
Building Secure ASP.NET Applications
Authentication, Authorization, and Secure Communication

Web Server

Database Server

IIS

SQL Server

Clients

ASP.NET

IIS
ASP.NET

A
ut

he
nt

ic
at

io
n,

 A
ut

ho
riz

at
io

n 
an

d 
S

ec
ur

e 
C

om
m

un
ic

at
io

n

Enterprise 
Services
(COM+)Web 

Services

IIS
ASP.NET

.NET 
Remoting



Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user.  Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft, MS-DOS, Windows, Active Directory, C#, Visual Basic, Visual Studio, and
Win32 are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

© 2002 Microsoft Corporation.  All rights reserved.

Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.



Contents

About This Book xxi
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Applies To . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
What This Guide is About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Who Should Read This Guide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
What You Must Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
Feedback and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
The Team That Brought You This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Contributors and Reviewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

At a Glance xxvii
Chapter 1 – Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Chapter 2 – Security Model for ASP.NET Applications . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Chapter 3 – Authentication and Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Chapter 4 – Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix
Chapter 5 – Intranet Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx
Chapter 6 – Extranet Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii
Chapter 7 – Internet Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii
Chapter 8 – ASP.NET Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv
Chapter 9 – Enterprise Services Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv
Chapter 10 – Web Services Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxvii
Chapter 11 – .NET Remoting Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxviii
Chapter 12 – Data Access Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxix
Chapter 13 – Troubleshooting Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl

Chapter 1
Introduction 1

The Connected Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
What Are the Goals of This Guide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
How You Should Read This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Organization of the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part I, Security Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Part II, Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Part III, Securing the Tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Part IV, Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Key Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



Contentsiv

Chapter 2
Security Model for ASP.NET Applications 9

.NET Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Logical Tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Physical Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Implementation Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Enterprise Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
.NET Remoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ADO.NET and SQL Server 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Internet Protocol Security (IPSec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Secure Sockets Layer (SSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Security Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Security Across the Tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Gatekeepers and Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Identities and Principals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
WindowsPrincipal and WindowsIdentity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
GenericPrincipal and Associated Identity Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ASP.NET and HttpContext.User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Remoting and Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3
Authentication and Authorization 29

Designing an Authentication and Authorization Strategy . . . . . . . . . . . . . . . . . . . . . . . 30
Identify Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Choose an Authorization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Choose the Identities Used for Resource Access . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Consider Identity Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Choose an Authentication Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Decide How to Flow Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Authorization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Role Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Resource Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Resource Access Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
The Trusted Subsystem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
The Impersonation / Delegation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Choosing a Resource Access Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Flowing Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Application vs. Operating System Identity Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Impersonation and Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Contents v

Role-Based Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
.NET Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Enterprise Services (COM+) Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SQL Server User Defined Database Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SQL Server Application Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
.NET Roles versus Enterprise Services (COM+) Roles . . . . . . . . . . . . . . . . . . . . . . . 45
Using .NET Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Choosing an Authentication Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Internet Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Intranet / Extranet Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Authentication Mechanism Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4
Secure Communication 55

Know What to Secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
SSL/TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Using SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
IPSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Using IPSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
RPC Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Using RPC Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Point to Point Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Browser to Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Web Server to Remote Application Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Application Server to Database Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Choosing Between IPSec and SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Farming and Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 5
Intranet Security 65

ASP.NET to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Q&A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Related Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Contentsvi

ASP.NET to Enterprise Services to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ASP.NET to Web Services to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Q&A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ASP.NET to Remoting to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Flowing the Original Caller to the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ASP.NET to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ASP.NET to Enterprise Services to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 6
Extranet Security 103

Exposing a Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Q&A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Exposing a Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Scenario Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents vii

Chapter 7
Internet Security 119

ASP.NET to SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Related Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ASP.NET to Remote Enterprise Services to SQL Server . . . . . . . . . . . . . . . . . . . . . . . 127
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Secure the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
The Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Security Configuration Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Related Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 8
ASP.NET Security 137

ASP.NET Security Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Gatekeepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Authentication and Authorization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Available Authorization Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Windows Authentication with Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Windows Authentication without Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Windows Authentication Using a Fixed Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Forms Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Passport Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Configuring Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Configure IIS Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Configure ASP.NET Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Secure Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Programming Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
An Authorization Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Creating a Custom IPrincipal class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Windows Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Forms Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Development Steps for Forms Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Forms Implementation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Hosting Multiple Applications Using Forms Authentication . . . . . . . . . . . . . . . . . . 168
Cookieless Forms Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



Contentsviii

Passport Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Custom Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Process Identity for ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Use a Least Privileged Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Avoid Running as SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Using the Default ASPNET Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Impersonation and Local Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Impersonation and Remote Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Impersonation and Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Accessing System Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Accessing the Event Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Accessing the Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Accessing COM Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Apartment Model Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Accessing Network Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Using the ASP.NET Process Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Using a Serviced Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Using the Anonymous Internet User Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Using LogonUser and Impersonating a Specific Windows Identity . . . . . . . . . . . . . 182
Using the Original Caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Accessing Files on a UNC File Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Accessing Non-Windows Network Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Storing Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Options for Storing Secrets in ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Consider Storing Secrets in Files on Separate Logical Volumes . . . . . . . . . . . . . . . 186

Securing Session and View State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Securing View State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Securing Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Securing SQL Session State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Web Farm Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Session State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
DPAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Using Forms Authentication in a Web Farm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
The <machineKey> Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Chapter 9
Enterprise Services Security 195

Security Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Gatekeepers and Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Use Server Applications for Increased Security . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Security for Server and Library Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Code Access Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



Contents ix

Configuring Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Configuring a Server Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Configuring an ASP.NET Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Configuring Impersonation Levels for an Enterprise Services Application . . . . . . . . 208

Programming Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Programmatic Role-Based Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Identifying Callers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Choosing a Process Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Never Run as the Interactive User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Use a Least-Privileged Custom Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Accessing Network Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Using the Original Caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Using the Current Process Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Using a Specific Service Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Flowing the Original Caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Calling CoImpersonateClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

RPC Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Building Serviced Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
DLL Locking Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
QueryInterface Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

DCOM and Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Calling Serviced Components from ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Caller’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Use Windows Authentication and Impersonation Within

the Web-based Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Configure Authentication and Impersonation within Machine.config . . . . . . . . . . . . 218
Configuring Interface Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Security Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Enterprise Services (COM+) Roles and .NET Roles . . . . . . . . . . . . . . . . . . . . . . . . 222
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Chapter 10
Web Services Security 227

Web Service Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Platform/Transport Level (Point-to-Point) Security . . . . . . . . . . . . . . . . . . . . . . . . . 228
Application Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Message Level (End-to-End) Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Platform/Transport Security Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Gatekeepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



Contentsx

Authentication and Authorization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Windows Authentication with Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Windows Authentication without Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Windows Authentication Using a Fixed Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Configuring Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Configure IIS Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Configure ASP .NET Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Secure Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Disable HTTP-GET, HTTP-POST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Passing Credentials for Authentication to Web Services . . . . . . . . . . . . . . . . . . . . . . 240
Specifying Client Credentials for Windows Authentication . . . . . . . . . . . . . . . . . . . 241
Calling Web Services from Non-Windows Clients . . . . . . . . . . . . . . . . . . . . . . . . . 243
Proxy Server Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Flowing the Original Caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Default Credentials with Kerberos Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Explicit Credentials with Basic or Forms Authentication . . . . . . . . . . . . . . . . . . . . 247

Trusted Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Flowing the Caller’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Configuration Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Accessing System Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Accessing Network Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Accessing COM Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Using Client Certificates with Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Authenticating Web Browser Clients with Certificates . . . . . . . . . . . . . . . . . . . . . . 254
Using the Trusted Subsystem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Transport Level Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Message Level Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Chapter 11
.NET Remoting Security 261

.NET Remoting Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Remoting Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Anatomy of a Request When Hosting in ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . 264
ASP.NET and the HTTP Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

.NET Remoting Gatekeepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Hosting in ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Hosting in a Windows Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Using File Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Authentication and Authorization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271



Contents xi

Accessing System Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Accessing Network Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Passing Credentials for Authentication to Remote Objects . . . . . . . . . . . . . . . . . . . . 272

Specifying Client Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Flowing the Original Caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Default Credentials with Kerberos Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Explicit Credentials with Basic or Forms Authentication . . . . . . . . . . . . . . . . . . . . 278

Trusted Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Flowing the Caller’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Choosing a Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Configuration Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Platform Level Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Choosing a Host Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Hosting in ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Hosting in a Windows Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Hosting in a Console Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Remoting vs. Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Chapter 12
Data Access Security 293

Introducing Data Access Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
SQL Server Gatekeepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Trusted Subsystem vs. Impersonation/Delegation . . . . . . . . . . . . . . . . . . . . . . . . 295

Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Windows Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
SQL Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Authenticating Against Non-SQL Server Databases. . . . . . . . . . . . . . . . . . . . . . . . 305

Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Using Multiple Database Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
The Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Choosing an Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Connecting with Least Privilege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
The Database Trusts the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
The Database Trusts Different Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
The Database Trusts the Original Caller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Creating a Least Privilege Database Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Storing Database Connection Strings Securely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

The Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Using DPAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Using Web.config and Machine.config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319



Contentsxii

Using UDL Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Using Custom Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Using the Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Using the COM+ Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Authenticating Users Against a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Store One-way Password Hashes (with Salt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

SQL Injection Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Anatomy of a SQL Script Injection Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Protecting Pattern Matching Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Process Identity for SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Chapter 13
Troubleshooting Security Issues 331

Process for Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Searching for Implementation Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Troubleshooting Authentication Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
IIS Authentication Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Using Windows Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Using Forms Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Kerberos Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Troubleshooting Authorization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Check Windows ACLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Check Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Check the <authorization> Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Enable Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Determining Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Determining Identity in a Web Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Determining Identity in a Web service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Determining Identity in a Visual Basic 6 COM Object . . . . . . . . . . . . . . . . . . . . . . 340

.NET Remoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

IPSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Auditing and Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Windows Security Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
SQL Server Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
IIS Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344



Contents xiii

Troubleshooting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
File Monitor (FileMon.exe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Fusion Log Viewer (Fuslogvw.exe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
ISQL.exe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Windows Task Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Network Monitor (NetMon.exe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Registry Monitor (regmon.exe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
WFetch.exe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Visual Studio .NET Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
WebServiceStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Windows 2000 Resource Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

How To:
Index 349

ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Authentication and Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Enterprise Services Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Web Services Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Remoting Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

How To:
Create a Custom Account to Run ASP.NET 351

ASP.NET Worker Process Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Impersonating Fixed Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
1. Create a New Local Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
2. Assign Minimum Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
3. Assign NTFS Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4. Configure ASP.NET to Run Using the New Account . . . . . . . . . . . . . . . . . . . . . . . . . 356

How To:
Use Forms Authentication with Active Directory 357

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
1. Create a Web Application with a Logon Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
2. Configure the Web Application for Forms Authentication . . . . . . . . . . . . . . . . . . . . 359
3. Develop LDAP Authentication Code to Look Up the User in Active Directory . . . . . . 360
4. Develop LDAP Group Retrieval Code to Look Up the User’s Group Membership . . . 361
5. Authenticate the User and Create a Forms Authentication Ticket . . . . . . . . . . . . . . 362
6. Implement an Authentication Request Handler to Construct

a GenericPrincipal Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
7. Test the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366



Contentsxiv

How To:
Use Forms Authentication with SQL Server 2000 367

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
1. Create a Web Application with a Logon Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
2. Configure the Web Application for Forms Authentication . . . . . . . . . . . . . . . . . . . . 369
3. Develop Functions to Generate a Hash and Salt value . . . . . . . . . . . . . . . . . . . . . 370
4. Create a User Account Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
5. Use ADO.NET to Store Account Details in the Database . . . . . . . . . . . . . . . . . . . . 372
6. Authenticate User Credentials Against the Database . . . . . . . . . . . . . . . . . . . . . . 373
7. Test the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

How To:
Create GenericPrincipal Objects with Forms Authentication 377

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
1. Create a Web Application with a Logon Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
2. Configure the Web Application for Forms Authentication . . . . . . . . . . . . . . . . . . . . 379
3. Generate an Authentication Ticket for Authenticated Users . . . . . . . . . . . . . . . . . . 379
4. Construct GenericPrincipal and FormsIdentity Objects . . . . . . . . . . . . . . . . . . . . . 382
5. Test the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

How To:
Implement Kerberos Delegation for Windows 2000 385

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
1. Confirm that the Client Account is Configured for Delegation . . . . . . . . . . . . . . . . 386
2. Confirm that the Server Process Account is Trusted for Delegation . . . . . . . . . . . . 386
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

How To:
Implement IPrincipal 389

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
1. Create a Simple Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
2. Configure the Web Application for Forms Authentication . . . . . . . . . . . . . . . . . . . . 391
3. Generate an Authentication Ticket for Authenticated Users . . . . . . . . . . . . . . . . . . 392
4. Create a Class that Implements and Extends IPrincipal . . . . . . . . . . . . . . . . . . . . 394
5. Create the CustomPrincipal Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
5. Test the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398



Contents xv

How To:
Create a DPAPI Library 399

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
1. Create a C# Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
2. Strong Name the Assembly (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

How To:
Use DPAPI (Machine Store) from ASP.NET 409

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
1. Create an ASP.NET Client Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
2. Test the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
3. Modify the Web Application to Read an Encrypted Connection String

from Web.Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

How To:
Use DPAPI (User Store) from ASP.NET with Enterprise Services 415

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Why Use Enterprise Services? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Why Use a Windows Service? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
1. Create a Serviced Component that Provides Encrypt and Decrypt Methods . . . . . . 418
2. Call the Managed DPAPI Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
3. Create a Dummy Class that will Launch the Serviced Component . . . . . . . . . . . . . 420
4. Create a Windows Account to Run the Enterprise Services Application and

Windows Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
5. Configure, Strong Name, and Register the Serviced Component . . . . . . . . . . . . . . 421
6. Create a Windows Service Application that will Launch the Serviced

Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
7. Install and Start the Windows Service Application . . . . . . . . . . . . . . . . . . . . . . . . 424
8. Write a Web Application to Test the Encryption and Decryption Routines . . . . . . . . 424
9. Modify the Web Application to Read an Encrypted Connection String from

an Application Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428



Contentsxvi

How To:
Create an Encryption Library 429

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
1. Create a C# Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
2. Create a Console Test Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

How To:
Store an Encrypted Connection String in the Registry 439

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
1. Store the Encrypted Data in the Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
2. Create an ASP.NET Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

How To:
Use Role-based Security with Enterprise Services 445

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1. Create a C# Class Library Application to Host the Serviced Component . . . . . . . . . 446
2. Create the Serviced Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
3. Configure the Serviced Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
4. Generate a Strong Name for the Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
5. Build the Assembly and Add it to the Global Assembly Cache . . . . . . . . . . . . . . . . 449
6. Manually Register the Serviced Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
7. Examine the Configured Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
8. Create a Test Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

How To:
Call a Web Service Using Client Certificates from ASP.NET 453

Why Use a Serviced Component? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Why is a User Profile Required? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
1. Create a Simple Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
2. Configure the Web Service Virtual Directory to Require Client Certificates . . . . . . . 456
3. Create a Custom Account for Running the Serviced Component . . . . . . . . . . . . . . 457
4. Request a Client Certificate for the Custom Account . . . . . . . . . . . . . . . . . . . . . . 457
5. Test the Client Certificate Using a Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459



Contents xvii

6. Export the Client Certificate to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
7. Develop the Serviced Component Used to Call the Web Service . . . . . . . . . . . . . . 460
8. Configure and Install the Serviced Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
9. Develop a Web Application to Call the Serviced Component . . . . . . . . . . . . . . . . . 464
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

How To:
Call a Web Service Using SSL 467

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
1. Create a Simple Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
2. Configure the Web Service Virtual Directory to Require SSL . . . . . . . . . . . . . . . . . 468
3. Test the Web Service Using a Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
4. Install the Certificate Authority’s Certificate on the Client Computer . . . . . . . . . . . 470
5. Develop a Web Application to Call the Web Service . . . . . . . . . . . . . . . . . . . . . . . 471
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

How To:
Host a Remote Object in a Windows Service 473

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
1. Create the Remote Object Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2. Create a Windows Service Host Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
3. Create a Windows Account to Run the Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
4. Install the Windows Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
5. Create a Test Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

How To:
Set Up SSL on a Web Server 479

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
1. Generate a Certificate Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
2. Submit a Certificate Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
3. Issue the Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
4. Install the Certificate on the Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
5. Configure Resources to Require SSL Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483



Contentsxviii

How To:
Set Up Client Certificates 485

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
1. Create a Simple Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
2. Configure the Web Application to Require Client Certificates . . . . . . . . . . . . . . . . . 486
3. Request and Install a Client Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
4. Verify Client Certificate Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

How To:
Use IPSec to Provide Secure Communication Between Two Servers 489

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
1. Create an IP Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
2. Create Filter Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
3. Create Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
4. Export the IPSec Policy to the Remote Computer . . . . . . . . . . . . . . . . . . . . . . . . . 495
5. Assign Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
6. Verify that it Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

How To:
Use SSL to Secure Communication with SQL Server 2000 499

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
1. Install a Server Authentication Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
2. Verify that the Certificate Has Been Installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
3. Install the Issuing CA’s Certificate on the Client . . . . . . . . . . . . . . . . . . . . . . . . . . 502
4. Force All Clients to Use SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
5. Allow Clients to Determine Whether to Use SSL . . . . . . . . . . . . . . . . . . . . . . . . . . 503
6. Verify that Communication is Encrypted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Base Configuration 509

Configuration Stores and Tools 511



Contents xix

Reference Hub 517
Searching the Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
.NET Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Active Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Key Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

ADO.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Roadmaps and Overviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Seminars and WebCasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Roadmaps and Overviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
How Tos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Seminars and WebCasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Enterprise Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Roadmaps and Overviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
How Tos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
FAQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Seminars and WebCasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

IIS (Internet Information Server) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Remoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Roadmaps and Overviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
How Tos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Seminars and WebCasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Seminars and WebCasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Visual Studio .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Roadmaps and Overviews: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Roadmaps and Overviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
How Tos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Seminars and WebCasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Windows 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



Contentsxx

How Does It Work? 527
IIS and ASP.NET Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Application Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
The ASP.NET ISAPI Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
IIS 6.0 and Windows .NET Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

ASP.NET Pipeline Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
The Anatomy of a Web Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Implementing a Custom HTTP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Implementing a Custom HTTP Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

ASP.NET Identity Matrix 537

Cryptography and Certificates 541
Keys and Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

X.509 Digital Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
Certificate Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Technical Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Cryptography in .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

.NET Web Application Security 549

Glossary 551



About This Book

Summary
This guide presents a practical, scenario driven approach to designing and building
secure ASP.NET applications for Windows 2000 and version 1.0 of the .NET Frame-
work. It focuses on the key elements of authentication, authorization and secure
communication within and across the tiers of distributed .NET Web applications.

Applies To
The information in this guide applies to:
● .NET Framework Version 1.0 Service Pack 2
● ASP.NET
● Enterprise Services
● Web Services
● .NET Remoting
● ADO.NET
● Visual Studio .NET
● SQL Server 2000 Service Pack 2
● Windows 2000 Service Pack 3

Recommendations and sample code in the guide were built and tested using Visual
Studio .NET and validated on servers running Windows 2000 Advanced Server SP 3,
.NET Framework SP 2, and SQL Server 2000 SP 2.

What This Guide is About
This guide focuses on:
● Authentication (to identify the clients of your application)
● Authorization (to provide access controls for those clients)
● Secure communication (to ensure that messages remain private and are not

altered by unauthorized parties)



Building Secure ASP.NET Applicationsxxii

Why authentication, authorization, and secure communication?

Security is a broad topic. Research has shown that early design of authentication
and authorization eliminates a high percentage of application vulnerabilities.
Secure communication is an integral part of securing your distributed application to
protect sensitive data, including credentials, passed to and from your application,
and between application tiers.

There are many technologies used to build .NET Web applications. To build effec-
tive application-level authentication and authorization strategies, you need to
understand how to fine-tune the various security features within each product and
technology area, and how to make them work together to provide an effective,
defense-in-depth security strategy. This guide will help you do just that.

Figure 1 summarizes the various technologies discussed throughout the guide.

Web Server

Database Server

IIS

SQL Server

Clients IIS

Authentication
Anonymous
Basic
Digest
Integrated
Certificates

Authorization
NTFS Perms
IP Restrictions

ASP.NET

Authentication
Windows
Forms
Passport
None (Custom)

Authorization
URL Auth
File Auth
.NET Roles

Enterprise Services

Authentication
RPC

Authorization
COM+ Roles
NTFS Perms

SQL Server

Authentication
Windows
SQL Auth

Authorization
Logins
Object Perms
Dbase Roles
User Roles
App Roles

ASP.NET

IIS
ASP.NET

S
ec

ur
e 

C
om

m
un

ic
at

io
n 

(S
S

L 
/ I

P
S

ec
)

Enterprise 
Services
(COM+)Web 

Services

IIS
ASP.NET

.NET 
Remoting

Figure 1
.NET Web Application Security



About This Book xxiii

Who Should Read This Guide?
If you are a middleware developer or architect, who plans to build, or is currently
building .NET Web applications using one or more of the following technologies,
you should read this guide.
● ASP.NET
● Web Services
● Enterprise Services
● Remoting
● ADO.NET

What You Must Know
To most effectively use this guide to design and build secure .NET Web applica-
tions, you should already have some familiarity and experience with .NET develop-
ment techniques and technologies. You should be familiar with distributed
application architecture and if you have already implemented .NET Web applica-
tion solutions, you should know your own application architecture and deployment
pattern.

Feedback and Support
Questions? Comments? Suggestions? For feedback on this security guide, please
send e-mail to secguide@microsoft.com.

The security guide is designed to help you build secure .NET distributed applica-
tions. The sample code and guidance is provided as-is. While this material has
undergone testing and is considered a robust set of procedures and recommenda-
tions, it is not supported like a traditional Microsoft product.

The Team That Brought You This Guide
This guide was produced by the following .NET development specialists:
● J.D. Meier, Microsoft, Program Manager, Prescriptive Architecture Guidance

(PAG)
● Alex Mackman, Content Master Ltd, Founding member and Principal

Technologist
● Srinath Vasireddy, Microsoft, Developer Support Engineer, Product Support

and Services (PSS)
● Michael Dunner, Microsoft, Developer Support Engineer, Product Support

and Services (PSS)



Building Secure ASP.NET Applicationsxxiv

Contributors and Reviewers
Many thanks to the following contributors and reviewers:
● Thanks to external reviewers – Keith Brown (DevelopMentor) for review and

feedback on the ASP.NET chapter, Andy Eunson for providing scenarios on
middleware applications, John Langley (KANA Software) for bringing J2EE
and .NET perspectives to the table, Kurt Dillard and Christof Sprenger for
reviewing application scenarios and the authentication and authorization
process, J.K.Meadows and David Alberto for reviewing application scenarios
and individual chapters and Bernard Chen (Sapient) for reviewing the
authentication and authorization process

● Product Group – Thanks to Manish Prabhu, Jesus Ruiz-Scougall, Jonathan
Hawkins and Doug Purdy from the .NET Remoting team; Keith Ballinger Yann
Christensen and Alexei Vopilov from the Web Services team; Laura Barsan from
the ASP.NET team; Greg Fee (.NET Roles / Principal permission checks), Greg
Singleton and Sebastian Lange (CAS); Tarik Soulami from the CLR team; Erik
Olson (extensive validation and recommendations on ASP.NET); Caesar Samsi
(for sharing in depth e-commerce Internet facing application scenarios), Riyaz
Pishori, Shannon Pahl and Ron Jacobs (Enterprise Services), Dave McPherson
(Windows security architecture and authorization strategies), Christopher Brown
(helping resolve cross product issues), John Banes (DPAPI), Joel Scambray, Girish
Chander (SQL Server security)

● MCS / Field – William Zentmayer (Remote application tier scenarios with Enter-
prise Services), Shantanu Sarkar (validation of application architecture sce-
narios), Carl Nolan (Web services), Samuel Melendez and Jacquelyn Schmidt
(infrastructure and deployment scenarios), Steve Busby, Len Cardinal, Monica
DeZulueta, Paula Paul (Data Access and Web application security), Ed Draper,
Sean Finnegan (pushing Active Directory and Windows authentication with
technical depth and practical scenarios), David Alberto, Kenny Jones (for bring-
ing real world field issues to the table and helping to involve the field), Doug
Orange (real world Extranet authorization scenarios), Alexey Yeltsov (SQL
Injection), Martin Kohlleppel (Architecture review), Joel Yoker (firewalls and
IPSec)

● Special thanks to Jay Nanduri (Microsoft.com) for reviewing and sharing real
world experiences, Ilia Fortunov (Senior Architect) for providing continuous and
diligent feedback and Aaron Margosis (MCS) for thoroughly reviewing several
chapters and making excellent suggestions at various stages of the project.



About This Book xxv

● Special thanks to Product Support Services folks for contributing and review
various portions of the guide – Venkat Chilakala (Troubleshooting section), John
Allen and Jeremy Bostron (ASP.NET), Martin Petersen-Frey (simplifying and
helping to structure the Remoting and Web Service portions of the guide), Karl
Westerholm (SSL), Jayaprakasam Siddian Thirunavukkarasu (SQL Roles and
ADO), Wade Mascia (valuable feedback  on Enterprise Services, COM threading,
ASP.NET and Web services), Ryan Kivett (IIS6 and ASP.NET), Sarath
Mallavarapu (Data Access), Jerry Bryant (bringing community issues to the
table) and Peter Kyte for resources

● Thanks also, to Philip Teale, Ram Sunkara, Shaun Hayes, Eric Schmidt, Michael
Howard, Rich Benack, Carlos Lyons, Ted Kehl. Thanks to Peter Dampier, Mike
Sherrill and Devendra Tiwari from the Enterprise Alliance team for validating
our application scenarios. Thanks to Tavi Siochi (IT Audit) for feedback on SQL
Injection.

● Finally, thanks to our colleagues on the patterns & practices team: Per Vonge
Nielsen, Andrew Mason, Edward Jezierski, Sandy Khaund, RoAnn Corbisier,
Tina Burden, Edward Lafferty, Peter M. Clift, John Munyan, Mohammad Al-Sabt,
Anandha Murukan and Chris Sfanos





At a Glance

This section allows you to quickly see the scope and coverage of the individual
chapters in the guide.

Chapter 1 – Introduction
This chapter highlights the goals of the guide, introduces key terminology and
presents a set of core principles that apply to the guidance presented in later
chapters.

Chapter 2 – Security Model for ASP.NET Applications
This chapter describes the common characteristics of .NET Web applications from
a security perspective and introduces the .NET Web application security model.
It also introduces the set of core implementation technologies that you will use to
build secure .NET Web applications.

The full range of gatekeepers that allow you to develop defense-in-depth security
strategies are also introduced and the concept of principal-based authorization,
using principal and identity objects is explained.

This chapter will help you answer the following questions:
● What are the typical deployment patterns adopted by .NET Web applications?
● What security features are provided by the various technologies that I use to

build .NET Web applications?
● What gatekeepers should I be aware of and how do I use them to provide a

defense-in-depth security strategy?
● What are principal and identity objects and why are they so significant?
● How does .NET security relate to Windows security?

Chapter 3 – Authentication and Authorization
Designing a coherent authentication and authorization strategy across your
application’s multiple tiers is a critical task. This chapter provides guidance to help
you develop an appropriate strategy for your particular application scenario. It will
help you choose the most appropriate authentication and authorization technique
and apply them at the correct places in your application.



Building Secure ASP.NET Applicationsxxviii

Read this chapter to learn how to:
● Choose an appropriate authentication mechanism to identify users.
● Develop an effective authorization strategy.
● Choose an appropriate type of role-based security.
● Compare and contrast .NET roles with Enterprise Services (COM+) roles.
● Use database roles.
● Choose between the trusted subsystem resource access model and the imperson-

ation/delegation model which is used to flow the original caller’s security
context at the operating system level throughout an application’s multiple tiers.
These two core resource access models are shown below in Figure 1 and Figure 2.

SQL 
Server

A

B

C

D

E

Role-Based 
Authorization

Trust Boundary

Database trusts the 
Web server. Web server 

authorizes users.

Web or Application Server Database Server

Trusted 
Service

Identity

Figure 1
The Trusted Subsystem model

With the trusted subsystem model:
● Downstream resource access is performed using a fixed trusted identity and

security context.
● The downstream resource manager (for example, database) trusts the up-

stream application to properly authenticate and authorize callers.
● The resource manager authorizes the application to access resources. Original

callers are not authorized to directly access the resource manager.
● A trust boundary exists between the downstream and upstream components.
● Original caller identity (for auditing) flows at the application (not operating

system) level.



At a Glance xxix

SQL 
Server

A

B

C

D

E

A

B

C

D

E

Caller 
Impersonation/Delegation

Web or Application 
Server

Database 
Server

Figure 2
The impersonation/delegation model

With the impersonation/delegation model:
● Downstream resource access is performed using the original caller’s security

context.
● The downstream resource manager (for example, database) authorizes indi-

vidual callers.
● The original caller identity flows at the operating system and is available for

platform level auditing and per caller authorization.

Chapter 4 – Secure Communication
This chapter introduces the two core technologies that can be used to provide
message confidentiality and message integrity for data that flows across the net-
work between clients and servers on the Internet and corporate intranet. These are
SSL and IPSec. It also discusses RPC encryption which can be used to secure the
communication with remote serviced components.

Read this chapter to learn how to:
● Apply secure communication techniques throughout the various tiers of your

application.
● Choose between SSL and IPSec.
● Configure secure communication.
● Use RPC encryption.

The chapter addresses the need to provide secure communication channels between
your application’s various physical tiers as shown in Figure 3 on the next page.



Building Secure ASP.NET Applicationsxxx

Clients
Web 

Server

SSL
(Privacy/Integrity)

Application 
Server

IPSec or RPC
(Privacy/Integrity)

Database 
Server

IPSec or SSL
(Privacy/Integrity)

Figure 3
A typical Web deployment model, with secure communications

Chapter 5 – Intranet Security
This chapter presents a set of common intranet application scenarios and for each
one presents recommended security configurations. In each case, the configuration
steps necessary to build the secure solution are presented, together with analysis
and related scenario variations.

The application scenarios covered in this chapter are:
● ASP.NET to SQL Server

This scenario is shown in Figure 4.
● ASP.NET to Enterprise Services to SQL Server
● ASP.NET to Web Services to SQL Server
● ASP.NET to Remoting to SQL Server
● Flowing the original caller to the database

This includes multi-tier Kerberos delegation scenarios, as shown in Figure 5.

SQL 
Server

NTFS 
Permissions
(Authorization)

SSL
(Privacy/ 
Integrity)

Web Server

File Authorization 
.NET Roles

(Authorization)

Windows 
Authentication

Database 
Server

SQL Permissions
Database Roles

(Authorization)

ASP.NET 
Process Identity

IPSec
(Privacy/Integrity)

Integrated 
Windows 

Authentication

Windows 
Authentication

IIS ASP.NET

Alice

Mary

Bob

Alice

Mary

Bob

Figure 4
Security configuration for ASP.NET to remote SQL Server scenarios



At a Glance xxxi

A B C

SQL 
Server

Database 
Server

IPSec
(Privacy/ Integrity)

Integrated 
Windows
(Kerberos)

(Authentication)

Web Server

Windows
(Authentication)

IIS ASP.NET

A

B

C

A

B

C

SSL
(Privacy/ 
Integrity)

Clients

Internet
Explorer

Application Server

Enterprise Services

Enterprise Services
(COM+) Roles
(Authorization)

Windows 
(Authentication)

RPC Packet 
Privacy 

(Privacy/Integrity)

Impersonation

Impersonation
(Programmatic)

A

B

C

Windows
(Authentication)

Database Permissions
(Authorization)

Figure 5
Security configuration for ASP.NET to remote Enterprise Services to remote SQL Server Kerberos
delegation scenario

Read this chapter to lean how to:
● Use the local ASPNET account to make calls from an ASP.NET Web application

to a remote SQL Server database.
● Establish trusted database connections to SQL Server using Windows

authentication.
● Authorize database access with SQL Server user-defined database roles.
● Avoid storing credentials within your application.
● Secure sensitive data with a combination of SSL and IPSec.
● Implement Kerberos delegation to flow the original caller’s security context

across multiple application tiers to a back-end database.
● Flow the original caller’s security context by using Basic authentication.
● Authorize users with a combination of ASP.NET file authorization, URL

authorization, .NET roles and Enterprise Services (COM+) roles.
● Effectively use impersonation within an ASP.NET Web application.



Building Secure ASP.NET Applicationsxxxii

Chapter 6 – Extranet Security
This chapter presents a set of common extranet application scenarios and for each
one presents recommended security configurations, configuration steps and analysis.

This chapter covers the following extranet scenarios.
● Exposing a Web Service (B2B partner exchange)

This scenario is shown in Figure 6.
● Exposing a Web Application (partner application portal)

Publisher Company

NTFS 
Permissions
(Authorization)

ASP.NET 
(Web App)

Partner Company

IIS

Enterprise 
Services

ASP.NET
(Web 

Service) Active 
Directory

IIS

File 
authorization 
.NET Roles

(Authorization)

Certificate
Authentication

SSL
(Privacy/Integrity)

IPSec
(Privacy/ 
Integrity)

ASP.NET 
Identity

Internet

Firewalls

Certificate 
Mapping

SQL 
ServerUser-defined 

Database Roles
(Authorization)

Windows
Authentication

Figure 6
Security configuration for Web Service B2B partner exchange scenario

Read this chapter to lean how to:
● Authenticate partner companies by using client certificate authentication against

a dedicated extranet Active Directory.
● Map certificates to Windows accounts.
● Authorize partner companies by using ASP.NET file authorization and .NET

roles.
● Use the ASPNET identity to access a remote SQL Server database located on the

corporate intranet.



At a Glance xxxiii

Chapter 7 – Internet Security
This chapter presents a set of common Internet application scenarios, and for
each one presents recommended security configurations, configuration steps, and
analysis.

This chapter covers the following Internet application scenarios:
● ASP.NET to SQL Server
● ASP.NET to Remote Enterprise Services to SQL Server

This scenario is shown in Figure 7.

NTFS 
Permissions
(Authorization)

Web Server

Alice

Mary

Bob
ASP.NETIIS

URL 
Authorization 
(Authorization)

Integrated Windows
(Authentication)
Require SSL

(Privacy/Integrity)

Application Server

ASP.NET 
(Web 

Services 
Façade)

Enterprise Services 
Server Application

(dllhost.exe)

IIS

Windows 
(Authentication)

Anonymous
Authentication

Forms
Authentication

SSL
(Privacy/Integrity)

SOAP

SQL 
Server

Database Server

User defined 
database roles
(Authorization)

Windows
Authentication

SSL
(Privacy/ 
Integrity)

IPSec
(Privacy/ 
Integrity)

ASPNET 
(Process 
Identity)

ES Process 
Identity

Figure 7
Security configuration for ASP.NET to remote Enterprise Services to SQL Server

Read this chapter to learn how to:
● Use Forms authentication with a SQL Server credential database.
● Avoid storing passwords in the credential database.
● Authorize Internet users with URL Authorization and .NET roles.



Building Secure ASP.NET Applicationsxxxiv

● Use Windows authentication from an ASP.NET Web application to SQL Server
through a firewall.

● Secure sensitive data with a combination of SSL and IPSec.
● Communicate from an ASP.NET Web application to a remote Enterprise Services

application through a firewall by using SOAP.
● Secure calls to serviced component in the application’s middle tier.

Chapter 8 – ASP.NET Security
This chapter provides in-depth security recommendations for ASP.NET Web appli-
cations. This chapter covers the range of authentication, authorization and secure
communication services provided by IIS and ASP.NET. These are illustrated in
Figure 8.

IIS
(inetinfo.exe)

Web Server

Authentication
Anonymous

Basic
Digest

Integrated
Certificate

Authorization
Web Permissions

NTFS Permissions
IP Address
Restrictions

ASP.NET
(aspnet_wp.exe)

Authenticated caller’s access token 
(or IUSR_MACHINE access token)

Authentication
Windows

Forms
Passport

None

ASP.NET Process
Original Caller

Fixed Proxy Identity
Identity

Local or 
Remote 

Resource

Authorization
File AuthZ
URL AuthZ
.NET Roles

HTTP 
Requests

SSL
(Privacy/ 
Integrity)

7

653

4

2
1

Figure 8
ASP.NET security services



At a Glance xxxv

Read this chapter to learn how to:
● Configure the various ASP.NET authentication modes.
● Implement Forms authentication.
● Implement Windows authentication.
● Work with IPrincipal and IIdentity objects.
● Effectively use the IIS and ASP.NET gatekeepers.
● Configure and use ASP.NET File authorization.
● Configure and use ASP.NET URL authorization.
● Implement declarative, imperative and programmatic role-based security, using

principal permission demands and IPrincipal.IsInRole.
● Know when and when not to use impersonation within an ASP.NET Web

application.
● Choose an appropriate account to run ASP.NET.
● Access local and network resources using the ASP.NET process identity.
● Access remote SQL Server databases using the local ASPNET account.
● Call COM objects from ASP.NET.
● Effectively use the anonymous Internet user account in Web hosting

environments.
● Store secrets in an ASP.NET Web application.
● Secure session and view state.
● Configure ASP.NET security in Web Farm scenarios.

Chapter 9 – Enterprise Services Security
This chapter explains how to secure business functionality in serviced components
contained within Enterprise Services applications. It shows you how and when to
use Enterprise Services (COM+) roles for authorization, and how to configure RPC
authentication and impersonation. It also shows you how to securely call serviced
components from an ASP.NET Web application and how to identify and flow the
original caller’s security context through a middle tier serviced component.



Building Secure ASP.NET Applicationsxxxvi

Figure 9 shows the Enterprise Services security features covered by this chapter.

Role List
“Manager”

“Senior Manager”
“Employee”

None
Connect
Call
Packet
Packet Integrity
Packet Privacy

COM+ 
Catalog

Check role membership

Serviced 
Component

Access 
Check

Interceptor

(DCOM)Bob Bob

Windows 
Authentication 

+ Impersonation

RPC
Packet Privacy
Packet Integrity
(Privacy/Integrity)

Enterprise Services
Server Application

(dllhost.exe)

Client Application
(e.g. aspnet_wp.exe)

Enterprise Services
(COM+) Roles
(Authorization)Machine.config

(DCOM client 
authentication and 

impersonation 
settings)

DCOM/RPC
(Authentication)

Figure 9
Enterprise Services security overview

Read this chapter to learn how to:
● Configure an Enterprise Services application using .NET attributes.
● Secure server and library applications.
● Choose an appropriate account to run an Enterprise Services server application.
● Implement method level Enterprise Services (COM+) role based security both

programmatically and declaratively.
● Configure ASP.NET as a DCOM client.
● Securely call serviced components from ASP.NET.
● Compare Enterprise Services (COM+) roles with .NET roles.
● Identify callers within a serviced component.
● Flow the original caller’s security context through an Enterprise Services applica-

tion by using programmatic impersonation within a serviced component.
● Access local and network resources from a serviced component.



At a Glance xxxvii

● Use RPC encryption to secure sensitive data passed to and from serviced
components.

● Understand the process of RPC authentication level negotiation.
● Use DCOM through firewalls.

Chapter 10 – Web Services Security
This chapter focuses on platform level security for Web services using the underly-
ing features of IIS and ASP.NET. For message level security, Microsoft is developing
the Web Services Development Kit, which allows you to build security solutions
that conform to the WS-Security specification, part of the Global XML Architecture
(GXA) initiative.
The ASP.NET Web services platform security architecture is shown in Figure 10.

1

2 3

7

4

SOAP Header
(optional 

credentials)
SOAP Body

IIS
(inetinfo.exe)

Authentication
Anonymous

Basic
Digest

Integrated
Certificate

Authorization
NTFS Permissions

IP Address
Restrictions

Authentication Web Server

Identity

Authenticated caller’s 
access token (or 
IUSR_MACHINE 

access token)
ASP.NET Web Service

(aspnet_wp.exe)

Authentication
Windows

None
(Custom)

Authorization
File AuthZ
URL AuthZ
.NET Roles

Locator 
Remote 

Resource

ASP.NET Process 
Original Caller

Fixed Service Identity

5 6

Figure 10
Web services security architecture



Building Secure ASP.NET Applicationsxxxviii

Read this chapter to learn how to:
● Implement platform-based Web service security solutions.
● Develop an authentication and authorization strategy for a Web service.
● Use client certificate authentication with Web services.
● Use ASP.NET file authorization, URL authorization, and .NET roles to provide

authorization in Web services.
● Flow the original caller’s security context through a Web service.
● Call Web services using SSL.
● Access local and network resources from Web services.
● Pass credentials for authentication to a Web service through a Web service proxy.
● Implement the trusted subsystem model for Web services.
● Call COM objects from Web services.

Chapter 11 – .NET Remoting Security
The .NET Framework provides a remoting infrastructure that allows clients to
communicate with objects, hosted in remote application domains and processes, or
on remote computers. This chapter shows you how to implement secure .NET
Remoting solutions.

Read this chapter to learn how to:
● Choose an appropriate host for remote components.
● Use all of the available gatekeepers to provide defense-in-depth security.
● Use URL authentication and .NET roles to authorize access to remote

components.
● Use File authentication with remoting. This requires you to create a physical .rem

or .soap file that corresponds to the remote component’s object URI.
● Access local and network resources from a remote component.
● Pass credentials for authentication to a remote component through the remote

component proxy object.
● Flow the original caller’s security context through a remote component.
● Secure communication to and from remote components using a combination of

SSL and IPSec.
● Know when to use remoting and when to use Web services.



At a Glance xxxix

Chapter 12 – Data Access Security
This chapter presents recommendations and guidance that will help you develop
a secure data access strategy. The key issues covered by this chapter are shown in
Figure 11. These include storing connection strings securely, using an appropriate
identity for database access, securing data passed to and from the database, using
an appropriate authentication mechanism and implementing authorization in the
database.

SQL 
Server

SQL Server

4

5
3

2

SSL or IPSec
(Privacy/Integrity)

Windows or SQL
(Authentication)

Database 
Permissions
(Authorization)

Data 
Access 
Identity

Client 
Application 
(for example 
ASP.NET)

Client 
Identity

Secure 
Connection 

String Storage

1

Figure 11
Data Access security overview

Read this chapter to learn how to:
● Use Windows authentication from ASP.NET to your database.
● Secure connection strings.
● Use DPAPI from ASP.NET Web applications to store secrets such as connection

strings and credentials.
● Store credentials for authentication securely in a database.
● Validate user input to protect against SQL injection attacks.
● Mitigate the security threats associated with the use of SQL authentication.
● Know which type of database roles to use.
● Compare and contrast database user roles with SQL Server application roles.
● Secure communication to SQL Server using IPSec and also SSL.
● Create a least privilege database account.
● Enable auditing in SQL Server.



Building Secure ASP.NET Applicationsxl

Chapter 13 – Troubleshooting Security Issues
This chapter provides troubleshooting tips, techniques and tools to help diagnose
security related issues. Read this chapter to learn a proven process for effectively
troubleshooting security issues you may encounter while building your ASP.NET
applications. For example, you’ll learn techniques for determining identity in your
ASP.NET pages, which can be used to diagnose authentication and access control
issues. You’ll also learn how to troubleshoot Kerberos authentication. The chapter
concludes with a concise list of some of the more useful troubleshooting tools, used
by Microsoft support to troubleshoot customer issues.

Reference
Use the supplementary information in this section of the guide to help further your
understanding of the techniques, strategies and security solutions presented in
earlier chapters. Detailed How Tos provide step-by-step procedures that enable you
to implement specific security solutions. It contains the following information:
● Reference Hub
● How Tos
● How Does it Work?
● ASP.NET Identity Matrix
● Base Configuration
● Configuring Security
● Cryptography and Certificates
● .NET Web Application Security Figure
● Glossary



1
Introduction

Building secure distributed Web applications is challenging. Your application is
only as secure as its weakest link. With distributed applications, you have a lot of
moving parts and making those parts work together in a secure fashion requires
a working knowledge that spans products and technologies.

You already have a lot to consider; integrating various technologies, staying current
with technology, and keeping a step ahead of the competition. If you don’t already
know how to build secure applications, can you afford the time and effort to learn?
More to the point, can you afford not to?

The Connected Landscape
If you already know how to build secure applications, are you able to apply what
you know when you build .NET Web applications? Are you able to apply your
knowledge in today’s landscape of Web-based distributed applications, where Web
services connect businesses to other business and business to customers and where
applications offer various degrees of exposure; for example, to users on intranets,
extranets, and the Internet?

Consider some of the fundamental characteristics of this connected landscape:
● Web services use standards such as SOAP, Extensible Markup Language (XML),

and Hypertext Transport Protocol (HTTP), but fundamentally they pass poten-
tially sensitive information using plain text.

● Internet business-to-consumer applications pass sensitive data over the Web.
● Extranet business-to-business applications blur the lines of trust and allow

applications to be called by other applications in partner companies.
● Intranet applications are not without their risks considering the sensitive nature

of payroll and Human Resource (HR) applications. Such applications are particu-
larly vulnerable to rogue administrators and disgruntled employees.



Building Secure ASP.NET Applications2

Scope
This guide focuses on:
● Authentication (to identify the clients of your application)
● Authorization (to provide access controls for those clients)
● Secure communication (to ensure that messages remain private and are not

altered by unauthorized parties)

Why authentication, authorization, and secure communication?

Security is a broad topic. Research has shown that early design of authentication
and authorization eliminates a high percentage of application vulnerabilities.
Secure communication is an integral part of securing your distributed application to
protect sensitive data, including credentials, passed to and from your application
and between application tiers.

What Are the Goals of This Guide?
This guide is not an introduction to security. It is not a security reference for the
Microsoft .NET Framework — for that you have the .NET Framework Software
Development Kit (SDK) available from MSDN, see the “References” section of this
guide for details. This guide picks up where the documentation leaves off and
presents a scenario-based approach to sharing recommendations and proven
techniques, as gleaned from the field, customer experience, and insight from the
product teams at Microsoft.

The information in this guide is designed to show you how to:
● Raise the security bar for your application.
● Identify where and how you need to perform authentication.
● Identify where and how you need to perform authorization.
● Identify where and how you need to secure communication both to your applica-

tion (from your end users) and between application tiers.
● Identify common pitfalls and how to avoid them.
● Identify top risks and their mitigation related to authentication and authorization.
● Avoid opening up security just to make things work.
● Identify not only how, but also when to use various security features.
● Eliminate FUD (fear, uncertainty, and doubt).
● Promote best practices and predictable results.



Chapter 1: Introduction 3

How You Should Read This Guide
The guide has been developed to be modular. This allows you to pick and choose
which chapters to read. For example, if you are interested in learning about the
in-depth security features provided by a specific technology, you can jump straight
to Part III of the guide (Chapters 8 through 12), which contains in-depth material
covering ASP.NET, Enterprise Services, Web Services, .NET Remoting, and data
access.

However, you are encouraged to read the early chapters (Chapters 1 through 4) in
Part I of the guide first, because these will help you understand the security model
and identify the core technologies and security services at your disposal. Applica-
tion architects should make sure they read Chapter 3, which provides some key
insights into designing an authentication and authorization strategy that spans the
tiers of your Web application. Part I will provide you with the foundation materials
which will allow you to extract maximum benefit from the remainder of the guide.

The intranet, extranet, and Internet chapters (Chapters 5 through 7) in Part II of the
guide will show you how to secure specific application scenarios. If you know the
architecture and deployment pattern that is or will be adopted by your application,
use this part of the guide to understand the security issues involved and the basic
configuration steps required to secure specific scenarios.

Finally, additional information and reference material in Part IV of the guide will
help further your understanding of specific technology areas. It also contains a
library of How To articles which enable you to develop working security solutions
in the shortest possible time.

Organization of the Guide
The guide is divided into four parts. The aim is to provide a logical partitioning,
which will help you to more easily digest the content.

Part I, Security Models
Part 1 of the guide provides a foundation for the rest of the guide. Familiarity with
the concepts, principles, and technologies introduced in Part 1 will enable you to
extract maximum value from the remainder of the guide. Part 1 contains the follow-
ing chapters.
● Chapter 1, “Introduction”
● Chapter 2, “Security Model for ASP.NET Applications “
● Chapter 3, “Authentication and Authorization”
● Chapter 4, “Secure Communication”



Building Secure ASP.NET Applications4

Part II, Application Scenarios
Most applications can be categorized as intranet, extranet, or Internet applications.
This part of the guide presents a set of common application scenarios, each of which
falls into one of the aforementioned categories. The key characteristics of each
scenario are described and the potential security threats analyzed.

You are then shown how to configure and implement the most appropriate authen-
tication, authorization, and secure communication strategy for each application
scenario. Each scenario also contains sections that include a detailed analysis,
common pitfalls to watch out for, and frequently asked questions (FAQ). Part II
contains the following chapters:
● Chapter 5, “Intranet Security”
● Chapter 6, “Extranet Security”
● Chapter 7, “Internet Security”

Part III, Securing the Tiers
This part of the guide contains detailed information that relates to the individual
tiers and technologies associated with secure .NET-connected Web applications.
Part III contains the following chapters:
● Chapter 8, “ASP.NET Security”
● Chapter 9, “Enterprise Services Security”
● Chapter 10, “Web Services Security”
● Chapter 11, “.NET Remoting Security”
● Chapter 12, “Data Access Security”

Within each chapter, a brief overview of the security architecture as it applies to the
particular technology in question is presented. Authentication and authorization
strategies are discussed for each technology along with configurable security
options, programmatic security options, and actionable recommendations of when
to use the particular strategy.

Each chapter offers guidance and insight that will allow you to choose and imple-
ment the most appropriate authentication, authorization, and secure communica-
tion option for each technology. In addition, each chapter presents additional
information specific to the particular technology. Finally, each chapter concludes
with a concise recommendation summary.



Chapter 1: Introduction 5

Part IV, Reference
This reference part of the guide contains supplementary information to help further
your understanding of the techniques, strategies, and security solutions presented
in earlier chapters. Detailed How Tos provide step-by-step procedures that enable
you to implement specific security solutions. It contains the following information:
● Chapter 13, “Troubleshooting Security”
● “How Tos”
● “Base Configuration”
● “Configuration Stores and Tools”
● “How Does It Work?”
● “ASP.NET Identity Matrix”
● “Cryptography and Certificates”
● “ASP.NET Security Model”
● “Reference Hub”
● “Glossary”

Key Terminology
This section introduces some key security terminology used throughout the guide.
Although a full glossary of terminology is provided within the “Reference” section
of this guide, make sure you are very familiar with the following terms:
● Authentication. Positively identifying the clients of your application; clients

might include end-users, services, processes or computers.
● Authorization. Defining what authenticated clients are allowed to see and do

within the application.
● Secure Communications. Ensuring that messages remain private and unaltered

as they cross networks.
● Impersonation. This is the technique used by a server application to access

resources on behalf of a client. The client’s security context is used for access
checks performed by the server.

● Delegation. An extended form of impersonation that allows a server process
that is performing work on behalf of a client, to access resources on a remote
computer. This capability is natively provided by Kerberos on Microsoft®
Windows® 2000 and later operating systems. Conventional impersonation (for
example, that provided by NTLM) allows only a single network hop. When
NTLM impersonation is used, the one hop is used between the client and server
computers, restricting the server to local resource access while impersonating.



Building Secure ASP.NET Applications6

● Security Context. Security context is a generic term used to refer to the collection
of security settings that affect the security-related behavior of a process or
thread. The attributes from a process’ logon session and access token combine to
form the security context of the process.

● Identity. Identity refers to a characteristic of a user or service that can uniquely
identify it. For example, this is often a display name, which often takes the form
authority/user name.

Principles
There are a number of overarching principles that apply to the guidance presented
in later chapters. The following summarizes these principles:
● Adopt the principle of least privilege. Processes that run script or execute code

should run under a least privileged account to limit the potential damage that
can be done if the process is compromised. If a malicious user manages to inject
code into a server process, the privileges granted to that process determine to
a large degree the types of operations the user is able to perform. Code that
requires additional trust (and raised privileges) should be isolated within sepa-
rate processes.
The ASP.NET team made a conscious decision to run the ASP.NET account with
least privileges (using the ASPNET account). During the beta release of the .NET
Framework, ASP.NET ran as SYSTEM, an inherently less secure setting.

● Use defense in depth. Place check points within each of the layers and sub-
systems within your application. The check points are the gatekeepers that
ensure that only authenticated and authorized users are able to access the next
downstream layer.

● Don’t trust user input. Applications should thoroughly validate all user input
before performing operations with that input. The validation may include
filtering out special characters. This preventive measure protects the application
against accidental misuse or deliberate attacks by people who are attempting to
inject malicious commands into the system. Common examples include SQL
injection attacks, script injection, and buffer overflow.

● Use secure defaults. A common practice among developers is to use reduced
security settings, simply to make an application work. If your application de-
mands features that force you to reduce or change default security settings, test
the effects and understand the implications before making the change.

● Don’t rely on security by obscurity. Trying to hide secrets by using misleading
variable names or storing them in odd file locations does not provide security. In
a game of hide-and-seek, it’s better to use platform features or proven techniques
for securing your data.



Chapter 1: Introduction 7

● Check at the gate. You don’t always need to flow a user’s security context to the
back end for authorization checks. Often, in a distributed system, this is not the
best choice. Checking the client at the gate refers to authorizing the user at the
first point of authentication (for example, within the Web application on the Web
server), and determining which resources and operations (potentially provided
by downstream services) the user should be allowed to access.
If you design solid authentication and authorization strategies at the gate, you
can circumvent the need to delegate the original caller’s security context all the
way through to your application’s data tier.

● Assume external systems are insecure. If you don’t own it, don’t assume security
is taken care of for you.

● Reduce surface area. Avoid exposing information that is not required. By doing
so, you are potentially opening doors that can lead to additional vulnerabilities.
Also, handle errors gracefully; don’t expose any more information than is re-
quired when returning an error message to the end user.

● Fail to a secure mode. If your application fails, make sure it does not leave
sensitive data unprotected. Also, do not provide too much detail in error
messages; meaning don’t include details that could help an attacker exploit
a vulnerability in your application. Write detailed error information to the
Windows event log.

● Remember you are only as secure as your weakest link. Security is a concern
across all of your application tiers.

● If you don’t use it, disable it. You can remove potential points of attack by
disabling modules and components that your application does not require. For
example, if your application doesn’t use output caching, then you should disable
the ASP.NET output cache module. If a future security vulnerability is found in
the module, your application is not threatened.

Summary
This chapter has provided some foundation material to prepare you for the rest of
the guide. It has described the goals of the guide and presented its overall structure.
Make sure you are familiar with the key terminology and principles introduced in
this chapter, because these are used and referenced extensively throughout the
forthcoming chapters.





2
Security Model for ASP.NET
Applications

This chapter introduces .NET Web application security. It provides an overview
of the security features and services that span the tiers of a typical .NET Web
application.

The goal of the chapter is to:
● Provide a frame of reference for typical .NET Web applications.
● Identify the authentication, authorization, and secure communication security

features provided by the various implementation technologies used to build
.NET Web applications.

● Identify gatekeepers and gates that can be used in your application to enforce
trust boundaries.

.NET Web Applications
This section provides a brief introduction to .NET Web applications and describes
their characteristics both from a logical and physical viewpoint. It also provides an
introduction to the various implementation technologies used to build .NET Web
applications.

Logical Tiers
Logical application architecture views any system as a set of cooperating services
grouped in the following layers:
● User Services
● Business Services
● Data Services



Building Secure ASP.NET Applications10

The value of this logical architecture view is to identify the generic types of services
invariably present in any system, to ensure proper segmentation, and to drive the
definition of interfaces between tiers. This segmentation allows you to make more
discreet architecture and design choices when implementing each layer, and to
build a more maintainable application.

The layers can be described as follows:
● User Services are responsible for the client interaction with the system and

provide a common bridge into the core business logic encapsulated by compo-
nents within the Business Services layer. Traditionally, User Services are associ-
ated most often with interactive users. However, they also perform the initial
processing of programmatic requests from other systems, where no visible user
interface is involved. Authentication and authorization, the precise nature of
which varies depending upon the client type, are typically performed within the
User Services layer.

● Business Services provide the core functionality of the system and encapsulate
business logic. They are independent from the delivery channel and back-end
systems or data sources. This provides the stability and flexibility necessary to
evolve the system to support new and different channels and back-end systems.
Typically, to service a particular business request involves a number of cooperat-
ing components within the Business Services layer.

● Data Services provide access to data (hosted within the boundaries of the sys-
tem), and to other (back-end) systems through generic interfaces, which are
convenient to use from components within the Business Services layer. Data
Services abstract the multitude of back-end systems and data sources, and
encapsulate specific access rules and data formats.

The logical classification of service types within a system may correlate with, but is
relatively independent from, the possible physical distribution of the components
implementing the services.

It is also important to remember that the logical tiers can be identified at any level
of aggregation; that is, the tiers can be identified for the system as a whole (in the
context of its environment and external interactions) and for any contained sub-
system. For example, each remote node that hosts a Web service consists of User
Services (handling incoming requests and messages), Business Services, and Data
Services.

Physical Deployment Models
The three logical service layers described earlier, in no way imply specific numbers
of physical tiers. All three logical services may be physically located on the same
computer, or they may be spread across multiple computers.



Chapter 2: Security Model for ASP.NET Applications 11

The Web Server as an Application Server
A common deployment pattern for .NET Web applications is to locate business and
data access components on the Web server. This minimizes the network hops, which
can help performance. This model is shown in Figure 2.1.

UI
ASP.NET

Web Server Database Server

Component Services
Enterprise Services

Communication
Web Services

Remoting

Data Access
ADO.NET

SQL 
Server

Figure 2.1
The Web server as an application server

Remote Application Tier
The remote application tier is a common deployment pattern, particularly for
Internet scenarios where the Web tier is self-contained within a perimeter network
(also known as DMZ, demilitarized zone, and screened subnet) and is separated
from end users and the remote application tier with packet filtering firewalls. The
remote application tier is shown in Figure 2.2.

Application Server Database Server

Component Services
Enterprise Services

Communication
Web Services

Remoting

Data Access
ADO.NET

UI
ASP.NET

Web Server

SQL 
Server

Figure 2.2
The introduction of a remote application tier



Building Secure ASP.NET Applications12

Implementation Technologies
.NET Web applications typically implement one or more of the logical services by
using the following technologies:
● ASP.NET
● Enterprise Services
● Web Services
● .NET Remoting
● ADO.NET and Microsoft® SQL Server™ 2000
● Internet Protocol Security (IPSec)
● Secure Sockets Layer (SSL)

ASP.NET
ASP.NET is typically used to implement User Services. ASP.NET provides a
pluggable architecture that can be used to build Web pages. For more information
about ASP.NET, see the following resources:
● Chapter 8, “ASP.NET Security”
● “ASP.NET” in the “Reference Hub” section of this guide

Enterprise Services

Enterprise Services provide infrastructure-level services to applications. These
include distributed transactions and resource management services such as object
pooling for .NET components. For more information about Enterprise Services, see
the following resources:
● Chapter 9, “Enterprise Services Security”
● “Understanding Enterprise Services (COM+) in .NET” on MSDN
● “Enterprise Services” in the “Reference Hub” section of this guide

Web Services
Web Services enable the exchange of data and the remote invocation of application
logic using SOAP-based message exchanges to move data through firewalls and
between heterogeneous systems. For more information about Web Services, see the
following resources:
● Chapter 10, “Web Services Security”
● “XML Web Services Development Center” on MSDN
● “Web Services” in the “Reference Hub” section of this guide



Chapter 2: Security Model for ASP.NET Applications 13

.NET Remoting

.NET Remoting provides a framework for accessing distributed objects across
process and machine boundaries. For more information about .NET Remoting, see
the following resources:
● Chapter 11, “.NET Remoting Security”
● “.NET Remoting” in the “Reference Hub” section of this guide

ADO.NET and SQL Server 2000
ADO.NET provides data access services. It is designed from the ground up for
distributed Web applications, and it has rich support for the disconnected scenarios
inherently associated with Web applications. For more information about
ADO.NET, see the following resources:
● Chapter 12, “Data Access Security”
● “ADO.NET” in the “Reference Hub” section of this guide

SQL Server provides integrated security that uses the operating system authentica-
tion mechanisms (Kerberos or NTLM). Authorization is provided by logons and
granular permissions that can be applied to individual database objects. For more
information about SQL Server 2000, see the following resources:
● Chapter 13, “Data Access Security”

Internet Protocol Security (IPSec)
IPSec provides point-to-point, transport level encryption and authentication ser-
vices. For more information about IPSec, see the following resources:
● Chapter 4, “Secure Communication”
● IPSec – The New Security Standard for the Internet, Intranets and Virtual Private

Networks by Naganand Doraswamy and Dan Harkins (Prentice Hall PTR, ISBN;
ISBN: 0-13-011898-2); Chapter 4 is available on TechNet

Secure Sockets Layer (SSL)
SSL provides a point-to-point secure communication channel. Data sent over the
channel is encrypted. For more information about SSL, see the following resources:
● Chapter 4, “Secure Communication”
● Microsoft® Windows® 2000 and IIS 5.0 Administrator’s Pocket Consultant (Microsoft

Press, ISBN: 0-7356-1024-X); Chapter 6 is available on TechNet



Building Secure ASP.NET Applications14

Security Architecture
Figure 2.3 shows the remote application tier model together with the set of security
services provided by the various technologies introduced earlier. Authentication
and authorization occurs at many individual points throughout the tiers. These
services are provided primarily by Internet Information Services (IIS), ASP.NET,
Enterprise Services, and SQL Server. Secure communication channels are also
applied throughout the tiers and stretch from the client browser or device, right
through to the database. Channels are secured with a combination of Secure Sockets
Layer (SSL) or IPSec.

IIS/ASP.NET
Web 

Application

Clients

Secure Communication (SSL / IPSec)

IIS/ASP.NET
Web Services

Enterprise Services

IIS/ASP.NET
Remoting

SQL 
Server

Web Server
Database 

Server

Authentication
RPC

Authorization
ES (COM+) Roles
NTFS Permissions

RPC
None

Connect
Cal

Packet
Integrity
Privacy

Authentication
Windows 

Forms, Passport, None (Custom)

Authorization
Web Permissions, 

NTFS Permissions, URL authz, 
File authz, Principal permissions, 

.NET Roles

Authentication
Windows. SQL
Authorization

Logins, 
Permissions, 

Roles

IIS
Anonymous

Basic
Digest

Integrated Windows
Certificate

Figure 2.3
Security architecture

Security Across the Tiers
The authentication, authorization, and secure communication features provided by
the technologies discussed earlier are summarized in Table 2.1.



Chapter 2: Security Model for ASP.NET Applications 15

Table 2.1: Security features

Technology Authentication Authorization Secure
Communication

IIS Anonymous IP/DNS Address SSL
Basic Restrictions
Digest Web Permissions
Windows Integrated NTFS Permissions;
(Kerberos/NTLM) Windows Access
Certificate Control Lists (ACLs)

on requested files

ASP.NET None (Custom) File Authorization
Windows URL Authorization
Forms Principal Permissions
Passport .NET Roles

Web Services Windows File Authorization SSL and Message
None (Custom) URL Authorization level encryption
Message level Principal Permissions
authentication .NET Roles

Remoting Windows File Authorization SSL and message
URL Authorization level encryption
Principal Permissions
.NET Roles

Enterprise Windows Enterprise Services Remote Procedure
Services (COM+) Roles Call (RPC)

NTFS Permissions Encryption

SQL Server Windows Server logins SSL
2000 (Kerberos/NTLM) Database logins

SQL authentication Fixed database roles
User defined roles
Application roles
Object permissions

Windows 2000 Kerberos Windows ACLs IPSec
NTLM

Authentication
The .NET Framework on Windows 2000 provides the following authentication
options:
● ASP.NET Authentication Modes
● Enterprise Services Authentication
● SQL Server Authentication



Building Secure ASP.NET Applications16

ASP.NET Authentication Modes
ASP.NET authentication modes include Windows, Forms, Passport, and None.
● Windows authentication. With this authentication mode, ASP.NET relies on IIS

to authenticate users and create a Windows access token to represent the authen-
ticated identity. IIS provides the following authentication mechanisms:
● Basic authentication. Basic authentication requires the user to supply creden-

tials in the form of a user name and password to prove their identity. It is a
proposed Internet standard based on RFC 2617. Both Netscape Navigator and
Microsoft Internet Explorer support Basic authentication. The user’s creden-
tials are transmitted from the browser to the Web server in an unencrypted
Base64 encoded format. Because the Web server obtains the user’s credentials
unencrypted, the Web server can issue remote calls (for example, to access
remote computers and resources) using the user’s credentials.

Note: Basic authentication should only be used in conjunction with a secure channel
(typically established by using SSL). Otherwise, user names and passwords can be
easily stolen with network monitoring software. If you use Basic authentication you
should use SSL on all pages (not just a logon page), because credentials are passed on
all subsequent requests. For more information about using Basic authentication with
SSL, see Chapter 8, “ASP.NET Security.”

● Digest authentication. Digest authentication, introduced with IIS 5.0, is
similar to Basic authentication except that instead of transmitting the user’s
credentials unencrypted from the browser to the Web server, it transmits a
hash of the credentials. As a result it is more secure, although it requires an
Internet Explorer 5.0 or later client and specific server configuration.

● Integrated Windows authentication. Integrated Windows Authentication
(Kerberos or NTLM depending upon the client and server configuration) uses
a cryptographic exchange with the user’s Internet Explorer Web browser to
confirm the identity of the user. It is supported only by Internet Explorer (and
not by Netscape Navigator), and as a result tends to be used only in intranet
scenarios, where the client software can be controlled. It is used only by the
Web server if either anonymous access is disabled or if anonymous access is
denied through Windows file system permissions.

● Certificate authentication. Certificate authentication uses client certificates to
positively identify users. The client certificate is passed by the user’s browser
(or client application) to the Web server. (In the case of Web services, the Web
services client passes the certificate by means of the ClientCertificates prop-
erty of the HttpWebRequest object). The Web server then extracts the user’s
identity from the certificate. This approach relies on a client certificate being
installed on the user’s computer and as a result tends to be used mostly in
intranet or extranet scenarios where the user population is well known and
controlled. IIS, upon receipt of a client certificate, can map the certificate to
a Windows account.



Chapter 2: Security Model for ASP.NET Applications 17

● Anonymous authentication. If you do not need to authenticate your clients
(or you implement a custom authentication scheme), IIS can be configured for
Anonymous authentication. In this event, the Web server creates a Windows
access token to represent all anonymous users with the same anonymous (or
guest) account. The default anonymous account is IUSR_MACHINENAME,
where MACHINENAME is the NetBIOS name of your computer specified at
install time.

● Passport authentication. With this authentication mode, ASP.NET uses the
centralized authentication services of Microsoft Passport. ASP.NET provides a
convenient wrapper around functionality exposed by the Microsoft Passport
Software Development Kit (SDK), which must be installed on the Web server.

● Forms authentication. This approach uses client-side redirection to forward
unauthenticated users to a specified HTML form that allows them to enter their
credentials (typically user name and password). These credentials are then
validated and an authentication ticket is generated and returned to the client.
The authentication ticket maintains the user identity and optionally a list of roles
that the user is a member of for the duration of the user’s session.
Forms authentication is sometimes used solely for Web site personalization. In
this case, you need write little custom code because ASP.NET handles much of
the process automatically with simple configuration. For personalization sce-
narios, the cookie needs to hold only the user name.

Note: Forms authentication sends the user name and password to the Web server in plain
text. As a result, you should use Forms authentication in conjunction with a channel
secured by SSL. For continued protection of the authentication cookie transmitted on
subsequent requests, you should consider using SSL for all pages within your application
and not just the logon page.

● None. None indicates that you either don’t want to authenticate users or that
you are using a custom authentication protocol.

More Information

For more details about ASP.NET authentication, see Chapter 8, “ASP.NET Security.”

Enterprise Services Authentication
Enterprises services authentication is performed by using the underlying Remote
Procedure Call (RPC) transport infrastructure, which in turn uses the operating
system Security Service Provider Interface (SSPI). Clients of Enterprise Services
applications may be authenticated using Kerberos or NTLM authentication.

A serviced component can be hosted in a Library application or Server application.
Library applications are hosted within client processes and as a result assume the
client’s identity. Server applications run in separate server processes under their
own identity. For more information about identity, see the “Identities and Princi-
pals” section later in this chapter.



Building Secure ASP.NET Applications18

The incoming calls to a serviced component can be authenticated at the following
levels:
● Default: The default authentication level for the security package is used.
● None: No authentication occurs.
● Connect: Authentication occurs only when the connection is made.
● Call: Authenticates at the start of each remote procedure call.
● Packet: Authenticates and verifies that all call data is received.
● Packet Integrity: Authenticates and verifies that none of the data has been

modified in transit.
● Packet Privacy: Authenticates and encrypts the packet, including the data and

the sender’s identity and signature.

More Information

For more information about Enterprise Services authentication, see Chapter 9,
“Enterprise Services Security.”

SQL Server Authentication
SQL Server can authenticate users by using Windows authentication (NTLM or
Kerberos) or can use its own built-in authentication scheme referred to as SQL
authentication. The following two options are available:
● SQL Server and Windows. Clients can connect to an instance of Microsoft SQL

Server by using either SQL Server authentication or Windows authentication.
This is sometimes referred to as mixed mode authentication.

● Windows Only. The user must connect to the instance of Microsoft SQL Server
by using Windows authentication.

More Information

The relative merits of each approach are discussed in Chapter 12, “Data Access
Security.”

Authorization
The .NET Framework on Windows 2000 provides of the following authorization
options:
● ASP.NET Authorization Options
● Enterprise Services Authorization
● SQL Server Authorization

ASP.NET Authorization Options
ASP.NET authorization options can be used by ASP.NET Web applications, Web
services and remote components. ASP.NET provides the following authorization
options:



Chapter 2: Security Model for ASP.NET Applications 19

● URL Authorization. This is an authorization mechanism, configured by settings
within machine and application configuration files. URL Authorization allows
you to restrict access to specific files and folders within your application’s
Uniform Resource Identifier (URI) namespace. For example, you can selectively
deny or allow access to specific files or folders (addressed by means of a URL) to
nominated users. You can also restrict access based on the user’s role member-
ship and the type of HTTP verb used to issue a request (GET, POST, and so on).
URL Authorization requires an authenticated identity. This can be obtained by a
Windows or ticket-based authentication scheme.

● File Authorization. File authorization applies only if you use one of the IIS-
supplied Windows authentication mechanisms to authenticate callers and
ASP.NET is configured for Windows authentication.
You can use it to restrict access to specified files on a Web server. Access permis-
sions are determined by Windows ACLs attached to the files.

● Principal Permission Demands. Principal permission demands can be used
(declaratively or programmatically) as an additional fine-grained access control
mechanism. They allow you to control access to classes, methods, or individual
code blocks based on the identity and group membership of individual users.

● .NET Roles. .NET roles are used to group together users who have the same
permissions within your application. They are conceptually similar to previous
role-based implementations, for example Windows groups and COM+ roles.
However, unlike these earlier approaches, .NET roles do not require authenti-
cated Windows identities and can be used with ticket-based authentication
schemes such as Forms authentication.
.NET roles can be used to control access to resources and operations and they can
be configured both declaratively and programmatically.

More Information

For more information about ASP.NET authorization, see Chapter 8, “ASP.NET
Security.”

Enterprise Services Authorization
Access to functionality contained in serviced components within Enterprise Services
applications is governed by Enterprise Services role membership. These are differ-
ent from .NET roles and can contain Windows group or user accounts. Role mem-
bership is defined within the COM+ catalog and is administered by using the
Component Services tool.

More Information

For more information about Enterprise Services authorization, see Chapter 9,
“Enterprise Services Security.”



Building Secure ASP.NET Applications20

SQL Server Authorization
SQL Server allows fine-grained permissions that can be applied to individual
database objects. Permissions may be based on role membership (SQL Server
provides fixed database roles, user defined roles, and application roles), or
permission may be granted to individual Windows user or group accounts.

More Information

For more information about SQL Server authorization, see Chapter 12, “Data Access
Security.”

Gatekeepers and Gates
Throughout the remainder of this document, the term gatekeeper is used to identify
the technology that is responsible for a gate. A gate represents an access control
point (guarding a resource) within an application. For example, a resource might be
an operation (represented by a method on an object) or a database or file system
resource.

Each of the core technologies listed earlier provide gatekeepers for access authoriza-
tion. Requests must pass through a series of gates before being allowed to access the
requested resource or operation. The following describes the gates the requests
must pass through:
● IIS provides a gate when you authenticate users (that is, you disable Anonymous

authentication). IIS Web permissions can be used as an access control mechanism
to restrict the capabilities of Web users to access specific files and folders. Unlike
NTFS file permissions, Web permissions apply to all Web users, as opposed to
individual users or groups. NTFS file permissions provide further restrictions on
Web resources such as Web pages, images files, and so on. These restrictions
apply to individual users or groups.
IIS checks Web permissions, followed by NTFS file permissions. A user must
be authorized by both mechanisms for them to be able to access the file or folder.
A failed Web permission check results in IIS returning an HTTP 403 – Access
Forbidden response, whereas a failed NTFS permission check results in IIS
returning an HTTP 401 – Access Denied.

● ASP.NET provides various configurable and programmatic gates. These include
URL Authorization, File Authorization, Principal Permission demands, and .NET
Roles.

● The Enterprise Services gatekeeper uses Enterprise Services roles to authorize
access to business functionality.

● SQL Server 2000 includes a series of gates that include server logins, database
logins, and database object permissions.

● Windows 2000 provides gates using ACLs attached to secure resources.



Chapter 2: Security Model for ASP.NET Applications 21

The bottom line is that gatekeepers perform authorization based on the identity of
the user or service calling into the gate and attempting to access a specific resource.
The value of multiple gates is in-depth security with multiple lines of defense. Table
2.2 summaries the set of gatekeepers and identifies for each one the gates that they
are responsible for.

Table 2.2: Gatekeepers responsibilities and the gates they provide

Gatekeeper Gates

Windows Operating Logon rights (positive and negative, for example “Deny logon
System locally”)

Other privileges (for example “Act as part of the operating system”)
Access checks against secured resources such as the registry and file
system. Access checks use ACLs attached to the secure resources,
which specify who is and who is not allowed to access the resource
and also the types of operation that may be permitted.
TCP/IP filtering
IP Security

IIS Authentication (Anonymous, Basic, Digest, Integrated, Certificate)
IP address and domain name restrictions (these can be used as an
additional line of defense, but should not be relied upon due to the
relative ease of spoofing IP addresses).
Web permissions
NTFS permissions

ASP.NET URL Authorization
File Authorization
Principal Permission Demands
.NET Roles

Enterprise Services Windows (NTLM / Kerberos) authentication
Enterprise Services (COM+) roles
Impersonation levels

Web Services Uses gates provided by IIS and ASP.NET

Remoting Uses gates provided by the host. If hosted in ASP.NET it uses the
gates provided by IIS and ASP.NET. If hosted in a Windows service,
then you must develop a custom solution.

ADO.NET Connection strings. Credentials may be explicit or you may use
Windows authentication (for example, if you connect to SQL Server)

SQL Server Server logins
Database logins
Database object permissions

By using the various gates throughout the tiers of your application, you can filter
out users that should be allowed access to your back-end resources. The scope of
access is narrowed by successive gates which become more and more granular as
the request proceeds through the application to the back-end resources.



Building Secure ASP.NET Applications22

Consider the Internet-based application example using IIS that is shown in Figure 2.4.

= Gatekeeper

Anonymous 
Access Disabled

IIS
URL 

AuthZ
File 

AuthZ

10,000 
Users

1,000 
Users

100 
Users

10 
Users

Imperative 
Principal 

Permission 
Demands

ASP.NET

Role Membership 
Demands

In
te

rn
et

 U
se

r 
P

op
ul

at
io

n

G

G G G G

Figure 2.4
Filtering users with gatekeepers

Figure 2.4 illustrates the following:
● You can disable Anonymous authentication in IIS. As a result, only accounts that

IIS is able to authenticate are allowed access. This might reduce the potential
number of users to 10,000.

● Next, in ASP.NET you use URL Authorization which might reduce the user count
to 1,000 users.

● File authorization might further narrow access down to 100 users.
● Finally, your Web application code might allow only 10 users to access your

restricted resource, based on specific role membership.

Identities and Principals
.NET security is layered on top of Windows security. The user centric concept of
Windows security is based on security context provided by a logon session while
.NET security is based on IPrincipal and IIdentity objects.

In Windows programming when you want to know the security context code is
running under, the identity of the process owner or currently executing thread is
consulted. With .NET programming, if you want to query the security context of
the current user, you retrieve the current IPrincipal object from
Thread.CurrentPrincipal.



Chapter 2: Security Model for ASP.NET Applications 23

The .NET Framework uses identity and principal objects to represent users when
.NET code is running and together they provide the backbone of .NET role-based
authorization.

Identity and principal objects must implement the IIdentity and IPrincipal inter-
faces respectively. These interfaces are defined within the System.Security.Principal
namespace. Common interfaces allow the .NET Framework to treat identity and
principal objects in a polymorphic fashion, regardless of the underlying implemen-
tation details.

The IPrincipal interface allows you to test role membership through an IsInRole
method and also provides access to an associated IIdentity object.

public interface IPrincipal
{
  bool IsInRole( string role );
  IIdentity Identity {get;}
}

The IIdentity interface provides additional authentication details such as the name
and authentication type.

public interface IIdentity
{
  string authenticationType {get;}
  bool IsAuthenticated {get;}
  string Name {get;}
}

The .NET Framework supplies a number of concrete implementations of IPrincipal
and IIdentity as shown in Figure 2.5 and described in the following sections.

Custom

WindowsPrincipalGenericPrincipal

IPrincipal

IIdentity

WindowsIdentityGenericIdentity

PassportIdentity

FormsIdentity

Custom

Figure 2.5
IPrincipal and IIdentity implementation classes



Building Secure ASP.NET Applications24

WindowsPrincipal and WindowsIdentity
The .NET version of a Windows security context is divided between two classes:
● WindowsPrincipal. This class stores the roles associated with the current Win-

dows user. The WindowsPrincipal implementation treats Windows groups as
roles. The IPrncipal.IsInRole method returns true or false based on the user’s
Windows group membership.

● WindowsIdentity. This class holds the identity part of the current user’s security
context and can be obtained from the static WindowsIdentity.GetCurrent()
method. This returns a WindowsIdentity object that has a Token property that
returns an IntPtr that represents a Windows handle to the access token associ-
ated with the current execution thread. This token can then be passed to native
Win32® application programming interface (API) functions such as
GetTokenInformation, SetTokenInformation, CheckTokenMembership and so
on, to retrieve security information about the token.

Note: The static WindowsIdentity.GetCurrent() method returns the identity of the currently
executing thread, which may or may not be impersonating. This is similar to the Win32
GetUserName API.

GenericPrincipal and Associated Identity Objects
These implementations are very simple and are used by applications that do not use
Windows authentication and where the application does not need complex repre-
sentations of a principal. They can be created in code very easily and as a result a
certain degree of trust must exist when an application deals with a
GenericPrincipal.

If you are relying upon using the IsInRole method on the GenericPrincipal in
order to make authorization decisions, you must trust the application that sends
you the GenericPrincipal. This is in contrast to using WindowsPrincipal objects,
where you must trust the operating system to provide a valid WindowsPrincipal
object with an authenticated identity and valid group/role names.

The following types of identity object can be associated with the GenericPrincipal
class:
● FormsIdentity. This class represents an identity that has been authenticated with

Forms authentication. It contains a FormsAuthenticationTicket which contains
information about the user’s authentication session.

● PassportIdentity. This class represents an identity that has been authenticated
with Passport authentication and contains Passport profile information.

● GenericIdentity. This class represents a logical user that is not tied to any par-
ticular operating system technology and is typically used in association with
custom authentication and authorization mechanisms.



Chapter 2: Security Model for ASP.NET Applications 25

ASP.NET and HttpContext.User
Typically, Thread.CurrentPrincipal is checked in .NET code before any authoriza-
tion decisions are made. ASP.NET, however, provides the authenticated user’s
security context using HttpContext.User.

This property accepts and returns an IPrincipal interface. The property contains an
authenticated user for the current request. ASP.NET retrieves HttpContext.User
when it makes authorization decisions.

When you use Windows authentication, the Windows authentication
module automatically constructs a WindowsPrincipal object and stores it in
HttpContext.User. If you use other authentication mechanisms such as Forms
or Passport, you must construct a GenericPrincipal object and store it in
HttpContext.User.

ASP.NET Identities
At any given time during the execution of an ASP.NET Web application, there may
be multiple identities present during a single request. These identities include:
● HttpContext.User returns an IPrincipal object that contains security information

for the current Web request. This is the authenticated Web client.
● WindowsIdentity.GetCurrent() returns the identity of the security context of

the currently executing Win32 thread. By default, this identity is ASPNET; the
default account used to run ASP.NET Web applications. However, if the Web
application has been configured for impersonation, the identity represents the
authenticated user (which if IIS Anonymous authentication is in effect, is
IUSR_MACHINE).

● Thread.CurrentPrincipal returns the principal of the currently executing .NET
thread which rides on top of the Win32 thread.

More Information
● For a detailed analysis of ASP.NET identity for a combination of Web application

configurations (both with and without impersonation), see “ASP.NET Identity
Matrix” within the “Reference” section of this guide.

● For more information about creating your own IPrincipal implementation, see
Chapter 8, “ASP.NET Security,” and “How to implement IPrincipal” in the
“Reference” section of this guide.

Remoting and Web Services
In the current version of the .NET Framework, Remoting and Web services do not
have their own security model. They both inherit the security feature of IIS and
ASP.NET.



Building Secure ASP.NET Applications26

Although there is no security built into the remoting architecture, it was designed
with security in mind. It is left up to the developer and/or administrator to incor-
porate certain levels of security in remoting applications. Whether or not principal
objects are passed across remoting boundaries depends on the location of the client
and remote object, for example:
● Remoting within the same process. When remoting is used between objects in

the same or separate application domain(s), the remoting infrastructure copies a
reference to the IPrincipal object associated with the caller’s context to the
receiver’s context.

● Remoting across processes. In this case, IPrincipal objects are not transmitted
between processes. The credentials used to construct the original IPrincipal must
be transmitted to the remote process, which may be located on a separate com-
puter. This allows the remote computer to construct an appropriate IPrincipal
object based on the supplied credentials.

Summary
This chapter has introduced the full set of authentication and authorization options
provided by the various .NET related technologies. By using multiple gatekeepers
throughout your .NET Web application, you will be able to implement a defense-in-
depth security strategy. To summarize:
● ASP.NET applications can use the existing security features provided by Win-

dows and IIS.
● A combination of SSL and IPSec can be used to provide secure communications

across the layers of a .NET Web application; for example, from browser to data-
base.

● Use SSL to protect the clear text credentials passed across the network when you
use Basic or Forms authentication.

● .NET represents users who have been identified with Windows authentication
using a combination of the WindowsPrincipal and WindowsIdentity classes.

● The GenericPrincipal and GenericIdentity or FormsIdentity classes are used to
represent users who have been identified with non-Windows authentication
schemes, such as Forms authentication.

● You can create your own principal and identity implementations by creating
classes that implement IPrincipal and IIdentity.

● Within ASP.NET Web applications, the IPrincipal object that represents the
authenticated user is associated with the current HTTP Web request using the
HttpContext.User property.



Chapter 2: Security Model for ASP.NET Applications 27

● Gates are access control points within your application through which autho-
rized users can access resources or services. Gatekeepers are responsible for
controlling access to gates.

● Use multiple gatekeepers to provide a defense-in-depth strategy.

The next chapter, Chapter 3, “Authentication and Authorization,” provides addi-
tional information to help you choose the most appropriate authentication and
authorization strategy for your particular application scenario.





3
Authentication and Authorization

Designing an authentication and authorization strategy for distributed Web appli-
cations is a challenging task. The good news is that proper authentication and
authorization design during the early phases of your application development
helps to mitigate many top security risks.

This chapter will help you design an appropriate authorization strategy for your
application and will also help answer the following key questions:
● Where should I perform authorization and what mechanisms should I use?
● What authentication mechanism should I use?
● Should I use Active Directory® directory service for authentication or should I

validate credentials against a custom data store?
● What are the implications and design considerations for heterogeneous and

homogenous platforms?
● How should I represent users who do not use the Microsoft® Windows®

operating system within my application?
● How should I flow user identity throughout the tiers of my application? When

should I use operating system level impersonation/delegation?

When you consider authorization, you must also consider authentication. The two
processes go hand in hand for two reasons:
● First, any meaningful authorization policy requires authenticated users.
● Second, the way in which you authenticate users (and specifically the way in

which the authenticated user identity is represented within your application)
determines the available gatekeepers at your disposal.
Some gatekeepers such as ASP.NET file authorization, Enterprise Services
(COM+) roles, and Windows ACLs, require an authenticated Windows identity
(in the form of a WindowsIdentity object that encapsulates a Windows access
token, which defines the caller’s security context). Other gatekeepers, such as



Building Secure ASP.NET Applications30

ASP.NET URL authorization and .NET roles, do not. They simply require an
authenticated identity; one that is not necessarily represented by a Windows
access token.

Designing an Authentication and Authorization Strategy
The following steps identify a process that will help you develop an authentication
and authorization strategy for your application:
1. Identify resources
2. Choose an authorization strategy
3. Choose the identities used for resource access
4. Consider identity flow
5. Choose an authentication approach
6. Decide how to flow identity

Identify Resources
Identify resources that your application needs to expose to clients. Typical resources
include:
● Web Server resources such as Web pages, Web services, static resources (HTML

pages and images).
● Database resources such as per-user data or application-wide data.
● Network resources such as remote file system resources and data from directory

stores such as Active Directory.

You must also identify the system resources that your application needs to access.
This is in contrast to resources that are exposed to clients. Examples of system
resources include the registry, event logs, and configuration files.

Choose an Authorization Strategy
The two basic authorization strategies are:
● Role based. Access to operations (typically methods) is secured based on the role

membership of the caller. Roles are used to partition your application’s user base
into sets of users that share the same security privileges within the application;
for example, Senior Managers, Managers and Employees .Users are mapped to
roles and if the user is authorized to perform the requested operation, the appli-
cation uses fixed identities with which to access resources. These identities are
trusted by the respective resource managers (for example, databases, the file
system, and so on).



Chapter 3: Authentication and Authorization 31

● Resource based. Individual resources are secured using Windows ACLs. The
application impersonates the caller prior to accessing resources, which allows
the operating system to perform standard access checks. All resource access
is performed using the original caller’s security context. This impersonation
approach severely impacts application scalability, because it means that connec-
tion pooling cannot be used effectively within the application’s middle tier.

In the vast majority of .NET Web applications where scalability is essential, a role-
based approach to authorization represents the best choice. For certain smaller scale
intranet applications that serve per-user content from resources (such as files) that
can be secured with Windows ACLs against individual users, a resource-based
approach may be appropriate.

The recommended and common pattern for role-based authorization is:
● Authenticate users within your front-end Web application.
● Map users to roles.
● Authorize access to operations (not directly to resources) based on role member-

ship.
● Access the necessary back-end resources (required to support the requested and

authorized operations) by using fixed service identities. The back-end resource
managers (for example, databases) trust the application to authorize callers and
are willing to grant permissions to the trusted service identity or identities.
For example, a database administrator may grant access permissions exclusively
to a specific HR application (but not to individual users).

More Information
● For more information about the two contrasting authorization approaches, see

“Authorization Approaches” later in this chapter.
● For more information about role-based authorization and the various types

of roles that can be used, see “Role-Based Authorization” later in this chapter.

Choose the Identities Used for Resource Access
Answer the question, “who will access resources?”

Choose the identity or identities that should be used to access resources across the
layers of your application. This includes resources accessed from Web-based appli-
cations, and optionally Web services, Enterprise Services, and .NET Remoting
components. In all cases, the identity used for resource access can be:
● Original caller’s identity. This assumes an impersonation/delegation model in

which the original caller identity can be obtained and then flowed through each
layer of your system. The delegation factor is a key criteria used to determine
your authentication mechanism.



Building Secure ASP.NET Applications32

● Process identity. This is the default case (without specific impersonation). Local
resource access and downstream calls are made using the current process iden-
tity. The feasibility of this approach depends on the boundary being crossed,
because the process identity must be recognized by the target system.

This implies that calls are made in one of the following ways:
● Within the same Windows security domain
● Across Windows security domains (using trust and domain accounts, or

duplicated user names and passwords where no trust relationship exists)
● Service account. This approach uses a (fixed) service account. For example:

● For database access this might be a fixed SQL user name and password
presented by the component connecting to the database.

● When a fixed Windows identity is required, use an Enterprise Services server
application.

● Custom identity. When you don’t have Windows accounts to work with, you can
construct your own identities (using IPrincipal and IIdentity implementations)
that can contain details that relate to your own specific security context. For
example, these could include role lists, unique identifiers, or any other type of
custom information.
By implementing your custom identity with IPrincipal and IIdentity types and
placing them in the current Web context (using HttpContext.User), you immedi-
ately benefit from built-in gatekeepers such as .NET roles and
PrincipalPermission demands.

Consider Identity Flow
To support per-user authorization, auditing, and per-user data retrieval you may
need to flow the original caller’s identity through various application tiers and
across multiple computer boundaries. For example, if a back-end resource manager
needs to perform per-caller authorization, the caller’s identity must be passed to
that resource manager.

Based on resource manager authorization requirements and the auditing require-
ments of your system, identify which identities need to be passed through your
application.

Choose an Authentication Approach
Two key factors that influence the choice of authentication approach are first and
foremost the nature of your application’s user base (what types of browsers are they
using and do they have Windows accounts), and secondly your application’s
impersonation/delegation and auditing requirements.



Chapter 3: Authentication and Authorization 33

More Information
For more detailed considerations that help you to choose an authentication mecha-
nism for your application, see “Choosing an Authentication Mechanism” later in
this chapter.

Decide How to Flow Identity
You can flow identity (to provide security context) at the application level or you
can flow identity and security context at the operating system level.

To flow identity at the application level, use method and stored procedure param-
eters. Application identity flow supports:
● Per-user data retrieval using trusted query parameters

    SELECT x,y FROM SomeTable WHERE username="bob"

● Custom auditing within any application tier

Operating system identity flow supports:
● Platform level auditing (for example, Windows auditing and SQL Server

auditing)
● Per-user authorization based on Windows identities

To flow identity at the operating system level, you can use the impersonation/
delegation model. In some circumstances you can use Kerberos delegation, while in
others (where perhaps the environment does not support Kerberos) you may need
to use other approaches such as, using Basic authentication. With Basic authentica-
tion, the user’s credentials are available to the server application and can be used to
access downstream network resources.

More Information
For more information about flowing identity and how to obtain an impersonation
token with network credentials (that is, supports delegation), see “Flowing Iden-
tity” later in this chapter.

Authorization Approaches
There are two basic approaches to authorization:
● Role based. Users are partitioned into application-defined, logical roles. Mem-

bers of a particular role share the same privileges within the application. Access
to operations (typically expressed by method calls) is authorized based on the
role-membership of the caller.



Building Secure ASP.NET Applications34

Resources are accessed using fixed identities (such as a Web application’s or Web
service’s process identity). The resource managers trust the application to cor-
rectly authorize users and they authorize the trusted identity.

● Resource based. Individual resources are secured using Windows ACLs. The
ACL determines which users are allowed to access the resource and also the
types of operation that each user is allowed to perform (read, write, delete, and
so on).
Resources are accessed using the original caller’s identity (using impersonation).

Role Based
With a role (or operations) based approach to security, access to operations (not
back-end resources) is authorized based on the role membership of the caller. Roles
(analyzed and defined at application design time) are used as logical containers that
group together users who share the same security privileges (or capabilities) within
the application. Users are mapped to roles within the application and role member-
ship is used to control access to specific operations (methods) exposed by the
application.

Where within your application this role mapping occurs is a key design criterion;
for example:
● On one extreme, role mapping might be performed within a back-end resource

manager such as a database. This requires the original caller’s security context to
flow through your application’s tiers to the back-end database.

● On the other extreme, role mapping might be performed within your front-end
Web application. With this approach, downstream resource managers are ac-
cessed using fixed identities that each resource manager authorizes and is
willing to trust.

● A third option is to perform role mapping somewhere in between the front-end
and back-end tiers; for example, within a middle tier Enterprise Services
application.

In multi-tiered Web applications, the use of trusted identities to access back-end
resource managers provides greater opportunities for application scalability (thanks
to connection pooling). Also, the use of trusted identities alleviates the need to flow
the original caller’s security context at the operating system level, something that
can be difficult (if not impossible in certain scenarios) to achieve.

Resource Based
The resource-based approach to authorization relies on Windows ACLs and the
underlying access control mechanics of the operating system. The application
impersonates the caller and leaves it to the operating system in conjunction with
specific resource managers (the file system, databases, and so on) to perform access
checks.



Chapter 3: Authentication and Authorization 35

This approach tends to work best for applications that provide access to resources
that can be individually secured with Windows ACLs, such as files. An example
would be an FTP application or a simple data driven Web application. The ap-
proach starts to break down where the requested resource consists of data that
needs to be obtained and consolidated from a number of different sources; for
example, multiple databases, database tables, external applications, or Web services.

The resource-based approach also relies on the original caller’s security context
flowing through the application to the back-end resource managers. This can
require complex configuration and significantly reduces the ability of a multi-tiered
application to scale to large numbers of users, because it prevents the efficient use
of pooling (for example, database connection pooling) within the application’s
middle tier.

Resource Access Models
The two contrasting approaches to authorization can be seen within the two most
commonly used resource-access security models used by .NET Web applications
(and distributed multi-tier applications in general). These are:
● The trusted subsystem model
● The impersonation/delegation model

Each model offers advantages and disadvantages both from a security and
scalability perspective. The next sections describe these models.

The Trusted Subsystem Model
With this model, the middle tier service uses a fixed identity to access downstream
services and resources. The security context of the original caller does not flow
through the service at the operating system level, although the application may
choose to flow the original caller’s identity at the application level. It may need to
do so to support back-end auditing requirements, or to support per-user data access
and authorization.

The model name stems from the fact that the downstream service (perhaps a data-
base) trusts the upstream service to authorize callers. Figure 3.1 on the next page
shows this model. Pay particular attention to the trust boundary. In this example,
the database trusts the middle tier to authorize callers and allow only authorized
callers to access the database using the trusted identity.



Building Secure ASP.NET Applications36

SQL 
Server

A

B

C

D

E

Role-Based 
Authorization

Trust Boundary

Database trusts the 
Web server. Web server 

authorizes users.

Web or Application Server Database Server

Trusted 
Service

Identity

Figure 3.1
The Trusted Subsystem model

The pattern for resource access in the trusted subsystem model is the following:
● Authenticate users
● Map users to roles
● Authorize based on role membership
● Access downstream resource manager using a fixed trusted identity

Fixed Identities
The fixed identity used to access downstream systems and resource managers is
often provided by a preconfigured Windows account, referred to as a service ac-
count. With a Microsoft SQL Server™ resource manager, this implies Windows
authentication to SQL Server.

Alternatively, some applications use a nominated SQL account (specified by a user
name and password in a connection string) to access SQL Server. In this scenario,
the database must be configured for SQL authentication.

For more information about the relative merits of Windows and SQL authentication
when communicating with SQL Server, see Chapter 12, “Data Access Security.”

Using Multiple Trusted Identities
Some resource managers may need to be able to perform slightly more fine-grained
authorization, based on the role membership of the caller. For example, you may
have two groups of users, one who should be authorized to perform read/write
operations and the other read-only operations.



Chapter 3: Authentication and Authorization 37

Consider the following approach with SQL Server:
● Create two Windows accounts, one for read operations and one for read/write

operations.
More generally, you have separate accounts to mirror application-specific roles.
For example, you might want to use one account for Internet users and another
for internal operators and/or administrators.

● Map each account to a SQL Server user-defined database role, and establish the
necessary database permissions for each role.

● Map users to roles within your application and use role membership to deter-
mine which account to impersonate before connecting to the database.

This approach is shown in Figure 3.2.

SQL 
Server

A

B

C

D

E

Web or Application Server Database Server

Role Mapping

Trust Boundary

Identity1 has read permissions
Identity2 has read/write permissions

Trusted Identity 1

Trusted Identity 2

Role1

Role2

Figure 3.2
Using multiple identities to access a database to support more fine-grained authorization

The Impersonation / Delegation Model
With this model, a service or component (usually somewhere within the logical
business services layer) impersonates the client’s identity (using operating system-
level impersonation) before it accesses the next downstream service. If the next
service in line is on the same computer, impersonation is sufficient. Delegation is
required if the downstream service is located on a remote computer.

As a result of the delegation, the security context used for the downstream resource
access is that of the client. This model is typically used for a couple of reasons:
● It allows the downstream service to perform per-caller authorization using the

original caller’s identity.
● It allows the downstream service to use operating system-level auditing features.



Building Secure ASP.NET Applications38

As a concrete example of this technique, a middle-tier Enterprise Services compo-
nent might impersonate the caller prior to accessing a database. The database is
accessed using a database connection tied to the security context of the original
caller. With this model, the database authenticates each and every caller and makes
authorization decisions based on permissions assigned to the individual caller’s
identity (or the Windows group membership of the caller). The impersonation/
delegation model is shown in Figure 3.3.

SQL 
Server

A

B

C

D

E

A

B

C

D

E

Caller 
Impersonation/Delegation

Web or Application 
Server

Database 
Server

Figure 3.3
The impersonation/delegation model

Choosing a Resource Access Model
The trusted subsystem model is used in the vast majority of Internet applications
and large scale intranet applications, primarily for scalability reasons. The imper-
sonation model tends to be used in smaller-scale applications where scalability is
not the primary concern and those applications where auditing (for reasons of non-
repudiation) is a critical concern.

Advantage of the Impersonation / Delegation Model
The primary advantage of the impersonation / delegation model is auditing (close
to the data). Auditing allows administrators to track which users have attempted to
access specific resources. Generally auditing is considered most authoritative if the
audits are generated at the precise time of resource access and by the same routines
that access the resource.

The impersonation / delegation model supports this by maintaining the user’s
security context for downstream resource access. This allows the back-end system
to authoritatively log the user and the requested access.



Chapter 3: Authentication and Authorization 39

Disadvantages of the Impersonation / Delegation Model
The disadvantages associated with the impersonation / delegation model include:
● Technology challenges. Most security service providers don’t support delega-

tion, Kerberos is the notable exception.
Processes that perform impersonation require higher privileges (specifically the
Act as part of the operating system privilege). (This restriction applies to Windows
2000 and will not apply to Windows .NET Server).

● Scalability. The impersonation / delegation model means that you cannot
effectively use database connection pooling, because database access is per-
formed by using connections that are tied to the individual security contexts of
the original callers. This significantly limits the application’s ability to scale to
large numbers of users.

● Increased administration effort. ACLs on back-end resources need to be main-
tained in such a way that each user is granted the appropriate level of access.
When the number of back-end resources increases (and the number of users
increases), a significant administration effort is required to manage ACLs.

Advantages of the Trusted Subsystem Model
The trusted subsystem model offers the following advantages:
● Scalability. The trusted subsystem model supports connection pooling, an

essential requirement for application scalability. Connection pooling allows
multiple clients to reuse available, pooled connections. It works with this model
because all back-end resource access uses the security context of the service
account, regardless of the caller’s identity.

● Minimizes back-end ACL management. Only the service account accesses back-
end resources (for example, databases). ACLs are configured against this single
identity.

● Users can’t access data directly. In the trusted-subsystem model, only the
middle-tier service account is granted access to the back-end resources. As a
result, users cannot directly access back-end data without going through the
application (and being subjected to application authorization).

Disadvantages of the Trusted Subsystem Model
The trusted-subsystem model suffers from a couple of drawbacks:
● Auditing. To perform auditing at the back end, you can explicitly pass (at the

application level) the identity of the original caller to the back end, and have the
auditing performed there. You have to trust the middle-tier and you do have a
potential repudiation risk. Alternatively, you can generate an audit trail in the
middle tier and then correlate it with back-end audit trails (for this you must
ensure that the server clocks are synchronized).



Building Secure ASP.NET Applications40

● Increased risk from server compromise. In the trusted-subsystem model, the
middle-tier service is granted broad access to back-end resources. As a result, a
compromised middle-tier service potentially makes it easier for an attacker to
gain broad access to back-end resources.

Flowing Identity
Distributed applications can be divided into multiple secure subsystems. For
example, a front-end Web application, a middle-tier Web service, a remote compo-
nent, and a database represent four different security subsystems. Each performs
authentication and authorization.

You must identify those subsystems that must flow the caller’s identity (and associ-
ated security context) to the next downstream subsystem in order to support autho-
rization against the original caller.

Application vs. Operating System Identity Flow
Strategies for flowing identities include using the delegation features of the
operating system or passing tickets and/or credentials at the application level.
For example:
● To flow identity at the application level, you typically pass credentials (or tick-

ets) using method arguments or stored procedure parameters.

Note: GenericPrincipal objects that carry the authenticated caller’s identity do not auto-
matically flow across processes. This requires custom code.

You can pass parameters to stored procedures that allow you to retrieve and
process user-specific data. For example:

SELECT CreditLimit From Table Where UserName="Bob"

This approach is sometimes referred to as a trusted query parameter approach.
● Operating system identity flow requires an extended form of impersonation

called delegation.

Impersonation and Delegation
Under typical circumstances, threads within a server application run using the
security context of the server process. The attributes that comprise the process’
security context are maintained by the process’ logon session and are exposed by
the process level Windows access token. All local and remote resource access is
performed using the process level security context that is determined by the
Windows account used to run the server process.



Chapter 3: Authentication and Authorization 41

Impersonation
When a server application is configured for impersonation, an impersonation token
is attached to the thread used to process a request. The impersonation token repre-
sents the security context of the authenticated caller (or anonymous user). Any local
resource access is performed using the thread impersonation token that results in
the use of the caller’s security context.

Delegation
If the server application thread attempts to access a remote resource, delegation is
required. Specifically, the impersonated caller’s token must have network creden-
tials. If it doesn’t, all remote resource access is performed as the anonymous user
(AUTHORITY\ANONYMOUS LOGON).

There are a number of factors that determine whether or not a security context can
be delegated. Table 3.1 shows the various IIS authentication types and for each one
indicates whether or not the security context of the authenticated caller can be
delegated.

Table 3.1: IIS Authentication types

Authentication Type Can Delegate Notes

Anonymous Depends If the anonymous account (by default IUSR_MACHINE) is
configured in IIS as a local account, it cannot be
delegated unless the local (Web server) and remote
computer have identical local accounts (with matching
usernames and passwords).
If the anonymous account is a domain account it can
be delegated.

Basic Yes If Basic authentication is used with local accounts, it
can be delegated if the local accounts on the local and
remote computers are identical. Domain accounts can
also be delegated.

Digest No

Integrated Windows Depends Integrated Windows authentication either results in
NTLM or Kerberos (depending upon the version of
operating system on client and server computer).
NTLM does not support delegation.
Kerberos supports delegation with a suitably configured
environment.
For more information, see “How To: Implement
Kerberos Delegation for Windows 2000” in the
References section of this guide.

(continued)



Building Secure ASP.NET Applications42

Authentication Type Can Delegate Notes

Client Certificates Depends Can be delegated if used with IIS certificate mapping
and the certificate is mapped to a local account that
is duplicated on the remote computer or is mapped to
a domain account.
This works because the credentials for the mapped
account are stored on the local server and are used to
create an Interactive logon session (which has network
credentials).
Active Directory certificate mapping does not support
delegation.

Important: Kerberos delegation under Windows 2000 is unconstrained. In other words, a user
may be able to make multiple network hops across multiple remote computers. To close this
potential security risk, you should limit the scope of the domain account’s reach by removing
the account from the Domain Users group and allow the account to be used only to log on to
specific computers.

Role-Based Authorization
Most .NET Web applications will use a role-based approach to authorization. You
need to consider the various role types and choose the one(s) most appropriate for
your application scenario. You have the following options:
● .NET roles
● Enterprise Services (COM+) roles
● SQL Server User Defined Database roles
● SQL Server Application roles

.NET Roles

.NET roles are extremely flexible and revolve around IPrincipal objects that contain
the list of roles that an authenticated identity belongs to. .NET roles can be used
within Web applications, Web services, or remote components hosted within
ASP.NET (and accessed using the HttpChannel).

