires encryption to ensure that the data sent to a serviced component remains
confidential and tamper proof while in transit across the network, you should use
a server application.

The authentication level can be enforced for a server application, while library
applications inherit their authentication level from the host process.

To configure the activation type of an Enterprise Services application, use the
assembly level ApplicationActivation attribute as shown below.

[assembly: ApplicationActivation(ActivationOption.Server)]

This is equivalent to setting the Activation Type to Server application on the
Activation page of the application’s Properties dialog within Component Services.

Chapter 9: Enterprise Services Security 199

Security for Server and Library Applications

Role-based security works in a similar fashion for in-process library applications
and out-of-process server applications.

Note the following differences for library applications:

® Privileges. The privileges of a library application are determined by the privi-
leges of the client (host) process. For example, if the client process runs with
administrator privileges, the library application will also have administrator
privileges.

® Impersonation. The impersonation level of a library application is inherited
from the client process and cannot be set explicitly.

® Authentication. The authentication level of a library application is inherited
from the client process. With library applications, you can explicitly enable or
disable authentication. This option is available on the Security page of a library
application’s Properties dialog box.

This option is typically used to support unauthenticated call-backs from other
out-of-process COM components.

Assign Roles to Classes, Interfaces, or Methods

With library applications you should always assign roles at the class, interface, or
method level. This is also best practice for server applications.

Users that are defined within library application roles cannot be added to the
security descriptor of the client process. This means that you must use at least class-
level security to allow a library application to perform role-based authorization.

Code Access Security Requirements

Code Access Security (CAS) requires that code have particular permissions to be
able to perform certain operations and access restricted resources. CAS is most
useful in a client environment where code is downloaded from the Internet. In this
type of situation it is unlikely that the code is fully trusted.

Typically, applications that use serviced components are fully trusted, and as a
result CAS has limited use. However, Enterprise Services does demand that the
calling code have the necessary permission to call unmanaged code. This implies
the following:

® Unmanaged code permission is required to activate and perform cross context
calls on serviced components.

e If the client of a serviced component is an ASP.NET Web application, this appli-
cation must have unmanaged code permission.

® If a reference to a serviced component is passed to untrusted code, methods
defined on the serviced component cannot be called from the untrusted code.

200 Building Secure ASP.NET Applications

Configuring Security

This section shows you how to configure security for:
® A serviced component running in an Enterprise Services server (out-of-process)

application.

® An ASPNET Web application client.

Configuring a Server Application

The steps required to configure an Enterprise Services server application are shown

in Figure 9.3.

Development Configuration
(COM+ Catalog)

1. Configure authentication

2. Configure authorization
(component-level access checks)

3. Create and assign roles

NS

Attributes

Visual Studio.NET

4. Register Serviced Component (gacutil.exe + regsvcs.exe)

Deployment Configuration
(COM+ Catalog)

5. Populate roles
6. Configure identity

Catalog Settings

Figure 9.3

Component Services

Configuring Enterprise Services security

Chapter 9: Enterprise Services Security 201

Development Time vs. Deployment Time Configuration

You can configure most security settings within the COM+ catalog at development
time by using .NET attributes within the assembly that contains the serviced com-

ponent. These attributes are used to populate the COM+ catalog when the serviced
component is registered with COM+ by using the Regsvcs.exe tool.

Other configuration steps such as populating roles with Windows group and user
accounts and configuring a run-as identity for the server application (Dllhost.exe
instance) must be configured using the Component Services administration tool (or
programmatically using script) at deployment time.

Configure Authentication

To set the application authentication level declaratively, use the
ApplicationAccessControl assembly level attribute as shown below.

[assembly: ApplicationAccessControl(
Authentication = AuthenticationOption.Call)]

This is equivalent to setting the Authentication Level for Calls value on the Secu-
rity page of the application’s Properties dialog within Component Services.

Note: The client’s authentication level also affects the authentication level used by the
Enterprise Services application, because a process of high-water mark negotiation is em-
ployed, which always results in the higher of the two settings being used.

For more information about configuring the DCOM authentication level used by an ASPNET
client application, see “Configuring an ASRNET Client Application,” later in this section.

For more information about DCOM authentication levels and authentication level negotiation,
see the “Security Concepts” section of this chapter.

Configure Authorization (Component-Level Access Checks)

To enable fine-grained authorization at the component, interface, or method level
you must:
® Enable access checks at the application level.

Use the following .NET attribute to enable application-wide access checks.
[assembly: ApplicationAccessControl(true)]
This is equivalent to selecting the Enforce access checks for this application

check box on the Security page of the application’s Properties dialog box within
Component Services.

202 Building Secure ASP.NET Applications

Important: Failure to set this attribute results in no access checks being performed.

e Configure the application’s security level at the process and component level.

For meaningful role-based security, enable access checking at the process and
component levels by using the following .NET attribute.

[assembly: AppTlicationAccessControl(AccessChecksLevel=
AccessChecksLevelOption. ApplicationComponent)]

This is equivalent to selecting the Perform access checks at the process and
component levels check box on the Security page of the application’s Properties
dialog box within Component Services.

Note: Always enable access checking at the process and component level for library
applications.

® Enable component level access checks.

To enable component-level access checks, use the ComponentAccessControl
class-level attribute as shown below.

[ComponentAccessControl (true)]
pubTlic class MyServicedComponent : ServicedComponent

{
}

This is equivalent to selecting the Enforce Component Level Access Checks
check box on the Security page of the component Properties dialog box within
Component Services.

Note: This setting is effective only if you have enabled application-level access checking
and have configured process and component level access checks, as described previously.

Create and Assign Roles

Roles can be created and assigned at the application, component (class), interface,
and method levels.

Adding Roles to an Application

To add roles to an application, use the SecurityRole assembly level attribute as
shown below.

[assembly:SecurityRole("Employee™)]
[assembly:SecurityRole("Manager")]

This is equivalent to adding roles to an application by using the Component Ser-
vices tool.

Chapter 9: Enterprise Services Security 203

Note: Using the SecurityRole attribute at the assembly level is equivalent to adding roles to
the application, but not assigning them to individual components, interfaces, or methods. The
result is that the members of these roles determine the composition of the security descriptor
attached to the application. This is used solely to determine who is allowed to access (and
launch) the application.

For more effective role-based authorization, always apply roles to components, interfaces, and
methods as described below.

Adding Roles to a Component (Class)

To add roles to a component apply the SecurityRole attribute above the class
definition, as shown below.

[SecurityRole("Manager")]

public class Transfer : ServicedComponent
{

}

Adding Roles to an Interface

To apply roles at the interface level, you must create an interface definition and then
implement it within your serviced component class. You can then associate roles
with the interface by using the SecurityRole attribute.

Important: At development time, you must also annotate the class with the SecureMethod
attribute. This informs Enterprise Services that method level security services may be used.
At deployment time, administrators must also add users to the system defined Marshaler role,
which is automatically created within the COM+ catalog, when a class that is marked with
SecureMethod is registered with Component Services.

Use of the Marshaler role is discussed further in the next section.

The following example shows how to add the Manager role to a particular
interface.

[SecurityRole("Manager")]
public interface ISomeInterface
{
void Methodl(string message);
void Method2(int parml, int parm2);
}

[ComponentAccessControl]
[SecureMethod]
pubTlic class MyServicedComponent : ServicedComponent, ISomeInterface
{
public void Methodl(string message)
{

204 Building Secure ASP.NET Applications

// Implementation

}
public void Method2(int parml, int parm2)

{
// Implementation

}
}

Adding Roles to a Method

To ensure that the public methods of a class appear in the COM+ catalog, you must
explicitly implement an interface that defines the methods. Then, to secure the
methods, you must use the SecureMethod attribute on the class, or the
SecureMethod or SecurityRole attribute at the method level.

Note: The SecureMethod and SecurityRole attributes must appear above the method imple-
mentation and not within the interface definition.

To enable method level security, perform the following steps:
1. Define an interface that contains the methods you want to secure. For example:

public interface ISomeInterface

{
void Methodl(string message);
void Method2(int parml, int parm2);

}

2. Implement the interface on the serviced component class:

[ComponentAccessControl]
pubTlic class MyServicedComponent : ServicedComponent, ISomeInterface

{
pubTlic void Methodl(string message)

{
// Implementation

]
public void Method2(int parml, int parm2)

{

// Implementation

}
}

3. If you want to configure roles administratively by using the Component Services
tool, you must annotate the class with the SecureMethod attribute, as shown
below.

[ComponentAccessControl]
[SecureMethod]

Chapter 9: Enterprise Services Security 205

pubTlic class MyServicedComponent : ServicedComponent, ISomeInterface
{
}

. Alternatively, if you want to add roles to methods at development time by using
NET attributes, apply the SecurityRole attribute at the method level. In this
event, you do not need to apply the SecureMethod attribute at the class level
(although the ComponentAccessControl attribute must still be present to config-
ure component level access checks).

In the following example only members of the Manager role can call Method1,
while members of the Manager and Employee roles can call Method?2.

[ComponentAccessControl]
pubTlic class MyServicedComponent : ServicedComponent, ISomeInterface

{
[SecurityRole("Manager")]
public void Methodl(string message)

{
// Implementation

}

[SecurityRole("Manager™)]
[SecurityRole("Employee")]

public void Method2(int parml, int parm2)

{
// Implementation

}
}

. At deployment time, administrators must add any user that requires access to
methods or interfaces of the class to the predefined Marshaler role.

