

Part Number: X08-90700

Course Number: 2310B

Released: 07/2002

Delivery Guide

Developing Microsoft®
ASP.NET Web
Applications Using
Visual Studio® .NET

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Course Number: 2310B
Part Number: X08-90700
Released: 07/2002

 Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET iii

Contents

Introduction
Course Materials..2
Prerequisites ..3
Course Outline...4
Setup..9
Microsoft Official Curriculum...10
Microsoft Certified Professional Program...12
Facilities ..15
Module 1: Overview of the Microsoft .NET Framework
Overview ...1
Lesson: Introduction to the .NET Framework ...2
Lesson: Overview of ASP.NET...12
Lesson: Overview of the Lab Application...17
Lesson: Resources ...23
Review...25
Module 2: Using Microsoft Visual Studio .NET
Overview ...1
Lesson: Overview of Visual Studio .NET ...2
Lesson: Creating an ASP.NET Web Application Project......................................22
Review...32
Lab 2: Using Microsoft Visual Studio .NET ...34
Module 3: Using Microsoft .NET-Based Languages
Overview ...1
Lesson: Overview of the .NET-Based Languages...2
Lesson: Comparison of the .NET-Based Languages ...12
Lesson: Creating a Component Using Visual Studio .NET...................................19
Review...29
Lab 3: Building a Microsoft Visual Studio .NET Component31
Module 4: Creating a Microsoft ASP.NET Web Form
Overview ...1
Lesson: Creating Web Forms ..2
Lesson: Using Server Controls ..12
Review...30
Lab 4: Creating a Microsoft ASP.NET Web Form ...32
Module 5: Adding Code to a Microsoft ASP.NET Web Form
Overview ...1
Lesson: Using Code-Behind Pages..2
Lesson: Adding Event Procedures to Web Server Controls8
Lesson: Using Page Events..21
Review...36
Lab 5: Adding Functionality to a Web Application ..39

iv Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET

Module 6: Tracing in Microsoft ASP.NET Web Applications
Overview ...1
Lesson: Understanding Tracing...2
Lesson: Remote Debugging...18
Review...21
Lab 6: Tracing in Microsoft ASP.NET Web Applications....................................23
Module 7: Validating User Input
Overview ...1
Lesson: Overview of User Input Validation ..2
Lesson: Using Validation Controls..8
Lesson: Page Validation ..28
Review...34
Lab 7: Validating User Input ...36
Module 8: Creating User Controls
Overview ...1
Lesson: Adding User Controls to an ASP.NET Web Form.....................................2
Lesson: Creating User Controls...12
Review...18
Lab 8: Creating User Controls...20
Module 9: Accessing Relational Data Using Microsoft Visual Studio
.NET
Overview ...1
Lesson: Overview of ADO.NET ...2
Lesson: Creating a Connection to a Database ...9
Lesson: Displaying a DataSet in a List-Bound Control...20
Review...29
Lab 9: Accessing Relational Data Using Microsoft Visual Studio .NET.............31
Module 10: Accessing Data with Microsoft ADO.NET
Overview ...1
Lesson: Introduction to Using ADO.NET ...2
Lesson: Connecting to a Database ...8
Lesson: Accessing Data with DataSets..16
Lesson: Using Multiple Tables..36
Lesson: Accessing Data with DataReaders ...46
Review...58
Lab 10: Accessing Data with Microsoft ADO.NET..60
Module 11: Calling Stored Procedures with Microsoft ADO.NET
Overview ...1
Lesson: Overview of Stored Procedures..2
Lesson: Calling Stored Procedures..9
Review...22
Lab 11: Calling Stored Procedures with Microsoft ADO.NET.............................24

 Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET v

Module 12: Reading and Writing XML Data
Overview ...1
Lesson: Overview of XML Architecture in ASP.NET..2
Lesson: XML and the DataSet Object ...10
Lesson: Working with XML Data ...25
Lesson: Using the XML Web Server Control ...35
Review...41
Lab 12: Reading XML Data ..43
Module 13: Consuming and Creating XML Web Services
Overview ...1
Lesson: Overview of Using XML Web Services ..2
Lesson: Calling an XML Web Service Using HTTP ..13
Lesson: Using a Proxy to Call an XML Web Service ...18
Lesson: Creating an XML Web Service..30
Review...40
Lab 13: Consuming and Creating XML Web Services ...42
Module 14: Managing State
Overview ...1
Lesson: State Management..2
Lesson: Application and Session Variables...13
Lesson: Cookies and Cookieless Sessions...22
Review...31
Lab 14: Storing Application and Session Data..33
Module 15: Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application
Overview ...1
Lesson: Using the Cache Object..2
Lesson: Using ASP.NET Output Caching...14
Lesson: Configuring an ASP.NET Web Application ..23
Lesson: Deploying an ASP.NET Web Application...41
Review...48
Lab 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web
Application ..50
Course Evaluation ...69
Module 16: Securing a Microsoft ASP.NET Web Application
Overview ...1
Lesson: Web Application Security Overview ...2
Lesson: Working with Windows-Based Authentication13
Lesson: Working with Forms-Based Authentication...23
Lesson: Overview of Microsoft Passport Authentication......................................34
Review...37
Lab 16: Securing a Microsoft ASP.NET Web Application...................................39

vi Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET

Module 17: Review
Overview ...1
Content Review ...2
Lab 17: Review Game ...4
Course Evaluation..6
Appendix A: Lab Recovery
Appendix B: Debugging with Microsoft Visual Studio .NET
Appendix C: Using Templates with List-Bound Controls
Appendix D: XML Web Service Responses

 Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET vii

About This Course
This section provides you with a brief description of the course, audience,
suggested prerequisites, and course objectives.

This course provides students with the knowledge and skills that are needed to
develop Web applications by using Microsoft® Visual Studio® .NET and
Microsoft ASP.NET.

This course is designed for two types of students: beginner Web developers and
Microsoft Visual Basic® or C# developers who want to learn
Visual Studio .NET and ASP.NET:

 Beginner Web developer. These developers have minimal experience with
programming. However, they should know the basic constructs of
programming, such as loops and conditional statements. Beginning Web
developers need to have experience with Hypertext Markup Language
(HTML) and some scripting language, such as Visual Basic
Scripting Edition or Microsoft JScript®.
This audience includes both HTML developers and dynamic HTML
(DHTML) developers.

 Visual Basic developer. These developers have experience developing
Microsoft Windows® applications by using Visual Basic 6.

This course requires that students meet the following prerequisites:

 Knowledge of HTML or DHTML, including:

• Tables

• Images

• Forms
 Programming experience using Visual Basic .NET, including:

• Declaring variables

• Using loops

• Using conditional statements

The completion of either Course 2559, Introduction to Visual Basic .NET
Programming with Microsoft .NET, or Course 2373, Programming with
Microsoft Visual Basic .NET, satisfies the preceding prerequisite skills
requirements.

After completing this course, the student will be able to:

 Describe the Microsoft .NET Framework and ASP.NET.
 Create an ASP.NET Web application project by using Visual Studio.NET.
 Create a component in Visual Basic .NET or C#.
 Add server controls to an ASP.NET page.
 Add functionality to server controls that are located on an ASP.NET page.
 Use the tracing features of Visual Studio .NET.
 Use validation controls to validate user input.

Description

Audience

Student prerequisites

Course objectives

viii Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET

 Create a user control.
 Access data by using the built-in data access tools that are in

Visual Studio .NET.
 Use Microsoft ADO.NET to access data in an ASP.NET Web application.
 Call a stored procedure from an ASP.NET Web application.
 Access Extensible Markup Language (XML) data and read it into a DataSet

object.
 Consume and create an XML Web service from an ASP.NET Web

application.
 Store ASP.NET Web application and session data by using a variety of

methods.
 Configure and deploy an ASP.NET Web application.
 Secure an ASP.NET Web application by using a variety of technologies.

There are four appendices included with Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET:

 Appendix A, “Lab Recovery”
This appendix provides the steps that are required to recover from an
incomplete or broken lab solution.

 Appendix B, “Debugging with Microsoft Visual Studio .NET”
This appendix is an optional lesson for Module 6, “Tracing in Microsoft
ASP.NET Web Applications.” This Appendix is a lesson that includes three
topic slides and one demonstration; it should take 30 minutes to deliver this
appendix.

 Appendix C, “Using Templates with List-Bound Controls”
This appendix is an optional lesson for Module 9, “Accessing Relational
Data Using Microsoft Visual Studio .NET.” This appendix lesson includes
two topic slides and one demonstration; it should take 15 minutes to deliver
this appendix.

 Appendix D, “XML Web Service Responses”
This appendix is an optional lesson for Module 13, “Consuming and
Creating XML Web Services.” This lesson includes three topic slides and
one demonstration; it should take 20 minutes to deliver this appendix.

Appendices

 Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET ix

Course Timing
The following schedule is an estimate of the course timing. Your timing may
vary.

Day 1
Start End Module

9:00 9:30 Introduction

9:30 10:30 Module 1: Overview of the Microsoft .NET Framework

10:30 10:45 Break

10:45 11:45 Module 2: Using Microsoft Visual Studio .NET

11:45 12:00 Lab 2: Using Microsoft Visual Studio .NET

12:00 1:00 Lunch

1:00 1:45 Module 3: Using Microsoft .NET-Based Languages

1:45 2:15 Lab 3: Building a Microsoft Visual Studio .NET Component

2:15 2:30 Break

2:30 3:45 Module 4: Creating a Microsoft ASP.NET Web Form

3:45 4:15 Lab 4: Creating a Microsoft ASP.NET Web Form

Day 2
Start End Module

9:00 9:30 Day 1 review

9:30 10:45 Module 5: Adding Code to a Microsoft ASP.NET Web Form

10:45 11:00 Break

11:00 11:45 Lab 5: Adding Functionality to a Web Application

11:45 12:45 Lunch

12:45 1:30 Module 6: Tracing in Microsoft ASP.NET Web Applications

1:30 2:00 Lab 6: Tracing in Microsoft ASP.NET Web Applications

2:00 2:15 Break

2:15 3:15 Module 7: Validating User Input

3:15 3:30 Lab 7: Validating User Input

3:30 4:15 Module 8: Creating User Controls

4:15 4:45 Lab 8: Creating User Controls

x Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET

Day 3
Start End Module

9:00 9:30 Day 2 review

9:30 10:30 Module 9: Accessing Relational Data Using Microsoft
Visual Studio .NET

10:30 10:45 Break

10:45 11:45 Module 9 (continued)

11:45 12:15 Lab 9: Accessing Relational Data Using Microsoft Visual Studio
.NET

12:15 1:15 Lunch

1:15 2:45 Module 10: Accessing Data with Microsoft ADO.NET

2:45 3:15 Lab 10: Accessing Data with Microsoft ADO.NET

3:15 3:30 Break

3:30 4:15 Module 11: Calling Stored Procedures with Microsoft ADO.NET

4:15 4:45 Lab 11: Calling Stored Procedures with Microsoft ADO.NET

Day 4
Start End Module

9:00 9:30 Day 3 review

9:30 10:45 Module 12: Reading and Writing XML Data

10:45 11:00 Break

11:00 11:30 Lab 12: Reading XML Data

11:30 12:30 Lunch

12:30 1:45 Module 13: Consuming and Creating XML Web Services

1:45 2:30 Lab 13: Consuming and Creating XML Web Services

2:30 2:45 Break

2:45 3:45 Module 14: Managing State

3:45 5:15 Lab 14: Storing Application and Session Data

 Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET xi

Day 5
Start End Module

9:00 9:30 Day 4 review

9:30 10:30 Module 15: Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application

10:30 10:45 Break

10:45 11:45 Module 15: (continued)

11:45 12:45 Lunch

12:45 2:15 Lab 15: Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application

2:15 2:30 Break

2:30 3:45 Module 16: Securing a Microsoft ASP.NET Web Application

3:45 4:30 Lab 16: Securing a Microsoft ASP.NET Web Application

4:30 4:45 Module 17: Review

4:45 5:15 Lab 17: Review Game

xii Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET

Trainer Materials Compact Disc Contents
The Trainer Materials compact disc contains the following files and folders:

 Autorun.exe. When the compact disc is inserted into the compact disc drive,
or when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials or Trainer Materials
compact disc.

 Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

 Default.htm. This file opens the Trainer Materials Web page.
 Readme.txt. This file explains how to install the software for viewing the

Trainer Materials compact disc and its contents and how to open the Trainer
Materials Web page.

 2310B_ms.doc. This file is the Manual Classroom Setup Guide. It contains
the steps for manually installing the classroom computers.