You can perform authorization using .NET roles either declaratively using
PrincipalPermission demands or programmatically in code, using imperative
PrincipalPermission demands or the IPrincipal.IsInRole method.



Chapter 3: Authentication and Authorization 43

.NET Roles with Windows Authentication
If your application uses Windows authentication, ASP.NET automatically constructs
a WindowsPrincipal that is attached to the context of the current Web request
(using HttpContext.User). After the authentication process is complete and
ASP.NET has attached to object to the current request, it is used for all subsequent
.NET role-based authorization.

The Windows group membership of the authenticated caller is used to determine
the set of roles. With Windows authentication, .NET roles are the same as Windows
groups.

.NET Roles with non-Windows Authentication
If your application uses a non-Windows authentication mechanism such as Forms
or Passport, you must write code to create a GenericPrincipal object (or a custom
IPrincipal object) and populate it with a set of roles obtained from a custom authen-
tication data store such as a SQL Server database.

Custom IPrincipal Objects
The .NET Role-based security mechanism is extensible. You can develop your own
classes that implement IPrincipal and IIdentity and provide your own extended
role-based authorization functionality.

As long as the custom IPrincipal object (containing roles obtained from a custom
data store) is attached to the current request context (using HttpContext.User),
basic role-checking functionality is ensured.

By implementing the IPrincipal interface, you ensure that both the declarative and
imperative forms of PrincipalPermission demands work with your custom identity.
Furthermore, you can implement extended role semantics; for example, by provid-
ing an additional method such as IsInMultipleRoles( string [] roles ) which would
allow you to test and assert for membership of multiple roles.

More Information
● For more information about .NET role-based authorization, see Chapter 8,

“ASP.NET Security.”
● For more information about creating GenericPrincipal objects, see “How to use

Forms authentication with GenericPrincipal objects” in the Reference section of
this guide.



Building Secure ASP.NET Applications44

Enterprise Services (COM+) Roles
Using Enterprise Services (COM+) roles pushes access checks to the middle tier and
allows you to use database connection pooling when connecting to back-end data-
bases. However, for meaningful Enterprise Services (COM+) role-based authoriza-
tion, your front-end Web application must impersonate and flow the original
caller’s identity (using a Windows access token) to the Enterprise Services applica-
tion. To achieve this, the following entries must be placed in the Web application’s
Web.config file.

<authentication mode="Windows" />
<identity impersonate="true" />

If it is sufficient to use declarative checks at the method level (to determine which
users can call which methods), you can deploy your application and update role
membership using the Component Services administration tool.

If you require programmatic checks in method code, you lose some of the adminis-
trative and deployment advantages of Enterprise Services (COM+) roles, because
role logic is hard-coded.

SQL Server User Defined Database Roles
With this approach, you create roles in the database, assign permissions based on
the roles and map Windows group and user accounts to the roles. This approach
requires you to flow the caller’s identity to the back end (if you are using the pre-
ferred Windows authentication to SQL Server).

SQL Server Application Roles
With this approach, permissions are granted to the roles within the database, but
SQL Server application roles contain no user or group accounts. As a result, you lose
the granularity of the original caller.

With application roles, you are authorizing access to a specific application (as
opposed to a set of users). The application activates the role using a built-in stored
procedure that accepts a role name and password. One of the main disadvantages
of this approach is that it requires the application to securely manage credentials
(the role name and associated password).

More Information
For more information about SQL Server user defined database roles and application
roles, see Chapter 12, “Data Access Security.”



Chapter 3: Authentication and Authorization 45

.NET Roles versus Enterprise Services (COM+) Roles
The following table presents a comparison of the features of .NET roles and Enter-
prise Services (COM+) roles.

Table 3.2: Comparing Enterprise Services roles with .NET roles

Feature Enterprise Services Roles .NET Roles

Administration Component Services Custom
Administration Tool

Data Store COM+ Catalog Custom data store (for example, SQL
Server or Active Directory)

Declarative Yes Yes
[SecurityRole(“Manager”)] [PrincipalPermission(

  SecurityAction.Demand,
  Role=”Manager”)]

Imperative Yes Yes
ContextUtil.IsCallerInRole() IPrincipal.IsInRole

Class, Interface Yes Yes
and Method
Level
Granularity

Extensible No Yes
(using custom IPrincipal
implementation)

Available to all Only for components that Yes
.NET derive from ServicedComponent
components base class

Role Roles contain Windows group or When using WindowsPrincipals,
Membership user accounts roles ARE Windows groups – no extra

level of abstraction

Requires Yes No
explicit To obtain method level
Interface authorization, an interface must
implementation be explicitly defined and

implemented



Building Secure ASP.NET Applications46

Using .NET Roles
You can secure the following items with .NET roles:
● Files
● Folders
● Web pages (.aspx files)
● Web services (.asmx files)
● Objects
● Methods and properties
● Code blocks within methods

The fact that you can use .NET roles to protect operations (performed by methods
and properties) and specific code blocks means that you can protect access to local
and remote resources accessed by your application.

Note: The first four items in the preceding list (Files, folders, Web pages, and Web services)
are protected using the UrlAuthorizationModule, which can use the role membership of the
caller (and the caller’s identity) to make authorization decisions.

If you use Windows authentication, much of the work required to use .NET roles is
done for you. ASP.NET constructs a WindowsPrincipal object and the Windows
group membership of the user determines the associated role set.

To use .NET roles with a non-Windows authentication mechanism, you must write
code to:
● Capture the user’s credentials.
● Validate the user’s credentials against a custom data store such as a SQL Server

database.
● Retrieve a role list, construct a GenericPrincipal object and associate it with the

current Web request.
The GenericPrincipal object represents the authenticated user and is used for
subsequent .NET role checks, such as declarative PrincipalPermission demands
and programmatic IPrincipal.IsInRole checks.

More Information
For more information about the process involved in creating a GenericPrincipal
object for Forms authentication, see Chapter 8, “ASP.NET Security.”

Checking Role Membership
The following types of .NET role checks are available:



Chapter 3: Authentication and Authorization 47

Important: .NET role checking relies upon an IPrincipal object (representing the authenti-
cated user) being associated with the current request. For ASP.NET Web applications, the
IPrincipal object must be attached to HttpContext.User. For Windows Forms applications,
the IPrincipal object must be attached to Thread.CurrentPrincipal.

● Manual role checks. For fine-grained authorization, you can call the
IPrincipal.IsInRole method to authorize access to specific code blocks based
on the role membership of the caller. Both AND and OR logic can be used
when checking role membership.

● Declarative role checks (gates to your methods). You can annotate methods
with the PrincipalPermissionAttribute class (which can be shortened to
PrincipalPermission), to declaratively demand role membership. These support
OR logic only. For example you can demand that a caller is in at least one specific
role (for example, the caller must be a teller or a manager). You cannot specify
that a caller must be a manager and a teller using declarative checks.

● Imperative role checks (checks within your methods). You can call
PrincipalPermission.Demand within code to perform fine-grained authorization
logic. Logical AND and OR operations are supported.

Role Checking Examples
The following code fragments show some example role checks using programmatic,
declarative, and imperative techniques.
1. Authorizing Bob to perform an operation:

Note: Although you can authorize individual users, you should generally authorize based on
role membership which allows you to authorize sets of users who share the same privi-
leges within your application.

● Direct user name check

    GenericIdentity userIdentity = new GenericIdentity("Bob");
    if (userIdentity.Name=="Bob")
    {
    }

● Declarative check

    [PrincipalPermissionAttribute(SecurityAction.Demand, User="Bob")]
    public void DoPrivilegedMethod()
    {
    }

● Imperative check

    PrincipalPermission permCheckUser = new PrincipalPermission(
                                                   "Bob", null);
    permCheckUser.Demand();



Building Secure ASP.NET Applications48

2. Authorizing tellers to perform an operation:
● Direct role name check

    GenericIdentity userIdentity = new GenericIdentity("Bob");
    // Role names would be retrieved from a custom data store
    string[] roles = new String[]{"Manager", "Teller"};
    GenericPrincipal userPrincipal = new GenericPrincipal(userIdentity,
                                                          roles);
    if (userPrincipal.IsInRole("Teller"))
    {
    }

● Declarative check

    [PrincipalPermissionAttribute(SecurityAction.Demand, Role="Teller")]
    void SomeTellerOnlyMethod()
    {
    }

● Imperative check

    public SomeMethod()
    {
      PrincipalPermission permCheck = new PrincipalPermission(
                                                   null,"Teller");
      permCheck.Demand();
      // Only Tellers can execute the following code
      // Non members of the Teller role result in a security exception
      . . .
    }

3. Authorize managers OR tellers to perform operation:
● Direct role name check

    if (Thread.CurrentPrincipal.IsInRole("Teller") ||
        Thread.CurrentPrincipal.IsInRole("Manager"))
    {
      // Perform privileged operations
    }

● Declarative check

    [PrincipalPermissionAttribute(SecurityAction.Demand, Role="Teller"),
     PrincipalPermissionAttribute(SecurityAction.Demand, Role="Manager")]
    public void DoPrivilegedMethod()
    {
    …
    }



Chapter 3: Authentication and Authorization 49

● Imperative check

    PrincipalPermission permCheckTellers = new PrincipalPermission(
                                                       null,"Teller");
    PrincipalPermission permCheckManagers = new PrincipalPermission(
                                                       null,"Manager");
   (permCheckTellers.Union(permCheckManagers)).Demand();

4. Authorize only those people who are managers AND tellers to perform
operation:
● Direct role name check

    if (Thread.CurrentPrincipal.IsInRole("Teller") &&
        Thread.CurrentPrincipal.IsInRole("Manager"))
    {
      // Perform privileged operation
    }

● Declarative check
It is not possible to perform AND checks with .NET roles declaratively.
Stacking PrincipalPermission demands together results in a logical OR.

● Imperative check

    PrincipalPermission permCheckTellers = new PrincipalPermission(
                                                     null,"Teller");
    permCheckTellers.Demand();
    PrincipalPermission permCheckManagers = new PrincipalPermission(
                                                     null, "Manager");
    permCheckManagers.Demand();

Choosing an Authentication Mechanism
This section presents guidance which is designed to help you choose an appropriate
authentication mechanism for common application scenarios. You should start by
considering the following issues:
● Identities. A Windows authentication mechanism is appropriate only if your

application’s users have Windows accounts that can be authenticated by a
trusted authority accessible by your application’s Web server.

● Credential management. One of the key advantages of Windows authentication
is that it enables you to let the operating system take care of credential manage-
ment. With non-Windows approaches, such as Forms authentication, you must



Building Secure ASP.NET Applications50

carefully consider where and how you store user credentials. The two most
common approaches are to use:
● SQL Server databases
● User objects within Active Directory

For more information about the security considerations of using SQL Server as a
credential store, see Chapter 12, “Data Access Security.”
For more information about using Forms authentication against custom data
stores (including Active Directory), see Chapter 8, “ASP.NET Security.”

● Identity flow. Do you need to implement an impersonation/delegation model
and flow the original caller’s security context at the operating system level across
tiers? For example, to support auditing or per-user (granular) authorization. If
so, you need to be able to impersonate the caller and delegate their security
context to the next downstream subsystem, as described in the “Delegation”
section earlier in this chapter.

● Browser type. Do your users all have Internet Explorer or do you need to sup-
port a user base with mixed browser types? Table 3.3 illustrates which authenti-
cation mechanisms require Internet Explorer browsers, and which support a
variety of common browser types.

Table 3.3: Authentication browser requirements

Authentication Type Requires Notes
Internet
Explorer

Forms No

Passport No

Integrated Windows Yes Kerberos also requires Windows 2000 or later
(Kerberos or NTLM) operating systems on the client and server comput-

ers and accounts configured for delegation. For more
information, see “How To: Implement Kerberos
Delegation for Windows 2000” in the Reference
section of this guide.

Basic No Basic authentication is part of the HTTP 1.1 protocol
that is supported by virtually all browsers

Digest Yes

Certificate No Clients require X.509 certificates



Chapter 3: Authentication and Authorization 51

Internet Scenarios
The basic assumptions for Internet scenarios are:
● Users do not have Windows accounts in the server’s domain or in a trusted

domain accessible by the server.
● Users do not have client certificates.

Figure 3.4 shows a decision tree for choosing an authentication mechanism for
Internet scenarios.

Use GXA WS-Security 
Authentication

Interactive Web 
Application?

No - Web Service

Yes

Start

Use Passport OR 
Forms 

Authentication

Base Assumption:
Users don’t have Windows 
accounts or certificates

Internet Scenarios

Figure 3.4
Choosing an authentication mechanism for Internet applications

For more information about Web service security and the WS-Security specification,
part of the Global XML Architecture (GXA) initiative, see Chapter 10, “Web Services
Security.”

Forms / Passport Comparison
This section summarizes the relative merits of Forms and Passport authentication.

Advantages of Forms Authentication
● Supports authentication against a custom data store; typically a SQL Server

database or Active Directory.
● Supports role-based authorization with role lookup from a data store.
● Smooth integration with Web user interface.
● ASP.NET provides much of the infrastructure. Relatively little custom code is

required in comparison to classic ASP.



Building Secure ASP.NET Applications52

Advantages of Passport Authentication
● Passport is a centralized solution.
● It removes credential management issues from the application.
● It can be used with role-based authorization schemes.
● It is very secure as it is built on cryptography technologies.

More Information
● For more information about Web service authentication approaches, see Chapter

10, “Web Services Security.”
● For more information about using Forms Authentication with SQL Server, see

“How To: Use Forms authentication with SQL Server 2000” in the Reference
section of this guide.

Intranet / Extranet Scenarios
Figure 3.5 shows a decision tree that can be used to help choose an authentication
mechanism for intranet and extranet application scenarios.

Start

Do users have 
Active Directory 

accounts?

Is delegation 
required?

Win2K Servers 
+ Clients?

Interactive Web 
Application?

Do clients have 
certificates?

Users require 
passports?

Use Basic, 
Kerberos OR 

Forms + Custom 
Mapping

Use Basic, Digest, 
NTLM, Kerberos or 

Certificates

Use Passport 
Authentication

Extranet / Intranet Scenarios

Use Forms 
Authentication

Use Certificate 
Authentication

Use WS-Security 
Authentication

No

No - Web Service

No

No

Yes

Yes

Yes

Yes Yes

Yes

No

No
Use Basic, NTLM 

or Certificates

Figure 3.5
Choosing an authentication mechanism for intranet and extranet applications



Chapter 3: Authentication and Authorization 53

Authentication Mechanism Comparison
The following table presents a comparison of the available authentication
mechanisms.

Table 3.4: Available authentication methods

Basic Digest NTLM Kerberos Certs Forms Passport

Users need Yes Yes Yes Yes No No No
Windows
accounts in
server’s
domain

Supports Yes No No Yes Can do Yes Yes
delegation*

Requires No Yes No Yes No No No
Win2K
clients and
servers

Credentials Yes No No No No Yes No
passed as
clear text
(requires
SSL)

Supports Yes No No No Yes Yes Yes
non-IE
browsers

* Refer to the “Delegation” topic in the “Flowing Identity” section earlier in this chapter for details.

Summary
Designing distributed application authentication and authorization approaches is
a challenging task. Proper authentication and authorization design during the early
design phases of your application development helps mitigate many of the top
security risks. The following summarizes the information in this chapter:
● Use the trusted subsystem resource access model to gain the benefits of database

connection pooling.
● If your application does not use Windows authentication, use .NET role checking

to provide authorization. Validate credentials against a custom data store,
retrieve a role list and create a GenericPrincipal object. Associate it with the
current Web request (HttpContext.User).



Building Secure ASP.NET Applications54

● If your application uses Windows authentication and doesn’t use Enterprise
Services, use .NET roles. Remember that for Windows authentication, .NET roles
are Windows groups.

● If your application uses Windows authentication and Enterprise Services, con-
sider using Enterprise Services (COM+) roles.

● For meaningful role-based authorization using Enterprise Services (COM+) roles,
the original caller’s identity must flow to the Enterprise Services application. If
the Enterprise Services application is called from an ASP.NET Web application,
this means that the Web application must use Windows authentication and be
configured for impersonation.

● Annotate methods with the PrincipalPermission attribute to declaratively
demand role membership. The method is not called if the caller is not in the
specified role and a security exception is generated.

● Call PrincipalPermission.Demand within method code (or use
IPrincipal.IsInRole) for fine-grained authorization decisions.

● Consider implementing a custom IPrincipal object to gain additional role-
checking semantics.



4
Secure Communication

Many applications pass security sensitive data across networks to and from end
users and between intermediate application nodes. Sensitive data might include
credentials used for authentication, or data such as credit card numbers or bank
transaction details. To guard against unwanted information disclosure and to
protect the data from unauthorized modification while in transit, the channel
between communication end points must be secured.

Secure communication provides the following two features:
● Privacy. Privacy is concerned with ensuring that data remains private and

confidential, and cannot be viewed by eavesdroppers who may be armed with
network monitoring software. Privacy is usually provided by means of encryp-
tion.

● Integrity. Secure communication channels must also ensure that data is protected
from accidental or deliberate (malicious) modification while in transit. Integrity
is usually provided by using Message Authentication Codes (MACs).

This chapter covers the following secure communication technologies:
● Secure Sockets Layer / Transport Layer Security (SSL/TLS). This is most com-

monly used to secure the channel between a browser and Web server. However,
it can also be used to secure Web service messages and communications to and
from a database server running Microsoft® SQL Server™ 2000.

● Internet Protocol Security (IPSec). IPSec provides a transport level secure
communication solution and can be used to secure the data sent between two
computers; for example, an application server and a database server.

● Remote Procedure Call (RPC) Encryption. The RPC protocol used by Distrib-
uted COM (DCOM) provides an authentication level (packet privacy) that results
in the encryption of every packet of data sent between client and server.



Building Secure ASP.NET Applications56

Know What to Secure
When a Web request flows across the physical deployment tiers of your application,
it crosses a number of communication channels. A commonly used Web application
deployment model is shown in Figure 4.1.

Clients
Web 

Server
Application 

Server
Database 

Server

Figure 4.1
A typical Web deployment model

In this typical deployment model, a request passes through three distinct channels.
The client-to-Web server link may be over the Internet or corporate intranet and
typically uses HTTP. The remaining two links are between internal servers within
your corporate domain. Nonetheless, all three links represent potential security
concerns. Many purely intranet-based applications convey security sensitive data
between tiers; for example, HR and payroll applications that deal with sensitive
employee data.

Figure 4.2 shows how each channel can be secured by using a combination of SSL,
IPSec and RPC encryption.

Clients
Web 

Server

SSL
(Privacy/Integrity)

Application 
Server

IPSec or RPC
(Privacy/Integrity)

Database 
Server

IPSec or SSL
(Privacy/Integrity)

Figure 4.2
A typical Web deployment model, with secure communications

The choice of technology depends on a number of factors including the transport
protocol, end point technologies, and environmental considerations (such as hard-
ware, operating system versions, firewalls, and so on).



Chapter 4: Secure Communication 57

SSL/TLS
SSL/TLS is used to establish an encrypted communication channel between client
and server. The handshake mechanism used to establish the secure channel is well
documented and details can be found in the following articles in the Microsoft
Knowledge Base:
● Q257591, “Description of the Secure Sockets Layer (SSL) Handshake”
● Q257587, “Description of the Server Authentication Process During the SSL

Handshake”
● Q257586, “Description of the Client Authentication Process During the SSL

Handshake”

Using SSL
When you use SSL you should be aware of the following:
● When SSL is applied, the client uses the HTTPS protocol (and specifies an

https:// URL) and the server listens on TCP port 443.
● You should monitor your application’s performance when you enable SSL.

SSL uses complex cryptographic functions to encrypt and decrypt data and as a
result impacts the performance of your application. The largest performance hit
occurs during the initial handshake, where asymmetric public/private-key
encryption is used. Subsequently (after a secure session key is generated and
exchanged), faster, symmetric encryption is used to encrypt application data.

● You should optimize pages that use SSL by including less text and simple
graphics in those pages.

● Because the performance hit associated with SSL is greatest during session
establishment, ensure that your connections do not time out.
You can fine tune this by increasing the value of the ServerCacheTime registry
entry. For more information, see article Q247658, “HOW TO: Configure Secure
Sockets Layer Server and Client Cache Elements” in the Microsoft Knowledge
Base.

● SSL requires a server authentication certificate to be installed on the Web server
(or database server if you are using SSL to communicate with SQL Server 2000).
For more information about installing server authentication certificates, see
“How to setup SSL on a Web server” within the Reference section of this guide.



Building Secure ASP.NET Applications58

IPSec
IPSec can be used to secure the data sent between two computers; for example, an
application server and a database server. IPSec is completely transparent to applica-
tions as encryption, integrity, and authentication services are implemented at the
transport level. Applications continue to communicate with one another in the
normal manner using TCP and UDP ports.

Using IPSec you can:
● Provide message confidentiality by encrypting all of the data sent between two

computers.
● Provide message integrity between two computers (without encrypting data).
● Provide mutual authentication between two computers (not users). For example,

you can help secure a database server by establishing a policy that permits
requests only from a specific client computer (for example, an application or Web
server).

● Restrict which computers can communicate with one another. You can also
restrict communication to specific IP protocols and TCP/UDP ports.

Note: IPSec is not intended as a replacement for application level security. Today it is used as
a defense-in-depth mechanism or to secure insecure applications without changing them, and
to secure non-TLS protocols from network-wire attacks.

Using IPSec
When you use IPSec you should be aware of the following:
● IPSec can be used for both authentication and encryption.
● There are no IPSec APIs for developers to programmatically control settings.

IPSec is completely controlled and configured through the IPSec snap-in, within
the Local Security Policy Microsoft Management Console (MMC).

● IPSec in the Microsoft Windows® 2000 operating system cannot secure all types
of IP traffic.
Specifically, it cannot be used to secure Broadcast, Multicast, Internet Key
Exchange, or Kerberos (which is already a secure protocol) traffic.
For more information, see article Q253169, “Traffic That Can and Cannot Be
Secured by IPSec,” in the Microsoft Knowledge Base.

● You use IPSec filters to control when IPSec is applied.
To test the IPSec policies, use IPSec Monitor. IPSec Monitor (Ipsecmon.exe)
provides information about which IPSec policy is active and whether a secure
channel between computers is established.



Chapter 4: Secure Communication 59

For more information, see the Knowledge Base articles:
● Q313195, “HOW TO: Use IPSec Monitor in Windows 2000”
● Q231587, “Using the IP Security Monitor Tool to View IPSec Communica-

tions”
● To establish a trust between two servers, you can use IPSec with mutual authen-

tication. This uses certificates to authenticate both computers.
For more information, see the following Knowledge Base articles:
● Q248711, “Mutual Authentication Methods Supported for L2TP/IPSec”
● Q253498, “HOW TO: Install a Certificate for Use with IP Security”

● If you need to use IPSec to secure communication between two computers that
are separated by a firewall, make sure that the firewall does not use Network
Address Translation (NAT). IPSec does not work with any NAT-based devices.
For more information and configuration steps, see article Q233256, “HOW TO
Enable IPSec Traffic through a Firewall” in the Microsoft Knowledge Base and
“How To: Use IPSec to Provide Secure Communication between Two Servers” in
the Reference section of this guide.

RPC Encryption
RPC is the underlying transport mechanism used by DCOM. RPC provides a set of
configurable authentication levels that range from no authentication (and no protec-
tion of data) to full encryption of parameter state.

The most secure level (RPC Packet Privacy) encrypts parameter state for every
remote procedure call (and therefore every DCOM method invocation). The level of
RPC encryption, 40-bit or 128-bit, depends on the version of the Windows operating
system that is running on the client and server computers.

Using RPC Encryption
You are most likely to want to use RPC encryption when your Web-based applica-
tion communicates with serviced components (within Enterprise Services server
applications) located on remote computers.

In this event, to use RPC Packet Privacy authentication (and encryption) you must
configure both the client and the server. A process of high-water mark negotiation
occurs between client and server, which ensures that the higher of the two (client
and server) settings are used.

The server settings can be defined at the (Enterprise Services) application level,
either by using .NET attributes within your serviced component assembly, or by
using the Component Services administration tool at deployment time.



Building Secure ASP.NET Applications60

If the client is an ASP.NET Web application or Web service, the authentication level
used by the client is configured using the comAuthenticationLevel attribute on the
<processModel> element within Machine.config. This provides the default authen-
tication level for all ASP.NET applications that run on the Web server.

More Information
For more information about RPC authentication level negotiation and service
component configuration, see Chapter 9, “Enterprise Services Security.”

Point to Point Security
Point-to-point communication scenarios can be broadly categorized into the follow-
ing topics:
● Browser to Web Server
● Web Server to Remote Application Server
● Application Server to Database Server

Browser to Web Server
To secure sensitive data sent between a browser and Web server, use SSL. You need
to use SSL in the following situations:
● You are using Forms authentication and need to secure the clear text credentials

submitted to a Web server from a logon form.
In this scenario, you should use SSL to secure access to all pages (not just the
logon page) to ensure that the authentication cookie, generated as a result on
the initial authentication process, remains secure throughout the lifetime of the
client’s browser session with the application.

● You are using Basic authentication and need to secure the (Base64 encoded) clear
text credentials.
You should use SSL to secure access to all pages (not just the initial log on), as
Basic authentication sends the clear text credentials to the Web server with all
requests to the application (not just the initial one).

Note: Base64 is used to encode binary data as printable ASCII text. Unlike encryption, it
does not provide message integrity or privacy.

● Your application passes sensitive data between the browser and Web server (and
vice-versa); for example, credit card numbers or bank account details.



Chapter 4: Secure Communication 61

Web Server to Remote Application Server
The transport channel between a Web server and a remote application server should
be secured by using IPSec, SSL or RPC Encryption. The choice depends on the
transport protocols, environmental factors (operating system versions, firewalls,
and so on).
● Enterprise Services. If your remote server hosts one or more serviced compo-

nents (in an Enterprise Services server application) and you are communicating
directly with them (and as a result using DCOM), use RPC Packet Privacy
encryption.
For more information about how to configure RPC encryption between a Web
application and remote serviced component, see Chapter 9, “Enterprise Services
Security.”

● Web Services. If your remote server hosts a Web Service, you can choose
between IPSec and SSL.
You should generally use SSL because the Web service already uses the HTTP
transport. SSL also allows you to only encrypt the data sent to and from the Web
service (and not all traffic sent between the two computers). IPSec results in the
encryption of all traffic sent between the two computers.

Note: Message level security (including data encryption) is addressed by the Global XML
Web Services Architecture (GXA) initiative and specifically the WS-Security specification.
Microsoft provides the Web Services Development Toolkit to allow you to develop message
level security solutions. This is available for download at http://msdn.microsoft.com
/webservices/building/wsdk/.

● .NET Components (using .NET Remoting). If your remote server hosts one or
more .NET components and you connect to them over the TCP channel, you can
use IPSec to provide a secure communication link. If you host the .NET compo-
nents within ASP.NET, you can use SSL (configured using IIS).

Application Server to Database Server
To secure the data sent between an application server and database server, you can
use IPSec. If your database server runs SQL Server 2000 (and the SQL Server 2000
network libraries are installed on the application server), you can use SSL. This
latter option requires a server authentication certificate to be installed in the data-
base server’s machine store.



Building Secure ASP.NET Applications62

You may need to secure the link to the database server in the following situations:
● You are connecting to the database server and are not using Windows authenti-

cation. For example, you may be using SQL authentication to SQL Server or you
may be connecting to a non-SQL Server database. In these cases, the credentials
are passed in clear text, which can represent a significant security concern.

Note: One of the key benefits of using Windows authentication to SQL Server is that it
means that the credentials are never passed across the network. For more information
about Windows and SQL authentication, see Chapter 12, “Data Access Security.”

● Your application may be submitting and retrieving sensitive data to and from the
database (for example, payroll data).

Using SSL to SQL Server
Consider the following points if you use SSL to secure the channel to a SQL Server
database:
● For SSL to work, you must install a server authentication certificate in the ma-

chine store on the database server computer. The client computer must also have
a root Certificate Authority certificate from the same (or trusting) authority that
issued the server certificate.

● Clients must have the SQL Server 2000 connectivity libraries installed. Earlier
versions or generic libraries will not work.

● SSL only works for TCP/IP (the recommended communication protocol for SQL
Server) and named pipes.

● You can configure the server to force the use of encryption for all connections
(from all clients).

● On the client, you can:
● Force the use of encryption for all outgoing connections.
● Allow client applications to choose whether or not to use encryption on a per-

connection basis, by using the connection string.
● Unlike IPSec, configuration changes are not required if the client or server IP

addresses change.

More Information

For more information about using SSL to SQL Server, see the following resources:
● “How To: Use SSL to Secure Communication with SQL Server 2000” in the

Reference section of this guide.
● Webcast: “Microsoft SQL Server 2000: How to Configure SSL Encryption (April

23, 2002)”



Chapter 4: Secure Communication 63

Choosing Between IPSec and SSL
Consider the following points when choosing between IPSec and SSL:

● IPSec can used to secure all IP traffic between computers; SSL is specific to
an individual application.

● IPSec is a computer-wide setting and does not support the encryption of
specific network connections. However, sites can be partitioned to use or
not use SSL. Also, when you use SSL to connect to SQL Server, you can
choose on a per connection basis (from the client application) whether or
not to use SSL.

● IPSec is transparent to applications, so it can be used with secure protocols
that run on top of IP such as HTTP, FTP, and SMTP. However, SSL/TLS is
closely tied to the application.

● IPSec can be used for computer authentication in addition to encryption.
This is particularly significant for trusted subsystem scenarios, where the
database authorizes a fixed identity from a specific application (running
on a specific computer). IPSec can be used to ensure that only the specific
application server can connect to the database server, in order to prevent
attacks from other computers.

● IPSec requires that both computers run Windows 2000 or later.
● SSL can work through a NAT-based firewall; IPSec cannot.

Farming and Load Balancing
If you use SSL in conjunction with multiple virtual Web sites, you need to use
unique IP addresses or unique port numbers. You cannot use multiple sites with
the same IP address and port number. If the IP address is combined with a server
affinity setting in a load balancer, this will work fine.

More Information
For more information, see Q187504, “HTTP 1.1 Host Headers Are Not Supported
When You Use SSL,” in the Microsoft Knowledge Base.

Summary
This chapter described how a combination of SSL, IPSec, and RPC encryption can
be used to provide an end-to-end secure communication solution for your distrib-
uted application. To summarize:
● Channel security is a concern for data passed over the Internet and on the corpo-

rate intranet.



Building Secure ASP.NET Applications64

● Consider the security requirements of the Web browser to Web server, Web
server to application server, and application server to database server links.

● Secure communication provides privacy and integrity. It does not protect you
from non-repudiation (for this use, client certificates)

● Channel security options include SSL, IPSec, and RPC Encryption. The latter
option applies when your application uses DCOM to communicate with remote
serviced components.

● If you use SSL to communicate with SQL Server, the application can choose (on a
per-connection basis) whether or not to encrypt the connection.

● IPSec encrypts all IP traffic that flows between two computers.
● The choice of security mechanism is dependent upon transport protocol, operat-

ing system versions, and network considerations (including firewalls).
● There is always a trade-off between secure communication and performance.

Choose the level of security that is appropriate to your application requirements.



5
Intranet Security

Access to intranet applications is restricted to a limited group of authorized users
(such as employees that belong to a domain). While an intranet setting limits the
exposure of your application, you may still face several challenges when you
develop authentication, authorization, and secure communication strategies. For
example, you may have non-trusting domains, which make it difficult to flow a
caller’s security context and identity through to the back-end resources within your
system. You may also be operating within a heterogeneous environment with mixed
browser types. This makes it more difficult to use a common authentication
mechanism.

If you have a homogenous intranet where all computers run the Microsoft®
Windows® 2000 operating system or later and you have a domain where users are
trusted for delegation, delegation of the original caller’s security context to the back
end becomes an option.

You must also consider secure communication. Despite the fact that your applica-
tion runs in an intranet environment, you cannot consider the data sent over the
network secure. It is likely that you will need to secure the data sent between
browsers and the Web server in addition to data sent between application servers
and databases.

The following common intranet scenarios are used in this chapter to illustrate key
authentication, authorization, and secure communication techniques:
● ASP.NET to SQL Server
● ASP.NET to Enterprise Services to SQL Server
● ASP.NET to Web Services to SQL Server
● ASP.NET to Remoting to SQL Server

In addition, this chapter describes a Windows 2000 delegation scenario (Flowing the
Original Caller to the Database), in which the original caller’s security context and
identity flows at the operating system level from browser to database using inter-
mediate Web and application servers.



Building Secure ASP.NET Applications66

Note: Several scenarios described in this chapter either replace the default ASPNET account
used to run ASP.NET applications or change its password to allow duplicated accounts to be
created on remote computers. These scenarios update the <processModel> element of
Machine.config. This results in credentials being stored in clear text within machine.config. For
a detailed discussion of this topic, see “Accessing Network Resources” in Chapter 8, “ASP.NET
Security.”

ASP.NET to SQL Server
In this scenario, a HR database serves per-user data securely on a homogenous
intranet. The application uses a trusted subsystem model and executes calls on
behalf of the original callers. The application authenticates callers by using Inte-
grated Windows authentication and makes calls to the database using the ASP.NET
process identity. Due to the sensitive nature of the data, SSL is used between the
Web server and clients.

The basic model for this application scenario is shown in Figure 5.1.

SQL 
Server

Web Server Database Server

IIS ASP.NET

Figure 5.1
ASP.NET to SQL Server

Characteristics
This scenario has the following characteristics:
● Clients have Internet Explorer.
● User accounts are in Microsoft Active Directory® directory service.
● The application provides sensitive, per-user data.
● Only authenticated clients should access the application.
● The database trusts the application to authenticate users properly (that is, the

application makes calls to the database on behalf of the users).
● Microsoft SQL Server™ is using a single database user role for authorization.



Chapter 5: Intranet Security 67

Secure the Scenario
In this scenario, the Web server authenticates the caller and restricts access to local
resources by using the caller’s identity. You don’t have to impersonate within the
Web application in order to restrict access to resources against the original caller.
The database authenticates against the ASP.NET default process identity, which is a
least privileged account (that is, the database trusts the ASP.NET application).

Table 5.1: Security measures

Category Details

Authentication ● Provide strong authentication at the Web server to authenticate
original callers by using Integrated Windows authentication in IIS.

● Use Windows authentication within ASP.NET (no impersonation).
● Secure connections to the database using SQL Server configured

for Windows authentication.
● The database trusts the ASP.NET worker process to make calls.

Authenticate the ASP.NET process identity at the database.

Authorization ● Configure resources on the Web server using ACLs tied to the
original callers. For easier administration, users are added to
Windows groups and groups are used within the ACLs.

● The Web application performs .NET role checks against the original
caller to restrict access to pages.

Secure Communication ● Secure sensitive data sent between the Web server and the
database

● Secure sensitive data sent between the original callers and the
Web application

The Result
Figure 5.2 shows the recommended security configuration for this scenario.

SQL 
Server

NTFS 
Permissions
(Authorization)

SSL
(Privacy/ 
Integrity)

Web Server

File Authorization 
.NET Roles

(Authorization)

Windows 
Authentication

Database 
Server

SQL Permissions
Database Roles

(Authorization)

ASP.NET 
Process Identity

IPSec
(Privacy/Integrity)

Integrated 
Windows 

Authentication

Windows 
Authentication

IIS ASP.NET

Alice

Mary

Bob

Alice

Mary

Bob

Figure 5.2
The recommended security configuration for the ASP.NET to SQL Server intranet scenario



Building Secure ASP.NET Applications68

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Creating custom ASP.NET accounts (see “How To: Create a Custom Account to

Run ASP.NET” in the Reference section of this guide)
● Creating a least privileged database account (see Chapter 12, “Data Access

Security”)
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)

Configuring IIS
Step More Information

Disable Anonymous access To work with IIS authentication settings, use the IIS MMC
for your Web application’s snap-in. Right-click your application’s virtual directory, and then
virtual root directory click Properties.

Click the Directory Security tab, and then click Edit within the
Enable Integrated Windows Anonymous access and authentication control group.
Authentication

Configuring ASP.NET
Step More Information

Change the ASPNET ASPNET is a least privileged local account used by default to run
password to a known strong ASP.NET Web applications.
password value Set the ASPNET account’s password to a known value by using

Local Users and Groups.
Edit Machine.config located in %windir%\Microsoft.NET
\Framework\ v1.0.3705\CONFIG
and reconfigure the password attribute on the <processModel>
element
Default

<!-- userName="machine" password="AutoGenerate" -->

Becomes

<!-- userName="machine"
password="YourNewStrongPassword" -->

Configure your ASP.NET Web Edit Web.config in your application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

<authentication mode="Windows" />



Chapter 5: Intranet Security 69

Step More Information

Make sure impersonation is Impersonation is off by default; however, double check to
off ensure that it’s turned off in Web.config, as follows:

 <identity impersonate="false" />

The same effect can be achieved by removing the <identity>
element.

Configuring SQL Server
Step More Information

Create a Windows account The user name and password must match the ASPNET account.
on your SQL Server computer
that matches the ASP.NET Give the account the following privileges:
process account (ASPNET) - Access this computer from the network

- Deny logon locally
- Log on as a batch job

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to the SQL Server
for the local ASPNET account

Create a new database user This grants access to the specified database
and map the login name to
the database user

Create a new user-defined
database role and add the
database user to the role

Establish database Grant minimum permissions
permissions for the For more information, see Chapter 12, “Data Access Security.”
database role

Configuring Secure Communication
Step More Information

Configure the Web site for See “How To: Set Up SSL on a Web Server” in the Reference
SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server



Building Secure ASP.NET Applications70

Analysis
● Integrated Windows authentication in IIS is ideal in this scenario because all

users have Windows accounts and are using Microsoft Internet Explorer. The
benefit of Integrated Windows authentication is that the user’s password is
never sent over the network. Additionally, the logon is transparent for the user
because Windows uses the current interactive user’s logon session.

● ASP.NET is running as least privileged account, so potential damage from
compromise is mitigated.

● You don’t need to impersonate in ASP.NET to perform .NET role checks or to
secure resources within Windows ACLs against the original caller. To perform
.NET role checks against the original caller, the WindowsPrincipal object that
represents the original caller is retrieved from the HTTP context as follows:

WindowsPrincipal wp = (HttpContext.Current.User as WindowsPrincipal);
if ( wp.IsInRole("Manager") )
{
  // User is authorized to perform manager-specific functionality
}

The ASP.NET FileAuthorizationModule provides ACL checks against the
original caller for ASP.NET file types that are mapped within IIS to the
aspnet_isapi.dll. For static file types such as .jpg, .gif, and .htm files, IIS acts as
the gatekeeper and performs access checks using the original caller’s identity,
based on the NTFS permissions associated with the file.

● Using Windows authentication to SQL Server means that you avoid storing
credentials in files and passing credentials over the network to the database
server.

● The use of a duplicated Windows account on the database server (one that
matches the ASPNET local account) results in increased administration. If a
password is changed on one computer, it must be synchronized and updated on
the other. In some scenarios, you may be able to use a least-privileged domain
account for easier administration.

● The duplicated local account approach also works in the presence of a firewall
where the ports required for Windows authentication may not be open. The use
of Windows authentication and domain accounts may not work in this scenario.

● You’ll need to ensure that your Windows groups are as granular as your security
needs. Because .NET role-based security is based on Windows group member-
ship this solution relies on Windows groups being set up at the correct level of
granularity to match the categories of users (sharing the same security privi-
leges) who access the application. The Windows groups that you use here to
manage roles could be local to that computer or domain groups



Chapter 5: Intranet Security 71

● SQL Server database user roles are preferred to SQL server application roles to
avoid the associated password management and connection pooling issues
associated with the use of SQL application roles.
Applications activate SQL application roles by calling a built-in stored procedure
with a role name and a password. Therefore, the password must be stored
securely. Database connection pooling must also be disabled when you use SQL
application roles, which severely impacts application scalability.
For more information about SQL Server database user roles and SQL Server
application roles, see Chapter 12, “Data Access Security.”

● The database user is added to a database user role and permissions are assigned
for the role so that if the database account changes; you don’t have to change the
permissions on all database objects.

Q&A
● Why can’t I enable impersonation for the Web application, so that I can secure

the resources accessed by my Web application using ACLs configured against
the original caller?
If you enable impersonation, the impersonated security context will not have
network credentials (assuming delegation is not enabled and you are using
Integrated Windows authentication). Therefore, the remote call to SQL Server
will use a NULL session, which will result in a failed call. With impersonation
disabled, the remote request will use the ASP.NET process identity.
The preceding scenario uses the ASP.NET FileAuthorizationModule, which
performs authorization using Windows ACLs against the original caller identity
and does not require impersonation.
If you use Basic authentication instead of Integrated Windows authentication
(NTLM) and you do enable impersonation, each call to the database would use
the original caller’s security context. Each user account (or the Windows groups
to which the user belongs) would require SQL Server logins. Permissions on
database objects would need to be secured against the Windows group (or
original caller).

● The database doesn’t know who the original caller is. How can I create an
audit trail?
Audit end user activity within the Web application or pass the identity of the
user explicitly as a parameter of the data access call.



Building Secure ASP.NET Applications72

Related Scenarios

Non-Internet Explorer Browsers
Integrated Windows authentication to IIS requires Internet Explorer. In a mixed
browser environment, your typical options would include:
● Basic authentication and SSL. Basic authentication is supported by most brows-

ers. Since the user’s credentials are passed over the network, you must use SSL to
secure the scenario.

● Client certificates. Individual client certificates can either be mapped to a
unique Windows account or a single Windows account can be used to represent
all clients. The use of client certificates also requires SSL.

● Forms Authentication. Forms authentication can validate credentials against
a custom data store such as a database or against Active Directory.
If you authenticate against Active Directory, make sure that you retrieve only the
necessary groups that are pertinent to your application. Just like you shouldn’t
issue queries against a database using SELECT * clauses, you shouldn’t blindly
retrieve all groups from Active Directory.
If you authenticate against a database, you need to carefully parse the input used
in SQL commands to protect against SQL injection attacks, and you should store
password hashes (with salt) in the database instead of clear text or encrypted
passwords.
For more information about using SQL Server as a credential store and storing
passwords in the database, see Chapter 12, “Data Access Security.”

Notice that in all cases, if you don’t use Integrated Windows authentication, where
the platform manages credentials for you, you end up using SSL. However, this
benefit pertains strictly to the authentication process. If you are passing security
sensitive data over the network, you must still use IPSec or SSL.

SQL Authentication to the Database
In some scenarios you may be forced to use SQL authentication instead of the
preferred Windows authentication. For example, there may be a firewall between
the Web application and database, or the Web server may not be a member of your
domain for security reasons. This also prevents Windows authentication. In this
case, you might use SQL authentication between the database and Web server. To
secure this scenario, you should:
● Use the Data Protection API (DPAPI) to secure database connection strings that

contain usernames and passwords. For more information, see the following
resources:



Chapter 5: Intranet Security 73

● “Storing Database Connection Strings Securely”, in Chapter 12, “Data Access
Security”

● “How To: Use DPAPI (Machine Store) from ASP.NET” in the Reference section
of this guide

● “How To Use DPAPI (User Store) from ASP.NET with Enterprise Services” in
the Reference section of this guide

● “How To: Create a DPAPI Library” in the Reference section of this guide
● Use IPSec or SSL between the Web server and database server to protect the clear

text credentials passed over the network.

Flowing the Original Caller to the Database
In this scenario, calls are made from the Web application to the database using the
security context of the original caller. With this approach, it’s important to note the
following:
● If you choose this approach, you need to use either Kerberos authentication

(with accounts configured for delegation) or Basic authentication.
A delegation scenario is discussed in the “Flowing the Original Caller to the
Database” section later in this chapter.

● You must also enable impersonation in ASP.NET. This means that local system
resource access is performed using the original caller’s security context and as
a result, ACLs on local resources such as the registry and event log require
appropriate configuration.

● Database connection pooling is limited because original callers won’t be able
to share connections. Each connection is associated with the caller’s security
context.

● An alternate approach to flowing the user’s security context is to flow the
original caller’s identity at the application level (for example, by using method
and stored procedure parameters).

ASP.NET to Enterprise Services to SQL Server
In this scenario, ASP.NET pages call business components hosted in an Enterprise
Services application that in turn connects to a database. As an example, consider an
internal purchase order system that uses transactions over the intranet and allows
internal departments to place orders. This scenario is shown in Figure 5.3 on the
next page.



Building Secure ASP.NET Applications74

SQL 
Server

Web Server

Database Server
IIS ASP.NET

Enterprise 
Services

Figure 5.3
ASP.NET calls a component within Enterprise Services which calls the database

Characteristics
This scenario has the following characteristics:
● Users have Internet Explorer.
● Components are deployed on the Web server.
● The application handles sensitive data which must be secured while in transit.
● Business components connect to SQL Server using Windows authentication.
● Business functionality within these components is restricted based on the

identity of the caller.
● Serviced components are configured as a server application (out-of-process).
● Components connect to the database using the server application’s process

identity.
● Impersonation is enabled within ASP.NET (to facilitate Enterprise Services role-

based security).

Secure the Scenario
In this scenario, the Web server authenticates the original caller and flows the
caller’s security context to the serviced component. The serviced component autho-
rizes access to business functionality based on the original caller’s identity. The
database authenticates against the Enterprise Service application’s process identity
(that is,. the database trusts the serviced components within the Enterprise Services
application). When the serviced component makes calls to the database, it passes
the user’s identity at the application level (by using trusted query parameters).



Chapter 5: Intranet Security 75

Table 5.2: Security measures

Category Detail

Authentication ● Provide strong authentication at the Web server using Integrated
Windows authentication.

● Flow the original caller’s security context to the serviced
component to support Enterprise Services (COM+) role checks.

● Secure connections to the database use Windows
authentication.

● The database trusts the serviced component’s identity to make
the database calls. The database authenticates the Enterprise
Services application process identity.

Authorization ● Authorize access to business logic using Enterprise Services
(COM+) roles.

Secure Communication ● Secure sensitive data sent between the users and the Web
application by using SSL.

● Secure sensitive data sent between the Web server and the
database by using IPSec.

The Result
Figure 5.4 shows the recommended security configuration for this scenario.

SQL 
Server

NTFS 
Permissions
(Authorization)

SSL
(Privacy/ 
Integrity)

Web Server

File Authorization 
(Authorization)

COM+ Roles
(Authorization)

Database 
Server

SQL Permissions
Database Roles

(Authorization)

Enterprise 
Services 

Process Identity

IPSec
(Privacy/Integrity)

Integrated 
Windows 

Authentication

Windows 
Authentication

+ Impersonation

IIS ASP.NET

Enterprise 
Services

A

B

C

A

B

C

A B C

RPC Packet 
Privacy

(Authentication/ 
Privacy/Integrity)

Windows
Authentication

Figure 5.4
The recommended security configuration for the ASP.NET to local Enterprise Services to SQL Server
intranet scenario



Building Secure ASP.NET Applications76

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Creating a least privileged database account (see Chapter 12, “Data Access

Security”)
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)
● Configuring Enterprise Services security (see “How To: Use Role-Based Security

with Enterprise Services” in the Reference section of this guide)

Configuring IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Integrated Windows
Authentication

Configuring ASP.NET
Step More Information

Configure your ASP.NET Web Edit Web.config in your application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory
application for impersonation Set the <identity> element to:

 <identity impersonate="true" />

Configure ASP.NET DCOM Edit Machine.config and locate the <processModel> element.
security to ensure that calls Confirm that the comImpersonationLevel attribute is set to
to Enterprise Services Impersonate (this is the default setting)
support caller impersonation

 <processModel
      comImpersonationLevel="Impersonate"



Chapter 5: Intranet Security 77

Configuring Enterprise Services
Step More Information

Create a custom account for Note: If you use a local account, you must also create a
running Enterprise Services duplicate account on the SQL Server computer.

Configure the Enterprise This can be configured using the Component Services tool, or
Services application as a via the following .NET attribute placed in the service component
server application assembly.

[assembly:
ApplicationActivation(ActivationOption.Server)]

Configure Enterprise Use the Component Services tool or script to add Windows
Services (COM+) roles users and/or groups to roles.

Roles can be defined using .NET attributes within the serviced
component assembly.

Configure Enterprise This must be configured using the Component Services tool or
Services to run as your script. You cannot use .NET attributes within the serviced
custom account component assembly.

Configuring SQL Server
Step More Information

Create a Windows account The user name and password must match your custom
on your SQL Server Enterprise Services account.
computer that matches the
Enterprise Services process Give the account the following privileges:
account - Access this computer from the network

- Deny logon locally
- Log on as a batch job

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to the SQL Server.
for your Enterprise Services
account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new database user
role and add the database
user to the role

Establish database Grant minimum permissions
permissions for the For details, see Chapter 12, “Data Access Security”
database user role



Building Secure ASP.NET Applications78

Configuring Secure Communication
Step More Information

Configure the Web site for See “How To: Set Up SSL on a Web Server” in the Reference
SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server

Analysis
● ASP.NET and Enterprise Services are running as least privileged accounts, so

potential damage from compromise is mitigated. If either process identity were
compromised, the account’s limited privileges reduce the scope of damage. Also,
in the case of ASP.NET, if malicious script were injected, potential damage is
constrained.

● The ASP.NET application must be configured for impersonation in order to flow
the security context of the original caller to the Enterprise Services components
(to support Enterprise Services (COM+) role-based authorization). If you do not
impersonate, role checks are made against the process identity (that is, the
ASP.NET worker process). Impersonation affects who you authorize resources
against.
Without impersonation, system resource checks are against the ASP.NET process
identity.  With impersonation, system resource checks are made against the
original caller. For more information about accessing system resources from
ASP.NET, see “Accessing System Resources” in Chapter 8, “ASP.NET Security.”

● By using Enterprise Services (COM+) roles, access checks are pushed to the
middle tier, where the business logic is located. In this case, callers are checked at
the gate, mapped to roles, and calls to business logic are based on roles. This
avoids unnecessary calls to the back end. Another advantage of Enterprise
Services (COM+) roles is that you can create and administer roles at deployment
rime, using the Component Services Manager.

● Windows authentication to SQL means you avoid storing credentials in files and
sending them across the network.

● The use of a local account to run the Enterprise Services application, together
with a duplicated account on the database server, also works in the presence of a
firewall where the ports required for Windows authentication may not be open.
The use of Windows authentication and domain accounts may not work in this
scenario.



Chapter 5: Intranet Security 79

Pitfalls
● The use of a duplicated Windows account on the database server (one that matches

the Enterprise Services process account) results in increased administration.
Passwords should be manually updated and synchronized on a periodic basis.

● Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who access
the application.

ASP.NET to Web Services to SQL Server
In this scenario, a Web server that runs ASP.NET pages connects to a Web service
on a remote server. This server in turn connects to a remote database server. As an
example, consider a HR Web application that provides sensitive data specific to a
user. The application relies on the Web service for data retrieval. The basic model
for this application scenario is shown in Figure 5.5.

SQL 
Server

Web Server Database Server

IIS ASP.NET

Application 
Server

Web 
Service

Figure 5.5
ASP.NET to remote Web Service to SQL Server

The Web service exposes a method that allows an individual employee to retrieve
his or her own personal details. Details must be provided only to authenticated
individuals using the Web application. The Web service also provides a method that
supports the retrieval of any employee details. This functionality must be available
only to members of the HR or payroll department. In this scenario, employees are
categorized into three Windows groups:
● HRDept (members of the HR department)

Members of this group can retrieve details about any employee.
● PayrollDept (members of the Payroll department)

Members of this group can retrieve details about any employee.
● Employees (all employees)

Members of this group can only retrieve their own details.

Due to the sensitive nature of the data, the traffic between all nodes should be secure.



Building Secure ASP.NET Applications80

Characteristics
● Users have Internet Explorer 5.x or later.
● All computers run Windows 2000 or later.
● User accounts are in Active Directory within a single forest.
● The application flows the original caller’s security context all the way to the

database.
● All tiers use Windows authentication.
● Domain user accounts are configured for delegation.
● The database does not support delegation.

Secure the Scenario
In this scenario, the Web server that hosts the ASP.NET Web application authenti-
cates the original caller’s identity and flows their security context to the remote
server that hosts the Web service. This enables authorization checks to be applied to
Web methods to either allow or deny access to the original caller. The database
authenticates against the Web service process identity (the database trusts the Web
service). The Web service in turn makes calls to the database and passes the user’s
identity at the application level using stored procedure parameters.

Table 5.3: Security measures

Category Detail

Authentication ● The Web application authenticates users by using Integrated
Windows authentication from IIS.

● The Web service uses Integrated Windows authentication from IIS.
It authenticates the original caller’s security context delegated by
the Web application.

● The Kerberos authentication protocol is used to flow the original
caller security context from the Web application to the Web service
using delegation.

● Windows authentication is used to connect to the database using
the ASP.NET process account.

Authorization ● The Web application performs role checks against the original
caller to restrict access to pages.

● Access to the Web service methods is controlled by using .NET
roles based on the original caller’s Windows group membership.

Secure Communication ● Sensitive data sent between the original callers and the Web
application and Web service is secured by using SSL.

● Sensitive data sent between the Web service and the database is
secure by using IPSec.



Chapter 5: Intranet Security 81

The Result
Figure 5.6 shows the recommended security configuration for this scenario.

SQL 
Server

NTFS 
Permissions
(Authorization)

SSL
(Privacy/ 
Integrity)

SSL
(Privacy/ 
Integrity)

Web Server

File Authorization
(Authorization)

Database Server

Integrated Windows 
Authentication

(Kerberos)

Windows 
Authentication 

+ Impersonation

IIS ASP.NET
(Web App)

Alice

Mary

Bob

Alice

Mary

Bob

NTFS 
Permissions
(Authorization)

Application Server

File Authorization 
.NET Roles

(Authorization)

Integrated 
Windows 

Authentication

Windows 
Authentication

IIS
ASP.NET 

(Web 
Service)

Alice

Mary

Bob

Windows 
Authentication

ASP.NET 
Identity

IPSec
(Privacy/ 
Integrity)

Figure 5.6
The recommended security configuration for the ASP.NET to Web Service to SQL Server intranet
scenario

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)



Building Secure ASP.NET Applications82

Configuring the Web Server (that Hosts the Web Application)
Configure IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated
Authentication for your Web
application’s virtual root

Configure ASP .NET
Step More Information

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory
application to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory
application for impersonation Set the <identity> element to:

 <identity impersonate="true" />

Configuring the Application Server (that Hosts the Web Service)
Configure IIS
Step More Information

Disable Anonymous access
for your Web service’s virtual
root directory

Enable Windows Integrated
Authentication for your Web
service’s virtual root directory



Chapter 5: Intranet Security 83

Configure ASP .NET
Step More Information

Change the ASPNET ASPNET is a least privileged local account used by default to run
password to a known value the ASP.NET Web applications.

Set the ASPNET account’s password to a know value by using
Local Users and Groups.
Edit Machine.config located in
%windir%\Microsoft.NET\Framework\ v1.0.3705\CONFIG
and reconfigure the password attribute on the
<processModel> element:
Default

 <!-- userName="machine" password="AutoGenerate" -->

Becomes

 <!-- userName="machine"
password="YourNewStrongPassword" -->

Configure your ASP.NET Web Edit Web.config in your Web service’s virtual directory
service to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Make sure impersonation is Impersonation is off by default; however, double check to ensure
off that it’s turned off in Web.config, as follows:

 <identity impersonate=”false” />
Note that because impersonation is disabled by default, the
same effect can be achieved by removing the <identity>
element.

Configure SQL Server
Step More Information

Create a Windows account The user name and password must match your custom ASP.NET
on your SQL Server account.
computer that matches the
ASP.NET process account Give the account the following privileges:
used to run the Web service - Access this computer from the network

- Deny logon locally
- Log on as a batch job

Configure SQL Server for
Windows authentication

(continued)



Building Secure ASP.NET Applications84

Configure SQL Server (continued)
Step More Information

Create a SQL Server Login This grants access to the SQL Server.
for your custom ASP.NET
account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new database user
role and add the database
user to the role

Establish database Grant minimum permissions
permissions for the
database user role

Configuring Secure Communication
Step More Information

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the Web server for SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server

Analysis
● Integrated Windows authentication in IIS is ideal in this scenario because all

users are using Windows 2000 or later, Internet Explorer 5.x or later, and have
accounts in Active Directory, which makes it possible to use the Kerberos authen-
tication protocol (which supports delegation). This allows you to flow the secu-
rity context of the user across computer boundaries.

● End user accounts must be NOT marked as “Sensitive and cannot be delegated”
in Active Directory. The Web server computer account must be marked as
“Trusted for delegation” in Active Directory. For more details, see “How To:
Implement Kerberos Delegation for Windows 2000” in the Reference section of
this guide.

● ASP.NET on the Web server and application server runs with a least privileged
local account (the local ASPNET account), so potential damage from compromise
is mitigated.

● The Web service and Web application are both configured for Windows authenti-
cation. IIS on both computers is configured for Integrated Windows authentication.



Chapter 5: Intranet Security 85

● When making a call to the Web service from the Web application, no credentials
are passed by default. They are required in order to respond to the network
authentication challenge issued by IIS on the downstream Web server. You must
specify this explicitly by setting the Credentials property of the Web service
proxy as shown in the following:

wsproxy.Credentials = CredentialCache.DefaultCredentials;

For more information about calling Web services with credentials, see Chapter
10, “Web Services Security.”

● The Web application is configured for impersonation. As a result, calls from the
Web application to the Web service flow the original caller’s security context and
allow the Web service to authenticate (and authorize) the original caller.

● .NET roles are used within the Web service to authorize the users based on the
Windows group to which they belong (HRDept, PayrollDept and Employees).
Members of HRDept and PayrollDept can retrieve employee details for any
employee, while members of the Employees group are authorized to retrieve
only their own details.
Web methods can be annotated with the PrincipalPermissionAttribute class to
demand specific role membership, as shown in the following code sample.
Notice that PrincipalPermission can be used instead of
PrincipalPermissionAttribute. This is a common feature of all .NET attribute
types.

[WebMethod]
[PrincipalPermission(SecurityAction.Demand,
                  Role=@"DomainName\HRDept)]
public DataSet RetrieveEmployeeDetails()
{
}

The attribute shown in the preceding code means that only members
of the DomainName\HRDept Windows group are allowed to call the
RetrieveEmployeeDetails method. If any nonmember attempts to call
the method, a security exception is thrown.

● ASP.NET File Authorization (within the Web application and Web service)
performs ACL checks against the caller for any file type for which a mapping
exists in the IIS Metabase that maps the file type to Aspnet_isapi.dll. Static file
types (such as .jpg, .gif, .htm, and so on), for which an ISAPI mapping does not
exist are checked by IIS (again using the ACL attached to the file).

● Because the Web application is configured for impersonation, resources accessed
by the application itself must be configured with an ACL that grants at least read
access to the original caller.



Building Secure ASP.NET Applications86

● The Web service does not impersonate or delegate; therefore, it accesses local
system resources and the database using the ASP.NET process identity. As a
result, all calls are made using the single process account. This enables database
connection pooling to be used. If the database doesn’t support delegations (such
as SQL Server 7.0 or earlier), this scenario is a good option.

● Windows authentication to SQL Server means you avoid storing credentials on
the Web server and it also means that credentials are not sent across the network
to the SQL Server computer.

● SSL between the original caller and Web server protects the data passed to and
from the Web application.

● IPSec between the downstream Web server and database protects the data
passed to and from the database.

Pitfalls
● The use of a duplicated Windows account on the database server (one that

matches the ASP.NET process account) results in increased administration.
Passwords should be manually updated and synchronized on a periodic basis.
As an alternative, consider using least-privileged domain accounts. For more
information about choosing an ASP.NET process identity, see Chapter 9,
“ASP.NET Security.”

● Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who will
access the application.

● Kerberos delegation is unrestricted and as a result you must carefully control
which applications identities run on the Web server. To raise the bar on security,
limit the scope of the domain account’s reach by removing the account from
Domain Users group and provide access only from appropriate computers. For
more information, see “Default Access Control Settings” white paper.

Q&A
● The database doesn’t know who the original caller is. How can I create an

audit trail?

Audit end user activity within the Web service or pass the identity of the user
explicitly as a parameter of the data access call.

Related Scenarios
If you need to connect to non SQL Server databases, or you currently use SQL
authentication, you must pass database account credentials explicitly using the
connection string. If you do so, make sure that you securely store the connection
string.



Chapter 5: Intranet Security 87

For more information, see “Storing Database Connection Strings Securely” within
Chapter 12, “Data Access Security.”

ASP.NET to Remoting to SQL Server
In this scenario, a Web server that runs ASP.NET pages makes secure connections to
a remote component on a remote application server. The Web server communicates
with the component by using .NET Remoting over the HTTP channel. The remote
component is hosted by ASP.NET. This is shown in Figure 5.7.

IIS

.NET Remoting

ASP.NET
SQL 

Server

Web Server Database Server

IIS ASP.NET

Application Server

Figure 5.7
ASP.NET to remoting using .NET Remoting to SQL Server

Characteristics
● Users have various types of Web browser.
● The remote component is hosted by ASP.NET.
● The Web application communicates with the remote component using the HTTP

channel.
● The ASP.NET application calls the .NET remote component and passes the

original caller’s credentials for authentication. These are available from Basic
authentication.

● The data is sensitive and therefore must be secured between processes and
computers.

Secure the Scenario
In this scenario, the Web server that hosts the ASP.NET Web application authenti-
cates the original callers. The Web application is able to retrieve the caller’s authen-
tication credentials (user name and password) from HTTP server variables. It can
then use them to connect to the application server that hosts the remote component,
by configuring the remote component proxy. The database uses Windows authenti-
cation to authenticate against the ASP.NET process identity (that is, the database
trusts the remote component). The remote component in turn calls the database and
passes the original caller’s identity at the application level using stored procedure
parameters.



Building Secure ASP.NET Applications88

Table 5.4: Security measures

Category Detail

Authentication ● Authenticate users using Basic authentication from IIS (in addition
to SSL).

● Use Windows authentication from remote component (ASP.NET/IIS).
● Use Windows authentication to connect to the database using a

least privileged ASP.NET account.

Authorization ● ACL checks against original caller on the Web server.
● Role checks within the remote component against original caller.
● Database permissions against the ASP.NET (remote component)

identity.

Secure Communication ● Secure sensitive data sent between the users and the Web
application and remote objects hosted in IIS using SSL.

● Secure sensitive data sent between the Web server and the
database using IPSec.

The Result
Figure 5.8 shows the recommended security configuration for this scenario.

NTFS 
Permissions
(Authorization)

Web Server

File Authorization
(Authorization)

Basic 
Authentication

Windows 
Authentication

IIS ASP.NET

Alice

Mary

Bob

Alice

Mary

Bob

NTFS 
Permissions
(Authorization)

Application Server

File Authorization 
.NET Roles

(Authorization)

Integrated 
Windows 

Authentication

IIS

ASP.NET
Alice

Mary

Bob

Database 
Permissions
(Authorization)

Component

SQL 
Server

Database Server

Windows 
Authentication

ASP.NET 
Identity

IPSec
(Privacy/ 
Integrity)

SSL
(Privacy/ 
Integrity)

SSL
(Privacy/ 
Integrity)

Figure 5.8
The recommended security configuration for the ASP.NET to remote Web Service to SQL Server
intranet scenario



Chapter 5: Intranet Security 89

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Creating a least privileged database account (see Chapter 12, “Data Access

Security”)
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)

Configuring the Web Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Basic authentication Use SSL to protect the Basic authentication credentials.

Configure ASP.NET
Step More Information

Configure your ASP.NET Web Edit Web.config in your application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Configure the Application Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Integrated Windows
authentication



Building Secure ASP.NET Applications90

Configure ASP .NET
Step More Information

Configure your remote Edit Web.config in your remote component’s virtual directory
component (within ASP.NET) root
to use Windows authenti- Set the <authentication> element to:
cation

 <authentication mode="Windows" />

Change the ASPNET ASPNET is a least privileged local account used by default to run
password to a known value ASP.NET Web applications (and in this case the remote compo-

nent host process).
Set the ASPNET account’s password to a know value by using
Local Users and Groups.
Edit Machine.config located in
%windir%\Microsoft.NET\Framework\ v1.0.3705\CONFIG
and reconfigure the password attribute on the  <processModel>
element
Default

 <!-- userName="machine" password="AutoGenerate" -->

Becomes

 <!-- userName="machine"
password="YourNewStrongPassword" -->

Make sure impersonation is Impersonation is off by default; however, double check to ensure
off that it’s turned off in web.config, as shown below:

 <identity impersonate="false" />

The same effect can be achieved by removing the <identity>
element.

Configure SQL Server
Step More Information

Create a Windows account The user name and password must match your custom ASP.NET
on your SQL Server account.
computer that matches the
ASP.NET process account Give the account the following privileges:
used to run the Web - Access this computer from the network
service - Deny logon locally

- Log on as a batch job

Configure SQL Server for
Windows authentication



Chapter 5: Intranet Security 91

Step More Information

Create a SQL Server Login This grants access to the SQL Server
for your custom ASP.NET
account

Create a new database This grants access to the specified database
user and map the login
name to the database user

Create a new database
user role and add the
database user to the role

Establish database Grant minimum permissions
permissions for the
database user role

Configuring Secure Communication
Step More Information

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the Web server for SSL section of this guide.

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the application server for section of this guide.
SSL

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
application server and Between Two Servers in the Reference section of this guide.”
database server

Analysis
● ASP.NET on the Web server and application sever is running as a least privileged

local account, so potential damage from compromise is mitigated. The default
ASPNET account is used in both cases.
Use of the ASPNET local account (duplicated on the SQL Server computer)
further reduces the potential security risk. A duplicated Windows account on
the database server allows the remote component to run with a least privilege
ASP.NET account on the application server.

● Basic authentication at the Web server allows the user’s credentials to be used by
the Web application to respond to Windows authentication challenges from the
application server.
To call the remote component using the caller’s credentials, the Web application
configures the remote component proxy as shown in the code fragment on the
next page.



Building Secure ASP.NET Applications92

string pwd = Request.ServerVariables["AUTH_PASSWORD"];
string uid = Request.ServerVariables["AUTH_USER"];
IDictionary channelProperties =
                         ChannelServices.GetChannelSinkProperties(proxy);
NetworkCredential credentials;
credentials = new NetworkCredential(uid, pwd);
ObjRef objectReference = RemotingServices.Marshal(proxy);
Uri objectUri = new Uri(objectReference.URI);
CredentialCache credCache = new CredentialCache();
credCache.Add(objectUri, "Negotiate", credentials);
channelProperties["credentials"] = credCache;
channelProperties["preauthenticate"] = true;

For more information about flowing security credentials to a remote component,
see Chapter 11, “.NET Remoting Security.”

● Impersonation is not enabled within the ASP.NET Web application, because the
remoting proxy is specifically configured using the user’s credentials obtained
by Basic authentication. Any other resource accessed by the Web application uses
the security context provided by the ASP.NET process account.

● SSL between the user and Web server protects the data passed to and from the
Web server and also protects the Basic credentials passed in clear text during the
authentication process.

● Integrated Windows authentication at the application server provides .NET role
checks against the original caller. The roles correspond to Windows groups.
Role-based checks can be performed, even without impersonation.

● ASP.NET File Authorization performs ACL checks against the caller for any file
type for which a mapping exists in the IIS Metabase that maps the file type to
aspnet_isapi.dll. IIS performs access checks for static files (not mapped to an
ISAPI extension within IIS).

● Because impersonation is not enabled on the application server, any local or
remote resource access performed by the remote component does so using the
ASPNET security context. ACLs should be set accordingly.

● Windows authentication to SQL Server means you avoid storing credentials on
the application server and it also means that credentials are not sent across the
network to the SQL Server computer.

Pitfalls
● The use of a duplicated Windows account on the database server (one that

matches the ASP.NET process account) results in increased administration.
Passwords should be manually updated and synchronized on a periodic basis.

● Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who will
access the application.



Chapter 5: Intranet Security 93

Related Scenarios
The Web server uses Kerberos to authenticate callers. Kerberos delegation is used to
flow the original caller’s security context across to the remote component on the
application server.

This approach requires that all user accounts be configured for delegation. The Web
application would also be configured for impersonation and would use
DefaultCredentials to configure the remote component proxy. This technique is
discussed further in the “Flowing the Original Caller” section of Chapter 11, “.NET
Remoting Security.”

Flowing the Original Caller to the Database
The scenarios discussed earlier have used the trusted subsystem model and in all
cases the database has trusted the application server or Web server to correctly
authenticate and authorize users. While the trusted subsystem model offers many
advantages, some scenarios (perhaps for auditing reasons) may require you to use
the impersonation/delegation model and flow the original caller’s security context
across computer boundaries all the way to the database.

Typical reasons why you may need to flow the original caller to the database
include:
● You need granular access in the database and permissions are restricted by object.

Specific users or groups can read, while others can write to individual objects.
This is in contrast to less granular task-based authorization, where role member-
ship determines read and write capabilities for specific objects.

● You may want to use the auditing capabilities of the platform, rather than flow
identity and perform auditing at the application level.

If you do choose an impersonation/delegation model (or are required to do so due
to corporate security policy) and flow the original caller’s context through the tiers
of your application to the back end, you must design with delegation and network
access in mind (which is nontrivial when spanning multiple computers). The
pooling of shared resources (such as database connections) also becomes a key issue
and can significantly reduce application scalability.

This section shows you how to implement the impersonation/delegation for two of
the most common application scenarios:
● ASP.NET to SQL Server
● ASP.NET to Enterprise Services to SQL Server

For more information about the trusted subsystem and impersonation/delegation
models and their relative merits, see Chapter 3, “Authentication and Authorization.”



Building Secure ASP.NET Applications94

ASP.NET to SQL Server
In this scenario, calls to the database are made using the security context of the
original caller. Authentication options described in this section include Basic and
Integrated Windows authentication. A Kerberos delegation scenario is described
within the “ASP.NET to Enterprise Services to SQL Server” section.

Using Basic Authentication at the Web Server
The following configuration settings for Basic authentication enable you to flow the
original caller all the way to the database.

Table 5.5: Security measures

Category Detail

Authentication ● Authenticate users by using Basic authentication from IIS.
● Use Windows authentication within ASP.NET.
● Turn on impersonation in ASP.NET.
● Use Windows authentication to communicate with SQL Server.

Authorization ● Use ACL checks against the original caller on the Web server.
● If the original callers are mapped to Windows groups (based on

application requirements, for example, Managers, Tellers, and so
on) then you can use .NET role checks against the original caller
to restrict access to methods.

Secure Communication ● Secure the clear text credentials sent between the Web server
and the database by using SSL.

● To secure all sensitive data sent between the Web application
and database, use IPSec.

With this approach, it’s important to note the following points:
● Basic authentication prompts the user with a pop-up dialog box into which they

can type credentials (user name and password).
● The database must recognize the original caller. If the Web server and database

are in different domains, appropriate trust relationships must be enabled to
allow it to authenticate the original caller.

Using Integrated Windows Authentication at the Web Server
Integrated Windows authentication results in either NTLM or Kerberos authentica-
tion and is dependent upon the client and server computer configurations.

NTLM authentication does not support delegation and as a result does not allow
you to flow the original caller’s security context from the Web server to a physically
remote database. The single network hop allowed for NTLM authentication is used



Chapter 5: Intranet Security 95

between the browser and Web server. To use NTLM authentication, the SQL Server
must be installed on the Web server, which is likely to be appropriate only for very
small intranet applications.

ASP.NET to Enterprise Services to SQL Server
In this scenario, ASP.NET pages call business components hosted in a remote
Enterprise Services application that in turn talk to a database. The original caller’s
security context flows all the way from the browser to the database. This is shown
in Figure 5.9.

SQL 
Server

Web Server Database Server

IIS ASP.NET

Application 
Server

Enterprise 
Services

Figure 5.9
ASP.NET calls a component within Enterprise Services which calls the database

Characteristics
● Users have Internet Explorer 5.x or later.
● All computers are Windows 2000 or later.
● User accounts are maintained in Active Directory within a single forest.
● The application flows the original caller’s security context (at the operating

system level) all the way to the database.
● All tiers use Windows authentication.
● Domain user accounts are configured for delegation and the account used to run

the Enterprise Services application must be marked as “Trusted for delegation”
within Active Directory.

Secure the Scenario
In this scenario, the Web server authenticates the caller. You must then configure
ASP.NET for impersonation in order to flow the original caller’s security context to
the remote Enterprise Services application. Within the Enterprise Services applica-
tion, component code must explicitly impersonate the caller (using
CoImpersonateClient) in order to ensure the caller’s context flows to the database.



Building Secure ASP.NET Applications96

Table 5.6: Security measures

Category Detail

Authentication ● All tiers support Kerberos authentication (the Web server, the
application server, and database server).

Authorization ● Authorization checks are performed in the middle tier with
Enterprise Services (COM+) roles against the original caller’s
identity.

Secure Communication ● SSL is used between the browser and the Web server to secure
sensitive data.

● RPC Packet Privacy (providing encryption) is used between ASP.NET
and the serviced components within the remote Enterprise
Services application.

● IPSec is used between the serviced components and the
database.

The Result
Figure 5.10 shows the recommended security configuration for this scenario.

A B C

SQL 
Server

Database 
Server

IPSec
(Privacy/ Integrity)

Integrated 
Windows
(Kerberos)

(Authentication)

Web Server

Windows
(Authentication)

IIS ASP.NET

A

B

C

A

B

C

SSL
(Privacy/ 
Integrity)

Clients

Internet
Explorer

Application Server

Enterprise Services

Enterprise Services
(COM+) Roles
(Authorization)

Windows 
(Authentication)

RPC Packet 
Privacy 

(Privacy/Integrity)

Impersonation

Impersonation
(Programmatic)

A

B

C

Windows
(Authentication)

Database Permissions
(Authorization)

Figure 5.10
ASP.NET calls a component within Enterprise Services which calls the database. The original caller’s
security context flows to the database.



Chapter 5: Intranet Security 97

Security Configuration Steps
Before you begin, you should be aware of the following configuration issues:
● The Enterprise Services process account must be marked “Trusted for delega-

tion” in Active Directory and end user accounts must not be marked “Sensitive
and cannot be delegated.” For more information, see “How To: Implement
Kerberos Delegation for Windows 2000” in the Reference section of this guide.

● Windows 2000 or later is required on all computers. This includes client
(browser) computers and all servers.

● All computers must be in the Active Directory and must be part of a single
forest.

● The application server that hosts Enterprise Services must be running Windows
2000 SP3.

● If you are using Internet Explorer 6.0 on Windows 2000, it defaults to NTLM
authentication instead of the required Kerberos authentication. To enable
Kerberos delegation, see article Q299838, “Can’t Negotiate Kerberos Authentica-
tion After Upgrading to Internet Explorer 6,” in the Microsoft Knowledge Base.

Configure the Web Server (IIS)
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated
authentication

Configure the Web Server (ASP.NET)
Step More Information

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory root
application to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory
application for impersonation Set the <identity> element to:

 <identity impersonate="true" />

(continued)



Building Secure ASP.NET Applications98

Configure the Web Server (ASP.NET) (continued)
Step More Information

Configure the DCOM The ASP.NET Web application calls the remote serviced
impersonation level used by components over DCOM. The default impersonation level used
the ASP.NET Web application for outgoing calls from ASP.NET is Impersonate. This must be
for outgoing calls changed to Delegate in Machine.config.

Edit Machine.config, locate the <processModel> element, and
set the comImpersonateLevel attribute to “Delegate” as shown
below.

 <processModel comImpersonationLevel="Delegate"

Configure the DCOM DCOM authentication levels are determined by both client and
authentication level at the server. The DCOM client in this case is ASP.NET.
client Edit Machine.config, locate the <processModel> element and

set the comAuthenitcationLevel attribute to “PktPrivacy” as
shown below.

 <processModel comAuthenticationLevel="PktPrivacy"

Configure Serviced Components (and the Application Server)
Step More Information

Managed class(es) must See article Q306296, “HOW TO: Create a Serviced .NET
inherit from the Serviced Component in Visual C# .NET,” in the Microsoft Knowledge Base.
Component class

Add code to the serviced Add references to OLE32.DLL:
component to impersonate
the caller by calling the  class COMSec
CoImpersonateClient() and {
CoRevertToSelf() APIs from [DllImport("OLE32.DLL", CharSet=CharSet.Auto)]
OLE32.DLL before accessing public static extern long CoImpersonateClient();
remote resources (for
example, a database) in [DllImport("OLE32.DLL", CharSet=CharSet.Auto)]
order for the caller’s context  public static extern long CoRevertToSelf();
to be used. By default, the }
Enterprise Services process
context is used for outgoing Call these external functions before calling remote resources:
calls.

COMSec.CoImpersonateClient();
COMSec.CoRevertToSelf();

For more information, see Chapter 9, “Enterprise Services
Security.”



Chapter 5: Intranet Security 99

Configure Serviced Components (and the Application Server)
Step More Information

Configure the Enterprise This can be configured using the Component Services tool, or
Services application as a via the following .NET attribute placed in the service component
server application assembly.

[assembly:
ApplicationActivation(ActivationOption.Server)]

Configure the Enterprise Add the following .NET attribute to the serviced component
Services application to use assembly.
packet privacy authentication
(to provide secure communi- [assembly: ApplicationAccessControl(
cation with encryption)               Authentication =

               AuthenticationOption.Privacy)]

Configure the Enterprise To configure role checks at the process and component level
Services application for (including interfaces and classes) use the following attribute.
component level role-based
security [assembly: ApplicationAccessControl(AccessChecksLevel=
 AccessChecksLevelOption. ApplicationComponent)]

Decorate classes with the following attribute:

 [ComponentAccessControl(true)]

For more information about configuring interface and method
level role checks, see “Configuring Security” in Chapter 9,
“Enterprise Services Security.”

Create a custom account for The Enterprise Services application needs to run as domain
running Enterprise Services account marked as Trusted for Delegation in Active Directory.
and mark it as Trusted for For more information, see “How To: Implement Kerberos
delegation in Active Directory Delegation for Windows 2000” in the Reference section of this

guide.

Configure Enterprise This must be configured using the Component Services tool or
Services to run as your script. You can not use .NET attributes within the serviced
custom account component assembly.



Building Secure ASP.NET Applications100

Configure the Database Server (SQL Server)
Step More Information

Configure SQL Server for
Windows authentication

Create SQL Server Logins This grants access to the SQL Server.
for the Windows groups that The access control policy treats Windows groups as roles. For
the users belong to. example, you may have groups such as Employees, HRDept

and PayrollDept.

Create new database users This grants access to the specified database.
for each SQL Server login

Establish database Grant minimum permissions
permissions for the database For more information, see Chapter 12, “Data Access Security.”
users

Analysis
● The key to flowing the original caller’s security context is Kerberos authentica-

tion, which generates a delegate-level token. After the server process (IIS) re-
ceives the delegate-level token, it can pass it to any other process, running under
any account on the same computer, without changing its delegation level. It does
not matter whether the worker process is running as a local or domain account.
It does matter what IIS is running as. If it’s running as something other than
LocalSystem, the account it is running under needs to be marked as “Trusted for
delegation” in Active Directory.
If IIS is running as LocalSystem, the computer account must be marked as
“Trusted for delegation”. For more information, see “How To: Implement
Kerberos Delegation for Windows 2000” in the Reference section of this guide.

● Integrated Windows authentication (with Kerberos) in IIS is ideal in this scenario
because all users have Windows accounts and they are using Internet Explorer
5.x or later. The benefit of Integrated Windows authentication is that the user’s
password is never sent over the wire. Additionally, the logon will be transparent
because Windows will use the current interactive user’s logon session.

● ASP.NET constructs a WindowsPrincipal object and attaches it to the current
Web request context (HttpContext.User). If you need to perform authorization
checks within the Web application you can use the following code.

WindowsPrincipal wp = (HttpContext.Current.User as WindowsPrincipal);
if ( wp.IsInRole("Manager") )
{
  // User is authorized to perform manager-specific functionality
}



Chapter 5: Intranet Security 101

The ASP.NET FileAuthorizationModule provides ACL checks against the
original caller for ASP.NET file types that are mapped within IIS to the
Aspnet_isapi.dll. For static file types such as .jpg, .gif and .htm files, IIS acts as
the gatekeeper and performs access checks using the original caller’s identity.

● By using Windows authentication to SQL, you avoid storing credentials in files
on the application server and avoid passing them across the network. For
example include the Trusted_Connection attribute in the connection string:

ConStr="server=YourServer; database=yourdatabase; Trusted_Connection=Yes;"

● The original caller’s context flows across all tiers, which makes auditing
extremely easy. You can use platform-level auditing (for example, auditing
features provided by Windows and SQL Server).

Pitfalls
● If you are using Internet Explorer 6.0 on Windows 2000, the default authentica-

tion mechanism that is negotiated is NTLM (and not Kerberos). For more infor-
mation, see article Q299838, “Can’t Negotiate Kerberos Authentication After
Upgrading to Internet Explorer 6,” in the Microsoft Knowledge Base.

● Delegating users across tiers is expensive in terms of performance and applica-
tion scalability compared to using the trusted subsystem model. You cannot take
advantage of connection pooling to the database, because connections to the
database are tied to original caller’s security context and therefore cannot be
efficiently pooled.

● This approach also relies on the granularity of Windows groups matching your
application’s security needs. That is, Windows groups must be set up at the
correct level of granularity to match the categories of users (sharing the same
security privileges) who access the application.

Summary
This chapter has described how to secure a set of common intranet application
scenarios.

For Extranet and Internet application scenarios, see Chapter 6, “Extranet Security”
and Chapter 7, “Internet Security.”





6
Extranet Security

Extranet applications are those that share resources or applications across two
different companies or divisions. The applications and resources are exposed over
the Internet. One of the main challenges associated with extranet applications is
developing an authentication approach that both parties agree to. Your choices may
be limited in this respect because you may need to interoperate with existing
authentication mechanisms.

Extranet applications generally share some common characteristics:
● You have tighter control over user accounts, compared to Internet scenarios.
● You may have a higher level of trust for the user accounts, compared to applica-

tions that have Internet users.

The scenarios presented in this chapter that are used to illustrate recommended
authentication, authorization, and secure communication techniques include:
● Exposing a Web Service
● Exposing a Web Application

Exposing a Web Service
Consider a business to business partner exchange scenario where a publisher
company publishes and sells its services over the Internet. It exposes information
to selected partner companies using a Web service. Users within each partner
company access the Web service using an Intranet-based internal Web application.
This scenario is shown in Figure 6.1 on the next page.



Building Secure ASP.NET Applications104

ASP.NET
(Web App)

Partner Company

IIS

SQL 
Server

ASP.NET
(Web 

Sevice)

Publisher Company

IISInternet

Figure 6.1
Extranet Web service business to business partner exchange

Characteristics
This scenario has the following characteristics:
● The publisher company exposes a Web service over the Internet.
● Partner company (not individual user) credentials (X.509 client certificates) are

validated by the publisher to authorize access to resources. The publisher does
not need to know about the user’s individual logins in the partner company.

● Client certificates are mapped to Active Directory® directory service accounts
within the publisher company.

● The extranet contains a separate Active Directory from the (internal) corporate
Active Directory. The extranet Active Directory is in a separate forest, which
provides a separate trust boundary.

● Web service authorization is based on the mapped Active Directory account. You
can use separate authorization decisions based on partner company identity
(represented by separate Active Directory accounts per company).

● The database is accessed by a single trusted connection that corresponds to the
ASP.NET Web service process identity.

● The data retrieved from the Web service is sensitive and must be secured while
in transit (internally within the publisher company and externally while flowing
over the Internet).



Chapter 6: Extranet Security 105

Secure the Scenario
In this scenario, each partner company’s internal Web application retrieves data
from the publisher company through the Web service and then presents the re-
trieved data to its users. The publisher requires a secure mechanism to authenticate
partner companies, although the identity of individual users within partner compa-
nies is not relevant.

Due to the sensitive nature of the data sent between the two companies over the
Internet, it must be secured using SSL while in transit.

A firewall that permits only inbound connections from the IP address of extranet
partner companies is used to prevent other unauthorized Internet users from
opening network connections to the Web service server.

Table 6.1: Security measures

Category Detail

Authentication ● Partner applications use client certificates with each request to
the Web service.

● Client certificates from partner companies are mapped to
individual Active Directory accounts.

● Windows® authentication is used at the database. The ASP.NET
Web service process identity is used to connect. The database
trusts the Web service.

Authorization ● The Web service uses .NET role-based authorization to check that
authenticated Active Directory accounts are members of a Partner
group.

Secure Communication ● SSL is used to secure the communication between the partner
Web application and publisher’s Web service.

● IPSec is used to secure all communication between the Web
service and the database.

The Result
Figure 6.2 on the next page shows the recommended security configuration for this
scenario.



Building Secure ASP.NET Applications106

Publisher Company

NTFS 
Permissions
(Authorization)

ASP.NET 
(Web App)

Partner Company

IIS

Enterprise 
Services

ASP.NET
(Web 

Service) Active 
Directory

IIS

File 
authorization 
.NET Roles

(Authorization)

Certificate
Authentication

SSL
(Privacy/Integrity)

IPSec
(Privacy/ 
Integrity)

ASP.NET 
Identity

Internet

Firewalls

Certificate 
Mapping

SQL 
ServerUser-defined 

Database Roles
(Authorization)

Windows
Authentication

Figure 6.2
The recommended security configuration for the Web service business to business partner exchange
scenario

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Creating custom ASP.NET accounts (see “How To: Create a Custom Account to

Run ASP.NET” in the Reference section of this guide)
● Creating a least privileged database account (see Chapter 12, “Data Access

Security”)
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)
● Configuring IPSec through firewalls (see article Q233256, “How to Enable IPSec

Traffic Through a Firewall,” in the Microsoft Knowledge Base).



Chapter 6: Extranet Security 107

● Calling a Web service using SSL (see “How To: Call a Web Service Using SSL” in
the Reference section of this guide); this solution technique is required within the
partner company

● The discussion of certificate management and the infrastructure is beyond the
scope of this topic, for more information search for “Certificates and
Authenticode” on Microsoft TechNet.

Configuring the Partner Application
This chapter does not go into details about the partner application and its security
configuration. However, the following points needs to be considered to facilitate
communication between the partner application and Web service:
● The partner company’s Web application can choose an authentication mecha-

nism that allows it to authenticate and authorize its internal users. Those users
are not passed to the Web service for further authentication.

● The partner company’s Web application makes calls on behalf of its user to the
Web service. Users cannot directly call the Web service.

● The partner company’s Web application uses a client certificate to prove its
identity to the Web service.

● If the partner application is an ASP.NET Web application, then it must use an
intermediate out of process component (an Enterprise Services application or
Windows service) to load the certificate and forward it to the Web service.
For more information about why this is necessary and the steps to achieve this,
see “How to call a Web service using client certificates from ASP.NET” in the
Reference section of this guide.

Configuring the Extranet Web Server
Configure IIS
Step More Information

Disable Anonymous access To work with IIS authentication settings, use the IIS MMC
for the Web service’s virtual snap-in. Select your application’s virtual directory, right-click
root directory and then click Properties.

Click the Directory Security tab, and then click Edit within the
Anonymous access and authentication control group.

Enable certificate See “How To: Set Up SSL on a Web Server” in the Reference
Authentication for your Web section of this guide.
application’s and Web See “How To: Call a Web Service Using Client Certificates from
service’s virtual root ASP.NET” in the Reference section of this guide.



Building Secure ASP.NET Applications108

Configure Active Directory (Extranet)
Step More Information

Set up Active Directory A separate extranet Active Directory is used. This is located in
accounts to represent its own forest, and is completely separate from the corporate
partner companies Active Directory.

Configure certificate See the “Step-by-Step Guide to Mapping Certificates to User
mapping Accounts” on Microsoft TechNet.

Also see article Q313070, “HOW TO: Configure Client Certificate
Mappings in IIS 5.0,” in the Microsoft Knowledge Base.

Configure ASP.NET (Web Service)
Step More Information

Configure the ASP.NET Web Edit Web.config in the Web service’s virtual root directory
service to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Reset the password of the This allows you to create a duplicate local account (with the
ASPNET account (used to same username and password) on the database server. This is
run ASP.NET) to a known required to allow the ASPNET account to respond to network
strong password authentication challenges from the database server when it

connects using Windows authentication.

An alternative here is to use a least privileged domain account
(if Windows authentication is permitted through the firewall).
For more information, see “Process Identity for ASP.NET” in
Chapter 8, “ASP.NET Security.”

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes on
the  <processModel> element

Default

 <!-- userName="machine" password="AutoGenerate" -->

Becomes

<!-- userName="machine"
       password="YourStrongPassword" -->



Chapter 6: Extranet Security 109

Configuring SQL Server
Step More Information

Create a Windows account The user name and password must match your ASP.NET process
on the computer running account.
Microsoft SQL Server™ that
matches the ASP.NET Give the account the following privileges:
process account used to - Access this computer from the network
run the Web service (by - Deny logon locally
default ASPNET) - Log on as a batch job

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to the SQL Server.
for the ASPNET account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new user-defined
database role within the
database and place the data-
base user into the role

Establish database Grant minimum permissions
permissions for the See Chapter 12, “Data Access Security.”
database role

Configuring Secure Communication
Step More Information

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the Web server for SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server

Analysis
● ASP.NET on the Web server is running as a least privileged local account (the

default ASPNET account), so potential damage from compromise is mitigated.
● The ASP.NET Web applications within the partner companies use Windows

Integrated authentication and perform authorization to determine who can
access the Web service.



Building Secure ASP.NET Applications110

● The ASP.NET Web application within the partner company uses an intermediate
Enterprise Services application to retrieve client certificates and make calls to the
Web service.

● The publisher company uses the partner organization name (contained in the
certificate) to perform certificate mapping within IIS.

● The Web service uses the mapped Active Directory account to perform authori-
zation, using PrincipalPermission demands and .NET role checks.

● Windows authentication to SQL Server means you avoid storing credentials on
the Web server and it also means that credentials are not sent across the internal
network to the SQL Server computer. If you use SQL authentication, it is impor-
tant to secure the connection string (containing a user name and password)
within the application and as it is passed across the network. Use DPAPI or one
of the alternative secure storage strategies discussed in Chapter 12, “Data Access
Security,” to store connection strings and use IPSec to protect the connection
string (and sensitive application data) as it is passed between the Web service
and database.

● SSL between partner companies and Web service protects the data passed across
the Internet.

● IPSec between the Web service and database protects the data passed to and
from the database on the corporate network. In some scenarios where the partner
and publisher communicate over a private network, it may be possible to use
IPSec for machine authentication in addition to secure communication.

Pitfalls
● The use of a duplicated local Windows account on the database server (one that

matches the ASP.NET process account local to IIS) results in increased adminis-
tration. Passwords must be manually updated and synchronized on a periodic
basis.

● Because .NET role-based security is based on Windows group membership, this
solution relies on Windows groups being set up at the correct level of granularity
to match the categories of users (sharing the same security privileges) who will
access the application. In this scenario, Active Directory accounts must be a
member of a Partner group.

Q&A
● The database doesn’t know who the original caller is. How can I create an

audit trail?
Audit end user (partner company) activity within the Web service. Pass the
partner company identity at the application level to the database using stored
procedure parameters.



Chapter 6: Extranet Security 111

Related Scenarios
The publisher company might publish non sensitive data such as soft copies of
magazines, newspapers, and so on. In this scenario, the publisher can provide a
unique username and password for each partner to connect with to retrieve the
data from the Web service.

In this related scenario, the publisher’s Web site is configured to authenticate users
with Basic authentication. The partner application uses the username and password
to explicitly set the credentials for the Web service proxy.

More Information

For more information about configuring Web service proxies, see Chapter 10, “Web
Services Security.”

Exposing a Web Application
In this scenario the publisher company gives its partners exclusive access to its
application over the Internet and provides a partner-portal application; for ex-
ample, to sell services, keep partners updated with product information, and
provide online collaboration and so on. This scenario is shown in Figure 6.3.

SQL 
Server

ASP.NET
(Web 

Application)

Publisher Company

Browser

Partner 
Company

IISInternet

Figure 6.3
Partner portal scenario

Scenario Characteristics
This scenario has the following characteristics:
● The partner Web application accepts credentials either by using a Forms login

page or it presents a login dialog using Basic authentication in IIS.



Building Secure ASP.NET Applications112

● The credentials are validated against a separate Active Directory within the
extranet perimeter network (also known as DMZ, demilitarized zone, and
screened subnet). The extranet Active Directory is in a separate forest, which
provides a separate trust boundary.

● The database is accessed by a single trusted connection that corresponds to the
ASP.NET Web application process identity.

● Web application authorization is based on either a GenericPrincipal object
(created as part of the Forms authentication process) or a WindowsPrincipal
object (if Basic authentication is used).

● The data retrieved from the Web application is sensitive and must be secured
while in transit (internally within the publisher company and externally while
flowing over the Internet).

Secure the Scenario
Due to the sensitive nature of the data sent between the two companies over the
Internet, it must be secured using SSL while in transit.

A firewall that permits only inbound connections from the IP address of extranet
partner companies is used to prevent other unauthorized Internet users from
opening network connections to the Web server.

Table 6.2: Security measures

Category Detail

Authentication ● Users within partner companies are authenticated by the Web
application using either Basic or Forms authentication against the
extranet Active Directory.

● Windows authentication is used at the database. The ASP.NET
Web application process identity is used to connect. The
database trusts the Web application.

Authorization ● The Web application uses .NET role-based authorization to
check that the authenticated user (represented by either a
GenericPrincipal object or a WindowsPrincipal object, for Forms
and Basic authentication respectively) are members of a Partner
group.

Secure Communication ● SSL is used to secure the communication between the partner
Web browser and publisher’s Web application.

● IPSec is used to secure all communication between the Web
application and the database.



Chapter 6: Extranet Security 113

The Result
Figure 6.4 shows the recommended security configuration for this scenario.

Publisher Company

Internet

NTFS 
Permissions
(Authorization)

Browser

Partner 
Company

ASP.NET
(Web App) Active 

Directory

IIS

File 
authorization 
.NET Roles

(Authorization)

Basic or 
Anonymous
Authentication

Windows or 
Forms

Authentication
SSL

(Privacy/Integrity)

Internet

Firewalls IPSec
(Privacy/ 
Integrity)

ASP.NET 
Identity

SQL 
ServerUser-defined 

Database Roles
(Authorization)

Windows
Authentication

Figure 6.4
The recommended security configuration for the partner portal scenario

Configuring the Extranet Web Server
Configure IIS
Step More Information

To use Forms authentication,
enable Anonymous access
for the Web application’s
virtual root directory
- or -
To use Basic authentication,
disable Anonymous access
and select Basic
authentication

(continued)



Building Secure ASP.NET Applications114

Configure Active Directory (Extranet)
Step More Information

Set up Active Directory A separate extranet Active Directory is used. This is located in
accounts to represent its own forest and is completely separate from the corporate
partner users Active Directory.

Configure ASP.NET
Step More Information

Configure the ASP.NET Web Edit Web.config in the Web service’s virtual root directory
application to use Windows Set the <authentication> element to either:
authentication (for IIS Basic)
- or - <authentication mode="Windows" />
Configure ASP.NET to use
Forms authentication - or -

<authentication mode="Forms" />

Reset the password of the This allows you to create a duplicate local account (with the
ASPNET account (used to same user name and password) on the database server. This is
run ASP.NET) to a known required to enable the ASPNET account to respond to network
strong password authentication challenges from the database server, when it

connects using Windows authentication.

An alternative here is to use a least privileged domain account
(if Windows authentication is permitted through the firewall).
For more information, see “Process Identity for ASP.NET” in
Chapter 8, “ASP.NET Security.”

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes on
the  <processModel> element

Default

 <!-- userName="machine" password="AutoGenerate" -->

Becomes

 <!-- userName="machine"
password="YourStrongPassword" -->



Chapter 6: Extranet Security 115

Configuring SQL Server
Step More Information

Create a Windows account The user name and password must match your ASP.NET process
on the SQL Server computer account.
that matches the ASP.NET
process account used to run Give the account the following privileges:
the Web service (by default - Access this computer from the network
ASPNET) - Deny logon locally

- Log on as a batch job

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to the SQL Server.
for the ASPNET account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new user-defined
database role within the
database and place the data-
base user into the role

Establish database Grant minimum permissions
permissions for the database See Chapter 12, “Data Access Security.”
role

Configuring Secure Communication
Step More Information

Configure the Web site on See “How To: Set Up SSL on a Web Server” in the Reference
the Web server for SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
Web server and database Between Two Servers” in the Reference section of this guide.
server

Analysis
● ASP.NET on the Web server is running as a least privileged local account (the

default ASPNET account), so potential damage from compromise is mitigated.
● SSL is used between browser and Web application to protect the Forms or Basic

authentication credentials (both passed in clear text, although Basic uses Base64
encoding). SSL also protects the application-specific data returned from the Web
application.



Building Secure ASP.NET Applications116

● For Forms authentication, SSL is used on all pages (not just the logon page) to
protect the authentication cookie passed on all subsequent Web requests after the
initial authentication.

● If SSL is used only on the initial logon page to encrypt the credentials passed
for authentication, you should ensure that the Forms authentication ticket
(contained within a cookie) is protected, because it is passed between client and
server on each subsequent Web request. To encrypt the Forms authentication
ticket, configure the protection attribute of the <forms> element as shown below
and use the Encrypt method of the FormsAuthentication class to encrypt the
ticket.

<authentication mode="Forms">
  <forms name="MyAppFormsAuth"
       loginUrl="login.aspx"
       protection="All"
       timeout="20"
       path="/" >
  </forms>
</authentication>

The protection=”All” attribute specifies that when the application calls
FormsAuthentication.Encrypt, the ticket should be validated (integrity checked)
and encrypted. Call this method when you create the authentication ticket,
typically within the application’s Login button event handler.

string encryptedTicket = FormsAuthentication.Encrypt(authTicket);

For more information about Forms authentication and ticket encryption, see
Chapter 8, “ASP.NET Security.”

● Similarly, SSL is used on all pages for Basic authentication because the Basic
credentials are passed on all Web page requests and not just the initial one where
the Basic credentials are supplied by the user.

● For Basic authentication, ASP.NET automatically creates a WindowsPrincipal
object to represent the authenticated caller and associates it with the current Web
request (HttpContext.User) where it is used by .NET authorization including
PrincipalPermission demands and .NET roles.

● For Forms authentication, you must develop code to validate the supplied
credentials against Active Directory and construct a GenericPrincipal to repre-
sent the authenticated user.

● Windows authentication to SQL Server means you avoid storing credentials on
the Web server and it also means that credentials are not sent across the internal
network to the SQL Server computer.

● IPSec between the Web service and database protects the data passed to and
from the database on the corporate network.



Chapter 6: Extranet Security 117

Pitfalls
● The use of a duplicated local Windows account on the database server (one that

matches the ASP.NET process account local to IIS) results in increased adminis-
tration. Passwords must be manually updated and synchronized on a periodic
basis.

● Basic authentication results in a pop-up dialog within the browser. To provide
a more seamless logon experience, use Forms authentication.

Related Scenarios

No Connectivity from Extranet to Corporate Network

For additional security, the extranet application can be built to require no connectiv-
ity back into the corporate network. In this scenario:
● A separate SQL Server database is located in the extranet and replication of data

occurs from the internal database to the extranet database.
● Routers are used to refuse connections from the extranet to the corporate net-

work. Connections can be established the other way using specific high ports.
● Connections from the corporate network to the extranet should always be per-

formed through a dedicated server that has strong auditing and logging and
through which users must authenticate before accessing the extranet.

More Information
● See the following Microsoft TechNet articles:

● “Extending Your Network to Business Partners”
● “Deploying SharePoint Portal Server in an Extranet Environment”

● For more information about using Forms authentication with Active Directory,
see “How To: Use Forms Authentication with Active Directory” in the Reference
section of this guide.

Summary
This chapter has described how to secure two common extranet application
scenarios.

For intranet and Internet application scenarios, see Chapter 5, “Intranet Security,”
and Chapter 7, “Internet Security.”





7
Internet Security

Internet applications have large audiences, many potential uses, and varied security
requirements. They range from portal applications that require no user authentica-
tion, through Web applications that provide content for registered users, to large
scale e-commerce applications that require full authentication, authorization, credit
card validation, and secure communication of sensitive data over public and inter-
nal networks.

As Internet application developers, you face a challenge to ensure that your applica-
tion uses appropriate defense mechanisms and is designed to be scalable, high
performance, and secure. Some of the challenges you face include:
● Choosing an appropriate user credential store, for example, a custom database or

Active Directory® directory service.
● Making your application work through firewalls.
● Flowing security credentials across the multiple tiers of your application.
● Performing authorization.
● Ensuring the integrity and privacy of data as it flows across public and internal

networks.
● Securing your application’s state with a database.
● Ensuring the integrity of your application’s data.
● Implementing a solution that can scale to potentially huge numbers of users.

The two common Internet application scenarios presented in this chapter, which are
used to illustrate recommended authentication, authorization, and secure commu-
nication techniques are:
● ASP.NET to SQL Server
● ASP.NET to Remote Enterprise Services to SQL Server



Building Secure ASP.NET Applications120

ASP.NET to SQL Server
In this scenario with two physical tiers, registered users securely log in to the Web-
based application using a Web browser. The ASP.NET-based Web application makes
secure connections to a Microsoft® SQL Server™ database to manage predomi-
nantly data retrieval tasks. An example is a portal application that provides news
content to registered subscribers. This is shown in Figure 7.1.

ASP.NET

DMZ

IIS

Firewall Firewall

SQL 
Server

Database 
ServerWeb Server

Figure 7.1
An ASP.NET Web application to SQL Server Internet scenario

Characteristics
This scenario has the following characteristics:
● Users have a number of different browser types.
● Anonymous users can browse the application’s unrestricted pages.
● Users must register or log on (through an HTML form) before being allowed to

view restricted pages.
● User credentials are validated against a SQL Server database.
● All user input (such as user credentials) that is used in database queries is

validated to mitigate the threat of SQL injection attacks.
● The front-end Web application is located within a perimeter network (also

known as DMZ, demilitarized zone, and screened subnet), with firewalls
separating it from the Internet and the internal corporate network (and the
SQL Server database).



Chapter 7: Internet Security 121

● The application requires strong security, high levels of scalability, and detailed
auditing.

● The database trusts the application to authenticate users properly (that is, the
application makes calls to the database on behalf of the users).

● The Web application connects to the database by using the ASP.NET process
account.

● A single user-defined database role is used within SQL Server for database
authorization.

Secure the Scenario
In this scenario, the Web application presents a logon page to accept credentials.
Successfully validated users are allowed to proceed, all others are denied access.
The database authenticates against the ASP.NET default process identity, which is
a least privileged account (that is, the database trusts the ASP.NET application).

Table 7.1: Security summary

Category Detail

Authentication ● IIS is configured to allow anonymous access; the ASP.NET Web
application authenticates users with Forms authentication to
acquire credentials. Validation is against a SQL Server database.

● Users’ passwords are not stored in the database. Instead pass-
word hashes with salt values are stored. The salt mitigates the
threat associated with dictionary attacks.

● Windows® authentication is used to connect to the database using
the least privileged Windows account used to run the ASP.NET Web
application.

Authorization ● The ASP.NET process account is authorized to access system
resources on the Web server. Resources are protected with
Windows ACLs.

● Access to the database is authorized using the ASP.NET application
identity.

Secure Communication ● Secure sensitive data sent between the users and the Web
application by using SSL.

● Secure sensitive data sent between the Web server and the
database server by using IPSec.



Building Secure ASP.NET Applications122

The Result
Figure 7.2 shows the recommended security configuration for this scenario.