Note: The Enterprise Services infrastructure uses a number of system-level interfaces that

are exposed by all serviced components. These include IManagedObject, IDisposable, and

IServiceComponentinfo. If access checks are enabled at the interface or method levels,

the Enterprise Services infrastructure is denied access to these interfaces.

As a result, Enterprise Services creates a special role called Marshaler and associates the

role with these interfaces. You can view this role (and the aforementioned interfaces) with

the Component Services tool.

At deployment time, application administrators need to add all users to the Marshaler role

who needs to access any methods or interface of the class. You can automate this in two

different ways:

® Write a script that uses the Component Services object model to copy all users from
other roles to the Marshaler role.

® Write a script which assigns all other roles to these three special interfaces and delete
the Marshaler role.

206 Building Secure ASP.NET Applications

Register Serviced Components

Register serviced components in:

® The Global Assembly Cache. Serviced components hosted in COM+ server
applications require installation in the global assembly cache, while library
applications do not.

To register a serviced component in the global assembly cache, run the
Gacutil.exe command line utility. To register an assembly called
MyServicedComponent.dll in the global assembly cache, run the following
command.

gacutil -i MyServicedComponent.dl1

Note: You can also use the Microsoft .NET Framework Configuration Tool from the Adminis-
trative Tools program group to view and manipulate the contents of the global assembly
cache.

® The COM+ Catalog. To register an assembly called MyServicedComponent.dll
in the COM+ catalog, run the following command.

regsvcs.exe MyServicedComponent.dll

This command results in the creation of a COM+ application. The .NET at-
tributes present within the assembly are used to populate the COM+ catalog.

Populate Roles

Populate roles by using the Component Services tool, or by using script to program
the COM+ catalog using the COM+ administration objects.

Use Windows Groups

Add Windows 2000 group accounts to Enterprise Services roles for maximum
flexibility. By using Windows groups, you can effectively use one administration
tool (the Users and Computers Administration tool) to administer both Windows
and Enterprise Services security.
® Create a Windows group for each role in the Enterprise Services application.
® Assign each group to its respective role.
For example, if you have a role called Manager, create a Windows group called
Managers. Assign the Managers group to the Manager role.

® After you assign groups to roles, use the Users and Computers Administration
tool to add and remove users in each group.

Chapter 9: Enterprise Services Security 207

For example, adding a Windows 2000 user account named David to the
Windows 2000 group Managers effectively maps David to the Manager role.
» To assign Windows groups to Enterprise Services roles by using Component Services

1. Using the Component Services tool, expand the application that contains the
roles to which you want to add Windows 2000 groups.

2. Expand the Roles folder and the specific role to which you want to assign
Windows groups.

3. Select the Users folder under the specific role.
4. Right-click the folder, point to New, and then click User.
5. In the Select Users or Groups dialog box, add groups (or users) to the role.

More Information

For more information about programming the COM+ catalog by using the COM+
administration objects, see “Automating COM+ Administration” within the Com-
ponent Development section of the MSDN Library.

Configure Identity

Use the Component Services tool (or script) to configure the identity of the Enter-

prise Services application. The identity property determines the account used to run

the instance of Dllhost.exe that hosts the application.

» To configure identity

1. Using the Component Services tool, select the relevant application.

2. Right-click the name of the application, and then click Properties.

3. Click the Identity tab.

4. Click This user and specify the configured service account used to run the
application.

More Information

For more information about choosing an appropriate identity to run an Enterprise
Services application, see “Choosing a Process Identity” later in this chapter.

Configuring an ASP.NET Client Application

You must configure the DCOM authentication level and impersonation levels used
by client applications when communicating with serviced components using
DCOM.

208 Building Secure ASP.NET Applications

Configure Authentication

To configure the default authentication level used by an ASP.NET Web application
when it communicates with a serviced component, edit the
comAuthenticationLevel attribute on the <processModel> element in
Machine.config.

Machine.config is located in the following folder.

%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set the comAuthenticationLevel attribute to one of the following values.

comAuthenticationLevel=
"[Default|None|Connect|Call|Pkt|PktIntegrity|PktPrivacy]"

More Information

For more information about DCOM authentication levels, see “ Authentication”
within the “Security Concepts” section later in this chapter.

Configure Impersonation

The impersonation level set by the client determines the impersonation level
capabilities of the server. To configure the default impersonation level used by
a Web-based application when it communicates with a serviced component,
edit the comImpersonationLevel attribute on the <processModel> element in
Machine.config. Set it to one of the following values.

comImpersonationLevel="[Default|Anonymous |Identify|Impersonate|Delegate]"”

More Information

For more information about DCOM impersonation levels, see “Impersonation”
within the “Security Concepts” section later in this chapter.

Configuring Impersonation Levels for an Enterprise Services
Application
If a serviced component in one application needs to call a serviced component

within a second (server) application, you may need to configure the impersonation
level for the client application.

Chapter 9: Enterprise Services Security 209

Important: The impersonation level configured for an Enterprise Services application (on the
Security page of the application’s Properties dialog box) is the impersonation level used by
outgoing calls made by components within the application. It does not affect whether or not
serviced components within the application perform impersonation. To impersonate clients
within a serviced component, you must use programmatic impersonation techniques, as
described in “Flowing the Original Caller,” later in this chapter.

To set the application impersonation level declaratively, use the
ApplicationAccessControl assembly level attribute as shown below.

[assembly: ApplicationAccessControl(
ImpersonationlLevel=ImpersonationLevelOption.Identify)]

This is equivalent to setting the Impersonation Level value on the Security page of
the application’s Properties dialog within Component Services.

Programming Security

The Enterprise Services security features are available to .INET components using
the ContextUtil, SecurityCallContext, and Securityldentity classes.

Programmatic Role-Based Security

For fine grained authorization decisions, you can programmatically test role mem-
bership using the IsCallerInRole method of the ContextUtil class. Prior to calling
this method, always check that component-level access checks are enabled, as
shown in the following code fragment. If security is disabled, IsCallerInRole
always returns true.

public void Transfer(string fromAccount, string toAccount, double amount)
{
// Check that security 1is enabled
if (ContextUtil.IsSecurityEnabled)
{
// Only Managers are allowed to transfer sums of money in excess of $1000
if (amount > 1000)
{
if (ContextUtil.IsCallerInRole("Manager™))

// Caller 1is authorized

}

else

{

}
}

// Caller 1is unauthorized

210 Building Secure ASP.NET Applications

Identifying Callers

The following example shows how to identify all upstream callers from within a
serviced component.

[ComponentAccessControl]
pubTlic class MyServicedComponent : ServicedComponent

{
public void ShowCallers()

{
SecurityCallContext context = SecurityCallContext.CurrentCall;
SecurityCallers callers = context.Callers;
foreach(SecurityIdentity id in callers)
{

Console.WriteLine(id.AccountName);
h
}
}

Note: The original caller identity is available via the SecurityCallContext.OriginalCaller
property.

Choosing a Process Identity

Server activated Enterprise Services applications run within an instance of the
Dllhost.exe process. You must configure the account used to run the process in the
COMH+ catalog by using the Component Services tool.

Note: You cannot specify the run as identity by using a .NET attribute.

Never Run as the Interactive User

Do not run server applications using the identity of the interactively logged on user
(this is the default setting). There are two main reasons to avoid this:

® The privileges and access rights of the application will vary and will be depen-
dent upon who is currently logged on interactively at the server. If an adminis-
trator happens to be logged on, the application will have administrator
privileges.

e If the application is launched while a user is interactively logged on and then the
user logs off, the server application will be shut down. It will not be able to
restart until another user logs on interactively.

Chapter 9: Enterprise Services Security 211

The interactive user setting is designed for developers to use at development time,
and should not be considered a deployment setting.

Use a Least-Privileged Custom Account

Create a least privileged account to mitigate the threat associated with a process
compromise. If a determined attacker manages to compromise the server process,
he or she will easily be able to inherit the privileges and access rights granted to the
process account. An account configured with minimum privileges restricts the
potential damage that can be done.

If you need to access network resources with the process account, the remote com-
puter must be able to authenticate the process account. In this scenario, you have
two options:

® You can use a domain account if the two computers are in the same or trusting
domains.

® You can use a local account and then create a duplicate account (with the same
user name and password) on the remote computer. With this option, you must
ensure that the passwords of the two accounts remain synchronized.

You may be forced to use the duplicated local account approach if the remote
computer is located in a separate domain (with no trust relationship), or if
the remote computer is behind a firewall (where closed ports do not permit
Windows authentication).

Accessing Network Resources

Your serviced components may need to access remote resources. It is important to
be able to identify the following:

® The resources the components need to access. For example, files on file shares,
databases, other DCOM servers, Active Directory® directory service objects, and
SO on.

® The identity used to perform the resource access. If your serviced component
accesses remote resources, the identity used (which by default is the process
identity) must be capable of being authenticated by the remote computer.

Note: For information specific to accessing remote SQL Server databases, see Chapter 12,
“Data Access Security.”

212 Building Secure ASP.NET Applications

You can access remote resources from a component within an Enterprise Services
application by using any of the following identities:

® The original caller (if you are explicitly impersonating by using
ColmpersonateClient)

® The current process identity (configured in the COM+ catalog for server applica-
tions)

® A specific service account

Using the Original Caller

To use the original caller’s identity for remote resource access, you must:

® Programmatically impersonate the original caller by calling
ColmpersonateClient.

® Be able to delegate the caller’s security context from the application server
hosting the Enterprise Services application to the remote computer. This assumes
that you are using Kerberos authentication between your Enterprise Services
application and client application.