 2310B_sg.doc. This file is the Automated Classroom Setup Guide. It
contains a description of classroom requirements, classroom configuration,
instructions for using the automated classroom setup scripts, and the
Classroom Setup Checklist.

 Powerpnt. This folder contains the Microsoft PowerPoint® slides that are
used in this course.

 Pptview. This folder contains the Microsoft PowerPoint Viewer 97, which
can be used to display the PowerPoint slides if Microsoft PowerPoint 2002
is not available. Do not use this version in the classroom.

 Setup. This folder contains the files that install the course and related
software to computers in a classroom setting.

 StudentCD. This folder contains the Web page that provides students with
links to resources pertaining to this course, including additional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

 Tools. This folder contains files and utilities that are used to complete the
setup of the instructor computer.

 Webfiles. This folder contains the files that are required to view the course
Web page. To open the Web page, open Windows Explorer and, in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

 Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET xiii

Student Materials Compact Disc Contents
The Student Materials compact disc contains the following files and folders:

 Autorun.exe. When the compact disc is inserted into the CD-ROM drive, or
when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials compact disc.

 Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

 Default.htm. This file opens the Student Materials Web page. It provides
students with resources pertaining to this course, including additional
reading, review and lab answers, lab files, multimedia presentations, and
course-related Web sites.

 Readme.txt. This file explains how to install the software for viewing the
Student Materials compact disc and its contents and how to open the
Student Materials Web page.

 2310B_ms.doc. This file is the Manual Classroom Setup Guide. It contains a
description of classroom requirements, classroom setup instructions, and the
classroom configuration.

 Democode. This folder contains demonstration code.
 Flash. This folder contains the installer for the Macromedia Flash 5 browser

plug-in.
 Fonts. This folder contains the fonts that are required to view the

PowerPoint presentation and Web-based materials.
 Labfiles. This folder contains files that are used in the hands-on labs. These

files may be used to prepare the student computers for the hands-on labs.
 Media. This folder contains files that are used in multimedia presentations

for this course.
 Mplayer. This folder contains the setup file to install Microsoft

Windows Media™ Player.
 Practices. This folder contains files that are used in the hands-on practices.
 Webfiles. This folder contains the files that are required to view the course

Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

 Wordview. This folder contains the Word Viewer that is used to view any
Word document (.doc) files that are included on the compact disc.

xiv Developing Microsoft® ASP.NET Web Applications Using Visual Studio® .NET

Document Conventions
The following conventions are used in course materials to distinguish elements
of the text.

Convention Use

bold Represents commands, command options, and syntax that

must be typed exactly as shown. It also indicates
commands on menus and buttons, dialog box titles and
options, and icon and menu names.

italic In syntax statements or descriptive text, indicates argument
names or placeholders for variable information. Italic is
also used for introducing new terms, for book titles, and
for emphasis in the text.

Title Capitals Indicate domain names, user names, computer names,
directory names, and folder and file names, except when
specifically referring to case-sensitive names. Unless
otherwise indicated, you can use lowercase letters when
you type a directory name or file name in a dialog box or
at a command prompt.

ALL CAPITALS Indicate the names of keys, key sequences, and key
combinations — for example, ALT+SPACEBAR.

monospace Represents code samples or examples of screen text.

| In syntax statements, separates an either/or choice.

 Indicates a procedure with sequential steps.

... Represents an omitted portion of a code sample.

Contents

Introduction 1

Course Materials 2

Prerequisites 3

Course Outline 4

Setup 9

Microsoft Official Curriculum 10

Microsoft Certified Professional Program 12

Facilities 15

Introduction

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Introduction iii

Instructor Notes
The Introduction module provides students with an overview of the course
content, materials, and logistics for Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

To teach this module, you need the following materials:

 Microsoft® PowerPoint® file 2310B_00.ppt

To prepare for this module, you must:

 Complete the Course Preparation Checklist that is included with the trainer
course materials.

 Read all of the materials for this module.

Presentation:
30 minutes

Required materials

Preparation tasks

iv Introduction

How to Teach This Module
This section contains information that will help you to teach this module.

Welcome students to the course and introduce yourself. Provide a brief
overview of your background to establish credibility.

Ask students to introduce themselves and provide their background, product
experience, and expectations of the course.

Record student expectations on a whiteboard or flip chart that you can reference
later in class.

Tell students that everything they will need for this course is provided at their
desk.

Have students write their names on both sides of the name card.

Explain the purpose of all the materials that will be used in this course.

Describe the contents of the student workbook and the Student Materials
compact disc.

Tell students where they can send comments and feedback on this course.

Demonstrate how to open the Web page that is provided on the Student
Materials compact disc by double-clicking Autorun.exe or Default.htm in the
StudentCD folder on the Trainer Materials compact disc.

Describe the prerequisites for this course. This is an opportunity for you to
identify students who may not have the appropriate background or experience
to attend this course.

Briefly describe each module and what students will learn.

Explain how this course will meet students’ expectations by relating the
information covered in individual modules to their expectations.

Describe any necessary setup information for the course, including course files
and classroom configuration.

Explain the Microsoft Official Curriculum (MOC) program and present the list
of additional recommended courses.

Refer students to the Microsoft Official Curriculum Web page at
http://www.microsoft.com/traincert for information about curriculum paths.

Inform students about the Microsoft Certified Professional (MCP) program, any
certification exams that are related to this course, and the various certification
options.

Explain the class hours, extended building hours for labs, parking, restroom
location, meals, phones, message posting, and where smoking is or is not
allowed.

Let students know if your facility has Internet access that is available for them
to use during class breaks.

Also, make sure that the students are aware of the recycling program if one is
available.

Introduction

Course Materials

Prerequisites

Course Outline

Setup

Microsoft Official
Curriculum

Microsoft Certified
Professional Program

Facilities

 Introduction 1

Introduction

Name

Company affiliation

Title/function

Job responsibility

Programming, networking, and database experience

ASP.NET and Visual Studio .NET experience

Expectations for the course

*****************************ILLEGAL FOR NON-TRAINER USE******************************

2 Introduction

Course Materials

Name card

Student workbook

Student Materials compact disc

Course evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The following materials are included with your kit:

 Name card. Write your name on both sides of the name card.
 Student workbook. The student workbook contains the material that is

covered in class, in addition to the hands-on lab exercises.
 Student Materials compact disc. The Student Materials compact disc

contains the Web page that provides you with links to resources pertaining
to this course, including additional readings, review and lab answers, lab
files, multimedia presentations, and course-related Web sites.

To open the Web page, insert the Student Materials compact disc into
the CD-ROM drive, and then in the root directory of the compact disc,
double-click Autorun.exe or Default.htm.

 Course evaluation. To provide feedback on the course, training facility, and
instructor, you will have the opportunity to complete an online evaluation
near the end of the course.

To provide additional comments or inquire about the Microsoft Certified
Professional program, send an e-mail message to mcphelp@microsoft.com.

Note

 Introduction 3

Prerequisites

Knowledge of HTML or DHTML, including:
Using tables
Displaying images
Using forms

Programming experience using Visual Basic .NET or
C#, including:

Declaring variables
Using loops
Using conditional statements

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This course requires that you meet the following prerequisites:

 Knowledge of Hypertext Markup Language (HTML) or dynamic HTML
(DHTML), including:

• Tables

• Images

• Forms
 Programming experience using Microsoft Visual Basic® .NET, including:

• Declaring variables

• Using loops

• Using conditional statements

The completion of either Course 2559, Introduction to Visual Basic .NET
Programming with Microsoft .NET, or Course 2373, Programming with
Microsoft Visual Basic .NET, satisfies the preceding prerequisite skills.

 Programming experience using Microsoft Visual C#™ .NET, including:

• Declaring variables

• Using loops

• Using conditional statements

The completion of either Course 2609, Introduction to C# Programming with
Microsoft .NET, or Course 2124, Programming with C#, satisfies the preceding
prerequisite skills.

4 Introduction

Course Outline

Module 1: Overview of the Microsoft .NET Framework

Module 2: Using Microsoft Visual Studio .NET

Module 3: Using Microsoft .NET–Based Languages

Module 4: Creating a Microsoft ASP.NET Web Form

Module 5: Adding Code to a Microsoft ASP.NET Web
Form

Module 6: Tracing in Microsoft ASP.NET Web
Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 1, “Overview of the Microsoft .NET Framework,” discusses how the
.NET Framework represents a major change in the way that Web applications
are built and run. After completing this module, you will have a greater
understanding of the .NET Framework in general and Microsoft ASP.NET
specifically. At the end of this module, you will have the opportunity to
examine the complete ASP.NET Web application that you will build in the labs
throughout this course.

Module 2, “Using Microsoft Visual Studio .NET,” describes how to use the
primary features of Microsoft Visual Studio® .NET to create ASP.NET Web
applications. After completing this module, you will be able to navigate the
Visual Studio .NET integrated development environment (IDE), and be able to
create, build, and view an ASP.NET Web application project.

Module 3, “Using Microsoft .NET–Based Languages,” introduces the different
languages that are available for use when developing .NET-based Web
applications. After completing this module, you will be able to identify the
languages that support the .NET Framework, and be able to choose an
appropriate development language for your needs.

Module 4, “Creating a Microsoft ASP.NET Web Form,” describes how to
create and populate Web Forms. Web Forms are programmable Web pages that
serve as the user interface (UI) for an ASP.NET Web application project. After
completing this module, you will be able to add a Web Form to an ASP.NET
Web application project and use the Visual Studio .NET toolbox to add server
controls to a Web Form.

 Introduction 5

Module 5, “Adding Code to a Microsoft ASP.NET Web Form,” describes the
various methods that can be used to add code to your ASP.NET Web
application. After completing this module, you will be able to create event
procedures for server controls, use code-behind pages in a Web application, and
use Page events in a Web application.

Module 6, “Tracing in Microsoft ASP.NET Web Applications,” describes how
to catch runtime errors by using the Trace object. After completing this
module, you will be able to use the Trace object to view runtime information
about a Web application.

6 Introduction

Course Outline (continued)

Module 7: Validating User Input

Module 8: Creating User Controls

Module 9: Accessing Relational Data Using Microsoft
Visual Studio .NET

Module 10: Accessing Data with Microsoft ADO.NET

Module 11: Calling Stored Procedures with Microsoft
ADO.NET

Module 12: Reading and Writing XML Data

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 7, “Validating User Input,” describes the input validation controls that
are available in ASP.NET, and describes how to add these controls to an
ASP.NET Web Form by using Visual Studio .NET. After completing this
module, you will be able to identify when input validation is appropriate, use
input validation controls to verify user input, and verify that all of the validation
controls on a page are valid.

Module 8, “Creating User Controls,” describes how user controls provide an
easy way to reuse common UI components and code throughout an ASP.NET
Web application. After completing this module, you will be able to create a user
control, and then add that user control to an ASP.NET Web Form.

Module 9, “Accessing Relational Data Using Microsoft Visual Studio .NET,”
describes what Microsoft ADO.NET is, and describes how you can incorporate
ADO.NET into an ASP.NET Web application by using the data tools that are
built into Visual Studio .NET. After completing this module, you will be able to
create a connection to a database by using ADO.NET, and then display data in a
Web Form.

Module 10, “Accessing Data with Microsoft ADO.NET,” describes how to
manually add data access to your Web application. After completing this
module, you will be able to programmatically connect to a Microsoft
SQL Server™ database by using SqlConnection and SqlDataAdapter objects,
store multiple tables of data in a DataSet object, and then display that data in
DataGrid controls. Finally, you will be able to manually read data from a
SQL Server database by using a SqlDataReader object, and bind a list-bound
server control to a DataSet, or to a DataReader control.

 Introduction 7

Module 11, “Calling Stored Procedures with Microsoft ADO.NET,” describes
how to accomplish data access tasks from your Web application by using stored
procedures. After completing this module, you will be able to explain the
reasons for using stored procedures with a database and be able to call stored
procedures.

Module 12, “Reading and Writing XML Data,” describes how to read, write,
and display Extensible Markup Language (XML) data. After completing this
module, you will be able to read and write XML data into a DataSet object.
You will also be able to store, retrieve, and transform XML data by using
XmlDataDocument and XslTransform objects, and be able to use the XML
Web server control to load and save XML data.