SQL 
Server

Windows
Authentication

NTFS 
Permissions
(Authorization)

Alice

Mary

Bob
ASP.NETIIS

URL authorization
.NET Roles 
(Authorization)

Anonymous
Authentication

Forms
Authentication

SSL
(Privacy/Integrity)

User-Defined 
Role

(Authorization)

IPSec
(Privacy/ 
Integrity)

ASPNET 
(Process 
Identity)

Figure 7.2
The recommended security configuration for the ASP.NET to SQL Server Internet scenario

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Creating custom ASP.NET accounts (see “How To: Create a Custom Account to

Run ASP.NET” in the Reference section of this guide)
● Creating a least privileged database account (see Chapter 12, “Data Access

Security”)
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)

Configure the Web Server
Configure IIS
Step More Information

Enable Anonymous access To work with IIS authentication settings, use the IIS MMC
for your Web application’s snap-in. Right-click your application’s virtual directory, and then
virtual root directory click Properties.

Click the Directory Security tab, and then click Edit within the
Anonymous access and authentication control group.



Chapter 7: Internet Security 123

Configure ASP.NET
Step More Information

Reset the password of the This allows you to create a duplicate local account (with the
ASPNET account (used to same user name and password) on the database server. This is
run ASP.NET) to a known required to allow the ASPNET account to respond to network
strong password authentication challenges from the database server when it

connects using Windows authentication.

An alternative here is to use a least privileged domain account
(if Windows authentication is permitted through the firewall).
For more information, see “Process Identity for ASP.NET” in
Chapter 8, “ASP.NET Security.”

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account user name and password attributes on
the <processModel> element

Default

 <!-- userName="machine" password="AutoGenerate" -->

Becomes

 <!-- userName="machine"
      password="YourStrongPassword" -->

Configure your ASP.NET Edit Web.config in your application’s virtual directory root
Web application to use Set the <authentication> element to:
Forms authentication
(with SSL) <authentication mode="Forms" >

  <forms name="MyAppFormsAuth"
           loginUrl="login.aspx"
           protection="All"
          timeout="20"
           path="/" >
   </forms>
</authentication>

For more information about using Forms authentication against
a SQL Server database, see “How To: Use Forms Authentication
with SQL Server 2000” in the Reference section of this guide.



Building Secure ASP.NET Applications124

Configuring SQL Server
Step More Information

Create a Windows account The user name and password must match your custom ASP.NET
on your SQL Server computer application account or must be ASPNET if you are using the
that matches the ASP.NET default account.
process account

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to SQL Server.
for your custom ASP.NET
application account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new user-defined
database role within the
database and place the data-
base user into the role

Establish database Grant minimum permissions. For more information, see Chapter
permissions for the 12, “Data Access Security.”
database role

Configuring Secure Communication
Step More Information

Configure the Web site for See “How To: Setup SSL on a Web Server” in the Reference
SSL section of this guide.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
application server and Between Two Servers” in the Reference section of this guide.
database server

Analysis
● Forms authentication is ideal in this scenario because the users do not have

Windows accounts. The Forms login page is used to acquire user credentials.
Credential validation must be performed by application code. Any data store can
be used. A SQL Server database is the most common solution, although Active
Directory provides an alternate credential store.



Chapter 7: Internet Security 125

● With Forms authentication, you must protect the initial logon credentials with
SSL. The Forms authentication ticket (passed as a cookie on subsequent Web
requests from the authenticated client) must also be protected. You could use SSL
for all pages in order to protect the ticket, or alternatively you can encrypt the
Forms authentication ticket by configuring the protection attribute of the
<forms> element (to All or Encrypt) and use the Encrypt method of the
FormsAuthentication class to encrypt the ticket.
The protection=”All” attribute specifies that when the application calls
FormsAuthentication.Encrypt, the ticket should be validated (integrity checked)
and encrypted. Call this method when you create the authentication ticket,
typically within the application’s Login button event handler.

string encryptedTicket = FormsAuthentication.Encrypt(authTicket);

For more information about Forms authentication and ticket encryption, see
Chapter 8, “ASP.NET Security.”

● ASP.NET runs as the least privileged local ASPNET account, so potential damage
from compromise is mitigated.

● URL authorization on the Web server allows unauthenticated users to browse
unrestricted Web pages and forces authentication for restricted pages.

● Because impersonation is not enabled, any local or remote resource access
performed by the Web-based application is performed using the ASPNET
account security context. Windows ACLs on secure resources should be set
accordingly.

● User credentials are validated against a custom SQL Server database. Password
hashes (with salt) are stored within the database. For more information, see
“Authenticating Users against a Database” in Chapter 12, “Data Access Security.”

● By using Windows authentication to SQL Server, you avoid storing credentials in
files on the Web server and also passing them over the network.

● If your application currently uses SQL authentication, you must securely store
the database connection string as it contains user names and passwords. Con-
sider using DPAPI. For more details, see “Storing Database Connection Strings
Securely”, in Chapter 12, “Data Access Security.”

● The use of a duplicated Windows account on the database server (one that
matches the ASP.NET process account) results in increased administration. If a
password is changed on one computer, it must be synchronized and updated on
all computers. In some scenarios, you may be able to use a least-privileged
domain account for easier administration.



Building Secure ASP.NET Applications126

● IPSec between the Web server and database server ensures the privacy of the
data sent to and from the database.

● SSL between browser and Web server protects credentials and any other security
sensitive data such as credit card numbers.

● If you use a Web farm, ensure that the encryption keys, for example those used
to encrypt the Forms authentication ticket (and specified by the <machineKey>
element in Machine.config), are consistent across all servers in the farm. See
Chapter 8, “ASP.NET Security,” for further details about using ASP.NET in a
Web farm scenario.

Pitfalls
The application must flow the original caller’s identity to the database to support
auditing requirements. Caller identity may be passed using stored procedure
parameters.

Related Scenarios

Forms Authentication against Active Directory
The user credentials that are accepted from the Forms login page can be authenti-
cated against various stores. Active Directory is an alternate to using a SQL Server
database.

More Information

For more information, see “How To: Use Forms Authentication with Active Direc-
tory” in the Reference section of this guide.

.NET Roles for Authorization
The preceding scenario doesn’t take into consideration the different types of users
accessing the application. For example, a portal server could have different sub-
scription levels such as Standard, Premier, and Enterprise.

If role information is maintained in the user store (SQL Server database), the appli-
cation can create a GenericPrincipal object in which role and identity information
can be stored. After the GenericPrincipal is created and added to the Web request
context (using HttpContext.User), you can add programmatic role checks to
method code or you can decorate methods and pages with PrincipalPermission
attributes to demand role membership.

More Information
● For more information about creating GenericPrincipal objects that contain role

lists, see “How To: Use Forms Authentication with GenericPrincipal Objects” in
the Reference section of this guide.



Chapter 7: Internet Security 127

● For more information about PrincipalPermission demands and programmatic
role checks, see Chapter 8, “ASP.NET Security.”

Using a Domain Anonymous Account at the Web Server
In this scenario variation, the default anonymous Internet user account (a local
account called IUSR_MACHINE) is replaced by a domain account. The domain
account is configured with the minimum privileges necessary to run the application
(you can start with no privilege and incrementally add privileges). If you have
multiple Web-based applications, you can use different domain accounts (one for
each Web-based application or virtual directory).

In order to flow the security context of the anonymous domain account from IIS to
ASP.NET, turn on impersonation for the Web-based application by using the follow-
ing web.config file setting

<identity impersonate="true" />

If the Web-based application communicates with a remote resource such as a data-
base, the domain account must be granted the necessary permissions to the re-
source. For example, if the application accesses a remote file system, ACLs must be
configured appropriately to give (at minimum) read access to the domain account.
If the application accesses a SQL Server database, the domain account must be
mapped using a SQL login to a database login.

As the security context that flows through the application is that of the anonymous
account, the original caller’s identity (captured through Forms authentication) must
be passed at the application level from tier to tier; for example, through method and
stored procedure parameters.

More Information
● For more information regarding this approach, see “Using the Anonymous

Internet User Account” within Chapter 8, “ASP.NET Security.”
● Before implementing this scenario, see article Q259353, “Must Enter Password

Manually After You Set Password Synchronization” in the Microsoft Knowledge
Base.

ASP.NET to Remote Enterprise Services to SQL Server
In this scenario, a Web server running ASP.NET pages makes secure connections to
serviced components, located on a remote application server that in turn connects to
a SQL Server database. In common with many Internet application infrastructures,
the Web server and application server are separated by a firewall (and the Web
server is located within a perimeter network). Serviced components make secure
connections to SQL Server.



Building Secure ASP.NET Applications128

As an example, consider an Internet banking application that provides sensitive
data, (for example, private financial details) to users. All banking transactions from
the client to the database must be secured and data integrity is critical. Not only
does the traffic to and from the user need to be secured but the traffic to and from
the database needs to be secured as well. This is shown in Figure 7.3.

ASP.NET

DMZ

IIS

Firewall Firewall

SOAP

SQL 
Server

Database 
ServerWeb Server

Enterprise 
Services

Web 
Service

Application Server

Figure 7.3
An ASP.NET to remote Enterprise Services to SQL Server Internet scenario

Characteristics
● Users have a number of different browser types.
● Anonymous users can browse the application’s unrestricted pages.
● Users must register or log on (through an HTML form) before being allowed to

view restricted pages.
● The front-end Web-based application is located within a perimeter network, with

firewalls separating it from the Internet and the internal corporate network (and
the application server).

● The application requires strong security, high levels of scalability, and detailed
auditing.

● The Web-based application uses SOAP to connect to a Web services layer, which
provides an interface to the serviced components that run within an Enterprise
Services application on the application server. SOAP is preferred to DCOM due
to firewall restrictions.

● SQL Server is using a single user-defined database role for authorization.
● Data is security sensitive and integrity and privacy must be secured over the

network and in all persistent data stores.
● Enterprise Services (COM+) transactions are used to enforce data integrity.



Chapter 7: Internet Security 129

Secure the Scenario
In this scenario, the Web service accepts credentials from a Forms login page and
then authenticates the caller against a SQL Server database. The login page uses SSL
to protect the user’s credentials passed over the Internet.

The Web-based application communicates with a Web service, which provides an
interface to the business services implemented within serviced components. The
Web service trusts the Web-based application (inside the perimeter network) and
authenticates the ASP.NET process identity. The user’s identity is passed through all
tiers at the application level using method and stored procedure parameters. This
information is used for auditing the users’ actions across the tiers.

Table 7.2: Security measures

Category Detail

Authentication ● Provide strong authentication at the Web server.
● Authenticate the Enterprise Services application identity at the

database.
● IIS is configured for anonymous access and the Web-based

application authenticates users with Forms authentication
(against a SQL Server database).

● The Web service’s virtual directory is configured for Integrated
Windows authentication. Web services authenticate the
Web-based application’s process identity.

● Windows authentication is used to connect to the database. The
database authenticates the least privileged Windows account
used to run the Enterprise Services application.

Authorization ● The trusted subsystem model is used and per-user authorization
occurs only within the Web application.

● User access to pages on the Web server is controlled with URL
authorization.

● The ASP.NET process account is authorized to access system
resources on the Web server. Resources are protected with ACLs.

● Permissions within the database are controlled by a user-defined
role. The Enterprise Services application identity is a member of
the role.

● The Enterprise Services process account is authorized to access
system resources on the application server. Resources are
protected ACLs.

Secure Communication ● Sensitive data sent between the users and the Web-based
application is secured with SSL.

● Sensitive data sent between the Web server and Web service
is secured with SSL.

● Sensitive data sent between serviced components and the data
base is secured with IPSec.



Building Secure ASP.NET Applications130

The Result
Figure 7.4 shows the recommended security configuration for this scenario.

NTFS 
Permissions
(Authorization)

Web Server

Alice

Mary

Bob
ASP.NETIIS

URL 
Authorization 
(Authorization)

Integrated Windows
(Authentication)
Require SSL

(Privacy/Integrity)

Application Server

ASP.NET 
(Web 

Services 
Façade)

Enterprise Services 
Server Application

(dllhost.exe)

IIS

Windows 
(Authentication)

Anonymous
Authentication

Forms
Authentication

SSL
(Privacy/Integrity)

SOAP

SQL 
Server

Database Server

User defined 
database roles
(Authorization)

Windows
Authentication

SSL
(Privacy/ 
Integrity)

IPSec
(Privacy/ 
Integrity)

ASPNET 
(Process 
Identity)

ES Process 
Identity

Figure 7.4
The recommended security configuration for the ASP.NET to remote Enterprise Services to SQL Server
Internet scenario

Security Configuration Steps
Before you begin, you’ll want to see the following:
● Creating a least privileged database account (see Chapter 12, “Data Access

Security”)
● Configuring SSL on a Web server (see “How To: Set Up SSL on a Web Server” in

the Reference section of this guide)
● Configuring IPSec (see “How To: Use IPSec to Provide Secure Communication

Between Two Servers” in the Reference section of this guide)
● Configuring Enterprise Services security (see “How To: Use Role-based Security

with Enterprise Services” in the Reference section of this guide)



Chapter 7: Internet Security 131

Configure the Web Server
Configure IIS
Step More Information

Enable Anonymous access
for your Web-based
application’s virtual root
directory

Configure ASP.NET
Step More Information

Reset the password of the This allows you to create a duplicate local account (with the
ASPNET account (used to same user name and password) on the application server. This
run ASP.NET) to a known is required to enable the ASPNET account to respond to network
strong password authentication challenges from the application server.

An alternative is to use a least privileged domain account (if
Windows authentication is permitted through the firewall).

For more information, see “Process Identity for ASP.NET” in
Chapter 8, “ASP.NET Security.”

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes
on the <processModel> element.

Default

 <!-- userName="machine" password="AutoGenerate" -->

Becomes
<!-- userName="machine"
      password="YourStrongPassword" -->

(continued)



Building Secure ASP.NET Applications132

Configure ASP.NET (continued)
Step More Information

Configure your Web-based Edit Web.config in your application’s virtual directory root
application to use Forms Set the <authentication> element to:
authentication (with SSL)

<authentication mode="Forms" >
   <forms name="MyAppFormsAuth"
           loginUrl="login.aspx"
           protection="All"
           timeout="20"
           path="/" >
   </forms>
</authentication>

For more information about using Forms authentication against
a SQL Server database, see “How To: Use Forms Authentication
with SQL Server 2000” in the Reference section of this guide.

Configure the Application Server
Configure IIS
Step More Information

Disable anonymous access

Configure Integrated IIS authenticates the ASP.NET process identity from the Web-
Windows authentication based application on the Web server.

Configure ASP.NET
Step More Information

Use Windows authentication Edit Web.config in your Web service’s virtual directory root.
Set the <authentication> element to:

 <authentication mode="Windows" />

Configure Enterprise Services
Step More Information

Create a least privileged Note: If you use a local account, you must also create
custom account for running a duplicate account on the database server computer.
the Enterprise Services
server application

Configure the Enterprise Refer to “Configuring Security” within Chapter 9, “Enterprise
Services application to use Services Security.”
the custom account

Enable role-based access Refer to “Configuring Security” within Chapter 9, “Enterprise
checking Services Security.”



Chapter 7: Internet Security 133

Configure Enterprise Services
Step More Information

Add a single Enterprise Full end-user authorization is performed by the Web-based
Services (COM+) role to the application. The Web service (and serviced components) only
application called (for allows access to members of the Trusted Web Service role.
example Trusted Web
Service)

Add the local ASPNET Refer to “Configuring Security” within Chapter 9, “Enterprise
account to the Trusted Web Services Security.”
Service role

Configuring SQL Server
Step More Information

Create a Windows account The user name and password must match your custom Enter-
on your SQL Server prise Services account.
computer that matches the
Enterprise Services
application account

Configure SQL Server for
Windows authentication

Create a SQL Server Login This grants access to the SQL Server.
for your custom Enterprise
Services account

Create a new database user This grants access to the specified database.
and map the login name to
the database user

Create a new user-defined
database role and add the
database user to the role

Establish database permis- Grant minimum permissions
sions for the database role For details, see Chapter 12, “Data Access Security.”

Configuring Secure Communication
Step More Information

Configure the Web site for See “How To: Setup SSL on a Web Server” in the Reference
SSL section of this guide.

Configure SSL between the See “How To: Call a Web Service Using SSL” in the Reference
Web server and application section of this guide.
server.

Configure IPSec between See “How To: Use IPSec to Provide Secure Communication
application server and Between Two Servers” in the Reference section of this guide.
database server



Building Secure ASP.NET Applications134

Analysis
● Forms authentication is ideal in this scenario because the users do not have

Windows accounts. The Forms login page is used to acquire user credentials.
Credential validation must be performed by application code. Any data store
can be used. A SQL Server database is the most common solution, although
Active Directory provides an alternate credential store.

● The Web-based application is running as the least privileged local ASPNET
account, so potential damage from compromise is mitigated.

● URL authorization on the Web server allows unauthenticated users to browse
unrestricted Web pages and forces authentication for restricted pages.

● Because impersonation is not enabled, any local or remote resource access
performed by the Web-based application does so using the ASPNET account
security context. ACLs should be configured accordingly.

● User credentials are validated against a custom SQL Server database. Password
hashes (with salt) are stored within the database. For more information, see
“Authenticating Users against a Database” in Chapter 12, “Data Access Security.”

● Windows authentication to SQL Server means you avoid storing credentials in
files on the application server and avoid passing them across the network.

● The use of a duplicated Windows account on the database server (one that
matches the Enterprise Services process account) results in increased administra-
tion. If a password is changed on one computer, it must be synchronized and
updated on all computers. In some scenarios, you may be able to use a least-
privileged domain account for easier administration.

● When the Web application calls the Web service, it must configure the Web
service proxy using DefaultCredentials (that is, the ASP.NET process account;
ASPNET).

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

For more information, see “Passing Credentials For Authentication to Web
Services” in Chapter 10, “Web Services Security.”

● SSL between the Web server and Web service layer (that fronts the serviced
components on the application server) ensures the privacy of the data sent
between the two servers.

● The Enterprise Services application is configured for application-level role-based
security. The configuration permits only the local ASPNET account (used to run
the Web service) to access the serviced components.



Chapter 7: Internet Security 135

● IPSec between the application server and database server ensures the privacy of
the data sent to and from the database.

● SSL between browser and Web server protects credentials and bank account
details.

Pitfalls
The application must flow the original caller’s identity to the database to support
auditing requirements. Caller identity may be passed using stored procedure
parameters.

Related Scenarios

Forms Authentication Against Active Directory
The user credentials that are accepted from the Forms login page can be authenti-
cated against various stores. Active Directory is an alternate to using a SQL Server
database.

More Information

For more information, see “How To: Use Forms Authentication with Active Direc-
tory” in the Reference section of this guide.

Using DCOM
Windows 2000 (SP3 or SP2 with QFE 18.1) or Windows .NET Server allows you
to configure Enterprise Services applications to use a static endpoint. If a firewall
separates the client from the server, this means that you need to open only two
ports in the firewall. Specifically, you must open port 135 for RPC and a port for
your Enterprise Services application.

This enhancement to DCOM makes it a valid choice of communication protocol
between Web server and application server and removes the requirement to have
a Web services layer.

Important: If your application requires distributed transactions to flow between the two
servers, DCOM must be used. Transactions cannot flow over SOAP. In the SOAP scenario,
transactions must be initiated by the serviced components on the application server.

More Information

For more information, see Chapter 9, “Enterprise Services Security.”



Building Secure ASP.NET Applications136

Using .NET Remoting
Remoting can be a valid choice when you don’t need services provided by Enter-
prise Services such as transactions, queued components, object pooling, and so on.
.NET Remoting solutions also support network load balancing at the middle tier.
Note the following when you use .NET Remoting:

● For ultimate performance, use the TCP channel and host in a Windows service.
Note that this channel provides no authentication and authorization mechanism
by default. The TCP channel is designed for trusted subsystem scenarios. You
can use an IPSec policy to establish a secure channel and to ensure that only the
Web server communicates with the application server.

● If you need authentication and authorization checks using IPrincipal objects,
you should host the remote objects in ASP.NET and use the HTTP channel. This
allows you use the IIS and ASP.NET security features.

● The remote object can connect to the database using Windows authentication
and can use the host process identity (either ASP.NET or a Windows service
identity).

More Information

For more information about .NET Remoting security, see Chapter 11, “.NET
Remoting Security.”

 Summary
This chapter has described how to secure a set of common Internet application
scenarios.

For Intranet and extranet application scenarios, see Chapter 5, “Intranet Security,”
and Chapter 6, “Extranet Security.”



8
ASP.NET Security

ASP.NET Security Architecture
ASP.NET works in conjunction with IIS, the .NET Framework, and the underlying
security services provided by the operating system, to provide a range of authenti-
cation and authorization mechanisms. These are summarized in Figure 8.1.

IIS
(inetinfo.exe)

Web Server

Authentication
Anonymous

Basic
Digest

Integrated
Certificate

Authorization
Web Permissions

NTFS Permissions
IP Address
Restrictions

ASP.NET
(aspnet_wp.exe)

Authenticated caller’s access token 
(or IUSR_MACHINE access token)

Authentication
Windows

Forms
Passport

None

ASP.NET Process
Original Caller

Fixed Proxy Identity
Identity

Local or 
Remote 

Resource

Authorization
File AuthZ
URL AuthZ
.NET Roles

HTTP 
Requests

SSL
(Privacy/ 
Integrity)

7

653

4

2
1

Figure 8.1
ASP.NET security services



Building Secure ASP.NET Applications138

Figure 8.1 illustrates the authentication and authorization mechanisms provided by
IIS and ASP.NET. When a client issues a Web request, the following sequence of
authentication and authorization events occurs:
1. The HTTP(S) Web request is received from the network. SSL can be used to

ensure the server identity (using server certificates) and, optionally, the client
identity.

Note: SSL also provides a secure channel to protect sensitive data passed between client
and server (and vice-versa).

2. IIS authenticates the caller by using Basic, Digest, Integrated (NTLM or
Kerberos), or Certificate authentication. If all or part of your site does not require
authenticated access, IIS can be configured for anonymous authentication. IIS
creates a Windows access token for each authenticated user. If anonymous
authentication is selected, IIS creates an access token for the anonymous Internet
user account (which, by default, is IUSR_MACHINE).

3. IIS authorizes the caller to access the requested resource. NTFS permissions
defined by ACLs attached to the requested resource are used to authorize access.
IIS can also be configured to accept requests only from client computers with
specific IP addresses.

4. IIS passes the authenticated caller’s Windows access token to ASP.NET (this may
be the anonymous Internet user’s access token, if anonymous authentication is
being used).

5. ASP.NET authenticates the caller.
If ASP.NET is configured for Windows authentication, no additional authentica-
tion occurs at this point. ASP.NET will accept any token it receives from IIS.
If ASP.NET is configured for Forms authentication, the credentials supplied by
the caller (using an HTML form) are authenticated against a data store; typically
a Microsoft® SQL Server™ database or Active Directory® directory service. If
ASP.NET is configured for Passport authentication, the user is redirected to a
Passport site and the Passport authentication service authenticates the user.

6. ASP.NET authorizes access to the requested resource or operation.
The UrlAuthorizationModule (a system provided HTTP module) uses authori-
zation rules configured in Web.config (specifically, the <authorization> element)
to ensure that the caller can access the requested file or folder.
With Windows authentication, the FileAuthorizationModule (another HTTP
module) checks that the caller has the necessary permission to access the re-
quested resource. The caller’s access token is compared against the ACL that
protects the resource.
.NET roles can also be used (either declaratively or programmatically) to ensure
that the caller is authorized to access the requested resource or perform the
requested operation.



Chapter 8: ASP.NET Security 139

7. Code within your application accesses local and/or remote resources by using a
particular identity. By default, ASP.NET performs no impersonation and as a
result, the configured ASP.NET process account provides the identity. Alternate
options include the original caller’s identity (if impersonation is enabled), or a
configured service identity.

Gatekeepers
The authorization points (or gatekeepers) within an ASP.NET Web application are
provided by IIS and ASP.NET:

IIS
With anonymous authentication turned off, IIS permits requests only from users
that it can authenticate either in its domain or in a trusted domain.

For static file types (for example .jpg, .gif and .htm files — files that are not mapped
to an ISAPI extension), IIS uses the NTFS permissions associated with the requested
file to perform access control.

ASP.NET
The ASP.NET gatekeepers include the UrlAuthorizationModule,
FileAuthorizationModule and Principal permission demands and role checks.

UrlAuthorizationModule

You can configure <authorization> elements within your application’s Web.config
file to control which users and groups of users should have access to the applica-
tion. Authorization is based on the IPrincipal object stored in HttpContext.User.

FileAuthorizationModule

For file types mapped by IIS to the ASP.NET ISAPI extension (Aspnet_isapi.dll),
automatic access checks are performed using the authenticated user’s Windows
access token (which may be IUSR_MACHINE) against the ACL attached to the
requested ASP.NET file.

Note: Impersonation is not required for file authorization to work.

The FileAuthorizationModule class only performs access checks against the re-
quested file, and not for files accessed by the code in the requested page, although
these are access checked by IIS.

For example, if you request Default.aspx and it contains an embedded user control
(Usercontrol.ascx), which in turn includes an image tag (pointing to Image.gif), the
FileAuthorizationModule performs an access check for Default.aspx and
Usercontrol.ascx, because these file types are mapped by IIS to the ASP.NET ISAPI
extension.



Building Secure ASP.NET Applications140

The FileAuthorizationModule does not perform a check for Image.gif, because this
is a static file handled internally by IIS. However, as access checks for static files are
performed by IIS, the authenticated user must still be granted read permission to
the file with an appropriately configured ACL.

This scenario is shown in Figure 8.2.

Note to system administrators: The authenticated user requires NTFS read permissions to all
of the files involved in the scenario. The only variable is regarding which gatekeeper is used to
enforce access control. The ASP.NET process account only requires read access to the ASP.NET
registered file types.

Authenticated 
User
(Bob)

default.aspx

default.aspx
ASPNET:R
Bob:R

UserControl.aspx
ASPNET:R
Bob:R

FileAuthorizationModule 
Gatekeeper

(Files handled by ASP.NET 
ISAPI including .aspx and 

.ascx files)

UserControl.ascx

IIS 
Gatekeeper
(Static files 

including .gif 
files)

image.gif
Request for 
default.aspx

Required NTFS Permissions

image.gif
Bob:R
ASPNET does not 
require permissions

Figure 8.2
IIS and ASP.NET gatekeepers working together

In this scenario you can prevent access at the file gate. If you configure the ACL
attached to Default.aspx and deny access to a particular user, the user control or
any embedded images will not get a chance to be sent to the client by the code in
Default.aspx. If the user requests the images directly, IIS performs the access checks
itself.

Principal Permission Demands and Explicit Role Checks

In addition to the IIS and ASP.NET configurable gatekeepers, you can also use
principal permission demands (declaratively or programmatically) as an additional
fine-grained access control mechanism. Principal permission checks (performed by
the PrincipalPermissionAttribute class) allow you to control access to classes,
methods, or individual code blocks based on the identity and group membership of
individual users, as defined by the IPrincipal object attached to the current thread.



Chapter 8: ASP.NET Security 141

Note: Principal permission demands used to demand role membership are different from
calling IPrincipal.IsInRole to test role membership; the former results in an exception if the
caller is not a member of the specified role, while the latter simply returns a Boolean value
to confirm role membership.

With Windows authentication, ASP.NET automatically attaches a WindowsPrincipal
object that represents the authenticated user to the current Web request (using
HttpContext.User). Forms and Passport authentication create a GenericPrincipal
object with the appropriate identity and no roles and attaches it to the
HttpContext.User.

More Information
● For more information about configuring security, see “Configuring Security”

later in this chapter.
● For more information about programming security (and IPrincipal objects), see

“Programming Security” later in this chapter.

Authentication and Authorization Strategies
ASP.NET provides a number of declarative and programmatic authorization mecha-
nisms that can be used in conjunction with a variety of authentication schemes. This
allows you to develop an in depth authorization strategy and one that can be con-
figured to provide varying degrees of granularity; for example, per-user or per-user
group (role-based).

This section shows you which authorization options (both configurable and pro-
grammatic) are available for a set of commonly used authentication options.

The authentication options that follow are summarized here:
● Windows authentication with impersonation
● Windows authentication without impersonation
● Windows authentication using a fixed identity
● Forms authentication
● Passport authentication

Available Authorization Options
The following table shows you the set of available authorization options. For each
one the table indicates whether or not Windows authentication and/or imperson-
ation are required. If Windows authentication is not required, the particular authori-
zation option is available for all other authentication types. Use the table to help
refine your authentication/authorization strategy.



Building Secure ASP.NET Applications142

Table 8.1: Windows authentication and impersonation requirements

Authorization Option Requires Windows Requires Impersonation
Authentication

FileAuthorizationModule Yes No

UrlAuthorizationModule No No

Principal Permission Demands No No

.NET Roles No No

Enterprise Services Roles Yes Yes (within the ASP.NET Web
application)

NTFS Permissions (for directly N/A – These files are not No (IIS performs the access
requested static files types; not handled by ASP.NET. check.)
mapped to an ISAPI extension) With any (non-Anonymous)

IIS authentication mecha-
nism, permissions should be
configured for individual
authenticated users.
With Anonymous authenti-
cation, permissions should
be configured for
IUSR_MACHINE.

NTFS Permissions (for files No No
accessed by Web application If impersonating, configure
code) ACLs against the imperson-

ated Windows identity, which
is either the original caller or
the identity specified on the
<identity> element in
Web.config*.

* The impersonated identity may be the original caller or the identity specified on
the <identity> element in Web.config. Consider the following two <identity>
elements.

<identity impersonate="true" />
<identity impersonate="true" userName="Bob" password="pwd" />

The first configuration results in the impersonation of the original caller (as authen-
ticated by IIS), while the second results in the identity Bob. The second configura-
tion is not recommended for two reasons:
● It requires that you grant the ASP.NET process identity the “Act as part of the

operating system” privilege on the Microsoft Windows® 2000 operating system.
● It also requires you to include a plain text password in Web.config.

Both of these restrictions will be lifted in the next release of the .NET Framework.



Chapter 8: ASP.NET Security 143

Windows Authentication with Impersonation
The following configuration elements show you how to enable Windows (IIS)
authentication and impersonation declaratively in Web.config or Machine.config.

Note: You should configure authentication on a per-application basis in each application’s
Web.config file.

<authentication mode="Windows" />
<identity impersonate="true" />

With this configuration, your ASP.NET application code impersonates the IIS-
authenticated caller.

Configurable Security
When you use Windows authentication together with impersonation, the following
authorization options are available to you:
● Windows ACLs

● Client Requested Resources. The ASP.NET FileAuthorizationModule
performs access checks for requested file types that are mapped to the
ASP.NET ISAPI. It uses the original caller’s access token and ACL attached
to requested resources in order to perform access checks.
For static files types (not mapped to an ISAPI extension), IIS performs access
checks using the caller’s access token and ACL attached to the file.

● Resources Accessed by Your Application. You can configure Windows ACLs
on resources accessed by your application (files, folders, registry keys, Active
Directory objects, and so on) against the original caller.

● URL Authorization. Configure URL authorization in Web.config. With Windows
authentication, user names take the form DomainName\UserName and roles
map one-to-one with Windows groups.

<authorization>
  <deny user="DomainName\UserName" />
  <allow roles="DomainName\WindowsGroup" />
</authorization>

● Enterprise Services (COM+) Roles. Roles are maintained in the COM+ catalog.
You can configure roles with the Component Services administration tool or
script.



Building Secure ASP.NET Applications144

Programmatic Security
Programmatic security refers to security checks located within your Web applica-
tion code. The following programmatic security options are available when you use
Windows authentication and impersonation:
● PrincipalPermission Demands

● Imperative (in-line within a method’s code)

    PrincipalPermission permCheck = new PrincipalPermission(
                                       null, @"DomainName\WindowsGroup");
    permCheck.Demand();

● Declarative (attributes preceding interfaces, classes and methods)

[PrincipalPermission(SecurityAction.Demand,
                  Role=@"DomainName\WindowsGroup)]

● Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup");

● Enterprise Services (COM+) Roles. You can perform role checking program-
matically using the ContextUtil class.

ContextUtil.IsCallerInRole("Manager")

When to Use
Use Windows authentication and impersonation when:
● Your application’s users have Windows accounts that can be authenticated by

the server.
● You need to flow the original caller’s security context to the middle tier and/or

data tier of your Web application to support fine-grained (per-user) authoriza-
tion.

● You need to flow the original caller’s security context to the downstream tiers to
support operating system level auditing.

Before using impersonation within your application, make sure you understand the
relative trade-offs of this approach in comparison to using the trusted subsystem
model. These were elaborated upon in “Choosing a Resource Access Model” in
Chapter 3, “Authentication and Authorization.”



Chapter 8: ASP.NET Security 145

The disadvantages of impersonation include:
● Reduced application scalability due to the inability to effectively pool database

connections.
● Increased administration effort as ACLs on back-end resources need to be config-

ured for individual users.
● Delegation requires Kerberos authentication and a suitably configured environ-

ment.

More Information
● For more information about Windows authentication, see “Windows Authentica-

tion” later in this chapter.
● For more information about impersonation, see “Impersonation” later in this

chapter.
● For more information about URL authorization, see “URL Authorization Notes”

later in this chapter.
● For more information about Enterprise Services (COM+) roles, see Chapter 9,

“Enterprise Services Security.”
● For more information about PrincipalPermission demands, see “Identities and

Principals” in Chapter 2, “Security Model for ASP.NET Application.”

Windows Authentication without Impersonation
The following configuration elements show how you enable Windows (IIS) authen-
tication with no impersonation declaratively in Web.config.

<authentication mode="Windows" />
<!-- The following setting is equivalent to having no identity element -->
<identity impersonate="false" />

Configurable Security
When you use Windows authentication without impersonation, the following
authorization options are available to you:
● Windows ACLs

● Client Requested Resources. The ASP.NET FileAuthorizationModule
performs access checks for requested file types that are mapped to the
ASP.NET ISAPI. It uses the original caller’s access token and ACL attached to
requested resources in order to perform access checks. Impersonation is not
required.
For static files types (not mapped to an ISAPI extension) IIS performs access
checks using the caller’s access token and ACL attached to the file.



Building Secure ASP.NET Applications146

● Resources accessed by your application. Configure Windows ACLs on
resources accessed by your application (files, folders, registry keys, Active
Directory objects) against the ASP.NET process identity.

● URL Authorization. Configure URL Authorization in Web.config. With Windows
authentication, user names take the form DomainName\UserName and roles
map one-to-one with Windows groups.

<authorization>
  <deny user="DomainName\UserName" />
  <allow roles="DomainName\WindowsGroup" />
</authorization>

Programmatic Security
The following programmatic security options are available:
● Principal Permission Demands

● Imperative

    PrincipalPermission permCheck = new PrincipalPermission(
                                         null, @"DomainName\WindowsGroup");
    permCheck.Demand();

● Declarative

[PrincipalPermission(SecurityAction.Demand,
                  Role=@"DomainName\WindowsGroup")]

● Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup");

When to Use
Use Windows authentication without impersonation when:
● Your application’s users have Windows accounts that can be authenticated by

the server.
● You want to use a fixed identity to access downstream resources (for example,

databases) in order to support connection pooling.



Chapter 8: ASP.NET Security 147

More Information
● For more information about Windows authentication, see “Windows Authentica-

tion” later in this chapter.
● For more information about URL authorization, see “URL Authorization Notes”,

later in this chapter.
● For more information about PrincipalPermission demands, see “Principals”

within the “Getting Started” section of this guide.

Windows Authentication Using a Fixed Identity
The <identity> element in Web.config supports optional user name and password
attributes, which allows you to configure a specific fixed identity for your applica-
tion to impersonate. This is shown in the following configuration file fragment.

<identity impersonate="true" userName="DomainName\UserName"
                             password="ClearTextPassword" />

When to Use
This approach is not recommended for the current version (version 1) of the .NET
Framework in secure environments for two reasons:
● User names and passwords should not be stored in plain text in configuration

files, particularly configuration files stored in virtual directories.
● On Windows 2000, this approach forces you to grant the ASP.NET process

account the “Act as part of the operating system” privilege. This reduces the
security of your Web application and increases the threat should an attacker
compromise the Web application process.

The .NET Framework version 1.1 will provide an enhancement for this scenario on
Windows 2000:
● The credentials will be encrypted.
● The log on will be performed by the IIS process, so that ASP.NET does not

required the “Act as part of the operating system” privilege.

Forms Authentication
The following configuration elements show how you enable Forms authentication
declaratively in Web.config.

<authentication mode="Forms">
  <forms loginUrl="logon.aspx" name="AuthCookie" timeout="60" path="/">
  </forms>
</authentication>



Building Secure ASP.NET Applications148

Configurable Security
When you use Forms authentication, the following authorization options are avail-
able to you:
● Windows ACLs

● Client Requested Resources. Requested resources require ACLs that allow
read access to the anonymous Internet user account. (IIS should be configured
to allow anonymous access when you use Forms authentication).
ASP.NET File authorization is not available because it requires Windows
authentication.

● Resources Accessed by Your Application. Configure Windows ACLs on
resources accessed by your application (files, folders, registry keys, and
Active Directory objects) against the ASP.NET process identity.

● URL Authorization
Configure URL Authorization in Web.config. With Forms authentication, the
format of user names is determined by your custom data store; a SQL Server
database, or Active Directory.
● If you are using a SQL Server data store:

<authorization>
<deny users="?" />
  <allow users="Mary,Bob,Joe" roles="Manager,Sales" />
</authorization>

● If you are using Active Directory as your data store, user names, and group
names appear in X.500 format:

<authorization>
  <deny users="someAccount@domain.corp.yourCompany.com" />
  <allow roles ="CN=Smith James,CN=FTE_northamerica,CN=Users,
                DC=domain,DC=corp,DC=yourCompany,DC=com" />
</authorization>

Programmatic Security
The following programmatic security options are available:
● Principal Permission Demands

● Imperative

    PrincipalPermission permCheck = new PrincipalPermission(
                                         null, "Manager");
    permCheck.Demand();



Chapter 8: ASP.NET Security 149

● Declarative

[PrincipalPermission(SecurityAction.Demand,
                  Role="Manager")]

● Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole("Manager");

When to Use
Forms authentication is most ideally suited to Internet applications. Use Forms
authentication when:
● Your application’s users do not have Windows accounts.
● You want users to log on to your application by entering credentials using an

HTML form.

More Information
● For more information about Forms authentication, see “Forms Authentication”

later in this chapter.
● For more information about URL authorization, see “URL Authorization Notes”

later in this chapter.

Passport Authentication
The following configuration elements show how you enable Passport authentication
declaratively in Web.config.

<authentication mode="Passport" />

When to Use
Passport authentication is used on the Internet when application users do not have
Windows accounts and you want to implement a single-sign-on solution. Users who
have previously logged on with a Passport account at a participating Passport site
will not have to log on to your site configured with Passport authentication.



Building Secure ASP.NET Applications150

Configuring Security
This section shows you the practical steps required to configure security for an
ASP.NET Web application. These are summarized in Figure 8.3.

1. Configure IIS
(IIS Metabase)

Install server certificate (SSL)

Set ISS Authentication

Configure client certificate mapping 
(Optional)

2. Configure ASP.NET
(web.config, machine.config)

Set authentication mode

Set impersonation

Configure URL authorization

3. Secure Resources
(wWindows ACLs)

Secure files, folders, registry keys

Secure web and machine.config

Log web.config settings

4. Secure Communication
(IPSec/SSL)

Secure communication links using a 
combination of IPSec and SSL

Internet Services Manager

XML Editor (or Notepad)

Windows Explorer + Regedt32

Security Policy and Configuration Tools

Figure 8.3
Configuring ASP.NET application security



Chapter 8: ASP.NET Security 151

Configure IIS Settings
To configure IIS security, you must perform the following steps:
1. Optionally install a Web server certificate (if you need SSL).

For more information, see “How To: Set Up SSL on a Web Server” in the Refer-
ence section of this guide.

2. Configure IIS authentication.
3. Optionally configure client certificate mapping (if using certificate authentica-

tion).
For more information about client certificate mapping, see article Q313070,
“How to Configure Client Certificate Mappings in Internet Information Services
(IIS) 5.0” in the Microsoft Knowledge Base.

4. Set NTFS permissions on files and folders. Between them, IIS and the ASP.NET
FileAuthorizationModule check that the authenticated user (or the anonymous
Internet user account) has the necessary access rights (based on ACL settings) to
access the requested file.

Configure ASP.NET Settings
Application level configuration settings are maintained in Web.config files, which
are located in your application’s virtual root directory and optionally within addi-
tional subfolders (these settings can sometimes override the parent folder settings).
1. Configure authentication. This should be set on a per-application basis (not in

Machine.config) in the Web.config file located in the application’s virtual root
directory.

<authentication mode="Windows|Forms|Passport|None" />

2. Configure Impersonation. By default, ASP.NET applications do not imperson-
ate. The applications runs using the configured ASP.NET process identity (usu-
ally ASPNET) and all resource access performed by your application uses this
identity. You only need impersonation in the following circumstances:
● You are using Enterprise Services and you want to use Enterprise Services

(COM+) roles to authorize access to functionality provided by serviced
components.

● IIS is configured for Anonymous authentication and you want to use the
anonymous Internet user account for resource access. For details about this
approach, see “Accessing Network Resources” later in this chapter.

● You need to flow the authenticated user’s security context to the next tier (for
example, the database).

● You have ported a classic ASP application to ASP.NET and want the same
impersonation behavior. Classic ASP impersonates the caller by default.



Building Secure ASP.NET Applications152

To configure ASP.NET impersonation use the following <identity> element in
your application’s Web.config.

<identity impersonate="true" />

3. Configure Authorization. URL authorization determines whether a user or role
can issue specific HTTP verbs (for example, GET, HEAD, and POST) to a specific
file. To implement URL authorization, you perform the following tasks.
a. Add an <authorization> element to the Web.config file located in your

application’s virtual root directory.
b. Restrict access to users and roles by using allow and deny attributes. The

following example from Web.config uses Windows authentication and allows
Bob and Mary access but denies everyone else.

<authorization>
  <allow users="DomainName\Bob, DomainName\Mary" />
  <deny users="*" />
</authorization>

Important: You need to add either <deny users=”?”/> or <deny users=”*”/> at the
end of the <authorization> element, otherwise access is granted to all authenticated
identities.

URL Authorization Notes
Take note of the following when you configure URL authorization:
● “*” refers to all identities.
● “?” refers to unauthenticated identities (that is, the anonymous identity).
● You don’t need to impersonate for URL authorization to work.
● Authorization settings in Web.config usually refer to all of the files in the current

directory and all subdirectories (unless a subdirectory contains its own
Web.config with an <authorization> element. In this case the settings in the
subdirectory override the parent directory settings).

Note: URL authorization only applies to file types that are mapped by IIS to the ASP.NET
ISAPI extension, aspnet_isapi.dll.



Chapter 8: ASP.NET Security 153

You can use the <location> tag to apply authorization settings to an individual
file or directory. The following example shows how you can apply authorization
to a specific file (Page.aspx).

<location path="page.aspx" />
  <authorization>
    <allow users="DomainName\Bob, DomainName\Mary" />
    <deny users="*" />
  </authorization>
</location>

● Users and roles for URL authorization are determined by your authentication
settings:
● When you have <authentication mode=”Windows” /> you are authorizing

access to Windows user and group accounts.
User names take the form “DomainName\WindowsUserName”
Role names take the form “DomainName\WindowsGroupName”

Note: The local administrators group is referred to as “BUILTIN\Administrators”. The
local users group is referred to as “BUILTIN\Users”.

● When you have <authentication mode=”Forms” /> you are authorizing
against the user and roles for the IPrincipal object that was stored in the
current HTTP context. For example, if you used Forms to authenticate users
against a database, you will be authorizing against the roles retrieved from
the database.

● When you have <authentication mode=”Passport” /> you authorize against
the Passport User ID (PUID) or roles retrieved from a store. For example, you
can map a PUID to a particular account and set of roles stored in a SQL Server
database or Active Directory.

Note: This functionality will be built into the Microsoft Windows .NET Server 2003
operating system.

● When you have <authentication mode=”None” /> you may not be perform-
ing authorization. “None” specifies that you don’t want to perform any
authentication or that you don’t want to use any of the .NET authentication
modules and want to use your own custom mechanism.
However, if you use custom authentication, you should create an IPrincipal
object with roles and store it into the HttpContext.User. When you subse-
quently perform URL authorization, it is performed against the user and roles
(no matter how they were retrieved) maintained in the IPrincipal object.



Building Secure ASP.NET Applications154

URL Authorization Examples

The following list shows the syntax for some typical URL authorization examples:
● Deny access to the anonymous account

 <deny users="?" />

● Deny access to all users

<deny users="*"/>

● Deny access to Manager role

<deny roles="Manager"/>

● Forms authentication example

<configuration>
  <system.web>
      <authentication mode="Forms">
        <forms name=".ASPXUSERDEMO"
               loginUrl="login.aspx"
               protection="All" timeout="60" />
      </authentication>
      <authorization>
        <deny users="jdoe@somewhere.com" />
        <deny users="?" />
      </authorization>
  </system.web>
</configuration>

More Information

The <authorization> element works against the current IPrincipal object stored in
HttpContext.User and also the HttpContext.Request.RequestType.

Secure Resources
1. Use Windows ACLs to secure resources that include files, folders, and registry

keys.
If you are not impersonating, any resource your application is required to access
must have an ACL that grants at least read access to the ASP.NET process ac-
count.
If you are impersonating, files and registry keys must have an ACL that grants at
least read access to the authenticated user (or the anonymous Internet user
account, if anonymous authentication is in effect).



Chapter 8: ASP.NET Security 155

2. Secure Web.config and Machine.config:
● Use the Correct ACLs. If ASP.NET is impersonating, the impersonated iden-

tity requires read access. Otherwise, the ASP.NET process identity requires
read access. Use the following ACL on Web.config and Machine.config.
System: Full Control
Administrators: Full Control
Process Identity or Impersonated Identity : Read
If you are not impersonating the anonymous Internet user account
(IUSR_MACHINE), you should deny access to this account.

Note: If your application is mapped to a UNC share then the UNC identity requires read
access to the configuration files as well.

● Remove Unwanted HTTP Modules. Machine.config contains a set of default
HTTP modules (within the <httpModules> element. These include:
● WindowsAuthenticationModule
● FormsAuthenticationModule
● PassportAuthenticationModule
● UrlAuthorizationModule
● FileAuthorizationModule
● OutputCacheModule
● SessionStateModule
If your application doesn’t use a specific module, remove it to prevent any
potential future security issues associated with a particular module from
being exploited within your application.

3. Optionally, lock configuration settings by using the <location> element together
with the allowOverride=”false” attribute as described below.

Locking Configuration Settings
Configuration settings are hierarchical. Web.config file settings in subdirectories
override Web.config settings in parent directories. Also, Web.config settings over-
ride Machine.config settings.

You can lock configuration settings to prevent them being overridden at lower
levels, by using the <location> element coupled with the allowOverride attribute.
For example:

<location path="somepath" allowOverride="false" />
 . . . arbitrary configuration settings . . .
</location>



Building Secure ASP.NET Applications156

Note that the path may refer to a Web site or virtual directory and it applies to the
nominated directory and all subdirectories. If you set allowOverride to false, you
prevent any lower level configuration file from overriding the settings specified in
the <location> element. The ability to lock down configuration settings applies to
all types of setting and not just security settings such as authentication modes.

Preventing Files from Being Downloaded
You can use the HttpForbiddenHandler class to prevent certain file types from
being downloaded over the Web. This class is used internally by ASP.NET to pre-
vent the download of certain system level files (for example, configuration files
including web.config). For a complete list of file types restricted in this way, see the
<httpHandlers> section in machine.config.

You should consider using the HttpForbiddenHandler for files that your applica-
tion uses internally, but are not intended for download.

Note: You must also secure the files with Windows ACLs to control which users can access the
files, when logged on to the Web server.

� To use the HttpForbiddenHandler to prevent a particular file type from being downloaded
1. Create an application mapping in IIS for the specified file type to map it to

Aspnet_isapi.dll.
a. On the taskbar, click the Start button, click Programs, click Administrative

Tools, and then select Internet Information Services.
b. Select your application’s virtual directory, right-click, and then click Proper-

ties.
c. Select Application Settings, click Configuration..
d. Click Add to create a new application mapping.
e. Click Browse, and select

c:\winnt\Microsoft.NET\Framework\v1.0.3705\aspnet_isapi.dll.
f. Enter the file extension for the file type you want to prevent being down-

loaded (for example, .abc) in the Extension field.
g. Ensure All Verbs and Script engine is selected and Check that file exists is

not selected.
h. Click OK to close the Add/Edit Application Extension Mapping dialog box.
i. Click OK to close the Application Configuration dialog box, and then click

OK again to close the Properties dialog box.



Chapter 8: ASP.NET Security 157

2. Add an <HttpHandler> mapping in Web.config for the specified file type.
An example for the .abc file type is shown below.

<httpHandlers>
  <add verb="*" path="*.abc"
    type="System.Web.HttpForbiddenHandler"/>
</httpHandlers>

Secure Communication
Use a combination of SSL and Internet Protocol Security (IPSec) to secure communi-
cation links.

More information
● For information about using SSL to secure the link to the database server, see

“How To: Use SSL to Secure Communication with SQL Server 2000.”
● For information about using IPSec between two computers, see “How To: Use

IPSec to Provide Secure Communication Between Two Servers.”

Programming Security
After you establish your Web application’s configurable security settings, you need
to further enhance and fine-tune your application’s authorization policy program-
matically. This includes using declarative .NET attributes within your assemblies
and performing imperative authorizing checks within code.

This section highlights the key programming steps required to perform authoriza-
tion within an ASP.NET Web application.

An Authorization Pattern
The following summarizes the basic pattern for authorizing users within your Web
application:
1. Retrieve credentials
2. Validate credentials
3. Put users in roles
4. Create an IPrincipal object
5. Put the IPrincipal object into the current HTTP context
6. Authorize based on the user identity / role membership



Building Secure ASP.NET Applications158

Important: Steps 1 to 5 are performed automatically by ASP.NET if you have configured
Windows authentication. For other authentication mechanisms (Forms, Passport and custom
approaches), you must write code to perform these steps, as discussed below.

Retrieve Credentials
You must start by retrieving a set of credentials (user name and password) from the
user. If your application does not use Windows authentication, you need to ensure
that clear text credentials are properly secured on the network by using SSL.

Validate Credentials
If you have configured Windows authentication, credentials are validated automati-
cally using the underlying services of the operating system.

If you use an alternate authentication mechanism, you must write code to validate
credentials against a data store such as a SQL Server database or Active Directory.

For more information about how to securely store user credentials in a SQL Server
database, see “Authenticating Users Against a Database” within Chapter 12, “Data
Access Security.”

Put Users in Roles
Your user data store should also contain a list of roles for each user. You must write
code to retrieve the role list for the validated user.

Create an IPrincipal Object
Authorization occurs against the authenticated user, whose identity and role list is
maintained within an IPrincipal object (which flows in the context of the current
Web request).

If you have configured Windows authentication, ASP.NET automatically constructs
a WindowsPrincipal object. This contains the authenticated user’s identity together
with a role list, which equates to the list of Windows groups to which the user
belongs.

If you are using Forms, Passport, or custom authentication, you must write code
within the Application_AuthenticateRequest event handler in Global.asax to create
an IPrincipal object. The GenericPrincipal class is provided by the .NET Frame-
work, and should be used in most scenarios.

Put the IPrincipal Object into the Current HTTP Context
Attach the IPrincipal object to the current HTTP context (using the
HttpContext.User variable). ASP.NET does this automatically when you use
Windows authentication. Otherwise, you must attach the object manually.



Chapter 8: ASP.NET Security 159

Authorize Based on the User Identity and/or Role Membership
Use .NET roles either declaratively (to obtain class or method level authorization),
or imperatively within code if your application requires more fine-grained authori-
zation logic.

You can use declarative or imperative principal permission demands (using the
PrincipalPermission class), or you can perform explicit role checks by calling the
IPrincipal.IsInRole() method.

The following example assumes Windows authentication and shows a declarative
principal permission demand. The method that follows the attribute will only be
executed if the authenticated user is a member of the Manager Windows group. If
the caller is not a member of this group, a SecurityException is thrown.

[PrincipalPermission(SecurityAction.Demand,
                     Role=@"DomainName\Manager")]
public void SomeMethod()
{
}

The following example shows an explicit role check within code. This example
assumes Windows authentication. If a non-Windows authentication mechanism is
used, the code remains very similar. Instead of casting the User object to a
WindowsPrincipal object, it should be cast to a GenericPrincipal object.

// Extract the authenticated user from the current HTTP context.
// The User variable is equivalent to HttpContext.Current.User if you are
using // an .aspx or .asmx page
WindowsPrincipal authenticatedUser = User as WindowsPrincipal;
if (null != authenticatedUser)
{
  // Note: To retrieve the authenticated user's username, use the
  // following line of code
  // string username = authenticatedUser.Identity.Name;

  // Perform a role check
  if (authenticatedUser.IsInRole(@"DomainName\Manager") )
  {
    // User is authorized to perform manager functionality
  }
}
else
{
  // User is not authorized to perform manager functionality
}

More Information

For a practical implementation of the above pattern for Forms authentication, see
the “Forms Authentication” section later in this chapter.



Building Secure ASP.NET Applications160

Creating a Custom IPrincipal class
The GenericPrincipal class provided by the .NET Framework should be used in
most circumstances when you are using a non-Windows authentication mechanism.
This provides role checks using the IPrincipal.IsInRole method.

On occasion, you may need to implement your own IPrincipal class. Reasons for
implementing your own IPrincipal class include:
● You want extended role checking functionality. You might want methods that

allow you to check whether a particular user is a member of multiple roles. For
example:

CustomPrincipal.IsInAllRoles( "Role", "Role2", "Role3" )
CustomPrincipal.IsInAnyRole( "Role1", "Role2", "Role3" )

● You may want to implement an extra method or property that returns a list of
roles in an array. For example:

string[] roles = CustomPrincipal.Roles;

● You want your application to enforce role hierarchy logic. For example, a Senior
Manager may be considered higher up in the hierarchy than a Manager. This
could be tested using methods like the ones shown below.

CustomPrincipal.IsInHigherRole("Manager");
CustomPrincipal.IsInLowerRole("Manager");

● You may want to implement lazy initialization of the role lists. For example, you
could dynamically load the role list only when a role check is requested.

● You may want to implement the IIdentity interface to have the user identified by
an X509ClientCertificate. For example:

CustomIdentity id = CustomPrincipal.Identity;
X509ClientCertificate cert = id.ClientCertificate;

More Information
For more information about creating your own IPrincipal class, see “How To:
Implement IPrincipal” in the Reference section of this guide.



Chapter 8: ASP.NET Security 161

Windows Authentication
Use Windows authentication when the users of your application have Windows
accounts that can be authenticated by the server (for example, in intranet scenarios).

If you configure ASP.NET for Windows authentication, IIS performs user authenti-
cation by using the configured IIS authentication mechanism. This is shown in
Figure 8.4.

HTTP 
Requests

IIS 
(inetinfo.exe)

ASP.NET 
(aspnet_wp.exe)

Authenticated 
caller’s access 

token (or 
IUSR_MACHINE 

access token)

IIS Authentication
Basic
Digest
Integrated
Certificate

<authentication mode="Windows" />

Web Server

aspnet_isapi.dll

Figure 8.4
ASP.NET Windows authentication uses IIS to authenticate callers

The access token of the authenticated caller (which may be the Anonymous Internet
user account if IIS is configured for Anonymous authentication) is made available to
the ASP.NET application. Note the following:
● This allows the ASP.NET FileAuthorizationModule to perform access checks

against requested ASP.NET files using the original caller’s access token.

Important: ASP.NET File authorization only performs access checks against file types that
are mapped to Aspnet_isapi.dll.

● File authorization does not require impersonation. With impersonation enabled
any resource access performed by your application uses the impersonated
caller’s identity. In this event, ensure that the ACLs attached to resources contain
an Access Control Entry (ACE) that grants at least read access to the original
caller’s identity.

Identifying the Authenticated User

ASP.NET associates a WindowsPrincipal object with the current Web request. This
contains the identity of the authenticated Windows user together with a list of roles
that the user belongs to. With Windows authentication, the role list consists of the
set of Windows groups to which the user belongs.



Building Secure ASP.NET Applications162

The following code shows how to obtain the identity of the authenticated Windows
user and to perform a simple role test for authorization.

WindowsPrincipal user = User as WindowsPrincipal;
if (null != user)
{
  string username = user.Identity.Name;
  // Perform a role check
  if ( user.IsInRole(@"DomainName\Manager") )
  {
    // User is authorized to perform manager functionality
  }
}
else
{
  // Throw security exception as we don't have a WindowsPrincipal
}

Forms Authentication
When you are using Forms authentication, the sequence of events triggered by an
unauthenticated user who attempts to access a secured file or resource (where URL
authorization denies the user access), is shown in Figure 8.5.

1

3

6

2

5

4

7

Web Browser IIS/ASP.NET Custom Data Store
(SQL Server / Active Directory)

Get default.aspx

302 Redirect
Location: Login.aspx

Post login.aspx
(Credentials)

200 OK Set Cookie
(inc auth ticket)

Get default.aspx
Cookie: auth ticket

Application authentication
(Validate credentials)

(Retrieve roles)

Global.asax
Application_AuthenticateRequest()
  Create Principal
  Retrieve identity + roles from ticket
  Attach Principal to HTTP Context

Figure 8.5
Forms authentication sequence of events



Chapter 8: ASP.NET Security 163

The following describes the sequence of events shown in Figure 8.5:
1. The user issues a Web request for Default.aspx.

IIS allows the request because Anonymous access is enabled. ASP.NET checks the
<authorization> elements and finds a <deny users=?” /> element.

2. The user is redirected to the login page (Login.aspx) as specified by the LoginUrl
attribute of the <forms> element.

3. The user supplies credentials and submits the login form.
4. The credentials are validated against a store (SQL Server or Active Directory)

and roles are optionally retrieved. You must retrieve a role list if you want to use
role-based authorization.

5. A cookie is created with a FormsAuthenticationTicket and sent back to the
client. Roles are optionally stored in the ticket. By storing the role list in the
ticket, you avoid having to access the database to re-retrieve the list for each
successive Web request from the same user.

6. The user is redirected with client-side redirection to the originally requested
page (Default.aspx).

7. In the Application_AuthenticateRequest event handler (in Global.asax), the
ticket is used to create an IPrincipal object and it is stored in HttpContext.User.
ASP.NET checks the <authorization> elements and finds a <deny users=?” />
element. However, this time the user is authenticated.
ASP.NET checks the <authorization> elements to ensure the user is in the
<allow> element.
The user is granted access to Default.aspx.

Development Steps for Forms Authentication
The following list highlights the key steps that you must perform to implement
Forms authentication:
1. Configure IIS for anonymous access.
2. Configure ASP.NET for Forms authentication.
3. Create a logon Web form and validate the supplied credentials.
4. Retrieve a role list from the custom data store.
5. Create a Forms authentication ticket (store roles in the ticket).
6. Create an IPrincipal object.
7. Put the IPrincipal object into the current HTTP context.
8. Authorize the user based on user name/role membership.



Building Secure ASP.NET Applications164

Configure IIS for Anonymous Access
Your application’s virtual directory must be configured in IIS for anonymous access.

� To configure IIS for anonymous access
1. Start the Internet Information Services administration tool.
2. Select your application’s virtual directory, right-click, and then click Properties.
3. Click Directory Security.
4. In the Anonymous access and authentication control group, click Edit.
5. Select Anonymous access.

Configure ASP.NET for Forms Authentication
A sample configuration is shown below.

<authentication mode="Forms">
  <forms name="MyAppFormsAuth"
       loginUrl="login.aspx"
       protection="Encryption"
       timeout="20"
       path="/" >
  </forms>
</authentication>

Create a Logon Web Form and Validate the Supplied Credentials
Validate credentials against a SQL Server database, or Active Directory.

More Information
● See “How To: Use Forms Authentication with SQL Server 2000” in the Reference

section of this guide.
● See “How To: Use Forms Authentication with Active Directory” in the Reference

section of this guide.

Retrieve a Role List from the Custom Data Store
Obtain roles from a table within a SQL Server database, or groups/distribution lists
configured within Active Directory. Refer to the preceding resources for details.

Create a Forms Authentication Ticket
Store the retrieved roles in the ticket. This is illustrated in the following code.

// This event handler executes when the user clicks the Logon button
// having supplied a set of credentials
private void Logon_Click(object sender, System.EventArgs e)
{



Chapter 8: ASP.NET Security 165

  // Validate credentials against either a SQL Server database
  // or Active Directory
  bool isAuthenticated = IsAuthenticated( txtUserName.Text,
                                          txtPassword.Text );
  if (isAuthenticated == true )
  {
    // Retrieve the set of roles for this user from the SQL Server
    // database or Active Directory. The roles are returned as a
    // string that contains pipe separated role names
    // for example "Manager|Employee|Sales|"
    // This makes it easy to store them in the authentication ticket

    string roles = RetrieveRoles( txtUserName.Text, txtPassword.Text );

    // Create the authentication ticket and store the roles in the
    // custom UserData property of the authentication ticket
    FormsAuthenticationTicket authTicket = new
       FormsAuthenticationTicket(
                    1,                          // version
                    txtUserName.Text,           // user name
                    DateTime.Now,               // creation
                    DateTime.Now.AddMinutes(20),// Expiration
                    false,                      // Persistent
                    roles );                    // User data
     // Encrypt the ticket.
     string encryptedTicket = FormsAuthentication.Encrypt(authTicket);
     // Create a cookie and add the encrypted ticket to the
     // cookie as data.
     HttpCookie authCookie =
               new HttpCookie(FormsAuthentication.FormsCookieName,
                              encryptedTicket);

     // Add the cookie to the outgoing cookies collection.
     Response.Cookies.Add(authCookie);
     // Redirect the user to the originally requested page
     Response.Redirect( FormsAuthentication.GetRedirectUrl(
                        txtUserName.Text,
                        false ));
  }
}

Create an IPrincipal Object
Create the IPrincipal object in the Application_AuthenticationRequest event
handler in Global.asax. Use the GenericPrincipal class, unless you need extended
role-based functionality. In this case create a custom class that implements
IPrincipal.



Building Secure ASP.NET Applications166

Put the IPrincipal Object into the Current HTTP Context
The creation of a GenericPrincipal object is shown below.

protected void Application_AuthenticateRequest(Object sender, EventArgs e)
{
  // Extract the forms authentication cookie
  string cookieName = FormsAuthentication.FormsCookieName;
  HttpCookie authCookie = Context.Request.Cookies[cookieName];
  if(null == authCookie)
  {
    // There is no authentication cookie.
    return;
  }
  FormsAuthenticationTicket authTicket = null;
  try
  {
    authTicket = FormsAuthentication.Decrypt(authCookie.Value);
  }
  catch(Exception ex)
  {
    // Log exception details (omitted for simplicity)
    return;
  }
  if (null == authTicket)
  {
    // Cookie failed to decrypt.
    return;
  }
  // When the ticket was created, the UserData property was assigned a
  // pipe delimited string of role names.
  string[] roles = authTicket.UserData.Split(new char[]{'|'});

  // Create an Identity object
  FormsIdentity id = new FormsIdentity( authTicket );
  // This principal will flow throughout the request.
  GenericPrincipal principal = new GenericPrincipal(id, roles);
  // Attach the new principal object to the current HttpContext object
  Context.User = principal;
}

Authorize the User Based on User Name or Role Membership
Use declarative principal permission demands to restrict access to methods. Use
imperative principal permission demands and/or explicit role checks
(IPrincipal.IsInRole) to perform fine-grained authorization within methods.



Chapter 8: ASP.NET Security 167

Forms Implementation Guidelines
● Use SSL when capturing credentials using an HTML form.

In addition to using SSL for the login page, you should also use SSL for other
pages, whenever the credentials or the authentication cookie is sent across the
network. This is to mitigate the threat associated with cookie replay attacks.

● Authenticate users against a custom data store. Use SQL Server or Active
Directory.

● Retrieve a role list from the custom data store and store a delimited list of roles
within the UserData property of the FormsAuthenticationTicket class. This
improves performance by eliminating repeated access to the data store for each
Web request and also saves you from storing the user’s credentials in the authen-
tication cookie.

● If the list of roles is extensive and there is a danger of exceeding the cookie size
limit, store the role details in the ASP.NET cache object or database and retrieve
them on each subsequent request.

● For each request after initial authentication:
● Retrieve the roles from the ticket in the Application_AuthenticateRequest

event handler.
● Create an IPrincipal object and store it in the HTTP context

(HttpContext.User). The .NET Framework also associates it with the current
.NET thread (Thread.CurrentPrincipal).

● Use the GenericPrincipal class unless you have a specific need to create a
custom IPrincipal implementation; for example, to support enhanced role-
based operations.

● Use two cookies; one for personalization and one for secure authentication and
authorization. Make the personalization cookie persistent (make sure it does not
contain information that would permit a request to perform a restricted opera-
tion; for example, placing an order within a secure part of a site).

● Use a separate cookie name (using the Forms attribute of the <forms> element)
and path for each Web application. This will ensure that users who are authenti-
cated against one application are not treated as authenticated when using a
second application hosted by the same Web server.

● Ensure cookies are enabled within client browsers. For a Forms authentication
approach that does not require cookies, see “Cookieless Forms Authentication”
later in this chapter.



Building Secure ASP.NET Applications168

More Information
● See “How To: Use Forms Authentication with SQL Server 2000” in the Reference

section of this guide.
● See “How To: Use Forms Authentication with Active Directory” in the Reference

section of this guide.
● See “How To: Use Forms Authentication with GenericPrincipal Objects” in the

Reference section of this guide.

Hosting Multiple Applications Using Forms Authentication
If you are hosting multiple Web applications that use Forms authentication on the
same Web server, it is possible for a user who is authenticated in one application to
make a request to another application without being redirected to that application’s
logon page. The URL authorization rules within the second application may deny
access to the user, without providing the opportunity to supply logon credentials
using the logon form.

This only happens if the name and path attributes on the <forms> element are
the same across multiple applications and each application uses a common
<machineKey> element in Web.config.

More Information

For more information about this issue, and for resolution techniques, see the follow-
ing Knowledge Base articles:
● Q313116, “PRB: Forms Authentication Requests Are Not Directed to loginUrl

Page”
● Q310415, “PRB: Mobile Forms Authentication and Different Web Applications”

Cookieless Forms Authentication
If you need a cookieless Forms authentication solution, consider using the approach
used by the Microsoft Mobile Internet Toolkit. Mobile Forms Authentication builds
upon Forms Authentication but uses the query string to convey the authentication
ticket instead of a cookie.

More Information

For more information about Mobile Forms Authentication, see article Q311568,
“INFO: How To Use Mobile Forms Authentication with Microsoft Mobile Internet
Toolkit,” in the Microsoft Knowledge Base.



Chapter 8: ASP.NET Security 169

Passport Authentication
Use Passport authentication when the users of your application have Passport
accounts and you want to implement a single-sign-on solution with other Passport
enabled sites.

When you configure ASP.NET for Passport authentication, the user is prompted to
log in and then is redirected to the Passport site. After successful credential valida-
tion, the user is redirected back to your site.

Configure ASP.NET for Passport authentication
To configure ASP.NET for Passport authentication, use the following Web.config
settings.

<authentication mode="Passport">
  <passport redirectUrl="internal" />
</authentication>
<authorization>
  <deny users="?" />
  <allow users="*" />
</authorization>

Map a Passport Identity into Roles in Global.asax
To map a Passport identity into roles, implement the
PassportAuthentication_OnAuthentication event handler in Global.asax as shown
below.

void PassportAuthentication_OnAuthenticate(Object sender,
                                           PassportAuthenticationEventArgs e)
{
  if(e.Identity.Name == "0000000000000001")
  {
    string[] roles = new String[]{"Developer", "Admin", "Tester"};
    Context.User = new GenericPrincipal(e.Identity, roles);
  }
}

Test Role Membership
The following code fragment shows how to retrieve the authenticated Passport
identity and check role membership within an aspx page.

PassportIdentity passportId = Context.User.Identity as PassportIdentity;
if (null == passportId)
{
  Response.Write("Not a PassportIdentity<br>");
  return;
}
Response.Write("IsInRole: Develeoper? " + Context.User.IsInRole("Developer"));



Building Secure ASP.NET Applications170

Custom Authentication
If none of the authentication modules supplied with the .NET Framework meet
your precise authentication needs, you can use custom authentication and imple-
ment your own authentication mechanism. For example, your company may
already have a custom authentication strategy that is widely used by other applica-
tions.

To implement custom authentication in ASP.NET:
● Configure the authentication mode in Web.config as shown below. This notifies

ASP.NET that it should not invoke any of its built-in authentication modules.

<authentication mode="None" />

● Create a class that implements the System.Web.IHttpModule interface to create
a custom HTTP module. This module should hook into the
HttpApplication.AuthenticateRequest event and provide a delegate to be called
on each request to the application when authentication is required.
An authentication module must:
● Obtain credentials from the caller.
● Validate the credentials against a store.
● Create an IPrincipal object and store it in HttpContext.User.
● Create and protect an authentication token and send it back to the user

(typically in a query string, cookie, or hidden form field).
● Obtain the authentication token on subsequent requests, validate it, and

reissue it.

More Information

For more information about how to implement a custom HTTP Module, see article
Q307996, “HOW TO: Create an ASP.NET HTTP Module Using Visual C# .NET,” in
the Microsoft Knowledge Base.

Process Identity for ASP.NET
Run ASP.NET (specifically the Aspnet_wp.exe worker process) by using a least
privileged account.

Use a Least Privileged Account
Use a least privileged account to lessen the threat associated with a process compro-
mise. If a determined attacker manages to compromise the ASP.NET process that
runs your Web application, they can easily inherit and exploit the privileges and
access rights granted to the process account. An account configured with minimum
privileges restricts the potential damage that can be done.



Chapter 8: ASP.NET Security 171

Avoid Running as SYSTEM
Don’t use the highly-privileged SYSTEM account to run ASP.NET and don’t grant
the ASP.NET process account the “Act as part of the operating system” privilege.
You may be tempted to do one or the other to allow your code to call the
LogonUser API to obtain a fixed identity (typically for network resource access).
For alternate approaches, see “Accessing Network Resources” later in this chapter.

Reasons for not running as SYSTEM, or granting the “Act as part of the operating
system privilege” include:
● It significantly increases the damage that an attacker can do when the system is

compromised, but it doesn’t affect the ability to be compromised.
● It defeats the principle of least privilege. The ASPNET account has been specifi-

cally configured as a least privileged account designed to run ASP.NET Web
applications.

More Information

For more information about the “Act as part of the operating system” privilege, see
the Microsoft Systems Journal August 1999 Security Briefs column.

Domain Controllers and the ASP.NET Process Account
In general, it is not advisable to run your Web server on a domain controller, be-
cause a compromise of the server is a compromise of the domain. If you need to run
ASP.NET on a domain controller, you need to give the ASP.NET process account
appropriate privileges as outlined in article Q315158, “BUG: ASP.NET Does Not
Work with the Default ASPNET Account on a Domain Controller,” in the Microsoft
Knowledge Base.

Using the Default ASPNET Account
The local ASPNET account has been configured specifically to run ASP.NET Web
applications with the minimum possible set of privileges. Use ASPNET whenever
possible.

By default, ASP.NET Web applications run using this account, as configured by the
<processModel> element within Machine.config.

<processModel userName="machine" password="AutoGenerate" />

Note: The machine user name indicates the ASPNET account. The account is created with a
cryptographically strong password when you install the .NET Framework. In addition to being
configured within the Security Account Manager (SAM) database, the password is stored within
the Local System Authority (LSA) on the local computer. The system retrieves the password
from the LSA, when it launches the ASP.NET worker process.



Building Secure ASP.NET Applications172

If your application accesses network resources, the ASPNET account must be
capable of being authenticated by the remote computer. You have two choices:
● Reset the ASPNET account’s password to a known value and then create a

duplicate account (with the same name and password) on the remote computer.
This approach is the only option in the following circumstances:
● The Web server and remote computer are in separate domains with no trust

relationship.
● The Web server and remote computer are separated by a firewall and you do

not want to open the necessary ports to support Windows authentication.
● If ease of administration is your primary concern, use a least privileged, domain

account.
To avoid having to manually update and synchronize passwords, you can use
a least privileged domain account to run ASP.NET. It is vital that the domain
account is fully locked down to mitigate the process compromise threat. If an
attacker manages to compromise the ASP.NET worker process, he or she will
have the ability to access domain resources, unless the account is fully locked
down.

Note: If you use a local account and the account becomes compromised, the only computers
subject to attack are the computers on which you have created duplicate accounts. If you use
a domain account, the account is visible to each computer on the domain. However, the
account still needs to have permission to access those computers.

The <processModel> Element
The <processModel> element in the Machine.config file contains the userName
and password attributes which specify the account that should be used to run the
ASP.NET worker process (Aspnet_wp.exe). You have a number of options for
configuring this setting. For example:
● “machine”. The worker process runs as the default least privileged ASPNET

account. The account has network access but cannot be authenticated to any
other computer on the network because the account is local to the computer and
there is no authority to vouch for the account. On the network, this account is
represented as “MachineName\ASPNET”.

● “system”. The worker process runs as the local SYSTEM account. This account
has extensive privileges on the local computer and also has the ability to access
the network using the credentials of the computer. On the network, this account
is represented as “DomainName\MachineName$”.



Chapter 8: ASP.NET Security 173

● Specific credentials. When you supply credentials for userName and password,
remember the principle of least privilege. If you specify a local account, the Web
application cannot be authenticated on the network unless you create a duplicate
account on the remote computer. If you elect to use a least privileged domain
account, ensure it is not an account that has permission to access more comput-
ers on the network than it needs to.
In the .NET Framework version 1.1 you will have the ability to store encrypted
userName and password attributes in the registry.

Note: In contrast to the way classic ASP applications run, ASP.NET code never runs in the
dllhost.exe process or as the IWAM_MACHINENAME account even when the application
protection level is set to High (Isolated) in IIS.
ASP.NET requests sent to IIS are directly routed to the ASP.NET worker process
(Aspnet_wp.exe). The ASP.NET ISAPI extension, Aspnet_isapi.dll, runs in the IIS (Inetinfo.exe)
process address space. (This is controlled by the InProcessIsapiApps Metabase entry, which
should not be modified). The ISAPI extension is responsible for routing requests to the ASP.NET
worker process. ASP.NET applications then run in the ASP.NET worker process, where applica-
tion domains provide isolation boundaries.
In IIS 6, you will be able to isolate ASP.NET applications by configuring application pools, where
each pool will have its own application instance.

More Information
● For more information about accessing network resources from ASP.NET Web

applications, see “Accessing Network Resources,” later in this chapter.
● For detailed information about how to create a custom account for running

ASP.NET, see “How To: Create a Custom Account to Run ASP.NET” in the
Reference section of this guide.

Impersonation
With the introduction of the FileAuthorizationModule, and with the efficient use of
gatekeepers and trust boundaries, impersonation may prove more of a disadvan-
tage than a benefit in ASP.NET.

Impersonation and Local Resources
If you use impersonation and access local resources from your Web application
code, you must configure the ACLs attached to each secured resource to contain an
ACE that grants at least read access to the authenticated user.



Building Secure ASP.NET Applications174

A better approach is to avoid impersonation, grant permissions to the ASP.NET
process account, and use URL authorization, File authorization, and a combination
of declarative and imperative role-based checks.

Impersonation and Remote Resources
If you use impersonation and then access remote resources from your Web applica-
tion code, the access will fail unless you are using Basic, Forms, or Kerberos authen-
tication. If you use Kerberos authentication, user accounts must be suitably
configured for delegation. They must be marked as “ Sensitive and cannot be
delegated” within Active Directory.

More Information

For more information about how to configure Kerberos delegation, see:
● “Flowing the Original Caller to the Database” in Chapter 5, “Intranet Security.”
● “How To: Implement Kerberos Delegation for Windows 2000” in the Reference

section of this guide.

Impersonation and Threading
If a thread that is impersonating creates a new thread, the new thread inherits the
security context of the ASP.NET process account and not the impersonated account.

Accessing System Resources
ASP.NET performs no impersonation by default. As a result, if your Web applica-
tion accesses local system resources, it does so using the security context associated
with the Aspnet_wp.exe worker process. The security context is determined by the
account used to run the worker process.

Accessing the Event Log
Least privileged accounts have sufficient permissions to be able to write records to
the event log by using existing event sources. However, they do not have sufficient
permissions to create new event sources, This requires a new entry to be placed
beneath the following registry hive.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\<log>

To avoid this issue, create the event sources used by your application at installation
time, when administrator privileges are available. A good approach is to use a .NET
installer class which can be instantiated by the Windows Installer (if you are using
.msi deployment) or by the InstallUtil.exe system utility if you are not.



Chapter 8: ASP.NET Security 175

If you are unable to create event sources at installation time, you must add permis-
sion to the following registry key and grant access to the ASP.NET process account
(of any impersonated account if your application uses impersonation).

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog

The account(s) must have the following minimum permissions:
● Query key value
● Set key value
● Create subkey
● Enumerate subkeys
● Notify
● Read

The following code can be used to write to the Application event log from ASP.NET
once permissions have been applied to the registry:

string source = "Your Application Source";
string logToWriteTo = "Application";
string eventText = "Sample Event";

if (!EventLog.SourceExists(source))
{
  EventLog.CreateEventSource(source, logToWriteTo);
}
EventLog.WriteEntry(source, eventText, EventLogEntryType.Warning, 234);

Accessing the Registry
Any registry key accessed by your application requires an ACE in the ACL that
grants (at minimum) read access to the ASP.NET process account.

More Information

For more information about installer classes and the InstallUtil.exe utility, see the
.NET Framework Tools on MSDN.

Accessing COM Objects
In classic ASP, requests are processed using threads from the Single Threaded
Apartment (STA) thread pool. In ASP.NET, requests are processed using threads
from the Multithreaded Apartment (MTA) thread pool. This has implications for
ASP.NET Web applications that call Apartment model objects.



Building Secure ASP.NET Applications176

Apartment Model Objects
When an ASP.NET Web application calls an Apartment model object (such as a
Visual Basic 6 COM object) there are two issues to note:
● You must mark your ASP.NET page with the AspCompat directive, as shown

below.

<%@ Page Language="C#" AspCompat="True" %>

● Don’t create your COM objects outside of specific Page event handlers. Always
create COM objects in Page event handlers (such as Page_Load and Page_Init).
Don’t create COM objects in the page’s constructor.

The AspCompat Directive is Required
By default, ASP.NET uses MTA threads to process requests. This results in a thread-
switch when an Apartment model object is called from ASP.NET, because the
Apartment model object can’t be accessed directly by MTA threads (COM would
use an STA thread).

Specifying AspCompat causes the page to be processed by an STA thread. This
avoids a thread switch from MTA to STA. This is important from a security perspec-
tive if your Web application is impersonating because a thread switch results in a
lost impersonation token. The new thread would not have the impersonation token
associated with it.

The AspCompat directive is not supported for ASP.NET Web services. This means
that when you call Apartment model objects from Web service code, a thread switch
does occur and you lose the thread impersonation token. This typically results in an
Access Denied exception.

More Information
● See the following Knowledge Base articles for more information:

● Article Q303375, “INFO: XML Web Services and Apartment Objects”
● Article Q325791, “PRB: Access Denied Error Message Occurs When Imperson-

ating in ASP.NET and Calling STA COM Components”
● For more information about how to determine the identity of the currently

executing code, see the “Determining Identity” section of Chapter 13, “Trouble-
shooting Security Issues.”

Don’t Create COM Objects Outside of Specific Page Events
Don’t create COM object outside of specific Page event handlers. The following
code fragment illustrates what not to do.



Chapter 8: ASP.NET Security 177

<%@ Page Language="C#" AspCompat="True" %>
<script runat="server">
  // COM object created outside of Page events
  YourComObject obj = new apartmentObject();
  public void Page_Load()
  {
    obj.Foo()
  }
</script>

When you use Apartment model objects, it is important to create the object within
specific Page events such as Page_Load, as shown below.

<%@ Page Language="C#" AspCompat="True" %>
<script runat="server">
public void Page_Load()
{
  YourComObject obj = new apartmentObject();
  obj.Foo()
}
</script>

More Information

For more information, see article Q308095, “PRB: Creating STA Components in the
Constructor in ASP.NET ASPCOMPAT Mode Negatively Impacts Performance” in
the Microsoft Knowledge Base.

C# and VB .NET Objects in COM+
Microsoft C#® development tool and Microsoft Visual Basic® .NET development
system support all threading models (Free-threaded, Neutral, Both, and Apart-
ment). By default, when hosted in COM+, C# and Visual Basic .NET objects are
marked as Both. As a result, when they are called by ASP.NET, access is direct and
you do not incur a thread switch.

Accessing Network Resources
Your application may need to access network resources. It is important to be able to
identify:
● The resources your application needs to access.

For example, files on file shares, databases, DCOM servers, Active Directory
objects, and so on.

● The identity used to perform the resource access.
If your application accesses remote resources, this identity must be capable of
being authenticated by the remote computer.



Building Secure ASP.NET Applications178

Note: For information specific to accessing remote SQL Server databases, see Chapter 12,
“Data Access Security.”

You can access remote resources from an ASP.NET application by using any of the
following techniques:
● Use the ASP.NET process identity.
● Use a serviced component.
● Use the Anonymous Internet user account (for example, IUSR_MACHINE).
● Use the LogonUser API and impersonating a specific Windows identity.
● Use the original caller.

Using the ASP.NET Process Identity
When the application is not configured for impersonation, the ASP.NET process
identity provides the default identity when your application attempts to access
remote resources. If you want to use the ASP.NET process account for remote
resource access, you have three options:
● Use mirrored accounts.

This is the simplest approach. You create a local account with a matching user
name and password on the remote computer. You must change the ASPNET
account password in User Manager to a known value (always use a strong
password). You must then explicitly set this on the <processModel> element in
Machine.config, and replace the existing “AutoGenerate” value.

Important: If you change the ASPNET password to a known value, the password in the LSA
will no longer match the SAM account password. If you need to revert to the
“AutoGenerate” default, you will need to do the following:
Run Aspnet_regiis.exe, to reset ASP.NET to its default configuration. For more information,
see article Q306005, “HOWTO: Repair IIS Mapping After You Remove and Reinstall IIS” in
the Microsoft Knowledge Base.

● Create a custom, least privileged local account to run ASP.NET and create
a duplicate account on the remote computer.

● Run ASP.NET using a least-privileged domain account.
This assumes that client and server computers are in the same or trusting
domains.

More Information

For more information about configuring an ASP.NET process account, see “How To:
Create a Custom Account to Run ASP.NET” in the Reference section of this guide.



Chapter 8: ASP.NET Security 179

Using a Serviced Component
You can use an out of process serviced component, configured to run as a fixed
identity to access network resources. This approach is shown in Figure 8.6.

Web Server

Running as 
ASPNET

Fixed Identity
“MyServAccount”Serviced 

Component

Remote 
Computer

Remote 
Resource

Enterprise Services 
Server Application

(dllhost.exe)

Running as “MyServAccount”
(configured in the COM+ Catalog)

ASP.NET
(aspnet_wp.exe)

Figure 8.6
Using an out of process serviced component to provide a fixed identity for network resource access

Using an out of process serviced component (in an Enterprise Services server
application) has the following advantages:
● Flexibility in terms of the identity used. You don’t just rely on the ASP.NET

identity.
● Trusted or higher-privileged code can be isolated from your main Web

application.
● An additional process hop raises the bar from a security perspective. It makes it

much tougher for an attacker to cross the process boundary to a process with
raised privileges.

● If you need to hand-craft impersonation with LogonUser API calls, you can do
so in a process that is separated from your main Web application.

Note: To call LogonUser you must give the Enterprise Services process-account the “Act as
part of the operating system” privilege. Raising the privileges for a process that is separate
from your Web application is less of a security concern.



Building Secure ASP.NET Applications180

Using the Anonymous Internet User Account
You can use the anonymous Internet user account to access network resources if IIS
is configured for Anonymous authentication. This is the case if one of the following
is true:
● Your application supports anonymous access.
● Your application uses Forms, Passport, or Custom authentication (where IIS is

configured for anonymous access).

� To use the anonymous account for remote resource access
1. Configure IIS for Anonymous authentication. You can set the ASP.NET authenti-

cation mode to Windows, Forms, Passport, or None, depending upon the
authentication requirements of your application.

2. Configure ASP.NET for impersonation. Use the following setting in Web.config:

<identity impersonate="true" />

3. Configure the anonymous account as a least privileged domain account,
 – or –
Duplicate the anonymous account by using the same user name and password
on the remote computer. This approach is necessary when you are making calls
across non-trusting domains or through firewalls where the necessary ports to
support Integrated Windows authentication are not open.
To support this approach, you must also:
a. Use Internet Services Manager to clear the Allow IIS to Control Password

checkbox for the anonymous account.
If you select this option, the logon session created using the specified anony-
mous account ends up with NULL network credentials (and therefore cannot
be used to access network resources). If you don’t select this option, the logon
session is an interactive logon session with network credentials.

b. Set the account’s credentials both in User Manager and in Internet Services
Manager.

Important: If you impersonate the anonymous account (for example, IUSR_MACHINE),
resources must be secured against this account (using appropriately configured ACLs).
Resources that your application needs to access must grant read access (at minimum) to the
anonymous account. All other resources should deny access to the anonymous account.



Chapter 8: ASP.NET Security 181

Hosting Multiple Web Applications
You can use a separate anonymous Internet user account for each virtual root
within your Web site. In a hosted environment, this allows you to separately autho-
rize, track, and audit requests that originate from separate Web applications. This
approach is shown in Figure 8.7.

IIS
(inetinfo.exe)

Web Server Remote Computer(s)

ASP.NET
(aspnet_wp.exe)

IUSR_1

IUSR_2

IUSR_3

Anonymous 
Authentication

Impersonation

Remote Resource

Remote Resource

Remote Resource

AppDomain1

AppDomain2

AppDomain3

IUSR_1

IUSR_2

IUSR_3

v-dir1

v-dir2

v-dir3

Figure 8.7
Impersonating separate anonymous Internet user accounts per application (v-dir)

� To configure the anonymous Internet user account for a specific virtual directory
1. Start Internet Services Manager from the Administrative Tools programs

group.
2. Select the virtual directory you want to configure, right-click, and then click

Properties.
3. Click the Directory Security tab.
4. Click Edit within the Anonymous access and authentication control group.
5. Select Anonymous access, and then click Edit.
6. Enter the user name and password of the account that you want IIS to use when

anonymous users connect to the site.
7. Make sure that Allow IIS to control password is NOT selected.



Building Secure ASP.NET Applications182

Using LogonUser and Impersonating a Specific Windows Identity
You can impersonate a specific identity by configuring user name and password
attributes on the <identity> element in Web.config, or by calling the Win32®
LogonUser API in your application code.

Important: These approaches are not recommended. You should avoid them both on Windows
2000 servers, because it forces you to grant the “Act as part of the operating system”
privilege to the ASP.NET process account. This significantly reduces the security of your Web
application.
Windows .NET Server 2003 will lift this restriction.

Using the Original Caller
To use the original caller’s identity for remote resource access, you must be able to
delegate the caller’s security context from the Web server to the remote computer.

Scalability Warning: If you access the data services tier of your application using the original
caller’s impersonated identity, you severely impact the application’s ability to scale, because
database connection pooling is rendered ineffective. The security context for database
connections is different for each user.

The following authentication schemes support delegation:
● Kerberos. For more information, see “How To: Implement Kerberos Delegation

for Windows 2000” within the Reference section of this guide.
● Client certificates mapped to Windows accounts. The mapping must be per-

formed by IIS.
● Basic. Basic authentication supports remote resource access because the original

caller’s credentials are available in clear text at the Web server. These can be used
to respond to authentication challenges from remote computers.
Basic authentication must be used in conjunction with an interactive or batch
logon session. The type of logon session that results from Basic authentication is
configurable in the IIS Metabase. For more information, see the Platform SDK:
Internet Information Services 5.1 on MSDN.

Important: Basic authentication is the least secure of the approaches that support
delegation. This is because a clear text user name and password are passed from the
browser to the server over the network and they are cached in memory at the Web server.
You can use SSL to protect credentials while in transit but you should avoid caching clear
text credentials at the Web server where possible.



Chapter 8: ASP.NET Security 183

� To use the original caller for remote resource access
1. Configure IIS for Integrated Windows (Kerberos), Certificate (with IIS certificate

mapping), or Basic authentication.
2. Configure ASP.NET for Windows authentication and impersonation.

<authentication mode="Window" />
<identity impersonate="true" />

3. If you use Kerberos delegation, configure Active Directory accounts for
delegation.

More Information
● For more information about configuring Kerberos delegation, see “How To:

Implement Kerberos Delegation for Windows 2000” in the Reference section of
this guide.

● For more information about IIS certificate mapping, see http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/prodtechnol/ad/windows2000/howto
/mapcerts.asp.

● For more information about ASP.NET Impersonation, see the .NET Framework
Developers Guide on MSDN.

Accessing Files on a UNC File Share
If your application needs to access files on a Universal Naming Convention (UNC)
share using ASP.NET, it is important to add NTFS permissions to the share’s folder.
You will also need to set the share’s permissions to grant at least read access to
either the ASP.NET process account or the impersonated identity (if your applica-
tion is configured for impersonation).

Accessing Non-Windows Network Resources
If your application needs to access non-Windows resources such as databases
located on non-Windows platforms or mainframe applications, you need to con-
sider the following questions:
● What are the gatekeepers and trust boundaries associated with the resource?
● What credentials are required for authentication?
● Does the resource need to know the original caller identity, or does it trust the

calling application (using a fixed process or service identity)?
● What is the performance cost associated with establishing connections? If the

cost is significant you may need to implement connection pooling; for example,
by using the object pooling feature of Enterprise Services.



Building Secure ASP.NET Applications184

If the resource needs to be able to authenticate the original caller (and Windows
authentication is not an option), you have the following options:
● Pass credentials using (method call) parameters.
● Pass credentials in a connection string. Use SSL or IPSec to secure clear text

credentials passed over a network.
Store credentials securely within your application, for example by using DPAPI.
For more information about securely storing database connection strings, see
“Storing Database Connection Strings Securely” in Chapter 12, “Data Access
Security.”

● Use a centralized data store for authentication that both platforms can access; for
example, an LDAP directory.

Secure Communication
Use SSL to secure the communication link between browser and Web server. SSL
provides message confidentiality and message integrity. Use SSL and/or IPSec to
provide a secure channel from Web server to application server or database server.

More Information
For more information about secure communication, see “Chapter 4, “Secure Com-
munication.”

Storing Secrets
Web applications often need to store secrets. These need to be secured against rogue
administrators and malicious Web users, such as:
● Rogue administrators. Administrators and other unscrupulous users should not

be able to view privileged information. For example, the administrator of the
Web server should not be able to read the password of a SQL Server login ac-
count on a SQL Server computer located across the network.

● Malicious Web users. Even though there are components (such as the
FileAuthorizationModule) that prevent users from accessing privileged files, if
an attacker does gain access to a configuration file, the secret in the file should
not be in plain text.

Typical examples of secrets include:
● SQL connection strings. A common mistake is to store the user name and

password in plain text. The recommendation is to use Windows authentication
instead of SQL authentication. If you can’t use Windows authentication, see the



Chapter 8: ASP.NET Security 185

following sections in Chapter 12, “Data Access Security,” which present secure
alternatives:
● “Storing Database Connections Securely”
● “Secure Communications”

● Credentials used for SQL application roles. SQL Application roles must be
activated with a stored procedure that requires the role name and associated
password. For more information, see “Authorization” in Chapter 12, “Data
Access Security.”

● Fixed identities in Web.config. For example:

<identity impersonate="true" userName="bob" password="inClearText"/>

In the .NET Framework version 1.1, ASP.NET provides the ability to encrypt the
username and password and store it safely in a registry key.

● Process identity in Machine.config. For example:

<process userName="cUsTuMUzerName" password="kUsTumPazzWerD" >

By default ASP.NET manages the secret if you use the “Machine” user name and
“AutoGenerate” password.
In the .NET Framework version 1.1, ASP.NET provides the ability to encrypt the
user name and password and store it safely in a registry key.

● Keys used to store data securely. It is impossible to safely store keys in soft-
ware. However, certain tasks can mitigate the risk. An example is to create a
custom configuration section handler which uses asymmetric encryption to
encrypt a session key. The session key can then be stored in a configuration file.

● SQL Server session state. To use SQL server to manage ASP.NET Web applica-
tion session state, use the following Web.config settings.

<sessionState … stateConnectionString="tcpip=127.0.0.1:42424"
                sqlConnectionString="data source=127.0.0.1;
                user id=UserName;password=MyPassword" />

In the .NET Framework 1.1, ASP.NET provides the ability to encrypt this infor-
mation.

● Passwords used for Forms authentication against a database.
If your application validates authentication credentials against a database, don’t
store passwords in the database. Use a hash of the password with a salt value
and compare hashes.
For more information, see “Authenticating Users against a Database” in Chapter
12, “Data Access Security.”



Building Secure ASP.NET Applications186

Options for Storing Secrets in ASP.NET
A number of approaches are available to .NET Web application developers to store
secrets. These include:
● .NET cryptography classes. The .NET Framework includes classes that can be

used for encryption and decryption. These approaches require that you safely
store the encryption key.

● Data Protection API (DPAPI). DPAPI is a pair of Win32 APIs that encrypt and
decrypt data by using a key derived from the user’s password. When using
DPAPI, you do not deal with key management. The operating system manages
the key which is the user’s password.

● COM+ Constructor Strings. If your application uses serviced components, you
can store the secret in an object construction string. The string is stored in the
COM+ catalog in a clear text form,

● CAPICOM. This is a Microsoft COM object which provides COM-based access
to the underlying Crypto API.

● Crypto API. These are low level Win32 APIs that perform encryption and
decryption.

More Information
For more information, see the entry for Cryptography, CryptoAPI and CAPICOM in
the Platform SDK on MSDN.

Consider Storing Secrets in Files on Separate Logical Volumes
Consider installing Web application directories on a separate logical volume from
the operating system (for example, E: instead of C:). This means that Machine.config
(located under C:\WINNT\Microsoft.NET) and potentially other files that contain
secrets such as, Universal Data Link (UDL) files, are located on a separate logical
volume from the Web application directories.

The rationale for this approach is to protect against possible file canonicalization
and directory traversal bugs because:
● File canonicalization bugs can expose files in the Web application folders.

Note: File canonicalization routines return the canonical form of a file path. This is usually
the absolute pathname in which all relative references and references to the current
directory have been completely resolved.

● Directory traversal bugs can expose files in other folders on the same logical
volume.

No bugs of the sort described above have yet been published that exposed files on
other logical volumes.



Chapter 8: ASP.NET Security 187

Securing Session and View State
Web applications must manage various types of state including view state and
session state. This section discusses secure state management for ASP.NET Web
applications.

Securing View State
If your ASP.NET Web applications use view state:
● Ensure the integrity of view state (to ensure it is not altered in any way while in

transit) by setting the enableViewStateMac to true as shown below. This causes
ASP.NET to generate a Message Authentication Code (MAC) on the page’s view
state when the page is posted back from the client.

<% @ Page enableViewStateMac=true >

● Configure the validation attribute on the <machineKey> element in
Machine.config, to specify the type of encryption to use for data validation.
Consider the following:
● Secure Hash Algorithm 1 (SHA1) produces a larger hash size than Message

Digest 5 (MD5) so it is considered more secure. However, view state protected
with SHA1 or MD5 can be decoded in transit or on the client side and can
potentially be viewed in plain text

● Use 3 Data Encryption Standard (3DES) to detect changes in the view state
and to also encrypt it while in transit. When in this state, even if view state is
decoded, it cannot be viewed in plain text.

Securing Cookies
Cookies that contain authentication or authorization data or other sensitive
data should be secured in transit by using SSL. For Forms authentication, the
FormsAuthentication.Encrypt method can be used to encrypt the authentication
ticket, passed between client and server in a cookie.

Securing SQL Session State
The default (in-process) ASP.NET session state handler has certain limitations. For
example, it cannot work across computers in a Web farm. To overcome this limita-
tion, ASP.NET allows session state to be stored in a SQL Server database.



Building Secure ASP.NET Applications188

SQL session state can be configured either in Machine.config or Web.config.
The default setting in machine.config is shown below.

<sessionState mode="InProc"
              stateConnectionString="tcpip=127.0.0.1:42424"
              stateNetworkTimeout="10"
              sqlConnectionString="data source=127.0.0.1;user id=sa;password="
              cookieless="false" timeout="20"/>

By default, the SQL script InstallSqlState.sql, which is used for building the data-
base used for SQL session state is installed at the following location:

C:\WINNT\Microsoft.NET\Framework\v1.0.3705

When you use SQL session state there are two problems to consider.
● You must secure the database connection string.
● You must secure the session state as it crosses the network.

Securing the Database Connection String
If you use SQL authentication to connect to the server, the user ID and password
information is stored in plain text in web.config as shown below.

<sessionState
        cookieless="false"
        timeout="20"
        mode="InProc"
        stateConnectionString="tcpip=127.0.0.1:42424"
        sqlConnectionString=
          "data source=127.0.0.1;user id=UserName;password=ClearTxtPassword"
/>

By default the HttpForbiddenHandler protects configuration files from being
downloaded. However, any user who has direct access to the folders where the
configuration files are stored can still see the user name and password. A better
practice is to use Windows authentication to SQL Server.

� To use Windows authentication, you can use the ASP.NET process identity (typically
ASPNET)
1. Create a duplicate account (with the same name and password) on the database

server.
2. Create a SQL login for the account.
3. Create a database user in the ASPState database and map the SQL login to the

new user.
The ASPState database is created by the InstallSQLState.sql script.



Chapter 8: ASP.NET Security 189

5. Create a user defined database role and add the database user to the role.
6. Configure permissions in the database for the database role.

You can then change the connection string to use a trusted connection, as shown
below:

sqlConnectionString="server=127.0.0.1;
                     database=StateDatabase;
                     Integrated Security=SSPI;"

Securing Session State Across the Network
You may need to protect the session state as it crosses the network to the SQL Server
database. This depends on how secure the network hosting the Web server and data
servers is. If the database is physically secured in a trusted environment, you may
be able to do without this extra security measure.

You can use IPSec to protect all IP traffic between the Web servers and SQL Server,
or alternatively, you can use SSL to secure the link to SQL Server. With this ap-
proach, you have the option of encrypting just the connection used for the session
state, and not all traffic that passes between the computers.

More Information
● For more information about how to set up SQL Session State, see article Q317604,

“HOW TO: Configure SQL Server to Store ASP.NET Session State,” in the
Microsoft Knowledge Base.

● For more information about using SSL to SQL Server, see “How To: Use SSL to
Secure Communication with SQL Server 2000” in the Reference section of this
guide.

● For more information about using IPSec, see “How To: Use IPSec to Provide
Secure Communication Between Two Servers” in the Reference section of this
guide.

Web Farm Considerations
In a Web farm scenario, there is no guarantee that successive requests from the
same client are serviced by the same Web server. This has implications for state
management and for any encryption that relies on attributes maintained by the
<machineKey> element in Machine.config.



Building Secure ASP.NET Applications190

Session State
The default ASP.NET in-process session state handling (which mirrors previous ASP
functionality) results in server affinity and cannot be used in a Web farm scenario.
For Web farm deployments, session state must be stored out of process in either the
ASP.NET State service or a SQL Server database as described earlier.

Note: You cannot rely on application state for maintaining global counters or unique values in
Web farm (Web application configured to run on multiple servers) or Web garden (Web applica-
tion configured to run on multiple processors) scenarios because application state is not
shared across processes or computers.

DPAPI
DPAPI can work with either the machine store or user store (which requires a
loaded user profile). If you use DPAPI with the machine store, the encrypted string
is specific to a given computer and therefore you must generate the encrypted data
on every computer. Do not copy the encrypted data across computers in a Web farm
or cluster.

If you use DPAPI with the user store, you can decrypt the data on any computer
with a roaming user profile.

More Information

For more information about DPAPI, see Chapter 12, “Data Access Security.”

Using Forms Authentication in a Web Farm
If you are using Forms authentication, it is essential that all of the servers in the
Web farm share a common machine key, which is used for encryption, decryption,
and validation of the authentication ticket.

The machine key is maintained by the <machineKey> element within
Machine.config. The default setting is shown below.

<machineKey validationKey="AutoGenerate"
            decryptionKey="AutoGenerate"
            validation="SHA1"/>

This setting results in every machine generating a different validation and
decryption key. You must change the <machineKey> element and place common
key values across all servers in the Web farm.



Chapter 8: ASP.NET Security 191

The <machineKey> Element
The <machineKey> element located in Machine.config is used to configure the keys
used for encryption and decryption of Forms authentication cookie data and view
state.

When the FormsAuthentication.Encrypt or FormsAuthentication.Decrypt methods
are called, and when view state is created or retrieved, the values in the
<machineKey> element are consulted.

<machineKey validationKey="autogenerate|value"
            decryptionKey="autogenerate|value"
            validation="SHA1|MD5|3DES" />

The validationKey Attribute
The value of the validationKey attribute is used to create and validate MAC codes
for view state and Forms authentication tickets. The validation attribute signifies
what algorithm to use when performing the MAC generation. Note the following:
● With Forms authentication, this key works in conjunction with the <forms>

protection attribute. When the protection attribute is set to Validation, and then
when the FormsAuthentication.Encrypt method is called, the ticket value and
the validationKey are used to compute a MAC which is appended to the cookie.
When the FormsAuthentication.Decrypt method is called, the MAC is computed
and compared to the MAC that is appended to the ticket.

● With view state, the value of a control’s view state and the validationKey are
used to compute a MAC, which is appended to the view state. When the view
state is posted back from the client, the MAC is recomputed and compared to the
MAC that is appended to the view state.

The decryptionKey Attribute
The value of the decryptionKey attribute is used to encrypt and decrypt Forms
authentication tickets and view state. The DES or Triple DES (3DES) algorithms are
used. The precise algorithm depends on whether or not the Windows 2000 High
Encryption Pack is installed on the server. If it is installed 3DES is used, otherwise
DES is used. Note the following:
● With Forms authentication, the key works in conjunction with the <forms>

protection attribute. When the protection attribute is set to Encryption, and the
FormsAuthentication.Encrypt or Decrypt methods are called, the ticket value is
encrypted or decrypted with the specified decryptionKey value.



Building Secure ASP.NET Applications192

● With view state, the value of a controls view state is encrypted with the
decryptionKey value when sent to the client and is decrypted when the client
posts the data back to the server.

The Validation Attribute
This attribute dictates what algorithm to use when validating, encrypting, or
decrypting. It can take the values SHA1, MD5, or 3DES. The following describes
these values:
● SHA1. The HMACSHA1 algorithm is actually used when the setting is SHA1. It

produces a 160 bit (20 byte) hash or digest of the input. HMACSHA1 is a keyed
hashing algorithm. The key used as the input for this algorithm is specified by
the validationKey attribute.
SHA1 is a popular algorithm because of its larger digest size compared to other
algorithms.

● MD5. This produces a 20 byte hash using the MD5 algorithm.
● 3DES. This encrypts data using the Triple DES (3DES) algorithm.

Note: When the validation attribute is set to 3DES, it is not actually used by Forms authen-
tication. SHA1 is used instead.

More Information
● For information about how to create keys suitable for placing in Machine.config,

see article Q312906, “HOW TO: Create Keys w/ C# .NET for Use in Forms
Authentication,” in the Microsoft Knowledge Base.

● For more information about the Windows 2000 High Encryption Pack, see http:
//www.microsoft.com/windows2000/downloads/recommended/encryption/.

Summary
This chapter has described a variety of techniques and approaches for securing
ASP.NET Web applications. Much of the guidance and many of the recommenda-
tions presented in this chapter also apply to the development of ASP.NET Web
services and .NET Remoting objects hosted by ASP.NET. To summarize:
● If your application uses Forms authentication and if performance is an issue

when authenticating the user, retrieve a list of roles and store them in the authen-
tication ticket.