Scalability Warning: If you access the data services tier of your application using the original
caller's impersonated identity, you severely impact the application’s ability to scale, because
you prevent database connection pooling from working efficiently; it doesn’t work efficiently
because the security context of each database connection is tied to many individual callers.

More Information

For more information about impersonating callers, see “Flowing the Original
Caller,” later in this chapter.

Using the Current Process Identity

If your application is configured to run as a server application, you can use the
configured process identity for remote resource access (this is the default case).

If you want to use the server process account for remote resource access, you must
either:

® Run the server application using a least-privileged domain account. This as-
sumes that client and server computers are in the same or trusting domains.

® Duplicate the process account using the same username and password on the
remote computer.

If ease of administration is your primary concern, you should use a least-privileged
domain account.

Chapter 9: Enterprise Services Security 213

If your application is configured to run as a library application, the process identity
is inherited from the host process (which will often be a Web-based application). For
more information about using the ASPNET process identity for remote resource
access, see Chapter 8, “ASP.NET Security.”

Using a Specific Service Account

Your Enterprise Services application could access remote resources by using a
specifically configured service account (that is, a non-user Windows account).
However, this approach is not recommended on Windows 2000 because it relies on
you calling the LogonUser APL.

The use of LogonUser on Windows 2000, forces you to grant the “Act as part of the
operating system” privilege to the Enterprise Services process account. This signifi-
cantly reduces the security of your application.

Note: Microsoft Windows .NET Server 2003 will lift this restriction.

Flowing the Original Caller

By default, outgoing calls issued by serviced components (for example, to access
local or remote resources) are made using the security context obtained from the
host process. For server applications, this is the configured run-as identity. For
library applications, this is the identity of the (host) client process (for example,
Aspnet_wp.exe when an ASPNET Web application is the client).

> To flow the original caller’s context through an Enterprise Services application
1. Call ColmpersonateClient.
This creates and attaches a thread impersonation token to the current thread.
2. Perform operation (access local or remote resource).

As impersonation is enabled, the outgoing call is made using the client’s security
context (as defined by the impersonation token).

If local resources are accessed, the caller (client process) must have specified at
least Impersonate level impersonation. If remote resources are accessed, the
caller must have specified Delegate level impersonation.

If the caller is an ASPNET Web application, the default impersonation level for
the ASP.NET worker process is Impersonate. Therefore, to flow the original caller
to a downstream remote computer, you must change this default to Delegate (on
the <processModel> element of Machine.config on the client computer).

214 Building Secure ASP.NET Applications

Note: To use the original caller’s security context to access remote resources you must use
Kerberos authentication, with accounts configured for delegation. The account used to run
the Enterprise Services server application must also be marked in Active Directory as
“Trusted for delegation.”

3. Cease impersonation by calling CoRevertToSelf.

This removes the impersonation token. Any subsequent call from the current
method uses the process security context. If you fail to call CoRevertToSelf, it
is called implicitly by the runtime when the method ends.

Note: The identity of the original caller automatically flows to an Enterprise Services applica-
tion and is available using SecurityCallContext.OriginalCaller. This can be useful for auditing
purposes.

Calling ColmpersonateClient

ColmpersonateClient (and CoRevertToSelf) are located within OLE32.d1l. You
must import their definitions by using the DIlImport attribute in order to be able to
call them through P/Invoke. This is illustrated in the following code fragment.

class COMSec

{
[DT11Import("OLE32.DLL", CharSet=CharSet.Auto)]
public static extern uint CoImpersonateClient();

[DT11Import("OLE32.DLL", CharSet=CharSet.Auto)]
public static extern uint CoRevertToSelf();

}

void SomeMethod()
{
// To flow the original caller's security context and use it to access local
// or remote resources, start impersonation
COMSec.CoImpersonateClient();
// Perform operations as the caller
// Code here uses the context of the caller - not the context of the process

COMSec.CoRevertToSelf(Q);
// Code here reverts to using the process context

More Information

For more information about how to configure a complete Kerberos delegation
scenario that shows how to flow the original caller’s security context through an
ASP.NET Web application, an Enterprise Services application, and onto a database,
see the “Flowing the Original Caller” section of Chapter 5, “Intranet Security.”

Chapter 9: Enterprise Services Security 215

RPC Encryption

To secure the data sent from a client application to a remote serviced component
over DCOM, use the RPC Packet Privacy authentication level between client and
server. This provides message confidentiality and integrity.

You must configure the authentication level at the client and server.

To configure ASPNET (where an ASP.NET Web application is the client), set the
comAuthenticationLevel attribute on the <processModel> element in
machine.config to PktPrivacy.

To configure an Enterprise Services server application, set the application-level
authentication level either by using the Component Services tool or the following
NET attribute within the serviced component assembly.

[assembly: ApplicationAccessControl(
Authentication = AuthenticationOption.Privacy)]

More Information

® For more information about configuring security (including authentication
levels), see “Configuring Security” earlier in this chapter.

® For more information about RPC/DCOM authentication levels, see “Authentica-
tion” later in this chapter.

® For more information about authentication-level negotiation, see “Authentica-
tion Level Negotiation” later in this chapter.

Building Serviced Components

For a step-by-step walkthrough that shows you how to build a serviced component,
see “ How To: Use Role-based Security with Enterprise Services” in the Reference
section of this guide.

DLL Locking Problems

When you rebuild a serviced component, if the DLL is locked:
® Use Component Services to shut down the COM+ server application.

® If you are developing a library application, the application may still be loaded
into the Aspnet_wp.exe process. Run IISReset from a command prompt or use
Task Manager to stop the Aspnet_wp.exe process.

® Use the FileMon.exe tool from www.sysinternals.com to help troubleshoot file
locking problems.

216 Building Secure ASP.NET Applications

Versioning

The default AssemblyVersion attribute that is generated by Microsoft Visual
Studio® .NET development system when you create a new project is shown below.

[assembly: AssemblyVersion("1.0.*")]

Each time you rebuild the project, a new assembly version is generated. This also
results in the generation of a new class identifier (CLSID) to identify the serviced
component classes. If you repeatedly register the assembly with component services
using Regsvcs.exe, you will see duplicated components (strictly classes) with
different CLSIDs listed beneath the Components folder.

While this complies with strict COM versioning semantics and will prevent existing
managed and unmanaged clients from breaking, it can be an annoyance during
development.

During test and development, consider setting an explicit version by using the
assembly level AssemblyVersion attribute shown below.

[assembly: AssemblyVersion("1.0.0.1")]

This setting will prevent a new CLSID being generated with each successive project
build. You may also want to fix the interface identifiers (IIDs). If your class imple-
ments explicit interfaces, you can fix the IID for a given interface by using the GUID
attribute as shown below.

[Guid("E1FBF27E-9F11-474d-8DF6-58916F798E9D")]
pubTlic interface IMyInterface

{

}

» To generate new GUIDs
1. On the Tools menu of Visual Studio .NET, click Create GUID.
2. Click Registry Format
3. Click New GUID.
4. Click Copy.
5. Paste the GUID from the clipboard into your source code.

Important: Prior to deploying your serviced component assembly for test and production,
remove any fixed GUIDs and revert to an automated assembly versioning mechanism (for
example, by using “1.0.*”). Failure to do so increases the likelihood that a new release of your
component will break existing clients.

Chapter 9: Enterprise Services Security 217

More Information

For more information about versioning for deployment, see Understanding Enter-
prise Services (COM+) in .NET on MSDN.

Queryinterface Exceptions

If you see a Querylnterface call for the IRoleSecurity interface failing, this indi-
cates that you have updated an interface definition within your assembly, but have
not re-registered the assembly with Component Services using Regsvcs.exe.

Important: Each time you run Regsvcs.exe you will need to reconfigure a server application’s
run-as identity and will also need to add users to groups again. You can create a simple script
to automate this task.

DCOM and Firewalls

Windows 2000 (SP3 or QFE 18.1) or Windows .NET Server 2003 allow you to config-
ure Enterprise Services applications to use a static endpoint. If a firewall separates
the client from the server, you only need to open two ports in the firewall. Specifi-
cally, you must open port 135 for RPC and a port for your Enterprise Services
application.

As an alternative to this approach consider exposing your Enterprise Services
application as a Web service. This allows you to activate and call serviced compo-
nents by using SOAP over port 80. The main issue with this approach is that it
doesn’t allow you to flow transaction context from client to server. You would need
to initiate your transaction at the remote serviced component.

More Information

For more information, see the following Knowledge Base articles:

® Article Q312960, “Cannot Set Fixed Endpoint for a COM+ Application”
Article Q259011, “SAMPLE: A Simple DCOM Client Server Test Application”
Article Q248809, “PRB: DCOM Does Not Work over NAT-Based Firewall”

Article Q250367, “INFO: Configuring Microsoft Distributed Transaction Coordi-
nator (DTC) to Work Through a Firewall”

® Article Q154596, “HOWTO: Configure RPC Dynamic Port Allocation to Work w/
Firewall”

218 Building Secure ASP.NET Applications

Calling Serviced Components from ASP.NET

This section highlights the main issues you will encounter when an ASP.NET
application calls a serviced component.

Caller’s Identity

When you call a serviced component from an ASP.NET application, the security
identity for the call is obtained from the application’s Win32® thread identity. If the
Web application is configured to impersonate the caller, this is the caller’s identity.
Otherwise, this is the ASP.NET process identity (by default, ASPNET).

From an ASP.NET application, you can retrieve the current Win32 thread identity
by calling WindowslIdentity.GetCurrent().

From a serviced component, you can retrieve the original caller identity by using
SecurityCallContext.OriginalCaller.