8 Introduction

Course Outline (continued)

Module 13: Consuming and Creating XML Web
Services

Module 14: Managing State

Module 15: Configuring, Optimizing, and Deploying a
Microsoft ASP.NET Web Application

Module 16: Securing a Microsoft ASP.NET Web
Application

Module 17: Review

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 13, “Consuming and Creating XML Web Services,” describes how to
call an XML Web service directly with a browser, and programmatically call an
XML Web service from a Web Form. Also covered in this module is the
creation and publishing of XML Web services by using Visual Studio .NET.
After completing this module, you will be able to call an XML Web service
directly from a browser, and be able to create a Web reference to
programmatically call an XML Web service from a Web Form. You will also
be able to build and publish an XML Web service.

Module 14, “Managing State,” describes how to maintain state in an ASP.NET
Web application. State is the ability to retain user information in a Web
application. After completing this module, you will be able to manage state in
an ASP.NET Web application by using application and session variables. You
will also be able to use cookies and cookieless sessions to manage state.

Module 15, “Configuring, Optimizing, and Deploying a Microsoft ASP.NET
Web Application,” describes how to set up and deploy your ASP.NET Web
application. After completing this module, you will be able to use the Cache
object and page output caching, and be able to configure a Web application by
using the Machine.config and Web.config files. You will also be able to deploy
an ASP.NET Web application.

Module 16, “Securing a Microsoft ASP.NET Web Application,” describes how
to use Microsoft Windows®-based and Forms-based authentication. A
discussion of Microsoft Passport authentication is also included. After
completing this module, you will be able to secure ASP.NET Web applications
by using Windows-based or Forms-based authentication.

Module 17, “Review,” consists of a review of the main concepts that you have
learned throughout this course. In this module, you will have an opportunity to
apply your new knowledge in Lab 17, which is an interactive review game.

 Introduction 9

Setup
Windows XP Professional Edition

Internet Information Services

Internet Explorer 6

SQL Server 2000 Developer Edition

SQL Server 2000 Service Pack 2

Visual Studio .NET Enterprise Developer Edition

Microsoft .NET Framework Service Pack 1

Macromedia Flash Player 5

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The following software will be used in the classroom:

 Windows XP Professional Edition

• Internet Information Services (IIS)

• Microsoft Internet Explorer 6
 SQL Server 2000 Developer Edition

• SQL Server 2000 Developer Service Pack 2
 Visual Studio .NET Enterprise Developer Edition

• Microsoft .NET Framework Service Pack 1
 Macromedia Flash Player 5

There are files that are associated with the labs in this course. The lab files are
located in the install folder\Labfiles\LabXXLL folder on the student computers
where XX is the Module number and LL is the language used, either VB for
Visual Basic .NET or CS for C#.

The classroom is configured in the workgroup model. Each student computer in
the classroom has Windows XP Professional installed as a member of that
workgroup.

Software

Course files

Classroom setup

10 Introduction

Microsoft Official Curriculum
2310B: Developing Microsoft ASP.NET

Web Applications Using Visual Studio .NET
2310B: Developing Microsoft ASP.NET

Web Applications Using Visual Studio .NET

http://www.microsoft.com/traincert

2389:
Programming
with ADO.NET

2389:
Programming
with ADO.NET

Data Access

Application Development

1905: Building
XML-Based

Web Applications

1905: Building
XML-Based

Web Applications

2663: Programming
with XML in the

Microsoft .NET Framework

2663: Programming
with XML in the

Microsoft .NET Framework

2300: Developing Secure
Web Applications

2300: Developing Secure
Web Applications

2524: Developing
XML Web Services Using

Microsoft ASP.NET

2524: Developing
XML Web Services Using

Microsoft ASP.NET

2500: Introduction
to XML and the

Microsoft .NET Platform

2500: Introduction
to XML and the

Microsoft .NET Platform

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Training and Certification develops Microsoft Official Curriculum
(MOC), including MSDN® Training, for computer professionals who design,
develop, support, implement, or manage solutions by using Microsoft products
and technologies. These courses provide comprehensive skills-based training in
instructor-led and online formats.

After you complete this course, there are several follow-up courses that are
available that will allow you to focus in greater depth on subjects that are
covered in this course.

For more information about the curriculum paths, see the Microsoft Official
Curriculum Web page at http://www.microsoft.com/traincert/training/moc.

The following table lists courses would be an appropriate continuation of the
data access sections of this course.

Course Title and description

1905 Building XML-Based Web Applications,

is a five-day course that covers how to structure and validate data in a
document by using document type definitions (DTDs). Students also learn
how to get data from a database by using XML, and how to present that
data by using the Extensible Stylesheet Language (XSL).

2389 Programming with ADO.NET,
is a five-day course that covers accessing data sources from Windows-
based applications, Web applications, and Web services by using
ADO.NET.

Introduction

Additional
recommended courses

Data access

 Introduction 11

(continued)
Course Title and description

2500 Introduction to XML and the Microsoft .NET Platform,

is a two-day course that provides a technological overview of the structure
and programming techniques of XML. This course shows where XML
figures into the Microsoft .NET vision and into the larger world of
distributed standards-based computing.

2663 Programming with XML in the Microsoft .NET Framework,
is a three-day course for programmers who have some experience with
XML. This course covers programming that uses XML in the
.NET Framework.

The following table lists courses would be an appropriate continuation of the
Web application development sections of this course.

Course Title and description

2300 Developing Secure Web Applications,

is a three-day course that teaches Web developers the knowledge and skills
that are required to build Web applications by using secure coding
techniques. This course also covers the security features that are available
in Windows XP, IIS, ASP.NET, and ADO.NET. Students learn how to
identify Web site security vulnerabilities and understand the trade-offs
between functionality and speed when choosing the appropriate security
mechanisms. Students will also learn how to use the security features that
are available in Windows 2000, SQL Server, ASP.NET, and ADO.NET.

2524 Developing XML Web Services Using Microsoft ASP.NET,
is a three-day course that covers how to build and deploy Web services by
using Visual Studio .NET.

Other related courses may become available in the future, so for up-to-date
information about recommended courses, visit the Training and Certification
Web site at http://www.microsoft.com/traincert.

Application
development

Microsoft Training and
Certification information

12 Introduction

Microsoft Certified Professional Program

http://www.microsoft.com/traincert

Exam number and titleExam number and titleExam number and title Core exam for the
following tracks

Core exam for the Core exam for the
following tracksfollowing tracks

70-305: Developing and Implementing Web
Applications with Microsoft Visual Basic
.NET and Microsoft Visual Studio .NET

70-305: Developing and Implementing Web
Applications with Microsoft Visual Basic
.NET and Microsoft Visual Studio .NET MCSD & MCADMCSD & MCAD

70-315: Developing and Implementing Web
Applications with Microsoft Visual C# .NET

and Microsoft Visual Studio .NET

70-315: Developing and Implementing Web
Applications with Microsoft Visual C# .NET

and Microsoft Visual Studio .NET
MCSD & MCADMCSD & MCAD

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Training and Certification offers a variety of certification credentials
for developers and IT professionals. The Microsoft Certified Professional
program is the leading certification program for validating your experience and
skills, keeping you competitive in today’s changing business environment.

The following exams relate to ASP.NET Web Application design:

 Exam 70-305: Developing and Implementing Web Applications with
Microsoft Visual Basic .NET and Microsoft Visual Studio .NET, measures
your ability to develop and implement Web applications with Web Forms,
ASP.NET, and the .NET Framework.
When you pass the Developing and Implementing Web Applications with
Microsoft Visual Basic .NET and Microsoft Visual Studio .NET exam, you
achieve Microsoft Certified Professional status. You also earn credit toward
the following certifications:

• Core credit toward Microsoft Certified Solution Developer for
Microsoft .NET certification.

• Core or elective credit toward Microsoft Certified Application
Developer for Microsoft .NET certification.

 Exam 70-315: Developing and Implementing Web Applications with
Microsoft Visual C# .NET and Microsoft Visual Studio .NET, measures your
ability to develop and implement Web applications with Web Forms,
ASP.NET, and the .NET Framework.
When you pass the Developing and Implementing Web Applications with
Microsoft Visual C# .NET and Microsoft Visual Studio .NET exam, you
achieve Microsoft Certified Professional status. You also earn credit toward
the following certifications:

• Core credit toward Microsoft Certified Solution Developer for
Microsoft .NET certification.

• Core or elective credit toward Microsoft Certified Application
Developer (MCAD) for Microsoft .NET certification.

Introduction

Related certification
exams

 Introduction 13

The Microsoft Certified Professional program includes the following
certifications.

 MCAD
The Microsoft Certified Application Developer (MCAD) for Microsoft
.NET credential is appropriate for professionals who use Microsoft
technologies to develop and maintain department-level applications,
components, Web or desktop clients, or back-end data services, or who
work in teams developing enterprise applications. The scope of
responsibility of MCADs is a subset of MCSDs.

 MCSD
The Microsoft Certified Solution Developer (MCSD) credential is the
premier certification for professionals who design and develop leading-edge
business solutions with Microsoft development tools, technologies,
platforms, and the Microsoft Windows DNA architecture. The types of
applications MCSDs can develop include desktop applications and multi-
user, Web-based, N-tier, and transaction-based applications. The credential
covers job tasks ranging from analyzing business requirements to
maintaining solutions.

 MCSA on Microsoft Windows 2000
The Microsoft Certified Systems Administrator (MCSA) certification is
designed for professionals who implement, manage, and troubleshoot
existing network and system environments based on Microsoft
Windows 2000 platforms, including the Windows .NET Server family.
Implementation responsibilities include installing and configuring parts of
the systems. Management responsibilities include administering and
supporting the systems.

 MCSE on Microsoft Windows 2000
The Microsoft Certified Systems Engineer (MCSE) credential is the premier
certification for professionals who analyze the business requirements and
design and implement the infrastructure for business solutions based on the
Microsoft Windows 2000 platform and Microsoft server software, including
the Windows .NET Server family. Implementation responsibilities include
installing, configuring, and troubleshooting network systems.

 MCDBA on Microsoft SQL Server 2000
The Microsoft Certified Database Administrator (MCDBA) credential is the
premier certification for professionals who implement and administer
Microsoft SQL Server databases. The certification is appropriate for
individuals who derive physical database designs, develop logical data
models, create physical databases, create data services by using
Transact-SQL, manage and maintain databases, configure and manage
security, monitor and optimize databases, and install and configure
SQL Server.

MCP certifications

14 Introduction

 MCP
The Microsoft Certified Professional (MCP) credential is for individuals
who have the skills to successfully implement a Microsoft product or
technology as part of a business solution in an organization. Hands-on
experience with the product is necessary to successfully achieve
certification.

 MCT
Microsoft Certified Trainers (MCTs) demonstrate the instructional and
technical skills that qualify them to deliver Microsoft Official Curriculum
through Microsoft Certified Technical Education Centers (Microsoft
CTECs).

The certification requirements differ for each certification category and are
specific to the products and job functions addressed by the certification. To
become a Microsoft Certified Professional, you must pass rigorous certification
exams that provide a valid and reliable measure of technical proficiency and
expertise.

See the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert.
You can also send an e-mail to mcphelp@microsoft.com if you have specific
certification questions.

MOC and MSDN Training Curriculum can help you develop the skills that you
need to do your job. They also complement the experience that you gain while
working with Microsoft products and technologies. However, no one-to-one
correlation exists between MOC and MSDN Training courses and MCP exams.
Microsoft does not expect or intend for the courses to be the sole preparation
method for passing MCP exams. Practical product knowledge and experience is
also necessary to pass the MCP exams.

To help prepare for the MCP exams, use the preparation guides that are
available for each exam. Each Exam Preparation Guide contains exam-specific
information, such as a list of the topics on which you will be tested. These
guides are available on the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert.

Certification
requirements

For More Information

Acquiring the skills
tested by an MCP exam

 Introduction 15

Facilities

Class hours
Building hours
Parking
Restrooms
Meals
Phones
Messages
Smoking
Recycling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Introduction to the .NET Framework 2

Lesson: Overview of ASP.NET 12

Lesson: Overview of the Lab Application 17

Lesson: Resources 23

Review 25

Module 1: Overview of
the Microsoft .NET
Framework

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 1: Overview of the Microsoft .NET Framework iii

Instructor Notes
In this module, the students will learn about the Microsoft® .NET Framework
and Microsoft ASP.NET. The students will then have an opportunity to
examine the complete Web application that they will build in the labs
throughout the course.

After completing this module, students will be able to:

 Explain the advantages of using the .NET Framework.
 Understand the key functionality and purpose of ASP.NET in developing

Web applications.
 Understand the basic functionality of the Web site that you will build in the

labs in Course 2310B.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_02.ppt
 Multimedia file 2310B_01A001

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices and the lab.
 Practice the steps for the instructor-led demonstrations.
 Review the multimedia demonstration.
 Review the Microsoft Visual Studio® .NET IDE and Dynamic Help.