● If you use Forms authentication, always create a principal and store it in the
context on each request.

● If there are too many roles to store in an authentication cookie, then use the
global application cache to store the roles.



Chapter 8: ASP.NET Security 193

● Don’t create a custom least privileged account to run ASP.NET. Instead, change
the ASPNET account password and create a duplicate account on any remote
Windows server that your application needs to access.

● If you must create a custom account to run ASP.NET, use the principle of least
privilege. For example:
● Use a least privileged domain account if administration is the main concern.
● If you use a local account. you must create a duplicated account on any

remote computer that the Web application needs to access, You must use local
accounts when your application needs to access resources in non-trusting
domains, or where a firewall prevents Windows authentication.

● Don’t run ASP.NET using the local SYSTEM account.
● Don’t give the ASPNET account “Act as part of the operating system” privilege.

● Use SSL when:
● Security sensitive information is passed between browser and Web server.
● When Basic authentication is used (to protect credentials).
● When Forms authentication is used for authentication (as opposed to person-

alization).
● Avoid storing secrets in plain text.





9
Enterprise Services Security

Traditional COM+ services such as distributed transactions, just-in-time activation,
object pooling, and concurrency management are available to .NET components.
With .NET, such services are referred to as Enterprise Services. They are essential
for many middle-tier .NET components running within .NET Web applications.

To add services to a .NET component, you must derive the component class from
the EnterpriseServices.ServicedComponent base class and then specify precise
service requirements using .NET attributes compiled into the assembly that hosts
the component.

This chapter describes how to build secure serviced components and how to call
them from ASP.NET Web applications.

Security Architecture
The authentication, authorization, and secure communication features supported by
Enterprise Services applications are shown in Figure 9.1 on the next page. The client
application shown in Figure 9.1 is an ASP.NET Web application.



Building Secure ASP.NET Applications196

Role List
“Manager”

“Senior Manager”
“Employee”

None
Connect
Call
Packet
Packet Integrity
Packet Privacy

COM+ 
Catalog

Check role membership

Serviced 
Component

Access 
Check

Interceptor

(DCOM)Bob Bob

Windows 
Authentication 

+ Impersonation

RPC
Packet Privacy
Packet Integrity
(Privacy/Integrity)

Enterprise Services
Server Application

(dllhost.exe)

Client Application
(e.g. aspnet_wp.exe)

Enterprise Services
(COM+) Roles
(Authorization)Machine.config

(DCOM client 
authentication and 

impersonation 
settings)

DCOM/RPC
(Authentication)

Figure 9.1
Enterprise Services role-based security architecture

Notice that authentication and secure communication features are provided by the
underlying RPC transport used by Distributed COM (DCOM). Authorization is
provided by Enterprise Services (COM+) roles.

The following summarizes the main elements of the Enterprise Services security
architecture:
● Enterprise Services applications use RPC authentication to authenticate callers.

This means that unless you have taken specific steps to disable authentication,
the caller is authenticated using either Kerberos or NTLM authentication.

● Authorization is provided through Enterprise Services (COM+) roles, which can
contain Microsoft® Windows® operating system group or user accounts. Role
membership is defined within the COM+ catalog and is administered by using
the Component Services tool.

Note: If the Enterprise Services application uses impersonation, caller authorization using
Windows ACLs on secured resources is also available.

● When a client (for example, an ASP.NET Web application) calls a method on a
serviced component, after the authentication process is complete, the Enterprise
Services interception layer accesses the COM+ catalog to determine the client’s
role membership. It then checks whether membership of the role or roles permits
authorized access to the current application, component, interface, and method.



Chapter 9: Enterprise Services Security 197

● If the client’s role membership permits access, the method is called. If the client
doesn’t belong to an appropriate role, the call is rejected, and a security event is
optionally generated to reflect the failed access attempt.

Important: To implement meaningful role-based authorization within an Enterprise Services
application called by an ASP.NET Web application, Windows authentication and imperson-
ation must be used within the ASP.NET Web application in order to ensure that the original
caller’s security context flows through to the serviced component.

● To secure the DCOM communication link between client and server applications,
either the RPC Packet Integrity authentication level can be used (to provide
message integrity), or the RPC Packet Privacy authentication level can be used
(to provide message confidentiality).

Gatekeepers and Gates
The Enterprise Services runtime acts as the gatekeeper for serviced components.
The individual gates (authorization points) within an Enterprise Services applica-
tion are shown in Figure 9.2. You configure these gates by using Enterprise Services
roles, which you must populate with the appropriate Windows group and user
accounts.

Note: You must also ensure that access checking (role-based security) is enabled for your
Enterprise Services application and that the appropriate level of authentication is being used.
For more information about how to configure security, see “Configuring Security” later in this
chapter.

dllhost.exe

Serviced 
Component A

Serviced 
Component B

Serviced 
Component C

Client

COM
SCM

1

2

3

3

Server Application

Library Application

Figure 9.2
Gatekeepers within an Enterprise Services application



Building Secure ASP.NET Applications198

There are three distinct access checks performed in response to a client issuing
a method call on a serviced component. These are illustrated in Figure 9.2 and
described below:
1. An initial access check is performed by the subsystem responsible for activating

Enterprise Services applications — the COM Service Control Manager (SCM) —
when a call to a serviced component results in an activation request (and the
creation of a new instance of the COM+ surrogate process, Dllhost.exe).
To successfully pass this access check, the caller must be a member of at least one
role defined within the application.

2. A second access check is performed when the client’s call enters the Dllhost.exe
process instance.
Once again, if the caller is a member of at least one role defined within the
application, this access check succeeds.

3. The final access check occurs when the client’s call enters either a server or
library application.

To successfully pass this access check, the caller must be a member of a role that
is associated with either, the interface, class, or method that is the target of the
client’s call.

Important: After a call invokes a method on a serviced component, no further access checks
are made if the component communicates with other components located in the same applica-
tion. However, access checks do occur if a component calls another component within a
separate application (library or server).

Use Server Applications for Increased Security
If your application needs to enforce an authentication level, for example because it
requires encryption to ensure that the data sent to a serviced component remains
confidential and tamper proof while in transit across the network, you should use
a server application.

The authentication level can be enforced for a server application, while library
applications inherit their authentication level from the host process.

To configure the activation type of an Enterprise Services application, use the
assembly level ApplicationActivation attribute as shown below.

[assembly: ApplicationActivation(ActivationOption.Server)]

This is equivalent to setting the Activation Type to Server application on the
Activation page of the application’s Properties dialog within Component Services.



Chapter 9: Enterprise Services Security 199

Security for Server and Library Applications
Role-based security works in a similar fashion for in-process library applications
and out-of-process server applications.

Note the following differences for library applications:
● Privileges. The privileges of a library application are determined by the privi-

leges of the client (host) process. For example, if the client process runs with
administrator privileges, the library application will also have administrator
privileges.

● Impersonation. The impersonation level of a library application is inherited
from the client process and cannot be set explicitly.

● Authentication. The authentication level of a library application is inherited
from the client process. With library applications, you can explicitly enable or
disable authentication. This option is available on the Security page of a library
application’s Properties dialog box.
This option is typically used to support unauthenticated call-backs from other
out-of-process COM components.

Assign Roles to Classes, Interfaces, or Methods
With library applications you should always assign roles at the class, interface, or
method level. This is also best practice for server applications.

Users that are defined within library application roles cannot be added to the
security descriptor of the client process. This means that you must use at least class-
level security to allow a library application to perform role-based authorization.

Code Access Security Requirements
Code Access Security (CAS) requires that code have particular permissions to be
able to perform certain operations and access restricted resources. CAS is most
useful in a client environment where code is downloaded from the Internet. In this
type of situation it is unlikely that the code is fully trusted.

Typically, applications that use serviced components are fully trusted, and as a
result CAS has limited use. However, Enterprise Services does demand that the
calling code have the necessary permission to call unmanaged code. This implies
the following:
● Unmanaged code permission is required to activate and perform cross context

calls on serviced components.
● If the client of a serviced component is an ASP.NET Web application, this appli-

cation must have unmanaged code permission.
● If a reference to a serviced component is passed to untrusted code, methods

defined on the serviced component cannot be called from the untrusted code.



Building Secure ASP.NET Applications200

Configuring Security
This section shows you how to configure security for:
● A serviced component running in an Enterprise Services server (out-of-process)

application.
● An ASP.NET Web application client.

Configuring a Server Application
The steps required to configure an Enterprise Services server application are shown
in Figure 9.3.

Development Configuration
(COM+ Catalog)

1. Configure authentication

2. Configure authorization 
(component-level access checks)

3. Create and assign roles

Deployment Configuration
(COM+ Catalog)

5. Populate roles

6. Configure identity

4. Register Serviced Component (gacutil.exe + regsvcs.exe)

Visual Studio.NET

Attributes

Catalog Settings

Component Services

Figure 9.3
Configuring Enterprise Services security



Chapter 9: Enterprise Services Security 201

Development Time vs. Deployment Time Configuration
You can configure most security settings within the COM+ catalog at development
time by using .NET attributes within the assembly that contains the serviced com-
ponent. These attributes are used to populate the COM+ catalog when the serviced
component is registered with COM+ by using the Regsvcs.exe tool.

Other configuration steps such as populating roles with Windows group and user
accounts and configuring a run-as identity for the server application (Dllhost.exe
instance) must be configured using the Component Services administration tool (or
programmatically using script) at deployment time.

Configure Authentication
To set the application authentication level declaratively, use the
ApplicationAccessControl assembly level attribute as shown below.

[assembly: ApplicationAccessControl(
              Authentication = AuthenticationOption.Call)]

This is equivalent to setting the Authentication Level for Calls value on the Secu-
rity page of the application’s Properties dialog within Component Services.

Note: The client’s authentication level also affects the authentication level used by the
Enterprise Services application, because a process of high-water mark negotiation is em-
ployed, which always results in the higher of the two settings being used.
For more information about configuring the DCOM authentication level used by an ASP.NET
client application, see “Configuring an ASP.NET Client Application,” later in this section.
For more information about DCOM authentication levels and authentication level negotiation,
see the “Security Concepts” section of this chapter.

Configure Authorization (Component-Level Access Checks)
To enable fine-grained authorization at the component, interface, or method level
you must:
● Enable access checks at the application level.

Use the following .NET attribute to enable application-wide access checks.

[assembly: ApplicationAccessControl(true)]

This is equivalent to selecting the Enforce access checks for this application
check box on the Security page of the application’s Properties dialog box within
Component Services.



Building Secure ASP.NET Applications202

Important: Failure to set this attribute results in no access checks being performed.

● Configure the application’s security level at the process and component level.
For meaningful role-based security, enable access checking at the process and
component levels by using the following .NET attribute.

[assembly: ApplicationAccessControl(AccessChecksLevel=
                        AccessChecksLevelOption. ApplicationComponent)]

This is equivalent to selecting the Perform access checks at the process and
component levels check box on the Security page of the application’s Properties
dialog box within Component Services.

Note: Always enable access checking at the process and component level for library
applications.

● Enable component level access checks.
To enable component-level access checks, use the ComponentAccessControl
class-level attribute as shown below.

[ComponentAccessControl(true)]
public class MyServicedComponent : ServicedComponent
{
}

This is equivalent to selecting the Enforce Component Level Access Checks
check box on the Security page of the component Properties dialog box within
Component Services.

Note: This setting is effective only if you have enabled application-level access checking
and have configured process and component level access checks, as described previously.

Create and Assign Roles
Roles can be created and assigned at the application, component (class), interface,
and method levels.

Adding Roles to an Application

To add roles to an application, use the SecurityRole assembly level attribute as
shown below.

[assembly:SecurityRole("Employee")]
[assembly:SecurityRole("Manager")]

This is equivalent to adding roles to an application by using the Component Ser-
vices tool.



Chapter 9: Enterprise Services Security 203

Note: Using the SecurityRole attribute at the assembly level is equivalent to adding roles to
the application, but not assigning them to individual components, interfaces, or methods. The
result is that the members of these roles determine the composition of the security descriptor
attached to the application. This is used solely to determine who is allowed to access (and
launch) the application.
For more effective role-based authorization, always apply roles to components, interfaces, and
methods as described below.

Adding Roles to a Component (Class)

To add roles to a component apply the SecurityRole attribute above the class
definition, as shown below.

[SecurityRole("Manager")]
public class Transfer : ServicedComponent
{
}

Adding Roles to an Interface

To apply roles at the interface level, you must create an interface definition and then
implement it within your serviced component class. You can then associate roles
with the interface by using the SecurityRole attribute.

Important: At development time, you must also annotate the class with the SecureMethod
attribute. This informs Enterprise Services that method level security services may be used.
At deployment time, administrators must also add users to the system defined Marshaler role,
which is automatically created within the COM+ catalog, when a class that is marked with
SecureMethod is registered with Component Services.
Use of the Marshaler role is discussed further in the next section.

The following example shows how to add the Manager role to a particular
interface.

[SecurityRole("Manager")]
public interface ISomeInterface
{
  void Method1( string message );
  void Method2( int parm1, int parm2 );
}

[ComponentAccessControl]
[SecureMethod]
public class MyServicedComponent : ServicedComponent, ISomeInterface
{
  public void Method1( string message )
  {



Building Secure ASP.NET Applications204

    // Implementation
  }
  public void Method2( int parm1, int parm2 )
  {
    // Implementation
  }
}

Adding Roles to a Method

To ensure that the public methods of a class appear in the COM+ catalog, you must
explicitly implement an interface that defines the methods. Then, to secure the
methods, you must use the SecureMethod attribute on the class, or the
SecureMethod or SecurityRole attribute at the method level.

Note: The SecureMethod and SecurityRole attributes must appear above the method imple-
mentation and not within the interface definition.

To enable method level security, perform the following steps:
1. Define an interface that contains the methods you want to secure. For example:

public interface ISomeInterface
{
  void Method1( string message );
  void Method2( int parm1, int parm2 );
}

2. Implement the interface on the serviced component class:

[ComponentAccessControl]
public class MyServicedComponent : ServicedComponent, ISomeInterface
{
  public void Method1( string message )
  {
    // Implementation
  }
  public void Method2( int parm1, int parm2 )
  {
    // Implementation
  }
}

3. If you want to configure roles administratively by using the Component Services
tool, you must annotate the class with the SecureMethod attribute, as shown
below.

[ComponentAccessControl]
[SecureMethod]



Chapter 9: Enterprise Services Security 205

public class MyServicedComponent : ServicedComponent, ISomeInterface
{
}

4. Alternatively, if you want to add roles to methods at development time by using
.NET attributes, apply the SecurityRole attribute at the method level. In this
event, you do not need to apply the SecureMethod attribute at the class level
(although the ComponentAccessControl attribute must still be present to config-
ure component level access checks).
In the following example only members of the Manager role can call Method1,
while members of the Manager and Employee roles can call Method2.

[ComponentAccessControl]
public class MyServicedComponent : ServicedComponent, ISomeInterface
{
  [SecurityRole("Manager")]
  public void Method1( string message )
  {
    // Implementation
  }
  [SecurityRole("Manager")]
  [SecurityRole("Employee")]
  public void Method2( int parm1, int parm2 )
  {
    // Implementation
  }
}

5. At deployment time, administrators must add any user that requires access to
methods or interfaces of the class to the predefined Marshaler role.

Note: The Enterprise Services infrastructure uses a number of system-level interfaces that
are exposed by all serviced components. These include IManagedObject, IDisposable, and
IServiceComponentInfo. If access checks are enabled at the interface or method levels,
the Enterprise Services infrastructure is denied access to these interfaces.
As a result, Enterprise Services creates a special role called Marshaler and associates the
role with these interfaces. You can view this role (and the aforementioned interfaces) with
the Component Services tool.
At deployment time, application administrators need to add all users to the Marshaler role
who needs to access any methods or interface of the class. You can automate this in two
different ways:
● Write a script that uses the Component Services object model to copy all users from

other roles to the Marshaler role.
● Write a script which assigns all other roles to these three special interfaces and delete

the Marshaler role.



Building Secure ASP.NET Applications206

Register Serviced Components
Register serviced components in:
● The Global Assembly Cache. Serviced components hosted in COM+ server

applications require installation in the global assembly cache, while library
applications do not.
To register a serviced component in the global assembly cache, run the
Gacutil.exe command line utility. To register an assembly called
MyServicedComponent.dll in the global assembly cache, run the following
command.

gacutil –i MyServicedComponent.dll

Note: You can also use the Microsoft .NET Framework Configuration Tool from the Adminis-
trative Tools program group to view and manipulate the contents of the global assembly
cache.

● The COM+ Catalog. To register an assembly called MyServicedComponent.dll
in the COM+ catalog, run the following command.

regsvcs.exe MyServicedComponent.dll

This command results in the creation of a COM+ application. The .NET at-
tributes present within the assembly are used to populate the COM+ catalog.

Populate Roles
Populate roles by using the Component Services tool, or by using script to program
the COM+ catalog using the COM+ administration objects.

Use Windows Groups

Add Windows 2000 group accounts to Enterprise Services roles for maximum
flexibility. By using Windows groups, you can effectively use one administration
tool (the Users and Computers Administration tool) to administer both Windows
and Enterprise Services security.
● Create a Windows group for each role in the Enterprise Services application.
● Assign each group to its respective role.

For example, if you have a role called Manager, create a Windows group called
Managers. Assign the Managers group to the Manager role.

● After you assign groups to roles, use the Users and Computers Administration
tool to add and remove users in each group.



Chapter 9: Enterprise Services Security 207

For example, adding a Windows 2000 user account named David to the
Windows 2000 group Managers effectively maps David to the Manager role.

� To assign Windows groups to Enterprise Services roles by using Component Services
1. Using the Component Services tool, expand the application that contains the

roles to which you want to add Windows 2000 groups.
2. Expand the Roles folder and the specific role to which you want to assign

Windows groups.
3. Select the Users folder under the specific role.
4. Right-click the folder, point to New, and then click User.
5. In the Select Users or Groups dialog box, add groups (or users) to the role.

More Information

For more information about programming the COM+ catalog by using the COM+
administration objects, see “Automating COM+ Administration” within the Com-
ponent Development section of the MSDN Library.

Configure Identity
Use the Component Services tool (or script) to configure the identity of the Enter-
prise Services application. The identity property determines the account used to run
the instance of Dllhost.exe that hosts the application.

� To configure identity
1. Using the Component Services tool, select the relevant application.
2. Right-click the name of the application, and then click Properties.
3. Click the Identity tab.
4. Click This user and specify the configured service account used to run the

application.

More Information

For more information about choosing an appropriate identity to run an Enterprise
Services application, see “Choosing a Process Identity” later in this chapter.

Configuring an ASP.NET Client Application
You must configure the DCOM authentication level and impersonation levels used
by client applications when communicating with serviced components using
DCOM.



Building Secure ASP.NET Applications208

Configure Authentication
To configure the default authentication level used by an ASP.NET Web application
when it communicates with a serviced component, edit the
comAuthenticationLevel attribute on the <processModel> element in
Machine.config.

Machine.config is located in the following folder.

%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set the comAuthenticationLevel attribute to one of the following values.

comAuthenticationLevel=
            "[Default|None|Connect|Call|Pkt|PktIntegrity|PktPrivacy]"

More Information

For more information about DCOM authentication levels, see “Authentication”
within the “Security Concepts” section later in this chapter.

Configure Impersonation
The impersonation level set by the client determines the impersonation level
capabilities of the server. To configure the default impersonation level used by
a Web-based application when it communicates with a serviced component,
edit the comImpersonationLevel attribute on the <processModel> element in
Machine.config. Set it to one of the following values.

comImpersonationLevel="[Default|Anonymous|Identify|Impersonate|Delegate]"

More Information

For more information about DCOM impersonation levels, see “Impersonation”
within the “Security Concepts” section later in this chapter.

Configuring Impersonation Levels for an Enterprise Services
Application
If a serviced component in one application needs to call a serviced component
within a second (server) application, you may need to configure the impersonation
level for the client application.



Chapter 9: Enterprise Services Security 209

Important: The impersonation level configured for an Enterprise Services application (on the
Security page of the application’s Properties dialog box) is the impersonation level used by
outgoing calls made by components within the application. It does not affect whether or not
serviced components within the application perform impersonation. To impersonate clients
within a serviced component, you must use programmatic impersonation techniques, as
described in “Flowing the Original Caller,” later in this chapter.

To set the application impersonation level declaratively, use the
ApplicationAccessControl assembly level attribute as shown below.

[assembly: ApplicationAccessControl(
                ImpersonationLevel=ImpersonationLevelOption.Identify)]

This is equivalent to setting the Impersonation Level value on the Security page of
the application’s Properties dialog within Component Services.

Programming Security
The Enterprise Services security features are available to .NET components using
the ContextUtil, SecurityCallContext, and SecurityIdentity classes.

Programmatic Role-Based Security
For fine grained authorization decisions, you can programmatically test role mem-
bership using the IsCallerInRole method of the ContextUtil class. Prior to calling
this method, always check that component-level access checks are enabled, as
shown in the following code fragment. If security is disabled, IsCallerInRole
always returns true.

public void Transfer(string fromAccount, string toAccount, double amount)
{
  // Check that security is enabled
  if (ContextUtil.IsSecurityEnabled)
  {
    // Only Managers are allowed to transfer sums of money in excess of $1000
    if (amount > 1000)
    {
      if (ContextUtil.IsCallerInRole("Manager"))
      {
        // Caller is authorized
      }
      else
      {
        // Caller is unauthorized
      }
    }
}



Building Secure ASP.NET Applications210

Identifying Callers
The following example shows how to identify all upstream callers from within a
serviced component.

[ComponentAccessControl]
public class MyServicedComponent : ServicedComponent
{
  public void ShowCallers()
  {
    SecurityCallContext context = SecurityCallContext.CurrentCall;
    SecurityCallers callers = context.Callers;
    foreach(SecurityIdentity id in callers)
    {
      Console.WriteLine(id.AccountName);
    }
  }
}

Note: The original caller identity is available via the SecurityCallContext.OriginalCaller
property.

Choosing a Process Identity
Server activated Enterprise Services applications run within an instance of the
Dllhost.exe process. You must configure the account used to run the process in the
COM+ catalog by using the Component Services tool.

Note: You cannot specify the run as identity by using a .NET attribute.

Never Run as the Interactive User
Do not run server applications using the identity of the interactively logged on user
(this is the default setting). There are two main reasons to avoid this:
● The privileges and access rights of the application will vary and will be depen-

dent upon who is currently logged on interactively at the server. If an adminis-
trator happens to be logged on, the application will have administrator
privileges.

● If the application is launched while a user is interactively logged on and then the
user logs off, the server application will be shut down. It will not be able to
restart until another user logs on interactively.



Chapter 9: Enterprise Services Security 211

The interactive user setting is designed for developers to use at development time,
and should not be considered a deployment setting.

Use a Least-Privileged Custom Account
Create a least privileged account to mitigate the threat associated with a process
compromise. If a determined attacker manages to compromise the server process,
he or she will easily be able to inherit the privileges and access rights granted to the
process account. An account configured with minimum privileges restricts the
potential damage that can be done.

If you need to access network resources with the process account, the remote com-
puter must be able to authenticate the process account. In this scenario, you have
two options:
● You can use a domain account if the two computers are in the same or trusting

domains.
● You can use a local account and then create a duplicate account (with the same

user name and password) on the remote computer. With this option, you must
ensure that the passwords of the two accounts remain synchronized.
You may be forced to use the duplicated local account approach if the remote
computer is located in a separate domain (with no trust relationship), or if
the remote computer is behind a firewall (where closed ports do not permit
Windows authentication).

Accessing Network Resources
Your serviced components may need to access remote resources. It is important to
be able to identify the following:
● The resources the components need to access. For example, files on file shares,

databases, other DCOM servers, Active Directory® directory service objects, and
so on.

● The identity used to perform the resource access. If your serviced component
accesses remote resources, the identity used (which by default is the process
identity) must be capable of being authenticated by the remote computer.

Note: For information specific to accessing remote SQL Server databases, see Chapter 12,
“Data Access Security.”



Building Secure ASP.NET Applications212

You can access remote resources from a component within an Enterprise Services
application by using any of the following identities:
● The original caller (if you are explicitly impersonating by using

CoImpersonateClient)
● The current process identity (configured in the COM+ catalog for server applica-

tions)
● A specific service account

Using the Original Caller
To use the original caller’s identity for remote resource access, you must:
● Programmatically impersonate the original caller by calling

CoImpersonateClient.
● Be able to delegate the caller’s security context from the application server

hosting the Enterprise Services application to the remote computer. This assumes
that you are using Kerberos authentication between your Enterprise Services
application and client application.

Scalability Warning: If you access the data services tier of your application using the original
caller’s impersonated identity, you severely impact the application’s ability to scale, because
you prevent database connection pooling from working efficiently; it doesn’t work efficiently
because the security context of each database connection is tied to many individual callers.

More Information
For more information about impersonating callers, see “Flowing the Original
Caller,” later in this chapter.

Using the Current Process Identity
If your application is configured to run as a server application, you can use the
configured process identity for remote resource access (this is the default case).

If you want to use the server process account for remote resource access, you must
either:
● Run the server application using a least-privileged domain account. This as-

sumes that client and server computers are in the same or trusting domains.
● Duplicate the process account using the same username and password on the

remote computer.

If ease of administration is your primary concern, you should use a least-privileged
domain account.



Chapter 9: Enterprise Services Security 213

If your application is configured to run as a library application, the process identity
is inherited from the host process (which will often be a Web-based application). For
more information about using the ASP.NET process identity for remote resource
access, see Chapter 8, “ASP.NET Security.”

Using a Specific Service Account
Your Enterprise Services application could access remote resources by using a
specifically configured service account (that is, a non-user Windows account).
However, this approach is not recommended on Windows 2000 because it relies on
you calling the LogonUser API.

The use of LogonUser on Windows 2000, forces you to grant the “Act as part of the
operating system” privilege to the Enterprise Services process account. This signifi-
cantly reduces the security of your application.

Note: Microsoft Windows .NET Server 2003 will lift this restriction.

Flowing the Original Caller
By default, outgoing calls issued by serviced components (for example, to access
local or remote resources) are made using the security context obtained from the
host process. For server applications, this is the configured run-as identity. For
library applications, this is the identity of the (host) client process (for example,
Aspnet_wp.exe when an ASP.NET Web application is the client).

� To flow the original caller’s context through an Enterprise Services application
1. Call CoImpersonateClient.

This creates and attaches a thread impersonation token to the current thread.
2. Perform operation (access local or remote resource).

As impersonation is enabled, the outgoing call is made using the client’s security
context (as defined by the impersonation token).
If local resources are accessed, the caller (client process) must have specified at
least Impersonate level impersonation. If remote resources are accessed, the
caller must have specified Delegate level impersonation.
If the caller is an ASP.NET Web application, the default impersonation level for
the ASP.NET worker process is Impersonate. Therefore, to flow the original caller
to a downstream remote computer, you must change this default to Delegate (on
the <processModel> element of Machine.config on the client computer).



Building Secure ASP.NET Applications214

Note: To use the original caller’s security context to access remote resources you must use
Kerberos authentication, with accounts configured for delegation. The account used to run
the Enterprise Services server application must also be marked in Active Directory as
“Trusted for delegation.”

3. Cease impersonation by calling CoRevertToSelf.
This removes the impersonation token. Any subsequent call from the current
method uses the process security context. If you fail to call CoRevertToSelf, it
is called implicitly by the runtime when the method ends.

Note: The identity of the original caller automatically flows to an Enterprise Services applica-
tion and is available using SecurityCallContext.OriginalCaller. This can be useful for auditing
purposes.

Calling CoImpersonateClient
CoImpersonateClient (and CoRevertToSelf) are located within OLE32.dll. You
must import their definitions by using the DllImport attribute in order to be able to
call them through P/Invoke. This is illustrated in the following code fragment.

class COMSec
{
  [DllImport("OLE32.DLL", CharSet=CharSet.Auto)]
  public static extern uint CoImpersonateClient();

  [DllImport("OLE32.DLL", CharSet=CharSet.Auto)]
  public static extern uint CoRevertToSelf();
}
. . .
void SomeMethod()
{
  // To flow the original caller's security context and use it to access local
  // or remote resources, start impersonation
  COMSec.CoImpersonateClient();
  // Perform operations as the caller
  // Code here uses the context of the caller – not the context of the process
  . . .
  COMSec.CoRevertToSelf();
  // Code here reverts to using the process context
}

More Information
For more information about how to configure a complete Kerberos delegation
scenario that shows how to flow the original caller’s security context through an
ASP.NET Web application, an Enterprise Services application, and onto a database,
see the “Flowing the Original Caller” section of Chapter 5, “Intranet Security.”



Chapter 9: Enterprise Services Security 215

RPC Encryption
To secure the data sent from a client application to a remote serviced component
over DCOM, use the RPC Packet Privacy authentication level between client and
server. This provides message confidentiality and integrity.

You must configure the authentication level at the client and server.

To configure ASP.NET (where an ASP.NET Web application is the client), set the
comAuthenticationLevel attribute on the <processModel> element in
machine.config to PktPrivacy.

To configure an Enterprise Services server application, set the application-level
authentication level either by using the Component Services tool or the following
.NET attribute within the serviced component assembly.

[assembly: ApplicationAccessControl(
              Authentication = AuthenticationOption.Privacy)]

More Information
● For more information about configuring security (including authentication

levels), see “Configuring Security” earlier in this chapter.
● For more information about RPC/DCOM authentication levels, see “Authentica-

tion” later in this chapter.
● For more information about authentication-level negotiation, see “Authentica-

tion Level Negotiation” later in this chapter.

Building Serviced Components
For a step-by-step walkthrough that shows you how to build a serviced component,
see “ How To: Use Role-based Security with Enterprise Services” in the Reference
section of this guide.

DLL Locking Problems
When you rebuild a serviced component, if the DLL is locked:
● Use Component Services to shut down the COM+ server application.
● If you are developing a library application, the application may still be loaded

into the Aspnet_wp.exe process. Run IISReset from a command prompt or use
Task Manager to stop the Aspnet_wp.exe process.

● Use the FileMon.exe tool from www.sysinternals.com to help troubleshoot file
locking problems.



Building Secure ASP.NET Applications216

Versioning
The default AssemblyVersion attribute that is generated by Microsoft Visual
Studio® .NET development system when you create a new project is shown below.

[assembly: AssemblyVersion("1.0.*")]

Each time you rebuild the project, a new assembly version is generated. This also
results in the generation of a new class identifier (CLSID) to identify the serviced
component classes. If you repeatedly register the assembly with component services
using Regsvcs.exe, you will see duplicated components (strictly classes) with
different CLSIDs listed beneath the Components folder.

While this complies with strict COM versioning semantics and will prevent existing
managed and unmanaged clients from breaking, it can be an annoyance during
development.

During test and development, consider setting an explicit version by using the
assembly level AssemblyVersion attribute shown below.

[assembly: AssemblyVersion("1.0.0.1")]

This setting will prevent a new CLSID being generated with each successive project
build. You may also want to fix the interface identifiers (IIDs). If your class imple-
ments explicit interfaces, you can fix the IID for a given interface by using the GUID
attribute as shown below.

[Guid("E1FBF27E-9F11-474d-8DF6-58916F798E9D")]
public interface IMyInterface
{
}

� To generate new GUIDs
1. On the Tools menu of Visual Studio .NET, click Create GUID.
2. Click Registry Format
3. Click New GUID.
4. Click Copy.
5. Paste the GUID from the clipboard into your source code.

Important: Prior to deploying your serviced component assembly for test and production,
remove any fixed GUIDs and revert to an automated assembly versioning mechanism (for
example, by using “1.0.*”). Failure to do so increases the likelihood that a new release of your
component will break existing clients.



Chapter 9: Enterprise Services Security 217

More Information
For more information about versioning for deployment, see Understanding Enter-
prise Services (COM+) in .NET on MSDN.

QueryInterface Exceptions
If you see a QueryInterface call for the IRoleSecurity interface failing, this indi-
cates that you have updated an interface definition within your assembly, but have
not re-registered the assembly with Component Services using Regsvcs.exe.

Important: Each time you run Regsvcs.exe you will need to reconfigure a server application’s
run-as identity and will also need to add users to groups again. You can create a simple script
to automate this task.

DCOM and Firewalls
Windows 2000 (SP3 or QFE 18.1) or Windows .NET Server 2003 allow you to config-
ure Enterprise Services applications to use a static endpoint. If a firewall separates
the client from the server, you only need to open two ports in the firewall. Specifi-
cally, you must open port 135 for RPC and a port for your Enterprise Services
application.

As an alternative to this approach consider exposing your Enterprise Services
application as a Web service. This allows you to activate and call serviced compo-
nents by using SOAP over port 80. The main issue with this approach is that it
doesn’t allow you to flow transaction context from client to server. You would need
to initiate your transaction at the remote serviced component.

More Information
For more information, see the following Knowledge Base articles:
● Article Q312960, “Cannot Set Fixed Endpoint for a COM+ Application”
● Article Q259011, “SAMPLE: A Simple DCOM Client Server Test Application”
● Article Q248809, “PRB: DCOM Does Not Work over NAT-Based Firewall”
● Article Q250367, “INFO: Configuring Microsoft Distributed Transaction Coordi-

nator (DTC) to Work Through a Firewall”
● Article Q154596, “HOWTO: Configure RPC Dynamic Port Allocation to Work w/

Firewall”



Building Secure ASP.NET Applications218

Calling Serviced Components from ASP.NET
This section highlights the main issues you will encounter when an ASP.NET
application calls a serviced component.

Caller’s Identity
When you call a serviced component from an ASP.NET application, the security
identity for the call is obtained from the application’s Win32® thread identity. If the
Web application is configured to impersonate the caller, this is the caller’s identity.
Otherwise, this is the ASP.NET process identity (by default, ASPNET).

From an ASP.NET application, you can retrieve the current Win32 thread identity
by calling WindowsIdentity.GetCurrent().

From a serviced component, you can retrieve the original caller identity by using
SecurityCallContext.OriginalCaller.

Use Windows Authentication and Impersonation Within the Web-based
Application
To enable meaningful role-based security within your Enterprise Services applica-
tion, you must use Windows authentication and enable impersonation. This ensures
that the serviced components are able to authenticate the original callers and make
authorization decisions based on the original caller’s identity.

Configure Authentication and Impersonation within Machine.config
DCOM authentication levels are negotiated between client (for example, the Web-
based application) and server (the Enterprise Services application). The higher of
the two security settings is used.

Configure ASP.NET authentication levels by using the comAuthenitcation attribute
on the <processModel> element of Machine.config.

Impersonation levels are controlled by the client (for example, a Web-based applica-
tion). The client can determine the degree of impersonation that it is willing to
allow the server to use.

Configure ASP.NET impersonation levels (for all outgoing DCOM calls), by using
the comImpersonationLevel attribute on the <processModel> element of
Machine.config.

Configuring Interface Proxies
The security settings that apply to individual interface proxies are usually obtained
from the default process level security settings. In the case of ASP.NET, default
security settings such as the impersonation level and authentication level are
configured in Machine.config, as described earlier.



Chapter 9: Enterprise Services Security 219

If necessary, you can alter the security settings used by an individual interface
proxy. For example, if your ASP.NET application communicates with a serviced
component that exposes two interfaces and sensitive data is passed through only
one interface, you may choose to use the encryption support provided by the packet
privacy authentication level only on the sensitive interface and to use, for example,
packet authentication on the other interface. This means that you do not experience
the performance hit associated with encryption on both interfaces.

Collectively, the set of security settings that apply to an interface proxy are referred
to as the security blanket. COM provides the following functions to allow you to
query and manipulate security blanket settings on an individual interface proxy:
● CoQueryProxyBlanket
● CoSetProxyBlanket
● CoCopyProxy

You must use P/Invoke to call these functions from an ASP.NET Web application
(the DCOM client), The following code shows how to configure a specific interface
to use the Packet Privacy authentication level (which provides encryption). This
code can be used from an ASP.NET Web application that communicates with a
remote serviced component.

// Define a wrapper class for the P/Invoke call to CoSetProxyBlanket
class COMSec
{
  // Constants required for the call to CoSetProxyBlanket
  public const uint RPC_C_AUTHN_DEFAULT           = 0xFFFFFFFF;
  public const uint RPC_C_AUTHZ_DEFAULT           = 0xFFFFFFFF;
  public const uint RPC_C_AUTHN_LEVEL_PKT_PRIVACY = 6;
  public const uint RPC_C_IMP_LEVEL_DEFAULT       = 0;
  public const uint COLE_DEFAULT_AUTHINFO         = 0xFFFFFFFF;
  public const uint COLE_DEFAULT_PRINCIPAL        = 0;
  public const uint EOAC_DEFAULT                  = 0x800;

  // HRESULT  CoSetProxyBlanket( IUnknown * pProxy,
  //                             DWORD dwAuthnSvc,
  //                             DWORD dwAuthzSvc,
  //                             WCHAR * pServerPrincName,
  //                             DWORD dwAuthnLevel,
  //                             DWORD dwImpLevel,
  //                             RPC_AUTH_IDENTITY_HANDLE pAuthInfo,
  //                             DWORD dwCapabilities );
[DllImport("OLE32.DLL", CharSet=CharSet.Auto)]
public unsafe static extern uint CoSetProxyBlanket(
                                      IntPtr pProxy,
                                      uint dwAuthnSvc,
                                      uint dwAuthzSvc,
                                      IntPtr pServerPrincName,
                                      uint dwAuthnLevel,
                                      uint dwImpLevel,
                                      IntPtr pAuthInfo,
                                      uint dwCapababilities);
} // end class COMSec



Building Secure ASP.NET Applications220

// Code to call CoSetProxyBlanket
void CallComponent()
{
  // This is the interface to configure
  Guid IID_ISecureInterface = new Guid("c720ff19-bec1-352c-bb4b-e2de10b858ba");
  IntPtr pISecureInterface;

  // Instantiate the serviced component
  CreditCardComponent comp = new CreditCardComponent();
  // Get its IUnknown pointer
  IntPtr pIUnk = Marshal.GetIUnknownForObject(comp);
  // Get the interface to configure
  Marshal.QueryInterface(pIUnk, ref IID_ISecureInterface,
                         out pISecureInterface);
  try
  {
    // Configure the interface proxy and set packet privacy authentication
    uint hr = COMSec.CoSetProxyBlanket( pISecureInterface,
                                        COMSec.RPC_C_AUTHN_DEFAULT,
                                        COMSec.RPC_C_AUTHZ_DEFAULT,
                                        IntPtr.Zero,
                                        COMSec.RPC_C_AUTHN_LEVEL_PKT_PRIVACY,
                                        COMSec.RPC_C_IMP_LEVEL_DEFAULT,
                                        IntPtr.Zero,
                                        COMSec.EOAC_DEFAULT );
    ISecureInterface secure = (ISecureInterface)comp;
    // The following call will be encrypted as ISecureInterface is configured
    // for packet privacy authentication. Other interfaces use the process
    // level defaults (normally packet authentication).
    secure.ValidateCreditCard("123456789");
  }
  catch (Exception ex)
  {
  }
}

More Information
● For more information about configuring an ASP.NET client application to call

serviced components, see “Configuring an ASP.NET Client Application,” earlier
in this chapter.

● For more information about DCOM authentication levels, see “Authentication,”
later in this chapter.

● For more information about DCOM impersonation levels, see “Impersonation,”
later in this chapter.

● For more information about using Windows authentication and enabling imper-
sonation within a Web-based application, see Chapter 8, “ASP.NET Security.”



Chapter 9: Enterprise Services Security 221

Security Concepts
This section provides a brief overview of Enterprise Services security concepts. If
you are already experienced with COM+, many of the concepts will be familiar.

For background information on Enterprise Services, see the MSDN article “Under-
standing Enterprise Services (COM+) in .NET.”

The following are summaries of key security concepts that you should understand:
● Security settings for serviced components and Enterprise Services applications

are maintained within the COM+ catalog. Most settings can be configured using
.NET attributes. All settings can be configured by using the Component Services
administration tool or Microsoft Visual Basic® Scripting Edition development
system scripts.

● Authorization is provided by Enterprise Services (COM+) roles, which can
contain Windows group or user accounts. These are not the same as .NET roles.
● Role-based security can be applied at the application, interface, class, and

method levels.
● Imperative role checks can be performed programmatically within methods

by using the IsCallerInRole method of the ContextUtil class.
● Effective role-based authorization within an Enterprise Services application

relies on a Windows identity being used to call serviced components.
● This may require you to use Windows authentication coupled with imperson-

ation within an ASP.NET Web application — if the Web application calls
serviced components that rely on Enterprise Services (COM+) roles.

● When you call a serviced component from an ASP.NET Web application or
Web service, the identity used for the outgoing DCOM call is determined by
the Win32 thread identity as defined by WindowsIdentity.GetCurrent().

● Serviced components can run in server or library applications.
● Server applications run in separate instances of Dllhost.exe.
● Library applications run in the client’s process address space.
● Role-based authorization works in a similar fashion for server and library

applications, although there are some subtle differences between library and
server applications from a security perspective. For details, see “Security for
Server and Library Applications” earlier in this chapter.

● Authentication is provided by the underlying services of DCOM and RPC. The
client and server’s authentication level combined to determine the resulting
authentication level used for communication with the serviced component.

● Impersonation is configured within the client application. It determines the
impersonation capabilities of the server.



Building Secure ASP.NET Applications222

Enterprise Services (COM+) Roles and .NET Roles
Enterprise Services (COM+) roles are used to represent common categories of users
who share the same security privileges within an application. While conceptually
similar to .NET roles, they are completely independent.

Enterprise Services (COM+) roles contain Windows user and group accounts (un-
like .NET roles which can contain arbitrary non-Windows user identities). Because
of this, Enterprise Services (COM+) roles are only an effective authorization mecha-
nism for applications that use Windows authentication and impersonation (in order
to flow the caller’s security context to the Enterprise Services application).

Table 9.1: Comparing Enterprise Services (COM+) roles with .NET roles

Feature Enterprise Services .NET Roles
(COM+) Roles

Administration Component Services Custom
Administration Tool

Data Store COM+ Catalog Custom data store (for example, SQL
Server or Active Directory)

Declarative Yes Yes
[SecurityRole(“Manager”)] [PrincipalPermission(

  SecurityAction.Demand,
  Role=”Manager”)]

Imperative Yes Yes
ContextUtil.IsCallerInRole() IPrincipal.IsInRole

Class, Interface, Yes Yes
and Method Level
Granularity

Extensible No Yes
(using custom IPrincipal implementation)

Available to all Only for components that Yes
.NET derive from ServicedComponent
components base class

Role Roles contain Windows group When using WindowsPrincipals,
Membership or user accounts roles ARE Windows groups — no extra

level of abstraction

Requires Yes No
explicit To obtain method level
Interface authorization, an interface
implementation must be explicitly defined and

implemented



Chapter 9: Enterprise Services Security 223

Authentication
Because Enterprise Services rely on the underlying infrastructure provided by
COM+ and DCOM/RPC, the authentication level settings available to Enterprise
Services applications are those defined by RPC (and used by DCOM).

Table 9.2: Enterprise Services applications authentication settings

Authentication Level Description

Default Choose authentication level using normal negotiation rules

None No authentication

Connect Only authenticate credentials when the client initially connects to the
server

Call Authenticate at the start of each remote procedure call

Packet Authenticate all data received from the client

Packet Integrity Authenticate all data and verify that none of the transferred data has
been modified

Packet Privacy Authenticate all data and encrypt parameter state for each remote
procedure call

Authentication Level Promotion
You should be aware that certain authentication levels are silently promoted. For
example:
● If the User Data Protocol (UDP) datagram transport is used, Connect and Call

levels are promoted to Packet, because the aforementioned authentication levels
only make sense over a connection oriented transport such as TCP.

Note: Windows 2000 defaults to RPC over TCP for DCOM communications.

● For inter-process calls on a single computer, all authentication levels are always
promoted to Packet Privacy. However, in a single computer scenario, data is not
encrypted for confidentiality (because the data doesn’t cross the network).

Authentication Level Negotiation
The authentication level used by Enterprise Services to authenticate a client is
determined by two settings:
● The process level authentication level. For a server-activated application

(running within Dllhost.exe), the authentication level is configured within the
COM+ catalog.



Building Secure ASP.NET Applications224

● The client authentication level. The configured authentication level of the client
process that communicates with the serviced component also affects the authen-
tication level that is used.
The default authentication level for an ASP.NET Web application is defined by
the comAuthenticationLevel attribute on the <processModel> element in
Machine.config.

The higher of the two (client and server) authentication level is always chosen. This
is illustrated in the Figure 9.4.

Client Process 1 (Privacy)

Privacy

Server Process 2 (None)

None

Client Process 2 (None)

Packet

None

Server Process 1 (Packet)

Privacy

Packet

Figure 9.4
Authentication level negotiation

More Information

For information about how to configure authentication levels for an Enterprise
Service application, see “Configuring Security” earlier in this chapter.

Impersonation
The impersonation level defined for an Enterprise Services application determines
the impersonation level to be used for all outgoing DCOM calls made by serviced
components within the application.

Important: It does NOT determine whether or the not serviced components within the applica-
tion impersonate their callers. By default, serviced components do not impersonate callers. To
do so, the service component must call CoImpersonateClient, as described in “Flowing the
Original Caller” earlier in this chapter.



Chapter 9: Enterprise Services Security 225

Impersonation is a client-side setting. It offers a degree of protection to the client as
it allows the client to restrict the impersonation capabilities of the server.

Table 9.3: Available impersonation levels

Impersonation Level Description

Identify Allows the server to identify the client and perform access checks
using the client’s access token

Impersonate Allows the server to access local resources using the client’s
credentials

Delegate Allows the server to access remote resources using the client’s
credentials (this requires Kerberos and specific account configuration)

The default impersonation level used by a Web-based application when it commu-
nicates with serviced components (or any component using DCOM) is determined
by the comImpersonationLevel attribute on the <processModel> element in
Machine.config.

Cloaking
Cloaking determines precisely how client identity is projected through a COM
object proxy to a server during impersonation. There are two forms of cloaking:
● Dynamic Cloaking. Enterprise Services server applications use dynamic cloak-

ing (this is not configurable). Cloaking for library applications is determined by
the host process, for example the ASP.NET worker process (Aspnet_wp.exe).
Web-based applications also use dynamic cloaking — again this is not
configurable.
Dynamic cloaking causes the thread impersonation token to be used to represent
the client’s identity during impersonation. This means that if you call
CoImpersonateClient within a serviced component, the client’s identity is
assumed for subsequent outgoing calls made by the same method, until either
CoRevertToSelf is called or the method ends (where CoRevertToSelf is implic-
itly called).

● Static Cloaking. With static cloaking, the server sees the credentials that are used
on the first call from client to server (irrespective of whether or not a thread is
impersonating during an outgoing call).

More Information
● For information about how to configure impersonation levels for Enterprise

Service applications, see “Configuring Security”, earlier in this chapter.
● For more information about cloaking, see the Platform SDK information on

“Cloaking” on MSDN.



Building Secure ASP.NET Applications226

Summary
This chapter has described how to build secure serviced components within an
Enterprise Services application. You have also seen how to configure an ASP.NET
Web-based client application that calls serviced components. To summarize:
● Use server activated Enterprise Services applications for increased security.

Additional process hops raise security.
● Use least-privileged, local accounts to run server applications.
● Use Packet Privacy level authentication (which must be configured at the server

and client) if you need to secure the data sent to and from a serviced component
across a network from a client application.

● Enable component-level access checks for a meaningful role-based security
implementation.

● Use Windows authentication and enable impersonation in an ASP.NET Web
application prior to calling a component within an Enterprise Services applica-
tion that relies on role-based security.

● Use secured gateway classes as entry points into Enterprise Service applications.
By reducing the number of gateway classes that provide entry points for clients
into your Enterprise Service applications, you reduce the number of classes that
need to have roles assigned. Other internal helper classes should have role-based
checks enabled but should have no roles assigned to them. This means that
external clients will not be able to call them directly, while gateway classes in the
same application will have direct access.

● Call IsSecurityEnabled immediately prior to checking role membership pro-
grammatically.

● Avoid impersonation in the middle tier because this prevents the effective use of
database connection pooling and dramatically reduces the scalability of your
application.

● Add Windows groups to Enterprise Services (COM+) roles for increased flexibil-
ity and easier administration



10
Web Services Security

This chapter describes how to develop and apply authentication, authorization, and
secure communication techniques to secure ASP.NET Web services and Web service
messages. It describes security from the Web service perspective and shows you
how to authenticate and authorize callers and how to flow security context through
a Web service. It also explains, from a client-side perspective, how to call Web
services with credentials and certificates to support server-side authentication.

Web Service Security Model
Web service security can be applied at three levels:
● Platform/transport level (point-to-point) security
● Application level (custom) security
● Message level (end-to-end) security

Each approach has different strengths and weaknesses, and these are elaborated
upon below. The choice of approach is largely dependent upon the characteristics of
the architecture and platforms involved in the message exchange.

Note: Note that this chapter focuses on platform and application level security. Message
level security is addressed by the Global XML Web Services Architecture (GXA) initiative and
specifically the WS-Security specification. At the time of writing, Microsoft has just released
a technology preview version of the Web Services Development Kit. This allows you to develop
message level security solutions that conform to the WS-Security specification. For more
information, see http://msdn.microsoft.com/webservices/building/wsdk/.



Building Secure ASP.NET Applications228

Platform/Transport Level (Point-to-Point) Security
The transport channel between two endpoints (Web service client and Web service)
can be used to provide point-to-point security. This is illustrated in Figure 10.1.

Client ServicePlatform and Transport 
provides security
Caller authentication

Message Integrity
Message Confidentiality

Secure Transport
TransportTransport

XML XML

Platform Level Security

Figure 10.1
Platform/transport level security

When you use platform security, which assumes a tightly-coupled Microsoft®
Windows® operating system environment, for example, on corporate intranets:
● The Web server (IIS) provides Basic, Digest, Integrated, and Certificate authenti-

cation.
● The ASP.NET Web service inherits some of the ASP.NET authentication and

authorization features.
● SSL and/or IPSec may be used to provide message integrity and confidentiality.

When to Use
The transport level security model is simple, well understood, and adequate for
many (primarily intranet-based) scenarios, in which the transport mechanisms and
endpoint configuration can be tightly controlled.

The main issues with transport level security are:
● Security becomes tightly coupled to, and dependant upon, the underlying

platform, transport mechanism, and security service provider (NTLM, Kerberos,
and so on).

● Security is applied on a point to point basis, with no provision for multiple hops
and routing through intermediate application nodes.



Chapter 10: Web Services Security 229

Application Level Security
With this approach, the application takes over security and uses custom security
features. For example:
● An application can use a custom SOAP header to pass user credentials to authen-

ticate the user with each Web service request. A common approach is to pass a
ticket (or user name or license) in the SOAP header.

● The application has the flexibility to generate its own IPrincipal object that
contains roles. This might be a custom class or the GenericPrincipal class
provided by the .NET Framework.

● The application can selectively encrypt what it needs to, although this requires
secure key storage and developers must have knowledge of the relevant cryptog-
raphy APIs.
An alternative technique is to use SSL to provide confidentiality and integrity
and combine it with custom SOAP headers to perform authentication.

When to Use
Use this approach when:
● You want to take advantage of an existing database schema of users and roles

that is used within an existing application.
● You want to encrypt parts of a message, rather than the entire data stream.

Message Level (End-to-End) Security
This represents the most flexible and powerful approach and is the one used by the
GXA initiative, specifically within the WS-Security specification. Message level
security is illustrated in Figure 10.2.

XML XML

Client Service

XML messages convey 
security information

Credentials
Digital signaures

Messages can be 
encrypted

Security is independent 
from transport protocol

TransportTransport

Message Level Security

XML XML

Any Transport

Figure 10.2
Message level security



Building Secure ASP.NET Applications230

WS-Security specifications describe enhancements to SOAP messaging that provide
message integrity, message confidentiality, and single message authentication.
● Authentication is provided by security tokens, which flow in SOAP headers. No

specific type of token is required by WS-Security. The security tokens may
include Kerberos tickets, X.509 certificates, or a custom binary token.

● Secure communication is provided by digital signatures to ensure message
integrity and XML encryption for message confidentiality.

When to Use
WS-Security can be used to construct a framework for exchanging secure messages
in a heterogeneous Web services environment. It is ideally suited to heterogeneous
environments and scenarios where you are not in direct control of the configuration
of both endpoints and intermediate application nodes.

Message level security:
● Can be independent from the underlying transport.
● Enables a heterogeneous security architecture.
● Provides end-to-end security and accommodates message routing through

intermediate application nodes.
● Supports multiple encryption technologies.
● Supports non-repudiation.

The Web Services Development Kit

The Web Services Development Kit provides the necessary APIs to manage security
in addition to other services such as routing and message-level referrals. This
toolkit conforms to the latest Web service standards such as WS-Security and as
a result enables interoperability with other vendors who follow the same
specifications.

More Information
● For the latest news about the Web Services Development Kit and WS-Security

specifications, see the XML Developer Center page on MSDN at http://
msdn.microsoft.com/webservices/.

● For more information about the WS-Specification, see the WS-Security Specifica-
tion Index Page at http://msdn.microsoft.com/webservices/default.asp?pull=/library
/en-us/dnglobspec/html/wssecurspecindex.asp.

● For more information about GXA, see the article “Understanding GXA” on
MSDN.

● For discussions on this topic, refer to the GXA Interoperability Newsgroup on
MSDN.



Chapter 10: Web Services Security 231

Platform/Transport Security Architecture
The ASP.NET Web services platform security architecture is shown in Figure 10.3.

1

2 3

7

4

SOAP Header
(optional 

credentials)
SOAP Body

IIS
(inetinfo.exe)

Authentication
Anonymous

Basic
Digest

Integrated
Certificate

Authorization
NTFS Permissions

IP Address
Restrictions

Authentication Web Server

Identity

Authenticated caller’s 
access token (or 
IUSR_MACHINE 

access token)
ASP.NET Web Service

(aspnet_wp.exe)

Authentication
Windows

None
(Custom)

Authorization
File AuthZ
URL AuthZ
.NET Roles

Locator 
Remote 

Resource

ASP.NET Process 
Original Caller

Fixed Service Identity

5 6

Figure 10.3
Web services security architecture

Figure 10.3 illustrates the authentication and authorization mechanisms provided
by ASP.NET Web services. When a client calls a Web service, the following sequence
of authentication and authorization events occurs:
1. The SOAP request is received from the network. This may or may not contain

authentication credentials depending upon the type of authentication being
used.

2. IIS optionally authenticates the caller by using Basic, Digest, Integrated (NTLM
or Kerberos), or Certificate authentication. In heterogeneous environments where
IIS (Windows) authentication is not possible, IIS is configured for anonymous
authentication. In this scenario, the client may be authenticated by using mes-
sage level attributes such as tickets passed in the SOAP header.

3. IIS can also be configured to accept requests only from client computers with
specific IP addresses.



Building Secure ASP.NET Applications232

4. IIS passes the authenticated caller’s Windows access token to ASP.NET (this may
be the anonymous Internet user’s access token, if the Web service is configured
for anonymous authentication).

5. ASP.NET authenticates the caller. If ASP.NET is configured for Windows authen-
tication, no additional authentication occurs at this point; IIS authenticates the
caller.
If a non-Windows authentication method is being used, the ASP.NET authentica-
tion mode is set to None to allow custom authentication.

Note: Forms and Passport authentication are not currently supported for Web services.

6. ASP.NET authorizes access to the requested Web service (.asmx file) by using
URL authorization and File authorization, which uses NTFS permissions associ-
ated with the .asmx file to determine whether or not access should be granted to
the authenticated caller.

Note: File authorization is only supported for Windows authentication.

For fine-grained authorization, .NET roles can also be used (either declaratively
or programmatically) to ensure that the caller is authorized to access the re-
quested Web method.

7. Code within the Web service may access local and/or remote resources by using
a particular identity. By default, ASP.NET Web services perform no imperson-
ation and, as a result, the configured ASP.NET process account provides the
identity. Alternate options include the original caller’s identity, or a configured
service identity.

Gatekeepers
The gatekeepers within an ASP.NET Web service are:
● IIS

● If IIS anonymous authentication is disabled IIS only allows requests from
authenticated users.

● IP Address Restrictions
IIS can be configured to only allow requests from computers with specific IP
addresses.

● ASP.NET
● The File authorization HTTP Module (for Windows authentication only)
● The URL authorization HTTP Module

● Principal Permission Demands and Explicit Role Checks



Chapter 10: Web Services Security 233

More Information
● For more information about the gatekeepers, see “Gatekeepers” in Chapter 8,

“ASP.NET Security.”
● For more information about configuring security, see “Configuring Security”

later in this chapter.

Authentication and Authorization Strategies
This section explains which authorization options (configurable and programmatic)
are available for a set of commonly used authentication schemes.

The following authentication schemes are summarized here:
● Windows authentication with impersonation
● Windows authentication without impersonation
● Windows authentication using a fixed identity

Windows Authentication with Impersonation
The following configuration elements show you how to enable Windows (IIS)
authentication and impersonation declaratively in Web.config or Machine.config.

Note: You should configure authentication on a per-Web service basis in each Web service’s
Web.config file.

<authentication mode="Windows" />
<identity impersonate="true" />

With this configuration, your Web service code impersonates the IIS-authenticated
caller. To impersonate the original caller, you must turn off anonymous access in IIS.
With anonymous access, the Web service code impersonates the anonymous Inter-
net user account (which by default is IUSR_MACHINE).

Configurable Security
When you use Windows authentication together with impersonation, the following
authorization options are available to you:
● Windows Access Control Lists (ACLs)

● Web service (.asmx) file. File authorization performs access checks for re-
quested ASP.NET resources (which includes the .asmx Web service file) using
the original caller’s security context. The original caller must be granted at
least read access to the .asmx file.



Building Secure ASP.NET Applications234

● Resources accessed by your Web service. Windows ACLs on resources
accessed by your Web service (files, folders, registry keys, Active Directory®
directory service objects and so on) must include an Access Control Entry
(ACE) that grants read access to the original caller (because the Web service
thread used for resource access is impersonating the caller).

● URL Authorization. This is configured in Machine.config and/or Web.config.
With Windows authentication, user names take the form
DomainName\UserName and roles map one-to-one with Windows groups.

<authorization>
  <deny user="DomainName\UserName" />
  <allow roles="DomainName\WindowsGroup" />
</authorization>

Programmatic Security
Programmatic security refers to security checks located within your Web service
code. The following programmatic security options are available when you use
Windows authentication and impersonation:
● Principal Permission Demands

● Imperative (in-line within a method’s code)

    PrincipalPermission permCheck = new PrincipalPermission(
                                       null, @"DomainName\WindowsGroup");
    permCheck.Demand();

● Declarative (these attributes can precede Web methods or Web classes)

// Demand that the caller is a member of a specific role (for Windows
// authentication this is the same as a Windows group)
[PrincipalPermission(SecurityAction.Demand,

                  Role=@"DomainName\WindowsGroup")]
// Demand that the caller is a specific user
[PrincipalPermission(SecurityAction.Demand,

                  Name=@"DomainName\UserName")]

● Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup");



Chapter 10: Web Services Security 235

When to Use
Use Windows authentication and impersonation when:
● The clients of the Web service can be identified by using Windows accounts,

which can be authenticated by the server.
● You need to flow the original caller’s security context through the Web service

and onto the next tier. For example, a set of serviced components that use Enter-
prise Services (COM+) roles, or onto a data tier that requires fine-grained (per-
user) authorization.

● You need to flow the original caller’s security context to the downstream tiers to
support operating system level auditing.

Important: Using impersonation can reduce scalability, because it impacts database connec-
tion pooling. As an alternative approach, consider using the trusted subsystem model where
the Web service authorizes callers and then uses a fixed identity for database access. You can
flow the caller’s identity at the application level; for example, by using stored procedure
parameters.

More Information
● For more information about Windows authentication and impersonation, see

Chapter 8, “ASP.NET Security.”
● For more information about URL authorization, see “URL Authorization Notes”

in Chapter 8, “ASP.NET Security.”

Windows Authentication without Impersonation
The following configuration elements show how you enable Windows (IIS) authen-
tication with no impersonation declaratively in Web.config.

<authentication mode="Windows" />
<!-- The following setting is equivalent to having no identity element -->
<identity impersonate="false" />

Configurable Security
When you use Windows authentication without impersonation, the following
authorization options are available to you:
● Windows ACLs

● Web Service (.asmx) file. File authorization performs access checks for
requested ASP.NET resources (which includes the .asmx Web service file)
using the original caller. Impersonation is not required.



Building Secure ASP.NET Applications236

● Resources accessed by your application. Windows ACLs on resources ac-
cessed by your application (files, folders, registry keys, Active Directory
objects) must include an ACE that grants read access to the ASP.NET process
identity (the default identity used by the Web service thread when accessing
resources).

● URL Authorization
This is configured in Machine.config and Web.config. With Windows authentica-
tion, user names take the form DomainName\UserName and roles map one-to-
one with Windows groups.

<authorization>
  <deny user="DomainName\UserName" />
  <allow roles="DomainName\WindowsGroup" />
</authorization>

Programmatic Security
Programmatic security refers to security checks located within your Web service
code. The following programmatic security options are available when you use
Windows authentication without impersonation:
● Principal Permission Demands

● Imperative

    PrincipalPermission permCheck = new PrincipalPermission(
                                       null, @"DomainName\WindowsGroup");
    permCheck.Demand();

● Declarative

// Demand that the caller is a member of a specific role (for Windows
// authentication this is the same as a Windows group)
[PrincipalPermission(SecurityAction.Demand,

                  Role=@"DomainName\WindowsGroup")]
// Demand that the caller is a specific user
[PrincipalPermission(SecurityAction.Demand,

                  Name=@"DomainName\UserName")]

● Explicit Role Checks. You can perform role checking using the IPrincipal
interface.

IPrincipal.IsInRole(@"DomainName\WindowsGroup");



Chapter 10: Web Services Security 237

When to Use
Use Windows authentication without impersonation when:
● The clients of the Web service can be identified by using Windows accounts,

which can be authenticated by the server.
● You want to use the trusted subsystem model and authorize clients within the

Web service and then use a fixed identity to access downstream resources (for
example, databases) in order to support connection pooling.

More Information
● For more information about Windows authentication and impersonation, see

Chapter 8, “ASP.NET Security.”
● For more information about URL authorization, see “URL Authorization Notes”

in Chapter 8, “ASP.NET Security.”

Windows Authentication Using a Fixed Identity
The <identity> element within Web.config supports optional user name and pass-
word attributes which allows you to configure a specific fixed identity for your Web
service to impersonate. This is shown in the following configuration file fragment.

<identity impersonate="true" userName="DomainName\UserName"
                             password="ClearTextPassword" />

When to Use
This approach is not recommended in secure environments for two reasons:
● User names and passwords should not be stored in plain text in configuration

files.
● On Windows 2000, this approach forces you to grant the ASP.NET process

account the “Act as part of the operating system” privilege. This reduces the
security of your Web service and increases the threat should an attacker compro-
mise the Web service process (Aspnet_wp.exe)

More Information
● For more information about Windows authentication and impersonation, see

Chapter 8, “ASP.NET Security.”
● For more information about URL authorization, see “URL Authorization Notes”

in Chapter 8, “ASP.NET Security.”



Building Secure ASP.NET Applications238

Configuring Security
This section shows you the practical steps required to configure security for an
ASP.NET Web service. These are summarized in Figure 10.4.

1

2 3

7

4

SOAP Header
(optional 

credentials)
SOAP Body

IIS
(inetinfo.exe)

Authentication
Anonymous

Basic
Digest

Integrated
Certificate

Authorization
NTFS Permissions

IP Address
Restrictions

Authentication Web Server

Identity

Authenticated caller’s 
access token (or 
IUSR_MACHINE 

access token)
ASP.NET Web Service

(aspnet_wp.exe)

Authentication
Windows

None
(Custom)

Authorization
File AuthZ
URL AuthZ
.NET Roles

Locator 
Remote 

Resource

ASP.NET Process 
Original Caller

Fixed Service Identity

5 6

Figure 10.4
Configuring ASP.NET Web service security

Configure IIS Settings
For detailed information about how to configure IIS security settings, see “Config-
uring Security” in Chapter 8, “ASP.NET Security,” because the information is also
applicable to ASP.NET Web services.



Chapter 10: Web Services Security 239

Configure ASP .NET Settings
Application level configuration settings are maintained in Web.config files, which
are located in your Web service’s virtual root directory. Configure the following
settings:
1. Configure Authentication. This should be set on a per-Web service basis (not in

Machine.config) in the Web.config file located in the Web service’s virtual root
directory.

<authentication mode="Windows|None" />

Note: Web services do not currently support Passport or Forms authentication. For custom
and message-level authentication, set the mode to None.

2. Configure Impersonation and Authorization. For detailed information, see
“Configuring Security” in Chapter 8, “ASP.NET Security.”

More Information
For more information about URL authorization, see “URL Authorization Notes” in
Chapter 8, “ASP.NET Security.”

Secure Resources
You should use the same techniques to secure Web resources as presented in Chap-
ter 8, “ASP.NET Security.” In addition, however, for Web services consider remov-
ing the HTTP-GET and HTTP-POST protocol from Machine.config on production
servers.

Disable HTTP-GET, HTTP-POST
By default, clients can communicate with ASP.NET Web services, using three
protocols: HTTP-GET, HTTP-POST, and SOAP over HTTP. You should disable
support for both the HTTP-GET and HTTP-POST protocols at the machine level on
production machines that do not require them. This is to avoid a potential security
breach that could allow a malicious Web page to access an internal Web service
running behind a firewall.

Note: Disabling these protocols means that a new client will not be able to test an XML Web
service using the Invoke button on the Web service test page. Instead, you must create a test
client program by adding a reference to the Web service using Microsoft Visual Studio® .NET
development system. You may want to leave these protocols enabled on development comput-
ers to allow developers to use the test page.



Building Secure ASP.NET Applications240

� To disable the HTTP-GET and HTTP-POST protocols for an entire computer
1. Edit Machine.config.
2. Comment out the lines within the <webServices> element that add support for

HTTP-GET and HTTP-POST. After doing so, Machine.config should appear as
follows.

<webServices>
    <protocols>
      <add name="HttpSoap"/>
         <!-- <add name="HttpPost"/> -->
         <!-- <add name="HttpGet"/>  -->
      <add name="Documentation"/>
    </protocols>
</webServices>

3. Save Machine.config.

Note: For special cases where you have Web service clients that communicate with a Web
service using either HTTP-GET or HTTP-POST, you can add support for those protocols in the
application’s Web.config file, by creating a <webServices> and adding support for these
protocols with the <protocol> and <add> elements, as shown earlier.

More Information
For detailed Information about securing resources, see “Secure Resources” within
Chapter 8, “ASP.NET Security.”

Secure Communication
Use a combination of SSL and IPSec to secure communication links.

More information
● For information about calling a Web service using SSL, see “How To: Call a Web

Service Using SSL” in the Reference section of this guide.
● For information about using IPSec between two computers, see “How To: Use

IPSec to Provide Secure Communication between Two Servers” in the Reference
section of this guide.

Passing Credentials for Authentication to Web Services
When you call a Web service, you do so by using a Web service proxy; a local
object that exposes the same set of methods as the target Web service.



Chapter 10: Web Services Security 241

You can generate a Web service proxy by using the Wsdl.exe command line utility.
Alternatively, if you are using Visual Studio .NET you can generate the proxy by
adding a Web reference to the project.

Note: If the Web service for which you want to generate a proxy is configured to require client
certificates, you must temporarily switch off that requirement while you add the reference, or
an error occurs. After you add the reference, you must remember to reconfigure the service to
require certificates.
An alternate approach would be to keep an offline Web Services Description Language (WSDL)
file available to consumer applications. You must remember to update this if your Web service
interface changes.

Specifying Client Credentials for Windows Authentication
If you are using Windows authentication , you must specify the credentials to be
used for authentication using the Credentials property of the Web service proxy. If
you do not explicitly set this property, the Web service is called without any creden-
tials. If Windows authentication is required, this will result in an HTTP status 401,
access denied response.

Using DefaultCredentials
Client credentials do not flow implicitly. The Web service consumer must set the
credentials and authentication details on the proxy. To flow the security context of
the client’s Windows security context (either from an impersonating thread token or
process token) to a Web service you can set the Credentials property of the Web
service proxy to CredentialCache.DefaultCredentials as shown below.

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

Consider the following points before you use this approach:
● This flows the client credentials only when you use NTLM, Kerberos, or Negoti-

ate authentication.
● If a client-side application (for example, a Windows Forms application) calls the

Web service, the credentials are obtained from the user’s interactive logon
session.

● Server-side applications, such as ASP.NET Web applications, use the process
identity, unless impersonation is configured in which case the impersonated
caller’s identity is used.



Building Secure ASP.NET Applications242

Using Specific Credentials
To use a specific set of credentials for authentication when you call a Web service,
use the following code.

CredentialCache cache = new CredentialCache();
cache.Add( new Uri(proxy.Url), // Web service URL
           "Negotiate",        // Kerberos or NTLM
           new NetworkCredential("username", "password", "domainname") );
proxy.Credentials = cache;

In the above example, the requested Negotiate authentication type results in either
Kerberos or NTLM authentication.

Always Request a Specific Authentication Type

You should always request a specific authentication type as illustrated above. Avoid
direct use of the NetworkCredential class as shown in the following code.

proxy.Credentials = new
                      NetworkCredential("username", "password", "domainname");

This should be avoided in production code because you have no control over the
authentication mechanism used by the Web service and as a result you have no
control over how the credentials are used.

For example, you may expect a Kerberos or NTLM authentication challenge from
the server but instead you may receive a Basic challenge. In this case, the supplied
user name and password will be sent to the server in clear text form.

Set the PreAuthenticate Property
The proxy’s PreAuthenticate property can be set to true or false. Set it to true to
supply specific authentication credentials to cause a WWW-authenticate HTTP
header to be passed with the Web request. This saves the Web server denying access
on the request, and performing authentication on the subsequent retry request.

Note: Pre-authentication only applies after the Web service successfully authenticates the first
time. Pre-authentication has no impact on the first Web request.

private void ConfigureProxy( WebClientProtocol proxy,
                             string domain, string username,
                             string password )
{
  // To improve performance, force pre-authentication
  proxy.PreAuthenticate = true;
  // Set the credentials
  CredentialCache cache = new CredentialCache();



Chapter 10: Web Services Security 243

  cache.Add( new Uri(proxy.Url),
             "Negotiate",
             new NetworkCredential(username, password, domain) );
  proxy.Credentials = cache;
  proxy.ConnectionGroupName = username;
}

Using the ConnectionGroupName Property
Notice that the above code sets the ConnectionGroupName property of the Web
service proxy. This is only required if the security context used to connect to the
Web service varies from one request to the next as described below.

If you have an ASP.NET Web application that connects to a Web service and flows
the security context of the original caller (by using DefaultCredentials or by setting
explicit credentials, as shown above), you should set the ConnectionGroupName
property of the Web service proxy within the Web application. This is to prevent a
new, unauthenticated client from reusing an old, authenticated TCP connection to
the Web service that is associated with a previous client’s authentication credentials.
Connection reuse can occur as a result of HTTP KeepAlives and authentication
persistence which is enabled for performance reasons within IIS.

Set the ConnectionGroupName property to an identifier (such as the caller’s user
name) that distinguishes one caller from the next as shown in the previous code
fragment.

Note: If the original caller’s security context does not flow through the Web application and
onto the Web service, and instead the Web application connects to the Web service using a
fixed identity (such as the Web application’s ASP.NET process identity), you do not need to set
the ConnectionGroupName property. In this scenario, the connection security context remains
constant from one caller to the next.

Calling Web Services from Non-Windows Clients
There are a number of authentication approaches that work for cross-browser
scenarios. These include:
● Certificate Authentication. Using cross platform X.509 certificates.
● Basic Authentication. For an example of how to use Basic authentication against

a custom data store (without requiring Active Directory), see http://
www.rassoc.com/gregr/weblog/stories/2002/06/26/
webServicesSecurityHttpBasicAuthenticationWithoutActiveDirectory.html.

● GXA Message Level Approaches. Use the Web Services Development Toolkit to
implement GXA (WS-Security) solutions.

● Custom Approaches. For example, flow credentials in SOAP headers.



Building Secure ASP.NET Applications244

Proxy Server Authentication
Proxy server authentication is not supported by the Visual Studio .NET Add Web
Reference dialog box (although it will be supported with the next version of Visual
Studio .NET). As a result you might receive an HTTP status 407: “Proxy Authentica-
tion Required” response when you attempt to add a Web reference.

Note: You may not see this error when you view the .asmx file from a browser, because the
browser automatically sends credentials.

To work around this issue, you can use the Wsdl.exe command line utility (instead
of the Add Web Reference dialog) as shown below.

wsdl.exe /proxy:http://<YourProxy> /pu:<YourName> /pp:<YourPassword> /
pd:<YourDomain> http://www.YouWebServer.com/YourWebService/YourService.asmx

If you need to programmatically set the proxy server authentication information,
use the following code.

YourWebServiceProxy.Proxy.Credentials = CredentialsCache.DefaultCredentials;

Flowing the Original Caller
This section describes how you can flow the original caller’s security context
through an ASP.NET Web application and onto a Web service located on a remote
application server. You may need to do this in order to support per-user authoriza-
tion within the Web service or within subsequent downstream subsystems (for
example, databases, where you want to authorize original callers to individual
database objects).

In Figure 10.5, the security context of the original caller (Alice) flows through the
front-end Web server that hosts an ASP.NET Web application, onto the remote
object, hosted by ASP.NET on a remote application server and finally through to a
backend database server.

Web Server

IIS
ASP.NET

(Web 
Application)

Application Server Database Server

IIS
Alice AliceAlice

ASP.NET
(Web 

Service)
SQL 

Server

Figure 10.5
Flowing the original caller’s security context



Chapter 10: Web Services Security 245

In order to flow credentials to a Web service, the Web service client (the ASP.NET
Web application in this scenario) must configure the Web service proxy and explic-
itly set the proxy’s Credentials property, as described in “Passing Credentials for
Authentication to Web Services” earlier in this chapter.

There are two ways to flow the caller’s context.
● Pass default credentials and use Kerberos authentication (and delegation).

This approach requires that you impersonate within the ASP.NET Web applica-
tion and configure the remote object proxy with DefaultCredentials obtained
from the impersonated caller’s security context.

● Pass explicit credentials and use Basic or Forms authentication. This approach
does not require impersonation within the ASP.NET Web application. Instead,
you programmatically configure the Web service proxy with explicit credentials
obtained from either server variables (with Basic authentication) or HTML form
fields (with Forms authentication) that are available to the Web application. With
Basic or Forms authentication, the user name and password are available to the
server in clear text.

Default Credentials with Kerberos Delegation
To use Kerberos delegation, all computers (servers and clients) must be running
Windows 2000 or later. Additionally, client accounts that are to be delegated must
be stored in Active Directory and must not be marked as “Sensitive and cannot be
delegated.”

The following tables show the configuration steps required on the Web server, and
application server.

Configuring the Web Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated Kerberos authentication will be negotiated assuming clients and
Authentication for the Web server are running Windows 2000 or later.
application’s virtual root Note: If you are using Internet Explorer 6 on Windows 2000, it

defaults to NTLM authentication instead of the required Kerberos
authentication. To enable Kerberos delegation, see article
Q299838, “Unable to Negotiate Kerberos Authentication after
upgrading to Internet Explorer 6,” in the Microsoft Knowledge
Base.



Building Secure ASP.NET Applications246

Configure ASP .NET
Step More Information

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory
application to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory
application for impersonation Set the <identity> element to:

 <identity impersonate="true" />

Configure the Web Service Proxy
Step More Information

Set the credentials property See “Using DefaultCredentials” earlier in this chapter for a code
of the Web service proxy to sample.
DefaultCredentials.

Configuring the Remote Application Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web service’s virtual
root directory

Enable Windows Integrated
Authentication for the Web
application’s virtual root

Configure ASP.NET (Web Service Host)
Step More Information

Configure ASP.NET to use Edit Web.config in the Web service’s virtual directory.
Windows authentication Set the <authentication> element to:

 <authentication mode="Windows" />



Chapter 10: Web Services Security 247

Configure ASP.NET (Web Service Host)
Step More Information

Configure ASP.NET for Edit Web.config in the Web service’s virtual directory.
impersonation Set the <identity> element to:

 <identity impersonate="true" />

Note: This step is only required if you want to flow the original
caller’s security context through the Web service and onto the
next downstream, subsystem (for example, a database). With
impersonation enabled here, resource access (local and remote)
uses the impersonated original caller’s security context.
If your requirement is simply to allow per-user authorization
checks in the Web service, you do not need to impersonate here.

More Information

For more information about configuring Kerberos delegation, see “How To: Imple-
ment Kerberos Delegation for Windows 2000” in the Reference section of this guide.

Explicit Credentials with Basic or Forms Authentication
As an alternative to Kerberos delegation, you can use Basic or Forms authentication
at the Web application to capture the client’s credentials and then use Basic (or
Integrated Windows) authentication to the Web service.

With this approach, the client’s clear text credentials are available to the Web appli-
cation. These can be passed to the Web service through the Web service proxy. For
this, you must write code in the Web application to retrieve the client’s credentials
and configure the proxy.

Basic Authentication
With Basic authentication, the original caller’s credentials are available to the Web
application in server variables. The following code shows how to retrieve them and
configure the Web service proxy.

// Retrieve client's credentials (available with Basic authentication)
string pwd = Request.ServerVariables["AUTH_PASSWORD"];
string uid = Request.ServerVariables["AUTH_USER"];
// Associate the credentials with the Web service proxy
// To improve performance, force preauthentication
proxy.PreAuthenticate = true;
// Set the credentials
CredentialCache cache = new CredentialCache();
cache.Add( new Uri(proxy.Url),
           "Basic",
           new NetworkCredential(uid, pwd, domain) );
proxy.Credentials = cache;



Building Secure ASP.NET Applications248

Forms Authentication
With Forms authentication, the original caller’s credentials are available to the Web
application in form fields (rather than server variables). In this case, use the follow-
ing code.

// Retrieve client's credentials from the logon form
string pwd = txtPassword.Text;
string uid = txtUid.Text;
// Associate the credentials with the Web service proxy
// To improve performance, force preauthentication
proxy.PreAuthenticate = true;
// Set the credentials
CredentialCache cache = new CredentialCache();
cache.Add( new Uri(proxy.Url),
           "Basic",
           new NetworkCredential(uid, pwd, domain) );
proxy.Credentials = cache;

The following tables show the configuration steps required on the Web server, and
application server.

Configuring the Web Server
Configure IIS
Step More Information

To use Basic authentication, Both Basic and Forms authentication should be used in
disable Anonymous access conjunction with SSL to protect the clear text credentials sent
for your Web application’s over the network. If you use Basic authentication, SSL should be
virtual root directory and used for all pages (not just the initial logon page), as Basic
select Basic authentication credentials are transmitted with every request.

- or -

To use Forms authentication, Similarly, SSL should be used for all pages if you use Forms
enable anonymous access authentication, to protect the clear text credentials on the initial

log on and to protect the authentication ticket passed on
subsequent requests.



Chapter 10: Web Services Security 249

Configure ASP.NET
Step More Information

If you use Basic authenti- Edit Web.config in your Web application’s virtual directory
cation, configure your Set the <authentication> element to:
ASP.NET Web application to
use Windows authentication  <authentication mode="Windows" />

- or -
- or -

If you use Forms authenti-
cation, configure your Edit Web.config in your Web application’s virtual directory
ASP.NET Web application to Set the <authentication> element to:
use Forms authentication

 <authentication mode="Forms" />

Disable impersonation within Edit Web.config in your Web application’s virtual directory.
the ASP.NET Web application Set the <identity> element to:

 <identity impersonate="false" />

Note: This is equivalent to having no <identity> element.
Impersonation is not required, as the user’s credentials will be
passed explicitly to the Web service through the proxy.

Configure the Web Service Proxy
Step More Information

Write code to capture and Refer to the code fragments shown earlier in the Basic
explicitly set the credentials Authentication and Forms Authentication sections.
on the Web Service proxy

Configuring the Application Server
Configure IIS
Step More Information

Disable Anonymous access
for your application’s virtual
root directory

Enable Basic authentication Note: Basic authentication at the (Web service) application
server, allows the Web service to flow the original caller’s
security context to the database (as the caller’s user name and
password are available in clear text and can be used to respond
to network authentication challenges from the database server).
If you don’t need to flow the original caller’s security context
beyond the Web service, consider configuring IIS at the applica-
tion server to use Windows Integrated authentication, as this
provides tighter security — credentials are not passed across
the network and are not available to the Web service.



Building Secure ASP.NET Applications250

Configure ASP.NET (Web Service)
Step More Information

Configure ASP.NET to use Edit Web.config in the Web service’s virtual directory.
Windows authentication Set the <authentication> element to:

 <authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in the Web service’s virtual directory.
service for impersonation Set the <identity> element to:

 <identity impersonate="true" />

Note: This step is only required if you want to flow the original
caller’s security context through the Web service and onto the
next downstream, subsystem (for example, a database). With
impersonation enabled here, resource access (local and remote)
uses the impersonated original caller’s security context.
If your requirement is simply to allow per-user authorization
checks in the Web service, you do not need to impersonate here.

Trusted Subsystem
The trusted subsystem model provides an alternative (and simpler to implement)
approach to flowing the original caller’s security context. In this model a trust
boundary exists between the Web service and Web application. The Web service
trusts the Web application to properly authenticate and authorize callers, prior to
letting requests proceed to the Web service. No authentication of the original callers
occurs at the Web service. The Web service authenticates the fixed trusted identity
used by the Web application to communicate with the Web service. In most cases,
this is the process identity of the ASP.NET worker process.

The trusted subsystem model is shown in Figure 10.6.

ASP.NET
(Web 

Application)

Alice

Trust Boundary Trust Boundary

ASPNET

Fixed 
“trusted” 
identity

(ASPNET)
IISIIS

ASP.NET
(Web 

Service) SQL 
Server

Web Server Database ServerApplication  Server

Figure 10.6
The trusted subsystem model



Chapter 10: Web Services Security 251

Flowing the Caller’s Identity
If you use the trusted subsystem model, you may still need to flow the original
caller’s identity (name, not security context), for example, for auditing purposes at
the database.

You can flow the identity at the application level by using method and stored
procedure parameters and trusted query parameters (as shown in the following
example) can be used to retrieve user-specific data from the database.

SELECT x,y,z FROM SomeTable WHERE UserName = "Alice"

Configuration Steps
The following tables show the configuration steps required on the Web server, and
application server.

Configuring the Web Server
Configure IIS
Step More Information

Configure IIS authentication The Web application can use any form of authentication to
authenticate the original callers.

Configure ASP.NET
Step More Information

Configure authentication and Edit Web.config in your Web application’s virtual directory.
make sure impersonation is Set the <authentication> element to “Windows”, “Forms” or
disabled “Passport.”

 <authentication mode="Windows|Forms|Passport" />

Set the <identity> element to:

 <identity impersonate="false" />

(OR remove the <identity> element)

Reset the password of the For more information about how to access network resources
ASPNET account used to run (including Web services) from ASP.NET and about choosing and
ASP.NET OR create a least configuring a process account for ASP.NET, see “Accessing
privileged domain account to Network Resources” and “Process Identity for ASP.NET” in
run ASP.NET and specify Chapter 8, “ASP.NET Security.”
account details on the
<processModel> element
within Web.config



Building Secure ASP.NET Applications252

Configure Web Service Proxy
Step More Information

Configure the Web service Use the following line of code:
proxy to use default
credentials for all calls to  proxy.Credentials = DefaultCredentials;
the Web service

Configuring the Application Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web service’s virtual
root directory

Enable Windows Integrated
authentication

Configure ASP.NET
Step More Information

Configure ASP.NET to use Edit Web.config in the Web service’s virtual directory.
Windows authentication Set the <authentication> element to:

 <authentication mode="Windows" />

Disable impersonation Edit Web.config in the application’s virtual directory.
Set the <identity> element to:

 <identity impersonate="false" />

Accessing System Resources
For details about accessing system resources (for example the event log and the
registry) from ASP.NET Web services, see “Accessing System Resources” within
Chapter 8, “ASP.NET Security.” The approaches and restrictions discussed in
Chapter 8 also apply to ASP.NET Web services.

Accessing Network Resources
When you access network resources from a Web service, you need to consider the
identity that is used to respond to network authentication challenges from the
remote computer. You have three options:



Chapter 10: Web Services Security 253

● The process identity (determined by the account used to run the ASP.NET
worker process)

● A service identity (for example, one created by calling LogonUser)
● The original caller identity (with the Web service configured for impersonation)

For details about the relative merits of each of these approaches, together with
configuration details, see “Accessing Network Resources” in Chapter 8, “ASP.NET
Security.”

Accessing COM Objects
The AspCompat directive (used by Web applications when they call apartment
threaded COM objects) is not available to Web services. This means that when you
call apartment model objects from Web services, a thread switch occurs. This results
in a slight performance hit, and if your Web service is impersonating, your imper-
sonation token will be lost when calling the COM component. This typically results
in an Access Denied exception.

More Information
● For more information about access denied exceptions when calling apartment

threaded COM objects, see article Q325791,”PRB: Access Denied Error Message
Occurs When Impersonating in ASP.NET and Calling STA COM Components,”
in the Microsoft Knowledge Base.

● For more information about accessing COM objects and using the AspCompat
attribute, see “Accessing COM Objects” within Chapter 8, “ASP.NET Security.”

● For more information about calling apartment threaded COM objects from Web
services, see article Q303375, “INFO: XML Web Services and Apartment Ob-
jects,” in the Microsoft Knowledge Base.

Using Client Certificates with Web Services
This section describes techniques for using X.509 client certificates for Web service
authentication.

You can use client certificate authentication within a Web service to authenticate:
● Other Web services.
● Applications that communicate directly with the Web service (for example,

server-based or client-side desktop applications).



Building Secure ASP.NET Applications254

Authenticating Web Browser Clients with Certificates
A Web service cannot use client certificates to authenticate callers if they interact
with an intermediate Web application, because it is not possible to forward the
original caller’s certificate through the Web application and onto the Web service.
While the Web application can authenticate its clients with certificates, the same
certificates cannot then be used by the Web service for authentication.

The reason that this server-to-server scenario fails is that the Web application does
not have access to the client’s certificate (specifically its private key) in its certificate
store. This problem is illustrated in Figure 10.7.

Bob
(Browser)

Alice
(WinForm)

Bob’s 
Certificate

Alice’s 
Certificate

Web 
Application 

Server

Web 
Service 
Center

Can’t use client 
certificate to authenticate 
against the Web service.

Bob or Alice’s 
Certificate

Figure 10.7
Web service client certificate authentication

Using the Trusted Subsystem Model
To address this restriction, and to support certificate authentication at the Web ser-
vice, you must use a trusted-subsystem model. With this approach, the Web service
authenticates the Web application using the Web application’s certificate (and not
the original caller’s certificate). The Web service must trust the Web application
to authenticate its users and to perform the necessary authorization to ensure that
only authorized callers are able to access the data and functionality exposed by the
Web service.

This approach is shown in Figure 10.8.



Chapter 10: Web Services Security 255

Browser 
Clients

Bob

Alice

Bob’s 
Certificate

Alice’s 
Certificate

Web 
Application 

Server
(Gatekeeper)

Web 
Service 
Center

Unauthorized 
Agent

IPSec blocks access 
AND authentication 

fails

SSL/IPSec
(Privacy/Integrity)

Trust Boundary

Web Application’s 
Certificate

Figure 10.8
The Web service authenticates the trusted Web application

If the authorization logic within the Web service requires multiple roles, the Web
application can send different certificates based upon the role membership of the
caller. For example, one certificate may be used for members of an Administrators
group (who are allowed to update data within a back-end database) and another
certificate may be used for all other users (who are authorized only for read
operations).

Note: In scenarios such as these, a local certificate server (accessible only by the two servers)
can be used to manage all the Web application certificates.

In this scenario:
● The Web application authenticates its users by using client certificates.
● The Web application acts as a gatekeeper and authorizes its users and controls

access to the Web service.
● The Web application calls the Web service and passes a different certificate that

represents the application (or possibly a range of certificates based on the role
membership of the caller).

● The Web service authenticates the Web application and it trusts the application
to perform the necessary client authorization.

● IPSec is used between the Web application server and Web service server to
provide additional access control. Unauthorized access attempts from other
computers are prevented by IPSec. Certificate authentication at the Web service
server also prevents unauthorized access.



Building Secure ASP.NET Applications256

Solution Implementation
To use certificate authentication at the Web service in this scenario, use a separate
process to call the Web service and pass the certificate. You cannot manipulate the
certificates directly from the ASP.NET Web application because it does not have a
loaded user profile and associated certificate store. The separate process must be
configured to run using an account that has an associated user profile (and certifi-
cate store). You have two main options:
● You can use an Enterprise Services server application
● You can use a Windows service.

Figure 10.9 illustrates this scenario with an Enterprise Services server application.

1

2

3

5

4

Browser Clients

IIS
ASP.NET 
Web App

aspnet_wp.exe

ASP.NET 
Web Service

Certificate
(Authentication)

Custom Run 
As Identity
(Account has 
User Profile)

SSL
(Privacy/ 
Integrity)

Require Client 
Certificates

(Authentication)

IIS

Web Server 1
(Web App Host)

Web Server 2
(Web Service Host)

Enterprise 
Services 

Application
dllhost.exe

Certificate 
Store

Figure 10.9
Client certificate authentication with Web services

The following summarizes the sequence of events illustrated by Figure 10.9:
1. The original caller is authenticated by the Web application using client certifi-

cates.
2. The Web application is the gatekeeper and is responsible for authorizing access

to specific areas of functionality (including those that involve interaction with
the Web service).

3. The Web application calls a serviced component running in an out-of-process
Enterprise Services application.



Chapter 10: Web Services Security 257

4. The account used to run the Enterprise Services application has an associated
user profile. The component accesses a client certificate from its certificate store,
which is used by the Web service to authenticate the Web application.

5. The serviced component calls the Web service, passing the client certificate on
each method request. The Web service authenticates the Web application using
this certificate and trusts the Web application to correctly authorize original
callers.

Why Use an Additional Process?
An additional process is required (rather than using the Aspnet_wp.exe Web pro-
cess to contact the Web service) due to the fact that a user profile (containing a
certificate store) is required.

A Web application that runs using the ASPNET account does not have access to
any certificates on the Web server. This is because certificate stores are maintained
within user profiles associated with interactive user accounts. User profiles are only
created for interactive accounts when you physically log on using the account. The
ASPNET account is not intended to be an interactive user account and is configured
with the “Deny interactive logon” privilege for added security.

Important: Do not reconfigure the ASPNET account to remove this privilege and turn the
account into an interactive logon account. Use a separate process with a configured service
account to access certificates, as described earlier in this chapter.

More Information
● For more information about how to implement this approach, see “How To: Call

a Web Service Using Client Certificates from ASPNET” in the Reference section
of this guide.

● For more information about configuring IPSec, see “How To: Use IPSec to Pro-
vide Secure Communication between Two Servers” in the Reference section of
this guide.

Secure Communication
Secure communication is concerned with guaranteeing the integrity and confidenti-
ality of Web service messages as they flow from application to application across
the network. There are two approaches to this problem; transport level options and
message level options.



Building Secure ASP.NET Applications258

Transport Level Options
Transport level options include:
● SSL
● IPSec

These options may be appropriate if the following conditions are met:
● You are sending a message directly from your application to a Web service and

the message will not be routed through intermediate systems.
● You can control the configuration of both endpoints involved in the message

transfer.

Message Level Options
Message level approaches can be used to guarantee the confidentiality and integrity
of messages as they pass through an arbitrary number of intermediate systems.
Messages can be signed to provide integrity. For confidentiality, you can choose
between encrypting the entire message or part of a message.

Use a message level approach if the following conditions are met:
● You are sending a message to a Web service and the message is likely to be

forwarded to other Web services or may be routed through intermediate systems.
● You do not control the configuration of both endpoints; for example, because you

are sending messages from one company to another.

More Information
● The Web Service Development Toolkit will provide message encryption

functionality in accordance with the WS-Security specification.
● For more information about SSL and IPSec, see Chapter 4, “Secure

Communication.”

Summary
This chapter has focused on platform/transport level (point-to-point) Web service
security provided by the underlying services of ASP.NET, IIS, and the operating
system. While platform level security provides secure solutions for tightly-coupled
intranet scenarios, it is not suited to heterogeneous scenarios. For this, message
level security provided by the GXA WS-Security specification is required. Use the
Web Services Development Kit to build message level Web service security solutions.



Chapter 10: Web Services Security 259

For tightly-coupled Windows domain environments:
● If you want to flow the original caller’s identity from an ASP.NET Web applica-

tion to a remote Web service, the ASP.NET Web application should use Kerberos
authentication (with accounts configured for delegation), Basic authentication, or
Forms authentication.
● With Kerberos authentication, enable impersonation with the Web application

and configure the Credentials property of the Web service proxy using
DefaultCredentials.

● With Basic or Forms authentication, capture the caller’s credentials and set
the Credentials property of the Web service proxy by adding a new
CredentialCache object.

For Web-service to Web-service scenarios:
● Use Basic or Kerberos authentication and set credentials in the client proxy.
● Use an out of process Enterprise Services application or a Windows service to

manipulate X.509 certificates from Web applications.
● As far as possible, use system level authorization checks such as File and URL

authorization.
● For granular authorization (for example, at the Web method level) use .NET roles

(declaratively and imperatively).
● Authorize non-Windows users by using .NET roles (based on a GenericPrincipal

object that contains roles).
● Disable HTTP-GET and HTTP-POST protocols on product servers.
● Use transport level security if you are not worried about passing messages

securely through intermediary systems.
● Use transport level security if SSL performance is acceptable.
● Use WS-Security and the Web Services Development Kit to develop message-

level solutions.





11
.NET Remoting Security

The .NET Framework provides a remoting infrastructure that allows clients to
communicate with objects, hosted in remote application domains and processes, or
on remote computers. This chapter shows you how to implement secure .NET
Remoting solutions.

.NET Remoting Architecture
Figure 11.1  on the next page shows the basic .NET Remoting architecture when a
remote object is hosted within ASP.NET. An ASP.NET host, coupled with the HTTP
channel for communication, is the recommended approach if security is the key
concern, because it allows the remote object to utilize the underlying security
services provided by ASP.NET and IIS.

For more information about the range of possible host and channel types, together
with comparison information, see “Choosing a Host Process” later in this chapter.



Building Secure ASP.NET Applications262

Client Proxy

Formatter Sink

Sink

Transport Sink

Channel

Channel

Custom Sink

Object

Host Process

Formatter Sink

Sink

Transport Sink

Channel

Custom Sink

Figure 11.1
The .NET remoting architecture

The client communicates with an in-process proxy object. Credentials for authenti-
cation (for example, user names, passwords, certificates, and so on) can be set
through the remote object proxy. The method call proceeds through a chain of sinks
(you can implement your own custom sinks, for example, to perform data encryp-
tion) and onto a transport sink that is responsible for sending the data across the
network. At the server side, the call passes through the same pipeline after which
the call is dispatched to the object.

Note: The term proxy used throughout this chapter refers to the client-side, in-process proxy
object through which clients communicate with the remote object. Do not confuse this with the
term proxy server.

Remoting Sinks
.NET Remoting uses transport channels sinks, custom channel sinks, and formatter
channel sinks when a client invokes a method call on a remote object.

Transport Channel Sinks
Transport channel sinks pass method calls across the network between the client
and the server. .NET supplies the HttpChannel and the TcpChannel classes,
although the architecture is fully extensible and you can plug in your own custom
implementations.



Chapter 11: .NET Remoting Security 263

● HttpChannel. This channel is designed to be used when you host a remote object
in ASP.NET. This channel uses the HTTP protocol to send messages between the
client and the server.

● TcpChannel. This channel is designed to be used when you host a remote object
in a Microsoft® Windows® operating system service or other executable. This
channel uses TCP sockets to send messages between the client and the server.

● Custom channels. A custom transport channel can use any underlying transport
protocol to send messages between the client and server. For example, a custom
channel may use named pipes or mail slots.

Comparing Transport Channel Sinks

The following table provides a comparison of the two main transport channel sinks.

Table 11.1: Comparison of TcpChannel and HttpChannel

Feature TCP Channel HTTP Channel Comments

Authentication No Yes The HTTP channel uses the authentica-
tion features provided by IIS and ASP.NET,
although Passport and Forms authentica-
tion is not supported.

Authorization No Yes The HTTP channel supports the authori-
zation features provided by IIS and
ASP.NET. These include NTFS
permissions, URL authorization and File
authorization.

Secure Yes Yes Use IPSec with the TCP channel. Use
Communication SSL and/or IPSec with the HTTP channel.

Custom Sinks
Custom channels sinks can be used at different locations within the channel sink
pipeline to modify the messages sent between the client and the server. A channel
sink that provides encryption and decryption is an example of a custom channel sink.

Formatter Sinks
Formatter sinks take method calls and serialize them into a stream capable of being
sent across the network. .NET supplies two formatter sinks:
● Binary Formatter. This uses the BinaryFormatter class to package method calls

into a serialized binary stream, which is subsequently posted (using an HTTP
POST) to send the data to the server. The binary formatter sets the content-type
in the HTTP request to “application/octet-stream.”



Building Secure ASP.NET Applications264

The binary formatter offers superior performance in comparison to the SOAP
formatter.

● SOAP Formatter. This uses the SoapFormatter class to package method calls into
a SOAP message. The content type is set to “text/xml” in the HTTP request and
is posted to the server with an HTTP POST.

Anatomy of a Request When Hosting in ASP.NET
Remote object endpoints are addressed by URLs that end with the .rem or .soap file
name extension, for example http://someserver/vDir/remoteobject.soap. When a
request for a remote object (with the extension .rem or .soap), is received by IIS, it is
mapped (within IIS) to the ASP.NET ISAPI extension (Aspnet_isapi.dll). The ISAPI
extension forwards the request to an application domain within the ASP.NET
worker process (Aspnet_wp.exe). The sequence of events is shown in Figure 11.2.

4

6

3
21

IIS
(inetinfo.exe)

HTTP 
Request

(.rem/ .soap)

Firewall

Web Server

ISAPI 
Mapping

aspnet_isapi.dll

ASP.NET
(aspnet_wp.exe)

App Domain

System.Runtime
.Remoting

Object

5

Web.config

Figure 11.2
Server-side processing

Figure 11.2 shows the following sequence of events:
1. A .soap or .rem request is received over HTTP and is mapped to a specific virtual

directory on the Web server.
2. IIS checks the .soap/.rem mapping and maps the file extension to the ASP.NET

ISAPI extension, Aspnet_isapi.dll.
3. The ISAPI extension transfers the request to an application domain inside the

ASP.NET worker process (Aspnet_wp.exe). If this is the first request directed at
this application, a new application domain is created.



Chapter 11: .NET Remoting Security 265

4. The HttpRemotingHandlerFactory handler is invoked and the remoting infra-
structure reads the <system.runtime.remoting> section in the Web.config that
controls the server-side object configuration (for example, single-call or singleton
parameters) and authorization parameters (from the <authorization> element).

5. The remoting infrastructure locates the assembly that contains the remote object
and instantiates it.

6. The remoting infrastructure reads the HTTP headers and the data stream, and
then invokes the method on the remote object.

Note: During this process, ASP.NET calls the normal sequence of event handlers. You can
optionally implement one or more of these in Global.asax. For example, BeginRequest,
AuthenticationRequest, AuthorizeRequest, and so on. By the time the request reaches the
remote object method, the IPrincipal object that represents the authenticated user is
stored in HttpContext.User (and Thread.CurrentPrincipal) and is available for authoriza-
tion. For example, by using principal permission demands and programmatic role checks.

ASP.NET and the HTTP Channel
Remoting does not have its own security model. Authentication and authorization
between the client (proxy) and server (remote object) is performed by the channel
and host process. You can use the following combination of hosts and channels:
● A custom executable and the TCP Channel. This combination does not provide

any inbuilt security features.
● ASP.NET and the HTTP Channel. This combination provides authentication

and authorization through the underlying ASP.NET and IIS security features.

Objects hosted within ASP.NET benefit from the underlying security features of
ASP.NET and IIS. These include:
● Authentication Features. Windows authentication is configured within

Web.config:

<authentication mode="Windows"/>

The settings in IIS control what type of HTTP authentication is used.
Common HTTP headers are used to authenticate requests. You can supply
credentials for the client by configuring the remote object proxy or you can use
default credentials.
You cannot use Forms or Passport authentication because the channel does not
provide a way to allow the client to access cookies, which is a requirement for
both of these authentication mechanisms. Also, Forms and Passport require a
redirect to a logon page that requires client interaction. Remote, server side
objects are designed for non-interactive use.



Building Secure ASP.NET Applications266

● Authorization Features. Clients are authorized using standard ASP.NET authori-
zation techniques.
Configurable authorization options include:

● URL authorization.
● File authorization (this requires specific configuration, as described in

Using File Authorization later in this chapter).

Programmatic authorization options include:
● Principal permission demands (declarative and imperative).
● Explicit role checks using IPrincipal.IsInRole.

● Secure Communication Features. SSL (and/or IPSec) should be used to secure
the transport of data between the client and server.

More Information
● For more information about the authentication and authorization features

provided by ASP.NET and IIS, see Chapter 8, “ASP.NET Security.”
● For information about how to host an object in ASP.NET/IIS, see article Q312107,

“HOW TO: Host a Remote Object in Microsoft Internet Information Services,” in
the Microsoft Knowledge Base.

.NET Remoting Gatekeepers
The authorization points (or gatekeepers) available to a remote object hosted by
ASP.NET are:
● IIS. With anonymous authentication turned off, IIS only permits requests from

users that it can authenticate either in its domain or in a trusted domain. IIS also
provides IP address and DNS filtering.

● ASP.NET
● UrlAuthorizationModule. You can configure <authorization> elements

within your application’s Web.config to control which users and groups of
users should have access to the application. Authorization is based on the
IPrincipal object stored in HttpContext.User.

● FileAuthorizationModule. The FileAuthorizationModule is available to
remote components, although this requires specific configuration, as de-
scribed in “Using File Authorization” later in this chapter.

Note: Impersonation is not required for File authorization to work.



Chapter 11: .NET Remoting Security 267

The FileAuthorizationModule class only performs access checks against the
requested file or URI (for example .rem and .soap), and not for files accessed
by code within the remote object.

● Principal Permission Demands and Explicit Role Checks. In addition to the IIS
and ASP.NET configurable gatekeepers, you can also use principal permission
demands (declaratively or imperatively) as an additional fine-grained access
control mechanism. Principal permission checks allow you to control access to
classes, methods, or individual code blocks based on the identity and group
membership of individual users, as defined by the IPrincipal object attached to
the current thread.

Note: Principal permission checks used to demand role membership are different from
calling IPrincipal.IsInRole to test role membership. The former results in an exception if
the caller is not a member of the specified role, while the latter simply returns a Boolean
value to confirm role membership.

With Windows authentication, ASP.NET automatically attaches a
WindowsPrincipal object that represents the authenticated user to the current
Web request (using HttpContext.User).

Authentication
When you use remoting in conjunction with an ASP.NET Web application client,
authentication occurs within the Web application and at the remote object host.
The available authentication options for the remote object host depend on the type
of host.

Hosting in ASP.NET
When objects are hosted in ASP.NET the HTTP channel is used to communicate
method calls between the client-side proxy and the server. The HTTP channel uses
the HTTP protocol to authenticate the remote object proxy to the server.

The following list shows the range of authentication options available when you
host inside ASP.NET:
● IIS Authentication Options. Anonymous, Basic, Digest, Windows Integrated

and Certificate.
● ASP.NET Authentication Options. Windows authentication or None (for custom

authentication implementations).