Use Windows Authentication and Impersonation Within the Web-based
Application

To enable meaningful role-based security within your Enterprise Services applica-
tion, you must use Windows authentication and enable impersonation. This ensures
that the serviced components are able to authenticate the original callers and make
authorization decisions based on the original caller’s identity.

Configure Authentication and Impersonation within Machine.config

DCOM authentication levels are negotiated between client (for example, the Web-
based application) and server (the Enterprise Services application). The higher of
the two security settings is used.

Configure ASP.NET authentication levels by using the comAuthenitcation attribute
on the <processModel> element of Machine.config.

Impersonation levels are controlled by the client (for example, a Web-based applica-
tion). The client can determine the degree of impersonation that it is willing to
allow the server to use.

Configure ASP.NET impersonation levels (for all outgoing DCOM calls), by using
the comImpersonationLevel attribute on the <processModel> element of
Machine.config.

Configuring Interface Proxies

The security settings that apply to individual interface proxies are usually obtained
from the default process level security settings. In the case of ASP.NET, default
security settings such as the impersonation level and authentication level are
configured in Machine.config, as described earlier.

Chapter 9: Enterprise Services Security 219

If necessary, you can alter the security settings used by an individual interface
proxy. For example, if your ASP.NET application communicates with a serviced
component that exposes two interfaces and sensitive data is passed through only
one interface, you may choose to use the encryption support provided by the packet
privacy authentication level only on the sensitive interface and to use, for example,
packet authentication on the other interface. This means that you do not experience
the performance hit associated with encryption on both interfaces.

Collectively, the set of security settings that apply to an interface proxy are referred
to as the security blanket. COM provides the following functions to allow you to
query and manipulate security blanket settings on an individual interface proxy:

® CoQueryProxyBlanket

® CoSetProxyBlanket

® CoCopyProxy

You must use P/Invoke to call these functions from an ASP.NET Web application
(the DCOM client), The following code shows how to configure a specific interface
to use the Packet Privacy authentication level (which provides encryption). This

code can be used from an ASP.NET Web application that communicates with a
remote serviced component.

// Define a wrapper class for the P/Invoke call to CoSetProxyBlanket
class COMSec

{
// Constants required for the call to CoSetProxyBlanket
public const uint RPC_C_AUTHN_DEFAULT = OxXFFFFFFFF;
pubTlic const uint RPC_C_AUTHZ_DEFAULT = OxFFFFFFFF;
pubTic const uint RPC_C_AUTHN_LEVEL_PKT_PRIVACY = 6;
public const uint RPC_C_IMP_LEVEL_DEFAULT = 0;
pubTlic const uint COLE_DEFAULT_AUTHINFO = OxFFFFFFFF;
public const uint COLE_DEFAULT_PRINCIPAL = 0;
public const uint EOAC_DEFAULT = 0x800;
// HRESULT CoSetProxyBlanket(IUnknown * pProxy,
// DWORD dwAuthnSvc,
// DWORD dwAuthzSvc,
// WCHAR * pServerPrincName,
// DWORD dwAuthnlLevel,
// DWORD dwImplLevel,
// RPC_AUTH_IDENTITY_HANDLE pAuthInfo,
// DWORD dwCapabilities);

[D11Import("OLE32.DLL", CharSet=CharSet.Auto)]
pubTlic unsafe static extern uint CoSetProxyBlanket(
IntPtr pProxy,
uint dwAuthnSvc,
uint dwAuthzSvc,
IntPtr pServerPrincName,
uint dwAuthnLevel,
uint dwImplLevel,
IntPtr pAuthInfo,
uint dwCapababilities);
} // end class COMSec

220 Building Secure ASP.NET Applications

// Code to call CoSetProxyBlanket
void CallComponent()

{

// This is the interface to configure
Guid IID ISecureInterface = new Guid("c720ff19-becl-352c-bb4b-e2del0b858ba");
IntPtr pISecurelnterface;

// Instantiate the serviced component
CreditCardComponent comp = new CreditCardComponent();
// Get its IUnknown pointer
IntPtr pIUnk = Marshal.GetIUnknownForObject(comp);
// Get the interface to configure
Marshal.QueryInterface(pIUnk, ref IID_ISecurelnterface,
out pISecurelnterface);
try
{
// Configure the interface proxy and set packet privacy authentication
uint hr = COMSec.CoSetProxyBlanket(pISecurelnterface,
COMSec.RPC_C_AUTHN_DEFAULT,
COMSec.RPC_C_AUTHZ_DEFAULT,
IntPtr.Zero,
COMSec.RPC_C_AUTHN_LEVEL_PKT_PRIVACY,
COMSec.RPC_C_IMP_LEVEL_DEFAULT,
IntPtr.Zero,
COMSec.EOAC_DEFAULT);
ISecureInterface secure = (ISecurelnterface)comp;
// The following call will be encrypted as ISecurelnterface is configured
// for packet privacy authentication. Other interfaces use the process
// level defaults (normally packet authentication).
secure.ValidateCreditCard("123456789");
}
catch (Exception ex)
{
}

More Information
® For more information about configuring an ASP.NET client application to call

serviced components, see “Configuring an ASPNET Client Application,” earlier
in this chapter.

For more information about DCOM authentication levels, see “Authentication,”
later in this chapter.

For more information about DCOM impersonation levels, see “Impersonation,”
later in this chapter.

For more information about using Windows authentication and enabling imper-
sonation within a Web-based application, see Chapter 8, “ASPNET Security.”

Chapter 9: Enterprise Services Security 221

Security Concepts

This section provides a brief overview of Enterprise Services security concepts. If
you are already experienced with COM+, many of the concepts will be familiar.

For background information on Enterprise Services, see the MSDN article “Under-
standing Enterprise Services (COM+) in .NET.”

The following are summaries of key security concepts that you should understand:

Security settings for serviced components and Enterprise Services applications
are maintained within the COM+ catalog. Most settings can be configured using
.NET attributes. All settings can be configured by using the Component Services
administration tool or Microsoft Visual Basic® Scripting Edition development
system scripts.

Authorization is provided by Enterprise Services (COM+) roles, which can
contain Windows group or user accounts. These are not the same as .NET roles.

® Role-based security can be applied at the application, interface, class, and
method levels.

® Imperative role checks can be performed programmatically within methods
by using the IsCallerInRole method of the ContextUtil class.

Effective role-based authorization within an Enterprise Services application
relies on a Windows identity being used to call serviced components.

® This may require you to use Windows authentication coupled with imperson-
ation within an ASPNET Web application—if the Web application calls
serviced components that rely on Enterprise Services (COM+) roles.

® When you call a serviced component from an ASPNET Web application or
Web service, the identity used for the outgoing DCOM call is determined by
the Win32 thread identity as defined by Windowsldentity.GetCurrent().

Serviced components can run in server or library applications.
® Server applications run in separate instances of Dllhost.exe.
® Library applications run in the client’s process address space.

® Role-based authorization works in a similar fashion for server and library
applications, although there are some subtle differences between library and
server applications from a security perspective. For details, see “Security for
Server and Library Applications” earlier in this chapter.

Authentication is provided by the underlying services of DCOM and RPC. The
client and server’s authentication level combined to determine the resulting
authentication level used for communication with the serviced component.

Impersonation is configured within the client application. It determines the
impersonation capabilities of the server.

222 Building Secure ASP.NET Applications

Enterprise Services (COM+) Roles and .NET Roles

Enterprise Services (COM+) roles are used to represent common categories of users
who share the same security privileges within an application. While conceptually
similar to .NET roles, they are completely independent.

Enterprise Services (COM+) roles contain Windows user and group accounts (un-
like .NET roles which can contain arbitrary non-Windows user identities). Because
of this, Enterprise Services (COM+) roles are only an effective authorization mecha-
nism for applications that use Windows authentication and impersonation (in order
to flow the caller’s security context to the Enterprise Services application).

Table 9.1: Comparing Enterprise Services (COM+) roles with .NET roles

Feature

Administration

Data Store

Declarative

Imperative

Class, Interface,
and Method Level
Granularity

Extensible

Available to all
NET
components

Role
Membership

Requires
explicit
Interface
implementation

Enterprise Services
(COM+) Roles

Component Services
Administration Tool

COM+ Catalog

Yes
[SecurityRole(“Manager”)]

Yes
ContextUtil.IsCallerInRole()

Yes

No

Only for components that
derive from ServicedComponent
base class

Roles contain Windows group
or user accounts

Yes

To obtain method level
authorization, an interface
must be explicitly defined and
implemented

.NET Roles

Custom

Custom data store (for example, SQL
Server or Active Directory)

Yes

[PrincipalPermission(
SecurityAction.Demand,
Role="Manager”)]

Yes
IPrincipal.IsInRole

Yes

Yes
(using custom IPrincipal implementation)

Yes

When using WindowsPrincipals,
roles ARE Windows groups — no extra
level of abstraction

No

Chapter 9: Enterprise Services Security 223

Authentication

Because Enterprise Services rely on the underlying infrastructure provided by
COM+ and DCOM/RPC, the authentication level settings available to Enterprise
Services applications are those defined by RPC (and used by DCOM).

Table 9.2: Enterprise Services applications authentication settings

Authentication Level Description

Default Choose authentication level using normal negotiation rules

None No authentication

Connect Only authenticate credentials when the client initially connects to the
server

Call Authenticate at the start of each remote procedure call

Packet Authenticate all data received from the client

Packet Integrity Authenticate all data and verify that none of the transferred data has

been modified

Packet Privacy Authenticate all data and encrypt parameter state for each remote
procedure call

Authentication Level Promotion

You should be aware that certain authentication levels are silently promoted. For
example:

® If the User Data Protocol (UDP) datagram transport is used, Connect and Call
levels are promoted to Packet, because the aforementioned authentication levels
only make sense over a connection oriented transport such as TCP.