Presentation:
60 minutes

Lab:
00 minutes

Required materials

Preparation tasks

iv Module 1: Overview of the Microsoft .NET Framework

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Introduction to the .NET Framework
This section describes the instructional methods for teaching each topic in this
lesson.

The key point about the .NET Framework is that it is a platform- and
device-independent system that is designed to work over the Internet.

Do not cover the .NET Framework components in depth here because there is a
slide for that later in the course.

With Microsoft .NET, developing Web applications is much easier. With .NET,
the students will have:

 Communication with Extensible Markup Language (XML).
 An infrastructure that is already built.
 The flexibility of using the language the developer is most familiar with.

 Ask students to make a guess about the number of methods and properties in

various layers (2800 method calls for the Microsoft Win32® API and
184,000 method calls for the .NET Framework.)

 Talk about how the user interface (UI) and ASP.NET are below the
languages, meaning there is one forms model for all languages.

Discuss the benefits of using the .NET Framework while developing Web
applications.

Inform the students that if they have the .NET Framework installed on their
computers, they can build programs without Visual Studio .NET (for instance,
by using Microsoft Notepad only). However, Visual Studio .NET is a great
development environment that makes developing Web applications a rich
experience for the developers. Visual Studio .NET is designed to support the
developer all the way through the development process.

Lesson: Overview of ASP.NET
ASP.NET is the successor to Active Server Pages (ASP), but it is designed for
more browser types, more device types, and more languages.

This topic focuses on what constitutes an ASP.NET Web application. Discuss
the different parts of ASP.NET Web application.

There is no sound in this animation.

Explain the steps as the multimedia runs:

 First, the request shows that the page is compiled and then processed.
 Second, the request shows that the page is directly processed.

What is the .NET
Framework?

What Problems Does
.NET Solve?

The .NET Framework
Components

Benefits of using the
.NET Framework

Visual Studio .NET: The
Tool for .NET
Development

What is ASP.NET?

ASP.NET Web
Application

Multimedia: ASP.NET
Execution Model

 Module 1: Overview of the Microsoft .NET Framework v

Lesson: Overview of the Lab Application
This list gives a sense of the scale of the Web application project that the
students will create by the end of the course.

Throughout Course 2310B, students will have the choice between
developing lab solutions by using Microsoft Visual Basic® .NET or C#.
Solutions are provided for both languages.

The lab application is an ASP.NET Web application named Coho Winery.
Coho Winery is a fictitious company that offers several benefits to its
employees. The benefits proposed are Life Insurance, Retirement, Medical, and
Dental benefits. The lab application is composed of several Web Forms, a
component, two user controls and an XML Web service. There are three main
databases: one that contains the list of doctors that are used for the medical
benefit, another that contains the list of dentists and it is used by the XML Web
services, and a third that is used to store the list of employees who are
registered to Coho Winery.

The lab application components are implemented in both Visual Basic .NET
and Microsoft Visual C#™, and may be found by building
2310LabApplication, and by using Microsoft Internet Explorer to navigate to
http://localhost/BenefitsVB/default.aspx for the Visual Basic .NET version, or
to http://localhost/BenefitsCS/default.aspx for the Visual C# version. The
functionality of the solutions is identical.

The Lab application solution is installed on the instructor computer by
default when the setup runs. To experiment with the labs on the instructor
computer, uninstall the Lab application solution before completing the labs.

Lesson: Resources
The goal in this lesson is to give students options for finding information on
.NET.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered in the module. You can use a discussion format to
answer the questions so that everyone gets the benefit of knowing the right
answers.

Lab Application Setup

Note

Demonstration: The Lab
Solution

Note

.NET Resources

 Module 1: Overview of the Microsoft .NET Framework 1

Overview

Introduction to the .NET Framework

Overview of ASP.NET

Overview of the Lab Application

Resources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft® .NET Framework represents a major change in the way that
Web applications are built and run. Microsoft ASP.NET is one of numerous
technologies that are part of the .NET Framework. In this module, you will
learn about the .NET Framework and ASP.NET. You will then have an
opportunity to examine the complete Web application that you will build in the
labs throughout Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET.

After completing this module, you will be able to:

 Explain the advantages of using the .NET Framework.
 Understand the key functionality and purpose of ASP.NET in developing

Web applications.
 Understand the basic functionality of the Web site that you will build in the

labs in Course 2310B.

Introduction

Objectives

2 Module 1: Overview of the Microsoft .NET Framework

Lesson: Introduction to the .NET Framework

What is the .NET Framework?

What Problems Does .NET Solve?

The .NET Framework Components

Benefits of Using the .NET Framework

Visual Studio .NET: The Tool for .NET Development

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn about the .NET Framework. You will learn about
some of the problems that developers confront while developing Web
applications and understand how the .NET Framework solves these problems.
You will also be introduced to Microsoft Visual Studio® .NET, which is the
development tool that you will use to develop Web applications with the
.NET Framework.

After completing this lesson, you will be able to:

 Differentiate between Microsoft .NET and the .NET Framework.
 List the benefits of using .NET, based on the perspective of the problems

that .NET solves.
 Identify the features of Visual Studio .NET.

Introduction

Lesson objectives

 Module 1: Overview of the Microsoft .NET Framework 3

What is the .NET Framework?

Developer
Tools

Clients

User
Experiences

ASP.NET Web
Applications

XML Web
Services

Databases

.NET
Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

.NET is Microsoft’s development model in which software becomes platform-
and device-independent, and data becomes available over the Internet. The
.NET Framework is the infrastructure of .NET.

.NET is built from the ground up on open architecture. .NET is a platform that
can be used for building and running the next generation of Microsoft
Windows® and Web applications. The goal of the Microsoft .NET platform is to
simplify Web development. The.NET platform consists of the following core
technologies:

 The .NET Framework
 The .NET Enterprise Servers
 Building block services
 Visual Studio .NET

The .NET platform spans clients, servers, and services, and it consists of:

 A programming model that enables developers to build Extensible Markup
Language (XML) Web services and applications.

 A set of building block services that are a user-centric set of XML Web
services that move control of user data from applications to users. For
example, Microsoft Passport is a core component of the.NET initiative that
makes it easier to integrate various applications.

Introduction

What is the .NET
platform?

4 Module 1: Overview of the Microsoft .NET Framework

 A set of .NET Enterprise Servers, including Windows 2000, Microsoft
SQL Server™, and Microsoft BizTalk® Server, that integrate, run, operate,
and manage XML Web services and applications.

 Client software, such as Windows XP and Windows CE, which helps
developers deliver a comprehensive user experience across a family of
devices.

 Tools, such as Visual Studio .NET, which can be used to develop XML
Web services and Windows and Web applications for an enriched user
experience.

The .NET Framework provides the foundation upon which applications and
XML Web services are built and executed. The unified nature of the
.NET Framework means that all applications, whether they are Windows
applications, Web applications, or XML Web services, are developed by using
a common set of tools and code, and are easily integrated with one another.

The .NET Framework consists of:

 The common language runtime (known hereafter as runtime). The runtime
handles runtime services, including language integration, security, and
memory management. During development, the runtime provides features
that are needed to simplify development.

 Class libraries. Class libraries provide reusable code for most common
tasks, including data access, XML Web service development, and Web and
Windows Forms.

What is the .NET
Framework?

 Module 1: Overview of the Microsoft .NET Framework 5

What Problems Does .NET Solve?

Even with the Internet, most applications and devices
have trouble communicating with each other

Programmers end up writing infrastructure instead of
applications

Programmers have had to limit their scope or
continually learn new languages

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework was developed to overcome several limitations that
developers have had to deal with when developing Web applications, and it
makes strong use of the Internet as a means for solving these limitations.

Even with the advent of a global, easily accessible network for sharing
information (the Internet), few applications work on more than one type of
client or have the ability to seamlessly interact with other applications. This
limitation leads to two major problems that developers must confront:

 Developers typically have to limit their scope.
 Developers spend the majority of their time rewriting applications to work

on each type of platform and client, rather than spending their time
designing new applications.

The .NET Framework solves the preceding two problems by providing the
runtime, which is language-independent and platform-independent, and by
making use of the industry-standard XML. Language independence in .NET
allows developers to build an application in any .NET-based language and
know that the Web application will work on any client that supports .NET.

The runtime also controls much of the application infrastructure so that
developers can concentrate on the application-specific logic.

XML Web services use XML to send data, thereby ensuring that any
XML-capable client can receive that data. Since XML is an open standard, most
modern clients, such as computer operating systems, cellular telephones,
personal digital assistants (PDAs), and game consoles, can accept XML data.

Introduction

Pre-.NET issues

6 Module 1: Overview of the Microsoft .NET Framework

The .NET Framework Components

Win32Win32

MessageMessage
QueuingQueuing

COM+COM+
(Transactions, Partitions, (Transactions, Partitions,

Object Pooling)Object Pooling)
IISIIS WMIWMI

Common Language RuntimeCommon Language Runtime

.NET Framework Class Library.NET Framework Class Library

ADO.NET and XMLADO.NET and XML

XML Web ServicesXML Web Services User InterfaceUser Interface

Visual
Basic C++ C#

ASP.NETASP.NET

Perl Python …

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides the necessary compile-time and run-time
foundation to build and run .NET-based applications.

The .NET Framework consists of different components that help to build and
run .NET-based applications:

 Platform Substrate
The .NET Framework must run on an operating system. Currently, the
.NET Framework is built to run on the Microsoft Win32® operating
systems, such as Windows 2000, Windows XP, and Windows 98. In the
future, the .NET Framework will be extended to run on other platforms,
such as Windows CE.

 Application Services
When running on Windows 2000, application services, such as Component
Services, Message Queuing, Internet Information Services (IIS), and
Windows Management Instrumentation (WMI), are available to the
developer. The .NET Framework exposes application services through
classes in the .NET Framework class library.

 .NET Framework Class Library
The .NET Framework class library exposes features of the runtime and
simplifies the development of .NET-based applications. In addition,
developers can extend classes by creating their own libraries of classes.
The .NET Framework class library implements the .NET Framework. All
applications (Web, Windows, and XML Web services) access the same
.NET Framework class libraries, which are held in namespaces. All
.NET-based languages also access the same libraries.

Introduction

The .NET Framework

 Module 1: Overview of the Microsoft .NET Framework 7

 Common Language Runtime
The common language runtime simplifies application development,
provides a robust and secure execution environment, supports multiple
languages, and simplifies application deployment and management.
The common language runtime environment is also referred to as a managed
environment, in which common services, such as garbage collection and
security, are automatically provided.

 Microsoft ADO.NET
ADO.NET is the next generation of Microsoft ActiveX® Data Objects
(ADO) technology. ADO.NET provides improved support for the
disconnected programming model. ADO.NET also provides extensive XML
support.

To learn more about ADO.NET, see Modules 9, 10, and 11 in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

 ASP.NET
ASP.NET is a programming framework that is built on the common
language runtime. ASP.NET can be used on a server to build powerful Web
applications. ASP.NET Web Forms provide an easy and powerful way to
build dynamic Web user interfaces (UIs).

 XML Web Services
XML Web services are programmable Web components that can be shared
among applications on the Internet or the intranet. The .NET Framework
provides tools and classes for building, testing, and distributing XML Web
services.

To learn more about XML Web services, see Module 13 in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

 User Interfaces
The .NET Framework supports three types of UIs:

• Web Forms, which work through ASP.NET and the Hypertext Transfer
Protocol (HTTP)

• Windows Forms, which run on Win32 client computers

• The Command Console
 Languages

Any language that conforms to the Common Language Specification (CLS)
can run with the common language runtime. In the .NET Framework,
Microsoft provides support for Microsoft Visual Basic® .NET, Microsoft
Visual C++® .NET, C#, and Microsoft JScript® .NET. Third parties can
provide additional languages.

For more information on the .NET-based languages, see Module 3,
“Using Microsoft .NET-Based Languages,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Note

Note

Note

8 Module 1: Overview of the Microsoft .NET Framework

Benefits of Using the .NET Framework

Based on Web standards and practices
Functionality of .NET classes is universally available
Code is organized into hierarchical namespaces and
classes
Language independent

Windows Windows
APIAPI

ASPASP

.NET .NET
FrameworkFramework

1980’s 1990’s 2000’s

Visual BasicVisual Basic

MFC/ATLMFC/ATL

*****************************ILLEGAL FOR NON-TRAINER USE******************************

During the early years of Windows application development, all applications
were written to the Windows application programming interface (API) in C or
C++.