Building Secure ASP.NET Applications268

Note: Forms and Passport authentication cannot be used directly by .NET Remoting. Calls
to remote objects are designed to be non-interactive. If the client of the remote object is a
.NET Web application, the Web application can use Forms and Passport authentication and
pass credentials explicitly to the remote object. This type of scenario is discussed further
in the “Flowing the Original Caller” section later in this chapter.

Hosting in a Windows Service
When objects are hosted in a Windows service, the TCP channel is used to commu-
nicate method calls between the client and server. This uses raw socket-based
communications. Because there is no authentication provided with sockets, there
is no way for the server to authenticate the client.

In this scenario, the remote object must use custom authentication.

Custom Authentication
For simple custom authentication, the remote object can expose a Login method
which accepts a user name and password. The credentials can be validated against
a store, a list of roles retrieved, and a token sent back to the client to use on subse-
quent requests. When the token is retrieved at the server it is used to create an
IPrincipal object (with roles) which is stored in Thread.CurrentPrincipal, where it
is used for authorization purposes.

Other examples of custom authentication include creating a custom transport
channel sink that uses an inter-process communication channel that provides
authentication, such as named pipes, or creating a channel sink that performs
authentication using the Windows Security Service Provider Interface (SSPI).

More Information
● For information about how to host an object in a Windows service, see “How To:

Host a Remote Object in a Windows Service” in the Reference section of this
guide.

● For more information about sinks and sink chains, search for see the section of
the .NET Framework on “Sinks and Sink Chains” in the MSDN Library.

● For more information about how to create a custom authentication solution that
uses SSPI, see the MSDN article “.NET Remoting Security Solution, Part 1:
Microsoft.Samples.Security.SSPI Assembly” at http://msdn.microsoft.com/library
/en-us/dndotnet/html/remsspi.asp.

Note: The implementation in this article is a sample and not a product tested and sup-
ported by Microsoft.



Chapter 11: .NET Remoting Security 269

Authorization
When objects are hosted by ASP.NET and the HTTP channel is used for communica-
tion, the client can be authenticated and authorization can be controlled by the
following mechanisms:
● URL authorization
● File authorization
● Principal permission demands (declarative and imperative)
● IPrincipal.IsInRole checks in code

When objects are hosted in a Windows service, there is no authentication provided
by the TCP channel. As a result, you must perform custom authentication and then
perform authorization by creating an IPrincipal object and storing it in
Thread.CurrentPrincipal.

You can then annotate your remote object’s methods with declarative principal
permission demand checks, like the one shown below.

[PrincipalPermission(SecurityAction.Demand,
                     Role="Manager")]
void SomeMethod()
{
}

Within your object’s method code, imperative principal permission demands and
explicit role checks using IPrincipal.IsInRole can also be used.

Using File Authorization
You may want to use built-in Windows access control to secure the remote object as
a securable Windows resource. Without File authorization (using Windows ACLs),
you only have URL authorization.

To use the FileAuthorizationModule to authorize access to remote object endpoints
(identified with .rem or .soap URLs), you must create a physical file with the .rem
or .soap extension within your application’s virtual directory.

Note: The .rem and .soap extensions are used by IIS to map requests for object endpoints to
the ASP.NET ISAPI extension (aspnet_isapi.dll). They do not usually exist as physical files.

� To configure File authorization for .NET Remoting
1. Create a file with the same name as the objectUri (for example,

RemoteMath.rem) in the root of the application’s virtual directory.



Building Secure ASP.NET Applications270

2. Add the following line to the top of the file and save the file.

<%@ webservice class="YourNamespace.YourClass" ... %>

3. Add an appropriately configured ACL to the file using Windows Explorer.

Note: You can obtain the objectUri from the web.config file used to configure the remote
object on the server. Look for the <wellknown> element, as shown in the following
example.

<wellknown mode="SingleCall" objectUri="RemoteMath.rem"
type="RemotingObjects.RemoteMath, RemotingObjects, Version=1.0.000.000
Culture=neutral, PublicKeyToken=4b5ae668c251b606"/>

More Information
● For more information about these authorization mechanisms, see Chapter 8,

“ASP.NET Security.”
● For more information about principal permission demands, see Chapter 8,

“ASP.NET Security.”

Authentication and Authorization Strategies
In many applications that use .NET Remoting, the remote objects are used to pro-
vide business functionality within the application’s middle tier and this functional-
ity is called by ASP.NET Web applications. This arrangement is shown in Figure 11.3.

Web Server

IIS ASP.NET

Application Server
Database 

Server

IIS

.NET Remoting

ASP.NET

SQL 
Server

Figure 11.3
Remote objects called by an ASP.NET Web application

In this scenario, the IIS and ASP.NET gatekeepers available to the Web application
can be used to secure access to the client-side proxy, and the IIS and ASP.NET
gatekeepers available to the ASP.NET host on the remote application server are
available to secure access to the remote object.



Chapter 11: .NET Remoting Security 271

There are essentially two authentication and authorization strategies for remote
objects that are accessed by .NET Web applications.
● You can authenticate and authorize callers at the Web server and then flow the

caller’s security context to the remote object by using impersonation. This is the
impersonation/delegation model.
With this approach you use an IIS authentication mechanism that allows you to
delegate the caller’s security context, such as Kerberos, Basic, or Forms authenti-
cation (the latter two allow the Web application to access the caller’s credentials)
and explicitly flow credentials to the remote object using the remote object’s
proxy.
The ASP.NET configurable and programmatic gatekeepers (including URL
authorization, File authorization, principal permission demands, and .NET roles)
are available to authorize individual callers within the remote object.

● You can authenticate and authorize callers at the Web server and then use a
trusted identity to communicate with the remote object. This is the trusted
subsystem model.
This model relies on the Web application to authenticate and properly authorize
callers before invoking the remote object. Any requests received by the remote
object from the trusted identity projected from the Web application are allowed
to proceed.

More Information
● For more information about the impersonation/delegation and trusted sub-

system models, see “Resource Access Models” in Chapter 3, “Authentication and
Authorization.”

● For more information about using the original caller model with remoting, see
“Flowing the Original Caller” later in this chapter.

● For more information about using the trusted subsystem model with remoting,
see “Trusted Subsystem” later in this chapter.

Accessing System Resources
For details about accessing system resources (for example, the event log and the
registry) from a remote object hosted by ASP.NET, see “Accessing System Re-
sources” in Chapter 8, “ASP.NET Security.” The approaches and restrictions dis-
cussed in Chapter 8 also apply to remote objects hosted by ASP.NET.



Building Secure ASP.NET Applications272

Accessing Network Resources
When you access network resources from a remote object, you need to consider the
identity that is used to respond to network authentication challenges from the
remote computer. You have three options:
● The Process Identity (this is the default). If you host within ASP.NET, the

identity used to run the ASP.NET worker process and defined by the
<processModel> element in Machine.config determines the security context
used for resource access.
If you host within a Windows service, the identity used to run the service process
(configured with the Services MMC snap-in) determines the security context
used for resource access.

● A Fixed Service Identity. For example, one created by calling LogonUser.

Note: Don’t confuse this service identity with the identity used to run a Windows service. A
fixed service identity refers to a Windows user account created specifically for the purposes
of accessing resources from an application.

● The Original Caller Identity. With ASP.NET configured for impersonation, or
programmatic impersonation used within a Windows service.

For details about the relative merits of each of these approaches, together with
configuration details, see “Accessing Network Resources” in Chapter 8, “ASP.NET
Security.”

Passing Credentials for Authentication to Remote Objects
When a client process calls a remote object, it does so by using a proxy. This is a
local object that exposes the same set of methods as the target object.

Specifying Client Credentials
If the remote object is hosted within ASP.NET and is configured for Windows
authentication, you must specify the credentials to be used for authentication using
the credentials property of the channel. If you do not explicitly set credentials, the
remote object is called without any credentials. If Windows authentication is re-
quired, this will result in an HTTP status 401, which is an access denied response.

Using DefaultCredentials
If you want to use the credentials of the process that hosts the remote object proxy
(or the current thread token, if the thread that calls the proxy is impersonating), you
should set the credentials property of the channel to the DefaultCredentials main-
tained by the process credential cache.



Chapter 11: .NET Remoting Security 273

You can either specify the use of DefaultCredentials in a configuration file or set
the credentials programmatically.

Explicit Configuration

Within the client application configuration file (Web.config, if the client application
is an ASP.NET Web application) set the useDefaultCredentials attribute on the
<channel> element to true in order to specify that the proxy should use
DefaultCredentials when it communicates with the remote object.

<channel ref="http" useDefaultCredentials="true" />

Programmatic Configuration

For programmatic configuration, use the following code to establish the use of
DefaultCredentials programmatically.

IDictionary channelProperties;
channelProperties = ChannelServices.GetChannelSinkProperties(proxy);
channelProperties ["credentials"] = CredentialCache.DefaultCredentials;

Using Specific Credentials
To use a specific set of credentials for authentication when you call a remote object,
disable the use of default credentials within the configuration file, by using the
following setting.

<channel ref="http" useDefaultCredentials="false" />

Note: Programmatic settings always override the settings in the configuration file.

Then, use the following code to configure the proxy to use specific credentials.

IDictionary channelProperties =
                         ChannelServices.GetChannelSinkProperties(proxy);
NetworkCredential credentials;
credentials = new NetworkCredential("username", "password", "domain");
ObjRef objectReference = RemotingServices.Marshal(proxy);
Uri objectUri = new Uri(objectReference.URI);
CredentialCache credCache = new CredentialCache();
// Substitute "authenticationType" with "Negotiate", "Basic", "Digest",
// "Kerberos" or "NTLM"
credCache.Add(objectUri, "authenticationType", credentials);
channelProperties["credentials"] = credCache;
channelProperties["preauthenticate"] = true;



Building Secure ASP.NET Applications274

Always Request a Specific Authentication Type

You should always request a specific authentication type by using the
CredentialCache.Add method, as illustrated above. Avoid direct use of the
NetworkCredential class as shown in the following code.

IDictionary providerData = ChannelServices.GetChannelSinkProperties(yourProxy);
providerData["credentials"] = new NetworkCredential(uid, pwd);

This should be avoided in production code because you have no control over the
authentication mechanism used by the remote object host and as a result you have
no control over how the credentials are used.

For example, you may expect a Kerberos or NTLM authentication challenge from
the server but instead you may receive a Basic challenge. In this case, the supplied
user name and password will be sent to the server in clear text form.

Set the preauthenticate Property
The proxy’s preauthenticate property can be set to true or false. Set it to true (as
shown in the above code) to supply specific authentication credentials to cause a
WWW-Authenticate HTTP header to be passed with the initial request. This stops
the Web server denying access on the initial request, and performing authentication
on the subsequent request.

Using the connectiongroupname Property
If you have an ASP.NET Web application that connects to a remote component
(hosted by ASP.NET) and flows the security context of the original caller (by using
DefaultCredentials and impersonation or by setting explicit credentials, as shown
above), you should set the connectiongroupname property of the channel within
the Web application. This is to prevent a new, unauthenticated client from reusing
an old, authenticated connection to the remote component that is associated with a
previous client’s authentication credentials. Connection reuse can occur as a result
of HTTP KeepAlives and authentication persistence which is enabled for perfor-
mance reasons within IIS.

Set the connectiongroupname property to an identifier (such as the caller’s user
name) that distinguishes one caller from the next.

channelProperties["connectiongroupname"] = userName;



Chapter 11: .NET Remoting Security 275

Note: You do not need to set the connectiongroupname property if the original caller’s security
context does not flow through the Web application and onto the remote component but
connects to the remote component using a fixed identity (such as the Web application’s
ASP.NET process identity),. In this scenario, the connection security context remains constant
from one caller to the next.
The next version of the .NET Framework will support connection pooling based on the SID of
the thread that calls the proxy object, which will help to address the problem described above,
if the Web application is impersonating the caller. Pooling will be supported for .NET Remoting
clients and not for Web services clients.

Flowing the Original Caller
This section describes how you can flow the original caller’s security context
through an ASP.NET Web application and onto a remote component hosted by
ASP.NET on a remote application server. You may need to do this in order to sup-
port per-user authorization within the remote object or within subsequent down-
stream subsystems (for example databases).

In Figure 11.4, the security context of the original caller (Bob) flows through the
front-end Web server that hosts an ASP.NET Web application, onto the remote
object, hosted by ASP.NET on a remote application server, and finally through
to a back-end database server.

Web Server

IIS
ASP.NET

(Web 
Application)

Application Server Database Server

IIS
Bob BobBob

ASP.NET
(Remote 
Object)

SQL 
Server

Figure 11.4
Flowing the original caller’s security context

In order to flow credentials to a remote object, the remote object client (the ASP.NET
Web application in this scenario) must configure the object’s proxy and explicitly set
the proxy’s credentials property, as described in “Passing Credentials for Authenti-
cation to Remote Objects” earlier in this chapter.

Note: IPrincipal objects do not flow across .NET Remoting boundaries.



Building Secure ASP.NET Applications276

There are two ways to flow the caller’s context:
● Pass default credentials and use Kerberos authentication (and delegation).

This approach requires that you impersonate within the ASP.NET Web applica-
tion and configure the remote object proxy with DefaultCredentials obtained
from the impersonated caller’s security context.

● Pass explicit credentials and use Basic or Forms authentication. This approach
does not require impersonation within the ASP.NET Web application. Instead,
you programmatically configure the remote object proxy with explicit credentials
obtained from either, server variables (with Basic authentication), or HTML form
fields (with Forms authentication) that are available to the Web application. With
Basic or Forms authentication, the username and password are available to the
server in clear text.

Default Credentials with Kerberos Delegation
To use Kerberos delegation, all computers (servers and clients) must be running
Windows 2000 or later. Additionally, client accounts that are to be delegated must
be stored in Active Directory™ directory service and must not be marked as “Sensi-
tive and cannot be delegated.”

The following tables show the configuration steps required on the Web server and
application server.

Configuring the Web Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated Kerberos authentication will be negotiated assuming clients and
Authentication for the Web server are running Windows 2000 or above.
application’s virtual root Note: If you are using Microsoft Internet Explorer 6 on Windows

2000, it defaults to NTLM authentication instead of the required
Kerberos authentication. To enable Kerberos delegation, see
article Q299838, “Unable to Negotiate Kerberos Authentication
after upgrading to Internet Explorer 6,” in the Microsoft Knowl-
edge Base.



Chapter 11: .NET Remoting Security 277

Configure ASP.NET
Step More Information

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory.
application to use Windows Set the <authentication> element to:
authentication

 <authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application’s virtual directory.
application for impersonation Set the <identity> element to:

 <identity impersonate="true" />

Configure Remoting (Client Side Proxy)
Step More Information

Configure the remote object Add the following entry to Web.config:
proxy to use default
credentials for all calls to  <channel ref="http"
the remote object            useDefaultCredentials="true" />

Credentials will be obtained from the Web application’s thread
impersonation token.

Configuring the Remote Application Server
Configure IIS
Step More Information

Disable Anonymous access
for your Web application’s
virtual root directory

Enable Windows Integrated
Authentication for the Web
application’s virtual root



Building Secure ASP.NET Applications278

Configure ASP.NET (Remote Object Host)
Step More Information

Configure ASP.NET to use Edit Web.config in the application’s virtual directory.
Windows authentication Set the <authentication> element to:

 <authentication mode="Windows" />

Configure ASP.NET for Edit Web.config in the application’s virtual directory.
impersonation Set the <identity> element to:

<identity impersonate="true" />

Note: This step is only required if you want to flow the original
caller’s security context through the remote object and onto the
next, downstream subsystem (for example, database). With
impersonation enabled here, resource access (local and remote)
uses the impersonated original caller’s security context.
If your requirement is simply to allow per-user authorization
checks in the remote object, you do not need to impersonate
here.

More Information

For more information about Kerberos delegation, see “How To: Implement
Kerberos Delegation for Windows 2000” in the Reference section of this guide.

Explicit Credentials with Basic or Forms Authentication
As an alternative to Kerberos delegation, you can use Basic or Forms authentication
at the Web application to capture the client’s credentials and then use Basic (or
Integrated Windows) authentication to the remote object.

With this approach, the client’s clear text credentials are available to the Web appli-
cation. These can be passed to the remote object through the remote object proxy.
For this, you must include code in the Web application to retrieve the client’s
credentials and configure the remote object proxy.

Basic Authentication
With Basic authentication, the original caller’s credentials are available to the Web
application in server variables. The following code shows how to retrieve them and
configure the remote object proxy.

// Retrieve client's credentials (available with Basic authentication)
string pwd = Request.ServerVariables["AUTH_PASSWORD"];
string uid = Request.ServerVariables["AUTH_USER"];
// Associate the credentials with the remote object proxy
IDictionary channelProperties =



Chapter 11: .NET Remoting Security 279

                         ChannelServices.GetChannelSinkProperties(proxy);
NetworkCredential credentials;
credentials = new NetworkCredential(uid, pwd);
ObjRef objectReference = RemotingServices.Marshal(proxy);
Uri objectUri = new Uri(objectReference.URI);
CredentialCache credCache = new CredentialCache();
credCache.Add(objectUri, "Basic", credentials);
channelProperties["credentials"] = credCache;
channelProperties["preauthenticate"] = true;

Note: The NetworkCredential constructor shown in the above code is supplied with the user
ID and password. To avoid hard coding the domain name, a default domain can be configured
at the Web server within IIS when you configure Basic authentication.

Forms Authentication
With Forms authentication, the original caller’s credentials are available to the Web
application in form fields (rather than server variables). In this case, use the follow-
ing code.

// Retrieve client's credentials from the logon form
string pwd = txtPassword.Text;
string uid = txtUid.Text;
// Associate the credentials with the remote object proxy
IDictionary channelProperties =
                         ChannelServices.GetChannelSinkProperties(proxy);
NetworkCredential credentials;
credentials = new NetworkCredential(uid, pwd);
ObjRef objectReference = RemotingServices.Marshal(proxy);
Uri objectUri = new Uri(objectReference.URI);
CredentialCache credCache = new CredentialCache();
credCache.Add(objectUri, "Basic", credentials);
channelProperties["credentials"] = credCache;
channelProperties["preauthenticate"] = true;

The following tables show the configuration steps required on the Web server and
application server.



Building Secure ASP.NET Applications280

Configuring the Web Server
Configure IIS
Step More Information

To use Basic authentication, Both Basic and Forms authentication should be used in
disable Anonymous access conjunction with SSL to protect the clear text credentials sent
for your Web application’s over the network. If you use Basic authentication, SSL should be
virtual root directory and used for all pages (not just the initial logon page) because Basic
select Basic authentication credentials are transmitted with every request.

- or -

To use Forms authentication, Similarly, SSL should be used for all pages if you use Forms
enable anonymous access authentication to protect the clear text credentials on the initial

logon and to protect the authentication ticket passed on
subsequent requests.

Configure ASP.NET
Step More Information

If you use Basic authentica- Edit Web.config in your Web application’s virtual directory.
tion, configure your ASP.NET Set the <authentication> element to:
Web application to use
Windows authentication  <authentication mode="Windows" />

- or - - or -

If you use Forms authenti- Edit Web.config in your Web application’s virtual directory.
cation, configure your Set the <authentication> element to:
ASP.NET Web application to
use Forms authentication  <authentication mode="Forms" />

Disable impersonation within Edit Web.config in your Web application’s virtual directory.
the ASP.NET Web application Set the <identity> element to:

 <identity impersonate="false" />

Note: This is equivalent to having no <identity> element.
Impersonation is not required because the user’s credentials will
be passed explicitly to the remote object through the remote
object proxy.



Chapter 11: .NET Remoting Security 281

Configure Remoting
(Client Side Proxy)
Step More Information

Configure the remoting proxy Add the following entry to Web.config:
to not use default credentials
for all calls to the remote  <channel ref="http"
object            useDefaultCredentials="false" />

You do not want default credentials to be used (because the
Web application is configured not to impersonate; this would
result in the security context of the ASP.NET process identity
being used).

Write code to capture and Refer to the code fragments shown earlier.
explicitly set the credentials
on the remote object proxy

Configuring the Application Server
Configure IIS
Step More Information

Disable Anonymous access
for your application’s virtual
root directory

Enable Basic authentication Note: Basic authentication at the application server (remote
object), allows the remote object to flow the original caller’s
security context to the database (because the caller’s user
name and password are available in clear text and can be used
to respond to network authentication challenges from the
database server).
If you don’t need to flow the original caller’s security context
beyond the remote object, consider configuring IIS at the
application server to use Windows Integrated authentication
because this provides tighter security — credentials are not
passed across the network and are not available to the
application.



Building Secure ASP.NET Applications282

Configure ASP.NET (Remote Object Host)
Step More Information

Configure ASP.NET to use Edit Web.config in the application’s virtual directory.
Windows authentication Set the <authentication> element to:

 <authentication mode="Windows" />

Configure ASP.NET for Edit Web.config in the application’s virtual directory.
impersonation Set the <identity> element to:

 <identity impersonate="true" />

Note: This step is only required if you want to flow the original
caller’s security context through the remote object and onto the
next, downstream subsystem (for example, database). With
impersonation enabled here, resource access (local and remote)
uses the impersonated original caller’s security context.
If your requirement is simply to allow per-user authorization
checks in the remote object, you do not need to impersonate
here.

Trusted Subsystem
The trusted subsystem model provides an alternative (and simpler to implement)
approach to flowing the original caller’s security context. In this model, a trust
boundary exists between the remote object host and Web application. The remote
object trusts the Web application to properly authenticate and authorize callers,
prior to letting requests proceed to the remote object. No authentication of the
original caller occurs within the remote object host. The remote object host authenti-
cates the fixed, trusted identity used by the Web application to communicate with
the remote object. In most cases, this is the process identity of the ASP.NET Web
application.

The trusted subsystem model is shown in Figure 11.5. This diagram also shows two
possible configurations. The first uses the ASP.NET host and the HTTP channel,
while the second uses a Windows service host and the TCP channel.



Chapter 11: .NET Remoting Security 283

ASP.NET
(Web 

Application)

Bob

Trust Boundary
Trust Boundary

ASPNET

Fixed 
trusted 
identity

(ASPNET)

HTTPChannel

IISIIS
ASP.NET
(Remote 
Object) SQL 

Server

Web Server Database ServerApplication  Server

ASP.NET
(Web 

Application)

Bob

Trust Boundary

Trust Boundary

Service 
RunAs 
Identity

Fixed 
trusted 
identity

(ASPNET)

TCPChannel

IPSec
(Computer authentication)

IIS Windows Service
(Remote Object) SQL 

Server

Web Server Database ServerApplication  Server

Figure 11.5
The trusted subsystem model

Flowing the Caller’s Identity
If you use the trusted subsystem model, you may still need to flow the original
caller’s identity (name, not security context), for example, for auditing purposes at
the database.

You can flow the identity at the application level by using method and stored
procedure parameters and trusted query parameters (as shown in the following
example) can be used to retrieve user-specific data from the database.

SELECT x,y,z FROM SomeTable WHERE UserName = "Bob"



Building Secure ASP.NET Applications284

Choosing a Host
The trusted subsystem model means that the remote object host does not authenti-
cate the original callers. However, it must still authenticate (and authorize) its
immediate client (the ASP.NET Web application in this scenario), to prevent unau-
thorized applications issuing requests to the remote object.

If you host within ASP.NET and use the HTTP channel, you can use Windows
Integrated authentication to authenticate the ASP.NET Web application process
identity.

If you host within a Windows service, you can use the TCP channel which offers
superior performance but no authentication capabilities. In this scenario, you can
use IPSec between the Web server and application server. An IPSec policy can be
established that only allows the Web server to communicate with the application
server.

Configuration Steps
The following tables show the configuration steps required on the Web server and
application server.

Configuring the Web Server
Configure IIS
Step More Information

Configure IIS authentication The Web application can use any form of authentication to
authenticate the original callers.

Configure ASP.NET
Step More Information

Configure authentication Edit Web.config in your Web application’s virtual directory.
and make sure impersona- Set the <authentication> element to “Windows”, “Forms”
tion is disabled or “Passport.”

 <authentication mode="Windows|Forms|Passport" />

Set the <identity> element to:

 <identity impersonate="false" />

(OR remove the <identity> element)



Chapter 11: .NET Remoting Security 285

Configure ASP.NET
Step More Information

Reset the password of the For more information about how to access network resources
ASPNET account used to (including remote objects) from ASP.NET and about choosing and
run ASP.NET OR create a configuring a process account for ASP.NET, see “Accessing
least privileged domain Network Resources” and “Process Identity for ASP.NET” in
account to run ASP.NET Chapter 8, “ASP.NET Security.”
and specify account details
on the <processModel>

Configure Remoting (Client Side Proxy
Step More Information

Configure the remoting proxy Add the following entry to Web.config:
to use default credentials
for all calls to the remote  <channel ref="http"
object           useDefaultCredentials="true" />

Because the Web application is not impersonating, using default
credentials results in the use of the ASP.NET process identity for
all calls to the remote object.

Configuring the Application Server
The following steps apply if you are using an ASP.NET host.

Configure IIS
Step More Information

Disable Anonymous access
for your application’s virtual
root directory

Enable Windows Integrated
authentication

Configure ASP.NET (Remote Object Host)
Step More Information

Configure ASP.NET to use Edit Web.config in the application’s virtual directory.
Windows authentication Set the <authentication> element to:

 <authentication mode="Windows" />

Disable impersonation Edit Web.config in the application’s virtual directory.
Set the <identity> element to:

 <identity impersonate="false" />



Building Secure ASP.NET Applications286

Using a Windows Service Host
If you are using a Windows service host process, you must create a Windows
account to run the service. This security context provided by this account will be
used by the remote object for all local and remote resource access.

To access a remote Microsoft SQL Server™ database (using Windows authentica-
tion), you can use a least privileged domain account, or use a least privileged local
account and then create a duplicated account (with the same user name and pass-
word) on the database server.

Secure Communication
Secure communication is related to guaranteeing the integrity and confidentiality of
messages as they flow across the network. You can use a platform-based approach
to secure communication and use SSL or IPSec, or you can use a message-level
approach and develop a custom encryption sink to encrypt the entire message, or
selected parts of a message.

Platform Level Options
The two platform-level options to consider for securing the data passed between a
client and remote component are:
● SSL
● IPSec

If you host remote objects in ASP.NET, you can use SSL to secure the communica-
tion channel between client and server. This requires a server authentication certifi-
cate on the computer that hosts the remote object.

If you host remote objects in a Windows service, you can use IPSec between the
client and host (server) computers, or develop a custom encryption sink.

Message Level Options
Due to the extensible nature of the .NET Remoting architecture, you can develop
your own custom sinks and plug them into the processing pipeline. To provide
secure communication, you can develop a custom sink that encrypts and decrypts
the message data sent to and from the remote object.

The advantage of this approach is that it allows you to selectively encrypt parts of
a message. This is in contrast to the platform-level approaches that encrypt all the
data sent between client and server.

More Information

For more information about SSL and IPSec, see Chapter 4, “Secure Communication”



Chapter 11: .NET Remoting Security 287

Choosing a Host Process
Objects that are to be accessed remotely must run in a host executable. The host
listens for incoming requests and dispatches calls to objects. The type of host se-
lected influences the message transport mechanism called a channel. The type of
channel that you select influences the authentication, authorization, secure commu-
nication, and performance characteristics of your solution.

The HTTP channel provides better security options, but the TCP channel provides
superior performance.

You have the following main options for hosting remote objects:
● Host in ASP.NET
● Host in a Windows Service
● Host in a Console Application

Recommendation
To take advantage of the security infrastructure provided by ASP.NET and IIS, it is
recommended from a security standpoint to host remote objects in ASP.NET. This
requires clients to communicate with the remote objects over the HTTP channel.
ASP.NET and IIS authentication, authorization, and secure communication features
are available to remote objects that are hosted in ASP.NET.

If performance (and not security) is the primary concern, consider hosting remote
objects in Windows services.

Hosting in ASP.NET
When you host a remote object in ASP.NET:
● The object is accessed using the HTTP protocol.
● It has an endpoint that is accessible by a URL.
● It exists in an application domain inside the Aspnet_wp.exe worker process.
● It inherits the security features offered by IIS and ASP.NET.

Advantages
If you host remote objects in IIS, you benefit from the following advantages:
● Authentication, authorization, and secure communication features provided by

IIS and ASP.NET are immediately available.
● You can use the auditing features of IIS.
● The ASP.NET worker process is always running.



Building Secure ASP.NET Applications288

● You have a high degree of control over the hosting executable through the
<processModel> element in Machine.config. You can control thread manage-
ment, fault tolerance, memory management, and so on.

● You can create a Web services façade layer in front of the remote object.

Disadvantages
If you use ASP.NET to host remote objects, you should be aware of the following
disadvantages:
● It requires the use of the HTTP channel which is slower than the TCP channel.
● User profiles are not loaded by ASP.NET. Various encryption techniques (includ-

ing DPAPI) may require user profiles.
● If the object is being accessed from code running in an ASP.NET Web application,

you may have to use Basic authentication.

Hosting in a Windows Service
When you host a remote object in a Windows service, the remote object lives in an
application domain contained within the service process. You cannot use the HTTP
channel and must use the TCP channel. The TCP channel supports the following
security features:
● Authentication Features

You must provide a custom authentication solution. Options include:
● Using the underlying authentication services of the SSPI. You can create a

channel sink that uses the Windows SSPI credential and context management
APIs to authenticate the caller and optionally impersonate the caller. The
channel-sink sits on top of the TCP channel. The SSPI in conjunction with the
TCP channel allows the client and server to exchange authentication informa-
tion. After authentication the client and server can send messages ensuring
confidentiality and integrity.

● Using an underlying transport that supports authentication, for example,
named pipes. The named pipe channel uses named pipes as the transport
mechanism. This provides authentication of the caller and also introduces
Windows ACL-based security on the pipe and also impersonation of the
caller.

● Authorization Features
Authorization is possible only if you implement a custom authentication
solution.
● If you are able to impersonate the user (for example, by using an underlying

named pipe transport), you can use WindowsPrincipal.IsInRole.



Chapter 11: .NET Remoting Security 289

● If you are able to create an IPrincipal object to represent the authenticated
client, you can use .NET roles (through principal permission demands and
explicit role checking using IPrincipal.IsInRole)

● Secure Communication Features
You have two options:
● Use IPSec to secure the transport of data between the client and server.
● Create a custom channel sink that performs asymmetric encryption. This

option is discussed later in this chapter.

Advantages
If you host remote objects in Windows services, you benefit from the following
advantages:
● High degree of activation control over the host process
● Inherits the benefits of Windows service architecture
● No need to introduce IIS on your application’s middle tier
● User profiles are automatically loaded
● Performance is good as clients communicate over the TCP channel using binary

encoded data

Disadvantages
If you use a Windows service to host remote objects, you should be aware of the
following disadvantages:
● You must provide custom authentication and authorization solutions.
● You must provide secure communication solutions.
● You must provide auditing solutions.

Hosting in a Console Application
When you host a remote object in a console application, the remote object lives in an
application domain contained within the console application process. You cannot
use the HTTP channel and must use the TCP channel.

This approach is not recommended for production solutions.

Advantages
There are very few advantages to this approach, although it does mean that IIS is
not required on the middle tier. However, this approach is only recommended for
development and testing and not for production environments.



Building Secure ASP.NET Applications290

Disadvantages
If you host remote objects in a custom executable, you should be aware of the
following disadvantages:
● The host must be manually started and runs under the interactive logon session

(which is not recommended).
● There is no fault tolerance.
● You must provide custom authentication and authorization.
● There is no auditing capability.

Remoting vs. Web Services
.NET offers many different techniques to allow clients to communicate with remote
objects including the use of Web services.

If you need interoperability between heterogeneous systems, a Web services ap-
proach that uses open standards such as SOAP, XML, and HTTP is the right choice.
On the other hand, if you are creating server to server intranet-based solutions,
remoting offers the following features:
● Rich object fidelity because any .NET type (including custom types created using

Microsoft C#® development tool and Microsoft Visual Basic® .NET development
system) can be remoted.
This includes classes, class hierarchies, interfaces, fields, properties, methods and
delegates, datasets, hash tables, and so on.

● Objects may be marshaled by value and by reference.
● Object lifetime management is lease-based.
● High performance, particularly with the TCP channel and binary formatter.
● It allows you to construct load balanced middle tiers, using network load

balancing.

Table 11.2: The major differences between remoting and Web services

Remoting Web Services

State full or stateless, lease-based All method calls are stateless
object lifetime management

No need for IIS Must have IIS installed on the server
(Although hosting in IIS/ASP.NET is
recommended for security)

All managed types are supported Limited data types are supported. For more
information about the types supported by ASP.NET
Web services, see the “.NET Framework Developer’s
Guide” on MSDN.



Chapter 11: .NET Remoting Security 291

Remoting Web Services

Objects can be passed by reference or Objects cannot be passed
by value

Contains an extensible architecture not Limited to XML over HTTP
limited to HTTP or TCP transports

Can plug custom processing sinks into No ability to modify messages
the message processing pipeline

SOAP implementation is limited and can SOAP implementation can use RPC or document
only use RPC encoding encoding and can fully interoperate with other Web

service platforms. For more information, see the
“Message Formatting and Encoding” section of the
“Distributed Application Communication” article on
MSDN.

Tightly coupled Loosely coupled

Summary
.NET Remoting does not provide its own security model. However, by hosting
remote objects in ASP.NET and by using the HTTP channel for communication,
remote objects can benefit from the underlying security services provided by IIS
and ASP.NET. In comparison, the TCP channel and a custom host executable offers
improved performance, but this combination provides no built-in security.
● If you want to authenticate the client, use the HTTP channel, host in ASP.NET,

and disable Anonymous access in IIS.
● Use the TCP channel for better performance and if you don’t care about authenti-

cating the client.
● Use IPSec to secure the communication channel between client and server if you

use the TCP channel. Use SSL to secure the HTTP channel.
● If you need to make trusted calls to a remote resource, host the component in

Windows service and not a console application.
● IPrincipal objects are not passed across .NET Remoting boundaries. You could

consider implementing your own IPrincipal class that can be serialized. If you
do so, be aware that it would be relatively easy for a rogue client to spoof an
IPrincipal object and send it to your remote object. Also, be careful of
IlogicalThreadAffinitive if you implement your own IPrincipal class for
remoting.

● Never expose remote objects to the Internet. Use Web services for this scenario.
.NET Remoting should be used on the intranet only. Objects should be accessed
from Web applications internally. Even if an object is hosted in ASP.NET, don’t
expose them to Internet clients, as clients would need to be .NET clients.





12
Data Access Security

When you build Web-based applications, it is essential that you use a secure
approach to accessing and storing data. This chapter addresses some of the key
data access issues. It will help you:
● Choose between Microsoft® Windows® operating system authentication and

SQL authentication when connecting to SQL Server™.
● Store connection strings securely.
● Decide whether to flow the original caller’s security context through to the

database.
● Take advantage of connection pooling.
● Protect against SQL injection attacks.
● Store credentials securely within a database.

The chapter also presents various trade offs that relate to the use of roles, for
example, roles in the database versus role logic applied in the middle tier. Finally,
a set of core recommendations for data access are presented.

Introducing Data Access Security
Figure 12.1 on the next page shows key security issues associated with data access.



Building Secure ASP.NET Applications294

SQL 
Server

SQL Server

4

5
3

2

SSL or IPSec
(Privacy/Integrity)

Windows or SQL
(Authentication)

Database 
Permissions
(Authorization)

Data 
Access 
Identity

Client 
Application 
(for example 
ASP.NET)

Client 
Identity

Secure 
Connection 

String Storage

1

Figure 12.1
Key data access security issues

The key issues shown in Figure 12.1 and discussed throughout the remainder of this
chapter are summarized below:
1. Storing database connection strings securely. This is particularly significant if

your application uses SQL authentication to connect to SQL Server or connects to
non-Microsoft databases that require explicit logon credentials. In these cases,
connection strings include clear text usernames and passwords.

2. Using an appropriate identity or identities to access the database. Data access
may be performed by using the process identity of the calling process, one or
more service identities, or the original caller’s identity (with impersonation/
delegation). The choice is determined by your data access model — trusted
subsystem or impersonation/delegation.

3. Securing data that flows across the network. For example, securing login
credentials and sensitive data passed to and from SQL Server.

Note: Login credentials are only exposed on the network if you use SQL authentication, not
Windows authentication.

SQL Server 2000 supports SSL, with server certificates. IPSec can also be used to
encrypt traffic between the client computer (for example, a Web or application
server) and database server.

4. Authenticating callers at the database. SQL Server supports Windows authenti-
cation (using NTLM or Kerberos) and SQL authentication (using SQL Server’s
built-in authentication mechanism).

5. Authorizing callers at the database. Permissions are associated with individual
database objects. Permissions can be associated with users, groups, or roles.



Chapter 12: Data Access Security 295

SQL Server Gatekeepers
Figure 12.2 highlights the key gatekeepers for SQL server data access.

Client Application
(for example 
ASP.NET)

Client 
Identity

Data 
Access 
Identity

Secure 
Connection 

String Storage

Server 
Login

G

= Gatekeeper

Database 
Login

G

Database 
Objects

G

G

G

SQL Server

Figure 12.2
SQL Server gatekeepers

The key gatekeepers are:
● The chosen data store used to maintain the database connection string.
● The SQL Server login (as determined by the server name specified in the connec-

tion string).
● The database login (as determined by the database name specified in the connec-

tion string).
● Permissions attached to individual database objects.

Permissions may be assigned to users, groups, or roles.

Trusted Subsystem vs. Impersonation/Delegation
Granularity of access to the database is a key factor to consider. You must consider
whether you need user-level authorization at the database (which requires the
impersonation/delegation model), or whether you can use application role logic
within the middle tier of your application to authorize users (which implies the
trusted subsystem model).

If your database requires user-level authorization, you need to impersonate the
original caller. While this impersonation/delegation model is supported, you are
encouraged to use the trusted subsystem model, where the original caller is checked
at the IIS/ASP.NET gate, mapped to a role, and then authorized based on role
membership. System resources for the application are then authorized at the appli-
cation or role level using service accounts, or using the application’s process iden-
tity (such as the ASPNET account).



Building Secure ASP.NET Applications296

Figure 12.3 shows the two models.

SQL 
Server

SQL 
Server

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

Role-Based 
Authorization

Caller Impersonation/Delegation

Trust Boundary

Database trusts the middle tier, 
middle tier authorizes users

Web Server

Trusted Subsystem Model

Impersonation / Delegation Model

Application Server
(Middle Tier)

Database 
Server

Trusted 
Service 
Identity

Figure 12.3
The trusted sub-system and impersonation/delegation models for database access

There are a number of key factors that you should consider when connecting to SQL
Server for data access. These are summarized below and elaborated upon in subse-
quent sections:
● What type of authentication should you use? Windows authentication offers

improved security, but firewalls and non-trusting domain issues may force you
to use SQL authentication. If so, you should ensure that your application’s use of
SQL authentication is as secure as possible, as discussed in the “SQL Authentica-
tion” section later in this chapter.

● Single user role versus multiple user roles. Does your application need to
access SQL using a single account with a fixed set of permissions within the
database, or are multiple (role-based) accounts required depending on the user
of the application?



Chapter 12: Data Access Security 297

● Caller identity. Does the database need to receive the identity of the original
caller through the call context either to perform authorization or to perform
auditing, or can you use one or more trusted connections and pass the original
caller identity at the application level?
For the operating system to flow the original caller’s identity, it requires imper-
sonation/delegation in the middle tier. This dramatically reduces the effective-
ness of connection pooling. Connection pooling is still enabled, but it results in
many small pools (for each separate security context), with little if any reuse of
connections.

● Are you sending sensitive data to and from the database server? While Windows
authentication means that you do not pass user credentials over the network to
the database server, if your application’s data is sensitive (for example, employee
details or payroll data), then this should be secured using IPSec or SSL.

Authentication
This section discusses how you should authenticate clients to SQL Server and how
you choose an identity to use for database access within client applications, prior to
connecting to SQL Server.

Windows Authentication
Windows authentication is more secure than SQL authentication for the following
reasons:
● Credentials are managed for you and the credentials are not transmitted over the

network.
● You avoid embedding user names and passwords in connection strings.
● Logon security improves through password expiration periods, minimum

lengths, and account lockout after multiple invalid logon requests. This mitigates
the threat from dictionary attacks.

Use Windows authentication in the following scenarios:
● You have used the trusted subsystem model and you connect to SQL Server

using a single fixed identity. If you are connecting from ASP.NET, this assumes
that the Web application is not configured for impersonation.
In this scenario, use the ASP.NET process identity or a serviced component
identity (obtained from the account used to run an Enterprise Services server
application).

● You are intentionally delegating the original caller’s security context by using
delegation (and are prepared to sacrifice application scalability by foregoing
database connection pooling).



Building Secure ASP.NET Applications298

Consider the following key points when you use Windows authentication to con-
nect to SQL Server:
● Use the principle of least privilege for the ASP.NET process account. Avoid

giving the ASP.NET process account the “Act as part of the operating system”
privilege to enable LogonUser API calls.

● Determine which code requires additional privileges, and place it within ser-
viced components that run in out-of-process Enterprise Services applications.

More Information
For more information about accessing network resources from ASP.NET and choos-
ing and configuring an appropriate account to run ASP.NET, see Chapter 8,
“ASP.NET Security.”

Using Windows Authentication
You have the following options when you use Windows authentication to connect to
SQL Server from an ASP.NET application (or Web service, or remote component
hosted by ASP.NET):
● Use the ASP.NET process identity.
● Use fixed identities within ASP.NET.
● Use serviced components.
● Use the LogonUser API and impersonating a specific identity.
● Use the original caller’s identity.
● Use the anonymous Internet User account.

Recommendation
The recommendation is to configure the local ASP.NET process identity by changing
the password to a known value on the Web server and create a mirrored account on
the database server by creating a local user with the same name and password.
Further details for this and the other approaches are presented below.

Using the ASP.NET Process Identity
If you connect to SQL Server directly from an ASP.NET application (or Web service,
or remote component hosted by ASP.NET), use the ASP.NET process identity. This is
a common approach and the application defines the trust boundary, that is, the
database trusts the ASP.NET account to access database objects.



Chapter 12: Data Access Security 299

You have three options:
● Use mirrored ASPNET local accounts.
● Use mirrored, custom local accounts.
● Use a custom domain account.

Use Mirrored ASPNET Local Accounts

This is the simplest approach and is the one generally used when you own the
target database (and can control the administration of local database-server
accounts). With this option, you use the ASPNET least-privileged, local account
to run ASP.NET and then create a duplicated account on the database server.

Note: This approach has the added advantages that it works across non-trusting domains and
through firewalls. The firewall may not open sufficient ports to support Windows authentication.

Use Mirrored, Custom Local Accounts

This approach is the same as the previous approach except that you don’t use the
default ASPNET account. This means two things:
● You will need to create a custom local account with appropriate permissions and

privileges.
For more information, see “How To: Create a Custom Account to Run ASP.NET”
in the Reference section of this guide.

● You are no longer using the default account created by the .NET Framework
installation process. Your company may have a policy not to use default installa-
tion accounts. This can potentially raise the security bar of your application.
For more information, see the Sans Top 20, “G2 — Accounts with No Passwords
or Weak Passwords” (http://www.sans.org/top20.htm).

Use a Custom Domain Account

This approach is similar to the previous one except that you use a least-privileged
domain account instead of a local account. This approach assumes that client and
server computers are in the same or trusting domains. The main benefit is that
credentials are not shared across machines; the machines simply give access to the
domain account. Also, administration is easier with domain accounts.

Implementing Mirrored ASPNET Process Identity

In order to use mirrored accounts to connect from ASP.NET to a database, you need
to perform the following actions:
● Use User Manager on the Web server to reset the ASPNET account’s password to

a known strong password value.



Building Secure ASP.NET Applications300

Important: If you change the ASPNET password to a known value, the password in the
Local Security Authority (LSA) on the local computer will no longer match the account
password stored in the Windows Security Account Manager (SAM) database. If you need to
revert to the AutoGenerate default, you must do the following:
Run Aspnet_regiis.exe to reset ASP.NET to its default configuration. For more information,
see article Q306005, “HOWTO: Repair IIS Mapping After You Remove and Reinstall IIS,” in
the Microsoft Knowledge Base. When you do this, you get a new account and a new
Windows Security Identifier (SID). The permissions for this account are set to their default
values. As a result, you need to explicitly reapply permissions and privileges that you had
originally set for the old ASPNET account.

● Explicitly set the password in Machine.config.

<processModel userName="machine" password="YourStrongPassword"    .

You should protect machine.config from unauthorized access by using Windows
ACLs. For example, restrict Machine.config from the IIS anonymous Internet
user account.

● Create a mirrored account (with the same name and password) on the database
server.

● Within the SQL database, create a server login for the local ASPNET account and
then map the login to a user account within the required database. Then create a
database user role, add the database user to the role, and configure the appropri-
ate database permissions for the role.
For more information, see “Creating a least privileged database account” later in
this chapter.

Connecting to SQL Server Using Windows Authentication

To connect to SQL Server using Windows authentication:
● Within the client application, use a connection string that contains either

“Trusted Connection=Yes”, or “Integrated Security=SSPI”. The two strings are
equivalent and both result in Windows authentication (assuming that your SQL
Server is configured for Windows authentication). For example:

"server=MySQL; Integrated Security=SSPI; database=Northwind"

Note: The identity of the client making the request (that is, the client authenticated by SQL
Server) is determined by the client’s thread impersonation token (if the thread is currently
impersonating) or the client’s current process token.



Chapter 12: Data Access Security 301

Using Fixed Identities within ASP.NET
With this approach, you configure your ASP.NET application to impersonate a
specified, fixed identity, by using the following element in Web.config.

<identity impersonate="true"
          userName="YourAccount"
          password="YourStrongPassword" />

This becomes the default identity that is used when you connect to network re-
sources, including databases.

This approach is not recommended with the .NET Framework version 1.0 for two
reasons:
● User names and passwords are in clear text in the Web space (that is, in

Web.config in a virtual directory).
● ASP.NET (on Windows 2000) requires the “Act as part of the operating system”

privilege. This restriction does not apply for Microsoft Windows .NET Server
2003.
For more information about this strong privilege, see the Security Briefs column
in the August 99 copy of Microsoft Systems Journal (http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnmsj99/html/security0899.asp).

The .NET Framework version 1.1 will provide an enhancement for this scenario on
Windows 2000. Specifically:
● The credentials will be encrypted.
● The logon will be performed by the IIS process, so that ASP.NET does not require

the “Act as part of the operating system” privilege.

Using Serviced Components
You can develop a serviced component specifically to contain data access code.
With serviced components, you can access the database by either hosting your
component in an Enterprise Services (COM+) server application running under a
specific identity, or you can write code that uses the LogonUser API to perform
impersonation.

Using out of process serviced components raises the security bar because process
hops make an attacker’s job more difficult, particularly if the processes run with
different identities. The other advantage is that you can isolate code that requires
more privilege from the rest of the application.



Building Secure ASP.NET Applications302

Calling LogonUser and Impersonating a Specific Windows Identity
You should not call LogonUser directly from ASP.NET. In Windows 2000, this
approach requires you to give the ASP.NET process identity “Act as part of the
operating system”.

A preferred approach is to call LogonUser outside of the ASP.NET process using a
serviced component in an Enterprise Services server application, as discussed
above.

Using the Original Caller’s Identity
For this approach to work, you need to use Kerberos delegation and impersonate
the caller to the database, either directly from ASP.NET or from a serviced component.

From ASP.NET add the following to your application’s Web.config.

<identity impersonate="true" />

From a serviced component, call CoImpersonateClient.

Using the Anonymous Internet User Account
As a variation of the previous approach, for scenarios where your application uses
Forms or Passport authentication (which implies IIS anonymous authentication),
you can enable impersonation within your application’s web.config in order to use
the anonymous Internet user account for database access.

<identity impersonate="true" />

With IIS configured for anonymous authentication, this configuration results in
your Web application’s code running using the anonymous Internet user’s imper-
sonation token. In a Web hosting environment, this has the advantage of allowing
you to separately audit and track database access from multiple Web applications.

More Information
● For more information and implementation details about using the original

caller’s identity, see “Flowing the Original Caller to the Database” in Chapter 5,
“Intranet Security.”

● For more information about how to configure IIS to use anonymous user account
refer to Chapter 8, “ASP.NET Security.”



Chapter 12: Data Access Security 303

When Can’t You Use Windows Authentication?
Certain application scenarios may prevent the use of Windows authentication. For
example:
● Your database client and database server are separated by a firewall which

prevents Windows authentication.
● Your application needs to connect to one or more databases using multiple

identities.
● You are connecting to databases other than SQL Server.
● You don’t have a secure way within ASP.NET to run code as a specific Windows

user. Either you can’t (or won’t) forward the original caller’s security context,
and/or you want to use a dedicated service account rather than grant logons to
end users.
Specifying a user name and password in Machine.config (on the
<processModel> element) or in Web.config (on the <identity> element) in order
to run the ASP.NET worker process or your application is less secure than taking
explicit steps to protect standard SQL credentials.

In these scenarios, you will have to use SQL authentication (or the database’s native
authentication mechanism), and you must:
● Protect database user credentials on the application server.
● Protect database user credentials while in transit from the server to the database.

If you do use SQL authentication, there are various ways in which you can make
SQL authentication more secure. These are highlighted in the next section.

SQL Authentication
If your application needs to use SQL authentication, you need to consider the
following key points:
● Use a least-privileged account to connect to SQL.
● Credentials are passed over the wire so they must be secured.
● The SQL connection string (which contains credentials) must be secured.

Connection String Types
If you connect to a SQL Server database using credentials (user name and pass-
word) then your connection string looks like this:

SqlConnectionString = "Server=YourServer;
                      Database=YourDatabase;
                      uid=YourUserName;pwd=YourStrongPassword;"



Building Secure ASP.NET Applications304

If you need to connect to a specific instance of SQL Server (a feature available only
in SQL Server 2000 or later) installed on the same computer then your connection
string looks like this:

SqlConnectionString = "Server=YourServer\Instance;
                      Database=YourDatabase;uid=YourUserName;
                      pwd=YourStrongPassword;"

If you want to connect to SQL Server using your network credentials, use the
Integrated Security attribute (or Trusted Connection attribute) and omit the user-
name and password:

SqlConnectionString = "Server=YourServer;
                       Database=YourDatabase;
                       Integrated Security=SSPI;"

- or -

SqlConnectionString = "Server=YourServer;
                      Database=YourDatabase;
                      Trusted_Connection=Yes;"

If you are connecting to an Oracle database by using explicit credentials (user name
and password) then your connection string looks like this:

SqlConnectionString = "Provider=MSDAORA;Data Source=YourDatabaseAlias;
                      User ID=YourUserName;Password=YourPassword;"

More Information

For more information about using Universal Data Link (UDL) files for your connec-
tion, see article Q308426, “HOW TO: Use Data Link Files with the OleDbConnection
Object in Visual C# .NET,” in the Microsoft Knowledge Base.

Choosing a SQL Account for Your Connections
Don’t use the built-in sa or db_owner accounts for data access. Instead, use least-
privileged accounts with a strong password.

Avoid the following connection string:

SqlConnectionString = "Server=YourServer\Instance;
                       Database=YourDatabase; uid=sa; pwd=;"



Chapter 12: Data Access Security 305

Use least privileged accounts with a strong password, for example:

SqlConnectionString= "Server=YourServer\Instance;
                      Database=YourDatabase;
                      uid=YourStrongAccount;
                      pwd=YourStrongPassword;"

Note that this does not address the issue of storing credentials in plain text in your
Web.config files. All you’ve done so far is limit the scope of damage possible in the
event of a compromise, by using a least-privileged account. To further raise the
security bar, you should encrypt the credentials.

Note: If you selected a case-sensitive sort order when you installed SQL Server, your login ID
is also case-sensitive.

Passing Credentials over the Network
When you connect to SQL Server with SQL authentication, the user name and
password are sent across the network in clear text. This can represent a significant
security concern. For more information about how to secure the channel between an
application or Web server and database server, see “Secure Communication” later in
this chapter.

Securing SQL Connection Strings
User names and passwords should not be stored in clear text in configuration files.
For details about how to store connection strings securely, see “Storing Database
Connection Strings” later in this chapter.

Authenticating Against Non-SQL Server Databases
The typical issues you may encounter when connecting to non-SQL databases are
similar to scenarios where you need to use SQL authentication. You may need to
supply explicit credentials if the target resources do not support Windows authenti-
cation. To secure this type of scenario, you must store the connection string securely
and you must also secure the communication over the network (to prevent intercep-
tion of credentials).

More Information
● For more information about storing database connection strings, see “Storing

Database Connection Strings Securely” later in this chapter.
● For more information about securing the channel to the database server, see

“Secure Communications” later in this chapter.



Building Secure ASP.NET Applications306

Authorization
SQL Server provides a number of role-based approaches for authorization. These
revolve around the following thee types of roles supported by SQL Server:
● User-defined Database Roles. These are used to group together users who have

the same security privileges within the database. You add Windows user or
group accounts to user database roles and establish permissions on individual
database objects (stored procedures, tables, views, and so on) using the roles.

● Application Roles. These are similar to user database roles in that they are used
when establishing object permissions. However, unlike user database roles, they
do not contain users or groups. Instead, they must are activated by an applica-
tion using a built-in stored procedure. Once active, the permissions granted to
the role determine the data access capabilities of the application.
Application roles allow database administrators to grant selected applications
access to specified database objects. This is in contrast to granting permissions to
users.

● Fixed Database Roles. SQL Server also provides fixed server roles such as
db_datareader and db_datawriter. These built-in roles are present in all data-
bases and can be used to quickly give a user read specific (and other commonly
used) sets of permissions within the database.

For more information about these various role types (and also fixed server roles
which are similar to fixed database roles but apply at the server level instead of the
database level), see SQL Server Books Online (http://www.microsoft.com/sql/techinfo
/productdoc/2000/books.asp).

Using Multiple Database Roles
If your application has multiple categories of users, and the users within each
category require the same permissions within the database, your application re-
quires multiple roles.

Each role requires a different set of permissions within the database. For example,
members of an Internet User role may require read-only permissions to the majority
of tables within a database, while members of an Administrator or Operator role
may require read/write permissions.



Chapter 12: Data Access Security 307

Options
To accommodate these scenarios, you have two main options for role-based authori-
zation within SQL Server:
● User-defined SQL Server Database Roles. These are used to assign permissions

to database objects for groups of users who have the same security permissions
within the database.
When you use user-defined database roles, you check at the gate, map users to
roles, (for example, in an ASP.NET Web application or in a middle-tier serviced
component in an Enterprise Services server application) and use multiple identi-
ties to connect to the database, each of which maps to a user-defined database
role.

● SQL Application Roles. These are similar to user-defined database roles in that
they are used when you assign permissions to database objects. However, unlike
user-defined database roles, they do not contain members and are activated from
individual applications by using a built-in stored procedure.
When you use application roles, you check at the gate, map users to roles, con-
nect to the database using a single, trusted, service identity, and activate the
appropriate SQL application role.

User-Defined Database Roles
If you elect to use user-defined database roles, you must:
● Create multiple service accounts to use for database access.
● Map each account to a user-defined database role.
● Establish the necessary database permissions for each role within the database.
● Authorize users within your application (ASP.NET Web application, Web service,

or middle tier component) and then use application logic within your data access
layer to determine which account to connect to the database with. This is based
on the role-membership of the caller.
Declaratively, you can configure individual methods to allow only those users
that belong to a set of roles. You then add imperative role-checks within method
code to determine precise role membership, which determines the connection
to use.

Figure 12.4 on the next page illustrates this approach.



Building Secure ASP.NET Applications308

SQL 
Server

A

B

C

D

E

A

B

C

D

E

Web Server Application Server Database Server

Callers mapped to a “trusted” 
connection based on (Enterprise 

Services) role membership

Permissions based on 
User Database Roles

(Authorization)

Connection for Role1

(ServiceIdentity1)

Connection for Role2

(ServiceIdentity2)

Role 
1

Role 
2

Figure 12.4
Connecting to SQL Server using multiple SQL user database roles

To use the preferred Windows authentication for this scenario, you develop code
(using the LogonUser API) in an out of process serviced component to impersonate
one of a set of Windows identities.

With SQL authentication, you use a different connection string (containing different
user names and passwords) depending upon role-based logic within your application.

More Information

For more information about securely storing database connection strings, see
“Storing Database Connection Strings Securely” later in this chapter.

Application Roles
With SQL application roles, you must:
● Create a single service account to use for database access (this may be the pro-

cess account used to run the ASP.NET worker process, or an Enterprise Services
application).

● Create a set of SQL application roles within the database.
● Establish the necessary database permissions for each role within the database.
● Authorize users within your application (ASP.NET Web application, Web service

or middle tier component), and use application logic within your data access
layer to determine which application role to activate within the database. This is
based on the role-membership of the caller.

Figure 12.5 illustrates this approach.



Chapter 12: Data Access Security 309

SQL 
Server

A

B

C

D

E

A

B

C

D

E

Web Server Application Server Database Server

Callers mapped to a SQL Application 
Role based on (Enterprise Services) 

role membership

Permissions based on 
Application Database Roles

(Authorization)

ServiceIdentity1
sp_setapprole(

“AppRole1”, “Str0ngPassW0rd1”)

ServiceIdentity1
sp_setapprole(

“AppRole2”, “Str0ngPassW0rd2”)

Role 
1

Role 
2

Figure 12.5
Using multiple SQL application roles

In Figure 12.5, the identity ServiceIdentity1 that is used to access the database is
usually obtained from the ASP.NET worker process or from an Enterprise Services
server application process identity.

With this approach, the same service identity (and therefore the same connection) is
used to connect to SQL Server. SQL application roles are activated with the
sp_setapprole built-in stored procedure, based on the role membership of the caller.
This stored procedure requires the role name and a password.

If you use this approach, you must securely store the role name and password
credentials. For further advice and secret storage techniques, see “Storing Database
Connection Strings Securely” later in this chapter.

Limitations of SQL Application Roles

The following are the key points that you must be aware of before you choose to use
SQL application roles:
● You need to manage credentials for the SQL application roles. You must call the

sp_setapprole stored procedure passing a role name and password for each
connection. If you are activating a SQL application role from managed code then
having a clear text password embedded in the assembly is not safe.

● SQL application role credentials are passed to the database in clear text. You
should secure them on the network by using IPSec or SSL between the applica-
tion server and database server.

● After a SQL application role is activated on a connection it cannot be deactivated.
It remains active until the connection closes. Also, you cannot switch between
two or more roles on the same connection.

● Use SQL application roles only when your application uses a single, fixed iden-
tity to connect to the database. In other words, use them only when your applica-
tion uses the trusted subsystem model.



Building Secure ASP.NET Applications310

If the security context of the connection changes (as it would if the original
caller’s context were use to connect to the database), then SQL application roles
do not work in conjunction with connection pooling.
For more information, see article Q229564, “PRB: SQL Application Role Errors
with OLE DB Resource Pooling,” in the Microsoft Knowledge Base.

Secure Communication
In most application scenarios you need to secure the communication link between
your application server and database. You need to be able to guarantee:
● Message Confidentiality. The data must be encrypted to ensure that it remains

private.
● Message Integrity. The data must be signed to ensure that it remains unaltered.

In some scenarios, all of the data passed between application server and database
server must be secured, while in other scenarios, selected items of data sent over
specific connections must be secured. For example:
● In an intranet Human Resources application, some of the employee details

passed between client and the database server are sensitive.
● In Internet scenarios, such as secure banking applications, all of the data passed

between the application server and database server must be secured.
● If you are using SQL authentication, you should also secure the communication

link to ensure that user names and passwords can not be compromised with
network monitoring software.

The Options
You have two options for securing the network link between an application server
and database server:
● IPSec
● SSL (Using a server certificate on the SQL Server computer)

Note: You must be running SQL Server 2000 to support the use of SSL. Earlier versions do
not support it. The client must have the SQL Server 2000 client libraries installed.

Choosing an Approach
Whether or not you should use IPSec or SSL depends on a number of primarily
environmental factors, such as firewall considerations, operating system and data-
base versions, and so on.



Chapter 12: Data Access Security 311

Note: IPSec is not intended as a replacement for application-level security. Today it is used as
a defense in depth mechanism, or to secure insecure applications without changing them, and
to secure non-TLS (for example, SSL) protocols from network-wire attacks.

More Information
● For more information about configuring IPSec, see “How To: Use IPSec to Pro-

vide Secure Communication between Two Servers” in the Reference section of
this guide.

● For more information about configuring SSL, see “How To: Use SSL to Secure
Communication with SQL Server 2000” in the Reference section of this guide.

● For more information about SSL and IPSec in general, see Chapter 4, “Secure
Communication.”

Connecting with Least Privilege
Connecting to the database with least privilege means that the connection you
establish only has the minimum privileges that you need within the database.
Simply put, you don’t connect to your database using the sa or database owner
accounts. Ideally, if the current user is not authorized to add or update records, then
the corresponding account used for their connection (which may be aggregated to
an identity that represents a particular role) cannot add or update records in the
database.

When you connect to SQL Server, your approach needs to support the necessary
granularity that your database authorization requires. You need to consider what
the database trusts. It can trust:
● The application.
● Application defined roles.
● The original caller.

The Database Trusts the Application
Consider a finance application that you authorize to use your database. The finance
application is responsible for managing user authentication and authorizing access.
In this case, you can manage your connections through a single trusted account
(which corresponds to either a SQL login or a Windows account mapped to a SQL
login). If you’re using Windows authentication, this would typically mean allowing
the process identity of the calling application (such as the ASP.NET worker process,
or an Enterprise Services server application identity) to access the database.



Building Secure ASP.NET Applications312

From an authorization standpoint, this approach is very coarse-grained, because the
connection runs as an identity that has access to all database objects and resources
needed by the application. The benefits of this approach are that you can use con-
nection pooling and you simplify administration because you are authorizing a
single account. The downside is that all of your users run with the same connection
privileges.

The Database Trusts Different Roles
You can use pools of separate, trusted connections to the database that correspond
to the roles defined by your application, for example, one connection that is for
tellers, another for managers, and so on.

These connections may or may not use Windows authentication. The advantage of
Windows authentication is that it handles credential management and doesn’t send
the credentials over the network. However, while Windows authentication is
possible at the process or application level (as when you use a single connection to
the database), there are additional challenges presented by the fact you need mul-
tiple identities (one per role).

Many applications use the LogonUser API to establish a Windows access token. The
problem with this approach is two-fold:
● You now have a credential management issue (your application has to securely

store the account user name and password).
● The LogonUser API requires that the calling process account have the “Act as

part of the operating system” privilege. This means that you are forced to give
the ASP.NET process account this privilege, which is not recommended. An
alternative is to use SQL Authentication, but then you need to protect the creden-
tials on the server and over the network.

Note: This LogonUser restriction is lifted in Windows .NET Server 2003.

The Database Trusts the Original Caller
In this case, you need to flow the original caller through multiple tiers to the data-
base. This means that your clients need network credentials to be able to hop from
one computer to the next. This requires Kerberos delegation.

Although this solution provides a fine-grained level of authorization within the
database, because you know the identity of the original caller and can establish per
user permissions on database objects, it impacts application performance and
scalability. Connection pooling (although still enabled) becomes ineffective.



Chapter 12: Data Access Security 313

Creating a Least Privilege Database Account
The following steps are provided as a simple example to show you how to create a
least privilege database account. While most database administrators are already
familiar with these steps, many developers may not be and resort to using the sa or
database owner account to force their applications to work.

This can create difficulties when moving from a development environment, to a test
environment, and then to a production environment because the application moves
from an environment that’s wide open into a more tightly controlled setting, which
prevents the application from functioning correctly.

You start by creating a SQL login for either a SQL account or a Windows account
(user or group). You then add that login to a database user role and assign permis-
sions to that role.

� To set up a data access account for SQL
1. Create a new user account and add the account to a Windows group. If you are

managing multiple users, you would use a group. If you are dealing with a
single application account (such as a duplicated ASP.NET process account), you
may choose not to add the account to a Windows group.

2. Create a SQL Server login for the user/group.
a. Start Enterprise Manager, locate your database server, and then expand the

Security folder.
b. Right-click Logins, and then click New Login.
c. Enter the Windows group name into the Name field, and then click OK to

close the SQL Server Login Properties dialog box.

3. Create a new database user in the database of interest that is mapped to the SQL
server login.
a. Use Enterprise Manager and expand the Databases folder, and then expand

the required database for which the login requires access.
b. Right-click Users, and then click New Database User.
c. Select the previously created Login name.
d. Specify a user name.
e Configure permissions as discussed below.

4. Grant the database user Select permissions on the tables that need to be accessed
and Execute permissions on any relevant stored procedures.



Building Secure ASP.NET Applications314

Note: If the stored procedure and the table are owned by the same person, and access the
table only through the stored procedure (and do not need to access the table directly), it is
sufficient to grant execute permissions on the stored procedure alone. This is because of
the concept of ownership chaining. For more information, see SQL Server Books online.

5. If you want the user account to have access to all the views and tables in the
database, add them to the db_datareader role.

Storing Database Connection Strings Securely
There are a number of possible locations and approaches for storing database con-
nection strings, each with varying degrees of security and configuration flexibility.

The Options
The following list represents the main options for storing connection strings:
● Encrypted with DPAPI
● Clear text in Web.config or Machine.config
● UDL files
● Custom text files
● Registry
● COM+ catalog

Using DPAPI
Windows 2000 and later operating systems provide the Win32® Data Protection API
(DPAPI) for encrypting and decrypting data. DPAPI is part of the Cryptography
API (Crypto API) and is implemented in Crypt32.dll. It consists of two methods —
CryptProtectData and CryptUnprotectData.

DPAPI is particularly useful in that it can eliminate the key management problem
exposed to applications that use cryptography. While encryption ensures the data is
secure, you must take additional steps to ensure the security of the key. DPAPI uses
the password of the user account associated with the code that calls the DPAPI
functions in order to derive the encryption key. As a result the operating system
(and not the application) manages the key.



Chapter 12: Data Access Security 315

Why Not LSA?
Many applications use the Local Security Authority (LSA) to store secrets. DPAPI
has the following advantages over the LSA approach:
● To use the LSA, a process requires administrative privileges. This is a security

concern because it greatly increases the potential damage that can be done by an
attacker who manages to compromise the process.

● The LSA provides only a limited number of slots for secret storage, many of
which are already used by the system.

Machine Store vs. User Store
DPAPI can work with either the machine store or user store (which requires a
loaded user profile). DPAPI defaults to the user store, although you can specify that
the machine store be used by passing the CRYPTPROTECT_LOCAL_MACHINE
flag to the DPAPI functions.

The user profile approach affords an additional layer of security because it limits
who can access the secret. Only the user who encrypts the data can decrypt the
data. However, use of the user profile requires additional development effort when
DPAPI is used from an ASP.NET Web application because you need to take explicit
steps to load and unload a user profile (ASP.NET does not automatically load a user
profile).

The machine store approach is easier to develop because it does not require user
profile management. However, unless an additional entropy parameter is used, it is
less secure because any user on the computer can decrypt data. (Entropy is a ran-
dom value designed to make deciphering the secret more difficult). The problem
with using an additional entropy parameter is that this must be securely stored by
the application, which presents another key management issue.

Note: If you use DPAPI with the machine store, the encrypted string is specific to a given
computer and therefore you must generate the encrypted data on every computer. Do not copy
the encrypted data across computers in a farm or cluster.
If you use DPAPI with the user store, you can decrypt the data on any computer with a roaming
user profile.



Building Secure ASP.NET Applications316

DPAPI Implementation Solutions
This section presents two implementation solutions that show you how to use
DPAPI from an ASP.NET Web application to secure a connection string (or a secret
of any type). The implementation solutions described in this section are:
● Using DPAPI from Enterprise Services. This solution allows you to use DPAPI

with the user store.
● Using DPAPI Directly from ASP.NET. This solution allows you to use DPAPI

with the machine store, which makes the solution easier to develop as DPAPI can
be called directly from an ASP.NET Web application.

Using DPAPI from Enterprise Services

An ASP.NET Web application can’t call DPAPI and use the user store because this
requires a loaded user profile. The ASPNET account usually used to run Web
applications is a non-interactive account and as such does not have a user profile.
Furthermore, if the ASP.NET application is impersonating, the Web application
thread runs as the currently authenticated user, which can vary from one request to
the next.

This presents the following issues for an ASP.NET Web application that wants to use
DPAPI:
● Calls to DPAPI from an ASP.NET application running under the default ASPNET

account will fail. This is because the ASPNET account does not have a user
profile, as it is not used for interactive logons.

● If an ASP.NET Web application is configured to impersonate its callers, the
ASP.NET application thread has an associated thread impersonation token. The
logon session associated with this impersonation token is a network logon
session (used on the server to represent the caller). Network logon sessions do
not result in user profiles being loaded.

To overcome this issue, you can create a serviced component (within an out-of-
process Enterprise Services (COM+) server application) to call DPAPI. You can
ensure that the account used to run the component has a user profile and you can
use a Win32 service to automatically load the profile.

Note: It is possible to avoid the use of a Win32 service by placing calls to Win32 profile
management functions (LoadUserProfile and UnloadUserProfile) within the serviced compo-
nent.
There are two drawbacks to this approach. First, calls to these APIs on a per-request basis
would severely impact performance. Second, these APIs require that the calling code have
administrative privileges on the local computer, which defeats the principle of least privilege for
the Enterprise Services process account.



Chapter 12: Data Access Security 317

Figure 12.6 shows the Enterprise Services DPAPI solution.

ASP.NET 
Web 

Application

4

6

3 5

2

1

web.config

Encrypted 
Connection 

String

Serviced 
Component

DPAPI

Crypto API

Win32 
Service

Service Control 
Manager

Start and
load user
profile

Launch

P/Invoke

Enterprise Services      (COM+)
Server   Application

Figure 12.6
The ASP.NET Web application uses a COM+ server application to interact with DPAPI

In Figure 12.6, the runtime sequence of events is as follows:
1. The Windows service control manager starts the Win32 service and automati-

cally loads the user profile associated with the account under which the service
runs. The same Windows account is used to run the Enterprise Services applica-
tion.

2. The Win32 service calls a launch method on the serviced component that starts
the Enterprise Services application and loads the serviced component.

3. The Web application retrieves the encrypted string from the Web.config file.
You can store the encrypted string by using an <appSettings> element within
Web.config as shown below. This element supports arbitrary key-value pairs.

<configuration>
 <appSettings>
  <add key="SqlConnString"
       value="AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAABcqc/xCHxki3" />
 </appSettings>
</configuration>

You can retrieve the encrypted string with the following line of code:

string connString = ConfigurationSettings.AppSettings["SqlConnString"];



Building Secure ASP.NET Applications318

Note: You can use Web.config or Machine.config to store encrypted connection strings.
Machine.config is preferred as it is in a system directory outside of a virtual directory. This
is discussed further in the next section, “Using Web.config and Machine.config.”

4. The application calls a method on the serviced component to decrypt the connec-
tion string.

5. The serviced component interacts with DPAPI using P/Invoke to call the Win32
DPAPI functions.

6. The decrypted string is returned to the Web application.

Note: To store encrypted connection strings in the Web.config file in the first place, write a
utility application that takes the connection strings and calls the serviced component’s
EncryptData method to obtain the encrypted string. It is essential that you run the utility
application while logged on with the same account that you use to run the Enterprise Services
server application.

Using DPAPI Directly from ASP.NET

If you use the machine store (and call the DPAPI functions with the
CRYPTPROTECT_LOCAL_MACHINE flag) you can call the DPAPI functions
directly from an ASP.NET Web application (because you don’t need a user profile).

However, because you are using the machine store, any Windows account that can
log on to the computer has access to the secret. A mitigating approach is to add
entropy but this requires additional key management.

As alternatives to using entropy with the machine store, consider the following
options:
● Use Windows ACLs to restrict access to the encrypted data (whether the data is

stored in the file system or registry).
● Consider hard-coding the entropy parameter into your application to avoid the

key management issue.

More Information
● For more information about creating a DPAPI library for use with .NET Web

applications, see “How To: Create a DPAPI Library” in the Reference section of
this guide.

● For a detailed implementation walkthrough that shows you how to use DPAPI
directly from ASP.NET, see “How To: Use DPAPI (Machine Store) from
ASP.NET” in the Reference section of this guide.

● For a detailed implementation walkthrough that shows you how to use DPAPI
from Enterprise Services, see “How To: Use DPAPI (User Store) from ASP.NET
with Enterprise Services” in the Reference section of this guide.



Chapter 12: Data Access Security 319

● For more information about Windows Data Protection with DPAPI, see the
MSDN article, “Windows Data Protection.”

Using Web.config and Machine.config
Storing plain text passwords in Web.config is not recommended. By default, the
HttpForbiddenHandler protects the file from being downloading and viewed by
malicious users. However, users who have access directly to the folders that contain
the configuration files can still see the user name and password.

Machine.config is considered a more secure storage location than Web.config
because it is located in a system directory (with ACLs) outside of a Web
application’s virtual directory. Always lock down Machine.config with ACLs.

More Information
For more information about securing Machine.config, see Chapter 8, “ASP.NET
Security.”

Using UDL Files
The OLE DB .NET Data Provider supports UDL file names in its connection string.
To reference a UDL file, use “File Name=name.udl” within the connection string.

Important: This option is only available if you use the OLE DB .NET Data Provider to connect to
the database. The SQL Server .NET Data Provider does not use UDL files.

It is not recommended to store UDL files in a virtual directory along with other
application files. You should store them outside the Web application’s virtual
directory hierarchy and then secure the file or the folder containing the file with
Windows ACLs. You should also consider storing UDL files on a separate logical
volume from the operating system to protect against possible file canonicalization
and directory traversal bugs.

ACL Granularity
UDL files (or indeed any text file) offer added granularity when you apply ACLs in
comparison to Machine.config. The default ACLs associated with Machine.config
grant access to a wide variety of local and remote users. For example,
Machine.config has the following default ACLs:

MachineName\ASPNET:R
BUILTIN\Users:R
BUILTIN\Power Users:C
BUILTIN\Administrators:F
NT AUTHORITY\SYSTEM:F



Building Secure ASP.NET Applications320

By contrast, you can lock down your own application’s UDL file much further. For
example, you can restrict access to Administrators, the System account, and the
ASP.NET process account (which requires read access) as shown below.

BUILTIN\Administrators:F
MachineName\ASPNET:R
NT AUTHORITY\SYSTEM:F

Note: Because UDL files can be modified externally to any ADO.NET client application, connec-
tion strings that contain references to UDL files are parsed every time the connection is
opened. This can impact performance and it is therefore recommended, for best performance,
that you use a static connection string that does not include a UDL file.

� To create a new UDL file
1. Use Windows Explorer and navigate to the folder in which you want to create

the UDL file.
2. Right-click within the folder, point to New, and then click Text Document.
3. Supply a file name with a .udl file extension.
4. Double-click the new file to display the UDL Properties dialog box.

More Information

For more information about using UDL files from Microsoft C#® development tool
programs, see article Q308426, “HOW TO: Use Data Link Files with
OleDbConnection Object in VC#,” in the Microsoft Knowledge Base.

Using Custom Text Files
Many applications use custom text files to store connection strings. If you do adopt
this approach consider the following recommendations:
● Store custom files outside of your application’s virtual directory hierarchy.
● Consider storing files on a separate logical volume from the operating system to

protect against possible file canonicalization and directory traversal bugs.
● Protect the file with a restricted ACL that grants read access to your application’s

process account.
● Avoid storing the connection string in clear text in the file. Instead, consider

using DPAPI to store an encrypted string.



Chapter 12: Data Access Security 321

Using the Registry
You can use a custom key in the Windows registry to store the connection string.
This information stored can either be stored in the HKEY_LOCAL_MACHINE
(HKLM) or HKEY_CURRENT_USER (HKCU) registry hive. For process identities,
such as the ASPNET account, that do not have user profiles, the information must
be stored in HKLM in order to allow ASP.NET code to retrieve it.

If you do use this approach, you should:
● Use ACLs to protect the registry key using Regedt32.exe.
● Encrypt the data prior to storage.

More Information
For more information about encrypting data for storage in the registry, see “How
To: Store an Encrypted Connection String in the Registry” in the Reference section
of this guide.

Using the COM+ Catalog
If your Web application includes serviced components, you can store connection
strings in the COM+ catalog as constructor strings. These are easily administered
(by using the Component Services tool) and are easily retrieved by component code.
Enterprise Services calls an object’s Construct method immediately after instantiat-
ing the object, and passes the configured construction string.

The COM+ catalog doesn’t provide a high degree of security, because the informa-
tion is not encrypted; however, it raises the security bar in comparison to configura-
tion files because of the additional process hop.

To prevent access to the catalog through the Component Services tool, include only
the desired list of users in the Administrator and Reader roles in the System appli-
cation.

The following example shows how to retrieve an object constructor string from a
serviced component.

[ConstructionEnabled(Default="Default Connection String")]
public class YourClass : ServicedComponent
{
  private string _ConnectionString;
  override protected void Construct(string s)
  {
    _ConnectionString = s;
  }
}



Building Secure ASP.NET Applications322

For added security, you can add code to encrypt the construction string prior to
storage and decrypt it within the serviced component.

More Information
● For more information on using connection strings, see article Q271284,

“HOWTO: Access COM+ Object Constructor String in a VB Component,” in the
Microsoft Knowledge Base.

● For a complete code sample provided by the .NET Framework SDK, see the
object constructor sample located in \Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Samples\Technologies\ComponentServices\ObjectConstruction.

Authenticating Users Against a Database
If you are building an application that needs to validate user credentials against a
database store, consider the following points:
● Store one-way password hashes (with a random salt value).
● Avoid SQL injection when validating user credentials.

Store One-way Password Hashes (with Salt)
Web applications that use Forms authentication often need to store user credentials
(including passwords) in a database. For security reasons, you should not store
passwords (clear text or encrypted) in the database.

You should avoid storing encrypted passwords because it raises key management
issues — you can secure the password with encryption, but you then have to con-
sider how to store the encryption key. If the key becomes compromised, an attacker
can decrypt all the passwords within your data store.

The preferred approach is to:
● Store a one way hash of the password. Re-compute the hash when the password

needs to be validated.
● Combine the password hash with a salt value (a cryptographically strong

random number). By combining the salt with the password hash, you mitigate
the threat associated with dictionary attacks.

Creating a Salt Value
The following code shows how to generate a salt value by using random number
generation functionality provided by the RNGCryptoServiceProvider class within
the System.Security.Cryptography namespace.



Chapter 12: Data Access Security 323

public static string CreateSalt(int size)
{
  RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
  byte[] buff = new byte[size];
  rng.GetBytes(buff);
  return Convert.ToBase64String(buff);
}

Creating a Hash Value (with Salt)
The following code fragment shows how to generate a hash value from a supplied
password and salt value.

public static string CreatePasswordHash(string pwd, string salt)
{
  string saltAndPwd = string.Concat(pwd, salt);
  string hashedPwd =
        FormsAuthentication.HashPasswordForStoringInConfigFile(
                                             saltAndPwd, "SHA1");
  return hashedPwd;
}

More Information
For the full implementation details of this approach, see “How To: Use Forms
Authentication with SQL Server 2000” in the Reference section of this guide.

SQL Injection Attacks
If you’re using Forms authentication against a SQL database, you should take the
precautions discussed in this section to avoid SQL injection attacks. SQL injection is
the act of passing additional (malicious) SQL code into an application which is
typically appended to the legitimate SQL code contained within the application. All
SQL databases are susceptible to SQL injection to varying degrees, but the focus in
this chapter is on SQL Server

You should pay particular attention to the potential for SQL injection attacks when
you process user input that forms part of a SQL command. If your authentication
scheme is based on validating users against a SQL database, for example, if you’re
using Forms authentication against SQL Server, then you must guard against SQL
injection attacks.

If you build SQL strings using unfiltered input, your application may be subject to
malicious user input (remember, never trust user input). The risk is that when you
insert user input into a string that becomes an executable statement, a malicious
user can append SQL commands to your intended SQL statements by using escape
characters.



Building Secure ASP.NET Applications324

The code fragments in the following sections use the Pubs database that is supplied
with SQL Server to illustrate examples of SQL injection.

The Problem
Your application may be susceptible to SQL injection attacks when you incorporate
user input or other unknown data into database queries. For example, both of the
following code fragments are susceptible to attack.
● You build SQL statements with unfiltered user input.

SqlDataAdapter myCommand = new SqlDataAdapter(
          "SELECT au_lname, au_fname FROM authors WHERE au_id = '" +
          Login.Text + "'", myConnection);

● You call a stored procedure by building a single string that incorporates unfil-
tered user input.

SqlDataAdapter myCommand = new SqlDataAdapter("LoginStoredProcedure '" +
                               Login.Text + "'", myConnection);

Anatomy of a SQL Script Injection Attack
When you accept unfiltered user input values (as shown above) in your application,
a malicious user can use escape characters to append their own commands.

Consider a SQL query that expects the user’s input to be in the form of a Social
Security Number, such as 172-32-xxxx, which results in a query like this:

SELECT au_lname, au_fname FROM authors WHERE au_id = '172-32-xxxx'

A malicious user can enter the following text into your application’s input field (for
example a text box control).

' ; INSERT INTO jobs (job_desc, min_lvl, max_lvl) VALUES ('Important Job', 25,
100)  -

In this example, an INSERT statement is injected (but any statement that is permit-
ted for the account that’s used to connect to SQL Server could be executed). The
code can be especially damaging if the account is a member of the sysadmin role
(this allows shell commands using xp_cmdshell) and SQL Server is running under a
domain account with access to other network resources.



Chapter 12: Data Access Security 325

The command above results in the following combined SQL string:

SELECT au_lname, au_fname FROM authors WHERE au_id = '';INSERT INTO jobs
(job_desc, min_lvl, max_lvl) VALUES ('Important Job', 25, 100)  --

In this case, the ' (single quotation mark) character that starts the rogue input
terminates the current string literal in your SQL statement. It closes the current
statement only if the following parsed token doesn’t make sense as a continuation
of the current statement, but does make sense as the start of a new statement.

SELECT au_lname, au_fname FROM authors WHERE au_id = ' '

The ; (semicolon) character tells SQL that you’re starting a new statement, which is
then followed by the malicious SQL code:

; INSERT INTO jobs (job_desc, min_lvl, max_lvl) VALUES ('Important Job', 25, 100)

Note: The semicolon is not necessarily required to separate SQL statements. This is vendor/
implementation dependent, but SQL Server does not require them. For example, SQL Server
will parse the following as two separate statements:

SELECT * FROM MyTable DELETE FROM MyTable

Finally, the -- (double dash) sequence of characters is a SQL comment that tells SQL
to ignore the rest of the text, which in this case, ignores the closing ' (single quote)
character (which would otherwise cause a SQL parser error).

The full text that SQL executes as a result of the statement shown above is:

SELECT au_lname, au_fname FROM authors WHERE au_id = '' ; INSERT INTO jobs
(job_desc, min_lvl, max_lvl) VALUES ('Important Job', 25, 100) --'

The Solution
The following approaches can be used to call SQL safely from your application.
● Use the Parameters collection when building your SQL statements.

SqlDataAdapter myCommand = new SqlDataAdapter(
        "SELECT au_lname, au_fname FROM Authors WHERE au_id= @au_id",
        myConnection);

SqlParameter parm = myCommand.SelectCommand.Parameters.Add(
                                             "@au_id",
                                             SqlDbType.VarChar, 11);
parm.Value= Login.Text;



Building Secure ASP.NET Applications326

● Use the Parameters collection when you call a stored procedure.

// AuthorLogin is a stored procedure that accepts a parameter named Login
SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin", myConnection);
myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter parm = myCommand.SelectCommand.Parameters.Add(
                                "@LoginId", SqlDbType.VarChar,11);
parm.Value=Login.Text;

If you use the Parameters collection, no matter what a malicious user includes as
input, the input is treated as a literal. An additional benefit of using the Param-
eters collection is that you can enforce type and length checks. Values outside of
the range trigger an exception. This is a healthy example of defense in depth.

● Filter user input for SQL characters. The following method shows how to ensure
that any string literal used in a simple SQL comparison statement (equal to, less
than, greater than) is safe. It does this by ensuring that any apostrophe used in
the string is escaped with an additional apostrophe. Within a SQL string literal,
two consecutive apostrophes are treated as an instance of the apostrophe charac-
ter within the string rather than as delimiters.

private string SafeSqlLiteral(string inputSQL)
{
  return inputSQL.Replace("'", "''");
}
…
string safeSQL = SafeSqlLiteral(Login.Text);
SqlDataAdapter myCommand = new SqlDataAdapter(
       "SELECT au_lname, au_fname FROM authors WHERE au_id = '" +
       safeSQL + "'", myConnection);

Additional Best Practices
The following are some additional measures you can take to limit the chance of
exploit, as well as limit the scope of potential damage:
● Prevent invalid input at the gate (the front-end application) by limiting the size

and type of input. By limiting the size and type of input, you significantly reduce
the potential for damage. For example, if your database lookup field is eleven
characters long and comprised entirely of numeric characters, enforce it.

● Run SQL code with a least privileged account. This significantly reduces the
potential damage that can be done.
For example, if a user were to inject SQL to DROP a table from the database,
but the SQL connection used an account that didn’t have appropriate permis-
sions, the SQL code would fail. This is another reason not to use the sa account
or database owner account for your application’s SQL connections.



Chapter 12: Data Access Security 327

● When an exception occurs in your SQL code, do not expose the SQL errors raised
by the database to the end user. Log error information and show only user
friendly information. This prevents exposing unnecessary detail that could help
an attacker.

Protecting Pattern Matching Statements
If input is to be used within string literals in a ‘LIKE’ clause, characters other than
apostrophe also take on special meaning for pattern matching.

For example, in a LIKE clause the % character means “match zero or more charac-
ters.” In order to treat such characters in the input as literal characters without
special meaning, they also need to be escaped. If they are not handled specially, the
query can return incorrect results; a non-escaped pattern matching character at or
near the beginning of the string could also defeat indexing.

For SQL Server, the following method should be used to ensure valid input:

private string SafeSqlLikeClauseLiteral(string inputSQL)
{
  // Make the following replacements:
  // '  becomes  ''
  // [  becomes  [[]
  // %  becomes  [%]
  // _  becomes  [_]

  string s = inputSQL;
  s = inputSQL.Replace("'", "''");
  s = s.Replace("[", "[[]");
  s = s.Replace("%", "[%]");
  s = s.Replace("_", "[_]");
  return s;
}

Auditing
Auditing of logons is not on by default within SQL Server. You can configure this
either through SQL Server Enterprise Manager or in the registry. The dialog box in
Figure 12.7 on the next page shows auditing enabled for both the success and failure
of user logons.

Log entries are written to SQL log files which are by default located in C:\Program
Files\Microsoft SQL Server\MSSQL\LOG. You can use any text reader, such as
Notepad, to view them.



Building Secure ASP.NET Applications328

Figure 12.7
SQL Server Properties dialog with Audit level settings

You can also enable SQL Server auditing in the registry. To enable SQL Server
auditing, create the following AuditLevel key within the registry and set its value
to one of the REG_DWORD values specified below.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\AuditLevel

You can choose from one of the following values, which allow you to capture the
level of detail you want:

3—captures both success and failed login attempts

2—captures only failed login attempts

1—captures only success login attempts

0—captures no logins

It is recommended that you turn on failed login auditing because this is a way to
determine if someone is attempting a brute attack into SQL Server. The performance
impacts of logging failed audit attempts are minimal unless you are being attacked,
in which case you need to know anyway.

You can also script against SQL Database Management Objects (DMO). The follow-
ing code fragment shows some sample VBScript code.



Chapter 12: Data Access Security 329

Sub SetAuditLevel(Server As String, NewAuditLevel As SQLDMO_AUDIT_TYPE)
    Dim objServer As New SQLServer2
    objServer.LoginSecure = True     'Use integrated security
    objServer.Connect Server        'Connect to the target SQL Server
    'Set the audit level
    objServer.IntegratedSecurity.AuditLevel = NewAuditLevel
    Set objServer = Nothing
End Sub

From SQL Server Books online, the members of the enumerated type,
SQLDMO_AUDIT_TYPE are:

SQLDMOAudit_All      3  Log all authentication attempts regardless of success
                        or failure
SQLDMOAudit_Failure  2  Log failed authentication
SQLDMOAudit_Success  1  Log successful authentication
SQLDMOAudit_None     0  Do not log authentication attempts

Process Identity for SQL Server
Run SQL Server using a least privileged domain account. When you install SQL
Server, you have the option of running the SQL Server service using the local
SYSTEM account, or a specified account.

Don’t use the SYSTEM account or an administrator account. Instead, use a least
privileged domain account. You do not need to grant this account any specific
privileges, as the installation process (or SQL Server Enterprise Manager, if you are
reconfiguring the SQL Service after installation) grants the specified account the
necessary privileges.

Summary
The following is a summary that highlights the recommendation for data access in
your .NET Web applications:
● Use Windows authentication to SQL Server when possible.
● Use accounts with least privilege in the database.
● Use least privileged, local accounts for running ASP.NET/Enterprise Services

when connecting to SQL Server.
● If you are using SQL authentication, take the following steps to improve security:

● Use custom accounts with strong passwords.
● Limit the permissions of each account within SQL Server using database roles.



Building Secure ASP.NET Applications330

● Add ACLs to any files used to store connection strings.
● Encrypt connection strings.
● Consider DPAPI for credential storage.

● When you use Forms authentication against SQL, take precautions to avoid SQL
injection attacks.

● Don’t store user passwords in databases for user validation. Instead, store
password hashes with a salt instead of clear text or encrypted passwords.

● Protect sensitive data sent over the network to and from SQL Server.
● Windows authentication protects credentials, but not application data.
● Use IPSec or SSL.



13
Troubleshooting Security Issues

This chapter presents a process for troubleshooting and provides a range of tech-
niques and tools that can be used to help diagnose security related problems.

Process for Troubleshooting
The following approach has proven to be helpful for resolving security and security
context related issues.
1. Start by describing the problem very clearly. Make sure you know precisely what

is supposed to happen, what is actually happening, and most importantly, the
detailed steps required to reproduce the problem.

2. Isolate the problem as accurately as you can. Try to determine at which stage
during the processing of a request the problem occurs. Is it a client or server
related issue? Does it appear to be a configuration or code related error? Try to
isolate the problem by stripping away application layers. For example, consider
building a simple console-based test client application to take the place of more
complex client applications.

3. Analyze error messages and stack traces (if they are available). Always start by
consulting the Windows event and security logs.

4. Check the Microsoft Knowledge Base to see if the problem has been documented
as a Knowledge Base article.

5. Many security related problems relate to the identity used to run code; these are
not always the identities you imagine are running the code. Use the code
samples presented in the “Determining Identity” subsection of the “ASP.NET”
section in this chapter to retrieve and diagnose identity information. If the
identities appear incorrect, check the configuration settings in web.config and
machine.config and also check the IIS authentication settings for your



Building Secure ASP.NET Applications332

application’s virtual directory. Factors that can affect identity within an ASP.NET
Web application include:
● The <processModel> element in machine.config used to determine the

process identity of the ASP.NET worker process (aspnet_wp.exe).
● Authentication settings in IIS.
● Authentication settings in web.config.
● Impersonation settings in web.config.

6. Even if it appears that the correct settings are being used and displayed, you
may want to explicitly configure a web.config file for your application (in the
application’s virtual directory) to make sure it is not inheriting settings from a
higher level application (perhaps from a web.config in a higher-level virtual
directory) or from machine.config.

7. Use some of the troubleshooting tools listed in the “Troubleshooting Tools”
section later in this chapter to capture additional diagnostics.

8. Attempt to reproduce the problem on another computer. This can help isolate
environmental related problems and can indicate whether or not the problem is
in your application’s code or configuration.

9. If your application is having problems accessing a remote resource, you may be
running into impersonation/delegation related problems. Identify the security
context being used for the remote resource access, and if you are using Windows
authentication, verify that the account providing the context (for example, a
process account), should be able to be authenticated by the remote computer.

10. Search newsgroups to see if the problem has already been reported. If not, post
the problem to the newsgroup to see if anyone within the development commu-
nity can provide assistance.
The online newsgroup for ASP.NET is located at: http://communities.microsoft.com
/newsgroups/default.asp?icp=mscom&slcid=US&newsgroup=microsoft.public.dotnet
.framework.aspnet

11. Call the Microsoft Support Center. For details, see the Microsoft Knowledge
Base.

Searching for Implementation Solutions
If you have a specific issue and need to understand the best way to tackle the
problem, use the following approach.
● Search in Chapters 5, 6, and 7of this guide for your scenario or a similar scenarios.
● Consult the MSDN library documentation and samples.



Chapter 13: Troubleshooting Security Issues 333

● Refer to one of the many ASP.NET information Web sites, such as:
● www.asp.net
● www.gotdotnet.com
● www.asptoday.com

● Search the Microsoft Knowledge Base for an appropriate How To article.
● Post questions to newsgroups.
● Call the Microsoft Support Center.

Troubleshooting Authentication Issues
The first step when troubleshooting authentication issues is to distinguish between
IIS and ASP.NET authentication failure messages.
● If you are receiving an IIS error message you will not see an ASP.NET error code.

Check the IIS authentication settings for your application’s virtual directory.
Create a simple HTML test page to remove ASP.NET from the solution.

● If you are receiving an ASP.NET error message, review the ASP.NET authentica-
tion settings within your application’s web.config file.

IIS Authentication Issues
Because the authentication process starts with IIS, make sure IIS is configured
correctly.
● Make sure a user is being authenticated. Consider enabling just Basic authentica-

tion and manually log in to ensure you know what principal is being authenti-
cated. Log in with a user name of the form “domain\username”.

● Restart IIS to ensure log on sessions aren’t being cached. (Run IISReset.exe to
restart IIS).

● Close your browser between successive tests to ensure the browser isn’t caching
credentials.

● If you are using Integrated Windows authentication, check browser settings as
described below.
● Click Tools from the Internet Options menu and then click the Advanced tab.

Select Enable Integrated Windows Authentication (requires restart). Then
restart the browser.

● Click Tools from the Internet Options menu, and then click the Security tab.
Select the appropriate Web content zone and click Custom Level. Within User
Authentication ensure the Logon setting is set correctly for your application.
You may want to select Prompt for user name and password to ensure that
for each test you are providing explicit credentials and that nothing is being
cached.



Building Secure ASP.NET Applications334

● If the browser prompts you for credentials this could mean you are currently
logged into a domain that the server doesn’t recognize (for example, you may
be logged in as administrator on the local machine).

● When you browse to an application on your local computer, your interactive
logon token is used, as you are interactively logged onto the Web server.

● Test with a simple Web page that displays security context information. A sample
page is provided later in this chapter.
If this fails, enable auditing on the requested file and check the Security event
log. You must also enable auditing using Group Policy (through either the Local
Security Policy tool, or the Domain Security Policy tool). Examine the log for
invalid usernames or invalid object access attempts.
● If your Web application is having problems accessing a remote resource,

enable auditing on the remote resource.
● An invalid username and/or password usually means that the account used

to run ASP.NET on your Web server is failing to be correctly authenticated at
the remote computer. If you are attempting to access remote resources with
the default ASPNET local account, check that you have duplicated the ac-
count (and password) on the remote computer.

● If you see an error message that indicates that the login has failed for NT
AUTHORITY\ANONYMOUS this indicates that the identity on Web server
does not have any network credentials and is attempting to access the remote
computer.
Identify which account is being used by the Web application for remote
resource access and confirm that it has network credentials. If the Web appli-
cation is impersonating, this requires either Kerberos delegation (with suit-
ably configured accounts) or Basic authentication at the Web server.

Using Windows Authentication
If the <authentication> element in your application’s web.config is configured for
Windows authentication, use the following code in your Web application to check
whether anonymous access is being used (and the authenticated user is the anony-
mous Internet user account [IUSR_MACHINE]).

WindowsIdentity winId = HttpContext.Current.User.Identity as WindowsIdentity;
if (null != winId)
{
  Response.Write(winId.IsAnonymous.ToString());
}



Chapter 13: Troubleshooting Security Issues 335

Using Forms Authentication
Make sure that the cookie name specified in the <forms> element is being retrieved
in the global.asax event handler correctly (Application_AuthenticateRequest).
Also, make sure the cookie is being created. If the client is continuously sent back to
the login page (specified by the loginUrl attribute on the <forms> element) this
indicates that the cookie is not being created for some reason or an authenticated
identity is not being placed into the context (HttpContext.User)

Kerberos Troubleshooting
Use the following tools to help troubleshoot Kerberos related authentication and
delegation issues.
● Kerbtray.exe. This utility can be used to view the Kerberos tickets in the cache on

the current computer. It is part of the Windows 2000 Resource Kit and can be
downloaded from http://www.microsoft.com/downloads/search.asp. Search for
“Kerbtray.exe”.

● Klist.exe. This is a command line tool similar to Kerbtray, but it also allows you
to view and delete Kerberos tickets. Once again, it is part of the Windows 2000
Resource Kit and can be downloaded from http://www.microsoft.com/downloads
/search.asp. Search for “Klist.exe”

● Setspn.exe. This is a command-line tool that allows you to manage the Service
Principal Names (SPN) directory property for an Active Directory service ac-
count. SPNs are used to locate a target principal name for running a service.
It is part of the Windows 2000 Resource Kit and can be downloaded from
http://www.microsoft.com/downloads/search.asp. Search for “setspn.exe”.

Troubleshooting Authorization Issues

Check Windows ACLs
If your application is having problems accessing a file or registry key (or any
securable Windows object protected with ACLs), check the ACLs to ensure that the
Web application identity has at least read access.

Check Identity
Also make sure you know which identity is being used for resource access by the
ASP.NET Web application. This is likely to be:
● The ASP.NET process identity (as configured on the <processModel> element in

web.config.



Building Secure ASP.NET Applications336

This defaults to the local ASPNET account specified with the username “ma-
chine” and password “AutoGenerate”.

● The authenticated caller’s identity (if impersonation is enabled within
web.config) as shown below.

<identity impersonate="true" />

If you have not disabled anonymous access in IIS, this will be IUSR_MACHINE.
● A specified impersonation identity as shown below (although this is not recom-

mended)

<identity impersonate="true" userName="Bob" password="password" />

More Information
For more information about the identity used to run ASP.NET and the identity used
to access local and network resources, see Chapter 8, “ASP.NET Security”.

Check the <authorization> Element
Confirm that the <allow> and <deny> elements are configured correctly.
● If you have <deny users=”?” /> and you are using Forms authentication and/or

IIS anonymous authentication, you must explicitly place an IPrincipal object into
HttpContext.User or you will receive an access denied 401 response.

● Make sure the authenticated user is in the roles specified in <allow> and <deny>
elements.

ASP.NET

Enable Tracing
ASP.NET provides quick and simple tracing to show the execution of events within
a page and the values of common variables. This can be a very effective diagnostic
aid. Use the page level Trace directive to turn on tracing, as shown below:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="Test.WebForm1" Trace="true" %>

More Information
For more information on the new tracing feature in ASP.NET see the Knowledge
Base article Q306731, “INFO: New Tracing Feature in ASP.NET”.



Chapter 13: Troubleshooting Security Issues 337

Configuration Settings
Most application settings should be placed in web.config. The following list shows
main security related settings that can be placed in web.config.

<authentication>
<authorization>
<trust>
<identity>

The following setting which controls the identity used to run the ASP.NET worker
process (aspnet_wp.exe) must be located in machine.config.

<processModel>

Configuration settings for an application are always retrieved from the application’s
web.config file first and these override any equivalent settings within
machine.config. If you want a particular setting to be applied to your application,
explicitly configure the setting in the application’s web.config file.

The main (and often only) web.config file for a particular application lives in its
virtual directory root. Subdirectories can also contain web.config files. Settings in
these files override the settings from web.config files in parent directories.

Determining Identity
Many security and access denied problems relate to the identity used for resource
access. The following code samples presented in this section can be used to help
determine identity in Web pages, COM objects, and Web services.

For more information about .NET identity variables, see “ASP.NET Identity Matrix”
in the Reference section of this guide.

Determining Identity in a Web Page
The following script can be used to gather security context related information and
indicates the identity being used to run a Web page.

To use this code, copy and paste it to create a file with a .aspx file extension. Copy
the file to an IIS virtual directory and view the page from a browser.

<%@ Page language="c#" AutoEventWireup="true" %>
<%@ Import Namespace="System.Threading" %>
<%@ Import Namespace="System.Security.Principal" %>
<HTML>
  <HEAD>
    <title>WhoAmI</title>



Building Secure ASP.NET Applications338

  </HEAD>
  <body>
    <form id="WhoAmI" method="post" runat="server">
      <TABLE id=contextTable border=1>
        <TR>
          <TD align=middle colSpan=3 rowSpan="">
                HttpContext.Current.User.Identity</TD>
        </TR>
        <TR>
          <TD><b>Name</b></TD>
          <TD><asp:Label ID="contextName" Runat=server /></TD>
        </TR>
        <TR>
          <TD><b>IsAuthenticated</b></TD>
          <TD><asp:Label ID="contextIsAuth" Runat=server /></TD>
        </TR>
        <TR>
          <TD><b>AuthenticationType</b></TD>
          <TD><asp:Label ID="contextAuthType" Runat=server /></TD>
        </TR>
      </TABLE>
       <br><br>

      <TABLE id=windowsIdentityTable border=1>
        <TR>
          <TD align=middle colSpan=3 rowSpan="">WindowsIdentity.GetCurrent()</TD>
        </TR>
        <TR>
          <TD><b>Name</b></TD>
          <TD><asp:Label ID="windowsName" Runat=server /></TD>
        </TR>
        <TR>
          <TD><b>IsAuthenticated</b></TD>
          <TD><asp:Label ID="windowsIsAuth" Runat=server /></TD>
        </TR>
        <TR>
          <TD><b>AuthenticationType</b></TD>
          <TD><asp:Label ID="windowsAuthType" Runat=server /></TD>
        </TR>
      </TABLE>
      <br><br>

      <TABLE id=threadIdentityTable border=1>
        <TR>
          <TD align=middle colSpan=3
              rowSpan="">Thread.CurrentPrincipal.Identity</TD>
        </TR>
        <TR>
          <TD><b>Name</b></TD>
          <TD><asp:Label ID="threadName" Runat=server /></TD>
        </TR>
        <TR>
          <TD><b>IsAuthenticated</b></TD>



Chapter 13: Troubleshooting Security Issues 339

          <TD><asp:Label ID="threadIsAuthenticated" Runat=server /></TD>
        </TR>
        <TR>
          <TD><b>AuthenticationType</b></TD>
          <TD><asp:Label ID="threadAuthenticationType" Runat=server /></TD>
        </TR>
      </TABLE>
    </form>
  </body>
</HTML>
<script runat=server>
  void Page_Load(Object sender, EventArgs e)
  {
    IIdentity id = HttpContext.Current.User.Identity;
    if(null != id)
    {
      contextName.Text = id.Name;
      contextIsAuth.Text = id.IsAuthenticated.ToString();
      contextAuthType.Text = id.AuthenticationType;
    }
    id = Thread.CurrentPrincipal.Identity;
    if(null != id)
    {
      threadName.Text = id.Name;
      threadIsAuthenticated.Text = id.IsAuthenticated.ToString();
      threadAuthenticationType.Text = id.AuthenticationType;
    }
    id = WindowsIdentity.GetCurrent();
    windowsName.Text = id.Name;
    windowsIsAuth.Text = id.IsAuthenticated.ToString();
    windowsAuthType.Text = id.AuthenticationType;
  }
</script>

Determining Identity in a Web service
The following code can be used within a Web service to obtain identity information.