Note: Windows 2000 defaults to RPC over TCP for DCOM communications.

® For inter-process calls on a single computer, all authentication levels are always
promoted to Packet Privacy. However, in a single computer scenario, data is not
encrypted for confidentiality (because the data doesn’t cross the network).

Authentication Level Negotiation

The authentication level used by Enterprise Services to authenticate a client is
determined by two settings:
® The process level authentication level. For a server-activated application

(running within Dllhost.exe), the authentication level is configured within the
COM+ catalog.

224 Building Secure ASP.NET Applications

® The client authentication level. The configured authentication level of the client
process that communicates with the serviced component also affects the authen-
tication level that is used.

The default authentication level for an ASP.NET Web application is defined by
the comAuthenticationLevel attribute on the <processModel> element in
Machine.config.

The higher of the two (client and server) authentication level is always chosen. This
is illustrated in the Figure 9.4.

Server Process 1 (Packet)
Client Process 1 (Privacy)

r—> Privacy

Privacy
—p» Packet
Client Process 2 (None)
Packet Server Process 2 (None)
r—> None
None

Figure 9.4

Authentication level negotiation

More Information

For information about how to configure authentication levels for an Enterprise
Service application, see “Configuring Security” earlier in this chapter.

Impersonation

The impersonation level defined for an Enterprise Services application determines
the impersonation level to be used for all outgoing DCOM calls made by serviced
components within the application.

Important: It does NOT determine whether or the not serviced components within the applica-
tion impersonate their callers. By default, serviced components do not impersonate callers. To
do so, the service component must call ColmpersonateClient, as described in “Flowing the
Original Caller” earlier in this chapter.

Chapter 9: Enterprise Services Security 225

Impersonation is a client-side setting. It offers a degree of protection to the client as
it allows the client to restrict the impersonation capabilities of the server.

Table 9.3: Available impersonation levels

Impersonation Level Description

Identify Allows the server to identify the client and perform access checks
using the client’s access token

Impersonate Allows the server to access local resources using the client’s
credentials

Delegate Allows the server to access remote resources using the client’s

credentials (this requires Kerberos and specific account configuration)

The default impersonation level used by a Web-based application when it commu-
nicates with serviced components (or any component using DCOM) is determined
by the comImpersonationLevel attribute on the <processModel> element in
Machine.config.

Cloaking

Cloaking determines precisely how client identity is projected through a COM
object proxy to a server during impersonation. There are two forms of cloaking;:

® Dynamic Cloaking. Enterprise Services server applications use dynamic cloak-
ing (this is not configurable). Cloaking for library applications is determined by
the host process, for example the ASP.NET worker process (Aspnet_wp.exe).
Web-based applications also use dynamic cloaking—again this is not
configurable.

Dynamic cloaking causes the thread impersonation token to be used to represent
the client’s identity during impersonation. This means that if you call
CoImpersonateClient within a serviced component, the client’s identity is
assumed for subsequent outgoing calls made by the same method, until either
CoRevertToSelf is called or the method ends (where CoRevertToSelf is implic-
itly called).

e Static Cloaking. With static cloaking, the server sees the credentials that are used
on the first call from client to server (irrespective of whether or not a thread is
impersonating during an outgoing call).

More Information

® For information about how to configure impersonation levels for Enterprise
Service applications, see “Configuring Security”, earlier in this chapter.

® For more information about cloaking, see the Platform SDK information on
“Cloaking” on MSDN.

226 Building Secure ASP.NET Applications

Summary

This chapter has described how to build secure serviced components within an
Enterprise Services application. You have also seen how to configure an ASPNET
Web-based client application that calls serviced components. To summarize:

Use server activated Enterprise Services applications for increased security.
Additional process hops raise security.

Use least-privileged, local accounts to run server applications.

Use Packet Privacy level authentication (which must be configured at the server
and client) if you need to secure the data sent to and from a serviced component
across a network from a client application.

Enable component-level access checks for a meaningful role-based security
implementation.

Use Windows authentication and enable impersonation in an ASP.NET Web
application prior to calling a component within an Enterprise Services applica-
tion that relies on role-based security.

Use secured gateway classes as entry points into Enterprise Service applications.

By reducing the number of gateway classes that provide entry points for clients
into your Enterprise Service applications, you reduce the number of classes that
need to have roles assigned. Other internal helper classes should have role-based
checks enabled but should have no roles assigned to them. This means that
external clients will not be able to call them directly, while gateway classes in the
same application will have direct access.

Call IsSecurityEnabled immediately prior to checking role membership pro-
grammatically.

Avoid impersonation in the middle tier because this prevents the effective use of
database connection pooling and dramatically reduces the scalability of your
application.

Add Windows groups to Enterprise Services (COM+) roles for increased flexibil-
ity and easier administration

Web Services Security

This chapter describes how to develop and apply authentication, authorization, and
secure communication techniques to secure ASP.NET Web services and Web service
messages. It describes security from the Web service perspective and shows you
how to authenticate and authorize callers and how to flow security context through
a Web service. It also explains, from a client-side perspective, how to call Web
services with credentials and certificates to support server-side authentication.

Web Service Security Model

Web service security can be applied at three levels:

® Platform/transport level (point-to-point) security
® Application level (custom) security

® Message level (end-to-end) security

Each approach has different strengths and weaknesses, and these are elaborated
upon below. The choice of approach is largely dependent upon the characteristics of
the architecture and platforms involved in the message exchange.

Note: Note that this chapter focuses on platform and application level security. Message

level security is addressed by the Global XML Web Services Architecture (GXA) initiative and
specifically the WS-Security specification. At the time of writing, Microsoft has just released

a technology preview version of the Web Services Development Kit. This allows you to develop
message level security solutions that conform to the WS-Security specification. For more
information, see http://msdn.microsoft.com/webservices/building/wsdk/.

228 Building Secure ASP.NET Applications

Platform/Transport Level (Point-to-Point) Security

The transport channel between two endpoints (Web service client and Web service)
can be used to provide point-to-point security. This is illustrated in Figure 10.1.

Platform Level Security

1
1
i :
Client C Platform and Transport : Service
1 rovides securit ;
L S | Yoo A
: :
- 1
L 1
L 1
. 1
1

Caller authentication
Message Integrity
Message Confidentiality

XML XML

Secure Transport
Transport Transport

Figure 10.1

Platform/transport level security

When you use platform security, which assumes a tightly-coupled Microsoft®
Windows® operating system environment, for example, on corporate intranets:

® The Web server (IIS) provides Basic, Digest, Integrated, and Certificate authenti-
cation.

® The ASP.NET Web service inherits some of the ASP.NET authentication and
authorization features.

® SSL and/or IPSec may be used to provide message integrity and confidentiality.

When to Use

The transport level security model is simple, well understood, and adequate for
many (primarily intranet-based) scenarios, in which the transport mechanisms and
endpoint configuration can be tightly controlled.

The main issues with transport level security are:

® Security becomes tightly coupled to, and dependant upon, the underlying
platform, transport mechanism, and security service provider (NTLM, Kerberos,
and so on).

® Security is applied on a point to point basis, with no provision for multiple hops
and routing through intermediate application nodes.

Chapter 10: Web Services Security 229

Application Level Security

With this approach, the application takes over security and uses custom security
features. For example:

® An application can use a custom SOAP header to pass user credentials to authen-
ticate the user with each Web service request. A common approach is to pass a
ticket (or user name or license) in the SOAP header.

® The application has the flexibility to generate its own IPrincipal object that
contains roles. This might be a custom class or the GenericPrincipal class
provided by the .NET Framework.

® The application can selectively encrypt what it needs to, although this requires
secure key storage and developers must have knowledge of the relevant cryptog-
raphy APlIs.

An alternative technique is to use SSL to provide confidentiality and integrity
and combine it with custom SOAP headers to perform authentication.

When to Use

Use this approach when:

® You want to take advantage of an existing database schema of users and roles
that is used within an existing application.

® You want to encrypt parts of a message, rather than the entire data stream.

Message Level (End-to-End) Security

This represents the most flexible and powerful approach and is the one used by the
GXA initiative, specifically within the WS-Security specification. Message level
security is illustrated in Figure 10.2.

Message Level Security

XML messages convey
security information

Credentials Service

: :
! 1
! 1
0 1
1
1 Digital signaures -
1
v Messages can be i
1
: :
1
i i
! 1
! 1
! 1
1

XML XML

encrypted

Any Transport

Transport Transport

Security is independent
from transport protocol

Figure 10.2
Message level security

230 Building Secure ASP.NET Applications

WS-Security specifications describe enhancements to SOAP messaging that provide
message integrity, message confidentiality, and single message authentication.

® Authentication is provided by security tokens, which flow in SOAP headers. No
specific type of token is required by WS-Security. The security tokens may
include Kerberos tickets, X.509 certificates, or a custom binary token.

® Secure communication is provided by digital signatures to ensure message
integrity and XML encryption for message confidentiality.

When to Use

WS-Security can be used to construct a framework for exchanging secure messages
in a heterogeneous Web services environment. It is ideally suited to heterogeneous
environments and scenarios where you are not in direct control of the configuration
of both endpoints and intermediate application nodes.

Message level security:
® Can be independent from the underlying transport.
® Enables a heterogeneous security architecture.

® Provides end-to-end security and accommodates message routing through
intermediate application nodes.