With the advent of Visual Basic, and then the Internet, developers had to
specialize in developing C and C++ (MFC/ATL) applications, Visual Basic
applications, or Active Server Pages (ASP) applications. With the
.NET Framework, you can use your skills to develop any type of application.

The benefits of using the .NET Framework for developing applications include:

 Based on Web standards and practices
The .NET Framework fully supports existing Internet technologies,
including Hypertext Markup Language (HTML), HTTP, XML, Simple
Object Access Protocol (SOAP), Extensible Stylesheet Language
Transformation (XSLT), XML Path Language (XPath), and other Web
standards.

 Designed using unified application models
The functionality of a .NET class is available from any .NET-compatible
language or programming model. Therefore, the same piece of code can be
used by Windows applications, Web applications, and XML Web services.

Introduction

Benefits

 Module 1: Overview of the Microsoft .NET Framework 9

 Easy for developers to use
In the .NET Framework, code is organized into hierarchical namespaces and
classes. The .NET Framework provides a common type system, referred to
as the unified type system, which can be used by any .NET-compatible
language. In the unified type system, all language elements are objects.
These objects can be used by any .NET application written in any
.NET-based language.

 Extensible classes
The hierarchy of the .NET Framework is not hidden from the developer.
You can access and extend .NET classes (unless they are protected) through
inheritance. You can also implement cross-language inheritance.

10 Module 1: Overview of the Microsoft .NET Framework

Visual Studio .NET: The Tool for .NET Development

Visual Studio .NET

Windows
Forms Tools

Web Forms
Tools

Error
Handling

Data
Access

Multiple
Languages

Web
Services

Tools

Develop Debug DeployDesign

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET constitutes the core of .NET development.
Visual Studio .NET is a complete development environment in which you can
design, develop, debug, and deploy your .NET applications and XML Web
services.

Visual Studio .NET, as a development tool, provides the following:

 Support for various development languages.

For more information on the available .NET-based languages, see
Module 3, “Using Microsoft .NET-Based Languages,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

 Tools for building Web applications, Windows applications, and XML Web
services.

 Data access tools.
 Complete error handing, including local debugging, remote debugging, and

tracing.

Introduction

Features of
Visual Studio .NET

Note

 Module 1: Overview of the Microsoft .NET Framework 11

You will be using Visual Studio .NET throughout this course. In this practice,
you will pin Visual Studio .NET to your Start menu, making it easily available,
and then open Visual Studio .NET.

 Pin a program to the Start menu

• On the Start menu, click All Programs, point to Microsoft Visual Studio
.NET, right-click Microsoft Visual Studio .NET, and then click Pin to
Start menu.
The Visual Studio .NET icon and name appear near the top left side of the
Start menu.

 Start and then close Visual Studio .NET

1. Click Start, and then on the list on the upper left side of the Start menu,
click Microsoft Visual Studio .NET.
Visual Studio .NET opens and displays the start page.

You will learn more about the Visual Studio .NET IDE in Module 2,
“Using Microsoft Visual Studio .NET,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

2. On the File menu, click Exit to close Visual Studio .NET.

Optional practice

Note

12 Module 1: Overview of the Microsoft .NET Framework

Lesson: Overview of ASP.NET

What is ASP.NET?
ASP.NET Web Application
Multimedia: ASP.NET Execution Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET is a programming framework built on the .NET Framework that is
used to build Web applications. ASP.NET Web Forms, which are part of an
ASP.NET Web application, provide an easy way to build dynamic Web sites.
ASP.NET also includes the needed technology to build XML Web services,
which provide the building blocks for constructing distributed Web-based
applications.

After completing this lesson, you will be able to:

 Explain the difference between ASP.NET Web Forms and Web
applications.

 Describe the parts of an ASP.NET Web application.

Introduction

Lesson objectives

 Module 1: Overview of the Microsoft .NET Framework 13

What is ASP.NET?

Evolutionary, more flexible successor to Active Server
Pages

Dynamic Web pages that can access server resources

Server-side processing of Web Forms

XML Web services let you create distributed Web
applications

Browser-independent

Language-independent

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For many years, developers have been using ASP technology to build dynamic
Web pages. Similar to ASP, ASP.NET runs on the Web server and provides a
way for you to develop content-rich, dynamic, personalized Web sites. In
addition, ASP.NET offers many improvements over ASP.

Developing ASP.NET Web applications in the .NET Framework is similar to
developing Windows applications. The fundamental component of ASP.NET is
the Web Form. A Web Form is the Web page that users view in a browser. An
ASP.NET Web application comprises one or more Web Forms. A Web Form is
a dynamic page that can access server resources.

For example, a traditional Web page can run script on the client to perform
basic tasks. An ASP.NET Web Form, conversely, can also run server-side code
to access a database, to generate additional Web Forms, or to take advantage of
built-in security on the server.

In addition, because an ASP.NET Web Form does not rely on client-side
scripting, it is not dependent on the client’s browser type or operating system.
This independence allows you to develop a single Web Form that can be
viewed on practically any device that has Internet access and a Web browser.

Because ASP.NET is part of the .NET Framework, you can develop ASP.NET
Web applications in any .NET-based language.

The ASP.NET technology also supports XML Web services. XML Web
services are distributed applications that use XML for transferring information
between clients, applications, and other XML Web services.

You will learn how to consume and create XML Web services in
Module 13, “Consuming and Creating XML Web Services,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Introduction

What is ASP.NET?

XML Web services

Note

14 Module 1: Overview of the Microsoft .NET Framework

ASP.NET Web Application

XML
Data Database

InternetInternet

Page1.
aspx

Page2.
aspx

Web
Services

Web
Services ComponentsComponents

Web
Forms

Code-
behind
pages

global.
asax

Web.
config

machine.
config

ASP.NET Web Server

Ou
tpu

t C
ac

he

Clients

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An ASP.NET Web application contains different parts and components.
Creating ASP.NET Web applications involves using and working with all of its
parts and components.

In this topic, you will learn what constitutes an ASP.NET application.

The parts of an ASP.NET Web application include:

 Web Forms, or .aspx pages
Web Forms and .aspx pages provide the UI for the Web application.

 Code-behind pages
Code-behind pages are associated with Web Forms and contain the
server-side code for the Web Form.

 Configuration files
Configuration files are XML files that define the default settings for the
Web application and the Web server. Every Web application has one
Web.config configuration file. In addition, each Web server has one
machine.config file.

 Global.asax file
Global.asax files contain the needed code for responding to
application-level events that are raised by ASP.NET.

Introduction

Part of an ASP.NET Web
application

 Module 1: Overview of the Microsoft .NET Framework 15

 XML Web service links
XML Web service links allow the Web application to send and receive data
from an XML Web service.

 Database connectivity
Database connectivity allows the Web application to transfer data to and
from database sources.

 Caching
Caching allows the Web application to return Web Forms and data more
quickly after the first request.

16 Module 1: Overview of the Microsoft .NET Framework

Multimedia: ASP.NET Execution Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how ASP.NET works to send information to a
requesting client.

When the client requests a Web page for the first time, the following set of
events take place:

1. The client browser issues a GET HTTP request to the server.
2. The ASP.NET parser interprets the source code.
3. If the code was not already compiled into a dynamic-link library (DLL),

ASP.NET invokes the compiler.
4. Runtime loads and executes the Microsoft intermediate language (MSIL)

code.

When the user requests the same Web page for the second time, the following
set of events take place:

1. The client browser issues a GET HTTP request to the server.
2. Runtime loads and immediately executes the MSIL code that was already

compiled during the user’s first access attempt.

Introduction

First request

Second request

 Module 1: Overview of the Microsoft .NET Framework 17

Lesson: Overview of the Lab Application

Lab Application Setup

Demonstration: The Lab Solution

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will be introduced to the lab application that you will build
throughout the remainder of Course 2310B, in Labs 2 through 17. You will also
have the opportunity to explore a complete version of the lab application and
understand some of its functionality.

After completing this lesson, you will be able to:

 Understand the basic functionality and features of the Lab application that
you will build in the remaining labs in this course.

 List the software that is required to run the labs in this course.

Introduction

Lesson objective

18 Module 1: Overview of the Microsoft .NET Framework

Lab Application Setup

3 Projects

Web Application

Class Library

XML Web Service

12 Web Forms

3 Databases

Doctors

Dentists

Coho

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the labs in this course, you will build a complete ASP.NET Web application
that simulates an internal Web site for the fictitious company, Coho Winery.
This fictitious Web site, which you will build on your computer, provides
information to employees about their benefit options.

The Benefits Web application that you will develop includes the following:

 Three projects, including a Web application, a class library, and an XML
Web service.

 12 Web Forms that are used for displaying the employee benefits
information.

 Three SQL Server databases.

Throughout this course, you will be given the choice between developing
lab solutions by using either Visual Basic .NET or C#.

Introduction

Details

Note

 Module 1: Overview of the Microsoft .NET Framework 19

The Visual Basic .NET and C# components of the Benefits Web application are
listed in the following table.

Visual Basic .NET
Page C# Page Description Labs

default.aspx

default.aspx.vb

default.aspx

default.aspx.cs

The home page. Calls the BenefitsList component and
lists the benefits options in a CheckBoxList control.

4, 5, 14

dental.aspx

dental.aspx.vb

dental.aspx

dental.aspx.cs

Calls the XML Web service to get a listing of dentists. 13

doctors.aspx

doctors.aspx.vb

doctors.aspx

doctors.aspx.cs

Lists the primary care physicians from the doctors
SQL Server database.

9, 10, 11, 15

dsDoctors.vb

dsDoctors.xsd

dsDoctors.cs

dsDoctors.xsd

Contains the schema of the DataSet that is used in
the doctors.aspx Web form.

9

growth.xml

lgcap.xml

midcap.xml

smcap.xml

growth.xml

lgcap.xml

midcap.xml

smcap.xml

XML files with the prospectus information. 12

header.ascx header.ascx User control that is the header of each page. 4, 5, 15

life.aspx

life.aspx.vb

life.aspx

life.aspx.cs

Input form for life insurance data. Uses validation
controls.

4, 7, 14

login.aspx

login.aspx.vb

login.aspx

login.aspx.cs

Logon page for the Web site. 17

medical.aspx

medical.aspx.vb

medical.aspx

medical.aspx.cs

Input form for medical data. The page used for
selecting primary care physician from the doctors.aspx
page.

8, 15

mutual_funds.xml mutual_funds.xml XML file containing the list of mutual funds. 12

namedate.ascx

namedate.ascx.vb

namedate.ascx

namedate.ascx.cs

User control that is used to gather name and birth date
information. Used on the medical.aspx page.

8, 14

nestedData.aspx

nestedData.aspx.vb

nestedData.aspx

nestedData.aspx.cs

Allows you to create a nested XML file from the
several tables that comprise the Doctor database.

12

prospectus.aspx

prospectus.aspx.vb

prospectus.apsx

prospectus.aspx.cs

Displays a retirement fund prospectus from a given
XML file by using a style sheet file.

12

prospectus_style.xsl prospectus_style.xsl Style sheet file for displaying the prospectus. 12

register.aspx

register.aspx.vb

register.aspx

register.aspx.cs

Adds new users to the Coho Winery database. 16

retirement.aspx

retirement.aspx.vb

retirement.aspx

retirement.aspx.cs

Displays XML data from the mutual_funds.xml file in
an HTML format.

12, 14

securitytest.aspx

securitytest.aspx.vb

securitytest.aspx

securitytest.aspx.cs

Displays the identity and the authentication method
that is used to authenticate the current user, to test the
security system.

16

20 Module 1: Overview of the Microsoft .NET Framework

(continued)
Visual Basic .NET
Page C# Page Description Labs

signout.aspx

signout.aspx.vb

signout.aspx

signout.aspx.cs

Allows the user to sign out of the system. 16

Web.config Web.config This is a configuration file. 14, 15, 16

BenefitsListVB
component project

BenefitsListCS
component project

This project contains a Visual Basic .NET or C#
component named Class1.vb or Class1.cs that returns
a list of benefit options.

3

DentalService Web
service project

DentalService Web
service project

This project contains an XML Web service named
DentalService.asmx (DentalService.asmx.vb and
DentalService.asmx.cs). This XML Web service reads
information from the dentists SQL Server database
and returns the information as a DataSet.