[WebMethod]
public string GetDotNetThreadIdentity()
{
  return Thread.CurrentPrincipal.Identity.Name;
}
[WebMethod]
public string GetWindowsThreadIdentity()
{
  return WindowsIdentity.GetCurrent().Name;
}
[WebMethod]
public string GetUserIdentity()
{
  return User.Identity.Name;



Building Secure ASP.NET Applications340

}
[WebMethod]
public string GetHttpContextUserIdentity()
{
  return HttpContext.Current.User.Identity.Name;
}

More Information
● For a list of all security related Knowledge Base articles
● For a list of security related articles that deal with frequently seen error mes-

sages, use the following link go to the Microsoft Knowledge Base and use the
following search keywords:
prb kbsecurity kbaspnet

Determining Identity in a Visual Basic 6 COM Object
The following method can be used to return the identity of a Visual Basic 6 COM
object. You can call Visual Basic 6.0 COM objects directly from ASP.NET applica-
tions through COM interop. The following method can be helpful when you need to
troubleshoot access denied errors from your component when it attempts to access
resources.

Private Declare Function GetUserName Lib "advapi32.dll" _
        Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Public Function WhoAmI()
   Dim sBuff    As String
   Dim lConst   As Long
   Dim lRet     As Long
   Dim sName    As String

   lConst = 199
   sBuff = Space$(200)
   lRet = GetUserName(sBuff, lConst)
   WhoAmI = Trim$(Left$(sBuff, lConst))
End Function

.NET Remoting
If a remote object is hosted in ASP.NET, and is configured for Windows
authentication, you must specify the credentials to be used for authentication
through the credentials property of the channel. If you do not explicitly set
credentials, the remote object is called without any credentials. If Windows
authentication is required, this will result in an HTTP status 401, access denied
response.



Chapter 13: Troubleshooting Security Issues 341

To use the credentials associated with the current thread impersonation token (if the
client thread is impersonating), or the process token (with no impersonation), use
default credentials. This can be configured in the client-side configuration file using
the following setting:

<channel ref="http" useDefaultCredentials="true" />

If an ASP.NET Web application calls a remote component and the Web application is
configured for impersonation, the Web application must be using Kerberos or Basic
authentication. All other authentication types can not be used in delegation sce-
narios.

If the Web application is not configured for impersonation, the process identity of
the ASP.NET worker process is used. This is specified on the <processModel>
element of machine.config and defaults to the local ASPNET account.

Note: Ensure the process in running under an account that can be authenticated by the remote
computer.

More Information
For more information about setting client-side credentials when calling remote
components, see Chapter 11, “.NET Remoting Security.”

SSL
To troubleshoot SSL related problems:
● Confirm whether you can telnet to port 443 on the IP addresses of the client and

server computer. If you cannot, this usually signifies that the sspifilt.dll is not
loaded, or is the wrong version, or perhaps conflicts with other ISAPI extensions.

● Examine the certificate. If you can telnet to 443, check the certificates attribute
using the browser’s View Certificate dialog box. Check the certificates effective
and expiration dates, whether the common name is correct, and also what the
Authority Information Access (AIA) or Certificate Revocation List (CRL) distri-
bution point is.
Confirm that you can browse directory to those AIA/CRL points successfully.

● If you are using a custom client application (and not a Web browser) to access an
SSL-enabled Web site that requires client certificates, check that the client certifi-
cate is located in the correct store that the client application accesses.



Building Secure ASP.NET Applications342

When you use a browser, the certificate must be in the interactive user’s user
store. Services or custom applications may load the client certificate from the
machine store or a store associated with a service account’s profile. Use the
Services MMC snap-in (available when Certificate Services is installed), from the
Administrative Tools program group to examine the contents of certificate stores.

More Information
See the following SSL related Knowledge Base articles.
● Q257591, “Description of the Secure Sockets Layer (SSL) Handshake”
● Q257586, “Description of the Client Authentication Process During the SSL

Handshake”
● Q257587, “Description of the Server Authentication Process During the SSL

Handshake”
● Q301429, “HOWTO: Install Client Certificate on IIS Server for ServerXMLHTTP

Request Object”
● Q295070, “SSL (https) Connection Slow with One Certificate but Faster with

Others”

IPSec
The following articles in the Knowledge Base provide steps for troubleshooting
IPSec issues.
● Q259335, “Basic L2TP/IPSec Troubleshooting in Windows”
● Q257225, “Basic IPSec Troubleshooting in Windows 2000”

Auditing and Logging

Windows Security Logs
Consult the Windows event and security logs early on in the problem diagnostic
process.

More Information
For more information on how to enable auditing and monitoring events, see the
Knowledge Base and article Q300958, “HOW TO: Monitor for Unauthorized User
Access in Windows 2000”.



Chapter 13: Troubleshooting Security Issues 343

SQL Server Auditing
By default, logon auditing is disabled. You can configure this either through SQL
Server Enterprise Manager or by changing the registry.

SQL Server log files are by default located in the following directory. They are text-
based and can be read with any text editor such as Notepad.

C:\Program Files\Microsoft SQL Server\MSSQL\LOG

� To enable logon auditing with Enterprise Manager
1. Start Enterprise Manager.
2. Select the required SQL Server in the left hand tree control, right-click and then

click Properties.
3. Click the Security tab.
4. Select the relevant Audit level – Failure, Success or All.

� To enable logon auditing using a registry setting
1. Create the following AuditLevel key within the registry and set its value to one

of the REG_DWORD values specified below.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\AuditLevel

2. Set the value of this key to one of the following numeric values, which allow you
to capture the relevant level of detail.
3—captures both success and failed login attempts
2—captures only failed login attempts
1—captures only success login attempts
0—captures no logins

It is recommended that you turn on failed login auditing as this is a way to deter-
mine if someone is attempting a brute force attack into SQL Server. The perfor-
mance impacts of logging failed audit attempts are minimal unless you are being
attacked, in which case you need to know anyway.

You can also set audit levels by using script against the SQL Server DMO (Database
Management Objects), as shown in the following code fragment.

Sub SetAuditLevel(Server As String, NewAuditLevel As SQLDMO_AUDIT_TYPE)
    Dim objServer As New SQLServer2
    objServer.LoginSecure = True  'Use integrated security
    objServer.Connect Server      'Connect to the target SQL Server
    'Set the audit level
    objServer.IntegratedSecurity.AuditLevel = NewAuditLevel
    Set objServer = Nothing
End Sub



Building Secure ASP.NET Applications344

From SQL Server Books online, the members of the enumerated type,
SQLDMO_AUDIT_TYPE are:

SQLDMOAudit_All     3 Log all authentication attempts - success or failure
SQLDMOAudit_Failure 2 Log failed authentication
SQLDMOAudit_None    0 Do not log authentication attempts
SQLDMOAudit_Success 1 Log successful authentication

Sample Log Entries
The following list shows some sample log entries for successful and failed entries in
the SQL Server logs.

Successful login using Integrated Windows authentication:

2002-07-06 22:54:32.42 logon     Login succeeded for user 'SOMEDOMAIN\Bob'.
Connection: Trusted.

Successful login using SQL standard authentication:

2002-07-06 23:13:57.04 logon     Login succeeded for user 'SOMEDOMAIN\Bob'.
Connection: Non-Trusted.

Failed Login:

2002-07-06 23:21:15.35 logon     Login failed for user 'SOMEDOMAIN\BadGuy'.

IIS Logging
IIS logging can be set to different formats. If you use W3C Extended Logging, then
you can take advantage of some additional information. For example, you can turn
on Time Taken to log how long a page takes to be served. This can be helpful for
isolating slow pages on your production Web site. You can also enable URI Query
which will log Query String parameters, which can be helpful for troubleshooting
GET operations against your Web pages. The figure below shows the Extended
Properties dialog box for IIS logging.



Chapter 13: Troubleshooting Security Issues 345

Figure 13.1
IIS extended logging properties

Troubleshooting Tools
The list of tools presented in this section can prove invaluable and will help you
diagnose both security and non-security related problems.

File Monitor (FileMon.exe)
This tool allows you to monitor files and folders for access attempts. It is extremely
useful to deal with file access permission issues. It is available from
www.sysinternals.com.

More Information
For more information see the Knowledge Base article Q286198, “HOWTO: Track
‘Permission Denied’ Errors on DLL Files”.

Fusion Log Viewer (Fuslogvw.exe)
Fusion Log Viewer is provided with the .NET Framework SDK. It is a utility that
can be used to track down problems with Fusion binding (see the .NET Framework
documentation for more information).



Building Secure ASP.NET Applications346

To create Fusion logs for ASP.NET, you need to provide a log path in the registry
and you need to enable the log failures option through the Fusion Log Viewer
utility.

To provide a log path for your log files, use regedit.exe and add a directory location,
such as e:\MyLogs, to the following registry key:

[HKLM\Software\Microsoft\Fusion\LogPath]

ISQL.exe
ISQL can be used to test SQL from a command prompt. This can be helpful when
you want to efficiently test different logins for different users. You run ISQL by
typing isql.exe at a command prompt on a computer with SQL Server installed.

Connecting Using SQL Authentication
You can pass a user name by using the –U switch and you can optionally specify the
password with the –P switch. If you don’t specify a password, ISQL will prompt
you for one. The following command, issued from a Windows command prompt,
results in a password prompt. The advantage of this approach (rather than using
the –P switch) is that the password doesn’t appear on screen.

C:\ >isql -S YourServer -d pubs -U YourUser

Password:

Connecting Using Windows Authentication
You can use the –E switch to use a trusted connection which uses the security
context of the current interactively logged on user.

C:\ >isql -S YourServer -d pubs -E

Running a Simple Query
Once you are logged in, you can run a simple query, such as the one shown below.

1> use pubs

2> SELECT au_lname, au_fname FROM authors

3> go

To quit ISQL, type quit at the command prompt.

Windows Task Manager
Windows Task Manager on Windows XP and Windows .NET Server allows you to
display the identity being used to run a process.



Chapter 13: Troubleshooting Security Issues 347

� To view the identity under which a process is running
1. Start Task Manager.
2. Click the Processes tab.
3. From the View menu, click Select Columns.
4. Select User Name, and click OK.

The user name (process identity) is now displayed.

Network Monitor (NetMon.exe)
NetMon is used to capture and monitor network traffic.

More Information
See the following Knowledge Base articles:
● Q243270, “HOW TO: Install Network Monitor in Windows 2000”
● Q148942, “HOW TO: Capture Network Traffic with Network Monitor”
● Q252876, “HOW TO: View HTTP Data Frames Using Network Monitor”
● Q294818, “Frequently Asked Questions About Network Monitor”

There are a couple of additional tools to capture the network trace when the client
and the server are on the same machine (this can’t be done with Netmon):

● tcptrace.exe. Available from www.pocketsoap.com. This is particularly useful
for Web services since you can set it up to record and show traffic while your
application runs. You can switch to Basic authentication and use tcptrace to
see what credentials are being sent to the Web service.

● packetmon.exe. Available from www.analogx.com. This is a cut down version
of Network Monitor, but much easier to configure.

Registry Monitor (regmon.exe)
This tool allows you to monitor registry access. It can be used to show read accesses
and updates either from all processes or from a specified set of processes. This tool
is very useful when you need to troubleshoot registry permission issues. It is avail-
able from www.sysinternals.com.

WFetch.exe
This tool is useful for troubleshooting connectivity issues between IIS and Web
clients. In this scenario, you may need to view data that is not displayed in the Web
browser, such as the HTTP headers that are included in the request and response
packets.



Building Secure ASP.NET Applications348

More Information
For more information about this tool and the download, see the Knowledge Base
article Q284285, “How to Use Wfetch.exe to Troubleshoot HTTP Connections”.

Visual Studio .NET Tools
The Microsoft .NET Framework SDK security tools can be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html
/cpconnetframeworktools.asp

More Information
See the following Knowledge Base articles:
● Q316365, “INFO: ROADMAP for How to Use the .NET Performance Counters”
● Q308626, “INFO: Roadmap for Debugging in .NET Framework and Visual

Studio”
● Q317297, “INFO: Roadmap for Debugging Hangs, Memory Leaks in VB .NET”

WebServiceStudio
This tool can be used as a generic client to test the functionality of your Web service.
It captures and displays the SOAP response and request packets.

You can download the tool from http://www.gotdotnet.com/team/tools/web_svc
/default.aspx

Windows 2000 Resource Kit
Available from http://www.microsoft.com/windows2000/techinfo/reskit/default.asp

For a complete tools list, see http://www.microsoft.com/windows2000/techinfo/reskit
/tools/default.asp



How To:
Index

Building Secure ASP.NET Applications includes a series of How Tos that provide step-
by-step instructions to help you learn and implement various key procedures used
to develop secure solutions. This index lists the How Tos that are included.

ASP.NET
How To: Create a Custom Account to Run ASP.NET

How To: Use Forms Authentication with Active Directory

How To: Use Forms Authentication with SQL Server 2000

How To: Use Forms Authentication with GenericPrincipal Objects

Authentication and Authorization
How To: Implement Kerberos Delegation in Windows 2000

How To: Implement IPrincipal

Cryptography
How To: Create a DPAPI Library

How To: Use DPAPI (Machine Store) from ASP.NET

How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services

How To: Create an Encryption Library

How To: Store Encrypted Connection Strings in the Registry

Enterprise Services Security
How To: Use Role-based Security with Enterprise Services



Building Secure ASP.NET Applications350

Web Services Security
How To: Call a Web Service Using Client Certificates from ASP.NET

How To: Call a Web Service Using SSL

Remoting Security
How To: Host a Remote Object in a Windows Service

Secure Communication
How To: Set Up SSL on a Web Server

How To: Set Up Client Certificates

How To: Use IPSec to Secure Communication Between Two Servers

How To: Use SSL to Secure Communication with SQL Server 2000



How To:
Create a Custom Account
to Run ASP.NET

This How To describes how to create a least privileged local account to run the
ASP.NET worker process (aspnet_wp.exe) or for impersonated identities in virtual
directories. Although the procedures in this How To create a local account, the
same concepts apply to a domain account.

ASP.NET Worker Process Identity
The default account for running ASP.NET, created at installation time, is a least
privileged local account and is specified in machine.config as follows:

<processModel enable="true" userName="machine" password="AutoGenerate" />

This account is identified as ASPNET under Local Users and Groups, and has a
strong password secured in the Local System Authority (LSA).

When you need to access network resources, such as a database, using the ASP.NET
process identity, you can do one of the following:
● Use a domain account.
● Use “mirrored” local accounts (that is, accounts with matching usernames and

passwords on two computers). You need to use this approach when the comput-
ers are in separate domains with no trust relationship or when the computers are
separated by a firewall and you cannot open the ports required for NTLM or
Kerberos authentication.
The simplest approach is to change the ASPNET account’s password to a known
value on the Web server and then create an account named ASPNET with the
same password on the target computer. On the Web server, you must first
change the ASPNET account password in Local Users and Groups and then
replace “AutoGenerate” with the new password in machine.config.

<processModel enable="true" userName="machine"
              password="YourStrongPassword" />

You can use the steps presented in this How To to create a least privileged local
account.



Building Secure ASP.NET Applications352

Impersonating Fixed Identities
You can set fixed identities for specific virtual directories by using the following
setting in web.config.

<identity impersonate="true" userName="YourAccount"
          password="YourStrongPassword" />

This approach is typically used when you have multiple Web sites on the same Web
server that need to run under different identities; for example, in application host-
ing scenarios.

This How To describes how to create a least privileged local account. If administra-
tion is your primary concern, you can use a least privileged, constrained domain
account with a strong password.

Notes
When considering the account used to run ASP.NET, remember the following:
● ASP.NET does not impersonate by default. As a result, any resource access

performed by your Web application uses the ASP.NET process identity. In this
event, Windows resources must have an access control list (ACL) that grants
access to the ASP.NET process account.

● If you enable impersonation, your application accesses resources using the
original caller’s security context, or the anonymous Internet user account (by
default IUSR_MACHINE), if IIS is configured for anonymous authentication.
In this event, resources must have ACLs based on the original caller identity
(or IUSR_MACHINE).

● Always adhere to the principle of least privilege when creating a custom
account — give the minimum set of required privileges and permissions only.

● Avoid running ASP.NET using the SYSTEM account.
● Avoid granting the account the “Act as part of the operating system” privilege.

Summary
This How To includes the following procedures:
1. Create a New Local Account
2. Assign Minimum Privileges
3. Assign NTFS Permissions
4. Configure ASP.NET to Run Using the New Account



How To: Create a Custom Account to Run ASP.NET 353

1. Create a New Local Account
This procedure creates a new local account. By default, it will be added to the local
Users group.

� To create a new local account
1. Create a local account (for example, “CustomASPNET”).

Make sure you use a strong password for the account. Strong password should
include at least seven characters, and use a mixture of uppercase and lowercase
letters, numbers, and other characters such as *, ?, or $.

2. Clear the User must change password at next logon option.
3. Select the Password never expires option.

2. Assign Minimum Privileges
This procedure assigns the minimum set of privileges necessary to run ASP.NET.

� To assign minimum privileges
1. From the Administrative Tools programs group, start the Local Security Policy

tool.
2. Expand Local Policies, and then select User Rights Assignment.

A list of privileges is displayed in the right pane.
3. Assign the following privileges to the new account:

● Access this computer from the network
● Deny logon locally
● Log on as a batch job
● Log on as a service

Note: To assign a privilege to an account, double-click the privilege, and then click Add to
select the required account.

4. Close the tool.

3. Assign NTFS Permissions
This procedure grants the custom ASP.NET account required NTFS permissions
within the local file system.

Note: The steps in this procedure apply to the file system on the Web server (and not on
a remote computer, where you may be duplicating the account, for network authentication
purposes).



Building Secure ASP.NET Applications354

� To assign NTFS permissions
1. Start Windows Explorer and assign the appropriate permissions to the folders

specified in Table 1.
The fixed impersonation account referred to in Table 1 refers to the account that
can be optionally configured using the <identity> element in web.config as
shown below.

<identity impersonate="true" userName="YourImpersonatedIdentity"
          password="YourStrongPassword" />

Table 1: Required NTFS permissions

Folder Required Account Comments
Permission

C:\WINNT\Microsoft.NET\ Full Control Process and This is the ASP.NET dynamic
Framework\<version>\ fixed compilation location. Application
Temporary ASP.NET Files impersonation code is generated in a discrete

accounts directory for each application
beneath this folder.
The tempdir attribute on the
<compilation> element can be
used to change this default
location.

C:\WINNT\temp Read/Write/ Process Location used by Web services
Delete to generate serialization proxies.

Note that the Delete permission
is set using the Advanced
button on the Security page of
the Windows Explorer folder
properties dialog box.

Application folder Read Process The location of your Web
application files (that is, your
application’s virtual root
directory: for example,
c:\inetpub\wwwroot\webapp1).
By default, the Users group has
the appropriate access rights.



How To: Create a Custom Account to Run ASP.NET 355

Folder Required Account Comments
Permission

%installroot% hierarchy Read Process and ASP.NET must be able to access
(C:\WINNT\Microsoft.Net\ fixed .NET Framework assemblies.
Framework\v1.0.3705) impersonation By default, the Users group has

accounts the appropriate access rights.

C:\WINNT\assembly Read Process and This is the global assembly
fixed cache. You cannot directly use
impersonation Windows Explorer to edit ACLs
accounts for this folder. Instead, use a

command Windows and run the
following command:
cacls %windir%\assembly /e /t
/p domain\useraccount:R
Alternatively, prior to using
Windows explorer, unregister
shfusion.dll with the following
command:
regsvr32 –u shfusion.dll
After setting permissions with
Windows explorer, re-register
shfusion.dll with the following
command:
regsvr32 shfusion.dll

Web site root: Read Process ASP.NET reads configuration
C:\inetpub\ files and monitors for file
wwwroot or the path that changes in this folder.
the default Web site
points to

C:\WINNT\system32 Read Process For system DLLs loaded by the
Framework.

Parent directories of List Folder/ Process For file change
context Read notifications and the C#

compiler.



Building Secure ASP.NET Applications356

4. Configure ASP.NET to Run Using the New Account
This procedure edits machine.config to configure ASP.NET to run using the new
account.

� To configure ASP.NET to run using the new account
1. Open machine.config using Visual Studio.NET or Notepad.

Machine.config is located in the following folder:

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\CONFIG

2. Locate the <processModel> element and set the user name and password at-
tributes to match your new custom account.

Default: <!-- userName="machine" password="AutoGenerate" -->
Becomes: <!-- userName="CustomASPNET" password="YourStrongPassword" -->

3. Save the changes to machine.config

Note: With the current release of the .NET Framework, there is no way to avoid storing the
password in clear text. While storing clear text credentials is not recommended, the
machine.config file is considered more secure because it is located outside the Web
space. You should secure machine.config against unnecessary access by using an appro-
priately configured ACL.
In Windows .NET Server, the credentials will be encrypted for greater protection.



How To:
Use Forms Authentication
with Active Directory

ASP.NET Forms authentication allows users to identify themselves by entering
credentials (a user name and password) into a Web Form. Upon receipt of these
credentials, the Web application can authenticate the user by checking the user
name and password combination against a data source.

This How To describes how to authenticate users against the Microsoft® Active
Directory® directory service by using the Lightweight Directory Access Protocol
(LDAP). It also describes how to retrieve a list of security groups and distribution
lists that the user belongs to, to store this information in a GenericPrincipal object,
and to store this into the HttpContext.Current.User property that flows with the
request through the ASP.NET Web application. This can subsequently be used for
.NET role-based authorization.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system

The procedures in this How To also require that you have knowledge of the
Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:

1. Create a Web Application with a Logon Page
2. Configure the Web Application for Forms Authentication
3. Develop LDAP Authentication Code to Look Up the User in Active Directory
4. Develop LDAP Group Retrieval Code to Look Up the User’s Group Membership
5. Authenticate the User and Create a Forms Authentication Ticket
6. Implement an Authentication Request Handler to Construct a GenericPrincipal

Object
7. Test the Application



How To: Use Forms Authentication with Active Directory358

1. Create a Web Application with a Logon Page
This procedure creates a simple C# Web application that contains a logon page that
allows a user to enter a user name and password and a default page that displays
the identity name and group membership information associated with the current
Web request.

� To create a Web application with a logon page
1. Start Visual Studio .NET and create a new C# ASP.NET Web Application called

FormsAuthAD.
2. Use Solution Explorer to rename WebForm1.aspx to Logon.aspx.
3. Add a new assembly reference to System.DirectoryServices.dll. This provides

access to the System.DirectoryServices namespace that contains managed types
to help with Active Directory querying and manipulation.

4. Add the controls listed in Table 1 to Logon.aspx to create a simple logon form.

Table 1: Logon.aspx controls

Control Type Text ID

Label Domain Name: -

Label User Name: -

Label Password -

Text Box - txtDomainName

Text Box - txtUserName

Text Box - txtPassword

Button Log On btnLogon

Label lblError

5. Set the TextMode property of txtPassword to Password.
6. In Solution Explorer, right-click FormsAuthAd, point to Add, and then click Add

Web Form.
7. In the Name field, type default.aspx, and then click Open.
8. In Solution Explorer, right-click default.aspx, and then click Set As Start Page.
9. Double-click default.aspx to display the page load event handler.

10. Add the following code to the event handler to display the identity name
associated with the current Web request.

Response.Write( HttpContext.Current.User.Identity.Name );



How To: Use Forms Authentication with Active Directory 359

2. Configure the Web Application for Forms Authentication
This procedure edits the application’s Web.config file to configure the application
for Forms authentication.

� To configure the Web application for forms authentication
1. Use Solution Explorer to open Web.config.
2. Locate the <authentication> element and change the mode attribute to Forms.
3. Add the following <forms> element as a child of the authentication element and

set the loginUrl, name, timeout, and path attributes as shown in the following.

<authentication mode="Forms">
  <forms loginUrl=”logon.aspx” name="adAuthCookie" timeout="60" path="/">
  </forms>
</authentication>

4. Add the following <authorization> element beneath the <authentication>
element. This will allow only authenticated users to access the application. The
previously establish loginUrl attribute of the <authentication> element will
redirect unauthenticated requests to the logon.aspx page.

<authorization>
  <deny users="?" />
  <allow users="*" />
</authorization>

5. Save Web.config.
6. Start the IIS Microsoft Management Console (MMC) snap-in.
7. Right-click the application’s virtual directory, and then click Properties.
8. Click the Directory Security tab, and then click the Edit button in the Anony-

mous access and authentication control group.
9. Select the Anonymous access check box and clear the Allow IIS to control

password check box.
10. Because the default anonymous account IUSR_MACHINE does not have permis-

sion to access Active Directory, create a new least privileged account and enter
the account details in the Authentication Methods dialog box.

11. Click OK, and then click OK again to close the Properties dialog box.
12. Return to Visual Studio .NET and add an <identity> element beneath the

<authorization> element in Web.config and set the impersonate attribute to true.
This causes ASP.NET to impersonate the anonymous account specified earlier.

<identity impersonate="true" />



How To: Use Forms Authentication with Active Directory360

As a result of this configuration, all requests to the application will run under
the security context of the configured anonymous account. The user will provide
credentials through the Web form to authenticate against Active Directory, but
the account used to access Active Directory will be the configured anonymous
account.

3. Develop LDAP Authentication Code to Look Up the User in
Active Directory

This procedure adds a new helper class to the Web application to encapsulate the
LDAP code. The class will initially provide an IsAuthenticated method to validate
a supplied domain, user name, and password against an Active Directory user
object.

� To develop LDAP authentication code to look up the user in Active Directory
1. Add a new C# class file called LdapAuthentication.cs.
2. Add a reference to the System.DirectoryServices.dll assembly.
3. Add the following using statements to the top of LdapAuthentication.cs.

using System.Text;
using System.Collections;
using System.DirectoryServices;

4. Rename the existing namespace as FormsAuthAD.
5. Add two private strings to the LdapAuthentication class; one to hold the LDAP

path to Active Directory and the other to hold a filter attribute used for searching
Active Directory.

private string _path;
private string _filterAttribute;

6. Add a public constructor that can be used to initialize the Active Directory path.

public LdapAuthentication(string path)
{
  _path = path;
}

7. Add the following IsAuthenticated method that accepts a domain name, user
name and password as parameters and returns bool to indicate whether or not
the user with a matching password exists within Active Directory. The method
initially attempts to bind to Active Directory using the supplied credentials. If
this is successful, the method uses the DirectorySearcher managed class to



How To: Use Forms Authentication with Active Directory 361

search for the specified user object. If located, the _path member is updated to
point to the user object and the _filterAttribute member is updated with the
common name attribute of the user object.

public bool IsAuthenticated(string domain, string username, string pwd)
{
  string domainAndUsername = domain + @"\" + username;
  DirectoryEntry entry = new DirectoryEntry( _path,
                                             domainAndUsername, pwd);

  try
  {
    // Bind to the native AdsObject to force authentication.
    Object obj = entry.NativeObject;
    DirectorySearcher search = new DirectorySearcher(entry);
    search.Filter = "(SAMAccountName=" + username + ")";
    search.PropertiesToLoad.Add("cn");
    SearchResult result = search.FindOne();
    if(null == result)
    {
      return false;
    }
    // Update the new path to the user in the directory
    _path = result.Path;
    _filterAttribute = (String)result.Properties["cn"][0];
  }
  catch (Exception ex)
  {
    throw new Exception("Error authenticating user. " + ex.Message);
  }
  return true;
}

4. Develop LDAP Group Retrieval Code to Look Up the User’s
Group Membership

This procedure extends the LdapAuthentication class to provide a GetGroups
method which will retrieve the list of groups that the current user is a member of.
The GetGroups method will return the group list as a pipe separated string, as in
the following.

"Group1|Group2|Group3|"



How To: Use Forms Authentication with Active Directory362

� To develop LDAP group retrieval code to look up the user’s group membership
1. Add the following implementation of the GetGroups method to the

LdapAuthentication class.

public string GetGroups()
{
  DirectorySearcher search = new DirectorySearcher(_path);
  search.Filter = "(cn=" + _filterAttribute + ")";
  search.PropertiesToLoad.Add("memberOf");
  StringBuilder groupNames = new StringBuilder();
  try
  {
    SearchResult result = search.FindOne();
    int propertyCount = result.Properties["memberOf"].Count;
    String dn;
    int equalsIndex, commaIndex;

    for( int propertyCounter = 0; propertyCounter < propertyCount;
         propertyCounter++)
    {
      dn = (String)result.Properties["memberOf"][propertyCounter];

      equalsIndex = dn.IndexOf("=", 1);
      commaIndex = dn.IndexOf(",", 1);
      if (-1 == equalsIndex)
      {
        return null;
      }
      groupNames.Append(dn.Substring((equalsIndex + 1),
                        (commaIndex - equalsIndex) - 1));
      groupNames.Append("|");
    }
  }
  catch(Exception ex)
  {
    throw new Exception("Error obtaining group names. " + ex.Message);
  }
  return groupNames.ToString();
}

5. Authenticate the User and Create a Forms Authentication
Ticket

This procedure implements the btnLogon_Click event handler to authenticate
users. For authenticated users, you will then create a Forms authentication ticket
that contains the user’s group list. You will then redirect the user to the original
page that they requested (before being redirected to the logon page).



How To: Use Forms Authentication with Active Directory 363

� To authenticate the user and create a forms authentication ticket
1. Return to the Logon.aspx form and double-click the Log On button to create an

empty btnLogon_Click event handler.
2.  At the top of the file add the following using statement beneath the existing

using statements. This provides access to the FormsAuthentication methods.

using System.Web.Security;

3. Add code to create a new instance of the LdapAuthentication class initialized to
point to your LDAP Active Directory, as shown in the following code. Remember
to change the path to point to your Active Directory server.

// Path to you LDAP directory server.
// Contact your network administrator to obtain a valid path.
string adPath = "LDAP://yourCompanyName.com/DC=yourCompanyName,DC=com";
LdapAuthentication adAuth = new LdapAuthentication(adPath);

4. Add the code that follows to perform the following steps:
a. Authenticate the caller against Active Directory.
b. Retrieve the list of groups that the user is a member of.
c. Create a FormsAuthenticationTicket that contains the group list.
d. Encrypt the ticket.
e. Create a new cookie that contains the encrypted ticket.
f. Add the cookie to the list of cookies returned to the user’s browser.

try
{
  if(true == adAuth.IsAuthenticated(txtDomainName.Text,
                                    txtUserName.Text,
                                    txtPassword.Text))
  {
    // Retrieve the user's groups
    string groups = adAuth.GetGroups();
    // Create the authetication ticket
    FormsAuthenticationTicket authTicket =
        new FormsAuthenticationTicket(1,  // version
                                      txtUserName.Text,
                                      DateTime.Now,
                                      DateTime.Now.AddMinutes(60),
                                      false, groups);
    // Now encrypt the ticket.
    string encryptedTicket = FormsAuthentication.Encrypt(authTicket);
    // Create a cookie and add the encrypted ticket to the
    // cookie as data.
    HttpCookie authCookie =
                 new HttpCookie(FormsAuthentication.FormsCookieName,
                                encryptedTicket);



How To: Use Forms Authentication with Active Directory364

    // Add the cookie to the outgoing cookies collection.
    Response.Cookies.Add(authCookie);

    // Redirect the user to the originally requested page
    Response.Redirect(
              FormsAuthentication.GetRedirectUrl(txtUserName.Text,
                                                 false));
  }
  else
  {
    lblError.Text =
         "Authentication failed, check username and password.";
  }
}
catch(Exception ex)
{
  lblError.Text = "Error authenticating. " + ex.Message;
}

6. Implement an Authentication Request Handler to Construct
a GenericPrincipal Object

This procedure implements the Application_AuthenticateRequest event handler
within global.asax and creates a GenericPrincipal object for the currently authenti-
cated user. This will contain the list of groups that the user is a member of, retrieved
from the FormsAuthenticationTicket contained in the authentication cookie.
Finally, you will associate the GenericPrincipal object with the current HttpContext
object that is created for each Web request.

� To implement an authentication request handler to construct a GenericPricipal object
1. Use Solution Explorer to open global.asax.cs.
2. Add the following using statements to the top of the file.

using System.Web.Security;
using System.Security.Principal;

3. Locate the Application_AuthenticateRequest event handler and add the follow-
ing code to obtain the cookie that contains the encrypted
FormsAuthenticationTicket, from the cookie collection passed with the request.

// Extract the forms authentication cookie
string cookieName = FormsAuthentication.FormsCookieName;
HttpCookie authCookie = Context.Request.Cookies[cookieName];

if(null == authCookie)
{



How To: Use Forms Authentication with Active Directory 365

  // There is no authentication cookie.
  return;
}

4. Add the following code to extract and decrypt the FormsAuthenticationTicket
from the cookie.

FormsAuthenticationTicket authTicket = null;
try
{
  authTicket = FormsAuthentication.Decrypt(authCookie.Value);
}
catch(Exception ex)
{
  // Log exception details (omitted for simplicity)
  return;
}

if (null == authTicket)
{
  // Cookie failed to decrypt.
  return;
}

5. Add the following code to parse out the pipe separate list of group names
attached to the ticket when the user was originally authenticated.

// When the ticket was created, the UserData property was assigned a
// pipe delimited string of group names.
String[] groups = authTicket.UserData.Split(new char[]{'|'});

6. Add the following code to create a GenericIdentity object with the user name
obtained from the ticket name and a GenericPrincipal object that contains this
identity together with the user’s group list.

// Create an Identity object
GenericIdentity id = new GenericIdentity(authTicket.Name,
                                         "LdapAuthentication");

// This principal will flow throughout the request.
GenericPrincipal principal = new GenericPrincipal(id, groups);
// Attach the new principal object to the current HttpContext object
Context.User = principal;



How To: Use Forms Authentication with Active Directory366

7. Test the Application
This procedure uses the Web application to request the default.aspx page. You will
be redirected to the logon page for authentication. Upon successful authentication,
your browser will be redirected to the originally requested default.aspx page. This
will extract and display the list of groups that the authenticated user belongs to
from the GenericPrincipal object that has been associated with the current request
by the authentication process.

� To test the application
1. On the Build menu, click Build Solution.
2. In Solution Explorer, right-click default.aspx, and then click View in Browser.
3. Enter a valid domain name, user name, and password and then click Log On.
4. If you are successfully authenticated, you should be redirected back to

default.aspx. The code on this page should display the user name of the authen-
ticated user.
To see the list of groups the authenticated user is a member of, add the following
code at the end of the Application_AuthenticateRequest event handler in the
global.aspx.cs file.

Response.Write("Groups: " + authTicket.UserData + "<br>");



How To:
Use Forms Authentication
with SQL Server 2000

Web applications that use Forms authentication often store user credentials (user
names and passwords) together with associated role or group lists in Microsoft®
SQL Server™ 2000.

This How To describes how to securely look up user names and validate passwords
against SQL Server 2000. There are two key concepts for storing user credentials
securely:
● Storing password digests. For security reasons, passwords should not be

stored in clear text in the database. This How To describes how to create and
store a one-way hash of a user’s password rather than the password itself. This
approach is preferred to storing an encrypted version of the user’s password
in order to avoid the key management issues associated with encryption
techniques.
For added security and to mitigate the threat associated with dictionary attacks,
the approach described in this How To combines a salt (a cryptographically
generated random number) with the password, prior to creating the password
hash.

Important: The one drawback of not storing passwords in the database is that if a user
forgets a password, it cannot be recovered. As a result, your application should use
password hints and store them alongside the password digest within the database.

● Validating user input. Where user input is passed to SQL commands, for ex-
ample as string literals in comparison or pattern matching statements, great care
should be taken to validate the input, to ensure that the resulting commands do
not contain syntax errors and also to ensure that a hacker cannot cause your
application to run arbitrary SQL commands. Validating the supplied user name
during a logon process is particularly vital as your application’s security model
is entirely dependent on being able to correctly and securely authenticate users.
For more information about validating user input for SQL commands and for
validation functions, see “SQL Injection Attacks” in Chapter 12, “Data Access
Security.”



Building Secure ASP.NET Applications368

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system
● Microsoft SQL Server 2000

The procedures in this How To also require that you have knowledge of Web
development with the Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a Web Application with a Logon Page
2. Configure the Web Application for Forms Authentication
3. Develop Functions to Generate a Hash and Salt value
4. Create a User Account Database
5. Use ADO.NET to Store Account Details in the Database
6. Authenticate User Credentials against the Database
7. Test the Application

1. Create a Web Application with a Logon Page
This procedure creates a simple C# Web application that contains a logon page that
allows a user to enter a username and password.

� To create a Web application with a logon page
1. Start Visual Studio .NET and create a new C# ASP.NET Web application called

FormsAuthSQL.
2. Use Solution Explorer to rename WebForm1.aspx to Logon.aspx
3. Add the controls listed in Table 1 to Logon.aspx to create a simple logon form.



How To: Use Forms Authentication with SQL Server 2000 369

Table 1: Logon.aspx controls

Control Type Text ID

Label User Name: -

Label Password -

Text Box - txtUserName

Text Box - txtPassword

Button Register btnRegister

Button Logon btnLogon

Label - lblMessage

Your Web page should resemble the one illustrated in Figure 1.

Figure 1
Logon page Web form

4. Set the TextMode property of the txtPassword to Password.

2. Configure the Web Application for Forms Authentication
This procedure edits the application’s Web.config file to configure the application
for Forms authentication.

� To configure the Web application for Forms authentication
1. Use Solution Explorer to open Web.config.
2. Locate the <authentication> element and change the mode attribute to Forms.
3. Add the following <forms> element as a child of the <authentication> element

and set the loginUrl, name, timeout, and path attributes as follows.

<authentication mode="Forms">
  <forms loginUrl="logon.aspx" name="sqlAuthCookie" timeout="60" path="/">
  </forms>
</authentication>



Building Secure ASP.NET Applications370

4. Add the following <authorization> element beneath the <authentication>
element. This will allow only authenticated users to access the application. The
previously established loginUrl attribute of the <authentication> element will
redirect unauthenticated requests to the logon.aspx page.

<authorization>
  <deny users="?" />
  <allow users="*" />
</authorization>

3. Develop Functions to Generate a Hash and Salt value
This procedure adds two utility methods to your Web application; one to generate a
random salt value, and one to create a hash based on a supplied password and salt
value.

� To develop functions to generate a hash and salt value
1. Open Logon.aspx.cs and add the following using statements to the top of the file

beneath the existing using statements.

using System.Security.Cryptography;
using System.Web.Security;

2. Add the following static method to the WebForm1 class to generate a random
salt value and return it as a Base 64 encoded string.

private static string CreateSalt(int size)
{
  // Generate a cryptographic random number using the cryptographic
  // service provider
  RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
  byte[] buff = new byte[size];
  rng.GetBytes(buff);
  // Return a Base64 string representation of the random number
  return Convert.ToBase64String(buff);
}

3. Add the following static method to generate a hash value based on a supplied
password and salt value.

private static string CreatePasswordHash(string pwd, string salt)
{
  string saltAndPwd = String.Concat(pwd, salt);
  string hashedPwd =
        FormsAuthentication.HashPasswordForStoringInConfigFile(
                                             saltAndPwd, "SHA1");
  return hashedPwd;
}



How To: Use Forms Authentication with SQL Server 2000 371

4. Create a User Account Database
This procedure creates a new user account database in SQL Server that contains
a single users table and a stored procedure used to query the user database.

� To create a user account database
1. On the Microsoft SQL Server programs menu, click Query Analyzer, and then

connect to your local SQL Server.
2. Enter the following SQL script. Note that you must replace “LocalMachine” with

your own computer name towards the end of the script.

USE master
GO
-- create a database for the security information
IF EXISTS (SELECT * FROM   master..sysdatabases WHERE  name = 'UserAccounts')
  DROP DATABASE UserAccounts
GO
CREATE DATABASE UserAccounts
GO
USE UserAccounts
GO
CREATE TABLE [Users] (
  [UserName] [varchar] (255) NOT NULL ,
  [PasswordHash] [varchar] (40) NOT NULL ,
  [salt] [varchar] (10) NOT NULL,
  CONSTRAINT [PK_Users] PRIMARY KEY  CLUSTERED
  (
    [UserName]
  )  ON [PRIMARY]
) ON [PRIMARY]
GO
-- create stored procedure to register user details
CREATE PROCEDURE RegisterUser
@userName varchar(255),
@passwordHash varchar(40),
@salt varchar(10)
AS
INSERT INTO Users VALUES(@userName, @passwordHash, @salt)
GO
-- create stored procedure to retrieve user details
CREATE PROCEDURE LookupUser
@userName varchar(255)
AS
SELECT PasswordHash, salt
FROM Users
WHERE UserName = @userName
GO
-- Add a login for the local ASPNET account
-- In the following statements, replace LocalMachine with your
-- local machine name



Building Secure ASP.NET Applications372

exec sp_grantlogin [LocalMachine\ASPNET]
-- Add a database login for the UserAccounts database for the ASPNET account
exec sp_grantdbaccess [LocalMachine\ASPNET]
-- Grant execute permissions to the LookupUser and RegisterUser stored procs
grant execute on LookupUser to [LocalMachine\ASPNET]
grant execute on RegisterUser to [LocalMachine\ASPNET]

3. Run the query to create the UserAccounts database.
4. Exit Query Manager.

5. Use ADO.NET to Store Account Details in the Database
This procedure modifies the Web application code to store the supplied user name,
generated password hash and salt value in the database.

� To use ADO.NET to store account details in the database
1. Return to Visual Studio .NET and double-click the Register button on the Web

form to create a button click event handler.
2. Add the following code to the method.

string salt = CreateSalt(5);
string passwordHash = CreatePasswordHash(txtPassword.Text,salt);
try
{
  StoreAccountDetails( txtUserName.Text, passwordHash, salt);
}
catch(Exception ex)
{
  lblMessage.Text = ex.Message;
}

3. Add the following using statement at the top of the file, beneath the existing
using statements.

using System.Data.SqlClient;

4. Add the StoreAccountDetails utility method using the following code. This code
uses ADO.NET to connect to the UserAccounts database and stores the supplied
username, password hash and salt value in the Users table.

private void StoreAccountDetails( string userName,
                                  string passwordHash,
                                  string salt )
{



How To: Use Forms Authentication with SQL Server 2000 373

  // See "How To Use DPAPI (Machine Store) from ASP.NET" for information
  // about securely storing connection strings.
  SqlConnection conn = new SqlConnection( "Server=(local);" +
                                          "Integrated Security=SSPI;" +
                                          "database=UserAccounts");

  SqlCommand cmd = new SqlCommand("RegisterUser", conn );
  cmd.CommandType = CommandType.StoredProcedure;
  SqlParameter sqlParam = null;

  sqlParam = cmd.Parameters.Add("@userName", SqlDbType.VarChar, 255);
  sqlParam.Value = userName;

  sqlParam = cmd.Parameters.Add("@passwordHash ", SqlDbType.VarChar, 40);
  sqlParam.Value = passwordHash;

  sqlParam = cmd.Parameters.Add("@salt", SqlDbType.VarChar, 10);
  sqlParam.Value = salt;

  try
  {
    conn.Open();
    cmd.ExecuteNonQuery();
  }
  catch( Exception ex )
  {
    // Code to check for primary key violation (duplicate account name)
    // or other database errors omitted for clarity
    throw new Exception("Exception adding account. " + ex.Message);
  }
  finally
  {
    conn.Close();
  }
}

6. Authenticate User Credentials Against the Database
This procedure develops ADO.NET code to look up the supplied user name in the
database and validate the supplied password, by matching password hashes.

Note: In many Forms authentication scenarios where you are using .NET role-based authoriza-
tion, you may also retrieve the roles that the user belongs to from the database at this point.
These can subsequently be used to generate a GenericPrincipal object that can be associated
with authenticated Web requests, for .NET authorization purposes.
For more information about constructing a Forms authentication ticket incorporating a user’s
role details, see “How To: Use Forms Authentication with GenericPrincipal Objects” in the
Reference section of this guide.



Building Secure ASP.NET Applications374

� To authenticate user credentials against the database
1. Return to the Logon.aspx.cs and add the VerifyPassword private helper method

as shown in the following code.

private bool VerifyPassword(string suppliedUserName,
                            string suppliedPassword )
{
  bool passwordMatch = false;
  // Get the salt and pwd from the database based on the user name.
  // See "How To: Use DPAPI (Machine Store) from ASP.NET," "How To: Use DPAPI
  // (User Store) from Enterprise Services," and "How To: Create a DPAPI
  // Library" for more information about how to use DPAPI to securely store
  // connection strings.
  SqlConnection conn = new SqlConnection( "Server=(local);" +
                                          "Integrated Security=SSPI;" +
                                          "database=UserAccounts");
  SqlCommand cmd = new SqlCommand( "LookupUser", conn );
  cmd.CommandType = CommandType.StoredProcedure;

  SqlParameter sqlParam = cmd.Parameters.Add("@userName",
                                             SqlDbType.VarChar, 255);
  sqlParam.Value = suppliedUserName;
  try
  {
    conn.Open();
    SqlDataReader reader = cmd.ExecuteReader();
    reader.Read(); // Advance to the one and only row
    // Return output parameters from returned data stream
    string dbPasswordHash = reader.GetString(0);
    string salt = reader.GetString(1);
    reader.Close();
    // Now take the salt and the password entered by the user
    // and concatenate them together.
    string passwordAndSalt = String.Concat(suppliedPassword, salt);
    // Now hash them
    string hashedPasswordAndSalt =
               FormsAuthentication.HashPasswordForStoringInConfigFile(
                                               passwordAndSalt, "SHA1");
    // Now verify them.
    passwordMatch = hashedPasswordAndSalt.Equals(dbPasswordHash);
  }
  catch (Exception ex)
  {
    throw new Exception("Execption verifying password. " + ex.Message);
  }
  finally
  {
    conn.Close();
  }
  return passwordMatch;
}



How To: Use Forms Authentication with SQL Server 2000 375

7. Test the Application
This procedure tests the application. You will register a user, which results in the
user name, password hash and salt value being added to the Users table in the
UserAccounts database. You will then log on the same user to ensure the correct
operation of the password verification routines.

� To test the application
1. Return to the Logon form and double-click the Logon button to create a button

click event handler.
2. Add the following code to the Logon button click event handler to call the

VerifyPassword method and display a message based on whether or not the
supplied user name and password are valid.

bool passwordVerified = false;
try
{
   passwordVerified = VerifyPassword(txtUserName.Text,txtPassword.Text);
}
catch(Exception ex)
{
  lblMessage.Text = ex.Message;
  return;
}
if (passwordVerified == true )
{
  // The user is authenticated
  // At this point, an authentication ticket is normally created
  // This can subsequently be used to generate a GenericPrincipal
  // object for .NET authorization purposes
  // For details, see "How To: Use Forms authentication with GenericPrincipal
  // objects
  lblMessage.Text = "Logon successful: User is authenticated";
}
else
{
  lblMessage.Text = "Invalid username or password";
}

3. On the Build menu, click Build Solution.
4. In Solution Explorer, right-click logon.aspx, and then click View in Browser.
5. Enter a user name and password, and then click Register.
6. Use SQL Server Enterprise Manager to view the contents of the Users table. You

should see a new row for the new user name together with a generated password
hash.



Building Secure ASP.NET Applications376

7. Return to the Logon Web page, re-enter the password, and then click Logon. You
should see the message “Logon successful: User is authenticated.”

8. Now enter an invalid password (leaving the user name the same). You should
see the message “Invalid username or password.”

9. Close Internet Explorer.

Additional Resources
For more information, see the following:
● “How To: Use DPAPI (Machine Store) from ASP.NET”
● “How To: Use Forms Authentication with GenericPrincipal Objects”
● “SQL Injection Attacks” in Chapter 12, “Data Access Security”



How To:
Create GenericPrincipal Objects
with Forms Authentication

Applications that use Forms authentication will often want to use the
GenericPrincipal class (in conjunction with the FormsIdentity class), to create a
non-Windows specific authorization scheme, independent of a Windows domain.

For example, an application may:
● Use Forms authentication to obtain user credentials (user name and password).
● Validate the supplied credentials against a data store; for example, a database or

Microsoft® Active Directory® directory service.
● Create GenericPrincipal and FormsIdentity objects based on values retrieved

from the data store. These may include a user’s role membership details.
● Use these objects to make authorization decisions.

This How To describes how to create a Forms-based Web application that authenti-
cates users and creates a custom Forms authentication ticket that contains user and
role information. It also shows you how to map this information into
GenericPrincipal and FormsIdentity objects and associate the new objects with the
HTTP Web request context, allowing them to be used for authorization logic within
your application.

This How To focuses on the construction of the GenericPrincipal and
FormsIdentity objects together with the processing of the forms authentication
ticket. For details about how to authenticate users against Active Directory and SQL
Server 2000, see the following related How Tos in the Reference section of this
guide:
● “How to use Forms authentication with Active Directory”
● “How to use Forms authentication with SQL Server 2000”



Building Secure ASP.NET Applications378

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft SQL Server™ 2000
● Microsoft Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of ASP.NET
Web development with the Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a Web Application with a Logon Page
2. Configure the Web Application for Forms Authentication
3. Generate an Authentication Ticket for Authenticated Users
4. Construct GenericPrincipal and FormsIdentity Objects
5. Test the Application

1. Create a Web Application with a Logon Page
This procedure creates a new ASP.NET Web application. The application will
contain two pages; a default page that only authenticated users are allowed to
access, and a logon page used to collect user credentials.

� To create a Web application with a logon page
1. Start Visual Studio .NET and create a new C# ASP.NET Web Application called

GenericPrincipalApp.
2. Rename WebForm1.aspx to Logon.aspx.
3. Add the following controls to Logon.aspx to create a logon form.

Table 1: Logon.aspx controls

Control Type Text ID

Label User Name: -

Label Password -

Text Box - txtUserName

Text Box - txtPassword

Button Logon btnLogon



How To: Create GenericPrincipal Objects with Forms Authentication 379

4. Set the TextMode property of the password Text Box control to Password.
5. In Solution Explorer, right-click GenericPrincipalApp, point to Add, and then

click Add Web Form.
6. Enter default.aspx as the new form’s name, and then click Open.

2. Configure the Web Application for Forms Authentication
� To edit the application’s Web.config file to configure the application for Forms

authentication
1. Use Solution Explorer to open Web.config.
2. Locate the <authentication> element and change the mode attribute to Forms.
3. Add the following <forms> element as a child of the <authentication> element

and set the loginUrl, name, timeout, and path attributes as follows:

<authentication mode="Forms">
  <forms loginUrl="logon.aspx" name="AuthCookie" timeout="60" path="/">
  </forms>
</authentication>

4. Add the following <authorization> element beneath the <authentication>
element. This allows only authenticated users to access the application. The
previously established loginUrl attribute of the <authentication> element
redirects unauthenticated requests to the Logon.aspx page.

<authorization>
  <deny users="?" />
  <allow users="*" />
</authorization>

3. Generate an Authentication Ticket for Authenticated Users
This procedure writes code to generate an authentication ticket for authenticated
users. The authentication ticket is a type of cookie used by the ASP.NET
FormsAuthenticationModule.

The authentication code typically involves looking up the supplied user name and
password against either a custom database or against Active Directory.

For information about performing these lookups, see the following How To articles
in the Reference section of this guide:
● “How To: Use Forms Authentication with Active Directory”
● “How To: Use Forms Authentication with SQL Server 2000”



Building Secure ASP.NET Applications380

� To generate an authentication ticket for authenticated users
1. Open the Logon.aspx.cs file and the following using statement to the top of the

file beneath the existing using statements:

using System.Web.Security;

2. Add the following private helper method to the WebForm1 class called
IsAuthenticated, which is used to validate user names and passwords to authen-
ticate users. This code assumes that all user name and password combinations
are valid.

private bool IsAuthenticated( string username, string password )
{
  // Lookup code omitted for clarity
  // This code would typically validate the user name and password
  // combination against a SQL database or Active Directory
  // Simulate an authenticated user
  return true;
}

3. Add the following private helper method called GetRoles, which is used to
obtain the set of roles that the user belongs to.

private string GetRoles( string username, string password )
{
  // Lookup code omitted for clarity
  // This code would typically look up the role list from a database table.
  // If the user was being authenticated against Active Directory, the
  // Security groups and/or distribution lists that the user belongs to may be
  // used instead

  // This GetRoles method returns a pipe delimited string containing roles
  // rather than returning an array, because the string format is convenient
  // for storing in the authentication ticket / cookie, as user data
  return "Senior Manager|Manager|Employee";
}

4. Display the Logon.aspx form in Designer mode and double-click the Logon
button to create a click event handler.

5. Add a call to the IsAuthenticated method, supplying the user name and pass-
word captured through the logon form. Assign the return value to a variable of
type bool, which indicates whether or not the user is authenticated.

bool isAuthenticated = IsAuthenticated( txtUserName.Text,
                                        txtPassword.Text );



How To: Create GenericPrincipal Objects with Forms Authentication 381

6. If the user is authenticated, add a call to the GetRoles method to obtain the
user’s role list.

if (isAuthenticated == true )
{
  string roles = GetRoles( txtUserName.Text, txtPassword.Text );

7. Create a new forms authentication ticket that contains the user name, an expira-
tion time, and the list of roles that the user belongs to. Note that the user data
property of the authentication ticket is used to store the user’s role list. Also note
that the following code creates a non-persistent ticket, although whether or not
the ticket / cookie is persistent is dependent upon your application scenario.

  // Create the authentication ticket
  FormsAuthenticationTicket authTicket = new
       FormsAuthenticationTicket(1,                          // version
                                 txtUserName.Text,           // user name
                                 DateTime.Now,               // creation
                                 DateTime.Now.AddMinutes(60),// Expiration
                                 false,                      // Persistent
                                 roles );                    // User data

8. Add code to create an encrypted string representation of the ticket and store it as
data within an HttpCookie object.

  // Now encrypt the ticket.
  string encryptedTicket = FormsAuthentication.Encrypt(authTicket);
  // Create a cookie and add the encrypted ticket to the
  // cookie as data.
  HttpCookie authCookie =
               new HttpCookie(FormsAuthentication.FormsCookieName,
                              encryptedTicket);

9. Add the cookie to the cookies collection returned to the user’s browser.

  // Add the cookie to the outgoing cookies collection.
  Response.Cookies.Add(authCookie);

10. Redirect the user to the originally requested page

  // Redirect the user to the originally requested page
  Response.Redirect( FormsAuthentication.GetRedirectUrl(
                                                txtUserName.Text,
                                                false ));
}



Building Secure ASP.NET Applications382

4. Construct GenericPrincipal and FormsIdentity Objects
This procedure implements an application authentication event handler and
constructs GenericPrincipal and FormsIdentity objects based on information
contained within the authentication ticket.

� To construct GenericPrincipal and FormsIdentity objects
1. From Solution Explorer, open global.asax.
2. Switch to code view and add the following using statements to the top of the

file:

using System.Web.Security;
using System.Security.Principal;

3. Locate the Application_AuthenticateRequest event handler and add the follow-
ing code to obtain the forms authentication cookie from the cookie collection
passed with the request.

// Extract the forms authentication cookie
string cookieName = FormsAuthentication.FormsCookieName;
HttpCookie authCookie = Context.Request.Cookies[cookieName];

if(null == authCookie)
{
  // There is no authentication cookie.
  return;
}

4. Add the following code to extract and decrypt the authentication ticket from the
forms authentication cookie.

FormsAuthenticationTicket authTicket = null;
try
{
  authTicket = FormsAuthentication.Decrypt(authCookie.Value);
}
catch(Exception ex)
{
  // Log exception details (omitted for simplicity)
  return;
}

if (null == authTicket)
{
  // Cookie failed to decrypt.
  return;
}



How To: Create GenericPrincipal Objects with Forms Authentication 383

5. Add the following code to parse out the pipe separate list of role names attached
to the ticket when the user was originally authenticated.

// When the ticket was created, the UserData property was assigned a
// pipe delimited string of role names.
string[] roles = authTicket.UserData.Split(new char[]{'|'});

6. Add the following code to create a FormsIdentity object with the user name
obtained from the ticket name and a GenericPrincipal object that contains this
identity together with the user’s role list.

// Create an Identity object
FormsIdentity id = new FormsIdentity( authTicket );

// This principal will flow throughout the request.
GenericPrincipal principal = new GenericPrincipal(id, roles);
// Attach the new principal object to the current HttpContext object
Context.User = principal;

5. Test the Application
This procedure adds code to the default.aspx page to display information from the
GenericPrincipal object attached to the current HttpContext object, to confirm that
the object has been correctly constructed and assigned to the current Web request.
You will then build and test the application.

� To test the application
1. In Solution Explorer, double-click default.aspx.
2. Double-click the default.aspx Web form to display the page load event handler.
3. Scroll to the top of the file and add the following using statement beneath the

existing using statements.

using System.Security.Principal;

4. Return to the page load event handler and add the following code to display the
identity name attached to the GenericPrincipal associated with the current Web
request.

IPrincipal p = HttpContext.Current.User;
Response.Write( "Authenticated Identity is: " +
                p.Identity.Name );
Response.Write( "<p>" );



Building Secure ASP.NET Applications384

5. Add the following code to test role membership for the current authenticated
identity.

if ( p.IsInRole("Senior Manager") )
  Response.Write( "User is in Senior Manager role<p>" );
else
  Response.Write( "User is not in Senior Manager role<p>" );

if ( p.IsInRole("Manager") )
  Response.Write( "User is in Manager role<p>" );
else
  Response.Write( "User is not in Manager role<p>" );

if ( p.IsInRole("Employee") )
  Response.Write( "User is in Employee role<p>" );
else
  Response.Write( "User is not in Employee role<p>" );

if ( p.IsInRole("Sales") )
  Response.Write( "User is in Sales role<p>" );
else
  Response.Write( "User is not in Sales role<p>" );

6. In Solution Explorer, right-click default.aspx, and then click Set As Start Page.
7. On the Build menu, click Build Solution. Eliminate any build errors.
8. Press Ctrl+F5 to run the application. Because default.aspx is configured as the

start up page, this is the initially requested page.
9. When you are redirected to the logon page (because you do not initially have an

authentication ticket), enter a user name and password (any will do), and then
click Logon.

10. Confirm that you are redirected to default.aspx and that the user identity and the
correct role details are displayed. The user should be a member of the Senior
Manager, Manager, and Employee role, but not a member of the Sales role.

Additional Resources
For more information, see the following related How Tos in the Reference section of
this guide:
● “How To: Use Forms Authentication with Active Directory”
● “How To: Use Forms Authentication with SQL Server 2000”



How To:
Implement Kerberos Delegation
for Windows 2000

By default, the Microsoft® Windows® 2000 operating system uses the Kerberos
protocol for authentication. This How To describes how to configure Kerberos
delegation, a powerful feature that allows a server, while impersonating a client,
to access remote resources on behalf of the client.

Important: Delegation is a very powerful feature and is unconstrained on Windows 2000. It
should be used with caution. Computers that are configured to support delegation should be
under controlled access to prevent misuse of this feature.
Windows .NET Server will support a constrained delegation feature.

When a server impersonates a client, Kerberos authentication generates a delegate-
level token (capable of being used to respond to network authentication challenges
from remote computers) if the following conditions are met:
1. The client account that is being impersonated is not marked as sensitive and

cannot be delegated in Microsoft Active Directory® directory service.
2. The server process account (the user account under which the server process is

running, or the computer account if the process is running under the local
SYSTEM account) is marked as trusted for delegation in Active Directory.

Notes
● For Kerberos delegation to be successful, all computers (clients and servers)

must be part of a single Active Directory forest.
● If you impersonate within serviced components and want to flow the callers

context through an Enterprise Services application, the application server that
hosts Enterprise Services must have Hotfix Rollup 18.1 or greater.
For more information, see INFO: Availability of Windows 2000 Post-Service Pack
2 COM+ Hotfix Rollup Package 18.1.



Building Secure ASP.NET Applications386

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge and service packs you will need: Windows
2000 Server with Active Directory.

Summary
This How To includes the following procedures:
1. Confirm that the Client Account is Configured for Delegation
2. Confirm that the Server Process Account is Trusted for Delegation

1. Confirm that the Client Account is Configured for Delegation
This procedure ensures that the client account is capable of being delegated.

� To confirm that the client account is configured for delegation
1. Log onto the domain controller using an administrator account.
2. On the taskbar, click the Start button, point to Programs, point to Administra-

tive Tools, and then click Active Directory Users and Computers.
3. Under your domain, click the Users folder.
4. Right-click the user account that is to be delegated, and then click Properties.
5. Click the Account tab.
6. Within the Account options list, make sure Account is sensitive and cannot be

delegated is not selected.
7. Click OK to close the Properties dialog box.

2. Confirm that the Server Process Account is Trusted
for Delegation

This procedure ensures that the account used to run the server process (the process
that performs impersonation) is allowed to delegate client accounts. You must
configure the user account under which the server process runs, or if the process
runs under the local SYSTEM account, you must configure the computer account.
Perform the appropriate procedure that follows, depending on if your server
process runs under a Windows account or a local SYSTEM account.



How To: Implement Kerberos Delegation for Windows 2000 387

� To confirm that the server process account is trusted for delegation if the server process
runs under a Windows user account
1. Within the Users folder of Active Directory Users and Computers, right-click

the user account that is used to run the server process that will impersonate the
client, and then click Properties.

2. Click the Account tab.
3. Within the Account options list, click Account is trusted for delegation.

� To confirm that the server process account is trusted for delegation if the server process
runs under the local SYSTEM account
1. Right-click the Computers folder within Active Directory Users and Computers,

and then click Properties.
2. Right-click the server computer (where the process that impersonates the client

will be running), and then click Properties.
3. On the General page, click Trust computer for delegation.

References
● For a list of the files that are affected by the Windows 2000 Post-Service Pack 2

(SP2) COM+ hotfix package 18.1, see article Q313582, “INFO: Availability of
Windows 2000 Post-Service Pack 2 COM+ Hotfix Rollup Package 18.1,” in the
Microsoft Knowledge Base.

● To see how to configure a complete delegation scenario, involving ASP.NET,
Enterprise Services and SQL Server, see “Flowing the Original Caller to the
Database” in Chapter 5, “Intranet Security.”





How To:
Implement IPrincipal

The .NET Framework provides the WindowsPrincipal and GenericPrincipal
classes, which provide basic role-checking functionality for Windows and non-
Windows authentication mechanisms respectively. Both classes implement the
IPrincipal interface. To be used for authorization, ASP.NET requires that these
objects are stored in HttpContext.User. For Windows-based applications, they
must be stored in Thread.CurrentPrincipal.

The functionality offered by these classes is sufficient for most application scenarios.
Applications can explicitly call the IPrincipal.IsInRole method to perform pro-
grammatic role checks. The Demand method of the PrincipalPermission class,
when used to demand that a caller belong to a particular role (either declaratively
or imperatively) also results in a call to IPrincipal.IsInRole.

In some circumstances, you might need to develop your own principal implementa-
tions by creating a class that implements the IPrincipal interface. Any class that
implements IPrincipal can be used for .NET authorization.

Reasons for implementing your own IPrincipal class include:
● You want extended role checking functionality. You might want methods that

allow you to check whether a particular user is a member of multiple roles. For
example:

CustomPrincipal.IsInAllRoles( "Role1", "Role2", "Role3" )
CustomPrincipal.IsInAnyRole( "Role1", "Role2", "Role3" )

● You want to implement an extra method or property that returns a list of roles in
an array. For example:

string[] roles = CustomPrincipal.Roles;

● You want your application to enforce role hierarchy logic. For example, a Senior
Manager may be considered higher up in the hierarchy than a Manager. This
could be tested using methods like the following.

CustomPrincipal.IsInHigherRole("Manager");
CustomPrincipal.IsInLowerRole("Manager");



Building Secure ASP.NET Applications390

● You want to implement lazy initialization of the role lists. For example, you
could dynamically load the role list only when a role check is requested.

This How To describes how to implement a custom IPrincipal class and use it for
role-based authorization in an ASP.NET application that uses Forms authentication.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need:
● Microsoft® Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of ASP.NET
Web development with the Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a Simple Web Application
2. Configure the Web Application for Forms Authentication
3. Generate an Authentication Ticket for Authenticated Users
4. Create a Class that Implements and Extends IPrincipal
5. Create the CustomPrincipal Object
6. Test the Application

1. Create a Simple Web Application
This procedure creates a new ASP.NET Web application. The application will
contain two pages, a default page that only authenticated users are allowed to
access and a logon page used to collect user credentials.

� To create a simple Web application
1. Start Visual Studio .NET and create a new C# ASP.NET Web Application called

CustomPrincipalApp.
2. Rename WebForm1.aspx to Logon.aspx.
3. Add the controls listed in Table 1 to Logon.aspx to create a logon form.



How To: Implement IPrincipal 391

Table 1: Logon.aspx controls

Control Type Text ID

Label User Name: -

Label Password -

Text Box - txtUserName

Text Box - txtPassword

Button Logon btnLogon

4. Set the TextMode property of the password Text Box control to Password.
5. In Solution Explorer, right-click CustomPrincipalApp, point to Add, and then

click Add Web Form.
6. Enter default.aspx as the new form’s name, and then click Open.

2. Configure the Web Application for Forms Authentication
� To edit the application’s Web.config file to configure the application for Forms

authentication
1. Use Solution Explorer to open Web.config.
2. Locate the <authentication> element and change the mode attribute to Forms.
3. Add the following <forms> element as a child of the <authentication> element

and set the loginUrl, name, timeout, and path attributes as follows:

<authentication mode="Forms">
  <forms loginUrl="logon.aspx" name="AuthCookie" timeout="60" path="/">
  </forms>
</authentication>

4. Add the following <authorization> element beneath the <authentication>
element. This allows only authenticated users to access the application. The
previously established loginUrl attribute of the <authentication> element
redirects unauthenticated requests to the Logon.aspx page.

<authorization>
  <deny users="?" />
  <allow users="*" />
</authorization>



Building Secure ASP.NET Applications392

3. Generate an Authentication Ticket for Authenticated Users
This procedure writes code to generate an authentication ticket for authenticated
users. The authentication ticket is a type of cookie used by the ASP.NET
FormsAuthenticationModule.

The authentication code typically involves looking up the supplied user name and
password against either a custom database or against Microsoft Active Directory®
directory service.

For information about performing these lookups, see the following How To articles
in the Reference section of this guide:
● “How To: Use Forms Authentication with Active Directory”
● “How To: Use Forms Authentication with SQL Server 2000”

� To generate an authentication ticket for authenticated users
1. Open the Logon.aspx.cs file and the following using statement to the top of the

file beneath the existing using statements.

using System.Web.Security;

2. Add the following private helper method to the WebForm1 class called
IsAuthenticated, which is used to validate user names and passwords to authen-
ticate users. This code assumes that all user name and password combinations
are valid.

private bool IsAuthenticated( string username, string password )
{
  // Lookup code omitted for clarity
  // This code would typically validate the user name and password
  // combination against a SQL database or Active Directory
  // Simulate an authenticated user
  return true;
}

3. Add the following private helper method called GetRoles, which is used to
obtain the set of roles that the user belongs to.

private string GetRoles( string username, string password )
{
  // Lookup code omitted for clarity
  // This code would typically look up the role list from a database table.
  // If the user was being authenticated against Active Directory, the
  // Security groups and/or distribution lists that the user belongs to may be
  // used instead

  // This GetRoles method returns a pipe delimited string containing roles



How To: Implement IPrincipal 393

  // rather than returning an array, because the string format is convenient
  // for storing in the authentication ticket / cookie, as user data
  return "Senior Manager|Manager|Employee";
}

4. Display the Logon.aspx form in Designer mode, and then double-click the Logon
button to create a click event handler.

5. Add a call to the IsAuthenticated method, supplying the user name and pass-
word captured through the logon form. Assign the return value to a variable of
type bool, which indicates whether or not the user is authenticated.

bool isAuthenticated = IsAuthenticated( txtUserName.Text,
                                        txtPassword.Text );

6. If the user is authenticated, add a call to the GetRoles method to obtain the
user’s role list.

if (isAuthenticated == true )
{
  string roles = GetRoles( txtUserName.Text, txtPassword.Text );

7. Create a new forms authentication ticket that contains the user name, an expira-
tion time, and the list of roles that the user belongs to. Note that the user data
property of the authentication ticket is used to store the user’s role list. Also note
that the following code creates a non-persistent ticket, although whether or not
the ticket / cookie is persistent is dependent upon your application scenario.

  // Create the authentication ticket
  FormsAuthenticationTicket authTicket = new
       FormsAuthenticationTicket(1,                          // version
                                 txtUserName.Text,           // user name
                                 DateTime.Now,               // creation
                                 DateTime.Now.AddMinutes(60),// Expiration
                                 false,                      // Persistent
                                 roles );                    // User data

8. Add code to create an encrypted string representation of the ticket and store it as
data within an HttpCookie object.

  // Now encrypt the ticket.
  string encryptedTicket = FormsAuthentication.Encrypt(authTicket);
  // Create a cookie and add the encrypted ticket to the
  // cookie as data.
  HttpCookie authCookie =
               new HttpCookie(FormsAuthentication.FormsCookieName,
                              encryptedTicket);



Building Secure ASP.NET Applications394

9. Add the cookie to the cookies collection returned to the user’s browser.

  // Add the cookie to the outgoing cookies collection.
  Response.Cookies.Add(authCookie);

10. Redirect the user to the originally requested page.

  // Redirect the user to the originally requested page
  Response.Redirect( FormsAuthentication.GetRedirectUrl(
                                                txtUserName.Text,
                                                false ));
}

4. Create a Class that Implements and Extends IPrincipal
This procedure creates a class that implements the IPrincipal interface. It also adds
additional methods and properties to the class to provide additional role-based
authorization functionality.

� To create a class that implements and extends IPrincipal
1. Add a new class called CustomPrincipal to the current project.
2. Add the following using statement to the top of CustomPrincipal.cs.

using System.Security.Principal;

3. Derive the CustomPrincipal class from the IPrincipal interface.

public class CustomPrincipal : IPrincipal

4. Add the following private member variables to the class to maintain the
IIdentity object associated with the current principal and the principal’s role list.

private IIdentity _identity;
private string [] _roles;

5. Modify the class’ default constructor to accept an IIdentity object and array of
roles. Use the supplied values to initialize the private member variables as
shown below.

public CustomPrincipal(IIdentity identity, string [] roles)
{
  _identity = identity;
  _roles = new string[roles.Length];
  roles.CopyTo(_roles, 0);
  Array.Sort(_roles);
}



How To: Implement IPrincipal 395

6. Implement the IsInRole method and Identity property defined by the IPrincipal
interface as shown below.

// IPrincipal Implementation
public bool IsInRole(string role)
{
  return Array.BinarySearch( _roles, role ) > 0 ? true : false;
}
public IIdentity Identity
{
  get
  {
    return _identity;
  }
}

7. Add the following two public methods which provide extended role-based
checking functionality.

// Checks whether a principal is in all of the specified set of roles
public bool IsInAllRoles( params string [] roles )
{
  foreach (string searchrole in roles )
  {
    if (Array.BinarySearch(_roles, searchrole) < 0 )
      return false;
  }
  return true;
}
// Checks whether a principal is in any of the specified set of roles
public bool IsInAnyRoles( params string [] roles )
{
  foreach (string searchrole in roles )
  {
    if (Array.BinarySearch(_roles, searchrole ) > 0 )
      return true;
  }
  return false;
}

5. Create the CustomPrincipal Object
This procedure implements an application authentication event handler and con-
structs a CustomPrincipal object to represent the authenticated user based on
information contained within the authentication ticket.

� To construct the CustomPrincipal object
1. From Solution Explorer, open global.asax.



Building Secure ASP.NET Applications396

2. Switch to code view, and then add the following using statements to the top of
the file.

using System.Web.Security;
using System.Security.Principal;

3. Locate the Application_AuthenticateRequest event handler and add the follow-
ing code to obtain the forms authentication cookie from the cookie collection
passed with the request.

// Extract the forms authentication cookie
string cookieName = FormsAuthentication.FormsCookieName;
HttpCookie authCookie = Context.Request.Cookies[cookieName];

if(null == authCookie)
{
  // There is no authentication cookie.
  return;
}

4. Add the following code to extract and decrypt the authentication ticket from the
forms authentication cookie.

FormsAuthenticationTicket authTicket = null;
try
{
  authTicket = FormsAuthentication.Decrypt(authCookie.Value);
}
catch(Exception ex)
{
  // Log exception details (omitted for simplicity)
  return;
}

if (null == authTicket)
{
  // Cookie failed to decrypt.
  return;
}

5. Add the following code to parse out the pipe separate list of role names attached
to the ticket when the user was originally authenticated.

// When the ticket was created, the UserData property was assigned a
// pipe delimited string of role names.
string[] roles = authTicket.UserData.Split('|');



How To: Implement IPrincipal 397

6. Add the following code to create a FormsIdentity object with the user name
obtained from the ticket name and a CustomPrincipal object that contains this
identity together with the user’s role list.

// Create an Identity object
FormsIdentity id = new FormsIdentity( authTicket );

// This principal will flow throughout the request.
CustomPrincipal principal = new CustomPrincipal(id, roles);
// Attach the new principal object to the current HttpContext object
Context.User = principal;

5. Test the Application
This procedure adds code to the default.aspx page to display information from the
CustomPrincipal object attached to the current HttpContext object, to confirm that
the object has been correctly constructed and assigned to the current Web request. It
also tests the role-based functionality supported by the new class.

� To test the application
1. In Solution Explorer, double-click default.aspx.
2. Double-click the default.aspx Web form to display the page load event handler.
3. Scroll to the top of the file and add the following using statement beneath the

existing using statements.

using System.Security.Principal;

4. Return to the page load event handler and add the following code to display the
identity name attached to the CustomPrincipal associated with the current Web
request.

CustomPrincipal cp = HttpContext.Current.User as CustomPrincipal;
Response.Write( "Authenticated Identity is: " +
                cp.Identity.Name );
Response.Write( "<p>" );

5. Add the following code to test role membership for the current authenticated
identity, using the standard IsInRole method and the additional IsInAnyRoles
and IsInAllRoles methods supported by the CustomPrincipal class.

if ( cp.IsInRole("Senior Manager") )
{
  Response.Write( cp.Identity.Name + " is in the " + "Senior Manager Role" );
  Response.Write( "<p>" );
}



Building Secure ASP.NET Applications398

  if ( cp.IsInAnyRoles("Senior Manager", "Manager", "Employee", "Sales") )
  {
    Response.Write( cp.Identity.Name + " is in one of the specified roles");
    Response.Write( "<p>" );
  }
  if ( cp.IsInAllRoles("Senior Manager", "Manager", "Employee", "Sales") )
  {
    Response.Write( cp.Identity.Name + " is in ALL of the specified roles" );
    Response.Write( "<p>" );
  }
  else
  {
    Response.Write( cp.Identity.Name +
                    " is not in ALL of the specified roles" );
    Response.Write("<p>");
  }

  if ( cp.IsInRole("Sales") )
    Response.Write( "User is in Sales role<p>" );
  else
    Response.Write( "User is not in Sales role<p>" );

6. In Solution Explorer, right-click default.aspx, and then click Set As Start Page.
7. On the Build menu, click Build Solution.
8. Press CTRL+F5 to run the application. Because default.aspx is configured as the

start up page, this is the initially requested page.
9. When you are redirected to the logon page (because you do not initially have an

authentication ticket), enter a user name and password (any will do), and then
click Logon.

10. Confirm that you are redirected to default.aspx and that the user identity and the
correct role details are displayed. The user is a member of the Senior Manager,
Manager and Employee roles, but not a member of the Sales role.

Additional Resources
For more information about Forms based authentication, see the following How Tos
in the Reference section of this guide:
● “How To: Use Forms Authentication with GenericPrincipal Objects”
● “How To: Use Forms Authentication with Active Directory”
● “How To: Use Forms Authentication with SQL Server 2000”



How To:
Create a DPAPI Library

Web applications often need to store security sensitive data, such as database
connection strings and service account credentials in application configuration files.
For security reasons, this type of information should never be stored in plain text
and should always be encrypted prior to storage.

This How To describes how to create a managed class library that encapsulates calls
to the Data Protection API (DPAPI) to encrypt and decrypt data. This library can
then be used from other managed applications such as ASP.NET Web applications,
Web services and Enterprise Services applications.

For related How To articles that use the DPAPI library created in this article, see the
following articles in the Reference section of this guide:
● “How To: Use DPAPI (Machine Store) from ASP.NET”
● “How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services”

Notes
● Microsoft® Windows® 2000 operating system and later operating systems

provide the Win32® Data Protection API (DPAPI) for encrypting and decrypting
data.

● DPAPI is part of the Cryptography API (Crypto API) and is implemented in
crypt32.dll. It consists of two methods, CryptProtectData and
CryptUnprotectData.

● DPAPI is particularly useful in that it can eliminate the key management prob-
lem exposed to applications that use cryptography. While encryption ensures the
data is secure, you must take additional steps to ensure the security of the key.
DPAPI uses the password of the user account associated with the code that calls
the DPAPI functions in order to derive the encryption key. As a result, the oper-
ating system (and not the application) manages the key.

● DPAPI can work with either the machine store or user store (which requires a
loaded user profile). DPAPI defaults to the user store, although you can specify
that the machine store be used by passing the
CRYPTPROTECT_LOCAL_MACHINE flag to the DPAPI functions.



Building Secure ASP.NET Applications400

● The user profile approach affords an additional layer of security because it limits
who can access the secret. Only the user who encrypts the data can decrypt the
data. However, use of the user profile requires additional development effort
when DPAPI is used from an ASP.NET Web application because you need to take
explicit steps to load and unload a user profile (ASP.NET does not automatically
load a user profile).

● The machine store approach is easier to develop because it does not require user
profile management. However, unless an additional entropy parameter is used, it
is less secure because any user on the computer can decrypt data. (Entropy is a
random value designed to make deciphering the secret more difficult). The
problem with using an additional entropy parameter is that this must be securely
stored by the application, which presents another key management issue.

Note: If you use DPAPI with the machine store, the encrypted string is specific to a given
computer and therefore you must generate the encrypted data on every computer. Do not
copy the encrypted data across computers in a farm or cluster.
If you use DPAPI with the user store, you can decrypt the data on any computer with a
roaming user profile.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need:
● Microsoft Windows 2000
● Microsoft Visual Studio® .NET development system

The procedures in this How To also require that you have knowledge of the
Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a C# Class Library
2. Strong Name the Assembly (Optional)

1. Create a C# Class Library
This procedure creates a C# class library that exposes Encrypt and Decrypt meth-
ods. It encapsulates calls to the Win32 DPAPI functions.



How To: Create a DPAPI Library 401

� To create a C# class library
1. Start Visual Studio .NET and create a new Visual C# Class Library project called

DataProtection.
2. Use Solution Explorer to rename class1.cs as DataProtection.cs.
3. Within DataProtection.cs, rename class1 as DataProtector and rename the de-

fault constructor accordingly.
4. In Solution Explorer, right-click DataProtection, and then click Properties.
5. Click the Configuration Properties folder and set Allow unsafe code blocks to

True.
6. Click OK to close the Properties dialog box.
7. Add the following using statements to the top of DataProtection.cs beneath the

existing using statement.

using System.Text;
using System.Runtime.InteropServices;

8. Add the following DllImport statements to the top of the DataProtector class to
allow the Win32 DPAPI functions together with the FormatMessage utility
function to be called through P/Invoke.

[DllImport("Crypt32.dll", SetLastError=true,
            CharSet=System.Runtime.InteropServices.CharSet.Auto)]
private static extern bool CryptProtectData(
                                  ref DATA_BLOB pDataIn,
                                  String szDataDescr,
                                  ref DATA_BLOB pOptionalEntropy,
                                  IntPtr pvReserved,
                                  ref CRYPTPROTECT_PROMPTSTRUCT pPromptStruct,
                                  int dwFlags,
                                  ref DATA_BLOB pDataOut);
[DllImport("Crypt32.dll", SetLastError=true,
            CharSet=System.Runtime.InteropServices.CharSet.Auto)]
private static extern bool CryptUnprotectData(
                                  ref DATA_BLOB pDataIn,
                                  String szDataDescr,
                                  ref DATA_BLOB pOptionalEntropy,
                                  IntPtr pvReserved,
                                  ref CRYPTPROTECT_PROMPTSTRUCT pPromptStruct,
                                  int dwFlags,
                                  ref DATA_BLOB pDataOut);
[DllImport("kernel32.dll",
            CharSet=System.Runtime.InteropServices.CharSet.Auto)]
private unsafe static extern int FormatMessage(int dwFlags,
                                               ref IntPtr lpSource,
                                               int dwMessageId,
                                               int dwLanguageId,
                                               ref String lpBuffer, int nSize,
                                               IntPtr *Arguments);



Building Secure ASP.NET Applications402

9. Add the following structure definitions and constants used by the DPAPI func-
tions.

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Unicode)]
internal struct DATA_BLOB
{
  public int cbData;
  public IntPtr pbData;
}

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Unicode)]
internal struct CRYPTPROTECT_PROMPTSTRUCT
{
  public int cbSize;
  public int dwPromptFlags;
  public IntPtr hwndApp;
  public String szPrompt;
}
static private IntPtr NullPtr = ((IntPtr)((int)(0)));
private const int CRYPTPROTECT_UI_FORBIDDEN = 0x1;
private const int CRYPTPROTECT_LOCAL_MACHINE = 0x4;

10. Add a public enumerated type called Store to the class. This is used to indicate
whether DPAPI should be used in conjunction with the machine or user stores.

public enum Store {USE_MACHINE_STORE = 1, USE_USER_STORE};

11. Add a private member variable of type Store to the class.

private Store store;

12. Replace the class’ default constructor with the following constructor that accepts
a Store parameter and places the supplied value in the store private member
variable.

public DataProtector(Store tempStore)
{
  store = tempStore;
}

13. Add the following public Encrypt method to the class.

public byte[] Encrypt(byte[] plainText, byte[] optionalEntropy)
{
  bool retVal = false;

  DATA_BLOB plainTextBlob = new DATA_BLOB();
  DATA_BLOB cipherTextBlob = new DATA_BLOB();
  DATA_BLOB entropyBlob = new DATA_BLOB();



How To: Create a DPAPI Library 403

  CRYPTPROTECT_PROMPTSTRUCT prompt = new CRYPTPROTECT_PROMPTSTRUCT();
  InitPromptstruct(ref prompt);

  int dwFlags;
  try
  {
    try
    {
      int bytesSize = plainText.Length;
      plainTextBlob.pbData = Marshal.AllocHGlobal(bytesSize);
      if(IntPtr.Zero == plainTextBlob.pbData)
      {
        throw new Exception("Unable to allocate plaintext buffer.");
      }
      plainTextBlob.cbData = bytesSize;
      Marshal.Copy(plainText, 0, plainTextBlob.pbData, bytesSize);
    }
    catch(Exception ex)
    {
      throw new Exception("Exception marshalling data. " + ex.Message);
    }
    if(Store.USE_MACHINE_STORE == store)
    {//Using the machine store, should be providing entropy.
      dwFlags = CRYPTPROTECT_LOCAL_MACHINE|CRYPTPROTECT_UI_FORBIDDEN;
      //Check to see if the entropy is null
      if(null == optionalEntropy)
      {//Allocate something
        optionalEntropy = new byte[0];
      }
      try
      {
        int bytesSize = optionalEntropy.Length;
        entropyBlob.pbData = Marshal.AllocHGlobal(optionalEntropy.Length);;
        if(IntPtr.Zero == entropyBlob.pbData)
        {
          throw new Exception("Unable to allocate entropy data buffer.");
        }
        Marshal.Copy(optionalEntropy, 0, entropyBlob.pbData, bytesSize);
        entropyBlob.cbData = bytesSize;
      }
      catch(Exception ex)
      {
        throw new Exception("Exception entropy marshalling data. " +
                            ex.Message);
      }
    }
    else
    {//Using the user store
      dwFlags = CRYPTPROTECT_UI_FORBIDDEN;
    }
    retVal = CryptProtectData(ref plainTextBlob, "", ref entropyBlob,
                              IntPtr.Zero, ref prompt, dwFlags,
                              ref cipherTextBlob);



Building Secure ASP.NET Applications404

    if(false == retVal)
    {
      throw new Exception("Encryption failed. " +
                          GetErrorMessage(Marshal.GetLastWin32Error()));
    }
  }
  catch(Exception ex)
  {
    throw new Exception("Exception encrypting. " + ex.Message);
  }
  byte[] cipherText = new byte[cipherTextBlob.cbData];
  Marshal.Copy(cipherTextBlob.pbData, cipherText, 0, cipherTextBlob.cbData);
  return cipherText;
}

14. Add the following public Decrypt method to the class.

public byte[] Decrypt(byte[] cipherText, byte[] optionalEntropy)
{
  bool retVal = false;
  DATA_BLOB plainTextBlob = new DATA_BLOB();
  DATA_BLOB cipherBlob = new DATA_BLOB();
  CRYPTPROTECT_PROMPTSTRUCT prompt = new CRYPTPROTECT_PROMPTSTRUCT();
  InitPromptstruct(ref prompt);
  try
  {
    try
    {
      int cipherTextSize = cipherText.Length;
      cipherBlob.pbData = Marshal.AllocHGlobal(cipherTextSize);
      if(IntPtr.Zero == cipherBlob.pbData)
      {
        throw new Exception("Unable to allocate cipherText buffer.");
      }
      cipherBlob.cbData = cipherTextSize;
      Marshal.Copy(cipherText, 0, cipherBlob.pbData, cipherBlob.cbData);
    }
    catch(Exception ex)
    {
      throw new Exception("Exception marshalling data. " + ex.Message);
    }
    DATA_BLOB entropyBlob = new DATA_BLOB();
    int dwFlags;
    if(Store.USE_MACHINE_STORE == store)
    {//Using the machine store, should be providing entropy.
      dwFlags = CRYPTPROTECT_LOCAL_MACHINE|CRYPTPROTECT_UI_FORBIDDEN;
      //Check to see if the entropy is null
      if(null == optionalEntropy)
      {//Allocate something
        optionalEntropy = new byte[0];
      }
      try
      {



How To: Create a DPAPI Library 405

        int bytesSize = optionalEntropy.Length;
        entropyBlob.pbData = Marshal.AllocHGlobal(bytesSize);
        if(IntPtr.Zero == entropyBlob.pbData)
        {
          throw new Exception("Unable to allocate entropy buffer.");
        }
        entropyBlob.cbData = bytesSize;
        Marshal.Copy(optionalEntropy, 0, entropyBlob.pbData, bytesSize);
      }
      catch(Exception ex)
      {
        throw new Exception("Exception entropy marshalling data. " +
                            ex.Message);
      }
    }
    else
    {//Using the user store
      dwFlags = CRYPTPROTECT_UI_FORBIDDEN;
    }
    retVal = CryptUnprotectData(ref cipherBlob, null, ref entropyBlob,
                                IntPtr.Zero, ref prompt, dwFlags,
                                ref plainTextBlob);
    if(false == retVal)
    {
      throw new Exception("Decryption failed. " +
                            GetErrorMessage(Marshal.GetLastWin32Error()));
    }
    //Free the blob and entropy.
    if(IntPtr.Zero != cipherBlob.pbData)
    {
      Marshal.FreeHGlobal(cipherBlob.pbData);
    }
    if(IntPtr.Zero != entropyBlob.pbData)
    {
      Marshal.FreeHGlobal(entropyBlob.pbData);
    }
  }
  catch(Exception ex)
  {
    throw new Exception("Exception decrypting. " + ex.Message);
  }
  byte[] plainText = new byte[plainTextBlob.cbData];
  Marshal.Copy(plainTextBlob.pbData, plainText, 0, plainTextBlob.cbData);
  return plainText;
}

15. Add the following private helper methods to the class.

private void InitPromptstruct(ref CRYPTPROTECT_PROMPTSTRUCT ps)
{
  ps.cbSize = Marshal.SizeOf(typeof(CRYPTPROTECT_PROMPTSTRUCT));
  ps.dwPromptFlags = 0;



Building Secure ASP.NET Applications406

  ps.hwndApp = NullPtr;
  ps.szPrompt = null;
}

private unsafe static String GetErrorMessage(int errorCode)
{
  int FORMAT_MESSAGE_ALLOCATE_BUFFER = 0x00000100;
  int FORMAT_MESSAGE_IGNORE_INSERTS = 0x00000200;
  int FORMAT_MESSAGE_FROM_SYSTEM  = 0x00001000;
  int messageSize = 255;
  String lpMsgBuf = "";
  int dwFlags = FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
                FORMAT_MESSAGE_IGNORE_INSERTS;
  IntPtr ptrlpSource = new IntPtr();
  IntPtr prtArguments = new IntPtr();
  int retVal = FormatMessage(dwFlags, ref ptrlpSource, errorCode, 0,
                             ref lpMsgBuf, messageSize, &prtArguments);
  if(0 == retVal)
  {
    throw new Exception("Failed to format message for error code " +
                        errorCode + ". ");
  }
  return lpMsgBuf;
}

16. On the Build menu, click Build Solution.

2. Strong Name the Assembly (Optional)
If the managed DPAPI class library is to be called by an Enterprise Services applica-
tion (which must be strong named), then the DPAPI class library must also be
strong named. This procedure creates a strong name for the class library.

If the managed DPAPI class library is to be called directly from an ASP.NET Web
application (which is not strong named), you can skip this procedure.

� To strong name the assembly
1. Open a command window and change directory to the DataProtection project

folder.
2. Use the sn.exe utility to generate a key pair used to sign the assembly.

sn -k dataprotection.snk

3. Return to Visual Studio .NET and open Assemblyinfo.cs.



How To: Create a DPAPI Library 407

4. Locate the AssemblyKeyFile attribute and add a path to the key file within the
project folder.

[assembly: AssemblyKeyFile(@"..\..\dataprotection.snk")]

5. On the Build menu, click Build Solution.

References
For more information, see the following related How Tos:
● “How To: Use DPAPI (Machine Store) from ASP.NET” in the Reference section of

this guide
● “How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services” in the

Reference section of this guide





How To:
Use DPAPI (Machine Store)
from ASP.NET

Web applications often need to store security-sensitive data, such as database
connection strings and service account credentials in application configuration files.
For security reasons, this type of information should never is stored in plain text
and should always be encrypted prior to storage.

This How To describes how to use DPAPI from ASP.NET. This includes ASP.NET
Web applications, Web services, and .NET Remoting components that are hosted in
ASP.NET.
The code in this How To references DPAPI through a managed class library, the
creation of which is described in “How To: Create a DPAPI Library” in the Refer-
ence section of this guide.

Notes
● DPAPI can work with either the machine store or user store (which requires a

loaded user profile). DPAPI defaults to the user store, although you can specify
that the machine store be used by passing the
CRYPTPROTECT_LOCAL_MACHINE flag to the DPAPI functions.

● The user profile approach affords an additional layer of security because it limits
who can access the secret. Only the user who encrypts the data can decrypt the
data. However, use of the user profile requires additional development effort
when DPAPI is used from an ASP.NET Web application because you need to take
explicit steps to load and unload a user profile (ASP.NET does not automatically
load a user profile).

● The machine store approach (adopted in this How To) is easier to develop
because it does not require user profile management. However, unless an
additional entropy parameter is used, it is less secure because any user on the
computer can decrypt data. (Entropy is a random value designed to make
deciphering the secret more difficult.) The problem with using an additional
entropy parameter is that this must be securely stored by the application,
which presents another key management issue.



Building Secure ASP.NET Applications410

Note: If you use DPAPI with the machine store, the encrypted string is specific to a given
computer and therefore you must generate the encrypted data on every computer. Do not
copy the encrypted data across computers in a farm or cluster.

● For a related article that shows how to use DPAPI with the user store from an
ASP.NET Web application (by using a serviced component within an Enterprise
Services application), see “How To: Use DPAPI (User Store) from ASP.NET with
Enterprise Services” within the Reference section of this guide.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system

The procedures in this How To also require that you have knowledge of building
ASP.NET Web applications with Microsoft Visual C#™ development tool.

Before working through this How To, you must perform the steps described in
“How To: Create a DPAPI Library” in order to create the DPAPI managed class
library used by code in this How To.

Summary
This How To includes the following steps:
1. Create an ASP.NET Client Web Application
2. Test the Application
3. Modify the Web Application to Read an Encrypted Connection String from

Web.Config

1. Create an ASP.NET Client Web Application
This procedure creates an ASP.NET client Web application that will call the DPAPI
class library to encrypt and decrypt data stored within the Web.config file.

� To create an ASP.NET client Web application
1. Start Visual Studio .NET and create a new C# ASP.NET Web application called

DPAPIClientWeb.
2. Add a reference to the DataProtector.dll assembly, previously created in “How

To: Create a DPAPI Library.”



How To: Use DPAPI (Machine Store) from ASP.NET 411

3. Open WebForm1.aspx.cs and add the following using statements to the top of
the file beneath the existing using statements.

using System.Text;
using DataProtection;

4. Add the controls listed in Table 1 to WebForm1.aspx.

Table 1: WebForm1.aspx controls

Control Type Text ID

Button Encrypt btnEncrypt

Button Decrypt btnDecrypt

TextBox txtDataToEncrypt

TextBox txtEncryptedData

TextBox txtDecryptedData

Label lblError

Label Data To Encrypt

Label Encrypted Data

Label Decrypted Data

Your Web form should look similar to Figure 1.

Figure 1
DPAPIClientWeb Web Form

5. Double-click the Encrypt button to create a button click event handler.

DataProtector dp = new DataProtector( DataProtector.Store.USE_MACHINE_STORE );
try
{
  byte[] dataToEncrypt = Encoding.ASCII.GetBytes(txtDataToEncrypt.Text);
  // Not passing optional entropy in this example
  // Could pass random value (stored by the application) for added security



Building Secure ASP.NET Applications412

  // when using DPAPI with the machine store.
  txtEncryptedData.Text =
                Convert.ToBase64String(dp.Encrypt(dataToEncrypt,null));
}
catch(Exception ex)
{
  lblError.ForeColor = Color.Red;
  lblError.Text = "Exception.<br>" + ex.Message;
  return;
}
lblError.Text = "";

6. Return to the Web form and double-click the Decrypt button. Add the following
code to the button click event handler.

DataProtector dp = new DataProtector(DataProtector.Store.USE_MACHINE_STORE);
try
{
  byte[] dataToDecrypt = Convert.FromBase64String(txtEncryptedData.Text);
  // Optional entropy parameter is null.
  // If entropy was used within the Encrypt method, the same entropy parameter
  // must be supplied here
  txtDecryptedData.Text =
                     Encoding.ASCII.GetString(dp.Decrypt(dataToDecrypt,null));
}
catch(Exception ex)
{
  lblError.ForeColor = Color.Red;
  lblError.Text = "Exception.<br>" + ex.Message;
  return;
}
lblError.Text = "";

7. On the Build menu, click Build Solution.

2. Test the Application
This procedure tests the Web application to confirm that data is successfully en-
crypted and decrypted.

� To test the application
1. Press Ctrl+F5 to run the Web application.
2. Enter a string in the Data to Encrypt text box and click Encrypt.

Confirm that encrypted data (in Base64 encoded format) is displayed in the
Encrypted Data text box.

3. Click the Decrypt button.
Confirm that the encrypted data is successfully decrypted and displayed in the
Decrypted Data text box.



How To: Use DPAPI (Machine Store) from ASP.NET 413

3. Modify the Web Application to Read an Encrypted Connection
String from Web.Config

This procedure takes an encrypted database connection string and places the
encrypted cipher text into the application’s Web.config file within an
<appSettings> element. You will then add code to read and decrypt this string from
the configuration file.

� To modify the Web application to read an encrypted connection string from Web.config
1. Return to Visual Studio .NET and display the WebForm1.aspx in Designer mode.
2. Add another button to the form. Set its Text property to Decrypt string from

config file and its ID property to btnDecryptConfig.
3. Double-click the button to create a button click event handler.
4. Add the following using statement to the top of the file beneath the existing

using statements.

using System.Configuration;

5. Return to the btnDecryptConfig_Click event handler and add the following
code to retrieve a database connection string from the <appSettings> section of
the Web.config file.

DataProtector dp = new DataProtector(DataProtector.Store.USE_MACHINE_STORE);
try
{
  string appSettingValue =
            ConfigurationSettings.AppSettings["connectionString"];
  byte[] dataToDecrypt = Convert.FromBase64String(appSettingValue);
  string connStr = Encoding.ASCII.GetString(
                               dp.Decrypt(dataToDecrypt,null));
  txtDecryptedData.Text = connStr;
}
catch(Exception ex)
{
  lblError.ForeColor = Color.Red;
  lblError.Text = "Exception.<br>" + ex.Message;
  return;
}
lblError.Text = "";

6. On the Build menu, click Build Solution to rebuild the projects.
7. Right-click WebForm1.aspx, and then click View in Browser.
8. Enter a database connection string such as the one that follows into the Data to

Encrypt field.

server=(local);Integrated Security=SSPI; database=Northwind



Building Secure ASP.NET Applications414

9. Click the Encrypt button.
10. Select the encrypted cipher text and copy it to the clipboard.
11. Switch to Visual Studio .NET, open Web.config and add the following

<appSettings> element outside of the <system.web> element. Assign the en-
crypted connection string currently on the clipboard to the value attribute.

<appSettings>
   <add key="connectionString" value="encrypted connection string" />
</appSettings>

12. Save Web.config.
13. Click the Decrypt string from config file button and confirm that the encrypted

database connection string is successfully read from the Web.config file and that
the decrypted connection string is successfully displayed in the Decrypted data
field.

References
For more information, see the following related How Tos in the Reference section of
this guide:
● “How To: Create a DPAPI Library” in the Reference section of this guide.
● “How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services” in the

Reference section of this guide.



How To:
Use DPAPI (User Store) from
ASP.NET with Enterprise Services

Web applications often need to store security-sensitive data, such as database
connection strings and service account credentials in application configuration files.
For security reasons, this type of information should never is stored in plain text
and should always be encrypted prior to storage.

This How To describes how to use Data Protection API (DPAPI) from an ASP.NET
application with Enterprise Services.

Notes
● DPAPI can work with either the machine store or user store (which requires a

loaded user profile). DPAPI defaults to the user store, although you can specify
that the machine store be used by passing the
CRYPTPROTECT_LOCAL_MACHINE flag to the DPAPI functions.

● The user profile approach (adopted by this How To) affords an additional layer
of security because it limits who can access the secret. Only the user who en-
crypts the data can decrypt the data. However, use of the user profile requires
additional development effort when DPAPI is used from an ASP.NET Web
application because you need to take explicit steps to load and unload a user
profile (ASP.NET does not automatically load a user profile).

● For a related article that shows how to use DPAPI with the machine store
(directly) from an ASP.NET Web application (without requiring an Enterprise
Services application), see “How To: Use DPAPI (Machine Store) from ASP.NET”
within the Reference section of this guide.

The approach described in this How To uses a .NET serviced component running in
an Enterprise Services (COM+) server application to perform the DPAPI processing
for the reasons outlined in the following section, “Why Use Enterprise Services?”
It also uses a Windows service for the reasons in the “Why use a Windows Service?”
section. The solution configuration is shown in Figure 1 on the next page.



Building Secure ASP.NET Applications416

ASP.NET 
Web 

Application

4

6

3 5

2

1

web.config

Encrypted 
Connection 

String

Serviced 
Component

DPAPI

Crypto API

Win32 
Service

Service Control 
Manager

Start and
load user
profile

Launch

P/Invoke

Enterprise Services      (COM+)
Server   Application

Figure 1
ASP.NET Web application uses a serviced component in an Enterprise Services server application to
interact with DPAPI

In Figure1, the sequence of events is as follows:
1. The Windows service control manager starts the Win32 service and automatically

loads the user profile associated with the account under which the service runs.
The same Windows account is used to run the Enterprise Services application.

2. The Win32 service calls a launch method on the serviced component, which
starts the Enterprise Services application and loads the serviced component.

3. The Web application retrieves the encrypted string from the Web.config file.
4. The application calls a method on the serviced component to decrypt the connec-

tion string.
5. The serviced component interacts with DPAPI using P/Invoke to call the Win32

DPAPI functions.
6. The decrypted string is returned to the Web application.

Why Use Enterprise Services?
DPAPI requires a Windows account password in order to derive an encryption key.
The account that DPAPI uses is obtained either from the current thread token (if the
thread that calls DPAPI is currently impersonating), or the process token. Further-
more, using DPAPI with the user store requires that the user profile associated with
the account is loaded. This presents the following issues for an ASP.NET Web
application that wants to use DPAPI with the user store:
● Calls to DPAPI from an ASP.NET application running under the default ASPNET

account will fail. This is because the ASPNET account does not have a loaded
user profile.



How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services 417

● If an ASP.NET Web application is configured to impersonate its callers, the
ASP.NET application thread has an associated thread impersonation token.
The logon session associated with this impersonation token is a network logon
session (used on the server to represent the caller). Network logon sessions do
not result in user profiles being loaded and it would also not be possible to
derive an encryption key from the password because the server does not have the
impersonated user’s password (unless the application uses Basic authentication).

To overcome these limitations, you can use a serviced component within an Enter-
prise Services server application (with a fixed process identity) to provide encryp-
tion and decryption services using DPAPI.

Why Use a Windows Service?
A Windows service is used in this solution in order to ensure that a user profile is
automatically loaded. When the Windows Service Control Manager (SCM) starts a
service, the SCM also loads the profile of the account the service is configured to
run as.

The service is then used to load the serviced component, which causes the Enter-
prise Services server application (in an instance of Dllhost.exe) to start.

Due to the fact that the Windows service and the serviced component are config-
ured to both run using the same least privileged account, the serviced component
has access to the loaded user profile and as a result can call DPAPI functions to
encrypt and decrypt data.

If the service component is not launched from a Windows service (and the service is
taken out of the picture) the user profile will not automatically be loaded. While
there is a Win32 API that can be called to load a user profile (LoadUserProfile), it
requires the calling code to be part of the Administrators group, which would
defeat the principle of running with least privilege.

The service must be running whenever the Encrypt and Decrypt methods of the
serviced component are called. When Windows services are stopped, the configured
profile is automatically unloaded. At this point, the DPAPI methods within the
serviced component would cease to work.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need:
● Microsoft® SQL Server™ 2000 or Microsoft Windows® XP operating system
● Microsoft Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of ASP.NET
Web development with Microsoft Visual C#™ development tool.



Building Secure ASP.NET Applications418

Summary
This How To includes the following procedures:
1. Create a Serviced Component that Provides Encrypt and Decrypt Methods
2. Call the Managed DPAPI Class Library
3. Create a Dummy Class Used to Launch the Serviced Component
4. Create a Windows Account to Run the Enterprise Services Application and

Windows Service
5. Configure, Strong Name, and Register the Serviced Component
6. Create a Windows Service Application to Launch the Serviced Component
7. Install and Start the Windows Service
8. Write a Web Application to Test the Encryption and Decryption Routines
9. Modify the Web Application to Read an Encrypted Connection String from an

Application Configuration File

1. Create a Serviced Component that Provides Encrypt and
Decrypt Methods

This procedure creates a serviced component that exposes Encrypt and Decrypt
methods. In a later procedure, these will be called by an ASP.NET Web application
when it requires encryption services.

� To create a serviced component that provides Encrypt and Decrypt methods
1. Start Visual Studio .NET and create a new C# class library project called

DPAPIComp.
2. Use Solution Explorer to rename Class1.cs as DataProtectorComp.cs.
3. Within DataProtectorComp.cs, rename Class1 as DataProtectorComp and

rename the default constructor accordingly.
4. Add an assembly reference to the System.EnterpriseServices.dll assembly.
5. Add the following using statements to the top of DataProtectorComp.cs.

using System.EnterpriseServices;
using System.Security.Principal;
using System.Runtime.InteropServices;



How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services 419

6. Derive the DataProtectorComp class from the ServicedComponent class.

public class DataProtectorComp : ServicedComponent

7. Add the following two empty public methods to the DataProtectorComp class.

public byte[] Encrypt(byte[] plainText)
{}
public byte[] Decrypt(byte[] cipherText)
{}

2. Call the Managed DPAPI Class Library
This procedure calls the managed DPAPI class library to encrypt and decrypt data.
This class library encapsulates the calls to the Win32 DPAPI functions. If you have
not yet created this class library, refer to “How To: Create a DPAPI Library” in the
Reference section of this guide.