Supports multiple encryption technologies.
Supports non-repudiation.

The Web Services Development Kit

The Web Services Development Kit provides the necessary APIs to manage security
in addition to other services such as routing and message-level referrals. This
toolkit conforms to the latest Web service standards such as WS-Security and as

a result enables interoperability with other vendors who follow the same
specifications.

More Information

® For the latest news about the Web Services Development Kit and WS-Security
specifications, see the XML Developer Center page on MSDN at http://
msdn.microsoft.com/webservices/.

® For more information about the WS-Specification, see the WS-Security Specifica-
tion Index Page at http://msdn.microsoft.com/webservices/default.asp? pull=/library
/Jen-us/dnglobspec/html/wssecurspecindex.asp.

® For more information about GXA, see the article “Understanding GXA” on
MSDN.

e For discussions on this topic, refer to the GXA Interoperability Newsgroup on
MSDN.

Chapter 10: Web Services Security 231

Platform/Transport Security Architecture

The ASP.NET Web services platform security architecture is shown in Figure 10.3.

Authentication Web Server
SOAP Header s
(optional @ (inetinfo.exe) @
credentials)
SOAP Body L L
Authentication Authorization
—F’ Anonymous NTFS Permissions
Basic IP Address
@ Digest — Restrictions
Integrated
Certificate @

i IUSR_MACHINE
access token)

ASP.NET Web Service
(aspnet_wp.exe)
L . Locator
Autht_antlcanon Au'Fhorlzatlon Remote
Windows File AuthZ . »
None URL AuthZ Identity | Resource
(Custom) —® NET Roles

@

ASP.NET Process
Original Caller
Fixed Service |dentity

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I Authenticated caller’s ;
’ access token (or -
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 10.3

Web services security architecture

Figure 10.3 illustrates the authentication and authorization mechanisms provided
by ASPNET Web services. When a client calls a Web service, the following sequence
of authentication and authorization events occurs:

1. The SOAP request is received from the network. This may or may not contain
authentication credentials depending upon the type of authentication being
used.

2. IIS optionally authenticates the caller by using Basic, Digest, Integrated (NTLM
or Kerberos), or Certificate authentication. In heterogeneous environments where
IIS (Windows) authentication is not possible, IIS is configured for anonymous
authentication. In this scenario, the client may be authenticated by using mes-
sage level attributes such as tickets passed in the SOAP header.

3. IIS can also be configured to accept requests only from client computers with
specific IP addresses.

232 Building Secure ASP.NET Applications

4. IIS passes the authenticated caller’s Windows access token to ASP.NET (this may
be the anonymous Internet user’s access token, if the Web service is configured
for anonymous authentication).

5. ASP.NET authenticates the caller. If ASPNET is configured for Windows authen-
tication, no additional authentication occurs at this point; IIS authenticates the
caller.

If a non-Windows authentication method is being used, the ASPNET authentica-
tion mode is set to None to allow custom authentication.

Note: Forms and Passport authentication are not currently supported for Web services.

6. ASP.NET authorizes access to the requested Web service (.asmx file) by using
URL authorization and File authorization, which uses NTFS permissions associ-
ated with the .asmx file to determine whether or not access should be granted to
the authenticated caller.

Note: File authorization is only supported for Windows authentication.

For fine-grained authorization, .NET roles can also be used (either declaratively
or programmatically) to ensure that the caller is authorized to access the re-
quested Web method.

7. Code within the Web service may access local and/or remote resources by using
a particular identity. By default, ASPNET Web services perform no imperson-
ation and, as a result, the configured ASP.NET process account provides the
identity. Alternate options include the original caller’s identity, or a configured
service identity.

Gatekeepers

The gatekeepers within an ASPNET Web service are:
e IIS

e [f [IS anonymous authentication is disabled IIS only allows requests from
authenticated users.

® IP Address Restrictions

IIS can be configured to only allow requests from computers with specific IP
addresses.

e ASPNET
® The File authorization HTTP Module (for Windows authentication only)
® The URL authorization HTTP Module

® Principal Permission Demands and Explicit Role Checks

Chapter 10: Web Services Security 233

More Information

® For more information about the gatekeepers, see “Gatekeepers” in Chapter 8,
“ASP.NET Security.”

® For more information about configuring security, see “Configuring Security”
later in this chapter.

Authentication and Authorization Strategies

This section explains which authorization options (configurable and programmatic)
are available for a set of commonly used authentication schemes.

The following authentication schemes are summarized here:

® Windows authentication with impersonation

® Windows authentication without impersonation

® Windows authentication using a fixed identity

Windows Authentication with Impersonation

The following configuration elements show you how to enable Windows (IIS)
authentication and impersonation declaratively in Web.config or Machine.config.

Note: You should configure authentication on a per-Web service basis in each Web service’s
Web.config file.

<authentication mode="Windows" />
<identity impersonate="true" />

With this configuration, your Web service code impersonates the IIS-authenticated
caller. To impersonate the original caller, you must turn off anonymous access in IIS.
With anonymous access, the Web service code impersonates the anonymous Inter-
net user account (which by default is IUSR_MACHINE).

Configurable Security

When you use Windows authentication together with impersonation, the following
authorization options are available to you:

® Windows Access Control Lists (ACLs)

® Web service (.asmx) file. File authorization performs access checks for re-
quested ASP.NET resources (which includes the .asmx Web service file) using
the original caller’s security context. The original caller must be granted at
least read access to the .asmx file.

234 Building Secure ASP.NET Applications

® Resources accessed by your Web service. Windows ACLs on resources
accessed by your Web service (files, folders, registry keys, Active Directory®
directory service objects and so on) must include an Access Control Entry
(ACE) that grants read access to the original caller (because the Web service
thread used for resource access is impersonating the caller).

e URL Authorization. This is configured in Machine.config and/or Web.config.
With Windows authentication, user names take the form
DomainName\UserName and roles map one-to-one with Windows groups.

<authorization>
<deny user="DomainName\UserName" />
<allow roles="DomainName\WindowsGroup" />
</authorization>

Programmatic Security

Programmatic security refers to security checks located within your Web service
code. The following programmatic security options are available when you use
Windows authentication and impersonation:

® Principal Permission Demands
® Imperative (in-line within a method’s code)

PrincipalPermission permCheck = new PrincipalPermission(
null, @"DomainName\WindowsGroup");
permCheck.Demand() ;

® Declarative (these attributes can precede Web methods or Web classes)

// Demand that the caller is a member of a specific role (for Windows

// authentication this is the same as a Windows group)

[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\WindowsGroup")]

// Demand that the caller is a specific user

[PrincipalPermission(SecurityAction.Demand,
Name=@"DomainName\UserName")]

® Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup™);

Chapter 10: Web Services Security 235

When to Use

Use Windows authentication and impersonation when:

® The clients of the Web service can be identified by using Windows accounts,
which can be authenticated by the server.

® You need to flow the original caller’s security context through the Web service
and onto the next tier. For example, a set of serviced components that use Enter-
prise Services (COM+) roles, or onto a data tier that requires fine-grained (per-
user) authorization.

® You need to flow the original caller’s security context to the downstream tiers to
support operating system level auditing.

Important: Using impersonation can reduce scalability, because it impacts database connec-
tion pooling. As an alternative approach, consider using the trusted subsystem model where
the Web service authorizes callers and then uses a fixed identity for database access. You can
flow the caller’s identity at the application level; for example, by using stored procedure
parameters.

More Information

® For more information about Windows authentication and impersonation, see
Chapter 8, “ASP.NET Security.”

® For more information about URL authorization, see “URL Authorization Notes”
in Chapter 8, “ASP.NET Security.”

Windows Authentication without Impersonation

The following configuration elements show how you enable Windows (IIS) authen-
tication with no impersonation declaratively in Web.config.

<authentication mode="Windows" />
<!-- The following setting is equivalent to having no identity element -->
<identity impersonate="false" />

Configurable Security
When you use Windows authentication without impersonation, the following
authorization options are available to you:
e Windows ACLs
® Web Service (.asmx) file. File authorization performs access checks for

requested ASP.NET resources (which includes the .asmx Web service file)
using the original caller. Impersonation is not required.

236 Building Secure ASP.NET Applications

® Resources accessed by your application. Windows ACLs on resources ac-
cessed by your application (files, folders, registry keys, Active Directory
objects) must include an ACE that grants read access to the ASP.NET process
identity (the default identity used by the Web service thread when accessing
resources).

® URL Authorization

This is configured in Machine.config and Web.config. With Windows authentica-
tion, user names take the form DomainName\ UserName and roles map one-to-
one with Windows groups.

<authorization>
<deny user="DomainName\UserName" />
<allow roles="DomainName\WindowsGroup" />
</authorization>

Programmatic Security

Programmatic security refers to security checks located within your Web service
code. The following programmatic security options are available when you use
Windows authentication without impersonation:

® Principal Permission Demands
® Imperative

PrincipalPermission permCheck = new PrincipalPermission(
null, @"DomainName\WindowsGroup");
permCheck.Demand() ;

® Declarative

// Demand that the caller is a member of a specific role (for Windows
// authentication this is the same as a Windows group)
[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\WindowsGroup")]
// Demand that the caller 1is a specific user
[PrincipalPermission(SecurityAction.Demand,
Name=@"DomainName\UserName")]

® Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup™);

Chapter 10: Web Services Security 237

When to Use

Use Windows authentication without impersonation when:

® The clients of the Web service can be identified by using Windows accounts,
which can be authenticated by the server.