13

 Module 1: Overview of the Microsoft .NET Framework 21

Demonstration: The Lab Solution

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dentists
Dental.aspx
Dentists
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, the instructor will show you the features and
functionality of the Benefits Web application.

The default.aspx Web Form is the home page for the Benefits Web application.
From this page, users can browse to other Web Forms, including to pages to
enter information about specific benefits, such as Life Insurance, Retirement,
Medical, and Dental coverage.

 Run the application

1. On the Start menu, click Visual Studio .NET.
2. Open 2310LabApplication.

Point out the three projects by using Solution Explorer. Each project is
provided in Visual Basic .NET and C# versions.
Point out the databases by using Server Explorer.

3. Build 2310LabApplication.
4. Open Microsoft Internet Explorer and navigate to

http://localhost/BenefitsVB/default.aspx to demonstrate the
Visual Basic .NET solution and navigate to
http://localhost/BenefitsCS/default.aspx to demonstrate the C# solution.
The Web application is secured, so you are redirected to the login.aspx page
to log in. This is set up in the Web.config file. The login.aspx page
compares user data to the user names and passwords that are stored in the
Coho SQL Server database.

If you receive a SQL permission error when trying to browse the
Benefits Web site, open Windows Explorer, browse to
C:\Program Files\MSDNTrain\2310\LabFiles\Lab16VB\Starter and then
double-click Lab16.bat. Close Windows Explorer, and then refresh
Microsoft Internet Explorer.

Introduction

Note

22 Module 1: Overview of the Microsoft .NET Framework

5. Click Click here!
Because you are a new user, the register.aspx page is used to add yourself to
the list of registered users for the Benefits Web application.

6. Enter user information and then click Save.
After the register.aspx page adds you to the database and logs you on, the
default.aspx page is displayed because that is the page you originally
requested.
The default.aspx page has a user control which is a page banner with links
across the top. This user control reads from the same component as the list
of check boxes on the page.

7. Select some check boxes and click Submit.
When Submit is clicked, the page reads which check boxes are selected and
displays an output list.

8. Click Life Insurance.
The Life Insurance page uses server controls, validation controls, and a
summary validation control. A calendar control displays todays date.

9. Enter incorrect information and click Save.
The Error messages are displayed in a Validation Summary control.

10. Enter correct information and click Save.
11. Click Medical.

This page uses a user control and session variables to display the same name
and birth date as you entered on the Life Insurance page.

12. Click Select a doctor.
This link redirects you to the doctors.aspx page. The doctors.aspx page uses
a database connection and DataGrid control. The doctors.aspx page calls
stored procedures and performs sorting and paging of the data.

13. Click Select to select a doctor, and then click Submit.
The selected doctor information is passed back to the medical.aspx page in
the Uniform Resource Locator (URL).

14. Click Retirement Account.
This page obtains its information from various XML data documents.
A page counter displays the number of visits that have been made to the
page.

15. Click Dental.
The dental.aspx page connects to the DentalService XML Web service,
which reads a list of dentists from the dentists SQL Server database.

 Module 1: Overview of the Microsoft .NET Framework 23

Lesson: Resources

.NET Resources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn about some of the resources that are available to
you as you develop Web applications in Visual Studio .NET.

After completing this lesson, you will be able to find the information that you
need for developing ASP.NET Web applications.

Introduction

Lesson objective

24 Module 1: Overview of the Microsoft .NET Framework

.NET Resources

.NET Framework documentation
Code samples
Quick Start tutorials

Online communities
Web sites

www.gotdotnet.com
www.ibuyspy.com
www.asp.net
msdn.microsoft.com
www.google.com

*****************************ILLEGAL FOR NON-TRAINER USE******************************

While learning to develop in .NET, you may need to research solutions to
problems. The following list of resources is intended to give you a starting point
for finding more information about .NET, along with answers to specific
questions:

 The .NET Framework documentation. The .NET Framework documentation
is found in two places.

• On a computer with Visual Studio .NET installed, you can access the
documentation from within Visual Studio .NET (on the Help menu, or
by pressing F1).

• Another way to view the documentation is on the Start menu, point to
All Programs, point to Microsoft .NET Framework SDK, and then
click Documentation.

The .NET Framework documentation contains code samples in many
languages, in addition to Quick Start tutorials.

 Online communities. Online communities are .NET-specific newsgroups.
 External Web sites. There are a few external Web sites that provide in-depth

knowledge about .NET development:

• The first site, http://www.gotdotnet.com, provides detailed developer
information, code samples, links to.NET communities, and more.

• The second site, http://www.ibuyspy.com, is a fictitious company store
that shows how ASP.NET development can be used for e-commerce.
The http://www.ibuyspy.com Web site is part of the more general
http://www.asp.net site, which is an entire Web site that is dedicated to
ASP.NET developers.

• You can also access the resources that are available at
http://www.msdn.microsoft.com.

• The Web site http://www.google.com is another good source to search
for information on .NET development.

Resources

 Module 1: Overview of the Microsoft .NET Framework 25

Review

Introduction to the .NET Framework

Overview of ASP.NET

Overview of Lab Application

Resources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the Microsoft .NET Framework?
The .NET Framework is a set of technologies that are designed to
transform the Internet into a full-scale distributed computing platform.
The .NET Framework provides new ways to build applications from
collections of XML Web services. The .NET Framework fully supports
the existing Internet infrastructure (HTTP, XML, and SOAP).

2. What are the core technologies in the .NET platform?
The .NET Framework, .NET Enterprise Servers, .NET building block
services, and Visual Studio .NET.

3. List the components that comprise the .NET Framework.
Common language runtime, .NET Framework class library, data and
XML, XML Web services, Web Forms, and Windows Forms.

4. What is the purpose of the common language runtime?
The common language runtime provides an environment in which you
can execute code. The runtime also provides a compiler, language
independence and portability. The runtime also performs garbage
collection.

26 Module 1: Overview of the Microsoft .NET Framework

5. What is the purpose of Common Language Specification?
The CLS defines a set of features that all .NET-compatible languages
should support.

6. What is an XML Web service?
An XML Web service is a programmable Web component that can be
shared among Web applications on the Internet or the intranet.

7. What is a managed environment?
A managed environment is one in which the environment provides
services, such as garbage collection, security, and other similar features.

Contents

Overview 1

Lesson: Overview of Visual Studio .NET 2

Lesson: Creating an ASP.NET Web
Application Project 22

Review 32

Lab 2: Using Microsoft Visual Studio .NET 34

Module 2: Using Microsoft
Visual Studio .NET

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 2: Using Microsoft Visual Studio .NET iii

Instructor Notes
After completing this module, students will be able to:

 Navigate the Microsoft® Visual Studio® .NET IDE. This includes students
being able to:

• Explain the purpose of Visual Studio .NET.

• Explain how the IDE is integrated.

• Identify the available screens in the IDE.
 Create, build, and view a Microsoft ASP.NET Web Application. This

includes students being able to:

• Explain how ASP.NET pages are developed.

• Select the appropriate Visual Studio .NET template for the
corresponding project types.

• Identify the function of the files that are used by Visual Studio .NET
solutions.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_02.ppt

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the instructor-led demonstrations.
 Review the multimedia demonstration.
 Review the Visual Studio .NET IDE and Dynamic Help.

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Presentation:
60 minutes

Lab:
15 minutes

Required materials

Preparation tasks

iv Module 2: Using Microsoft Visual Studio .NET

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Overview of Visual Studio .NET
Alternative delivery. You can open Visual Studio .NET and show the screens
while referencing the slides.

The key point regarding Visual Studio .NET is that it provides the tools to make
students better, faster, and more accurate programmers.

The Start page is where most of the online resource options are located.
Emphasize that Visual Studio .NET is not just a stand-alone code editor, but
that it is part of an online support system and community.

Do not spend more than the allotted time on this information.

Emphasize the concept of a solution containing multiple related projects, and
that those projects contain multiple Web pages called Web Forms. This is a
critical concept for organizing Web applications.

Do not spend more than the allotted time on this information.

The goal of this practice is to provide a sense of the other applications that can
be built by using Visual Studio .NET.

Do not spend more than the allotted time on this information. The
Visual Studio .NET IDE should be familiar to your students.

Alternative delivery. You can open Visual Studio .NET, run the demonstration,
and show the screens as you talk about what each screen does.

The goal of this demonstration is to model the start of a project.

The final step (Step 12) is included to model best practices of using
Visual Studio .NET to help track development.

The goal of this demonstration is to build familiarity with the IDE.

Why Visual Studio
.NET?

Start Page

Available Project
Templates

Practice: Select the
Project Template

Integrated Development
Environment (IDE)

Demonstration: Using
the Visual Studio .NET
IDE

Practice: Using the
Visual Studio .NET IDE

 Module 2: Using Microsoft Visual Studio .NET v

Lesson: Creating an ASP.NET Web Application Project
Alternative delivery. You can open Visual Studio .NET and show it while
referencing the slides.

Do not spend more than the allotted time on this information. Each option will
be reviewed in context in later topics in this lesson.

The goal here is to show how much of the development process is supported by
Visual Studio .NET.

This is an additional opportunity to highlight what will be covered in the
modules that comprise Course 2310B, as shown in the following table:

Development step Modules

Create a new project 2 and 4

Create the interface and write code 2, 3, and 4,

Build All modules

Test and Debug 2 and 6

Deploy 13 (XML Web services) and
16 (Web applications)

Alternative delivery. You can open Solution Explorer and show the files with
extensions.

This slide only lists the most important file types. The two most important file
extensions for the students are the Web Form .aspx and code-behind page
.aspx.vb.

To avoid later confusion, emphasize the difference between a solution, a
project, and a Web Form.

The goal of this topic is to show the students where the files are located.

This is a good resource for later in the course when students are trying to
identify where the files are located.

The goal of this demonstration is to show what files and default code are
created when you start a new project. This demonstration also shows how you
add controls. You only need to edit properties and default code, and you do not
need to write code from scratch.

Step 17 has an intentional typographic mistake. The code sets the Txt property
instead of the Text property. This intentional mistake is there to show what
happens when the build fails.

The Development
Process

Web Application Files

Web Application File
Structure

Demonstration: Creating
a Web Application
Project

vi Module 2: Using Microsoft Visual Studio .NET

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 2: Using Microsoft Visual Studio .NET
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions.

Use the Lab Map to highlight what parts of the solution the students will be
building in this lab. Emphasize that this lab starts the process of building the
Benefits Web application. Modules 3-16 in Course 2310B will add another part
or feature to the Web application.

 Module 2: Using Microsoft Visual Studio .NET 1

Overview

Overview of Visual Studio .NET

Creating an ASP.NET Web Application Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this module, you will learn how to use the primary features of Microsoft®

Visual Studio® .NET to create Microsoft ASP.NET Web applications.

Visual Studio .NET is the comprehensive development environment that can be
used to create powerful, reliable, enterprise Web solutions. By offering
end-to-end Web development capabilities and scalable, reusable server-side
components, Visual Studio .NET will increase your productivity and help you
to more effectively create applications and ASP.NET Web sites.

After completing this module, you will be able to:

 Navigate the Visual Studio .NET integrated development environment
(IDE).

 Create, build, and view an ASP.NET Web application project.

Introduction

Objectives

2 Module 2: Using Microsoft Visual Studio .NET

Lesson: Overview of Visual Studio .NET

Why Visual Studio .NET?

Start Page

Available Project Templates

Practice: Select the Project Template

Integrated Development Environment (IDE)

Demonstration: Using the Visual Studio .NET IDE

Practice: Using the Visual Studio .NET IDE

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces the Visual Studio .NET IDE. The IDE is the common
user interface (UI) and set of tools that are used for all of the different project
types and programming languages that are supported by Visual Studio .NET.

After completing this lesson, you will be able to:

 Explain the purpose of Visual Studio .NET.
 Explain the IDE opening screen links.
 Identify the available project types and templates.
 Identify the available windows in the IDE.

Introduction

Lesson objectives

 Module 2: Using Microsoft Visual Studio .NET 3

Why Visual Studio .NET?

One IDE for multiple languages and multiple project
types
Multiple languages within a project
Multiple project types within a solution
Integrated browser
Debugging support
Customizable interface

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET simplifies the development of powerful, reliable enterprise
Web solutions and increases developer efficiency by providing a familiar,
shared development environment. Pre-built components, programming wizards,
and the ability to reuse components that are written in any language can reduce
development time significantly. Microsoft IntelliSense®-based code completion
enables you to produce accurate code more quickly. Powerful, end-to-end,
cross-language debugging support, together with cross-language debugging,
helps you make your applications operational.