� To call the managed DPAPI class library
1. Add a file reference to the DataProtection.dll assembly.
2. Add the following using statement beneath the existing using statements in

DataProtectorComp.cs.

using DataProtection;

3. Add the following code to the Encrypt method to encrypt the supplied data.

DataProtector dp = new DataProtector( DataProtector.Store.USE_USER_STORE );
byte[] cipherText = null;
try
{
  cipherText = dp.Encrypt(plainText, null);
}
catch(Exception ex)
{
  throw new Exception("Exception encrypting. " + ex.Message);
}
return cipherText;



Building Secure ASP.NET Applications420

4. Add the following code to the Decrypt method to decrypt the supplied cipher
text.

DataProtector dp = new DataProtector( DataProtector.Store.USE_USER_STORE );
byte[] plainText = null;

try
{
  plainText = dp.Decrypt(cipherText,null);
}
catch(Exception ex)
{
  throw new Exception("Exception decrypting. " + ex.Message);
}
return plainText;

3. Create a Dummy Class that will Launch the Serviced
Component

This procedure creates a dummy class that exposes a single Launch method. This
will be called from the Windows service to start the Enterprise Services application
that hosts the serviced component.

� To create a dummy class that will launch the serviced component
1. Add a new C# class to the project and name it Launcher.cs.
2. Add the following method to the class. This method will be called by the service

when the service starts.

public bool Launch()
{
  return true;
}

3. On the Build menu, click Build Solution.

4. Create a Windows Account to Run the Enterprise Services
Application and Windows Service

This procedure creates a Windows account that you will use to run the Enterprise
Services application that hosts the DataProtectorComp serviced component and the
Windows service. It also results in the creation of a user profile for the new account.
This is required by DPAPI when it uses the user store.



How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services 421

� To create a Windows account to run the Enterprise Services application and Windows
service
1. Create a new local user account called DPAPIAccount. Enter a password, clear

the User must change password at next logon check box, and then select the
Password never expires check box.

2. Use the Local Security Policy tool in the Administrative Tools programs group
to give the account the Log on locally and Log on as a batch job privileges.

� To create a user profile for the new account
1. Log off Windows.
2. Log back on using the new DPAPIAccount.

This results in the creation of a user profile for this account.
3. Log off Windows and log back on as your normal developer account.

5. Configure, Strong Name, and Register the Serviced
Component

This procedure signs the serviced component assembly to give it a strong name.
This is a mandatory requirement for assemblies containing serviced components.
You will then add assembly level attributes to the serviced component assembly
used to configure the serviced component within the COM+ catalog. After that, you
will use the Regsvcs.exe utility to register the serviced component and create a host
COM+ server application. Finally, you will set the COM+ application’s “run as”
identity to the service account created in the previous procedure.

� To configure, strong name, and register the serviced component
1. Open a command window and change directory to the DPAPIComp project

folder.
2. Use the sn.exe utility to generate a key pair used to sign the assembly.

sn -k dpapicomp.snk

3. Return to Visual Studio .NET and open Assemblyinfo.cs.
4. Locate the AssemblyKeyFile attribute and add a path to the key file within the

project folder.

[assembly: AssemblyKeyFile(@"..\..\dpapicomp.snk")]

5. Add the following using statement to the top of the file.

using System.EnterpriseServices;



Building Secure ASP.NET Applications422

6. Add the following assembly level attributes to configure the COM+ application
as a server application, and to specify the application’s name.

[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationName("DPAPI Helper Application")]

7. On the Build menu, click Build Solution to build the serviced component
project.

8. Open a command window and go to the project output directory that contains
the DPAPIComp.dll file.

9. Use regsvcs.exe to register the serviced component and create the COM+ appli-
cation.

regsvcs DPAPIComp.dll

10. Start the Component Services Microsoft Management Console (MMC) snap-in.
11. Expand the Component Services, Computers, My Computer, and COM+

Applications folders.
12. Locate and right-click DPAPI Helper Application, and then click Properties.
13. Click the Activation tab and confirm that the application type is set to Server

application.
14. Click the Identity tab, and then click the This user radio button.
15. Enter DPAPIAccount as the user, enter the appropriate password, and then click

OK to close the Properties dialog box.

6. Create a Windows Service Application that will Launch the
Serviced Component

This procedure creates a simple Windows service application that will launch the
serviced component when it starts. This ensures that the profile of the configured
account is loaded and that the serviced component is available to encrypt and
decrypt data.

� To create a Windows service application that will launch the serviced component
1. Start a new instance of Visual Studio .NET and create a new C# Windows service

project called DPAPIService.
2. Use Solution Explorer to rename Service1.cs as DPAPIService.cs.
3. Within DPAPIService.cs, rename Service1 as DPAPIService and rename the

default constructor accordingly.



How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services 423

4. Within DPAPIService.cs, locate the InitializedComponent method and change
the service name to DPAPIService.

5. Set a reference to the System.EnterpriseServices.dll and
System.Configuration.Install.dll assemblies.

6. Set a file reference to the DPAPIComp assembly.
7. Add the following using statement to the top of DPAPIService.cs beneath the

existing using statements.

using DPAPIComp;

8. Locate the Main method and replace the following code

ServicesToRun = new System.ServiceProcess.ServiceBase[]{new Service1()};

with the following line.

ServicesToRun = new System.ServiceProcess.ServiceBase[]{new DPAPIService()};

9. Locate the OnStart method and add the following code, which will launch the
DPAPIComp component whenever the service starts.

Launcher launchComponent = new Launcher();
launchComponent.Launch();

10. Add a new C# class file to the project and name it DPAPIServiceInstaller.
11. Add the following using statements to the top of DPAPIServiceInstaller beneath

the existing using statement.

using System.ComponentModel;
using System.ServiceProcess;
using System.Configuration.Install;

12. Derive the DPAPIServiceInstaller class from the Installer class.
public class DPAPIServiceInstaller : Installer

13. Add the RunInstaller attribute at the class level as follows.

[RunInstaller(true)]
public class DPAPIServiceInstaller : Installer

14. Add the following two private member variables to the DPAPIServiceInstaller
class. The objects will be used when installing the service.

private ServiceInstaller dpApiInstaller;
private ServiceProcessInstaller dpApiProcessInstaller;



Building Secure ASP.NET Applications424

15. Add the following code to the constructor of the DPAPIServiceInstaller class.

dpApiInstaller = new ServiceInstaller();
dpApiInstaller.StartType = System.ServiceProcess.ServiceStartMode.Manual;
dpApiInstaller.ServiceName = "DPAPIService";
dpApiInstaller.DisplayName = "DPAPI Service";
Installers.Add (dpApiInstaller);
dpApiProcessInstaller = new ServiceProcessInstaller();
dpApiProcessInstaller.Account = ServiceAccount.User;
Installers.Add (dpApiProcessInstaller);

16. On the Build menu, click Build Solution.

7. Install and Start the Windows Service Application
This procedure installs the Windows service using the installutil.exe utility and then
starts the service.

� To install and start the Windows service application
1. Open a command window and change directory to the Bin\Debug directory

beneath the DPAPIService project folder.
2. Run the installutil.exe utility to install the service.

Installutil.exe DPAPIService.exe

3. In the Set Service Login dialog box, enter the user name and password of the
account created earlier in Procedure 4, “Create a Windows Account to Run the
Enterprise Services Application and Windows Service,” and then click OK.
The user name must be of the form “authority\username.”
View the output from the installutil.exe utility and confirm that the service is
installed correctly.

4. Start the Services MMC snap-in from the Administrative Tools program group.
5. Start the DPAPI service.

8. Write a Web Application to Test the Encryption and
Decryption Routines

This procedure develops a simple Web application that you will use to test the
encryption and decryption routines. Later, you will also use it to decrypt encrypted
data maintained within the Web.config file.



How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services 425

� To write a Web application to test the encryption and decryption routines
1. Add a new C# Web application project called DPAPIWeb to the existing

DPAPIComp solution.
2. Add an assembly reference to System.EnterpriseServices and add a project

reference to the DPAPIComp project.
3. Open WebForm1.aspx in Design mode and create a form similar to the one

shown in Figure 2. Use the IDs listed in Table 1 for the individual controls.

Table 1: WebForm1.aspx control IDs

Control ID

Data To Encrypt Text Box txtDataToEncrypt

Encrypted Data txtEncryptedData

Decrypted Data txtDecryptedData

Encrypt Button btnEncrypt

Decrypt Button btnDecrypt

Error Label lblError

Figure 2
DPAPIWeb Web Form

4. Double-click the Encrypt button to display the button click event handler.
5. Add the following using statements to the top of the file beneath the existing

using statements.

using System.Text;
using DPAPIComp;



Building Secure ASP.NET Applications426

6. Return to the Encrypt button click event handler and add the following code to
call the DataProtectorComp serviced component to encrypt the data entered via
the Web form.

DataProtectorComp dp = new DataProtectorComp();
try
{
  byte[] dataToEncrypt = Encoding.ASCII.GetBytes(txtDataToEncrypt.Text);
  txtEncryptedData.Text = Convert.ToBase64String(
                                    dp.Encrypt(dataToEncrypt));
}
catch(Exception ex)
{
  lblError.ForeColor = Color.Red;
  lblError.Text = "Exception.<br>" + ex.Message;
  return;
}
lblError.Text = "";

7. Display the Web form again and double-click the Decrypt button to create a
button click event handler.

8. Add the following code to call the DataProtectorComp services component to
decrypt the previous encrypted data contained within the txtEncryptedData
field.

DataProtectorComp dp = new DataProtectorComp();
try
{
  byte[] dataToDecrypt = Convert.FromBase64String(txtEncryptedData.Text);
  txtDecryptedData.Text = Encoding.ASCII.GetString(
                                  dp.Decrypt(dataToDecrypt));
}
catch(Exception ex)
{
  lblError.ForeColor = Color.Red;
  lblError.Text = "Exception.<br>" + ex.Message;
  return;
}
lblError.Text = "";

9. On the Build menu, click Build Solution.
10. Right-click WebForm1.aspx, and then click View in Browser.
11. Enter a text string into the Data to Encrypt field.
12. Click the Encrypt button. This results in a call to the DataProtector serviced

component within the COM+ application. The encrypted data should be dis-
played in the Encrypted Data field.



How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services 427

13. Click the Decrypt button and confirm that the original text string is displayed in
the Decrypted Data field.

14. Close the browser window.

Note: If an access denied error message appears that indicates that the component’s ProgID
cannot be read from HKEY_CLASSES_ROOT, you probably need to re-run Regsvcs.exe to reregis-
ter the serviced component.
This error message appears if you have recompiled the serviced component assembly but not
reregistered the assembly. Because the assembly version changes on each build (due to the
default “1.0.*” assembly version attribute), a new CLSID is generated on each successive build.
The error is due to the fact that ASP.NET cannot access this CLSID in the registry as it doesn’t
exist yet. Rerun Regsvcs.exe and restart the Web application to resolve the problem.

9. Modify the Web Application to Read an Encrypted Connection
String from an Application Configuration File

This procedure takes an encrypted database connection string and places the en-
crypted cipher text into the application’s Web.config file within an <appSettings>
element. You will then add code to read and decrypt this string from the configura-
tion file.

� To modify the Web application to read an encrypted connection string from an application
configuration file
1. Return to Visual Studio .NET and display the WebForm1.aspx in Designer mode.
2. Add another button to the form. Set its Text property to Decrypt string from

config file and its ID property to btnDecryptConfig,
3. Double-click the button to create a button click event handler.
4. Add the following using statement to the top of the file beneath the existing using

statements.

using System.Configuration;

5. Return to the btnDecryptConfig_Click event handler and add the following code
to retrieve a database connection string from the <appSettings> section of the
Web.config file.

DataProtectorComp dec = new DataProtectorComp();
try
{
  string appSettingValue =
            ConfigurationSettings.AppSettings["connectionString"];
  byte[] dataToDecrypt = Convert.FromBase64String(appSettingValue);
  string connStr = Encoding.ASCII.GetString(
                               dec.Decrypt(dataToDecrypt));



Building Secure ASP.NET Applications428

  txtDecryptedData.Text = connStr;
}
catch(Exception ex)
{
  lblError.ForeColor = Color.Red;
  lblError.Text = "Exception.<br>" + ex.Message;
  return;
}
lblError.Text = "";

6. On the Build menu, click Build Solution to rebuild the projects.
7. Right-click WebForm1.aspx, and then click View in Browser.
8. In the Data to Encrypt field, enter a database connection string such as the one

that follows.

server=(local);Integrated Security=SSPI; database=Northwind

9. Click the Encrypt button.
10. Select the encrypted cipher text and copy it to the clipboard.
11. Switch to Visual Studio .NET, open Web.config and add the following

<appSettings> element outside of the <system.web> element. Assign the en-
crypted connection string currently on the clipboard to the value attribute.

<appSettings>
   <add key="connectionString" value="encrypted connection string" />
</appSettings>

12. Save Web.config.
13. Click the Decrypt string from config file button and confirm that the encrypted

database connection string is successfully read from the Web.config file and that
the decrypted connection string is successfully displayed in the Decrypted data
field.

References
● “Windows Data Protection” on MSDN (http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/dnsecure/html/windataprotection-dpapi.asp)
● “How To: Create a DPAPI Library” in the Reference section of this guide.
● “How To: Use DPAPI (Machine Store) from ASP.NET” in the Reference section of

this guide.



How To:
Create an Encryption Library

This How To describes how to create a generic encryption library that can be used
to encrypt and decrypt data using the following algorithms:
● DES (Digital Encryption Standard)
● Triple DES
● Rijndael
● RC2

For an example application that uses the class library created in this How To, see
“How To: Store Encrypted Connection Strings in the Registry” in the Reference
section of this guide.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of the Microsoft
Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a C# Class Library
2. Create a Console Test Application



Building Secure ASP.NET Applications430

1. Create a C# Class Library
This procedure creates a C# class library, which will provide encryption and
decryption functionality.

� To create a C# class library
1. Start Visual Studio .NET and create a new C# Class Library project called

Encryption.
2. Use Solution Explorer to rename class1.cs as EncryptTransformer.cs.
3. In EncryptTransformer.cs, rename Class1 as EncryptTransformer.
4. Change the scope of the class from public to internal.

internal class EncryptTransformer

5. Add the following using statement at the top of the file.

using System.Security.Cryptography;

6. Add the following enumerated type within the Encryption namespace.

public enum EncryptionAlgorithm {Des = 1, Rc2, Rijndael, TripleDes};

7. Add the following private member variables to the EncryptTransformer class.

private EncryptionAlgorithm algorithmID;
private byte[] initVec;
private byte[] encKey;

8. Replace the default constructor with the following constructor.

internal EncryptTransformer(EncryptionAlgorithm algId)
{
  //Save the algorithm being used.
  algorithmID = algId;
}

9. Add the following method to the class.

internal ICryptoTransform GetCryptoServiceProvider(byte[] bytesKey)
{
  // Pick the provider.
  switch (algorithmID)
  {
    case EncryptionAlgorithm.Des:
    {
      DES des = new DESCryptoServiceProvider();
      des.Mode = CipherMode.CBC;



How To: Create an Encryption Library 431

      // See if a key was provided
      if (null == bytesKey)
      {
        encKey = des.Key;
      }
      else
      {
        des.Key = bytesKey;
        encKey = des.Key;
      }
      // See if the client provided an initialization vector
      if (null == initVec)
      { // Have the algorithm create one
        initVec = des.IV;
      }
      else
      { //No, give it to the algorithm
        des.IV = initVec;
      }
      return des.CreateEncryptor();
    }
    case EncryptionAlgorithm.TripleDes:
    {
      TripleDES des3 = new TripleDESCryptoServiceProvider();
      des3.Mode = CipherMode.CBC;
      // See if a key was provided
      if (null == bytesKey)
      {
        encKey = des3.Key;
      }
      else
      {
        des3.Key = bytesKey;
        encKey = des3.Key;
      }
      // See if the client provided an IV
      if (null == initVec)
      { //Yes, have the alg create one
        initVec = des3.IV;
      }
      else
      { //No, give it to the alg.
        des3.IV = initVec;
      }
      return des3.CreateEncryptor();
    }
    case EncryptionAlgorithm.Rc2:
    {
      RC2 rc2 = new RC2CryptoServiceProvider();
      rc2.Mode = CipherMode.CBC;
      // Test to see if a key was provided
      if (null == bytesKey)
      {



Building Secure ASP.NET Applications432

        encKey = rc2.Key;
      }
      else
      {
        rc2.Key = bytesKey;
        encKey = rc2.Key;
      }
      // See if the client provided an IV
      if (null == initVec)
      { //Yes, have the alg create one
        initVec = rc2.IV;
      }
      else
      { //No, give it to the alg.
        rc2.IV = initVec;
      }
      return rc2.CreateEncryptor();
    }
    case EncryptionAlgorithm.Rijndael:
    {
      Rijndael rijndael = new RijndaelManaged();
      rijndael.Mode = CipherMode.CBC;
      // Test to see if a key was provided
      if(null == bytesKey)
      {
        encKey = rijndael.Key;
      }
      else
      {
        rijndael.Key = bytesKey;
        encKey = rijndael.Key;
      }
      // See if the client provided an IV
      if(null == initVec)
      { //Yes, have the alg create one
        initVec = rijndael.IV;
      }
      else
      { //No, give it to the alg.
        rijndael.IV = initVec;
      }
      return rijndael.CreateEncryptor();
    }
    default:
    {
      throw new CryptographicException("Algorithm ID '" + algorithmID +
                                       "' not supported.");
    }
  }
}



How To: Create an Encryption Library 433

10. Add the following properties to the class.

internal byte[] IV
{
  get{return initVec;}
  set{initVec = value;}
}
internal byte[] Key
{
  get{return encKey;}
}

11. Add a new class called DecryptTransformer to the project.
12. Add the following using statement at the top of the DecryptTransformer.cs file.

using System.Security.Cryptography;

13. Change the class scope from public to internal.
14. Replace the default constructor with the following constructor.

internal DecryptTransformer(EncryptionAlgorithm deCryptId)
{
  algorithmID = deCryptId;
}

15. Add the following private variables to the class.

private EncryptionAlgorithm algorithmID;
private byte[] initVec;

16. Add the following method to the class.

internal ICryptoTransform GetCryptoServiceProvider(byte[] bytesKey)
{
  // Pick the provider.
  switch (algorithmID)
  {
    case EncryptionAlgorithm.Des:
    {
      DES des = new DESCryptoServiceProvider();
      des.Mode = CipherMode.CBC;
      des.Key = bytesKey;
      des.IV = initVec;
      return des.CreateDecryptor();
    }
    case EncryptionAlgorithm.TripleDes:
    {
      TripleDES des3 = new TripleDESCryptoServiceProvider();
      des3.Mode = CipherMode.CBC;
      return des3.CreateDecryptor(bytesKey, initVec);
    }



Building Secure ASP.NET Applications434

    case EncryptionAlgorithm.Rc2:
    {
      RC2 rc2 = new RC2CryptoServiceProvider();
      rc2.Mode = CipherMode.CBC;
      return rc2.CreateDecryptor(bytesKey, initVec);
    }
    case EncryptionAlgorithm.Rijndael:
    {
      Rijndael rijndael = new RijndaelManaged();
      rijndael.Mode = CipherMode.CBC;
      return rijndael.CreateDecryptor(bytesKey, initVec);
    }
    default:
    {
      throw new CryptographicException("Algorithm ID '" + algorithmID +
                                       "' not supported.");
    }
  }
} //end GetCryptoServiceProvider

17. Add the following property to the class.

internal byte[] IV
{
  set{initVec = value;}
}

18. Add a new class called Encryptor to the project.
19. Add the following using statements at the top of Encryptor.cs.

using System.Security.Cryptography;
using System.IO;

20. Replace the default constructor with the following constructor.

public Encryptor(EncryptionAlgorithm algId)
{
  transformer = new EncryptTransformer(algId);
}

21. Add the following private member variables to the class.

private EncryptTransformer transformer;
private byte[] initVec;
private byte[] encKey;

22. Add the following Encrypt method to the class.

public byte[] Encrypt(byte[] bytesData, byte[] bytesKey)
{



How To: Create an Encryption Library 435

  //Set up the stream that will hold the encrypted data.
  MemoryStream memStreamEncryptedData = new MemoryStream();

  transformer.IV = initVec;
  ICryptoTransform transform = transformer.GetCryptoServiceProvider(bytesKey);
  CryptoStream encStream = new CryptoStream(memStreamEncryptedData,
                                            transform,
                                            CryptoStreamMode.Write);
  try
  {
    //Encrypt the data, write it to the memory stream.
    encStream.Write(bytesData, 0, bytesData.Length);
  }
  catch(Exception ex)
  {
    throw new Exception("Error while writing encrypted data to the stream: \n"
                        + ex.Message);
  }
  //Set the IV and key for the client to retrieve
  encKey = transformer.Key;
  initVec = transformer.IV;
  encStream.FlushFinalBlock();
  encStream.Close();

  //Send the data back.
  return memStreamEncryptedData.ToArray();
}//end Encrypt

23. Add the following properties to the class.

public byte[] IV
{
  get{return initVec;}
  set{initVec = value;}
}

public byte[] Key
{
  get{return encKey;}
}

24. Add a new class called Decryptor to the project.
25. Add the following using statements at the top of Decryptor.cs

using System.Security.Cryptography;
using System.IO;



Building Secure ASP.NET Applications436

26. Replace the default constructor with the following constructor.

public Decryptor(EncryptionAlgorithm algId)
{
  transformer = new DecryptTransformer(algId);
}

27. Add the following private member variables to the class.

private DecryptTransformer transformer;
private byte[] initVec;

28. Add the following Decrypt method to the class.

public byte[] Decrypt(byte[] bytesData, byte[] bytesKey)
{
  //Set up the memory stream for the decrypted data.
  MemoryStream memStreamDecryptedData = new MemoryStream();

  //Pass in the initialization vector.
  transformer.IV = initVec;
  ICryptoTransform transform = transformer.GetCryptoServiceProvider(bytesKey);
  CryptoStream decStream = new CryptoStream(memStreamDecryptedData,
                                            transform,
                                            CryptoStreamMode.Write);
  try
  {
    decStream.Write(bytesData, 0, bytesData.Length);
  }
  catch(Exception ex)
  {
    throw new Exception("Error while writing encrypted data to the stream: \n"
                        + ex.Message);
  }
  decStream.FlushFinalBlock();
  decStream.Close();
  // Send the data back.
  return memStreamDecryptedData.ToArray();
} //end Decrypt

29. Add the following property to the class.

public byte[] IV
{
  set{initVec = value;}
}

30. On the Build menu, click Build Solution.



How To: Create an Encryption Library 437

2. Create a Console Test Application
This procedure creates a simple console test application to test the encryption and
decryption functionality.

� To create a console test application
1. Add a new C# Console application called EncryptionTester to the current

solution.
2. In Solution Explorer, right-click the EncryptionTester project, and then click Set

as StartUp Project.
3. Use Solution Explorer to rename class1.cs as EncryptionTest.cs.
4. In EncryptionTest.cs, rename Class1 as EncryptionTest.
5. Add a project reference to the Encryption project.
6. Add the following using statements at the top of EncryptionTest.cs.

using System.Text;
using Encryption;

7. Add the following code to the Main method.

// Set the required algorithm
EncryptionAlgorithm algorithm = EncryptionAlgorithm.Des;

// Init variables.
byte[] IV = null;
byte[] cipherText = null;
byte[] key = null;

try
{ //Try to encrypt.
  //Create the encryptor.
  Encryptor enc = new Encryptor(EncryptionAlgorithm.Des);
  byte[] plainText = Encoding.ASCII.GetBytes("Test String");

  if ((EncryptionAlgorithm.TripleDes == algorithm) ||
      (EncryptionAlgorithm.Rijndael == algorithm))
  { //3Des only work with a 16 or 24 byte key.
    key = Encoding.ASCII.GetBytes("password12345678");
    if (EncryptionAlgorithm.Rijndael == algorithm)
    { // Must be 16 bytes for Rijndael.
      IV = Encoding.ASCII.GetBytes("init vec is big.");
    }
    else
    {
      IV = Encoding.ASCII.GetBytes("init vec");
    }
  }
  else



Building Secure ASP.NET Applications438

  { //Des only works with an 8 byte key. The others uses variable length keys.
    //Set the key to null to have a new one generated.
    key = Encoding.ASCII.GetBytes("password");
    IV = Encoding.ASCII.GetBytes("init vec");
  }
  // Uncomment the next lines to have the key or IV generated for you.
  // key = null;
  // IV = null;

  enc.IV = IV;

  // Perform the encryption.
  cipherText = enc.Encrypt(plainText, key);
  // Retrieve the intialization vector and key. You will need it
  // for decryption.
  IV = enc.IV;
  key = enc.Key;

  // Look at your cipher text and initialization vector.
  Console.WriteLine("          Cipher text: " +
                    Convert.ToBase64String(cipherText));
  Console.WriteLine("Initialization vector: " + Convert.ToBase64String(IV));
  Console.WriteLine("                  Key: " + Convert.ToBase64String(key));
}
catch(Exception ex)
{
  Console.WriteLine("Exception encrypting. " + ex.Message);
  return;
}
try
{ //Try to decrypt.
  //Set up your decryption, give it the algorithm and initialization vector.
  Decryptor dec = new Decryptor(algorithm);
  dec.IV = IV;
  // Go ahead and decrypt.
  byte[] plainText = dec.Decrypt(cipherText, key);
  // Look at your plain text.
  Console.WriteLine("           Plain text: " +
                    Encoding.ASCII.GetString(plainText));
}
catch(Exception ex)
{
  Console.WriteLine("Exception decrypting. " + ex.Message);
  return;
}

8. On the Build menu, click Build Solution.
9. Run the test application to verify the operation of the Encryptor and Decryptor

classes.

References
For more information, see “How To: Store an Encrypted Connection String in the
Registry” in the Reference section of this guide.



How To:
Store an Encrypted Connection
String in the Registry

The registry represents one possible location for an application to store database
connection strings. Although individual registry keys can be secured with Windows
access control lists (ACLs), for added security you should store encrypted connec-
tion strings.

This How To describes how to store an encrypted database connection string in
the registry and retrieve it from an ASP.NET Web application. It uses the generic
encryption and decryption managed class library created in “How to: Create
an Encryption Library,” which can be found in Reference section of this guide.

If you have not already created the encryption class library assembly, do so before
continuing with the current How To.

For more information about other locations and ways of securely storing database
connection strings, see “Storing Database Connection Strings Securely” in Chapter
12, “Data Access Security.”

Notes
● The connection string, initialization vector and key used for encryption will be

stored in the registry as named values beneath the following registry key.

HKEY_LOCAL_MACHINE\Software\TestApplication
● The initialization vector and key must be stored in order to allow the connection

string to be decrypted.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of the Microsoft
Visual C#™ development tool.



Building Secure ASP.NET Applications440

Summary
This How To includes the following procedures:
1. Store the Encrypted Data in the Registry
2. Create an ASP.NET Web Application

1. Store the Encrypted Data in the Registry
This procedure creates a Windows application that will be used to encrypt a sample
database string and store it in the registry.

� To store the encrypted data in the registry
1. Start Visual Studio .NET and create a new C# Windows project called

EncryptionTestApp.
2. Add an assembly reference to the Encryption.dll assembly.

To create this assembly, you must perform the steps described in “How To:
Create an Encryption Library” in the Reference section of this guide.

3. Add the following using statements to the top of Form1.cs beneath the existing
using statements.

using Encryption;
using System.Text;
using Microsoft.Win32;

4. Add the controls in Table 1 to Form1 and arrange them as illustrated in Figure 1.

Table 1: EncryptionTestApp controls

Control Text ID

Label Connection String:

TextBox txtConnectionString

Label Key:

TextBox txtKey

Label Initialization Vector:

TextBox txtInitializationVector

Label Encrypted String

TextBox txtEncryptedString

Label Decrypted String

TextBox txtDecryptedString



How To: Store an Encrypted Connection String in the Registry 441

Control Text ID

Button Encrypt btnEncrypt

Button Decrypt btnDecrypt

Button Write Registry Data btnWriteRegistryData

Figure 1
Encryption Test Harness dialog box

5. Set the Text property of txtConnectionString to

"Server=local; database=pubs; uid=Bob; pwd=Password"

6. Set the Text property of txtKey to

"0123456789012345"

The key length is 16 bytes to suite the Triple DES encryption algorithm.
7. Set the Text property of Form1 to

"Encryption Test Harness"

8. Double-click the Encrypt button to create a button click event handler and add
the following code to the event handler.

try
{
  // Create the encryptor object, specifying 3DES as the
  // encryption algorithm
  Encryptor enc = new Encryptor(EncryptionAlgorithm.TripleDes);
  // Get the connection string as a byte array
  byte[] plainText = Encoding.ASCII.GetBytes(txtConnectionString.Text);
  byte[] key = Encoding.ASCII.GetBytes(txtKey.Text);



Building Secure ASP.NET Applications442

  // Perform the encryption
  byte[] cipherText = enc.Encrypt(plainText, key);
  // Store the intialization vector, as this will be required
  // for decryption
  txtInitializationVector.Text = Encoding.ASCII.GetString(enc.IV);

  // Display the encrypted string
  txtEncryptedString.Text = Convert.ToBase64String(cipherText);
}
catch(Exception ex)
{
  MessageBox.Show("Exception encrypting: " + ex.Message,
                  "Encryption Test  Harness");
}

9. Return to Form1 in Designer mode and double-click the Decrypt button to create
a button click event handler.

10. Add the following code to the Decrypt button event handler.

try
{
  // Set up the Decryptor object
  Decryptor dec = new Decryptor(EncryptionAlgorithm.TripleDes);

  // Set the Initialization Vector
  dec.IV = Encoding.ASCII.GetBytes(txtInitializationVector.Text);

  byte[] key = Encoding.ASCII.GetBytes(txtKey.Text);
  // Perform the decryption
  byte[] plainText =  dec.Decrypt(Convert.FromBase64String(
                                  txtEncryptedString.Text),
                                  key);

  // Display the decrypted string.
  txtDecryptedString.Text = Encoding.ASCII.GetString(plainText);
}
catch(Exception ex)
{
  MessageBox.Show("Exception decrypting. " + ex.Message,
                  "Encryption Test Harness");
}

11. Return to Form1 in Designer mode and double-click the Write Registry Data
button to create a button click event handler.

12. Add the following code to the event handler.

// Create registry key and named values
RegistryKey rk = Registry.LocalMachine.OpenSubKey("Software",true);
rk = rk.CreateSubKey("TestApplication");



How To: Store an Encrypted Connection String in the Registry 443

// Write encrypted string, initialization vector and key to the registry
rk.SetValue("connectionString",txtEncryptedString.Text);
rk.SetValue("initVector",Convert.ToBase64String(
              Encoding.ASCII.GetBytes(txtInitializationVector.Text)));
rk.SetValue("key",Convert.ToBase64String(Encoding.ASCII.GetBytes(
                                         txtKey.Text)));
MessageBox.Show("The data has been successfully written to the registry");

13. Run the application, and then click Encrypt.
The encrypted connection string is displayed in the Encrypted String field.

14. Click Decrypt.
The original string is displayed in the Decrypted String field.

15. Click Write Registry Data.
16. In the message box, click OK.
17. Run regedit.exe and view the contents of the following key.

HKLM\Software\TestApplication

Confirm that encoded values are present for the connectionString, initVector
and key named values.

18. Close regedit and the test harness application.

2. Create an ASP.NET Web Application
This procedure develops a simple ASP.NET Web application that will retrieve the
encrypted connection string from the registry and decrypt it.

� To create an ASP.NET application
1. Create a new Visual C# ASP.NET Web Application called EncryptionWebApp.
2. Add an assembly reference to the Encryption.dll assembly.

To create this assembly, you must perform the steps described in “How To:
Create an Encryption Library” in the Reference section of this guide.

3. Open Webform1.aspx.cs and add the following using statements at the top of the
file beneath the existing using statements.

using Encryption;
using System.Text;
using Microsoft.Win32;



Building Secure ASP.NET Applications444

4. Add the controls listed in Table 2 to WebForm1.aspx.

Table 2: WebForm1.aspx controls

Control Text ID

Label lblEncryptedString

Label lblDecryptedString

Button Get Connection String btnGetConnectionString

5. Double-click the Get Connection String button to create a button click event
handler.

6. Add the following code to the event handler.

RegistryKey rk = Registry.LocalMachine.OpenSubKey(
                                          @"Software\TestApplication",false);
lblEncryptedString.Text = (string)rk.GetValue("connectionString");

string initVector = (string)rk.GetValue("initVector");
string strKey = (string)rk.GetValue("key");

Decryptor dec = new Decryptor(EncryptionAlgorithm.TripleDes );
dec.IV = Convert.FromBase64String(initVector);

// Decrypt the string
byte[] plainText = dec.Decrypt(Convert.FromBase64String(
                               lblEncryptedString.Text),
                               Convert.FromBase64String(strKey));

lblDecryptedString.Text = Encoding.ASCII.GetString(plainText);

7. On the Build menu, click Build Solution.
8. Right-click Webform1.aspx in Solution Explorer, and then click View in Browser.
9. Click Get Connection String.

The encrypted and decrypted connection strings are displayed on the Web form.

References
For more information, see “How To: Create an Encryption Library” in the Reference
section of this guide.



How To:
Use Role-based Security
with Enterprise Services

This How To describes how to create a simple serviced component that uses
Enterprise Services (ES) roles for authorization.

Notes
● ES roles are not the same as .NET roles.
● ES roles can contain Windows group or Windows user accounts.
● ES roles are maintained in the COM+ catalog.
● ES roles can be applied at the (ES) application, interface, class or method levels.
● ES roles can be partially configured declaratively by using .NET attributes in the

serviced component’s assembly.
● Windows group and user accounts must be added by an administrator at

deployment time.
● Administrators can use the Component Services administration tool, or script.
● To effectively use Enterprise Services role-based security from an ASP.NET Web

application, the Web application must use Windows authentication and imper-
sonate callers prior to calling the serviced components.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of ASP.NET
Web development with the Microsoft Visual C#™ development tool.



Building Secure ASP.NET Applications446

Summary
This How To includes the following procedures:
1. Create a C# Class Library Application to Host the Serviced Component
2. Create the Serviced Component
3. Configure the Serviced Component
4. Generate a Strong Name for the Assembly
5. Build the Assembly and Add it to the Global Assembly Cache
6. Manually Register the Serviced Component
7. Examine the Configured Application
8. Create a Test Client Application

1. Create a C# Class Library Application to Host the Serviced
Component

This procedure creates a new C# class library application that contains the serviced
component.

� To create a C# class library application to host the serviced component
1. Start Visual Studio .NET and create a new C# class library application called

ServicedCom.
2. Rename the default class file Class1.cs to SimpleComponent.cs.
3. Double-click SimpleComponent.cs to open it and rename the Class1 type as

SimpleComponent. Also update the name of the class’ default constructor.

2. Create the Serviced Component
This procedure derives the SimpleComponent class from the
EnterpriseServices.ServicedComponent class to turn this type into a serviced
component. You will then create an interface and implement it within the
SimpleComponent class. To use interface and method level security, you must
define and implement interfaces.

� To create the serviced component
1. Add a reference to the System.EnterpriseServices assembly.
2. Add the following using statement to the top of the SimpleComponent.cs file

beneath the existing using statements.

using System.EnterpriseServices;



How To: Use Role-based Security with Enterprise Services 447

3. Derive the SimpleComponent class from ServicedComponent.

public class SimpleComponent : ServicedComponent

4. Add the following interface definition within the ServicedCom namespace.

public interface ISomeInterface
{
  int Add( int operand1, int operand2 );
}

5. Derive SimpleComponent from this interface.

public class SimpleComponent : ServicedComponent, ISomeInterface

6. Implement the interface within the SimpleComponent class as follows.

public int Add( int operand1, int operand2 )
{
    return operand1 + operand2;
}

3. Configure the Serviced Component
This procedure configures the serviced component for method-level role-based
security.

� To configure the serviced component
1. Add the following attributes directly above the SimpleComponent class. The

ComponentAccessControl attribute enables component-level access checks and
the SecureMethod attribute enables method level access checks.

[ComponentAccessControl]
[SecureMethod]
public class SimpleComponent : ServicedComponent, ISomeInterface

2. Add the following attribute above the Add method to create the Manager role
and associate it with the method.

[SecurityRole("Manager")]
public int Add( int operand1, int operand2 )
{
  return operand1 + operand2;
}



Building Secure ASP.NET Applications448

3. Open assemblyinfo.cs and add the following using statement to the top of the
file below the existing using statements.

using System.EnterpriseServices;

4. Move to the bottom of the file and add the following attributes. These are used
to configure the Enterprise Services application used to host the serviced
component.

// Configure the application as a server (out-of-process) application
[assembly: ApplicationActivation(ActivationOption.Server)]
// For meaningful role-based security, enable access checking at the process
// and component levels by using the following .NET attribute.
[assembly: ApplicationAccessControl(AccessChecksLevel=
                        AccessChecksLevelOption.ApplicationComponent)]
// Set the name and description for the application
[assembly: ApplicationName("SimpleRoles")]
[assembly: Description("Simple application to show ES Roles")]
// Add some additional roles
[assembly:SecurityRole("Employee")]
[assembly:SecurityRole("Senior Manager")]

4. Generate a Strong Name for the Assembly
Assemblies that host serviced components must be strong named. This procedure
generates a public-private key pair used to strong name the assembly.

� To generate a strong name for the assembly
1. Open a command window and go to the current project directory.
2. Use the sn.exe utility to generate a key file that contains a public-private key

pair.

sn.exe -k SimpleComponent.snk

3. In Visual Studio, open assemblyinfo.cs.
4. Locate the [AssemblyKeyFile] attribute and modify it to reference the key file in

the project directory as follows.

[assembly: AssemblyKeyFile(@"..\..\SimpleComponent.snk")]



How To: Use Role-based Security with Enterprise Services 449

5. Build the Assembly and Add it to the Global Assembly Cache
This procedure builds the assembly that contains the serviced component and then
adds it to the global assembly cache. Serviced components should generally be
registered in the global assembly cache because they are system level resources.
Serviced components hosted in COM+ server applications require installation in
the global assembly cache, while library applications do not (although it is recom-
mended).

� To build the assembly and add it to the global assembly cache
1. On the Build menu, click Build Solution.
2. Return to the command window and run the following command to add the

assembly to the global assembly cache.

gacutil –i bin\debug\ServicedCom.dll

6. Manually Register the Serviced Component
Serviced components can either be manually registered with the Regsvcs.exe tool,
or they can be automatically registered using “lazy” registration. With “lazy”
registration, the component is registered (and the hosting COM+ application cre-
ated and configured using the assembly’s meta data) the first time an instance of the
serviced component is instantiated.

To avoid the one time performance hit associated with this approach, this procedure
manually registers the serviced component.

� To manually register the serviced component
1. Return to the command window.
2. Run regsvcs.exe to register the component.

regsvcs bin\debug\ServicedCom.dll

7. Examine the Configured Application
This procedure uses the Component Services tool and examines the catalog settings
created as a result of the .NET attributes used earlier.

� To examine the configured application
1. From the Administrative Tools program group, start Component Services.



Building Secure ASP.NET Applications450

2. Expand Component Services, Computers, My Computer, and COM+
Applications.

3. Right-click SimpleRoles, and then click Properties.
4. Click the Security tab and make sure that Enforce access checks for this appli-

cation is selected and that the security level is set to perform access checks at the
process and component level. This configuration is a result of the .NET attributes
used earlier.

5. Click OK to close the Properties dialog box.
6. Expand the SimpleRoles application, and then expand the Components folder

and the ServicedCom.SimpleComponent class.
7. Navigate to the Add method beneath the ISomeInterface method in the Inter-

faces folder.
8. Right-click Add, and then click Properties.
9. Click the Security tab and notice that the Manager role is associated with the

method.
10. Click OK to close the Properties dialog box.
11. Expand the Roles folder beneath the SimpleRoles application. Notice the roles

that you created earlier with .NET attributes. Also notice the Marshaler role.
This is created as a direct result of the [SecureMethod] attribute added earlier,
and is required for method level security.

8. Create a Test Client Application
This procedure creates a Windows Forms-based test client application to instantiate
and call the serviced component.

� To create a test client application
1. Add a new C# Windows-based application called TestClient to the current

solution.
2. Add a new project reference to the ServicedCom project.

a. In Solution Explorer, right-click References, and then click Add Reference.
b. Click the Projects tab.
c. Select ServicedCom, click Select, and then click OK.

3. Add a reference to System.EnterpriseServices.
4. Add a button to the application’s main form.
5. Double-click the button to create a button click event handler.
6. Add the following using statement to the top of the form1.cs beneath the exist-

ing using statements.

using ServicedCom;



How To: Use Role-based Security with Enterprise Services 451

7. Return to the button click event handler and add the following code to
instantiate and call the serviced component.

SimpleComponent comp = new SimpleComponent();
MessageBox.Show( "Result is: " + comp.Add(1, 2));

8. On the Build menu, click Build Solution.
9. In Solution Explorer, right-click the TestClient project, and then click Set as

StartUp Project.
10. Press Ctrl+F5 to run the TestClient application.

You should see that an unhandled exception is generated.
11. Click the Details button on the message box to view the exception details.

You will see that a System.UnauthorizedAccessException has been generated.
This is because your interactive logon account used to run the TestClient appli-
cation is not a member of the Manager role, which is required to call the Add on
the serviced component.

12. Click Quit to stop the application.
13. Return to Component Services and add your current (interactive) account to the

Manager role and the Marshaler role.

Note: The Enterprise Services infrastructure uses a number of system-level interfaces that
are exposed by all serviced components. These include IManagedObject, IDisposable, and
IServiceComponentInfo. If access checks are enabled at the interface or method levels,
the Enterprise Services infrastructure is denied access to these interfaces.
As a result, Enterprise Services creates a special role called Marshaler and associates the
role with these interfaces. At deployment time, application administrators need to add all
users to the Marshaler role who needs to access any methods or interface of the class.
You could automate this in two different ways:
1. Write a script that uses the Component Services object model to copy all users from

other roles to the Marshaler role.
2. Write a script which assigns all other roles to these three special interfaces and delete

the Marshaler role.

14. Close the SimpleRoles application to enable the changes to take effect. To do
this, right-click the application name, and then click Shut down.

15. Return to Visual Studio .NET and press Ctrl+F5 to run the TestClient application
again.

16. Click the form’s button and confirm that the method is successfully called.





How To:
Call a Web Service Using
Client Certificates from ASP.NET

Web services often need to be able to authenticate their callers (other applications)
in order to perform authorization. Client certificates provide an excellent authenti-
cation mechanism for Web services. When you use client certificates, your applica-
tion also benefits from the creation of a secure channel (using Secure Sockets Layer
[SSL]) between the client application and Web service. This allows you to securely
send confidential information to and from the Web service. SSL ensures message
integrity and confidentiality.

This How To describes how to call a Web service that is configured to require client
certificates.

Note: The information in this How To also applies to remote components hosted by ASP.NET
and IIS.

Why Use a Serviced Component?
The solution presented in this How To uses a serviced component configured to run
in an Enterprise Services server application, using a custom service account. The
ASP.NET Web application calls the serviced component, which makes the call to the
Web service (passing a client certificate). This solution configuration is illustrated in
Figure 1 on the next page.



Building Secure ASP.NET Applications454

Web Server 1
(Web Service Client)

Web Server 2
(Web Service Host)

Require Secure 
Channel (SSL)
(Privacy/Integrity)

.cer file

ASP.NET

Enterprise 
Services 
(COM+ 
Server)

ASP.NET
(Web Service 

or Remote 
Component)

IIS

Custom Run As 
Identity (Account 
has User Profile)

Require Client 
Certificates

(Authentication)

SSL
(Privacy/Integrity)

Figure 1
ASP.NET calls a serviced component to invoke the Web service

This arrangement is to ensure that the system has access to a user profile when
communicating with the Web service. This is required for the initial SSL handshake.

Note: The ASPNET account used to run Web applications has the “Deny interactive logon”
privilege, which prevents you from logging on interactively with this account. As a result, this
account does not have a user profile.
Do not grant the ASPNET account (or any account used to run Web applications) the interactive
logon capability. Always follow the principle of least privilege when configuring accounts to run
Web applications and grant them as few privileges as possible. For more information, see
“How To: Create a Custom Account to Run ASP.NET” in the Reference section of this guide.

Why is a User Profile Required?
When you make a request to a Web service that requires client certificates, there
is an SSL handshake that takes place between the client and server. A few of the
components exchanged are the server certificate, client certificate, and a “pre-master
secret” which is generated by the client. This secret is used later in the protocol to
generate a “master secret.”

In order for the server to verify that the presenter of the certificate is indeed the
holder of the private key, the client must encrypt the pre-master secret with the
private key and send the encrypted pre-master secret to the server. In order for the
system to access the client’s private key to sign the pre-master secret it must access
the private key from the key store of the client. The key store is located in the
client’s profile which must be loaded.



How To: Call a Web Service Using Client Certificates from ASP.NET 455

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system
● Access to a Certificate Authority (CA) to generate new certificates
● A Web server with an installed server certificate

For more information about installing Web server certificates, see “How To:
Setup SSL on a Web Server”.

The procedures in this How To also require that you have knowledge of the
Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a Simple Web Service
2. Configure the Web Service Virtual Directory to Require Client Certificates
3. Create a Custom Account for Running a Serviced Component
4. Request a Client Certificate for the Custom Account
5. Test the Client Certificate using a Browser
6. Export the Client Certificate to a File
7. Develop the Serviced Component Used to Call the Web Service
8. Configure and Install the Serviced Component
9. Develop a Web Application to Call the Serviced Component

Note: In this How To, the Web service computer (this hosts the Web service) is named
“WSServer” and the Web service client computer (this hosts the client ASP.NET Web applica-
tion and serviced component) is named “WSClient.”

1. Create a Simple Web Service
� To create a simple Web service on the Web service host computer

1. Start Visual Studio .NET and create a new C# ASP.NET Web Service application
called SecureMath.



Building Secure ASP.NET Applications456

2. Rename service1.asmx as math.asmx.
3. Open math.asmx.cs and rename the Service1 class as math.
4. Add the following Web method to the math class.

[WebMethod]
public long Add(long operand1, long operand2)
{

return (operand1 + operand2);
}

5. On the Build menu, click Build Solution to create the Web service.

2. Configure the Web Service Virtual Directory to Require Client
Certificates

This procedure uses Internet Information Services to configure your Web service’s
virtual directory for SSL and to require certificates.

This procedure assumes that you have a valid certificate installed on your Web
server. For more information about installing Web server certificates, see "How To
Setup SSL on a Web Server" in the Reference section of this guide.

� To configure the Web service virtual directory to require client certificates
1. Start Internet Information Services on the Web service host computer.
2. Navigate to the SecureMath virtual directory.
3. Right-click SecureMath, and then click Properties.
4. Click the Directory Security tab.
5. Under Secure communications, click Edit.

If Edit is unavailable, it is most likely that you haven’t installed a Web server
certificate.

6. Select the Require secure channel (SSL) check box.
7. Select the Require client certificates option.
8. Click OK, and then click OK again.
9. In the Inheritance Overrides dialog box, click Select All, and then click OK to

close the SecureMath properties dialog box.
This applies the new security settings to all subdirectories beneath the virtual
directory root.



How To: Call a Web Service Using Client Certificates from ASP.NET 457

3. Create a Custom Account for Running the Serviced
Component

This procedure creates a new user account on the Web service client computer that
you will use to run the serviced component that calls the Web service.

� To create a custom account for running the serviced component
1. Create a new user account with a strong password on the client computer. Clear

the User must change password at next logon check box, and then select the
Password never expires option.

2. Add the account to the Administrators group.
The account used to load a user profile must be an administrator on the local
computer.

4. Request a Client Certificate for the Custom Account
In this procedure, you will log on to the client computer using the new custom
account. You will then issue a request for a certificate. This procedure assumes that
you are using Microsoft Certificate Services. If you are not using Microsoft Certifi-
cate Services to create new certificates, issue a request to your preferred CA for
a client certificate and install the certificate, while logged on using the custom
account.

This procedure also assumes that Microsoft Certificate Services is configured to
automatically issue certificates in response to certificate requests. It can also be
configured for pending requests, which require an administrator to explicitly issue
the certificate.

� To check the Microsoft Certificate Services setting
1. On the Microsoft Certificate Services computer, click Certification Authority in

the Administrative Tools programs group.
2. Expand Certification Authority (Local), right-click the certification authority,

and click Properties.
3. Click the Policy Module tab, and then click Configure.
4. Check the default action.

The following procedure assumes that Always issue the certificate is selected.



Building Secure ASP.NET Applications458

� To request a client certificate for the custom account
1. Log off the client computer and log back on using the custom account.

This forces the creation of a user profile for the custom account.
2. Browse to the CA in order to request a client certificate. For example, if your CA

is located on the CAServer computer, browse to the following location.

http://caserver/certsrv

3. Click Request a certificate, and then click Next.
4. Ensure User Certificate is selected, and then click Next.
5. Click Submit.

A request is generated and sent to the CA for processing.
6. After the certificate is issued and you receive a response from the CA server, click

Install this certificate.
7. Ensure that the issuing CA’s certificate is installed as a trusted root certificate

authority on the local computer.
To confirm this, perform the following steps:
a. On the taskbar, click the Start button, and then click Run.
b. Type mmc, and then click OK.
c. On the File menu, click Add/Remove Snap-in.
d. Click Add.
e. Click Certificates, and then click Add.
f. Click Computer account, and then click Next.
g. Click Local Computer: (the computer this console is running on), and then

click Finish.
h. Click Close, and then click OK.
i. In the left pane of the MMC snap-in, expand Certificates (Local Computer).
j. Expand Trusted Root Certification Authorities, and then click Certificates.
k. Confirm that your CA’s certificate is listed.

If the CA’s certificate isn’t listed, perform the following steps:
a. Browse to http://caserver/certsrv.
b. Click Retrieve the CA certificate or certificate revocation list, and then click

Next.
c. Click Install this CA certification path.



How To: Call a Web Service Using Client Certificates from ASP.NET 459

5. Test the Client Certificate Using a Browser
In this procedure, you will browse to the Web service in order to confirm that there
are no problems with either the server or client certificates.

� To test the client certificate using a browser
1. Use Internet Explorer and navigate to https://server/SecureMath/Math.asmx.

Make sure that you specify “https” because the site is configured to require SSL.
2. A Client Authentication dialog box should appear. Select your client certificate,

and then click OK.
3. Confirm that the Web service test page is displayed successfully within your

browser.
If you see the dialog box illustrated in Figure 2, you need to install the certificate
authority’s certificate into the Trusted Root Certification Authorities store, as
described in the previous procedure.

Figure 2
Security Alert dialog box

6. Export the Client Certificate to a File
This procedure exports the client certificate to a file. This is subsequently retrieved
by the serviced component, when it needs to pass the certificate to the Web service.

� To export the client certificate to a file
1. Within Internet Explorer, click Internet Options on the Tools menu.
2. Click the Content tab.



Building Secure ASP.NET Applications460

3. Click Certificates.
4. Click the client certificate, and then click Export.
5. Click Next to move past the welcome dialog box of the Certificate Export

Wizard.
6. Confirm that No, do not export the private key is selected, and then click Next.
7. Make sure that DER encoded binary X.509 (.CER) is selected, and then click

Next.
You must use this format, because the .NET Framework does not support
Base-64 or PKCS #7 formats.

8. Enter an export file name. Note the location of the .cer export file, because you
will require this again in a subsequent procedure.

9. Click Next, and then click Finish to export the certificate.
10. Close Internet Explorer.
11. Log off the computer and log back on using your regular development account.

7. Develop the Serviced Component Used to Call the Web
Service

This procedure creates a new C# Class Library application and creates the serviced
component used to call the Web service. This procedure assumes that you are
working on the client computer.

� To develop the serviced component used to call the Web service
1. Start Visual Studio.NET and create a new C# Class Library project called

WebServiceRequestor.
2. Add a Web reference to the SecureMath Web service.

Important: You must temporarily reconfigure your Web service’s virtual directory to not
require client certificates (although still require SSL), prior to adding the Web reference.
After you successfully add the Web reference, change the virtual directory configuration
back to require client certificates.
In practice, if a site requires client certificates, the publisher of the service makes the
WSDL available as a separate offline file, which the consumers (of the service) can use to
create the proxy.

In the Add Web Reference dialog box, be sure to specify https when specifying
the Web service location. Failure to do so results in an error because the Web
service virtual directory is configured to require SSL.



How To: Call a Web Service Using Client Certificates from ASP.NET 461

3. Add a reference to the System.EnterpriseServices assembly.
4. Rename class1.cs as ProfileManager.cs.
5. Add the following class definition to ProfileManager.cs (replacing the skeleton

class1 class). The ProfileManager class uses P/Invoke to call the
LoadUserProfile and UnloadUserProfile Win32 APIs.

internal class ProfileManager
{
  [DllImport("Userenv.dll", SetLastError=true,
             CharSet=System.Runtime.InteropServices.CharSet.Auto)]
  internal static extern bool LoadUserProfile(IntPtr hToken,
                                              ref PROFILEINFO lpProfileInfo);

  [DllImport("Userenv.dll", SetLastError=true,
             CharSet=System.Runtime.InteropServices.CharSet.Auto)]
  internal static extern bool  UnloadUserProfile(IntPtr hToken,
                                                 IntPtr hProfile);

  [StructLayout(LayoutKind.Sequential, CharSet=CharSet.Ansi)]
  public struct PROFILEINFO
  {
    public int dwSize;
    public int dwFlags;
    public String lpUserName;
    public String lpProfilePath;
    public String lpDefaultPath;
    public String lpServerName;
    public String lpPolicyPath;
    public IntPtr hProfile;
  }
}

6. Add a second class file called MathServiceComponent.cs to the project.
7. Add the following using statements to MathServiceComponent.cs below the

existing using statement.

using System.Net;
using System.Web.Services;
using System.Security.Principal;
using System.EnterpriseServices;
using System.Runtime.InteropServices;
using System.Security.Cryptography.X509Certificates;
using WebServiceRequestor.WebReference1;



Building Secure ASP.NET Applications462

8. Add the following class definition, which provides a public
CallMathWebService method. You will call this method in a later procedure
from a client ASP.NET Web application.

// This class calls the web service that requires a certificate.
public class MathServiceComponent : ServicedComponent
{
  [DllImport("advapi32.dll", CharSet=CharSet.Auto, SetLastError=true)]
  private extern static bool DuplicateToken(IntPtr ExistingTokenHandle,
                                           int SECURITY_IMPERSONATION_LEVEL,
                                           ref IntPtr DuplicateTokenHandle);

  [DllImport("kernel32.dll", CharSet=CharSet.Auto)]
  private extern static bool CloseHandle(IntPtr handle);

  // Calls the Web service that requires client certificates
  // certFilepath points to the .cer file to use
  // url is the Web service url
  // operand1 and operand2 are the parameters to pass to the Web service
  public long CallMathWebService(String certFilepath,
                                 String url, int operand1, int operand2)
  {
    bool retVal = false;
    // Need to duplicate the token. LoadUserProfile needs a token with
    // TOKEN_IMPERSONATE and TOKEN_DUPLICATE.
    const int SecurityImpersonation = 2;
    IntPtr dupeTokenHandle = DupeToken(WindowsIdentity.GetCurrent().Token,
                                       SecurityImpersonation);
    if(IntPtr.Zero == dupeTokenHandle)
    {
      throw new Exception("Unable to duplicate token.");
    }
    // Load the profile.
    ProfileManager.PROFILEINFO profile = new ProfileManager.PROFILEINFO();
    profile.dwSize = 32;
    profile.lpUserName = @"alexmlaptop\CustomASPNET";
    retVal = ProfileManager.LoadUserProfile(dupeTokenHandle, ref profile);
    if(false == retVal)
    {
      throw new Exception("Error loading user profile. " +
                          Marshal.GetLastWin32Error());
    }
    // Instantiate the Web service proxy
    math mathservice = new math();
    mathservice.Url = url;
    String certPath = certFilepath;
    mathservice.ClientCertificates.Add(
                                X509Certificate.CreateFromCertFile(certPath));
    long lngResult = 0;
    try
    {
      lngResult = mathservice.Add(operand1, operand2);
    }



How To: Call a Web Service Using Client Certificates from ASP.NET 463

    catch(Exception ex)
    {
      if(ex is WebException)
      {
        WebException we = ex as WebException;
        WebResponse webResponse = we.Response;
        throw new Exception("Exception calling method. " + ex.Message);
      }
    }
    ProfileManager.UnloadUserProfile(WindowsIdentity.GetCurrent().Token,
                                     profile.hProfile);
    CloseHandle(dupeTokenHandle);
    return lngResult;
  }

  private IntPtr DupeToken(IntPtr token, int Level)
  {
    IntPtr dupeTokenHandle = new IntPtr(0);
    bool retVal = DuplicateToken(token, Level, ref dupeTokenHandle);
    if (false == retVal)
    {
      return IntPtr.Zero;
    }
    return dupeTokenHandle;
  }
} // end class

9. On the Build menu, click Build Solution.

8. Configure and Install the Serviced Component
This procedure configures the service component, generates a strong name, installs
it in the global assembly cache and registers it with COM+.
1. Open assemblyinfo.cs and add the following using statement beneath the exist-

ing using statements.

using System.EnterpriseServices;

2. Add the following assembly level attribute to assemblyinfo.cs to configure the
serviced component to run within a COM+ server application.

[assembly: ApplicationActivation(ActivationOption.Server)]

3. Open a command prompt window and change to the current project directory.
4. Use the sn.exe utility to generate a key file that contains a public-private key

pair.

sn.exe -k WebServiceRequestor.snk



Building Secure ASP.NET Applications464

5. Return to Visual Studio .NET.
6. Locate the [AssemblyKeyFile] attribute within assemblyinfo.cs and modify it to

reference the key file in the project directory as follows.

[assembly: AssemblyKeyFile(@"..\..\WebServiceRequestor.snk")]

7. On the Build menu, click Build Solution.
8. Return to the command prompt and run the following command to add the

assembly to the global assembly cache.

gacutil.exe /i bin\debug\webservicerequestor.dll

9. Run the following command to register the assembly with COM+.

regsvcs bin\debug\webservicerequestor.dll

10. Start Component Services (located beneath the Administrative Tools program
group).

11. Expand the Component Services, Computers, and My Computer nodes.
12. Expand the COM+ Applications folder.
13. Right-click WebServiceRequestor, and then click Properties.
14. Click the Identity tab.
15. Select the This user: option and enter the account details corresponding to the

custom account that you created earlier.
This configures the COM+ application to run using your custom account.

16. Click OK to close the Properties dialog box.
17. Close Component Services.

9. Develop a Web Application to Call the Serviced Component
This procedure creates a simple ASP.NET Web application that you will use as the
client application to call the Web service (via the serviced component).

� To develop a Web application to call the serviced component
1. On the Web service client computer, create a new C# ASP.NET Web application

called SecureMathClient.
2. Add a reference to System.EnterpriseServices.



How To: Call a Web Service Using Client Certificates from ASP.NET 465

3. Add a reference to the WebServiceRequestor serviced component.
Browse to WebServiceRequestor.dll located within the bin\debug folder beneath
the WebServiceRequestor project directory.

4. Open WebForm1.aspx.cs and add the following using statement beneath the
existing using statements.

using WebServiceRequestor;

5. View WebForm1.aspx in Designer mode and create the form shown in Figure 3
using the following IDs:
● operand1
● operand2
● result
● add

Figure 3
Web Form control arrangement

6. Double-click Add to create a button-click event hander.
7. Add the following code to the event handler.

Note: Set the certPath string to the location of the certificate file that you exported during
Procedure 6, “Export the Client Certificate to a File.”
Set the url string with the HTTPS URL to your Web service.

private void add_Click(object sender, System.EventArgs e)
{
  // TODO: Replace with a valid path to your certificate
  string certPath = @"C:\CustomAccountCert.cer";
  // TODO: Replace with a valid URL to your Web service
  string url = "https://wsserver/securemath/math.asmx";
  MathServiceComponent mathComp = new MathServiceComponent();

  long addResult = mathComp.CallMathWebService( certPath,
                                                url,
                                                Int32.Parse(operand1.Text),
                                                Int32.Parse(operand2.Text));
  result.Text = addResult.ToString();
}



Building Secure ASP.NET Applications466

8. On the Build menu, click Build Solution.
9. Run the application. Enter two numbers to add, and then click Add.

The Web application will call the serviced component which will call the Web
service using SSL and passing the client certificate.

Additional Resources
For more information, see “How To: Set Up SSL on a Web Server” in the Reference
section of this guide.



How To:
Call a Web Service Using SSL

You can configure a Web service to require Secure Sockets Layer (SSL) to protect
sensitive data sent between the client and the service. SSL provides:
● Message integrity. This ensures that messages are not modified while in transit.
● Message confidentiality. This ensures that messages remain private while in

transit.

This How To describes how to configure a Web service to require SSL and how
to call the Web service from an ASP.NET client application by using the HTTPS
protocol.

Note: The information in this How To also applies to remote objects hosted by ASP.NET and IIS
(using .NET Remoting technology). For information about how to create a remote component
hosted by IIS, see article Q312107, “HOW TO: Host a remote object in Internet Information
Services” in the Microsoft Knowledge Base.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need:
● Microsoft® Windows® 2000 Server operating system
● Microsoft Visual Studio® .NET development system
● A Web server with an installed server certificate

For more information about installing Web server certificates, see “How To: Set
Up SSL on a Web Server.”

The procedures in this article also require that you have knowledge of ASP.NET
Web development with Microsoft Visual C#™ development tool.

Summary
This article includes the following procedures:
1. Create a Simple Web Service
2. Configure the Web Service Virtual Directory to Require SSL
3. Test the Web Service Using a Browser



Building Secure ASP.NET Applications468

4. Install the Certificate Authority’s Certificate on the Client Computer
5. Develop a Web Application to Call the Serviced Component

1. Create a Simple Web Service
� To create a simple Web service on the Web service host computer

1. Start Visual Studio .NET and create a new C# ASP.NET Web Service application
called SecureMath.

2. Rename service1.asmx as math.asmx.
3. Open math.asmx.cs and rename the Service1 class as math.
4. Add the following Web method to the math class.

[WebMethod]
public long Add(long operand1, long operand2)
{

return (operand1 + operand2);
}

5. To create the Web service, click Build Solution on the Build menu.

2. Configure the Web Service Virtual Directory to Require SSL
Your Web service runs on Internet Information Services (IIS) and relies on IIS to
provide SSL support.

This procedure assumes that you have a valid server certificate installed on your
Web server. For more information about installing Web server certificates, see
“How To: Set Up SSL on a Web Server.”

� To use IIS to configure your Web service’s virtual directory for SSL
1. On the Web service host computer, start IIS.
2. Navigate to the SecureMath virtual directory.
3. Right-click SecureMath, and then click Properties.
4. Click the Directory Security tab.
5. Under Secure communications, click Edit.

If Edit is unavailable, it is likely that a Web server certificate is not installed.
6. Select the Require secure channel (SSL) check box.
7. Click OK, and then OK again.



How To: Call a Web Service Using SSL 469

8. In the Inheritance Overrides dialog box, click Select All, and then click OK to
close the SecureMath properties dialog box.
This applies the new security settings to all subdirectories in the virtual directory
root.

3. Test the Web Service Using a Browser
This procedure ensures that the Web server certificate is valid and has been issued
by a Certification Authority (CA) that is trusted by the client computer.

� To call the Web service using SSL from Internet Explorer
1. Start Internet Explorer on the client computer and browse (using HTTPS) to the

Web service. For example:

https://WebServer/securemath/math.asmx

The Web service test page should be displayed by the browser.
2. If the Web service test page is displayed successfully, close Internet Explorer and

go to Procedure 5, “Develop a Web Application to Call the Serviced Component.”
3. If the Security Alert dialog box, as illustrated in Figure 1, is displayed, click

View Certificate to see the identity of the issuing CA for the Web server certifi-
cate. You must install the CA’s certificate on the client computer. This is de-
scribed in Procedure 4, “Install the Certificate Authority’s Certificate on the
Client Computer.”

4. Close Internet Explorer.

Figure 1
Security Alert dialog box



Building Secure ASP.NET Applications470

4. Install the Certificate Authority’s Certificate on the Client
Computer

This procedure installs the issuing CA’s certificate on the client computer as a
trusted root certificate authority. The client computer must trust the issuing CA
in order to accept the server certificate without displaying the Security Alert
dialog box.

� If you use Microsoft Certificate Services as a CA within your Windows domain

Perform this procedure only if your Web server certificate was issued by a Microsoft
Certificate Services CA. Otherwise, if you have the CA’s .cer file, go to Step 8.
1. Start Internet Explorer and browse to http://hostname/certsrv, where hostname is

the name of the computer where Microsoft Certificate Services that issued the
server certificate is located.

2. Click Retrieve the CA certificate or certificate revocation list, and then click
Next.

3. Click Install this CA certification path.
4. In the Root Certificate Store dialog box, click Yes.
5. Browse to Web service using HTTPS. For example:

https://WebServer/securemath/math.asmx

The Web service test page should now be correctly displayed by the browser,
without a Security Alert dialog box.
You have now installed the CA’s certificate in your personal trusted root certifi-
cate store. To be able to call the Web service successfully from an ASP.NET page,
you must add the CA’s certificate to the computer’s trusted root store.

6. Repeat Steps 1 and 2, click Download CA certificate, and then save it to a file on
your local computer.

7. Now perform the remaining steps, if you have the CA’s .cer certificate file.
8. On the taskbar, click Start, and then click Run.
9. Type mmc, and then click OK.

10. On the Console menu, click Add/Remove Snap-in.
11. Click Add.
12. Select Certificates, and then click Add.
13. Select Computer account, and then click Next.
14. Select Local Computer: (the computer this console is running on), and then

click Finish.



How To: Call a Web Service Using SSL 471

15. Click Close, and then OK.
16. Expand Certificates (Local Computer) in the left pane of the MMC snap-in.
17. Expand Trusted Root Certification Authorities.
18. Right-click Certificates, point to All Tasks, and then click Import.
19. Click Next to move past the Welcome dialog box of the Certificate Import

Wizard.
20. Enter the path and filename of the CA’s .cer file.
21. Click Next.
22. Select Place all certificates in the following store, and then click Browse.
23. Select Show physical stores.
24. Expand Trusted Root Certification Authorities within the list, and then select

Local Computer.
25. Click OK, click Next, and then click Finish.
26. Click OK to close the confirmation message box.
27. Refresh the view of the Certificates folder within the MMC snap-in and confirm

that the CA’s certificate is listed.
28. Close the MMC snap-in.

5. Develop a Web Application to Call the Web Service
This procedure creates a simple ASP.NET Web application. You will use this
ASP.NET Web application as the client application to call the Web service.

� To create a simple ASP.NET Web application
1. On the Web service client computer, create a new C# ASP.NET Web application

called SecureMathClient.
2. Add a Web reference (by using HTTPS) to the Web service.

a. Right-click the References node within Solution Explorer, and then click Add
Web Reference.

b. In the Add Web Reference dialog box, enter the URL of your Web service.
Make sure you use an HTTPS URL.

Note: If you have already set a Web reference to a Web service without using HTTPS,
you can manually edit the generated proxy class file and change the line of code that
sets the Url property from an HTTP URL to an HTTPS URL.

c. Click Add Reference.



Building Secure ASP.NET Applications472

3. Open WebForm1.aspx.cs and add the following using statement beneath the
existing using statements.

using SecureMathClient.WebReference1;

4. View WebForm1.aspx in Designer mode and create a form like the one illustrated
in Figure 2 using the following IDs:
● operand1
● operand2
● result
● add

Figure 2
WebForm1.aspx form

5. Double-click the Add button to create a button-click event hander.
6. Add the following code to the event handler.

private void add_Click(object sender, System.EventArgs e)
{
  math mathService = new math();
  int addResult = (int) mathService.Add( Int32.Parse(operand1.Text),
                                         Int32.Parse(operand2.Text));
  result.Text = addResult.ToString();
}

7. On the Build menu, click Build Solution.
8. Run the application. Enter two numbers to add, and then click the Add button.

The Web application will call the Web service using SSL.

Additional Resources
● “How To: Set Up SSL on a Web Server”
● “How To: Call a Web Service Using Client Certificates from ASP.NET”



How To:
Host a Remote Object
in a Windows Service

This How To describes how to host a remote object in a Windows service and call it
from an ASP.NET Web application.

Notes
● Remote objects (that is, .NET objects accessed remotely using .NET Remoting

technology) can be hosted in Windows services, custom executables, or ASP.NET.
● Clients communicate with remote objects hosted in custom executables or

Windows services by using the TCP channel.
● Clients communicate with remote objects hosted in ASP.NET by using the HTTP

channel.
● If security is the prime concern, host objects in ASP.NET and use the HTTP

channel. This allows you to benefit from the underlying security features of
ASP.NET and IIS.
For information about how to host a remote object in ASP.NET (with IIS), see
article Q312107, “HOW TO: Host a Remote Object in IIS,” in the Microsoft
Knowledge Base.

● If performance is the prime concern, host objects in a Windows service and use
the TCP channel. This option provides no built-in security.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 operating system
● Microsoft Visual Studio® .NET development system

The procedures in this article also require that you have knowledge of the Microsoft
Visual C#™ development tool.



Building Secure ASP.NET Applications474

Summary
This How To includes the following procedures.
1. Create the Remote Object Class
2. Create a Windows Service Host Application
3. Create a Windows Account to Run the Service
4. Install the Windows Service
5. Create a Test Client Application

1. Create the Remote Object Class
This procedure creates a simple remote object class. It provides a single method
called Add that will add two numbers together and return the result.

� To create the remote object class
1. Start Visual Studio .NET and create a new Visual C# Class Library project called

RemoteObject.
2. Use Solution Explorer to rename class1.cs as Calculator.cs.
3. In Calculator.cs, rename Class1 as Calculator and rename the default constructor

accordingly.
4. Derive the Calculator class from MarshalByRefObject to make the class

remotable.

public class Calculator : MarshalByRefObject

5. Add the following public method to the Calculator class.

public int Add( int operand1, int operand2 )
{
  return operand1 + operand2;
}

6. On the Build menu, click Build Solution.

2. Create a Windows Service Host Application
This procedure creates a Windows service application, which will be used to host
the remote object. When the service is started it will configure the TCP remoting
channel to listen for client requests.



How To: Host a Remote Object in a Windows Service 475

Note: This procedure uses an Installer class and the Installutil.exe command line utility to
install the Windows service. To uninstall the service, run Installutil.exe with the /u switch. As
an alternative, you could use a Setup and Deployment Project to help install and uninstall the
Windows service.

� To create a Windows Service host application
1. Add a new Visual C# Windows Service project called RemotingHost to the

current solution.
2. Use Solution Explorer to rename Service1.cs as RemotingHost.cs.
3. In RemotingHost.cs, rename the Service1 class as HostService and rename the

default constructor accordingly.
4. At the top of the file, add the following using statement beneath the existing

using statements.

using System.Runtime.Remoting;

5. Locate the Main method and replace the existing line of code that initializes the
ServicesToRun variable with the following.

ServicesToRun = new System.ServiceProcess.ServiceBase[] {
                                            new HostService() };

6. Locate the InitializeComponent method and set the ServiceName property to
RemotingHost.

this.ServiceName = "RemotingHost";

7. Locate the OnStart method and add the following line of code to configure
remoting. The fully qualified path to the configuration file will be passed as a
start parameter to the service.

RemotingConfiguration.Configure(args[0]);

8. Add a new C# class file to the project and name it HostServiceInstaller.
9. Add an assembly reference to the System.Configuration.Install.dll assembly.

10. Add the following using statements to the top of HostServiceInstaller beneath
the existing using statement.

using System.ComponentModel;
using System.ServiceProcess;
using System.Configuration.Install;

11. Derive the HostServiceInstaller class from the Installer class.

public class HostServiceInstaller : Installer



Building Secure ASP.NET Applications476

12. Add the RunInstaller attribute at the class level as follows.

[RunInstaller(true)]
public class HostServiceInstaller : Installer

13. Add the following two private member variables to the HostServiceInstaller
class. The objects will be used when installing the service.

private ServiceInstaller HostInstaller;
private ServiceProcessInstaller HostProcessInstaller;

14. Add the following code to the constructor of the HostServiceInstaller class.

HostInstaller = new ServiceInstaller();
HostInstaller.StartType = System.ServiceProcess.ServiceStartMode.Manual;
HostInstaller.ServiceName = "RemotingHost";
HostInstaller.DisplayName = "Calculator Host Service";
Installers.Add (HostInstaller);
HostProcessInstaller = new ServiceProcessInstaller();
HostProcessInstaller.Account = ServiceAccount.User;
Installers.Add (HostProcessInstaller);

15. Within Solution Explorer, right-click RemotingHost, point to Add, and then click
Add New Item.

16. In the Templates list, click Text File and name the file app.config.
Configuration files with the name app.config are automatically copied by Visual
Studio .NET as part of the build process to the output folder (for example,
<projectdir>\bin\debug) and renamed as <applicationname>.config.

17. Click OK to add the new configuration file.
18. Add the following configuration elements to the new configuration file.

<configuration>
<system.runtime.remoting>
  <application name="RemoteHostService">
    <service>
      <wellknown type="RemoteObject.Calculator, RemoteObject"
                 objectUri="RemoteObject.Calculator" mode="Singleton" />
    </service>
    <channels>
      <channel ref="tcp" port="8085">
        <serverProviders>
          <formatter ref="binary" />
        </serverProviders>
      </channel>
    </channels>
  </application>
</system.runtime.remoting>
</configuration>

19. On the Build menu, click Build Solution.



How To: Host a Remote Object in a Windows Service 477

3. Create a Windows Account to Run the Service
This procedure creates a Windows account used to run the Windows service.

� To create a Windows account to run the service
1. Create a new local user account called RemotingAccount. Enter a password and

select the Password never expires check box.
2. In the Administrative Tools programs group, click Local Security Policy.
3. Use the Local Security Policy tool to give the new account the Log on as a

service privilege.

4. Install the Windows Service
This procedure installs the Windows service using the installutil.exe utility and then
start the service.

� To install the Windows service
1. Open a command window and change directory to the Bin\Debug directory

beneath the RemotingHost project folder.
2. Run the installutil.exe utility to install the service.

installutil.exe remotinghost.exe

3. In the Set Service Login dialog box, enter the user name and password of the
account created earlier in procedure 3 and click OK.
View the output from the installutil.exe utility and confirm that the service is
installed correctly.

4. Copy the RemoteObject.dll assembly into the RemotingHost project output
directory (that is, RemotingHost\Bin\Debug).

5. From the Administrative Tools program group, start the Services MMC snap-in.
6. In the Services list, right-click Calculator Host Service, and then click

Properties.
7. Enter the full path to the service’s configuration file (remotinghost.exe.config)

into the Start parameters field.

Note: A quick way to do this is to select and copy the Path to executable field and paste it
into the Start parameters field. Then append the “.config” string.

8. Click Start to start the service.
9. Confirm that the service status changes to Started.

10. Click OK to close the Properties dialog box.



Building Secure ASP.NET Applications478

5. Create a Test Client Application
This procedure creates a test console application that is used to call the remote
object within the Windows service.

� To create a test client application
1. Add a new Visual C# Console application called RemotingClient to the current

solution.
2. Within Solution Explorer, right-click RemotingClient, and then click Set as

StartUp Project.
3. Add an assembly reference to the System.Runtime.Remoting.dll assembly.
4. Add a project reference to the RemoteObject project.
5. Add the following using statements to the top of class1.cs beneath the existing

using statements.

using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
using RemoteObject;

6. Add the following test code to the Main method to call and invoke the
Calculator object hosted by the Windows service.

TcpChannel chan = new TcpChannel();
ChannelServices.RegisterChannel(chan);
Calculator calc = (Calculator)Activator.GetObject(
                         typeof(RemoteObject.Calculator),
                        "tcp://localhost:8085/RemoteObject.Calculator");
if (calc == null)
  System.Console.WriteLine("Could not locate server");
else
  Console.WriteLine("21 + 21 is : " + calc.Add(21,21) );

7. On the Build menu, click Build Solution.
8. Run the client application and confirm that the correct result is displayed in the

console output window.

References
For information about how to host a remote object in ASP.NET (with IIS), see article
Q312107, “HOW TO: Host a Remote Object in IIS,” in the Microsoft Knowledge Base.



How To:
Set Up SSL on a Web Server

Secure Sockets Layer (SSL) is a set of cryptographic technologies that provides
authentication, confidentiality, and data integrity. SSL is most commonly used
between Web browsers and Web servers to create a secure communication channel.
It can also be used between client applications and Web services.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 Server operating system (Service Pack 2)
● Microsoft Certificate Services (required if you need to generate your own

certificates).

The procedures in this How To also require that you have some knowledge of IIS
configuration.

Summary
This How To includes the following procedures:
1. Generate a Certificate Request
2. Submit a Certificate Request
3. Issue the Certificate
4. Install the Certificate on the Web server
5. Configure Resources to Require SSL Access

1. Generate a Certificate Request
This procedure creates a new certificate request, which can be sent to a Certificate
Authority (CA) for processing. If successful, the CA will send you back a file con-
taining a validated certificate.

� To generate a certificate request
1. Start the IIS Microsoft Management Console (MMC) snap-in.



Building Secure ASP.NET Applications480

2. Expand your Web server name and select the Web site for which you want to
install a certificate.

3. Right-click the Web site, and then click Properties.
4. Click the Directory Security tab.
5. Click the Server Certificate button within Secure communications to launch the

Web Server Certificate Wizard.

Note: If Server Certificate is unavailable, you probably selected a virtual directory,
directory, or file. Go back to Step 2 and select a Web site.

6. Click Next to move past the welcome dialog box.
7. Click Create a New Certificate, and then click Next.
8. The dialog box has the following two options:

● Prepare the request now, but send it later
This option is always available.

● Send the request immediately to an online certification authority
This option is available only if the Web server can access one or more
Microsoft Certificate servers in a Windows 2000 domain configured to issue
Web server certificates. Later on in the request process, you are given the
opportunity to select an authority from a list to send the request to.

Click Prepare the request now, but send it later, and then click Next.
9. Type a descriptive name for the certificate in the Name field, type a bit length for

the key in the Bit length field, and then click Next.
The wizard uses the name of the current Web site as a default name. It is not
used in the certificate but acts as a friendly name to help administrators.

10. Type an organization name (such as Contoso) in the Organization field and type
an organizational unit (such as Sales Department) in the Organizational unit
field, and then click Next.

Note: This information will be placed in the certificate request, so make sure it is accurate.
The CA will verify this information and will place it in the certificate. A user browsing your
Web site will want to see this information in order to decide if they should accept the
certificate.

11. In the Common name field, type a common name for your site, and then click
Next.



How To: Set Up SSL on a Web Server 481

Important: The common name is one of the most significant pieces of information that
ends up in the certificate. It is the DNS name of the Web site (that is, the name that users
type in when browsing your site). If the certificate name doesn’t match the site name, a
certificate problem will be reported when users browse to the site.
If your site is on the Web and is named www.contoso.com, this is what you should specify
for the common name.
If your site is internal and users browse by computer name, enter the NetBIOS or DNS
name of the computer.

12. Enter the appropriate information in the Country/Region, State/province, and
City/locality fields, and then click Next.

13. Enter a file name for the certificate request.
The file contains information similar to the following.

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIDZjCCAs8CAQAwgYoxNjA0BgNVBAMTLW1penJvY2tsYXB0b3Aubm9ydGhhbWVy…
-----END NEW CERTIFICATE REQUEST-----

This is a Base 64 encoded representation of your certificate request. The request
contains the information entered into the wizard and also your public key and
information signed with your private key.
This request file is sent to the CA. The CA then uses your public key information
from the certificate request to verify information signed with your private key.
The CA also verifies the information supplied in the request.
After you submit the request to a CA, the CA sends back a certificate contained
in a file. You would then restart the Web Server Certificate Wizard.

14. Click Next. The wizard displays a summary of the information contained in the
certificate request.

15. Click Next, and then click Finish to complete the request process.
The certificate request can now be sent to a CA for verification and processing.
After you receive a certificate response from the CA, you can continue and install
the certificate on the Web server, once again by using the IIS Certificate Wizard.

2. Submit a Certificate Request
This procedure uses Microsoft Certificate Services to submit the certificate request
generated in the previous procedure.

� To submit a certificate request
1. Use Notepad to open the certificate file generated in the previous procedure and

copy its entire contents to the clipboard.



Building Secure ASP.NET Applications482

2. Start Internet Explorer and navigate to http://hostname/CertSrv, where hostname
is the name of the computer running Microsoft Certificate Services.

3. Click Request a Certificate, and then click Next.
4. On the Choose Request Type page, click Advanced request, and then click

Next.
5. On the Advanced Certificate Requests page, click Submit a certificate request

using a base64 encoded PKCS#10 file, and then click Next.
6. On the Submit a Saved Request page, click in the Base64 Encoded Certificate

Request (PKCS #10 or #7) text box and press CTRL+V to paste the certificate
request you copied to the clipboard earlier.

7. In the Certificate Template combo box, click Web Server.
8. Click Submit.
9. Close Internet Explorer.

3. Issue the Certificate
� To issue the certificate

1. Start the Certification Authority tool from the Administrative Tools program
group.

2. Expand your certificate authority, and then select the Pending Requests folder.
3. Select the certificate request you just submitted.
4. On the Action menu, point to All Tasks, and then click Issue.
5. Confirm that the certificate is displayed in the Issued Certificates folder, and

then double-click it to view it.
6. On the Details tab, click Copy to File, and save the certificate as a Base-64

encoded X.509 certificate.
7. Close the properties window for the certificate.
8. Close the Certificate Authority tool.

4. Install the Certificate on the Web Server
This procedure installs the certificate issued in the previous procedure on the Web
server.

� To install the certificate on the Web server
1. Start Internet Information Services, if it’s not already running.
2. Expand your server name and select the Web site for which you want to install

a certificate.



How To: Set Up SSL on a Web Server 483

3. Right-click the Web site, and then click Properties.
4. Click the Directory Security tab.
5. Click Server Certificate to launch the Web Server Certificate Wizard.
6. Click Process the pending request and install the certificate, and then click

Next.
7. Enter the path and file name of the file that contains the response from the CA,

and then click Next.
8. Examine the certificate overview, click Next, and then click Finish.

A certificate is now installed on the Web server.

5. Configure Resources to Require SSL Access
This procedure uses Internet Services Manager to configure a virtual directory to
require SSL for access. You can require the use of SSL for specific files, directories,
or virtual directories. Clients must use the HTTPS protocol to access any such
resource.

� To configure resources to require SSL access
1. Start Internet Information Services, if it’s not already running.
2. Expand your server name and Web site. (This must be a Web site that has an

installed certificate.)
3. Right-click a virtual directory, and then click Properties.
4. Click the Directory Security tab.
5. Under Secure communications, click Edit.
6. Click Require secure channel (SSL).

Client’s browsing to this virtual directory must now use HTTPS.
7. Click OK, and then click OK again to close the Properties dialog box.
8. Close Internet Information Services.





How To:
Set Up Client Certificates

Web services often need to be able to authenticate their callers (other applications)
in order to perform authorization. Client certificates provide an excellent authenti-
cation mechanism for Web services. When you use client certificates, your applica-
tion also benefits from the creation of a secure channel (using Secure Sockets Layer
[SSL]) between the client application and Web service. This allows you to securely
send confidential information to and from the Web service. SSL ensures message
integrity and confidentiality.

This How To includes step-by-step instructions to call a Web service that is config-
ured to require client certificates.

Note: The information in this How To also applies to remote components hosted by IIS.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Microsoft® Windows® 2000 Server operating system with Service Pack 2
● Microsoft Visual Studio® .NET development system
● Access to a Certificate Authority (CA) to generate new certificates
● A Web server with an installed server certificate

For more information about installing Web server certificates, see “How To: Set
Up SSL on a Web Server” in the Reference section of this guide.

The procedures in this How To also require that you have knowledge of ASP.NET
Web development with the Microsoft Visual C#™ development tool.

Summary
This How To includes the following procedures:
1. Create a Simple Web Application
2. Configure the Web Application to Require Client Certificates
3. Request and Install a Client Certificate
4. Verify Client Certificate Operation



Building Secure ASP.NET Applications486

1. Create a Simple Web Application
� To create a simple Web application

1. Start Visual Studio .NET and create a new C# ASP.NET Web application called
SecureApp.

2. Drag a label control from the toolbox onto the WebForm1.aspx Web form, and
then set its ID property to message.

3. Drag a second label onto WebForm1.aspx and set its ID property to certData.
4. Add the following code to the Page_Load event procedure.

string username;
username = User.Identity.Name;
message.Text = "Welcome " + username;
HttpClientCertificate cert = Request.ClientCertificate;
if (cert.IsPresent)
{

certData.Text = "Client certificate retrieved";
}
else
{

certData.Text = "No client certificate";
}

5. On the Build menu, click Build Solution.
6. Start Internet Explorer and navigate to http://localhost/SecureApp/WebForm1.aspx.

The page should be displayed with the messages “Welcome” (no user name is
displayed because the user has not been authenticated) and “No client certificate.”

7. Close Internet Explorer.

2. Configure the Web Application to Require Client Certificates
This procedure uses Internet Information Services (IIS) to configure your Web
application’s virtual directory to require certificates.

This procedure assumes that you have a valid certificate installed on your Web
server. For more information about installing Web server certificates, see “How To:
Set Up SSL on a Web Server.”

� To configure your Web application’s virtual directory to require certificates
1. On the Web service host computer, start IIS.
2. Navigate to the SecureApp virtual directory.
3. Right-click SecureApp, and then click Properties.
4. Click the Directory Security tab.



How To: Set Up Client Certificates 487

5. Under Secure communications, click Edit.
If Edit is unavailable, it is likely that a Web server certificate is not installed.

6. Select the Require secure channel (SSL) check box.
7. Select the Require client certificates option.
8. Click OK, and then click OK again.
9. In the Inheritance Overrides dialog box, click Select All, and then click OK to

close the SecureApp properties dialog box.
This applies the new security settings to all subdirectories in the virtual directory
root.

10. To confirm that the Web site is configured correctly, start Internet Explorer and
browse (using HTTPS) to https://localhost/secureapp/webform1.aspx.

11. A Client Authentication dialog box is displayed by Internet Explorer asking you
to select a client certificate. Because you have not yet installed a client certificate,
click OK, and confirm that an error page is displayed informing you that the
page requires a client certificate.

12. Close Internet Explorer.

3. Request and Install a Client Certificate
This procedure installs a client-side certificate. You can use a certificate from any
certificate authority, or you can generate your own certificate using Microsoft
Certificate Services as described in the following sections.

This procedure assumes that Microsoft Certificate Services is configured for pend-
ing requests, which require an administrator to explicitly issue the certificate. It can
also be configured to automatically issue certificates in response to certificate
requests.

� To check the certificate request status setting
1. On the Microsoft Certificate Services computer, select Certification Authority

from the Administrative Tools programs group.
2. Expand Certification Authority (Local), right-click the certification authority

and click Properties.
3. Click the Policy Module tab, and then click Configure.
4. Check the default action.

The following procedure assumes that Set the certificate request status to
pending. Administrator must explicitly issue the certificate is selected.

� To request a client-side certificate
1. Start Internet Explorer and navigate to http://hostname/certsrv, where hostname is

the name of the computer on which Microsoft Certificate Services is installed.



Building Secure ASP.NET Applications488

2. Click Request a certificate, and then click Next.
3. On the Choose Request Type page, click User Certificate, and then click Next.
4. Click Submit to complete the request.
5. Close Internet Explorer.

� To issue the client-side certificate
1. From the Administrative Tools program group, start the Certification Authority

tool.
2. Expand your certificate authority, and then select the Pending Requests folder.
3. Select the certificate request you just submitted, point to All Tasks on the Action

menu, and then click Issue.
4. Confirm that the certificate is displayed in the Issued Certificates folder, and

then double-click it to view it.
5. On the Details tab, click Copy to File to save the certificate as a Base-64 encoded

X.509 certificate.
6. Close the properties window for the certificate.
7. Close the Certification Authority tool.

� To install the client-side certificate
1. To view the certificate, start Windows Explorer, navigate to the .cer file saved in

the previous procedure, and then double-click it.
2. Click Install Certificate, and then click Next on the first page of the Certificate

Import Wizard.
3. Select Automatically select the certificate store based on the type of certificate,

and then click Next.
4. Click Finish to complete the wizard. Dismiss the confirmation message box, and

then click OK to close the certificate.

4. Verify Client Certificate Operation
This procedure verifies that you can access the SecureApp application using a client
certificate.

� To verify client certificate operation
1. Start Internet Explorer and navigate to https://localhost/secureapp/webform1.aspx.
2. Confirm that the Web page displays successfully.

Additional Resources
For more information, see “How to Set Up SSL on a Web Server” in the Reference
section of this guide.



How To:
Use IPSec to Provide Secure
Communication Between Two
Servers

Internet Protocol Security (IPSec) can be used to secure the data sent between two
computers, such as an application server and a database server. IPSec is completely
transparent to applications because encryption, integrity, and authentication
services are implemented at the transport level. Applications continue to communi-
cate with one another in the normal manner using TCP and UDP ports.

Using IPSec you can:
● Provide message confidentiality by encrypting all of the data sent between two

computers.
● Provide message integrity between two computers (without encrypting data).
● Provide mutual authentication between two computers. For example, you can

help secure a database server by establishing a policy that permits requests only
from a specific client computer (for example, an application or Web server).

● Restrict which computers can communicate with one another. You can also
restrict communication to specific IP protocols and TCP/UDP ports.

This How To shows you how to secure the communication channel between an
application server and a database server running SQL Server 2000. The application
server uses the recommended TCP/IP client network library to connect to SQL
Server and uses the default SQL Server TCP port 1433. The configuration is shown
in Figure 1 on the next page.



Building Secure ASP.NET Applications490

Application 
Server

Database Server

192.168.13.32 192.168.12.11

Port 
1433

IPSec
(Privacy/Integrity)

SQL 
Server

Figure 1
How To solution configuration

This How To describes how to use a simple IPSec policy to enforce the following:
● Allow communications with SQL Server only from the application server using

TCP through port 1433.
● Drop all other IP packets, including ICMP (ping).
● Encrypt all data sent between the two computers to guarantee confidentiality.

The advantages of this approach are:
● Data confidentiality is provided for all data sent between the two computers.
● The attach surface on SQL Server is significantly reduced. The only remaining

points of attack are to interactively log on to the database server or to gain
control of the application server and try to attack SQL Server via TCP port 1433.

● The IPSec policy is extremely simple to define and implement.

This particular policy suffers from the following drawbacks:
● SQL Server cannot communicate with domain controllers and as a result:

● Group policy cannot be applied (the database server should be a standalone
server).

● Windows authentication between the application server and database server
requires synchronized local accounts (with the same user name and pass-
word) on both computers.

● You cannot use more robust methods of applying IPSec (Windows 2000
default / Kerberos).

● SQL Server will not be able to communicate with other computers, including
DNS servers.

● The approach presented in this How To uses pre-shared key authentication,
which is not recommended for production scenarios. Production systems should
use certificates or Windows 2000 domain authentication. IPSec policies that use
pre-shared secrets are suitable for use in development or test environments only.

● Both computers must have static IP addresses.



How To: Use IPSec to Provide Secure Communication Between Two Servers 491

Notes
● An IPSec policy consists of a set of filters, filter actions, and rules.
● A filter consists of:

● A source IP address or range of addresses.
● A destination IP address or range of addresses.
● An IP protocol, such as TCP, UDP, or “any.”
● Source and destination ports (for TCP or UDP only).

● Filters can also be mirrored on two computers. A mirrored filter applies the same
rule on client and server computer (with the source and destination addresses
reversed).

● A filter action specifies actions to take when a given filter is invoked. It can be
one of the following:
● Permit. The traffic is not secured; it is allowed to be sent and received without

intervention.
● Block. The traffic is not permitted.
● Negotiate security. The endpoints must agree on and then use a secure

method to communicate. If they cannot agree on a method, the communica-
tion does not take place. If negotiation fails, you can specify whether to allow
unsecured communication or to whether all communication should be
blocked.

● A rule associates a filter with a filter action.
● A mirrored policy is one that applies rules to all packets with the exact reverse of

the specified source and destination IP addresses. A mirrored policy is created in
this How To.

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Two computers running Microsoft® Windows® 2000 Server operating system

You must know their IP addresses
● Microsoft® SQL Server™ 2000 on the database server computer



Building Secure ASP.NET Applications492

Summary
This How To includes the following procedures:
1. Create an IP Filter
2. Create Filter Actions
3. Create Rules
4. Export the IPSec Policy to the Remote Computer
5. Assign Policies
6. Verify that it Works

1. Create an IP Filter
� To create a new IP filter on the database server computer

1. Log on to the database server as an administrator.
2. Start the Local Security Policy Microsoft Management Console (MMC) snap-in

from the Administrative Tools program group.
3. In the left pane, right-click IP Security Policies on Local Machine, and then click

Manage IP filter lists and filter actions.
You will see that two filter lists are already defined for all ICMP traffic and all IP
traffic.

4. Click Add.
5. In the IP Filter List dialog box, type SQL Port in the Name field.
6. Click Add, and then click Next to move past the welcome dialog of the IP Filter

Wizard.
7. In the IP Traffic Source dialog box, select A specific IP Address from the Source

address drop-down list, and then enter the IP address of your application server
computer.

8. Click Next.
9. In the IP Traffic Destination dialog box, select A specific IP Address from the

Destination address drop-down list, and then enter the IP address of your
database server computer.

10. Click Next.
11. In the IP Protocol Type dialog box, select TCP as the protocol type, and then

click Next.
12. In the IP Protocol Port dialog box, select From any port, and then select To this

port. Enter 1433 as the port number.
13. Click Next, and then click Finish to close the wizard.
14. Click Close to close the IP Filter List dialog box.



How To: Use IPSec to Provide Secure Communication Between Two Servers 493

2. Create Filter Actions
This procedure creates two filter actions. The first will be used to block all commu-
nications from specified computers and the second will be used to enforce the use of
encryption between application server and database server computers.

� To create filter actions
1. Click the Manage Filter Actions tab.

Note that several predefined actions are already defined.
2. Click Add to create a new filter action.

In the next few steps, you will create a block action that can be used to block all
communications from selected computers.

3. Click Next to move past the initial dialog box of the Filter Action Wizard.
4. In the Name field, type Block, and then click Next.
5. In the Filter Action General Options dialog box, select Block, and then click

Next.
6. Click Finish to close the wizard.
7. Click Add to start the Filter Action Wizard again.

In the next few steps, you will create a filter action to force the use of encryption
between application server and database server computers.

8. Click Next to move past the initial dialog box of the Filter Action Wizard.
9. In the Name field, type Require High Security, and then click Next.

10. Select Negotiate security, and then click Next.
11. Select Do not communicate with computers that do not support IPSec, and then

click Next.
12. Select Custom, and then click Settings.
13. Make sure that the Data integrity and encryption (ESP) check box is selected.
14. Select SHA1 from the Integrity algorithm drop-down list.
15. Select 3DES from the Encryption algorithm drop-down list.
16. Select the two check boxes within the Session Key Settings group to generate a

new key every 100000 Kb and 3600 seconds respectively.
17. Click OK to close the Custom Security Method Settings dialog box, and then

click Next.
18. Select the Edit Properties check box, and then click Finish.
19. Clear the Accept unsecured communication, but always respond using IPSec

check box.
20. Select the Session key Perfect Forward Secrecy check box, and then click OK.
21. Click Close to close the Manage IP filter lists and filter actions dialog box.



Building Secure ASP.NET Applications494

3. Create Rules
This procedure creates two new rules that will be used to associate the filter that
you created in Procedure 1, with the two filter actions you created in Procedure 2.

� To create rules
1. In the left pane, right-click IP Security Policies on Local Machine, and then click

Create IP Security Policy.
2. Click Next to move past the initial dialog box of the IP Security Policy Wizard.
3. In the Name field, type Secure SQL, and then click Next.
4. Clear the Activate the default response rule check box, and then click Next.
5. Leave the Edit properties check box selected, and then click Finish.
6. Click Add to start the Security Rule Wizard.
7. Click Next to move past the initial dialog box of the Security Rule Wizard.
8. Click This rule does not specify a tunnel, and then click Next.
9. Click All network connections, and then click Next.

10. Click Use this string to protect the key exchange (preshared key).
11. Enter MySecret as a “secret” key in the text box.

Note: This key must be the same for both computers in order for them to successfully
communicate. You should use a long random number, but for the purposes of this How To,
“MySecret” will suffice.

12. Click Next.
13. Select the SQL Port option.

Note: You must click the circle (radio button) and not the text for the option to be selected.

14. Click Next.
15. Select the Require High Security option, and then click Next.
16. Click Finish to return to the Secure SQL Properties dialog box.
17. Click Add to start the Security Rule Wizard again, and then click Next to move

past the initial dialog box.
18. Click This rule does not specify a tunnel, and then click Next.
19. Click All network connections, and then click Next.
20. In the Authentication Method dialog box, leave Windows 2000 default

(Kerberos V5 Protocol) selected, and then click Next.

Note: This rule will specify the Block filter action, so no authentication will be needed.

22. In the IP Filter List dialog box, click All IP Traffic, and then click Next.



How To: Use IPSec to Provide Secure Communication Between Two Servers 495

23. In the Filter Action dialog box, select the Block option, and then click Next.
24. Click Finish.
25. Click Close to close the Secure SQL Properties dialog box.

4. Export the IPSec Policy to the Remote Computer
The IPSec policy that you have created on the database server must now be
exported and copied to the application server computer.

� To export the IPSec policy to the application server computer
1. In the left pane, right-click the IP Security Policies on Local Machine node,

point to All Tasks, and then click Export Policies.
2. In the Name field, type Secure SQL, and then click Save to export the file to the

local hard disk.
3. Either copy the .ipsec file across to the application server or make it available by

using a file share.

Important: Because the exported policy file contains a pre-shared key in clear text, the file
must be properly secured. It should not be stored on the hard disk of either computer.

4. Log on to the Application Server as an administrator and start the Local Security
Policy MMC snap-in.

5. Select and right-click IP Security Policies on Local Machine, point to All Tasks,
and then click Import Policies.

6. Browse for the previously exported .ipsec file and click Open to import the
policy.

5. Assign Policies
An IPSec policy must be assigned before it becomes active. Note that only one
policy may be active at any one time on a particular computer.

� To assign the Secure SQL policy on the application server and database server computers
1. On the application server computer, right-click the newly imported Secure SQL

policy, and then click Assign.
2. Repeat the previous step on the database server computer.

The mirrored policy is now assigned on both computers.
The policies ensure that only the application server can communicate with the
database server. Furthermore, only TCP connections using port 1433 are permit-
ted and all traffic sent between the two computers is encrypted.



Building Secure ASP.NET Applications496

6. Verify that it Works
This procedure uses Network Monitor to verify that data sent between the applica-
tion server and database server is encrypted.

� To verify that it works
1. On the application server computer, use Visual Studio .NET to create a new C#

Console Application called SQLIPSecClient.
2. Copy the following code to class1.cs replacing all of the existing code.

Note: Replace the IP address in the connection string with the IP address of your database
server.

using System;
using System.Data;
using System.Data.SqlClient;

namespace SQLIPSecClient
{
  class Class1
  {
    [STAThread]
    static void Main(string[] args)
    {
      // Replace the IP address in the following connection string with the IP
      // address of your database server
      SqlConnection conn = new SqlConnection(
        "server=192.168.12.11;database=NorthWind;Integrated Security='SSPI'");

      SqlCommand cmd = new SqlCommand(
                              "SELECT ProductID, ProductName FROM Products");
      try
      {
        conn.Open();
        cmd.Connection = conn;
        SqlDataReader reader = cmd.ExecuteReader();
        while (reader.Read())
        {
          Console.WriteLine("{0} {1}",
                     reader.GetInt32(0).ToString(),
                     reader.GetString(1) );
        }
        reader.Close();
      }
      catch( Exception ex)
      {
      }
      finally



How To: Use IPSec to Provide Secure Communication Between Two Servers 497

      {
        conn.Close();
      }
    }
  }
}

3. On the Build menu, click Build Solution.
4. In order for Windows authentication to succeed between the two computers, you

must duplicate the account that you are currently interactively logged on to the
application computer with, on the database server computer. Ensure that the
user name and password matches.
You must also use SQL Server Enterprise Manager to create a database login for
the newly created account and add a new database user for this logon to the
Northwind database.

5. Temporarily un-assign the Secure SQL IPSec policy on both computers:
a. Start Local Security Settings on the application server computer.
b. Click IP Security Policies on Local Machine.
c. In the right pane, right-click Secure SQL, and then click Un-assign.
d. Repeat Steps a – c on the database server computer.

6. On the database server computer, click Network Monitor in the Administrative
Tools program group.

Note: A limited version of Network Monitor is available with Windows 2000 Server. A full
version is available with Microsoft SMS.
If you do not have Network Monitor installed, go to Add/Remove Programs in Control
Panel, click Add/Remove Windows Components, select Management and Monitoring
Tools from the Windows Components list, click Details, and then click Network Monitor
Tools. Click OK, and then click Next to install the limited version of Network Monitor. You
may be prompted for a Windows 2000 Server CD.

7. On the Capture menu, click Filter to create a new filter configured to view
TCP/IP network traffic sent between the application server and database server.

8. Click the Start Capture button.
9. Return to the application server computer and run the test console application.

A list of products from the Northwind database should be displayed in the
console window.

10. Return to the database server and click the Stop and View Capture button
within Network Monitor.

11. Double-click the first captured frame to view the captured data.



Building Secure ASP.NET Applications498

12. Scroll down through the captured frames. You should see the SELECT statement
in clear text followed by the list of products retrieved from the database.

13. Assign the Secure SQL IPSec policy on both computers:
a. Start Local Security Settings on the application server computer.
b. Click IP Security Policies on Local Machine.
c. In the right pane, right-click Secure SQL, and then click Assign.
d. Repeat Steps a – c on the database server computer.

14. In Network Monitor, close the capture window.
15. Click the Start Capture button, and then click No in the Save File message box.
16. Return to the application server computer and run the test console application

once again.
17. Return to the database server computer and click Stop and View Capture within

Network Monitor.
18. Confirm that the data is now unintelligible (because it is encrypted).
19. Close Network Monitor.

Additional Resources
For more information about IPSec, see “IP Security and Filtering” on TechNet
(http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol
/winxppro/reskit/prcc_tcp_erqb.asp?frame=true>).

For more information about Network Monitor, see the “Network Monitor” section
of the Microsoft Platform SDK on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp).



How To:
Use SSL to Secure Communication
with SQL Server 2000

You can use the Secure Sockets Layer (SSL) protocol to secure the communication
link between clients (direct callers) and Microsoft® SQL Server™ 2000. When you
configure SQL Server for SSL, all of the data transmitted between client and server
(and vice versa) may be encrypted to ensure that the data remains confidential
while in transit between the client and SQL Server.

Notes
● SSL is an alternative to using IPSec to secure database traffic.

For more information about how to use IPSec to secure database traffic, see
“How To: Use IPSec to Provide Secure Communication Between Two Servers” in
the Reference section of this guide.

● Unlike IPSec, configuration changes are not required if the client or server IP
addresses change.

● For SSL to work, you must install a server certificate on the database server
computer. The client computer must also have a root certificate authority (CA)
certificate from the same authority.

● Clients must have the SQL Server 2000 connectivity libraries installed. Earlier
versions or generic libraries will not work.

● SSL only works for TCP/IP (the recommended communication protocol for SQL
Server) and named pipes.

● You can configure the server to force the use of encryption for all connections.
● On the client, you can:

● Force the use of encryption for all outgoing connections.
● Allow client applications to choose whether or not to use encryption on a

per-connection basis, by using the connection string.



Building Secure ASP.NET Applications500

Requirements
The following items describe the recommended hardware, software, network
infrastructure, skills and knowledge, and service packs you will need.
● Two computers running the Microsoft Windows® 2000 Server operating system.
● SQL Server 2000 on the database server computer. For this example, the SQL

Server service is assumed to be running as Local System. If the certificate is in
the Local Machine store, SSL should work no matter which account SQL runs
under.