® You want to use the trusted subsystem model and authorize clients within the
Web service and then use a fixed identity to access downstream resources (for
example, databases) in order to support connection pooling.

More Information

® For more information about Windows authentication and impersonation, see
Chapter 8, “ASP.NET Security.”

® For more information about URL authorization, see “URL Authorization Notes”
in Chapter 8, “ASP.NET Security.”

Windows Authentication Using a Fixed Identity

The <identity> element within Web.config supports optional user name and pass-
word attributes which allows you to configure a specific fixed identity for your Web
service to impersonate. This is shown in the following configuration file fragment.

<identity impersonate="true" userName="DomainName\UserName"
password="ClearTextPassword" />

When to Use

This approach is not recommended in secure environments for two reasons:

® User names and passwords should not be stored in plain text in configuration
files.

® On Windows 2000, this approach forces you to grant the ASP.NET process
account the “Act as part of the operating system” privilege. This reduces the
security of your Web service and increases the threat should an attacker compro-
mise the Web service process (Aspnet_wp.exe)

More Information

® For more information about Windows authentication and impersonation, see
Chapter 8, “ASP.NET Security.”

® For more information about URL authorization, see “URL Authorization Notes”
in Chapter 8, “ASP.NET Security.”

238 Building Secure ASP.NET Applications

Configuring Security

This section shows you the practical steps required to configure security for an
ASP.NET Web service. These are summarized in Figure 10.4.

Authentication

Web Server
SOAP Header s
(optional @ (inetinfo.exe) @
credentials)
SOAP Body . .
Authentication Authorization
Anonymous NTFS Permissions
Basic IP Address
@ Digest — - Restrictions
Integrated
Certificate @

* IUSR_MACHINE

i access token)
ASP.NET Web Service
(aspnet_wp.exe)

_ _ Locator
Authentication Authorization
Windows File AuthZ _>| — RF;‘Z’:S:;
None URL AuthZ entity
(Custom) > .NET Roles @
@ @ ASP.NET Process

Original Caller
Fixed Service Identity

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I Authenticated caller's |
’ access token (or -
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 10.4
Configuring ASPNET Web service security

Configure IS Settings

For detailed information about how to configure IIS security settings, see “Config-
uring Security” in Chapter 8, “ASP.NET Security,” because the information is also
applicable to ASPNET Web services.

Chapter 10: Web Services Security 239

Configure ASP .NET Settings

Application level configuration settings are maintained in Web.config files, which
are located in your Web service’s virtual root directory. Configure the following
settings:

1. Configure Authentication. This should be set on a per-Web service basis (not in

Machine.config) in the Web.config file located in the Web service’s virtual root
directory.

<authentication mode="Windows|None" />

Note: Web services do not currently support Passport or Forms authentication. For custom
and message-level authentication, set the mode to None.

2. Configure Impersonation and Authorization. For detailed information, see
“Configuring Security” in Chapter 8, “ASP.NET Security.”

More Information

For more information about URL authorization, see “URL Authorization Notes” in
Chapter 8, “ASP.NET Security.”

Secure Resources

You should use the same techniques to secure Web resources as presented in Chap-
ter 8, “ASP.NET Security.” In addition, however, for Web services consider remov-

ing the HTTP-GET and HTTP-POST protocol from Machine.config on production
servers.

Disable HTTP-GET, HTTP-POST

By default, clients can communicate with ASPNET Web services, using three
protocols: HTTP-GET, HTTP-POST, and SOAP over HTTP. You should disable
support for both the HTTP-GET and HTTP-POST protocols at the machine level on
production machines that do not require them. This is to avoid a potential security
breach that could allow a malicious Web page to access an internal Web service
running behind a firewall.

Note: Disabling these protocols means that a new client will not be able to test an XML Web
service using the Invoke button on the Web service test page. Instead, you must create a test
client program by adding a reference to the Web service using Microsoft Visual Studio® .NET
development system. You may want to leave these protocols enabled on development comput-
ers to allow developers to use the test page.

240 Building Secure ASP.NET Applications

» To disable the HTTP-GET and HTTP-POST protocols for an entire computer
1. Edit Machine.config.

2. Comment out the lines within the <webServices> element that add support for
HTTP-GET and HTTP-POST. After doing so, Machine.config should appear as
follows.

<webServices>
<protocols>
<add name="HttpSoap"/>
<!-- <add name="HttpPost"/> -->
<!-- <add name="HttpGet"/> -->
<add name="Documentation"/>
</protocols>
</webServices>

3. Save Machine.config.

Note: For special cases where you have Web service clients that communicate with a Web
service using either HTTP-GET or HTTP-POST, you can add support for those protocols in the
application’s Web.config file, by creating a <webServices> and adding support for these
protocols with the <protocol> and <add> elements, as shown earlier.

More Information

For detailed Information about securing resources, see “Secure Resources” within
Chapter 8, “ASP.NET Security.”

Secure Communication

Use a combination of SSL and IPSec to secure communication links.

More information

® For information about calling a Web service using SSL, see “How To: Call a Web
Service Using SSL” in the Reference section of this guide.

® For information about using IPSec between two computers, see “How To: Use
IPSec to Provide Secure Communication between Two Servers” in the Reference
section of this guide.

Passing Credentials for Authentication to Web Services

When you call a Web service, you do so by using a Web service proxy; a local
object that exposes the same set of methods as the target Web service.

Chapter 10: Web Services Security 241

You can generate a Web service proxy by using the Wsdl.exe command line utility.
Alternatively, if you are using Visual Studio .NET you can generate the proxy by
adding a Web reference to the project.

Note: If the Web service for which you want to generate a proxy is configured to require client
certificates, you must temporarily switch off that requirement while you add the reference, or

an error occurs. After you add the reference, you must remember to reconfigure the service to
require certificates.

An alternate approach would be to keep an offline Web Services Description Language (WSDL)
file available to consumer applications. You must remember to update this if your Web service
interface changes.

Specifying Client Credentials for Windows Authentication

If you are using Windows authentication , you must specify the credentials to be
used for authentication using the Credentials property of the Web service proxy. If
you do not explicitly set this property, the Web service is called without any creden-
tials. If Windows authentication is required, this will result in an HTTP status 401,
access denied response.

Using DefaultCredentials

Client credentials do not flow implicitly. The Web service consumer must set the
credentials and authentication details on the proxy. To flow the security context of
the client’s Windows security context (either from an impersonating thread token or
process token) to a Web service you can set the Credentials property of the Web
service proxy to CredentialCache.DefaultCredentials as shown below.

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

Consider the following points before you use this approach:

® This flows the client credentials only when you use NTLM, Kerberos, or Negoti-
ate authentication.

® If a client-side application (for example, a Windows Forms application) calls the
Web service, the credentials are obtained from the user’s interactive logon
session.

® Server-side applications, such as ASP.NET Web applications, use the process
identity, unless impersonation is configured in which case the impersonated
caller’s identity is used.

242 Building Secure ASP.NET Applications

Using Specific Credentials

To use a specific set of credentials for authentication when you call a Web service,
use the following code.

CredentialCache cache = new CredentialCache();
cache.Add(new Uri(proxy.Url), // Web service URL

"Negotiate", // Kerberos or NTLM

new NetworkCredential("username", "password", "domainname"));
proxy.Credentials = cache;

In the above example, the requested Negotiate authentication type results in either
Kerberos or NTLM authentication.

Always Request a Specific Authentication Type

You should always request a specific authentication type as illustrated above. Avoid
direct use of the NetworkCredential class as shown in the following code.

proxy.Credentials = new
NetworkCredential ("username", "password", "domainname");

This should be avoided in production code because you have no control over the
authentication mechanism used by the Web service and as a result you have no
control over how the credentials are used.

For example, you may expect a Kerberos or NTLM authentication challenge from
the server but instead you may receive a Basic challenge. In this case, the supplied
user name and password will be sent to the server in clear text form.

Set the PreAuthenticate Property

The proxy’s PreAuthenticate property can be set to true or false. Set it to true to
supply specific authentication credentials to cause a WWW-authenticate HTTP
header to be passed with the Web request. This saves the Web server denying access
on the request, and performing authentication on the subsequent retry request.

Note: Pre-authentication only applies after the Web service successfully authenticates the first
time. Pre-authentication has no impact on the first Web request.

private void ConfigureProxy(WebClientProtocol proxy,
string domain, string username,
string password)

// To improve performance, force pre-authentication
proxy.PreAuthenticate = true;

// Set the credentials

CredentialCache cache = new CredentialCache();

Chapter 10: Web Services Security 243

cache.Add(new Uri(proxy.Url),

"Negotiate",

new NetworkCredential(username, password, domain));
proxy.Credentials = cache;
proxy.ConnectionGroupName = username;

3

Using the ConnectionGroupName Property

Notice that the above code sets the ConnectionGroupName property of the Web
service proxy. This is only required if the security context used to connect to the
Web service varies from one request to the next as described below.

If you have an ASP.NET Web application that connects to a Web service and flows
the security context of the original caller (by using DefaultCredentials or by setting
explicit credentials, as shown above), you should set the ConnectionGroupName
property of the Web service proxy within the Web application. This is to prevent a
new, unauthenticated client from reusing an old, authenticated TCP connection to
the Web service that is associated with a previous client’s authentication credentials.
Connection reuse can occur as a result of HTTP KeepAlives and authentication
persistence which is enabled for performance reasons within IIS.

Set the ConnectionGroupName property to an identifier (such as the caller’s user
name) that distinguishes one caller from the next as shown in the previous code
fragment.