Visual Studio .NET has a single IDE that provides a consistent look and feel,
regardless of the programming language being used or the application type
being developed. Features that were available for only one language are now
available to all languages.

Visual Studio .NET supports development in a number of the Microsoft
.NET-based languages. This support of various and diverse languages allows
developers to work in their own preferred language, because they no longer
need to learn a new language for each new project.

The languages that are included with Visual Studio .NET are:

 Microsoft Visual Basic® .NET
 C#
 Microsoft Visual C++®

For more information on the available .NET-based languages, see
Module 3, “Using Microsoft .NET-Based Languages,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Introduction

One IDE

Multiple languages

Note

4 Module 2: Using Microsoft Visual Studio .NET

Visual Studio .NET supports the development of multiple project types, ranging
from Microsoft Windows®-based applications, to ASP.NET Web applications,
to XML Web services.

This support for multiple project types allows you to simultaneously work on
several projects without having to change development environments and learn
new tool interfaces or languages.

Visual Studio .NET contains a built-in browser that is based on Microsoft
Internet Explorer. The browser is integrated into the IDE and can be accessed
from multiple windows and menus.

This browser accessibility allows you to view your Web site during the
development cycle without having to transfer to another program and retype
Uniform Resource Locator (URL) strings.

Visual Studio .NET is designed to support debugging from your initial code
through to the application release. Debugging support includes breakpoints,
break expressions, watch expressions, and the ability to step through code one
statement or one procedure at a time.

For more information on debugging, see Module 6, “Tracing in
Microsoft ASP.NET Web Applications,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Because the Visual Studio .NET IDE can be customized at the window and tool
level, you can show only those tools or windows that you are using at any given
time and hide the remainder.

Multiple project types

Integrated browser

Debugging support

Note

Customizable interface

 Module 2: Using Microsoft Visual Studio .NET 5

Start Page

Online support access
Recent projects

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each time you start Visual Studio .NET, the Start page is displayed. This page
provides an essential location for setting preferred options, reading product
news, accessing discussions with fellow developers, and obtaining other
information that can be used to get started within the Visual Studio .NET
environment.

You can view the Start page at any time when you are working in the
development environment.

 To view the Start Page

• On the Help menu, click Show Start Page.

Clicking Get Started sets Dynamic Help to display topics about starting new
projects, and displays the following two folders:

 Projects
The Projects folder displays links to the latest projects that you have been
working on. This folder allows you to quickly open Visual Studio .NET and
load all of the files that are related to your current projects.

 Find Samples
The Find Samples folder displays a search engine that finds code samples
by language and keyword online from ms-help://MS.VSCC.

Clicking What’s New provides you with access to updates on Visual Studio
Resources, Partner Resources, and Product Information.

Clicking Online Community provides you with access to the Microsoft
Visual Studio .NET Web sites and related newsgroups.

Clicking Headlines provides you with access to Visual Studio .NET features,
technical articles, and the Microsoft Visual Studio .NET Knowledge Base.

Introduction

Get Started

What’s New

Online Community

Headlines

6 Module 2: Using Microsoft Visual Studio .NET

Clicking Search Online provides you with a search engine that accesses the
Microsoft MSDN® Online Library.

Clicking Downloads provides you with access to Visual Studio .NET-related
downloads, code samples, and reference materials.

Clicking XML Web Services provides you with tools to find an XML Web
service by running a query in a directory of XML Web services called
Universal Description, Discovery, and Integration (UDDI) Service. In addition,
you can use the XML Web Services selection to register an XML Web service
in the UDDI directory.

Clicking Web Hosting provides you with a list of links to hosting providers.

Clicking My Profile allows you to set a user profile that adjusts the Toolbox,
Default New Project, and Dynamic Help to match your programming
preferences. You can change your profile at any time to modify these custom
settings.

You have the option of choosing a pre-existing profile, such as Visual Basic
Developer, or modifying each profile item manually.

Search Online

Downloads

XML Web Services

Web Hosting

My Profile

 Module 2: Using Microsoft Visual Studio .NET 7

Available Project Templates

The list of available project templates is based on your
Profile and Project Type selections

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides templates that support the creation of a number of
common project types. These templates contain all of the required files and
work with your profile to adjust the IDE into the correct configuration for the
selected project.

These templates allow you to make use of your time by focusing on adding
functions to the project and avoiding having to set up the infrastructure every
time you change project types.

When you create a project in Visual Studio .NET, you also create a larger
container called a Solution. This Solution can contain multiple projects in the
same way that a project container can contain multiple pages.

Solutions allow you to concentrate on the project or set of projects that are
required to develop and deploy your application, instead of having to focus on
the details of managing the objects and files that define them. In using the
concept of a Solution as a container, a solution allows you to:

 Work on multiple projects within the same instance of the IDE.
 Work on items, settings, and options that apply to a group of projects.
 Manage miscellaneous files that are opened outside the context of a Solution

or a Project.
 Use Solution Explorer, which is a graphical view of your solution, to

organize and manage all of the projects and files that are needed to design,
develop, and deploy an application.

Introduction

Solutions and projects

8 Module 2: Using Microsoft Visual Studio .NET

Visual Studio .NET includes multiple project templates that are sorted by
language and type. To select the correct template, you first need to specify the
language in which you will be working.

The available Visual Basic project and Microsoft Visual C#™ project templates
include:

Project templates Description

Windows Application The Windows Application project template is used to create

standard Windows applications. This template automatically
adds the essential project references and files that are needed
as a starting point for your application.

Class Library The Class Library template is used to create reusable classes
and components that can be shared with other projects.

Windows Control
Library

The Windows Control Library template is used to create
custom controls that are to be used on Windows Forms.

ASP.NET Web
Application

The ASP.NET Web Application project template is used to
create an ASP.NET Web application on a computer that has
Internet Information Services (IIS) version 5.0 or later
installed. This template creates the basic files that are needed
on the server to help you start designing your application.

ASP.NET Web
Service

The ASP.NET Web Service project template is used to write
an XML Web service that can be consumed by other Web
services or applications on a network.

XML Web services are components that are available over
the Internet and are designed to only interact with other Web
applications.

Web Control Library The Web Control Library template is used to create custom
Web server controls. This template adds the necessary project
items that are needed to start creating a control that can then
be added to any Web project.

Console Application The Console Application project template is used to create
console applications. Console applications are typically
designed without a graphical UI and are compiled into a
stand-alone executable file. A console application is run from
the command line with input and output information being
exchanged between the command prompt and the running
application.

Windows Service The Windows Service template is used to create Windows
Service applications, which are long-running executable
applications that run in their own Windows session.

Empty Project The Empty Project template is used to create your own
project type. The template creates the necessary file structure
that is needed to store application information. Any
references, files, or components must be manually added to
the template.

Project templates

 Module 2: Using Microsoft Visual Studio .NET 9

(continued)
Project templates Description

Empty Web Project The Empty Web Project template is for advanced users who

want to start with an empty project. This template creates the
necessary file structure for a server-based project on an IIS
server. References and components (such as Web Forms
pages) must be added manually.

New Project in
Existing Folder

The New Project in Existing Folder project template is used
to create a blank project within an existing application
directory. You can then choose to add the files from the
preexisting application directory into this new project by
right-clicking each of these items in Solution Explorer and
selecting Include in Project on the shortcut menu.

The following table lists the additional project templates that are available in
Visual Studio .NET.

Template Group Description

Visual C++ Projects Templates include:

 Active Template Library (ATL) projects

 Managed Applications

 Managed Class Library

 Managed Web Services

Setup and
Deployment Projects

The Setup and Deployment Projects template allows you to
create installers to distribute an application. The resulting
Windows Installer (.msi) file contains the application, any
dependent files, information about the application, such as
registry entries, and instructions for installation.

Other Projects Templates include:

 Database projects

 Enterprise projects

 Extensibility projects

 Application center test projects

The Class Library, Empty project, New Project in Existing Folder, Web
Control Library, Windows Service, Windows Control Library, and Empty Web
Project templates are not available in the Standard Edition of
Visual Studio .NET.

Note

10 Module 2: Using Microsoft Visual Studio .NET

Practice: Select the Project Template

Students will:

Select the correct project template given a
scenario

Time: 5 minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

 Choose the appropriate project template for each of the following
scenarios

You want to create a control with a UI that you can reuse in any Windows
application.
Windows Control Library
__

__

You want to build an application that will run on a single computer running
Windows.
Windows Application
__

__

You want to create a dynamic Web application that includes Web pages and
may use XML Web services.
ASP.NET Web application
__

__

You want to create a reusable component that is accessible to several
Windows or Web applications.
Class Library
__

__

 Module 2: Using Microsoft Visual Studio .NET 11

You want to create a user-defined Web control that can be used in several
Web pages.
Web Control Library
__

__

You want to create an application that will run from a command line.
Console Application
__

__

You want to create a class in which the methods are accessible through the
Internet by any Web application.
ASP.NET Web Service
__

__

You want to create a Windows service that will run continuously, regardless
of whether a user is logged on or not.
Windows Service
Previous versions of Visual Basic require you to use third-party
products or low-level application programming interface (API) calls to
create these types of applications.
__

__

12 Module 2: Using Microsoft Visual Studio .NET

Integrated Development Environment (IDE)

Toolbox

Task List

Solution
Explorer

Dynamic Help

Editor/Browser

Properties
Server

Explorer

Object Browser

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Visual Studio .NET IDE contains multiple windows that provide a variety
of tools and services. Many of the features of Visual Studio .NET are available
from several of the IDE windows, menus, and toolbars.

You can move or hide IDE windows depending on your personal preference.
Use the View menu to select which windows to display. Click the thumbtack
Auto Hide button to turn static windows into pull-out windows.

The editor/browser is the primary interface window in Visual Studio .NET. In
editor mode, the editor/browser displays code for editing and provides a What
You See Is What You Get (WYSIWYG) graphical interface for control
placement. You can use drag-and-drop editing to create the visual design of
your application. You can then manage the logical design of your application
by modifying the default Web control code.

Introduction

Editor/browser

 Module 2: Using Microsoft Visual Studio .NET 13

The screen options for the editor are Design mode and HTML mode:

 Design mode
In Design mode, the editor allows you to move controls and graphic
elements around the window by a simple drag-and-drop operation.
Visual Studio .NET provides two control positioning schemes for designing
Web pages: FlowLayout and GridLayout. In FlowLayout, controls follow
each other across the page, while GridLayout allows you to exactly
position each control by automatically adding dynamic Hypertext Markup
Language (DHTML) tags to the controls.
When you add a control to a Web page in Design mode, Visual Studio .NET
adds the supporting code and default properties to the Web Form. You can
then switch to HTML mode to bring up that code for you to edit.

 HTML mode
In HTML mode, Visual Studio .NET highlights your code so that the
different elements, such as variable names and key words, are instantly
identifiable. The IntelliSense feature provides you with auto completion
suggestions and allows you to build functions by simply selecting from lists
of available syntax.
When you use the editor window in HTML mode, two drop-down lists
appear at the top of the window: the Class Name list, which is on the left,
and the Method Name list, which is on the right. The Class Name list
shows all of the controls on the associated form. If you click a control name
in the list, the Method Name list then shows all of the events for that
control. Events are actions that the control can perform and that can be
interpreted by your application. By using the Class Name and Method
Name lists together, you can quickly locate and edit the code in your
application.

14 Module 2: Using Microsoft Visual Studio .NET

The Object Browser is a tool that provides information about objects and their
methods, properties, events, and constants.

Solution Explorer displays the hierarchy of project files. From this window, you
can move and modify files, including:

 Use a drag-and-drop operation to rearrange items.
 Select an item in Solution Explorer and the Properties window will show

that item’s properties. This allows you to change properties at the project or
page level.

 Right-click the file, project, or solution to see the available options,
including adding, building, and editing pages.

The file types shown in Solution Explorer include:

 Project References that list the classes that are used by the page and Web
controls.

 All of the Web Forms in the project.
 All of the code-behind pages that contain the logic that supports the Web

Forms.
 Project-related folders and sub-items.

Object Browser

Solution Explorer

 Module 2: Using Microsoft Visual Studio .NET 15

Dynamic help provides access to local and online help topics, based on the
settings in My Profile, the Project Type, and the present location of the cursor.
As you move around the IDE or edit code, the available options in dynamic
help adjust to match your activity.

Visual Studio .NET lets you adjust the properties of documents, classes, and
controls by using a common Properties window. When you create or select an
item, the Properties window automatically displays the related properties. As
shown on the following illustration, the available properties are listed in the left
column, while the settings are listed on the right.