● Microsoft Data Access Components (MDAC) 2.6 or later, or SQL Server 2000
client connectivity libraries on the client computer.

● This example requires access to Microsoft Certificate Services running on
Windows 2000 to allow the creation of server authentication certificates;
however, this is not a requirement.

Summary
This How To includes the following procedures:
1. Install a Server Authentication Certificate
2. Verify that the Certificate Has Been Installed
3. Install the Issuing CA’s Certificate on the Client
4. Force All Clients to Use SSL
5. Allow Clients to Determine Whether to Use SSL
6. Verify that Communication Is Encrypted

1. Install a Server Authentication Certificate
SSL requires that the server possess a server authentication certificate issued by a
certificate authority (CA) that is trusted by connecting clients.

� To install a server certificate
1. Logon to the database server computer using an administrator account.
2. Start Internet Explorer and browse to Microsoft Certificate Services, for example:

http://MyCA/certsrv

3. Click Request a certificate, and then click Next.
4. Click Advanced request, and then click Next
5. Click Submit a certificate request to this CA using a form, and then click Next.



How To: Use SSL to Secure Communication with SQL Server 2000 501

6. Fill out the certificate request form noting the following:
a. Enter the fully-qualified domain name of the computer running SQL Server

into the Name field. For example:

sql01.nwtraders.com

b. In the Intended Purpose (or Type of Certificate Needed) field, click Server
Authentication Certificate.

c. For the Cryptographic Service Provider (CSP), click Microsoft RSA SChannel
Cryptographic Provider.

Note: Microsoft Base Cryptographic Provider version 1.0 and Microsoft Enhanced
Cryptographic providers also work. Microsoft Strong Cryptographic Provider does not.

d. Select the Use local machine store check box.

Note: Do NOT select Enable strong private key protection.

7. Click Submit to submit the request.
If the certificate server automatically issues certificates, you can install the
certificate now. Otherwise, you can install the certificate after it has been issued
by the CA administrator by browsing to Microsoft Certificate Services and
selecting Check on a pending certificate.

2. Verify that the Certificate Has Been Installed
This procedure verifies that the server certificate has been installed successfully.

� To verify that the certificate has been installed
1. On the taskbar, click the Start button, and then click Run.
2. Enter mmc, and then click OK.
3. On the Console menu, click Add/Remove Snap-in.
4. Click Add.
5. Click Certificates, and then click Add.
6. Click Computer account, and then click Next.
7. Ensure that Local computer: (the computer this console is running on) is

selected, and then click Finish
8. Click Close, and then click OK.
9. In the left-pane tree view, expand Certificates (Local Computer), expand

Personal, and then select Certificates.



Building Secure ASP.NET Applications502

10. Verify that there is exactly one certificate with the fully qualified domain name
that you specified in the previous procedure.
You can double-click the certificate to view its details.

3. Install the Issuing CA’s Certificate on the Client
After the certificate has been installed and the SQL Server service has been re-
started, SQL Server can negotiate SSL with clients. Clients that use SSL to connect
to SQL Server must:
● Have MDAC 2.6 or SQL Server 2000 connectivity libraries installed.
● Trust the issuer of the SQL Server’s certificate.

� To install the certificate of the issuing CA on the client computer
1. Log on to the client computer as an administrator.
2. Start Internet Explorer and browse to Microsoft Certificate Services, for example:

http://MyCA/certsrv

3. Click Retrieve the CA certificate or certificate revocation list, and then click
Next.

4. Click Install this CA certification path, and then click Yes in response to the
confirmation dialog to install the root certificate.

4. Force All Clients to Use SSL
You can configure the server to force all clients to use SSL (as described in this
procedure), or you can let clients choose whether or not to use SSL on a per-
connection basis (as described in the next procedure). The advantages of configur-
ing the server to force clients to use SSL are:
● All communications are guaranteed to be secure.
● Any unsecured connections are rejected.

The disadvantages are:
● All clients must have MDAC 2.6 or SQL Server 2000 connectivity libraries

installed; earlier or generic libraries will fail to connect.
● Connections that you do not need to secure suffer a slight performance overhead

due to the added encryption.



How To: Use SSL to Secure Communication with SQL Server 2000 503

� To force all clients to use SSL
1. On the computer running SQL Server, click Server Network Utility in the

Microsoft SQL Server program group.
2. Click to select Force protocol encryption.
3. Verify that TCP/IP and/or named pipes are enabled.

SSL is not supported with other protocols.
4. Click OK to close the SQL Server Network Utility, and then click OK in response

to the SQL Server Network Utility message box.
5. Restart the SQL Server service.

All subsequent client connections will be required to use SSL, whether they
specify secure connections or not.

5. Allow Clients to Determine Whether to Use SSL
This procedure shows you how to configure SSL to allow clients to choose whether
or not to use SSL. You can either configure the client libraries to enforce the use
of SSL on all connections, or you can let individual applications choose on a per-
connection basis. The advantages of configuring the client are:
● The overhead of SSL is incurred only for connections that truly require it.
● Clients that do not support SSL with SQL Server can still connect.

If you adopt this approach, make sure that you are willing to allow unsecured
connections.

� To reconfigure the server
1. On the computer running SQL Server, run the Server Network Utility.
2. Clear the Force protocol encryption check box.
3. Restart the SQL Server service.
4. Return to the client computer.

� To use SSL for all client connections

With this approach, you configure the client libraries to use SSL for all connections.
This means that SQL Servers that do not support encryption and SQL Servers
earlier than SQL Server 2000 will not be accessible.
1. In the Microsoft SQL Server program group, click Client Network Utility.
2. Ensure that TCP/IP and/or named pipes are enabled.
3. Select Force protocol encryption.



Building Secure ASP.NET Applications504

� To allow applications to choose whether or not to use encryption

With this approach applications use the connection string to determine whether or
not to use encryption. This allows each application to only use encryption when it is
needed.
1. If you are using the OLE-DB data provider to connect to SQL Server, set

Use Encryption for Data to true as shown in the following sample OLE-DB
connection string.

"Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security
Info=False;Initial Catalog=Northwind;Data Source=sql01;Use Encryption for
Data=True"

2. If you are using the SQL Server .NET data provider to connect to SQL Server, set
Encrypt to true as shown in the following example.

"Server=sql01;Integrated Security=SSPI;Persist Security
Info=False;Database=Northwind;Encrypt=True"

6. Verify that Communication is Encrypted
In this procedure you will use Network Monitor to verify that data sent between the
application server and database server is encrypted. You will start by sending data
in clear text form and then enable encryption first by configuring the server and
then by configuring the client.

� To verify that communication is encrypted
1. On the client computer, use Visual Studio.NET to create a new C# Console

Application called SQLSecureClient.
2. Copy the following code to class1.cs replacing all of the existing code.

Note: Replace server name in the connection string with the name of your database server.

using System;
using System.Data;
using System.Data.SqlClient;

namespace SQLSecureClient
{
  class Class1
  {
    [STAThread]
    static void Main(string[] args)
    {



How To: Use SSL to Secure Communication with SQL Server 2000 505

      // Replace the server name in the following connection string with the
      // name of your database server
      SqlConnection conn = new SqlConnection(
        "server='sql01';database=NorthWind;Integrated Security='SSPI'");

      SqlCommand cmd = new SqlCommand("SELECT * FROM Products");
      try
      {
        conn.Open();
        cmd.Connection = conn;
        SqlDataReader reader = cmd.ExecuteReader();
        while (reader.Read())
        {
          Console.WriteLine("{0} {1}",
                     reader.GetInt32(0).ToString(),
                     reader.GetString(1) );
        }
        reader.Close();
      }
      catch( Exception ex)
      {
      }
      finally
      {
        conn.Close();
      }
    }
  }
}

3. On the Build menu, click Build Solution.
4. In order for Windows authentication to succeed between the two computers, you

must duplicate the account that you are currently interactively logged on to the
client computer with, on the database server computer. Ensure that the user
name and password matches. An alternative is to use a domain account that is
recognized by both computers.
You must also use SQL Server Enterprise Manager to create a database logon for
the newly created account and add a new database user for this logon to the
Northwind database.

5. On the database server computer, use the SQL Server Network Utility to disable
the use of encryption by ensuring that the Force protocol encryption option is
not selected.

6. On the database server computer, click Network Monitor in the Administrative
Tools program group.



Building Secure ASP.NET Applications506

Note: A limited version of Network Monitor is available with Windows 2000 Server. A full
version is available with Microsoft SMS.
If you do not have Network Monitor installed, go to Add/Remove Programs in Control
Panel, click Add/Remove Windows Components, select Management and Monitoring
Tools from the Windows Components list, click Details and select Network Monitor Tools.
Click OK, and then click Next, to install the limited version of Network Monitor. You may be
prompted for a Windows 2000 Server CD.

7. On the Capture menu, click Filter to create a new filter configured to view
TCP/IP network traffic sent between the database server and database server.

8. Click the Start Capture button.
9. Return to the client computer and run the test console application. A list of

products from the Northwind database should be displayed in the console
window.

10. Return to the database server and click the Stop and View Capture button
within Network Monitor.

11. Double-click the first captured frame to view the captured data.
12. Scroll down through the captured frames. You should see the SELECT statement

in clear text followed by the list of products retrieved from the database.
13. Now force the use of encryption for all connections by configuring the server

with the SQL Server Network Utility:
a. Use the SQL Server Network Utility to select Force protocol encryption.
b. Stop and restart the SQL Server service.

14. Return to Network Monitor and click the Start Capture button. In the Save File
dialog box, click No.

15. Return to the client computer and run the test console application once again.
16. Return to the database server computer and click Stop and View Capture within

Network Monitor.
17. Confirm that the data is now unintelligible (because it is encrypted).
18. Reconfigure the server to no longer force encryption:

a. Use the SQL Server Network Utility and clear the Force protocol encryption
check box.

b. Stop and restart the SQL Server service.

19. Start a new capture within Network Monitor and rerun the client application.
Confirm that the data is once again in clear text.

20. Return to the client computer and select Client Network Utility from the
Microsoft SQL Server program group.



How To: Use SSL to Secure Communication with SQL Server 2000 507

21. Select Force protocol encryption, and then click OK to close the Client Network
Utility.

22. Return to Network Monitor and click the Start Capture button. In the Save File
dialog box, click No.

23. Return to the client computer and run the test console application once again.
24. Return to the database server computer and click Stop and View Capture within

Network Monitor.
25. Confirm that the data is now unintelligible (because it is encrypted).
26. Note that, in all cases, SQL Server sends its server authentication certificate in

the clear to the client at the beginning of the communication sequence. This is
part of the SSL protocol. Note that this occurs even when neither the server nor
the client requires encryption.

Additional Resources
For information about how to install Network Monitor in Windows 2000, go to the
Microsoft Knowledge Base and search for the following articles:
● “HOW TO: Install Network Monitor in Windows 2000 (Q243270)”
● “HOW TO: Enable SSL Encryption for SQL Server 2000 with Certificate

Server”(Q276553)”

For more information about Network Monitor, see the “Network Manager” section
of the Microsoft Platform SDK on MSDN (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp).





Base Configuration

The following table illustrates the base software configuration used during the
development and testing of the Building Secure ASP.NET Applications Guide.

Base Configuration Notes

Windows 2000 SP3 For more information, see the following Knowledge Base article:
.NET Framework SP2 “INFO: Determining Whether Service Packs Are Installed on .NET

Framework” (http://support.microsoft.com
/default.aspx?scid=kb;en-us;Q318785)
The .NET Framework Service Pack 2 can be downloaded from:
http://msdn.microsoft.com/netframework/downloads/sp
/default.asp

ASP.NET Notes

Running ASP.NET on In general, it’s not advisable to run your Web server on a domain
a domain controller controller, because a compromise of the machine is a compromise

of the domain. If you need to run ASP.NET on a domain controller,
you need to give the ASP.NET process account appropriate privileges
as outlined in the following Knowledge Base article:
“BUG: ASP.NET Does Not Work with the Default ASPNET Account on
a Domain Controller” (http://support.microsoft.com
/default.aspx?scid=kb;en-us;q315158)

ASP.NET Session State http://www.microsoft.com/Downloads/Release.asp?ReleaseID=39298
Security Update

MDAC Notes

MDAC 2.6 is required Visual Studio .NET installs MDAC 2.7
by the .NET Framework

SQL Server 2000 Notes

SQL Server 2000 SP2





Configuration Stores and Tools

The combined authentication, authorization, and secure communication services
available to .NET Web applications are summarized in the following tables. The
tables show the various security services available to each of the core .NET Web
application technologies and for each one indicates where the related security
configuration settings are maintained and what tools are available to edit the
settings.

Note: Settings within the Internet Information Services (IIS) metabase are configured using the
IIS MMC snap-in, or programmatically via script. Settings maintained within machine.config or
web.config can be edited with any text editor (such as Notepad) or XML editor (such as the
Microsoft Visual Studio® .NET XML editor).

Table 1: IIS security configuration

Authentication Configuration Tools

Anonymous IIS metabase IIS MMC snap-in
Basic
Digest Script
Windows Integrated
Client Certificates Makecert.exe can be used

to create test certificates

Authorization Configuration Tools

NTFS permissions Windows (NTFS) file Windows Explorer
(Windows ACLs) system Cacls.exe

Security templates
Secedit.exe

IP and DNS restrictions IIS metabase Group Policy

Secure Communication Configuration Tools

SSL Windows (NTFS) file IIS MMC snap-in
system Script

IPSec Machine’s local policy Local Security Policy MMC
(registry) or Microsoft snap-in
Active Directory® directory Domain security Policy MMC
service snap-in

Ipsecpol.exe



Building Secure ASP.NET Applications512

Table 1: IIS security configuration (continued)

Additional Gatekeepers Configuration Tools

IP address and domain IIS metabase IIS MMC snap-in
name restrictions Script

Table 2: ASP.NET security configuration

Authentication Configuration Tools

Windows <authentication> element Notepad.exe
Forms of machine.config or Visual Studio .NET
Passport web.config Any XML editor
None (Custom)

Authorization Configuration Tools

URL authorization <authorization> element of Notepad.exe
Machine.config or Visual Studio .NET
Web.config Any XML editor

File authorization Windows (NTFS) file Windows Explorer
system Calcs.exe
Active Directory Security templates
 – or – Secedit.exe
SAM database Group Policy
 – or – For Windows groups, use
Custom data store (for the Active Directory Users
example, SQL Server) and Computers MMC snap-

in or (for local settings) use
the Computer Management
tool

.NET roles ADSI script
Net.exe
For custom groups –
depends on custom data
store

Table 3: Enterprise Services security configuration*

Authentication Configuration Tools

DCOM/RPC authentication COM+ Catalog Component Services MMC
Note: Computer-wide snap-in
settings for serviced Script (Catalog automation
component (and regular objects)
DCOM) proxies is
maintained in
Machine.config.



Configuration Stores and Tools 513

Authorization Configuration Tools

Enterprise Services COM+ Catalog Component Services MMC
(COM+) roles snap-in

Script (Catalog automation
objects)

Windows ACLs (when Windows (NTFS) file Windows Explorer
using impersonation in system Cacls.exe
serviced component) Security templates

Secedit.exe
Group Policy

Secure Communication Configuration Tools

RPC encryption COM+ Catalog Component Services
(packet privacy) Note: Computer-wide Script (Catalog automation

settings for serviced objects)
component (and regular
DCOM) proxies is
maintained in
Machine.config.

IPSec Machine’s local policy Local Security Policy MMC
(registry) or Active Directory snap-in

Ipsecpol.exe

* The security services for Enterprise Service components apply both to components hosted by server and
library applications. However, certain restrictions apply for library applications because many of the security
defaults are inherited from the host process and as a result are not directly configurable. Process-wide
authentication may also be explicitly switched off by library applications. For more details, see Chapter 9,
“Enterprise Services Security.”

Table 4: Web Services (Implemented using ASP.NET) security configuration

Authentication Configuration Tools

Windows <authentication> element Notepad
of Machine.config or Visual Studio .NET
Web.config Any XML editor

Custom Custom data store (for Depends on custom store.
example. SQL Server or
Active Directory)



Building Secure ASP.NET Applications514

Table 4: Web Services (Implemented using ASP.NET) security configuration (continued)

Authorization Configuration Tools

URL Authorization Web.config Notepad
Visual Studio .NET
Any XML editor

File Authorization Windows (NTFS) file Windows Explorer
system Cacls.exe

Security templates
Secedit.exe
Group Policy

.NET roles Active Directory For Windows groups, use
 – or – the Active Directory Users
SAM database and Computers MMC snap-
– or – in or (for local settings) use
Custom data store (for the Computer Management
example, SQL Server) tool

ADSI script
Net.exe
For custom groups
 – depends on custom store

Secure Communication Configuration Tools

SSL IIS metabase IIS MMC snap-in
Script

IPSec Machine’s local policy Local Security Policy MMC
(registry) or Active Directory snap-in

Ipsecpol.exe

Table 5: .NET Remoting security configuration** (When hosted by ASP.NET using HTTP Channel)

Authentication Configuration Tools

Windows IIS metabase IIS MMC snap-in Script

Custom Custom data store (for Depends on custom store
example SQL Server)



Configuration Stores and Tools 515

Authorization Configuration Tools

URL authorization Web.config Notepad
Visual Studio .NET
Any XML editor

File authorization Windows (NTFS) file Windows Explorer
system Cacls.exe

Security templates
Secedit.exe
Group Policy

.NET roles Active Directory For Windows groups, use
– or – the Active Directory Users
SAM database and Computers MMC snap-
– or – in or (for local settings) use
Custom data store (for the Computer Management
example, SQL Server tool

ADSI script,
Net.exe
For custom groups –
depends on custom store

Secure Communication Configuration Tools

SSL IIS metabase IIS MMC snap-in Script

IPSec Machine’s local policy Local Security Policy MMC
(registry) or Active Directory snap-in

Ipsecpol.exe

** The security services shown for .NET Remoting assumes that the .NET remote component is hosted within
ASP.NET and is using the HTTP channel. No default security services are available to .NET remote components
hosted outside of IIS (for example, in a custom Win32 process or Win32 service) using the TCP channel. For
more details, see Chapter 11, “.NET Remoting Security.”



Building Secure ASP.NET Applications516

Table 6: .SQL Server security configuration

Authentication Configuration Tools

Integrated Windows SQL Server SQL Server Enterprise Manager
SQL Server Enterprise Manager

SQL Server standard SQL Server
authentication

Authorization Configuration Tools

Object permissions SQL Server SQL Server Enterprise Manager
Database roles Osql.exe (Database script)
Server roles
User defined database
roles
Application roles

Secure Communication Configuration Tools

SSL Server’s machine certificate Certificates MMC snap-in
store Server Network Utility
Client and server registry Client Network Utility
settings
Connection string

IPSec Machine’s local policy Local Security Policy snap-in
(registry) or Active Directory Ipsecpol.exe



Reference Hub

This section provides a series of reference links to articles, support roadmaps, and
technology hubs that relate to the core areas covered by the Building Secure ASP.NET
Applications guide. Use this section to help locate additional background reading
and useful articles. This section has a consolidated set of pointers for the following:
● MSDN articles and hubs from MSDN (http://msdn.microsoft.com/)
● Knowledge Base articles and roadmaps for support (http://support.microsoft.com/)
● Articles and hubs from Microsoft.com (http://www.microsoft.com/)
● Seminars from Microsoft Online Seminars (http://www.microsoft.com/seminar/)
● Support WebCasts (http://support.microsoft.com/default.aspx?scid=/webcasts)
● How To articles on MSDN (http://msdn.microsoft.com/howto/)

For security specific How Tos, see http://msdn.microsoft.com/howto/security.asp.
● Articles and resources on GotDotNet (http://www.gotdotnet.com/)

Searching the Knowledge Base
You can search the Microsoft Knowledge Base from two locations:
● Directly from Microsoft’s Support site (http://support.microsoft.com/)
● Indirectly from MSDN’s search facility (http://msdn.microsoft.com/)

When you search the Knowledge Base, you can supplement your search with
keywords to help refine the articles that appear as a result of your search.

The following example uses the support search site, but similar concepts apply
when searching from MSDN.

� To search the Knowledge Base, from http://support.microsoft.com
1. In the Search the Knowledge Base box, select All Microsoft Search Topics (the

default selection).
2. In the For solutions containing (optional) box, type your search criteria. You can

use a combination of Knowledge Base keywords and search criteria.

The following list shows some example Knowledge Base keywords:
● kbAspNet – Returns ASP.NET articles.
● kbAspNet kbSecurity – Returns ASP.NET articles that discuss security issues.
● kbAspNet impersonation – Returns ASP.NET articles that discuss impersonation.

Note that impersonation is not a keyword; it is simply an additional search crite-
rion, which helps to refine the search.



Building Secure ASP.NET Applications518

Tips
● To access additional search options, click Show options.
● To make sure the search includes all of the words you enter, click All of the

words entered in the Using field.
● To limit the age of articles returned from the search, select a value from the

Maximum Age field.
● To show more search results than the default 25, enter a value into the Results

Limit field.

You may find the following Knowledge Base keywords helpful:
● Security: kbSecurity
● Roadmaps: kbArtTypeRoadmap
● How Tos: kbHowToMaster

You can use the preceding keywords in conjunction with the following technology
and product keywords:
● ADO.NET: kbAdoNet
● ASP.NET: kbAspNet
● Enterprise Services: kbEntServNETFRAME
● Web Services: kbWebServices
● Remoting: kbRemoting

.NET Security

Hubs
● MSDN: .NET Security Hub: http://msdn.microsoft.com/library/default.asp?url=/nhp

/Default.asp?contentid=28001369
● GotDotNet: .NET Security: http://www.gotdotnet.com/team/clr/about_security.aspx

Active Directory

Hubs
● Microsoft.com: Active Directory information: http://www.microsoft.com/ad/
● MSDN Active Directory information: http://msdn.microsoft.com/library

/default.asp?url=/nhp/Default.asp?contentid=28000413



Reference Hub 519

Key Notes
● Transitive trust is always available between domains in the same forest. Only

“external trusts,” which are not transitive, are available in separate forests in
Windows 2000.

● Active Directory installations in perimeter networks (also known as DMZ,
demilitarized zones, and screened subnets) should always be in a separate forest,
not just a separate domain. The forest is the security boundary. This concept is
illustrated in Chapter 6, “Extranet Security.”

● If you need more than 5,000 members in a group then you need either .NET
Server (which supports direct group membership of arbitrary sizes) or nested
groups. The Commerce Server 2000 Software Development Kit (SDK) uses nested
groups. However, the SDK is not required.

Articles
● Active Directory Extranet Adoption Fueled by Internet Scalability and Rapid

Return on Investment: http://www.microsoft.com/PressPass/press/2002/May02
/05-08ADMomentumPR.asp

● Netegrity SiteMinder 4.61 with Microsoft Active Directory AuthMark Perfor-
mance: http://www.mindcraft.com/whitepapers/sm461ad/sm461ad.html

ADO.NET

Roadmaps and Overviews
● INFO: Roadmap for Using ADO in .NET: http://support.microsoft.com

/default.aspx?scid=kb;EN-US;Q308044
● INFO: Roadmap for ADO.NET DataSet Objects and XML Web Services

(Q313648): http://support.microsoft.com/default.aspx?scid=kb;en-us;Q313648

Seminars and WebCasts
● Advanced ADO.NET Online Seminars: http://www.microsoft.com/seminar/

ASP.NET

Hubs
● MSDN : ASP.NET Developer Center: http://msdn.microsoft.com/library

/default.asp?url=/nhp/default.asp?contentid=28000440
● Support: ASP.NET Support Center: http://support.microsoft.com

/default.aspx?scid=fh;EN-US;aspnet



Building Secure ASP.NET Applications520

Roadmaps and Overviews
● INFO: ASP.NET Roadmap:

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q305140
● INFO: ASP.NET Security Overview:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q306590
● INFO: ASP.NET HTTP Modules and HTTP Handlers Overview:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q307985
● INFO: ASP.NET Configuration Overview:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q307626

Knowledge Base
The following keywords help retrieve ASP.NET articles:
● Show ASP.NET articles: kbAspNet
● Show ASP.NET articles related to security: kbAspNet kbSecurity

Articles
● Managed Security Context in ASP.NET: http://msdn.microsoft.com/library

/default.asp?url=/nhp/Default.asp?contentid=28000440

How Tos
● HOW TO: Implement Forms-Based Authentication in Your ASP.NET Application

by Using C# .NET:
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q301240

● HOW TO: Secure ASP.NET Application Using Client-Side Certificate:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q315588

● HOW TO: Secure an ASP.NET Application by Using Windows Security:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q315736

● HOW TO: Implement Role-Based Security in ASP.NET App by Using C#:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q311495

● HOW TO: Create Keys with VB .NET for Use in Forms Authentication:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q313091

● HOW TO: Create Keys w/ C# .NET for Use in Forms Authentication:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q312906

● HOW TO: Control Authorization Permissions in ASP.NET Application:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q316871



Reference Hub 521

● HOW TO: Authenticate Against the Active Directory by Using Forms:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q316748

● HOW TO: Implement Role-Based Security with Forms-Based Authentication in
Your ASP.NET Application by Using Visual Basic .NET:
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q306238

For more ASP.NET related How Tos, you can search using the following KB
keywords:
● kbAspNet
● kbHowToMaster

Seminars and WebCasts
● Support WebCast: Microsoft ASP.NET Security:

http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc112001/wcblurb112001.asp

Enterprise Services

Knowledge Base
● HOW TO: Search for Enterprise Services in the Knowledge Base and MSDN:

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q316816
● HOWTO: Search for COM+ Knowledge Base Articles:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q252318

Roadmaps and Overviews
● INFO: Roadmap for .NET Enterprise Services: http://support.microsoft.com

/default.aspx?scid=kb;en-us;Q308672
● Serviced Component Overview:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconservicedcomponentoverview.asp

● COM+ Integration: How .NET Enterprise Services Can Help You Build
Distributed Applications:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmag01/html
/complus0110.asp

● Understanding Enterprise Services (COM+) in .NET:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/entserv.asp



Building Secure ASP.NET Applications522

How Tos
● Q305683 – BETA-HOWTO: Create a Simple Serviced Component that Uses

Transactions in C#: http://kbtools/PreviewWEB/PreviewQ.asp?Q=305683
● Q305679 – HOWTO: Sign Your Assembly with a Strong Name Using SN.EXE:

http://kbtools/PreviewWEB/PreviewQ.asp?Q=305679

FAQs
● Enterprise Services FAQ:

http://www.gotdotnet.com/team/xmlentsvcs/

Seminars and WebCasts
● Support WebCast: Microsoft COM+ and the Microsoft .NET Framework:

http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc032202/wcblurb032202.asp

● Support WebCast: COM Threading and Application Architecture in COM+
Applications:
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc051801/wcblurb051801.asp

IIS (Internet Information Server)

Hubs
● Microsoft.com: IIS : http://www.microsoft.com/iis/
● Support: IIS 5 Support Center: IIS http://support.microsoft.com

/default.aspx?scid=fh;EN-US;iis50

Remoting

Roadmaps and Overviews
● An Introduction to Microsoft .NET Remoting Framework:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/introremoting.asp?frame=true

● Microsoft .NET Remoting: A Technical Overview:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/hawkremoting.asp



Reference Hub 523

How Tos
● Remoting Basic and Advanced samples:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpsamples/html
/remoting.asp

● IPrincipal remoting sample:
http://staff.develop.com/woodring/dotnet/#remprincipal

Seminars and WebCasts
● Develop Distributed Applications using Microsoft .NET Remoting: http://

www.microsoft.com/Seminar/Includes/Seminar.asp?Url=/Seminar/en/Developers
/20020531devt1-54/Portal.xml

● Support WebCast: Microsoft .NET Framework: .NET Remoting Essentials
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc040402/wcblurb040402.asp

SQL Server

Hubs
● MSDN: SQL Server: http://msdn.microsoft.com/library/default.asp?url=/nhp

/Default.asp?contentid=28000409
● Support: SQL Server Support Center:

http://support.microsoft.com/default.aspx?scid=fh;EN-US;sql

Seminars and WebCasts
● Microsoft SQL Server 2000: How to Configure SSL Encryption

http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc042302/wcblurb042302.asp

Visual Studio .NET

Hubs
● Support: Visual Studio .NET Support Center: http://support.microsoft.com

/default.aspx?scid=fh;EN-US;vsnet

Roadmaps and Overviews:
● HOW TO: Use the Key Productivity Features in Visual Studio .NET:

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q318205



Building Secure ASP.NET Applications524

Web Services

Hubs
● MSDN.Microsoft.Com: Web Services:

http://msdn.microsoft.com/library/default.asp?url=/nhp
/Default.asp?contentid=28000442

Roadmaps and Overviews
● INFO: Roadmap for ADO.NET DataSet Objects and XML Web Services

(Q313648):
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q313648

● INFO: Roadmap for XML Serialization in the .NET Framework:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q314150

● INFO: Roadmap for XML in the .NET Framework:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q313651

● XML Web Services Technology Map:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/Techmap_websvcs.asp?frame=true

● House of Web Services:
http://msdn.microsoft.com/msdnmag/issues/01/11/webserv/webserv0111.asp ;
http://msdn.microsoft.com/msdnmag/issues/02/02/WebServ/WebServ0202.asp

How Tos
● HOW TO: Secure XML Web Services with SSL in Windows 2000:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q307267

Seminars and WebCasts
● Support WebCast: Microsoft ASP.NET: Advanced XML Web Services Using

ASP.NET:
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc032802/wcblurb032802.asp

● Support WebCast: Microsoft .NET: Introduction to Web Services:
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com
/servicedesks/webcasts/wc012902/wcblurb012902.asp

Search Online Seminars at http://www.microsoft.com/seminar/ for:
● How to Migrate Windows DNA Applications to .NET and XML Web Services
● XML Web Services – Authoring, Consuming, Testing and Deploying



Reference Hub 525

● Best Practices for Building Web Services with Microsoft Visual Studio .NET
● Advanced Web Services

Windows 2000

Hubs
● Microsoft.com: Windows 2000 :

http://www.microsoft.com/windows2000/default.asp
● Support.Microsoft.Com: Windows 2000 Support Center:

http://support.microsoft.com/default.aspx?scid=fh;EN-US;win2000
● MSDN.Microsoft.Com:

http://msdn.microsoft.com/library/default.asp?url=/nhp
/Default.asp?contentid=28000458

● TechNet.Microsoft.Com:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol
/windows2000serv/Default.asp





How Does It Work?

This appendix provides additional material to explain in more detail how certain
key concepts and processes discussed within the main body of the guide actually
work.

IIS and ASP.NET Processing

Note: The information in this section applies to Internet Information Services (IIS) 5, running
on Windows 2000.

ASP.NET Web applications and Web services are processed by code that executes in
a single instance of the ASP.NET worker process (aspnet_wp.exe), although on
multi-processor computers, you can configure multiple instances, one per processor.

IIS authenticates callers and creates a Windows access token for the caller. If anony-
mous access is enabled within IIS, then a Windows access token for the anonymous
Internet user account (typically, IUSR_MACHINE) is created by IIS.

Requests for ASP.NET file types are handled by an ASP.NET ISAPI extension
(aspnet_isapi.dll), which runs in the IIS (inetinfo.exe) process address space. This
uses a named pipe to communicate with the ASP.NET worker process as shown in
Figure 1. IIS passes the Windows access token that represents the caller to the
ASP.NET worker process. The ASP.NET Windows authentication module uses this
to construct a WindowsPrincipal object and the ASP.NET File authorization module
uses it to perform Windows access checks to ensure the caller is authorized to access
the requested file.

HTTP 
Request

Metabase 
Application 
Mapping

IIS
(inetinfo.exe)

ASP.NET worker 
process

(aspnet_wp.exe)

Authenticated caller’s Windows access token

aspnet_isapi.dll
Application 

Domain
HTTP Request

Named Pipe

Figure 1
IIS and ASP.NET communication



Building Secure ASP.NET Applications528

Note: Access tokens are process relative. As a result, the ASP.NET ISAPI DLL running in
inetinfo.exe calls DuplicateHandle to duplicate the token handle into the aspnet_wp.exe
process address space and then passes the handle value through the named pipe.

Application Isolation
Separate application domains within the worker process (one per IIS virtual direc-
tory, or in other words, one per ASP.NET Web application or Web service) are used
to provide isolation.

This is in contrast to classic ASP, where the application protection level, configured
within the IIS metabase determined whether the ASP application should execute in
process with IIS (inetinfo.exe), out of process in a dedicated instance of Dllhost.exe,
or in a shared (pooled) instance of Dllhost.exe.

Important: The process isolation level setting within IIS has no affect on the way ASP.NET Web
applications are processed.

The ASP.NET ISAPI Extension
The ASP.NET ISAPI extension (aspnet_isapi.dll) runs in the IIS process address
space (inetinfo.exe) and forwards requests for ASP.NET file types to the ASP.NET
worker process through a named pipe.

Specific ASP.NET file types are mapped to the ASP.NET ISAPI extension by map-
pings defined within the IIS metabase. Mappings for standard ASP.NET file types
(including .aspx, .asmx, .rem, .soap) are established when the .NET Framework is
installed.

� To view application mappings
1. From the Administrative Tools programs group, start Internet Information

Services.
2. Right-click the default Web site on your Web server computer, and then click

Properties.
3. Click the Home Directory tab, and then click Configuration.

A list of mappings is displayed. You can see which file types are mapped to
Aspnet_isapi.dll

IIS 6.0 and Windows .NET Server
IIS 6.0 on Windows .NET Server will introduce some significant changes to the
current process arrangement.



How Does It Work? 529

● You will be able to configure multiple application pools, each served by one or
more process instances (w3wp.exe). This will provide additional fault tolerance
and manageability benefits and will allow you to isolate separate applications in
separate processes.

● ASP.NET is integrated with the IIS 6.0 Kernel mode HTTP listener, which will
allow requests to be passed directly from the operating system to the ASP.NET
worker process.

More Information
For more information about IIS6, see the “IIS 6 Overview” article on TechNet
(http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/iis
/evaluate/iis6ovw.asp).

ASP.NET Pipeline Processing
ASP.NET authentication and authorization mechanisms are implemented using
HTTP module objects, which are invoked as part of the standard ASP.NET pipeline
processing. Individual Web requests and responses pass through a pipeline of
objects as shown in Figure 2.

From IIS

To IIS
HttpRuntime

HttpContext

aspnet_wp.exe

HTTP Modules
HTTP Handler

(Request Endpoint)

AppDomain (one per v-dir)

H
ttp

A
pp

lic
at

io
n

P
ag

eH
an

dl
er

W
in

do
w

sA
ut

he
nt

ic
at

io
n 

M
od

ul
e

F
or

m
sA

ut
he

nt
ic

at
io

n
M

od
ul

e

P
as

sp
or

tA
ut

he
nt

ic
at

io
n

M
od

ul
e

U
rlA

ut
ho

riz
at

io
n

M
od

ul
e

F
ile

A
ut

ho
riz

at
io

n
M

od
ul

e

Figure 2
ASP.NET pipeline processing



Building Secure ASP.NET Applications530

The ASP.NET pipeline model consists of an HttpApplication object, various HTTP
module objects, and an HTTP handler object, together with their associated factory
objects, which have been omitted from Figure 2 for clarity. An HttpRuntime object
is used at the start of the processing sequence and an HttpContext object is used
throughout the lifecycle of a request to convey details about the request and response.

The following list explains the responsibilities and operations performed by the
objects associated with the HTTP processing pipeline:
● The HttpRuntime object examines the request received from IIS and dispatches

it to an appropriate instance of the HttpApplication object to process the request.
There is a pool of HttpApplication objects in each application domain in
Aspnet_wp.exe. There is a one-to-one mapping between application domains,
HttpApplication objects and IIS virtual directories. In other words, ASP.NET
treats separate IIS virtual directories as separate applications.

Note: There is one instance of HttpRuntime in every Web application domain.

● The HttpApplication objects control the pipeline processing. An individual
HttpApplication object is created to handle each simultaneous HTTP request.
HttpApplication objects are pooled for performance reasons.

● HTTP module objects are filters that process HTTP request and response mes-
sages as they flow through the pipeline. They can view or alter the content of the
request and response messages. HTTP modules are classes that implement
IHttpModule.

● HTTP handler objects are the endpoints for HTTP requests and provide the
request processing for specific file types. For example, one handler processes
requests for *.aspx files while another processes requests for *.asmx files. The
HTTP response message is generated and returned from the HTTP handler.
HTTP handlers are classes that implement IHttpHandler.

● An HttpContext object is used throughout the pipeline to represent the current
Web request and response. It is available to all modules in the pipeline and the
handler object at the end of the pipeline. The HttpContext object exposes various
properties including the User property which contains an IPrincipal object that
represents the caller.

The Anatomy of a Web Request
The ASP.NET ISAPI library (Aspnet_isapi.dll) runs inside the IIS process address
space (Inetinfo.exe). It dispatches requests to the HttpRuntime object within the
ASP.NET worker process (Aspnet_wp.exe). The following set of actions occurs in
response to each Web request received by ASP.NET:



How Does It Work? 531

● The HttpRuntime object examines the request and forwards it to an instance of
an HttpApplication object.
There is at least one HttpApplication object instance per application domain (the
objects are pooled) and one application domain per IIS virtual directory. The
initial request for a file in a particular virtual directory results in a new applica-
tion domain and a new HttpApplication object being created.

● A list of HTTP modules is read from Machine.config (they are contained within
the <httpModules> element). Additional custom HTTP modules can be added to
Web.config for a specific application. The default <httpModules> element within
Machine.config is shown in the following code snippet.

<httpModules>
  <add name="OutputCache"
       type="System.Web.Caching.OutputCacheModule"/>
  <add name="Session"
       type="System.Web.SessionState.SessionStateModule"/>
  <add name="WindowsAuthentication"
       type="System.Web.Security.WindowsAuthenticationModule"/>
  <add name="FormsAuthentication"
       type="System.Web.Security.FormsAuthenticationModule"/>
  <add name="PassportAuthentication"
       type="System.Web.Security.PassportAuthenticationModule"/>
  <add name="UrlAuthorization"
       type="System.Web.Security.UrlAuthorizationModule"/>
  <add name="FileAuthorization"
       type="System.Web.Security.FileAuthorizationModule"/>
</httpModules>

The authentication modules hook the AuthenticateRequest event, while the
authorization modules hook the AuthorizeRequest event.
The request passes through every module in the pipeline, although only a single
authentication module is loaded. This depends on the configuration of the
<authentication> element in Web.config. For example, the <authentication>
element that follows results in the WindowsAuthenticationModule being
loaded.

<authentication mode="Windows" />

● The activated authentication module is responsible for creating an IPrincipal
object and storing it in the HttpContext.User property. This is vital, because the
downstream authorization modules use this IPrincipal object in order to make
authorization decisions.



Building Secure ASP.NET Applications532

In the absence of authentication (for example, where anonymous access is enabled
within IIS and ASP.NET is configured with <authentication mode=”None” />),
there’s a special non configured module that puts a default anonymous principal
into the HttpContext.User property. As a result, HttpContext.User is always
non-null after authentication.
If you implement a custom authentication module, code within the custom
module must create an IPrincipal object and store it in HttpContext.User,

Note: ASP.NET also wires up Thread.CurrentPrincipal based on HttpContext.User after the
AuthenticateRequest event.

● The HttpApplication fires the AuthenticateRequest event, which can be hooked
in global.asax. This allows you to inject custom processing code; for example, to
load the set of roles associated with the current user. However, note that the
WindowsAuthenticationModule does this automatically. The role list is ob-
tained from the set of Windows groups in which the authenticated Windows user
is a member.

● After the appropriate authentication module has finished its processing, the
authorization modules are called if the request hasn’t been aborted.

● When the UrlAuthorizationModule is called, it checks for an <authorization>
tag in Machine.config and Web.config. If present, it retrieves the IPrincipal
object from HttpContext.User and checks to see whether the user is authorized
to access the requested resource using the specified verb (GET, POST, and so on).
If the user is not authorized, the UrlAuthorizationModule calls
HttpApplication.CompleteRequest, which aborts normal message processing.
The UrlAuthorizationModule returns an HTTP 401 status code.

● Next, the FileAuthorizationModule is called. It checks whether the IIdentity
object in HttpContext.User.Identity is an instance of the WindowsIdentity class.
If the IIdentity object is not a WindowsIdentity, the FileAuthorizationModule
performs no further processing.
If a WindowsIdentity is present, the FileAuthorizationModule calls the
AccessCheck API (through P/Invoke) to see if the authenticated caller (whose
access token has been passed to ASP.NET by IIS and is exposed by the
WindowsIdentity object) is authorized to access the requested file. If the file’s
security descriptor contains at least a Read ACE in its DACL, the request is
allowed to proceed. Otherwise the FileAuthorizationModule calls
HttpApplication.CompleteRequest and returns a 401 status code.



How Does It Work? 533

Forms Authentication Processing
The FormsAuthenticationModule is activated when the following element is in
Web.config.

<authentication mode="Forms" />

Remember that for Forms authentication, you implement the
Application_Authenticate event in Global.asax. For Forms authentication, the
following sequence occurs:
● Within this code, you can construct an IPrincipal object and store it in

HttpContext.User. This typically contains the role list retrieved from a custom
data store (normally a SQL Server database or Active Directory). The IPrincipal
object is typically an instance of the GenericPrincipal class but could also be a
custom IPrincipal class.
The FormsAuthenticationModule checks to see if you have created an
IPrincipal object. If you have, it is used by the downstream authorization
modules. If you haven’t, the FormsAuthenticationModule constructs a
GenericPrincipal (with no roles) and stores it in the context.
If there is no role information, any authorization checks (such as
PrincipalPermssion demands) that demand role membership, will fail.

● The UrlAuthorizationModule handles the AuthorizeRequest event. Its
authorization decisions are based on the IPrincipal object contained within
HttpContext.User.

Windows Authentication Processing
The WindowsAuthenticationModule is activated when the following element is in
Web.config.

<authentication mode="Windows" />

For Windows authentication, the following sequence occurs:
1. The WindowsAuthenticationModule creates a WindowsPrincipal object using

the Windows access token passed to ASP.NET by IIS.
2. It uses P/Invoke to call Win32 functions to obtain the list of Windows group that

the user belongs to. These are used to populate the WindowsPrincipal role list.
3. It stores the WindowsPrincipal object in HttpContext.User, ready to be used by

the downstream authorization modules.



Building Secure ASP.NET Applications534

Event Handling
The HttpApplication object fires the set of events shown in Table 1. Individual
HTTP modules can hook these events (by providing their own event handlers).

Table 1: Events fired by HttpApplicationHttpApplicationHttpApplicationHttpApplicationHttpApplication objects

Event Notes

BeginRequest Fired before request processing starts

AuthenticateRequest To authenticate the caller

AuthorizeRequest To perform access checks

ResolveRequestCache To get a response from the cache

AcquireRequestState To load session state

PreRequestHandlerExecute Fired immediately before the request is sent to the handler
object

PostRequestHandlerExecute Fired immediately after the request is sent to the handler
object

ReleaseRequestState To store session state

UpdateRequestCache To update the response cache

EndRequest Fired after processing ends

PreSendRequestHeaders Fired before buffered response headers are sent

PreSendRequestContent Fired before buffered response body sent

Note: The HTTP handler executes in between the PreRequestHandlerExecute and
PostRequestHandlerExecute events.
The last two events are non-deterministic and could occur at any time (for example, as a result
of a Response.Flush). All other events are sequential.

You do not need to implement an HTTP module simply in order to hook one of
these events. You can also add event handlers to Global.asax. In addition to the
events listed in Table 1 (which can all be hooked by individual HTTP module
objects), the HttpApplication object fires Application_OnStart and
Application_OnEnd handlers, which will be familiar to ASP developers. These can
be handled only within Global.asax. Finally, you can also implement custom event
handlers within Global.asax for events fired by individual HTTP module objects.
For example, the session state module fires Session_OnStart and Session_OnEnd
events.



How Does It Work? 535

Implementing a Custom HTTP Module
� To create your own HTTP module and insert it into the ASP.NET processing pipeline

1. Create a class that implements IHttpModule.
2. Place the assembly that contains the module in your application’s \bin

subdirectory or you can install it into the Global Assembly Cache.
3. Add an <HttpModules> element to your application’s web.config, as shown

below.

<system.web>
  <httpModules>
    <add name="modulename"
         type="namespace.classname,assemblyname" />
  </httpModules>
</system.web>

Implementing a Custom HTTP Handler
You may need to implement a custom HTTP handler, for example to handle the
processing of files with the .data file extension.

� To implement a custom HTTP handler
1. Add a mapping to the IIS metabase to map the .data file extension to the

ASP.NET ISAPI extension (Aspnet_isapi.dll).
Right-click your application’s virtual directory in the IIS MMC snap-in, click the
Configuration button, and then click Add to create a new mapping for .data files
to C:\Winnt\Microsoft.NET\Framework\v1.0.3705\aspnet_isapi.dll.

Note: If you select the Check that file exists check box when adding the mapping, then
the file must be physically present. This is usually what is wanted unless you have
virtualized paths that don’t map to a physical file. Virtualized paths ending with .rem or
.soap are used by .NET Remoting.

2. Create a class that implements IHttpHandler (and optionally
IHttpAsyncHandler if you want to handle requests asynchronously).

3. Place the assembly that contains the handler in your application’s \bin
subdirectory or you can install it into the Global Assembly Cache.

4. Add the handler to the processing pipeline by adding an <httpHandlers>
section to your application’s Web.config file.

<system.web>
  <httpHandlers>
    <add verb="*" path="*.data" type="namespace.classname, assemblyname" />
  </httpHandlers>
</system.web>





ASP.NET Identity Matrix

Principal objects implement the IPrincipal interface and represent the security
context of the user on whose behalf the code is running. The principal object
includes the user’s identity (as a contained IIdentity object) and any roles to which
the user belongs.

ASP.NET provides the following principal and identity object implementations:
● WindowsPrincipal and WindowsIdentity objects represent users who have been

authenticated with Windows authentication. With these objects, the role list is
automatically obtained from the set of Windows groups to which the Windows
user belongs.

● GenericPrincipal and GenericIdentity objects represent users who have been
authenticated using Forms authentication or other custom authentication
mechanisms. With these objects, the role list is obtained in a custom manner,
typically from a database.

● FormsIdentity and PassportIdentity objects represent users who have been
authenticated with Forms and Passport authentication respectively.

The following tables illustrate, for a range of IIS authentication settings, the
resultant identity that is obtained from each of the variables that maintain an
IPrincipal and/or IIdentity object. The following abbreviations are used in
the table:
● HttpContext = HttpContext.Current.User, which returns an IPrincipal object

that contains security information for the current Web request. This is the
authenticated Web client.

● WindowsIdentity = WindowsIdentity.GetCurrent(), which returns the identity
of the security context of the currently executing Win32 thread.

● Thread = Thread.CurrentPrincipal which returns the principal of the currently
executing .NET thread which rides on top of the Win32 thread.



Building Secure ASP.NET Applications538

Table 1: IIS Anonymous Authentication

Web.config Settings Variable Location Resultant Identity

<identity impersonate=”true”/> HttpContext -
<authentication mode=”Windows” /> WindowsIdentity MACHINE\IUSR_MACHINE

Thread -

<identity impersonate=”false”/> HttpContext -
<authentication mode=”Windows” /> WindowsIdentity MACHINE\ASPNET

Thread -

<identity impersonate=”true”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity MACHINE\IUSR_MACHINE

Thread Name provided by user

<identity impersonate=”false”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity MACHINE\ASPNET

Thread Name provided by user

Table 2: IIS Basic Authentication

Web.config Settings Variable Location Resultant Identity

<identity impersonate=”true”/> HttpContext Domain\UserName
<authentication mode=”Windows” /> WindowsIdentity Domain\UserName

Thread Domain\UserName

<identity impersonate=”false”/> HttpContext Domain\UserName
<authentication mode=”Windows” /> WindowsIdentity MACHINE\ASPNET

Thread Domain\UserName

<identity impersonate=”true”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity Domain\UserName

Thread Name provided by user

<identity impersonate=”false”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity MACHINE\ASPNET

Thread Name provided by user



ASP.NET Identity Matrix 539

Table 3: IIS Digest Authentication

Web.config Settings Variable Location Resultant Identity

<identity impersonate=”true”/> HttpContext Domain\UserName
<authentication mode=”Windows” /> WindowsIdentity Domain\UserName

Thread Domain\UserName

<identity impersonate=”false”/> HttpContext Domain\UserName
<authentication mode=”Windows” /> WindowsIdentity MACHINE\ASPNET

Thread Domain\UserName

<identity impersonate=”true”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity Domain\UserName

Thread Name provided by user

<identity impersonate=”false”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity MACHINE\ASPNET

Thread Name provided by user

Table 4: IIS Integrated Windows

Web.config Settings Variable Location Resultant Identity

<identity impersonate=”true”/> HttpContext Domain\UserName
<authentication mode=”Windows” /> WindowsIdentity Domain\UserName

Thread Domain\UserName

<identity impersonate=”false”/> HttpContext Domain\UserName
<authentication mode=”Windows” /> WindowsIdentity MACHINE\ASPNET

Thread Domain\UserName

<identity  impersonate=”true”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity Domain\UserName

Thread Name provided by user

<identity impersonate=”false”/> HttpContext Name provided by user
<authentication mode=”Forms” /> WindowsIdentity MACHINE\ASPNET

Thread Name provided by user





Cryptography and Certificates

Keys and Certificates
Asymmetric encryption uses a public/private key pair. Data encrypted with the
private key can be decrypted only with the corresponding public key and vice
versa.

Public keys (as their name suggests) are made generally available. Conversely, a
private key remains private to a specific individual. The distribution mechanism by
which public keys are transported to users is a certificate. Certificates are normally
signed by a certification authority (CA) in order to confirm that the public key is
from the subject who claims to have sent the public key. The CA is a mutually
trusted entity.

The typical implementation of digital certification involves a process for signing the
certificate. The process is shown in Figure 1.

Alice

Bob

Certification 
Authority 

(CA)

(1) Certificate Request 
(inc name + public key)

(3) Alice sends 
certificate to Bob 

(providing access to 
Alice’s public key)

(2) Message 
(signed with 

CA’s private key)

(4) Verify 
CA 

signature

Figure 1
Digital certification process

The sequence of events shown in Figure 1 is as follows:
1. Alice sends a signed certificate request containing her name, her public key, and

perhaps some additional information to a CA.
2. The CA creates a message from Alice’s request. The CA signs the message with

its private key, creating a separate signature. The CA returns the message and the
signature, to Alice. Together, the message and signature form Alice’s certificate.



Building Secure ASP.NET Applications542

3. Alice sends her certificate to Bob to give him access to her public key.
4. Bob verifies the certificate’s signature, using the CA’s public key. If the signature

proves valid, he accepts the public key in the certificate as Alice’s public key.

As with any digital signature, any receiver with access to the CA’s public key can
determine whether a specific CA signed the certificate. This process requires no
access to any secret information. The preceding scenario assumes that Bob has
access to the CA’s public key. Bob would have access to that key if he has a copy
of the CA’s certificate that contains that public key.

X.509 Digital Certificates
X.509 digital certificates include not only a user’s name and public key, but also
other information about the user. These certificates are more than stepping stones
in a digital hierarchy of trust. They enable the CA to give a certificate’s receiver a
means of trusting not only the public key of the certificate’s subject, but also that
other information about the certificate’s subject. That other information can include,
among other things, an e-mail address, an authorization to sign documents of a
given value, or the authorization to become a CA and sign other certificates.

X.509 certificates and many other certificates have a valid time duration. A certifi-
cate can expire and no longer be valid. A CA can revoke a certificate for a number
of reasons. To handle revocations, a CA maintains and distributes a list of revoked
certificates called a Certificate Revocation List (CRL). Network users access the CRL
to determine the validity of a certificate.

Certificate Stores
Certificates are stored in safe locations called a certificate stores. A certificate store
can contain certificates, CRLs, and Certificate Trust Lists (CTLs). Each user has a
personal store (called the “MY store”) where that user’s certificates are stored. The
MY store can be physically implemented in a number of locations including the
registry, on a local or remote computer, a disk file, a data base, a directory service,
a smart device, or another location.

While any certificate can be stored in the MY store, this store should be reserved for
a user’s personal certificates, that is the certificates used for signing and decrypting
that particular user’s messages.

In addition to the MY store, Windows also maintains the following certificate stores:
● CA and ROOT. This store contains the certificates of certificate authorities that

the user trusts to issue certificates to others. A set of trusted CA certificates are
supplied with the operating system and others can be added by administrators.

● Other. This store contains the certificates of other people to whom the user
exchanges signed messages.



Cryptography and Certificates 543

The CryptoAPI provides functions to manage certificates. These APIs can be
accessed only through unmanaged code. Also, CAPICOM is a COM-based API for
the CryptoAPI, which can be accessed via COM Interop.

More Information
For more information, see “Cryptography, CryptoAPI, and CAPICOM” on MSDN
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/Security
/cryptography_cryptoapi_and_capicom.asp).

Cryptography
Cryptography is used to provide the following:
● Confidentiality. To ensure data remains private. Confidentiality is usually

achieved using encryption. Encryption algorithms (that use encryption keys)
are used to convert plain text into cipher text and the equivalent decryption
algorithm is used to convert the cipher text back to plain text. Symmetric
encryption algorithms use the same key for encryption and decryption, while
asymmetric algorithms use a public/private key pair.

● Data integrity. To ensure data is protected from accidental or deliberate
(malicious) modification. Integrity is usually provided by message
authentication codes or hashes. A hash value is a fixed length numeric value
derived from a sequence of data. Hash values are used to verify the integrity
of data sent through insecure channels. The hash value of received data is
compared to the hash value of the data as it was sent to determine if the data
was altered.

● Authentication. To assure that data originates from a particular party. Digital
certificates are used to provide authentication. Digital signatures are usually
applied to hash values as these are significantly smaller than the source data that
they represent.

Technical Choices
● Use a hash when you want a way of verifying that data has not been tampered

with in transit.
● Use a keyed hash when you want to prove that an entity knows a secret without

sending the secret back and forth, or you want to defend against interception
during transit by using a simple hash.

● Use encryption when you want to hide data when being sent across an insecure
medium or when making the data persistent.

● Use a certificate when you want to verify the person claiming to be the owner of
the public key.



Building Secure ASP.NET Applications544

● Use symmetric encryption for speed and when both parties share the key in
advance.

● Use asymmetric encryption when you want to safely exchange data across an
insecure medium.

● Use a digital signature when you want authentication and non-repudiation.
● Use a salt value (a cryptographically generated random number) to defend

against dictionary attacks.

Cryptography in .NET
The System.Security.Cryptography namespace provides cryptographic services,
including secure encoding and decoding of data, hashing, random number genera-
tion, and message authentication.

The .NET Framework provides implementations of many standard cryptographic
algorithms and these can be easily extended because of the well defined inheritance
hierarchy consisting of abstract classes that define the basic algorithm types —
symmetric, asymmetric and hash algorithms, together with algorithm classes.

Table 1: Shows the algorithms for which the .NET Framework provides implementation classes
“out of the box.”

Symmetric Algorithms Asymmetric Algorithms Hash Algorithms

DES (Data Encryption Standard) DSA (Digital Signature HMAC SHA1 (Hash-based
Algorithm) Message Authentication

Code using the SHA1 hash
algorithm)

TripleDES (Triple Data RSA MAC Triple DES (Message
Encryption Standard) Authentication Code using

Triple DES)

Rijndael MD5

RC2 SHA1, SHA256, SHA384,
SHA512 (Secure Hash
Algorithm using various
hash sizes)



Cryptography and Certificates 545

Symmetric Algorithm Support
.NET provides the following implementation classes that provide symmetric, secret
key encryption algorithms:
● DESCryptoServiceProvider
● RC2CryptoServiceProvider
● RijndaelManaged
● TripleDESCryptoServiceProvider

Note: The classes that end with “CryptoServiceProvider” are wrappers that use the underlying
services of the cryptographic service provider (CSP) and the classes that end with “Managed”
are implemented in managed code.

Figure 2 shows the inheritance hierarchy adopted by the .NET Framework. The
algorithm type base class (for example, SymmetricAlgorithm) is abstract. A set of
abstract algorithm classes derive from the abstract type base class. Algorithm
implementation classes provide concrete implementations of the selected algorithm;
for example DES, Triple-DES, Rijndael and RC2.

Abstract Base 
Class SymmetricAlgorithm

DESCrypto 
ServiceProvider

Rijndael 
Managed

TripleDESCrypto 
ServiceProvider

RC2Crypto 
ServiceProvider

DES TripleDes Rijndael RC2
Abstract 
Algorithm 
Classes

Abstract 
Implementation 
Classes

Figure 2
The symmetric crypto class inheritance hierarchy

Asymmetric Algorithm Support
.NET provides following asymmetric (public/private key) encryption algorithms
through the abstract base class
(System.Security.Crytography.AsymmetricAlgorithm):
● DSACryptoServiceProvider
● RSACryptoServiceProvider



Building Secure ASP.NET Applications546

These are used to digitally sign and encrypt data. Figure 3 shows the inheritance
hierarchy.

Abstract Base 
Class AsymmetricAlgorithm

DESCrypto 
ServiceProvider

RSACrypto 
ServiceProvider

DSA RSA
Abstract 
Algorithm 
Classes

Abstract 
Implementation 
Classes

Figure 3
The asymmetric crypto class inheritance hierarchy

Hashing Algorithm Support
.NET provides following hash algorithms:
● SHA1, SHA256, SHA384, SHA512
● MD5
● HMACSHA (Keyed Hashed algorithm)
● MACTripleDES (Keyed Hashed algorithm)

Figure 4 shows the inheritance hierarchy for the hash algorithm classes.

Abstract Base 
Class HashAlgorithm

SHA256ManagedHMACSHA1

MacTripleDES
SHA384Managed

SHA512Managed

SHA1Managed

SHA1Crypto 
ServiceProvider

MD5Crypto 
ServiceProvider

KeyedHashAlgorithm MD5 SHA1 SHA256 SHA384 SHA512
Abstract 
Algorithm 
Classes

Abstract 
Implementation 
Classes

Figure 4
The hash crypto class inheritance hierarchy



Cryptography and Certificates 547

Summary
Cryptography is an important technology for building secure Web applications.
This appendix has covered some of the fundamentals of certificates and
cryptography and has introduced some of the classes exposed by the
System.Security.Cryptography namespace, which enable you to more easily
incorporate cryptographic security solutions into your .NET applications.

For more information about cryptography in .NET, search MSDN for the page
entitled “.NET Framework Cryptography Model.”





.NET Web Application Security

The technologies that fall under the umbrella of the .NET security framework
include:
● IIS
● ASP.NET
● Enterprise Services
● Web Services
● .NET Remoting
● SQL Server

These are illustrated in Figure 1.

Web Server

Database Server

IIS

SQL Server

Clients IIS

Authentication
Anonymous
Basic
Digest
Integrated
Certificates

Authorization
NTFS Perms
IP Restrictions

ASP.NET

Authentication
Windows
Forms
Passport
None (Custom)

Authorization
URL Auth
File Auth
.NET Roles

Enterprise Services

Authentication
RPC

Authorization
COM+ Roles
NTFS Perms

SQL Server

Authentication
Windows
SQL Auth

Authorization
Logins
Object Perms
Dbase Roles
User Roles
App Roles

ASP.NET

IIS
ASP.NET

S
ec

ur
e 

C
om

m
un

ic
at

io
n 

(S
S

L 
/ I

P
S

ec
)

Enterprise 
Services
(COM+)Web 

Services

IIS
ASP.NET

.NET 
Remoting

Figure 1
The .NET Web application security framework





Glossary

A
access control entry (ACE)

An access control entry (ACE) identifies a specific user or user group within an
access control list and specifies the access rights for the user or user group. An
individual ACE may explicitly deny or permit rights.

access control list (ACL)

An access control list (ACL) is an ordered list of access control entries (ACEs)
attached to a securable object. The Windows operating system uses two types of
ACL; a discretionary access control list (DACL) used to specify the access rights
of a user or user group and a system access control list (SACL) used to determine
when specific types of access should generate audit messages.

access right

An access right is an attribute of an access token that determines the type of
operation that a particular Windows group or user can perform on a secured
object. Example access rights include read, write, delete, execute, and so on.

access token

An access token is a data structure attached to every Windows process. It maintains
security context information for the process, which includes a user SID identifying
the principal whom the logon session represents, and authorization attributes
including the user’s group SIDs and privileges.

Every access token is associated with exactly one logon session, while a logon
session may contain multiple access tokens; one for each process started within the
logon session and optionally, additional thread tokens attached to individual
threads.

account

An account is an entry in the security database that maintains the security attributes
of an individual principal. The security database may either be the SAM database or
Active Directory.

Accounts may either be domain accounts or local accounts.

Active Directory

Active Directory is the LDAP directory service used by the Windows 2000 operating
system.



Building Secure ASP.NET Applications552

anonymous authentication

Anonymous authentication is a form of IIS authentication in which IIS makes no
attempt to prove the identity of its clients. Anonymous authentication is akin to no
authentication. It is often used in conjunction with ASP.NET Forms authentication
which uses an HTML form to capture the client’s credentials.

application server

An application server is a dedicated server computer, separate from a front-end
Web server. The application server typically hosts Web services, remote compo-
nents, and/or Enterprise Services applications that contain the majority of an
application’s business logic.

authentication

Authentication is the process of proving identity. For example, when you log on to
Windows, the operating system authenticates you by requesting your credentials;
a user name and password. When a process (a type of principal), acting on your
behalf connects to a remote computer, it uses a cached set of credentials to answer
network authentication requests.

authority

An authority is a trusted entity (organization or computer) that is used to provide
authentication services.

authorization

Authorization is the process of determining whether or not an authenticated iden-
tity is allowed to access a requested resource or perform a requested operation.

B
Base 64 encoding

Base 64 encoding is a well-defined method for rendering binary data as printable
ASCII text, suitable for use with text-based protocols such as HTTP. It is not
encryption.

Basic authentication

Basic authentication is part of the HTTP 1.0 protocol. It is widely used because it is
implemented by virtually all Web servers and Web browsers. Basic authentication
is a simple authentication mechanism that does not involve cryptography or chal-
lenge/response handshaking. Instead, a principal’s credentials (user name and
password) are passed directly from client to server. Basic authentication is insecure
unless combined with SSL, because the password is not encrypted before it is
passed across the network. It is transmitted using Base 64 encoding, so the clear text
password is easily obtainable.



Glossary 553

C
certificate

A certificate is a digitally signed data structure that contains information about a
subject (person or application) and the subject’s public key. Certificates are issued
by trusted organizations called certification authorities (CAs) after the CA has
verified the identity of the subject.

certificate authentication

Certificate authentication is a form of IIS authentication in which IIS accepts client-
certificates used to prove the client’s identity. Using this form of authentication, IIS
can optionally map a client certificate to a Windows user account by using an
internal mapping table or Active Directory.

certificate revocation list (CRL)

A CRL is a document that is maintained and published by a certification authority
(CA) that lists certificates issued by the CA that are no longer valid.

certificate store

A certificate store is a storage location for certificates, certificate revocation lists
(CRLs) and certificate trust lists (CTL).

certification authority (CA)

A CA is a trusted organization or entity that issues certificates.

code access security

Code access security is a form of .NET security that is used to control the access that
code has to protected resources.

clear text

Clear text is data that has not been encrypted.

cipher

Cipher is a cryptographic algorithm used to encrypt data.

cipher text

Cipher text is data that has been encrypted.

client certificate

A client certificate is a certificate used by clients to provide positive identification of
their identity to server applications.

confidentiality

See privacy.



Building Secure ASP.NET Applications554

credentials

Credentials are the set of items that a principal uses to prove its identity. A user
name and password are a common example of a set of credentials.

cryptography

Cryptography is the art and science of information security. It encompasses
confidentiality, integrity, and authentication.

D
declarative authorization

Declarative authorization is a form of authorization applied through the use of
attributes. For example, .NET provides the PrincipalPermissionAttribute class
which can be used to annotate methods to provide declarative authorization.

For example, the following declarative authorization ensures that the method
DoPrivMethod can only be executed by members of the Manager or Teller role.

[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Teller"),
 PrincipalPermissionAttribute(SecurityAction.Demand, Role="Manager")]
public void DoPrivMethod()
{
}

delegation

Delegation is an extended form of impersonation that allows a server process that
is performing work on behalf of a client, to access resources on a remote computer.
This capability is natively provided by Kerberos on Windows 2000 and later operat-
ing systems. Conventional impersonation (for example, that provided by NTLM)
allows only a single network hop. When NTLM impersonation is used, the one hop
is used between the client and server computers, restricting the server to local
resource access while impersonating.

DES (data encryption standard)

DES is a block cipher that encrypts data in 64-bit blocks. DES is a symmetric algo-
rithm that uses the same algorithm and key for encryption and decryption. DES has
been superceded by triple DES.

dictionary attack

A dictionary attack is a brute-force attack in which the attacker tries every possible
secret key to decrypt encrypted data. You can mitigate against this form of attack by
using a salt value in conjunction with encrypted (or hashed) data.



Glossary 555

Digest authentication

Digest authentication is defined by the HTTP 1.1 protocol although it is not widely
used. With this form of authentication a clear text password is not passed across the
network. A password hash or digest is passed instead. While more secure than Basic
authentication, it requires Internet Explorer 5.0 or later on the client, and a Win-
dows 2000 computer running IIS 5.0 with Active Directory on the server.

digital signature

A digital signature is used for message authentication; to ensure the validity of the
sender of the message and also for message integrity; to ensure that data is not
modified while in transit. Signing data does not alter it; it simply generates a digital
signature string which is transmitted with the data.

Digital signatures are created using public-key signature algorithms such as the
RSA public-key cipher.

digest

See hash.

discretionary access control list (DACL)

A DACL is associated with a securable object (using a security descriptor) and
specifies the set of access rights granted to users and groups of users. The DACL is
controlled by the owner of an object and it consists of an ordered list of access
control entries (ACEs) that determine the types of operation a user or user group
can perform against the object.

domain accounts

Domain accounts are a Windows or group account centrally maintained and admin-
istered in a domain controller’s SAM database or in Active Directory.

DPAPI (data protection API)

DPAPI is a Win32 API available on Windows 2000 and later operating systems used
to encrypt and decrypt data. DPAPI passes the key management issue associated
with encryption techniques to the operating system, as it uses Windows account
passwords to generate encryption keys.

E
EFS (encrypting file system)

The encrypting file system (EFS) is provided by Windows 2000 and later operating
systems, to provide file-encryption capabilities on an NTFS volume.



Building Secure ASP.NET Applications556

encryption

Encryption is the process of converting data (plain text) into something that appears
to be random and meaningless (cipher text), which is difficult to decode without a
secret key. Encryption is used to provide message confidentiality.

entropy

Entropy is a measure of uncertainty. It is used in association some encryption
technologies to introduce a degree of randomness into the encryption process.
An entropy value used in addition to a key to encrypt data must also be used
to decrypt data.

F
fixed principal impersonation

Fixed principal impersonation is a form of impersonation used by ASP.NET in
which the impersonated identity remains constant regardless of the authenticated
caller’s identity. Usually, the impersonated identity is determined by the identity of
the caller. The identity used for fixed principal impersonation is specified by using
the userName and password attributes of the <identity> element in web.config.
An example follows.

<identity userName="Bob" password="password" />

Forms authentication

Forms authentication is a type of authentication supported by ASP.NET that
requires users to log on by supplying logon credentials through an HTML form.

G
gatekeeper

A gatekeeper is a technology or subsystem used to provide access control. Example
gatekeepers include IIS, the ASP.NET UrlAuthorizationModule, and the ASP.NET
FileAuthorizationModule.

GenericIdentity

GenericIdentity is an implementation of the IIdentity interface, used by ASP.NET
in conjunction with Forms, Passport (and sometimes custom) authentication mecha-
nisms. The GenericPrincipal object contains a GenericIdentity object.



Glossary 557

GenericPrincipal

GenericPrincipal is an implementation of the IPrincipal interface, used by
ASP.NET in conjunction with Forms and Passport (and possibly custom) authentica-
tion mechanisms. It contains the list of roles (retrieved by the application from a
custom data store) that the user belongs to.

The GenericPrincipal object is attached to the context of Web requests and is used
for authorization. It contains a GenericIdentity object.

H
hash

A hash is a fixed length numeric value that uniquely identifies data. Hash values
are useful to verify the integrity of data sent through insecure channels. The hash
value of received data can be compared to the hash value of data as it was sent to
determine if the data was altered.

Hash values are also used with digital signatures. Because small hash values can be
used to represent much large amounts of data, only the hash of a message needs to
be signed; rather than the entire message data.

HTTP context

HTTP context is the context or property collection associated with (and describing)
the current Web request.

HTTP module

An HTTP module is a module used by ASP.NET to process Web requests. An HTTP
module is an assembly that implements the IhttpModule interface and handles
events. ASP.NET uses a series of built-in modules such as authentication modules,
the session state module and the global cache module. Custom HTTP modules can
be developed and plugged into the ASP.NET HTTP processing pipeline.

HTTP handler

ASP.NET maps HTTP requests to HTTP handlers. ASP.NET maps individual URLs
or groups of URL extensions to specific HTTP handlers. HTTP handlers are func-
tionality equivalent to ISAPI extensions but with a much simpler programming
model. An HTTP handler is an assembly that implements the IHttpHandler and
IHttpAsyncHandler interfaces.



Building Secure ASP.NET Applications558

I
identity

Identity refers to a characteristic of a user or service that can uniquely identify it.
For example, this is often a display name, which often takes the form “authority/
username”.

imperative authorization

Imperative authorization is a form of authorization applied within method code.
For example, .NET provides the PrincipalPermissionAttribute class which can be
used to provide imperative authorization as shown in the code that follows. The
code demands that the caller belong to the Teller role. If the caller doesn’t belong to
this role, a security exception is generated and the privileged code (the code that
follows the Demand method call) is not executed.

public UsePrivilege()
{
  PrincipalPermission permCheck = new PrincipalPermission(null,"Teller");
  permCheck.Demand();
  // privileged code
}

impersonation

Impersonation is the technique used by a server application to access resources on
behalf of a client by using a copy of the client’s access token. To facilitate the genera-
tion of a client’s access token on a server computer, the client must pass its identity
across the network to the server application.

Also see fixed principal impersonation.

impersonation/delegation model

An impersonation/delegation model is a resource access model that flows the
security context of the original caller through successive application tiers and onto
back-end resource managers. This allows resource managers to implement authori-
zation decisions based on the identity of the original caller.

This is in contrast to the trusted subsystem model that uses fixed “trusted” identi-
ties for resource access.

impersonation token

See thread token.



Glossary 559

integrity

Secure communication channels must also ensure that data is protected from
accidental or deliberate (malicious) modification while in transit. Integrity is
usually provided by using message authentication codes (MACs).

IPSec (Internet Protocol Security)

IPSec is a form of transport level security. IPSec is designed to encrypt data as
it travels between two computers, protecting the data from modification and
interpretation.

K
Kerberos

Kerberos is an authentication protocol supported by Windows 2000 and later
operating systems. Kerberos supports the extended form of impersonation called
delegation, which allows a caller’s security context to access network resources in
addition to resources local to the server’s operating system.

key

A key is a value supplied to an encryption or decryption algorithm used to encrypt
and decrypt data. Symmetric encryption algorithms use the same key to encrypt
and decrypt data, while asymmetric algorithms use a public/private key pair.

key pair

A key pair is a public and private pair of keys that belong to an entity and are used
to encrypt and decrypt data.

key store

A key store is where the Microsoft Cryptography API (CryptoAPI) stores key pairs
(usually in a file or registry key). Key stores are specific to either a user or the
computer the keys were generated on.

L
LDAP (Lightweight Directory Access Protocol)

LDAP is a protocol used to access directory services including Active Directory.

local account

A local account is a Windows account maintained and stored within the SAM
database local to a specific computer. Local accounts (unlike domain accounts)
cannot be used to access network resources, unless a duplicate local account (with
the same name and password) is created on the remote computer.



Building Secure ASP.NET Applications560

logon session

A logon session defines the security context in which every process runs. When you
interactively log on to a computer, an interactive logon session is created to host the
Windows shell and any process that you may start interactively. When a process
connects on your behalf to a remote computer, your credentials (which are cached in
your local logon session) are used to handle authentication requests from the
remote computer. Assuming the authentication process is successful, a network
logon session is established on the remote computer to represent the work per-
formed on your behalf on the remote computer.

LogonUser

LogonUser is a Win32 API used to create a logon session (and access token) for
a specified Windows account. Code that calls LogonUser must be part of the
computer’s TCB, which means that it must be running within a process whose
Windows account has been granted the “Act as part of the operating system”
privilege.

LSA (Local Security Authority)

The Local Security Authority (LSA) is a local Windows subsystem responsible for
providing authentication services.

M
MAC (message authentication code)

Message authentication code is a hash value appended to a message to provide
integrity. When using a MAC algorithm to generate a hash, the receiving applica-
tion must also posses the session key to re-compute the hash value so it can verify
that the message data has not changed.

mutual authentication

Mutual authentication is a form of authentication where the client authenticates the
server in addition to the server authenticating the client. Mutual authentication is
not supported by NTLM but is supported by Kerberos. Mutual authentication is
also possible with SSL when the server accepts or requires client certificates.

N
non-repudiation

Non-repudiation is the ability to identify users who performed certain actions, thus
irrefutably countering any attempts by a user to deny responsibility. For example, a
system may log the ID of a user whenever a file is deleted.



Glossary 561

NTLM

NTLM (which stands for Windows NT LAN Manager) is a challenge/response
authentication protocol used on networks that include systems running versions of
the Microsoft Windows NT operating system earlier than Windows 2000 and on
stand-alone systems.

P
PKCS (public-key cryptography standards)

PKCS is a set of syntax standards for public-key cryptography covering security
functions, including methods for signing data, exchanging keys, requesting certifi-
cates, public-key encryption and decryption, and other security functions.

plain text

See clear text.

principal

A principal is an entity (typically a human, computer, application or service) that
attempts to access a secured resource or application. A principal has a unique name
and some way of proving its Identity to other principals in a system.

principle of least privilege

Principle of least privilege is the notion of running executable code using the
weakest possible process identity. This is to limit the potential damage that can be
done should the process be compromised.

If a malicious user manages to inject code into a server process, the privileges
granted to that process determine to a large degree the types of operations the user
is able to perform.

privacy

Privacy is concerned with ensuring that data remains private and confidential, and
cannot be viewed by eavesdroppers who may be armed with network monitoring
software. Privacy is usually provided by means of encryption.

private key

A private key is the secret half of a key pair used in a public key algorithm. Private
keys are typically used to encrypt a symmetric session key, digitally sign a message,
or decrypt a message that has been encrypted with the corresponding public key.

privilege

Privilege is the right of a user to perform various system-related operations, such as
shutting down the system, loading device drivers, or changing the system time.
A user’s access token contains a list of the privileges held by either the user or the
user’s groups.



Building Secure ASP.NET Applications562

process identity

Process identity is determined by the Windows account used to run an executable
process. For example, the default process identity of the ASP.NET worker process
(aspnet_wp.exe) is ASPNET (a local, least privileged Windows account).

The process identity determines the security context used when code within the
process accesses local or remote resources. If the code is impersonating, the thread
identity (determined by the thread token) provides the security context for resource
access.

proxy account

See service account.

public key

A public key is the public half of a public/private key pair. It is typically used when
decrypting a session key or a digital signature. The public key can also be used to
encrypt a message, guaranteeing that only the person with the corresponding
private key can decrypt the message.

public-private key encryption

Public-private key encryption is an asymmetric form of encryption that relies on a
cryptographically generated public/private key pair. Data encrypted with a private
key can only be decrypted with the corresponding public key (and vice-versa).

R
RC2

RC2 is the CryptoAPI algorithm name for the RC2 algorithm.

RC4

RC4 is the CryptoAPI algorithm name for the RC4 algorithm.

roles

Roles are logical identifiers (such as “Manager” or “Employee”) used by an applica-
tion to group together users who share the same security privileges within the
application. Example role types include .NET roles, Enterprise Services (COM+)
roles, and database roles used by SQL Server.

RSA

RSA Data Security, Inc., is a major developer and publisher of public-key cryptogra-
phy standards. RSA stands for the names of the company’s three developers and the
owners: Rivest, Shamir, and Adleman.



Glossary 563

S
SACL (system access control list )

An SACL is associated with a securable object (using a security descriptor) and
specifies the types of operations performed by particular users that should generate
audit messages.

salt value

Salt value is random data that can be used in conjunction with encrypted or hashed
data in order to increase the work required to mount a brute-force dictionary attack
against the protected data. It is usually placed in front of the encrypted or hashed
data.

SAM database

The SAM database is the database used by Windows NT and Windows 2000 (with-
out Active Directory) to maintain user and group accounts.

secure communication

Secure communication is concerned with providing message integrity and privacy,
while data flows across a network. Technologies that provide secure communication
include SSL and IPSec.

security context

Security context is a generic term used to refer to the collection of security settings
that affect the security-related behavior of a process or thread. The attributes from
a process’ logon session and access token combine to form the security context of
the process.

security descriptor (SD)

A security descriptor (SD) contains security information that is associated with a
securable object such as a file or process. A security descriptor contains attributes
that includes an identification of the object’s owner, the security groups the owner
belongs to, and two access control lists (ACLs); the discretionary access control list
(DACL) which defines the access rights for individual users and groups of users,
and the system access control list (SACL) which defines the types of operation
performed on the object that should result in the generation of audit messages.

service account

A service account is a specifically configured account (also known as a proxy
account) used solely for the purposes of accessing a downstream resource (often a
database) in a multi-tier distributed application. Middle tier components often use a
limited number of service accounts to connect to a database to support connection
pooling. Service accounts may be Windows accounts maintained in Active Direc-
tory or the SAM database, or SQL accounts maintained within SQL Server.



Building Secure ASP.NET Applications564

session key

Session key is a randomly-generated symmetric key used to encrypt data transmit-
ted between two parties. Session keys are used once (for a single session) and then
discarded.

SHA (secure hash algorithm)

SHA is an algorithm used to generate a message digest or hash. The original SHA
algorithm has been replaced with the improved SHA1 algorithm.

SID (security identifier)

A security identifier (SID) uniquely identifies a user or user group within a domain.
A SID is a variable length value and consists of a revision level, an authenticating
authority value (the SID issuer, typically Windows), a set of sub-authority values
(typically representing the network domain) and a relative ID (RID) which is
unique within the authenticating authority / sub-authority combination.

SIDs are never reused even when a user account is deleted and then recreated with
the same name and password combination.

SOAP

SOAP is a lightweight, XML-based protocol for the exchange of information in a
distributed environment. Used by Web services

SOAP extension

A SOAP extension is an extensibility mechanism supported by ASP.NET that allows
you to extend SOAP message processing. With a SOAP extension, you can inspect
or modify a message at specific stages during the processing lifecycle on either the
client or server.

SSL (secure sockets layer)

SSL is a protocol for secure network communications using a combination of public
and secret key technology.

SSPI (security support provider interface)

SSPI is a common interface between transport-level applications, such as Microsoft
Remote Procedure Call (RPC), and security providers, such as the Windows Inte-
grated authentication provider. SSPI allows a transport application to call one of
several security providers to obtain an authenticated connection in a uniform
fashion.

symmetric encryption

Symmetric encryption is a form of encryption that uses the same (single) key to
encrypt and decrypt data. Both the sender and the recipient of the encrypted data
must have the same key.



Glossary 565

T
TCB (trusted computing base)

A TCB is a boundary that defines the portion of a system that is trusted to enforce
security policy. Executable code that runs within the TCB is able to perform opera-
tions without being subjected to normal security checks. Device drivers run within
the TCB. User code runs within the TCB if the associated process account is granted
the “Act as part of the operating system” privilege. User code that runs under the
local SYSTEM account also runs within the boundaries of the TCB.

temporary token

See thread token.

thread token

A thread token is a temporary access token associated with a specific thread. When
a thread is created, it has no access token and any secure operations performed by
the thread, use information obtained from the process token. A classic situation in
which a thread acquires an access token is when a thread in a server process wants
to perform work on behalf of a client. In this situation the thread impersonates the
client by acquiring an access token to represent the client.

Thread tokens are also referred to as temporary tokens and impersonation tokens.

token

See access token.

transitive trust

Transitive trust is a bidirectional form of trust relationship between computers or
domains. Transitive means that if authority A trusts authority B and authority B
trusts authority C then authority A implicitly trusts authority C (without an explicit
trust relationship having to exist between A and C). Transitive trust relationships
are supported by Active Directory on Windows 2000.

triple DES

This is the triple DES (3DES) encryption cipher. It is a variation of the DES block
cipher algorithm that encrypts plain text with one key, encrypts the resulting cipher
text with a second key, and finally, encrypts the result of the second encryption with
a third key. Triple DES is a symmetric algorithm that uses the same algorithm and
keys for encryption and decryption.



Building Secure ASP.NET Applications566

trust

Secure systems rely on the notion of trust to one degree or another. For example,
users who have administrative privileges (that is, administrators) must be trusted
to correctly administer a system and not to deliberately perform malicious acts.
Similarly, code that runs with extended privileges, such as device drivers and code
that runs as LocalSystem must be trusted. Code that implicitly requires trust such as
this, runs within the computer’s Trusted Computing Base (TCB). Code that cannot
be fully trusted must not be allowed to run within the TCB.

The notion of trust is also important for the trusted subsystem model, which places
trust in an application or service.

trusted subsystem model

A trusted subsystem model is a resource access model adopted by Web applications
in which the application uses a fixed “trusted” identity to access downstream
resource managers such as databases.

A database administrator defines security roles and permissions for the specific
“trusted” identity within the database. This model supports database connection
pooling which greatly helps an application’s ability to scale. This is in contrast to
the impersonation/delegation model.

U
user profile

User profiles maintain a user’s configuration information. This includes desktop
arrangement, personal program groups, program items, screen colors, screen
savers, network connections and so on. When a user logs on interactively, the
system loads the user’s profile and configures the environment according to the
information in the profile.

The LoadUserProfile API can be used to programmatically load a user profile. Non-
interactive accounts such as the local ASPNET account used to run ASP.NET Web
applications do not have a user profile.

W
WindowsIdentity

WindowsIdentity is an implementation of the IIdentity interface, used by ASP.NET
in conjunction with Windows authentication. A WindowsIdentity object exposes
the Windows access token of the user together with user name information. The
WindowsPrincipal object contains a WindowsIdentity object.



Glossary 567

WindowsPrincipal

WindowsPrincipal is an implementation of the IPrincipal interface, used by
ASP.NET in conjunction with Windows authentication. ASP.NET attaches a
WindowsPrincipal object to the context of the current Web request to represent the
authenticated caller. It is used for authorization.

The WindowsPrincipal object contains the set of roles (Windows groups) that the
user belongs to. It also contains a WindowsIdentity object that provides identity
information about the caller.

X
XML digital signature

An XML digital signature is a digital signature applied to an XML document.




	Front Cover
	Contents
	About This Book 
	Summary 
	Applies To 
	What This Guide is About 
	Who Should Read This Guide? 
	What You Must Know 
	Feedback and Support 
	The Team That Brought You This Guide 
	Contributors and Reviewers 


	At a Glance 
	Chapter 1 - Introduction 
	Chapter 2 - Security Model for ASP.NET Applications 
	Chapter 3 - Authentication and Authorization 
	Chapter 4 - Secure Communication 
	Chapter 5 - Intranet Security 
	Chapter 6 - Extranet Security 
	Chapter 7 - Internet Security 
	Chapter 8 - ASP.NET Security 
	Chapter 9 - Enterprise Services Security 
	Chapter 10 - Web Services Security 
	Chapter 11 - .NET Remoting Security 
	Chapter 12 - Data Access Security 
	Chapter 13 - Troubleshooting Security Issues 
	Reference 

	Chapter 1 - Introduction 
	The Connected Landscape 
	Scope 
	What Are the Goals of This Guide? 
	How You Should Read This Guide 
	Organization of the Guide 
	Part I, Security Models 
	Part II, Application Scenarios 
	Part III, Securing the Tiers 
	Part IV, Reference 

	Key Terminology 
	Principles 
	Summary 

	Chapter 2 - Security Model for ASP.NET Applications 
	.NET Web Applications 
	Logical Tiers 
	Physical Deployment Models 

	Implementation Technologies 
	ASP.NET 
	Enterprise Services 
	Web Services 
	.NET Remoting 
	ADO.NET and SQL Server 2000 
	Internet Protocol Security (IPSec) 
	Secure Sockets Layer (SSL) 

	Security Architecture 
	Security Across the Tiers 
	Authentication 
	Authorization 
	Gatekeepers and Gates 

	Identities and Principals 
	WindowsPrincipal and WindowsIdentity 
	GenericPrincipal and Associated Identity Objects 
	ASP.NET and HttpContext.User 
	Remoting and Web Services 

	Summary 

	Chapter 3 - Authentication and Authorization 
	Designing an Authentication and Authorization Strategy 
	Identify Resources 
	Choose an Authorization Strategy 
	Choose the Identities Used for Resource Access 
	Consider Identity Flow 
	Choose an Authentication Approach 
	Decide How to Flow Identity 

	Authorization Approaches 
	Role Based 
	Resource Based 
	Resource Access Models 
	The Trusted Subsystem Model 
	The Impersonation / Delegation Model 
	Choosing a Resource Access Model 

	Flowing Identity 
	Application vs. Operating System Identity Flow 
	Impersonation and Delegation 

	Role-Based Authorization 
	.NET Roles 
	Enterprise Services (COM+) Roles 
	SQL Server User Defined Database Roles 
	SQL Server Application Roles 
	.NET Roles versus Enterprise Services (COM+) Roles 
	Using .NET Roles 

	Choosing an Authentication Mechanism 
	Internet Scenarios 
	Intranet / Extranet Scenarios 
	Authentication Mechanism Comparison 

	Summary 

	Chapter 4 - Secure Communication
	Know What to Secure 
	SSL/TLS 
	Using SSL 

	IPSec 
	Using IPSec 

	RPC Encryption 
	Using RPC Encryption 

	Point to Point Security 
	Browser to Web Server 
	Web Server to Remote Application Server 
	Application Server to Database Server 

	Choosing Between IPSec and SSL 
	Farming and Load Balancing 
	More Information 

	Summary 

	Chapter 5 - Intranet Security
	ASP.NET to SQL Server 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Q&A 
	Related Scenarios 

	ASP.NET to Enterprise Services to SQL Server 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Pitfalls 

	ASP.NET to Web Services to SQL Server 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Pitfalls 
	Q&A 

	ASP.NET to Remoting to SQL Server 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Pitfalls 

	Flowing the Original Caller to the Database 
	ASP.NET to SQL Server 
	ASP.NET to Enterprise Services to SQL Server 
	The Result 
	Analysis 
	Pitfalls 

	Summary 

	Chapter 6 - Extranet Security
	Exposing a Web Service 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Pitfalls 
	Q&A 

	Exposing a Web Application 
	Scenario Characteristics 
	Secure the Scenario 
	The Result 
	Analysis 
	Pitfalls 

	Summary 

	Chapter 7 - Internet Security
	ASP.NET to SQL Server 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Pitfalls 
	Related Scenarios 

	ASP.NET to Remote Enterprise Services to SQL Server 
	Characteristics 
	Secure the Scenario 
	The Result 
	Security Configuration Steps 
	Analysis 
	Pitfalls  
	Related Scenarios 

	 Summary 

	Chapter 8 - ASP.NET Security
	ASP.NET Security Architecture 
	Gatekeepers 

	Authentication and Authorization Strategies 
	Available Authorization Options 
	Windows Authentication with Impersonation 
	Windows Authentication without Impersonation 
	Windows Authentication Using a Fixed Identity 
	Forms Authentication 
	Passport Authentication 

	Configuring Security 
	Configure IIS Settings 
	Configure ASP.NET Settings 
	Secure Resources 
	Secure Communication 

	Programming Security 
	An Authorization Pattern 
	Creating a Custom IPrincipal class 

	Windows Authentication 
	Forms Authentication 
	Development Steps for Forms Authentication 
	Forms Implementation Guidelines 
	Hosting Multiple Applications Using Forms Authentication 
	Cookieless Forms Authentication 

	Passport Authentication 
	Custom Authentication 
	Process Identity for ASP.NET 
	Use a Least Privileged Account 
	Avoid Running as SYSTEM 
	Using the Default ASPNET Account 

	Impersonation 
	Impersonation and Local Resources 
	Impersonation and Remote Resources 
	Impersonation and Threading 

	Accessing System Resources 
	Accessing the Event Log 
	Accessing the Registry 

	Accessing COM Objects  
	Apartment Model Objects 

	Accessing Network Resources 
	Using the ASP.NET Process Identity 
	Using a Serviced Component 
	Using the Anonymous Internet User Account 
	Using LogonUser and Impersonating a Specific Windows Identity  
	Using the Original Caller 
	Accessing Files on a UNC File Share 
	Accessing Non-Windows Network Resources 

	Secure Communication 
	Storing Secrets 
	Options for Storing Secrets in ASP.NET 
	Consider Storing Secrets in Files on Separate Logical Volumes 

	Securing Session and View State 
	Securing View State 
	Securing Cookies 
	Securing SQL Session State 

	Web Farm Considerations 
	Session State 
	DPAPI 
	Using Forms Authentication in a Web Farm 
	The <machineKey> Element 

	Summary 

	Chapter 9 - Enterprise Services Security 
	Security Architecture 
	Gatekeepers and Gates 
	Use Server Applications for Increased Security 
	Security for Server and Library Applications 
	Code Access Security Requirements 

	Configuring Security 
	Configuring a Server Application 
	Configuring an ASP.NET Client Application 
	Configuring Impersonation Levels for an Enterprise Services Application 

	Programming Security 
	Programmatic Role-Based Security 
	Identifying Callers 

	Choosing a Process Identity 
	Never Run as the Interactive User 
	Use a Least-Privileged Custom Account 

	Accessing Network Resources 
	Using the Original Caller 
	Using the Current Process Identity 
	Using a Specific Service Account 

	Flowing the Original Caller 
	Calling CoImpersonateClient 

	RPC Encryption 
	More Information 

	Building Serviced Components 
	DLL Locking Problems 
	Versioning 
	QueryInterface Exceptions 

	DCOM and Firewalls 
	More Information 

	Calling Serviced Components from ASP.NET 
	Caller's Identity 
	Use Windows Authentication and Impersonation Within  the Web-based Application 
	Configure Authentication and Impersonation within Machine.config 
	Configuring Interface Proxies 

	Security Concepts 
	Enterprise Services (COM+) Roles and .NET Roles 
	Authentication 
	Impersonation 

	Summary 

	Chapter 10 - Web Services Security 
	Web Service Security Model 
	Platform/Transport Level (Point-to-Point) Security 
	Application Level Security 
	Message Level (End-to-End) Security 

	Platform/Transport Security Architecture 
	Gatekeepers 

	Authentication and Authorization Strategies 
	Windows Authentication with Impersonation 
	Windows Authentication without Impersonation 
	Windows Authentication Using a Fixed Identity 

	Configuring Security 
	Configure IIS Settings 
	Configure ASP .NET Settings 
	Secure Resources 
	Disable HTTP-GET, HTTP-POST  
	Secure Communication 

	Passing Credentials for Authentication to Web Services 
	Specifying Client Credentials for Windows Authentication 
	Calling Web Services from Non-Windows Clients 
	Proxy Server Authentication 

	Flowing the Original Caller 
	Default Credentials with Kerberos Delegation 
	Explicit Credentials with Basic or Forms Authentication 

	Trusted Subsystem 
	Flowing the Caller's Identity 
	Configuration Steps 

	Accessing System Resources 
	Accessing Network Resources 
	Accessing COM Objects 
	More Information 

	Using Client Certificates with Web Services 
	Authenticating Web Browser Clients with Certificates 
	Using the Trusted Subsystem Model 

	Secure Communication 
	Transport Level Options 
	Message Level Options 

	Summary 

	Chapter 11 - .NET Remoting Security 
	.NET Remoting Architecture 
	Remoting Sinks 
	Anatomy of a Request When Hosting in ASP.NET 
	ASP.NET and the HTTP Channel 

	.NET Remoting Gatekeepers 
	Authentication 
	Hosting in ASP.NET 
	Hosting in a Windows Service 

	Authorization 
	Using File Authorization 

	Authentication and Authorization Strategies 
	More Information 

	Accessing System Resources 
	Accessing Network Resources 
	Passing Credentials for Authentication to Remote Objects 
	Specifying Client Credentials 

	Flowing the Original Caller 
	Default Credentials with Kerberos Delegation 
	Explicit Credentials with Basic or Forms Authentication 

	Trusted Subsystem 
	Flowing the Caller's Identity 
	Choosing a Host 
	Configuration Steps 

	Secure Communication 
	Platform Level Options 

	Choosing a Host Process 
	Recommendation 
	Hosting in ASP.NET 
	Hosting in a Windows Service 
	Hosting in a Console Application 

	Remoting vs. Web Services 
	Summary 

	Chapter 12 - Data Access Security 
	Introducing Data Access Security 
	SQL Server Gatekeepers 
	Trusted Subsystem vs. Impersonation/Delegation 

	Authentication 
	Windows Authentication 
	SQL Authentication 
	Authenticating Against Non-SQL Server Databases 

	Authorization 
	Using Multiple Database Roles 

	Secure Communication 
	The Options 
	Choosing an Approach 

	Connecting with Least Privilege 
	The Database Trusts the Application 
	The Database Trusts Different Roles 
	The Database Trusts the Original Caller 

	Creating a Least Privilege Database Account 
	Storing Database Connection Strings Securely 
	The Options 
	Using DPAPI 
	Using Web.config and Machine.config 
	Using UDL Files 
	Using Custom Text Files 
	Using the Registry 
	Using the COM+ Catalog 

	Authenticating Users Against a Database 
	Store One-way Password Hashes (with Salt) 

	SQL Injection Attacks 
	The Problem 
	Anatomy of a SQL Script Injection Attack 
	Protecting Pattern Matching Statements 

	Auditing 
	Process Identity for SQL Server 
	Summary 

	Chapter 13 - Troubleshooting Security Issues 
	Process for Troubleshooting 
	Searching for Implementation Solutions 

	Troubleshooting Authentication Issues 
	IIS Authentication Issues 
	Using Windows Authentication 
	Using Forms Authentication 
	Kerberos Troubleshooting 

	Troubleshooting Authorization Issues 
	Check Windows ACLs 
	Check Identity 
	Check the <authorization> Element 

	ASP.NET 
	Enable Tracing 
	Configuration Settings 

	Determining Identity 
	Determining Identity in a Web Page 
	Determining Identity in a Web service 
	Determining Identity in a Visual Basic 6 COM Object 

	.NET Remoting 
	More Information 

	SSL 
	More Information 

	IPSec 
	Auditing and Logging 
	Windows Security Logs 
	SQL Server Auditing 
	IIS Logging 

	Troubleshooting Tools 
	File Monitor (FileMon.exe) 
	Fusion Log Viewer (Fuslogvw.exe) 
	ISQL.exe 
	Windows Task Manager 
	Network Monitor (NetMon.exe) 
	Registry Monitor (regmon.exe) 
	WFetch.exe 
	Visual Studio .NET Tools 
	WebServiceStudio 
	Windows 2000 Resource Kit 


	How To
	How To: Index
	ASP.NET 
	Authentication and Authorization 
	Cryptography 
	Enterprise Services Security 
	Web Services Security 
	Remoting Security 
	Secure Communication 

	How To: Create a Custom Account to Run ASP.NET
	ASP.NET Worker Process Identity 
	Impersonating Fixed Identities 
	Notes 
	Summary 
	1. Create a New Local Account 
	2. Assign Minimum Privileges 
	3. Assign NTFS Permissions 
	4. Configure ASP.NET to Run Using the New Account 

	How To: Use Forms Authentication with Active Directory
	Requirements 
	Summary 
	1. Create a Web Application with a Logon Page 
	2. Configure the Web Application for Forms Authentication 
	3. Develop LDAP Authentication Code to Look Up the User in Active Directory 
	4. Develop LDAP Group Retrieval Code to Look Up the User's Group Membership 
	5. Authenticate the User and Create a Forms Authentication Ticket 
	6. Implement an Authentication Request Handler to Construct  a GenericPrincipal Object 
	7. Test the Application 

	How To: Use Forms Authentication with SQL Server 2000
	Requirements 
	Summary 
	1. Create a Web Application with a Logon Page 
	2. Configure the Web Application for Forms Authentication 
	3. Develop Functions to Generate a Hash and Salt value 
	4. Create a User Account Database 
	5. Use ADO.NET to Store Account Details in the Database 
	6. Authenticate User Credentials Against the Database 
	7. Test the Application 
	Additional Resources 

	How To: Create GenericPrincipal Objects with Forms Authentication
	Requirements 
	Summary 
	1. Create a Web Application with a Logon Page 
	2. Configure the Web Application for Forms Authentication 
	3. Generate an Authentication Ticket for Authenticated Users 
	4. Construct GenericPrincipal and FormsIdentity Objects 
	5. Test the Application 
	Additional Resources 

	How To: Implement Kerberos Delegation for Windows 2000
	Notes 
	Requirements 
	Summary 
	1. Confirm that the Client Account is Configured for Delegation 
	2. Confirm that the Server Process Account is Trusted for Delegation 
	References 

	How To: Implement IPrincipal
	Requirements 
	Summary 
	1. Create a Simple Web Application 
	2. Configure the Web Application for Forms Authentication 
	3. Generate an Authentication Ticket for Authenticated Users 
	4. Create a Class that Implements and Extends IPrincipal 
	5. Create the CustomPrincipal Object 
	5. Test the Application 
	Additional Resources 

	How To: Create a DPAPI Library
	Notes 
	Requirements 
	Summary 
	1. Create a C# Class Library 
	2. Strong Name the Assembly (Optional) 
	References 

	How To: Use DPAPI (Machine Store) from ASP.NET
	Notes 
	Requirements 
	Summary 
	1. Create an ASP.NET Client Web Application 
	2. Test the Application 
	3. Modify the Web Application to Read an Encrypted Connection String  from Web.Config 
	References 

	How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services
	Notes 
	Why Use Enterprise Services? 
	Why Use a Windows Service? 
	Requirements 
	Summary 
	1. Create a Serviced Component that Provides Encrypt and Decrypt Methods 
	2. Call the Managed DPAPI Class Library 
	3. Create a Dummy Class that will Launch the Serviced Component 
	4. Create a Windows Account to Run the Enterprise Services Application and  Windows Service 
	5. Configure, Strong Name, and Register the Serviced Component 
	6. Create a Windows Service Application that will Launch the Serviced  Component 
	7. Install and Start the Windows Service Application 
	8. Write a Web Application to Test the Encryption and Decryption Routines 
	9. Modify the Web Application to Read an Encrypted Connection String from  an Application Configuration File   
	References 

	How To: Create an Encryption Library
	Requirements 
	Summary 
	1. Create a C# Class Library 
	2. Create a Console Test Application 
	References 

	How To: Store an Encrypted Connection String in the Registry
	Notes 
	Requirements 
	Summary 
	1. Store the Encrypted Data in the Registry 
	2. Create an ASP.NET Web Application 
	References 

	How To: Use Role-based Security with Enterprise Services
	Notes 
	Requirements 
	Summary 
	1. Create a C# Class Library Application to Host the Serviced Component 
	2. Create the Serviced Component 
	3. Configure the Serviced Component 
	4. Generate a Strong Name for the Assembly 
	5. Build the Assembly and Add it to the Global Assembly Cache 
	6. Manually Register the Serviced Component 
	7. Examine the Configured Application 
	8. Create a Test Client Application 

	How To: Call a Web Service Using Client Certificates from ASP.NET
	Why Use a Serviced Component? 
	Why is a User Profile Required? 
	Requirements 
	Summary 
	1. Create a Simple Web Service 
	2. Configure the Web Service Virtual Directory to Require Client Certificates 
	3. Create a Custom Account for Running the Serviced Component 
	4. Request a Client Certificate for the Custom Account 
	5. Test the Client Certificate Using a Browser 
	6. Export the Client Certificate to a File 
	7. Develop the Serviced Component Used to Call the Web Service 
	8. Configure and Install the Serviced Component 
	9. Develop a Web Application to Call the Serviced Component 
	Additional Resources 

	How To: Call a Web Service Using SSL
	Requirements 
	Summary 
	1. Create a Simple Web Service 
	2. Configure the Web Service Virtual Directory to Require SSL 
	3. Test the Web Service Using a Browser 
	4. Install the Certificate Authority's Certificate on the Client Computer 
	5. Develop a Web Application to Call the Web Service 
	Additional Resources 

	How To: Host a Remote Object in a Windows Service
	Notes 
	Requirements 
	Summary 
	1. Create the Remote Object Class 
	2. Create a Windows Service Host Application 
	3. Create a Windows Account to Run the Service 
	4. Install the Windows Service 
	5. Create a Test Client Application 
	References 

	How To: Set Up SSL on a Web Server
	Requirements 
	Summary 
	1. Generate a Certificate Request 
	2. Submit a Certificate Request 
	3. Issue the Certificate 
	4. Install the Certificate on the Web Server 
	5. Configure Resources to Require SSL Access 

	How To: Set Up Client Certificates
	Requirements 
	Summary 
	1. Create a Simple Web Application 
	2. Configure the Web Application to Require Client Certificates 
	3. Request and Install a Client Certificate 
	4. Verify Client Certificate Operation 
	Additional Resources 

	How To: Use IPSec to Provide Secure Communication Between Two Servers
	Notes 
	Requirements 
	Summary 
	1. Create an IP Filter 
	2. Create Filter Actions 
	3. Create Rules 
	4. Export the IPSec Policy to the Remote Computer  
	5. Assign Policies 
	6. Verify that it Works 
	Additional Resources 

	How To: Use SSL to Secure Communication with SQL Server 2000
	Notes 
	Requirements 
	Summary 
	1. Install a Server Authentication Certificate 
	2. Verify that the Certificate Has Been Installed 
	3. Install the Issuing CA's Certificate on the Client 
	4. Force All Clients to Use SSL 
	5. Allow Clients to Determine Whether to Use SSL 
	6. Verify that Communication is Encrypted 
	Additional Resources 


	References
	Base Configuration 
	Configuration Stores and Tools 
	Reference Hub 
	Searching the Knowledge Base 
	Tips 

	.NET Security 
	Hubs 

	Active Directory 
	Hubs 
	Key Notes 
	Articles 

	ADO.NET 
	Roadmaps and Overviews 
	Seminars and WebCasts 

	ASP.NET 
	Hubs 
	Roadmaps and Overviews 
	Knowledge Base 
	Articles 
	How Tos 
	Seminars and WebCasts 

	Enterprise Services 
	Knowledge Base 
	Roadmaps and Overviews 
	How Tos 
	FAQs 
	Seminars and WebCasts 

	IIS (Internet Information Server) 
	Hubs 

	Remoting 
	Roadmaps and Overviews 
	How Tos 
	Seminars and WebCasts 

	SQL Server 
	Hubs 
	Seminars and WebCasts 

	Visual Studio .NET 
	Hubs 
	Roadmaps and Overviews: 

	Web Services 
	Hubs 
	Roadmaps and Overviews 
	How Tos 
	Seminars and WebCasts 

	Windows 2000 
	Hubs 


	How Does It Work? 
	IIS and ASP.NET Processing 
	Application Isolation 
	The ASP.NET ISAPI Extension 
	IIS 6.0 and Windows .NET Server 

	ASP.NET Pipeline Processing 
	The Anatomy of a Web Request 
	Event Handling 
	Implementing a Custom HTTP Module 
	Implementing a Custom HTTP Handler 


	ASP.NET Identity Matrix 
	Cryptography and Certificates 
	Keys and Certificates 
	X.509 Digital Certificates 
	Certificate Stores 
	More Information 

	Cryptography 
	Technical Choices 
	Cryptography in .NET 

	Summary 

	.NET Web Application Security  
	Glossary 