Note: If the original caller’s security context does not flow through the Web application and
onto the Web service, and instead the Web application connects to the Web service using a
fixed identity (such as the Web application’s ASPNET process identity), you do not need to set
the ConnectionGroupName property. In this scenario, the connection security context remains
constant from one caller to the next.

Calling Web Services from Non-Windows Clients

There are a number of authentication approaches that work for cross-browser
scenarios. These include:

® Certificate Authentication. Using cross platform X.509 certificates.

® Basic Authentication. For an example of how to use Basic authentication against
a custom data store (without requiring Active Directory), see http://
www.rassoc.com/gregr/weblog/stories/2002/06/26/
webServicesSecurityHttpBasicAuthenticationWithoutActiveDirectory.html.

® GXA Message Level Approaches. Use the Web Services Development Toolkit to
implement GXA (WS-Security) solutions.

® Custom Approaches. For example, flow credentials in SOAP headers.

244 Building Secure ASP.NET Applications

Proxy Server Authentication

Proxy server authentication is not supported by the Visual Studio .NET Add Web
Reference dialog box (although it will be supported with the next version of Visual
Studio .NET). As a result you might receive an HTTP status 407: “Proxy Authentica-
tion Required” response when you attempt to add a Web reference.

Note: You may not see this error when you view the .asmx file from a browser, because the
browser automatically sends credentials.

To work around this issue, you can use the Wsdl.exe command line utility (instead
of the Add Web Reference dialog) as shown below.

wsdl.exe /proxy:http://<YourProxy> /pu:<YourName> /pp:<YourPassword> /
pd:<YourDomain> http://www.YouWebServer.com/YourWebService/YourService.asmx

If you need to programmatically set the proxy server authentication information,
use the following code.

YourWebServiceProxy.Proxy.Credentials = CredentialsCache.DefaultCredentials;

Flowing the Original Caller

This section describes how you can flow the original caller’s security context
through an ASPNET Web application and onto a Web service located on a remote
application server. You may need to do this in order to support per-user authoriza-
tion within the Web service or within subsequent downstream subsystems (for
example, databases, where you want to authorize original callers to individual
database objects).

In Figure 10.5, the security context of the original caller (Alice) flows through the
front-end Web server that hosts an ASP.NET Web application, onto the remote
object, hosted by ASP.NET on a remote application server and finally through to a
backend database server.

Web Server Application Server Database Server

ASP.NET Alice ASP.NET
IS (Web > IS [l (Web

Application) Service)

Alice Alice

Figure 10.5

Flowing the original caller’s security context

Chapter 10: Web Services Security 245

In order to flow credentials to a Web service, the Web service client (the ASP.NET
Web application in this scenario) must configure the Web service proxy and explic-
itly set the proxy’s Credentials property, as described in “Passing Credentials for
Authentication to Web Services” earlier in this chapter.

There are two ways to flow the caller’s context.

® Pass default credentials and use Kerberos authentication (and delegation).
This approach requires that you impersonate within the ASPNET Web applica-
tion and configure the remote object proxy with DefaultCredentials obtained
from the impersonated caller’s security context.

® Pass explicit credentials and use Basic or Forms authentication. This approach
does not require impersonation within the ASP.NET Web application. Instead,
you programmatically configure the Web service proxy with explicit credentials
obtained from either server variables (with Basic authentication) or HTML form
fields (with Forms authentication) that are available to the Web application. With
Basic or Forms authentication, the user name and password are available to the
server in clear text.

Default Credentials with Kerberos Delegation

To use Kerberos delegation, all computers (servers and clients) must be running
Windows 2000 or later. Additionally, client accounts that are to be delegated must
be stored in Active Directory and must not be marked as “Sensitive and cannot be
delegated.”

The following tables show the configuration steps required on the Web server, and
application server.

Configuring the Web Server

Configure IS
Step More Information
Disable Anonymous access

for your Web application’s
virtual root directory

Enable Windows Integrated Kerberos authentication will be negotiated assuming clients and
Authentication for the Web server are running Windows 2000 or later.
application’s virtual root Note: If you are using Internet Explorer 6 on Windows 2000, it

defaults to NTLM authentication instead of the required Kerberos
authentication. To enable Kerberos delegation, see article
Q299838, “Unable to Negotiate Kerberos Authentication after
upgrading to Internet Explorer 6,” in the Microsoft Knowledge
Base.

246 Building Secure ASP.NET Applications

Configure ASP .NET
Step
Configure your ASRNET Web

application to use Windows
authentication

Configure your ASRNET Web
application for impersonation

More Information

Edit Web.config in your Web application’s virtual directory
Set the <authentication> element to:

<authentication mode="Windows" />

Edit Web.config in your Web application’s virtual directory
Set the <identity> element to:

<identity impersonate="true" />

Configure the Web Service Proxy

Step

Set the credentials property
of the Web service proxy to
DefaultCredentials.

More Information

See “Using DefaultCredentials” earlier in this chapter for a code
sample.

Configuring the Remote Application Server

Configure IIS
Step

Disable Anonymous access
for your Web service’s virtual
root directory

Enable Windows Integrated
Authentication for the Web
application’s virtual root

More Information

Configure ASP.NET (Web Service Host)

Step

Configure ASPNET to use
Windows authentication

More Information

Edit Web.config in the Web service’s virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

Chapter 10: Web Services Security 247

Configure ASP.NET (Web Service Host)

Step More Information
Configure ASENET for Edit Web.config in the Web service’s virtual directory.
impersonation Set the <identity> element to:

<identity impersonate="true" />

Note: This step is only required if you want to flow the original
caller’s security context through the Web service and onto the
next downstream, subsystem (for example, a database). With
impersonation enabled here, resource access (local and remote)
uses the impersonated original caller’s security context.

If your requirement is simply to allow per-user authorization
checks in the Web service, you do not need to impersonate here.

More Information

For more information about configuring Kerberos delegation, see “How To: Imple-
ment Kerberos Delegation for Windows 2000” in the Reference section of this guide.

Explicit Credentials with Basic or Forms Authentication

As an alternative to Kerberos delegation, you can use Basic or Forms authentication
at the Web application to capture the client’s credentials and then use Basic (or
Integrated Windows) authentication to the Web service.

With this approach, the client’s clear text credentials are available to the Web appli-
cation. These can be passed to the Web service through the Web service proxy. For
this, you must write code in the Web application to retrieve the client’s credentials
and configure the proxy.

Basic Authentication

With Basic authentication, the original caller’s credentials are available to the Web
application in server variables. The following code shows how to retrieve them and
configure the Web service proxy.

// Retrieve client's credentials (available with Basic authentication)
string pwd = Request.ServerVariables["AUTH_PASSWORD"];
string uid = Request.ServerVariables["AUTH_USER"];
// Associate the credentials with the Web service proxy
// To improve performance, force preauthentication
proxy.PreAuthenticate = true;
// Set the credentials
CredentialCache cache = new CredentialCache();
cache.Add(new Uri(proxy.Url),

"Basic",

new NetworkCredential(uid, pwd, domain));
proxy.Credentials = cache;

248 Building Secure ASP.NET Applications

Forms Authentication

With Forms authentication, the original caller’s credentials are available to the Web
application in form fields (rather than server variables). In this case, use the follow-
ing code.

// Retrieve client's credentials from the logon form
string pwd = txtPassword.Text;
string uid = txtUid.Text;
// Associate the credentials with the Web service proxy
// To improve performance, force preauthentication
proxy.PreAuthenticate = true;
// Set the credentials
CredentialCache cache = new CredentialCache();
cache.Add(new Uri(proxy.Url),

"Basic",

new NetworkCredential(uid, pwd, domain));
proxy.Credentials = cache;

The following tables show the configuration steps required on the Web server, and
application server.

Configuring the Web Server

Configure IIS

Step More Information

To use Basic authentication, Both Basic and Forms authentication should be used in

disable Anonymous access conjunction with SSL to protect the clear text credentials sent
for your Web application’s over the network. If you use Basic authentication, SSL should be
virtual root directory and used for all pages (not just the initial logon page), as Basic
select Basic authentication credentials are transmitted with every request.

- Or -

To use Forms authentication, | Similarly, SSL should be used for all pages if you use Forms

enable anonymous access authentication, to protect the clear text credentials on the initial
log on and to protect the authentication ticket passed on
subsequent requests.

Configure ASP.NET
Step

If you use Basic authenti-
cation, configure your
ASRENET Web application to
use Windows authentication

-0r -

If you use Forms authenti-
cation, configure your
ASRENET Web application to
use Forms authentication

Disable impersonation within
the ASENET Web application

Chapter 10: Web Services Security 249

More Information

Edit Web.config in your Web application’s virtual directory
Set the <authentication> element to:

<authentication mode="Windows" />

-0r -

Edit Web.config in your Web application’s virtual directory
Set the <authentication> element to:

<authentication mode="Forms" />
Edit Web.config in your Web application’s virtual directory.
Set the <identity> element to:

<identity impersonate="false" />

Note: This is equivalent to having no <identity> element.
Impersonation is not required, as the user’s credentials will be
passed explicitly to the Web service through the proxy.

Configure the Web Service Proxy

Step

Write code to capture and
explicitly set the credentials
on the Web Service proxy

More Information

Refer to the code fragments shown earlier in the Basic
Authentication and Forms Authentication sections.

Configuring the Application Server

Configure IS
Step

Disable Anonymous access
for your application’s virtual
root directory

Enable Basic authentication

More Information

Note: Basic authentication at the (Web service) application
server, allows the Web service to flow the original caller’s
security context to the database (as the caller’s user name and
password are available in clear text and can be used to respond
to network authentication challenges from the database