Dynamic Help

Properties

16 Module 2: Using Microsoft Visual Studio .NET

The Task List allows you to track the status of tasks as you develop
applications. Visual Studio .NET also uses the Task List to flag errors when
you build your application.

There are a number of ways to add a task to the Task List, including:

 Adding tasks manually by clicking the Task List and entering items.
The top task in the following Task List screen shot is a manually added task.

 Visual Studio .NET automatically adds a task for tokens, such as the 'TODO
comment in the code.
The second task in the following screen shot was automatically added by
Visual Studio .NET because of a 'TODO comment in the code. To access
this section of code, click the item in the Task List and Visual Studio .NET
will open the preferred page at that comment line.
There are a number of preset tokens that you can use in your code and they
will automatically add a task to the Task List.

 To view and add to the list of tokens

a. On the Tools menu, click Options.
b. In the Options dialog box, on the Environment folder, click Task List.

 Visual Studio .NET automatically adds build errors to the Task List.
The bottom task in the following screen shot was added automatically when
the page was built. To access this section of code, click the item in the task
list and Visual Studio .NET will then open the preferred page at the line
containing the error.

Server Explorer allows you to view local data connections, servers, and
windows services. Server Explorer supports the integration of external services
into your Web site.

Task List

Server Explorer

 Module 2: Using Microsoft Visual Studio .NET 17

The Toolbox allows you to use a drag-and-drop operation on the controls in
your application.

The available tools are grouped by category, in the following menus:

 Data
This category contains objects that allow your application to connect and
access the data in a Microsoft SQL Server™ and other databases.

 Web Forms
This category contains a set of server controls that you can add to Web
pages.

 Components
This category contains components that support the infrastructure of your
application.

 HTML
This category contains a set of HTML controls that you can add to your
Web page. Theses controls can run on either the server side or the client
side.

Toolbox

18 Module 2: Using Microsoft Visual Studio .NET

Demonstration: Using the Visual Studio .NET IDE

Open Visual Studio .NET

Create a new ASP.NET Web Application

Rename the Web Application

Add tasks to the Task List

Use Dynamic Help

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to use the Visual Studio .NET IDE to
create an ASP.NET Web application project, add tasks to the Task List, use
Dynamic Help, and use Server Explorer.

 To run this demonstration

1. Open Visual Studio .NET.
2. Show the features of the Start Page, such as What's New, Search Online,

and My Profile.
3. Using Visual Studio .NET, create a new blank solution named

MyFirstSolution:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type MyFirstSolution in the Name text

box, and then click OK.
The MyFirstSolution solution will contain several projects. The solution
serves as a container to group these related projects.

4. Create a new ASP.NET Web Application project named
MyFirstWebApplication in the MyFirstSolution solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box:

In the Project Types list, click Visual Basic Projects. In the Templates
list, click ASP.NET Web Application, set the Location to
http://localhost/MyFirstWebApplicationVB, click Add to Solution,
and then click OK.
In the Project Types list, click Visual C# Projects. In the Templates
list, click ASP.NET Web Application, set the Location to
http://localhost/MyFirstWebApplicationCS, click Add to Solution,
and then click OK.

Create a Visual Studio
.NET solution

Create an ASP.NET Web
Application project
within the solution

Visual Basic .NET

C#

 Module 2: Using Microsoft Visual Studio .NET 19

5. Using Solution Explorer, show the files that were created when the Web
application was created.

6. Using Windows Explorer, show where the files were created in the file
system.
The solution files are located in the
\My Documents\Visual Studio Projects\MyFirstSolution folder.
The Visual Basic .NET project files are located in the
\Inetpub\wwwroot\MyFirstWebApplicationVB folder and the C# project
files are located in the \Inetpub\wwwroot\MyFirstWebApplicationCS
folder.

7. In Visual Studio .NET Solution Explorer, select WebForm1.aspx and show
the properties that are listed in the Properties window.

8. Using the Toolbox, add a Label control and a Button control to the Web
Form.
Notice that the Properties window now shows properties for the Button
control.

9. On the Help menu, click Dynamic Help.
The Dynamic Help window opens with topics about the Button control.

10. Click the Label control.
The Dynamic Help window displays topics about the Label control.

11. Click the Label Members (System.Web.UI.WebControls) topic.
The topic is displayed in the main Visual Studio .NET window.
Show the Text and the Visible properties.

12. In Server Explorer, expand Servers, expand machinename, expand
SQL Servers, and then expand machinename.
The list of databases installed on the local computer running SQL Server is
displayed.

13. For instance, open the dentists table of the dentists database.
14. If the Task List is not visible, on the View menu, click Show Tasks, and

then click All to display the Task List window.
15. Insert the following tasks:

• Add a new ASP.NET Web Form

• Add a new project to the solution
16. On the File menu, click Save All.

View where the new files
are located

View the properties of
the Web Form

Dynamic Help

Server Explorer

Task List

20 Module 2: Using Microsoft Visual Studio .NET

Practice: Using the Visual Studio .NET IDE

Students will:

Perform tasks with the Visual Studio .NET
IDE

Timing

5 minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

 Complete the following tasks and list which window(s) you used

Create a new Web application project.
Start Page
__

__

Add a Button control to the default Web Form.
Toolbox
__

__

Add a task to the project.
Task List
__

__

 Module 2: Using Microsoft Visual Studio .NET 21

View the properties of the Web application project.
Properties
__

__

Determine what SQL Server databases are installed on your computer.
Server Explorer
__

__

22 Module 2: Using Microsoft Visual Studio .NET

Lesson: Creating an ASP.NET Web Application Project

The Development Process

Web Application Files

Web Application File Structure

Demonstration: Creating a Web Application Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to create, build, and view an ASP.NET Web
application.

After completing this lesson, you will be able to:

 Explain how ASP.NET Web application pages are developed.
 Identify the function of the files that are used by Visual Studio .NET

solutions.
 Explain the build process for ASP.NET Web application.
 Create, build, and view an ASP.NET Web application.

Introduction

Lesson objectives

 Module 2: Using Microsoft Visual Studio .NET 23

The Development Process

Create a Design
Specification

Create a Design
Specification

BuildBuild

Test and
Debug

Test and
Debug

Create the Interface
and Write Code

Create the Interface
and Write Code

Create a
New Project
Create a

New Project

Visual Studio .NET
DeployDeploy

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET contains everything you need to build your own ASP.NET
Web application from start to finish.

Creating an ASP.NET Web application with Visual Studio .NET involves the
following basic steps:

1. Create a design specification
The design specification is the blueprint that you will use when you create a
Web application. Take time before writing any code to design the
application that you will be creating. Although Visual Studio .NET provides
tools to help you quickly develop a solution, having a clear understanding of
the user needs and initial feature set will help you to be more efficient in
your development efforts. By first coming up with a design specification, it
will also help you save time by minimizing the potential for rewriting code
because of a poor or nonexistent design specification.

2. Create a new project
When you select a new project template, Visual Studio .NET automatically
creates the files and the default code that are needed to support the project.
As part of this initial project creation, you should transfer the main coding
tasks from your design specification into the Visual Studio .NET Task List.
This transfer allows you to track your development against the specification.

3. Create the interface
To create the interface for your Web application, you will first need to place
controls and objects on the Web pages by using the Editor/Browser window
in Design mode.
As you add objects to a form, you can set their properties from the table in
the Properties window or as code in the Editor window.

Introduction

24 Module 2: Using Microsoft Visual Studio .NET

For more information on adding controls to an ASP.NET Web Form,
see Module 4, “Creating a Microsoft ASP.NET Web Form,” in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

4. Write code
After you have set the initial properties for the ASP.NET Web Form and its
objects, you can write the event procedures that will run when different
actions are performed on a control or object.
You may also need to write code to add business logic and to access data.

For more information on writing code in ASP.NET Web Forms, see
Module 5, “Adding Code to a Microsoft ASP.NET Web Form,” in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

5. Build
When building a project, you compile all of the code in the Web pages and
other class files into a dynamic-link library (DLL) called an assembly.
Visual Studio .NET has two build options: debug and release. When you are
first developing a project, you will build debug versions. When you are
ready to release the project, you will create a release build of the project.

6. Test and debug
Testing and debugging is not a one-time step, but rather something that you
do iteratively throughout the development process. Each time you make a
major change, you will need to run a debug build of the application to
ensure that it is working as expected.
Visual Studio .NET offers numerous debugging tools that you can use to
find and fix errors in your application.

For more information on debugging, see Module 6, “Tracing in
Microsoft ASP.NET Web Applications,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

7. Deploy
When a project is fully debugged and a release build has been built, you can
deploy the necessary files to a production Web server.

For more information on deploying an ASP.NET Web application,
see Module 15, “Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

Note

Note

Note

Note

 Module 2: Using Microsoft Visual Studio .NET 25

Web Application Files

Solution files (.sln, .suo)

Project files (.vbproj, .csproj)

Web application files

ASP.NET Web Forms (.aspx)

ASP.NET Web services (.asmx)

Classes, code-behind pages (.vb or .cs)

Global application classes (.asax)

Web.config file

Project assembly (.dll)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a new project or work with existing projects,
Visual Studio .NET creates a number of files that support your development.

When you create a new project, a solution is also created, even if you only have
one project in the solution. A folder is created for each solution in the
\My Documents\Visual Studio Projects folder that contains the .sln and .suo
files.

 Solution files (.sln)
The SolutionName.sln file extension is used for solution files that link one
or more projects together, and it stores certain global information. .sln files
are similar to Visual Basic group (.vbg) files, which appear in previous
versions of Visual Basic.

 Solution User Options (.suo)
The SolutionName.suo file extension is used for Solution User Options files
that accompany any solution records and customizations that you add to
your solution. This file saves your settings, such as breakpoints and task
items, so that they are retrieved each time you open the solution.

Each project is a single Web application stored in its own folder. Inside the
project folder are the project configuration file and the actual files that make up
the project. The Project Configuration file is an Extensible Markup Language
(XML) document that contains references to all of the project items, such as
forms and classes, in addition to project references and compilation options.

Visual Basic .NET project files use a .vbproj extension, while C# uses .csproj.
These extensions enable you to differentiate between files that are written in
other .NET-compatible languages and make it easy to include multiple projects
that are based on different languages within the same solution.

Web application projects are created in a new folder in the
\Inetpub\wwwroot folder. In addition, a virtual directory that points to the
project folder is created in IIS.

Introduction

Solution files

Project files

26 Module 2: Using Microsoft Visual Studio .NET

Visual Studio .NET supports a number of application file types and extensions:

 ASP.NET Web Forms (.aspx)
ASP.NET Web Forms are used when you need to build dynamic Web sites
that will be accessed directly by users.
ASP.NET Web Forms may be supported by a code-behind page that is
designated by the extension WebForm.aspx.vb or WebForm.aspx.cs.

 ASP.NET Web services (.asmx)
Web services are used when you want to create dynamic Web sites that will
only be accessed by other programs.
ASP.NET Web services may be supported by a code-behind page that is
designated by the extension WebService.asmx.vb or WebService.asmx.vb.

 Classes and code-behind pages (.vb or .cs)
Previous versions of Visual Basic used different file extensions to
distinguish between classes (.cls), forms (.frm), modules (.bas), and user
controls (.ctl). Visual Basic .NET allows you to mix multiple types within a
single .vb file.
Code-behind pages carry two extensions, the page type (.aspx or .asmx) and
the Visual Basic extension (.vb) or the C# extension (.cs). For example, the
full file name for the code-behind page for a default ASP.NET Web Form is
WebForm1.aspx.vb for a Visual Basic .NET project, and for a C# project it
is WebForm1.aspx.cs.

You will learn more about code-behind pages in Module 5, “Adding
Code to a Microsoft ASP.NET Form,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

 Discovery files (.disco and .vsdisco)
Discovery files are XML-based files that contain links (URLs) to resources
that provide discovery information for an XML Web service. These files
enable programmatic discovery of XML Web services.

 Global application classes (global.asax)
The Global.asax file, also known as the ASP.NET application file, is an
optional file that contains code for responding to application-level events
that are raised by ASP.NET or raised by HttpModules. At runtime,
Global.asax is parsed and compiled into a dynamically generated
.NET Framework class that is derived from the HttpApplication base class.

Web application files

Note

 Module 2: Using Microsoft Visual Studio .NET 27

 Resource files (.resx)
A resource is any non-executable data that is logically deployed with an
application. A resource might be displayed in an application as error
messages or as part of the UI. Resources can contain data in a number of
forms, including strings, images, and persisted objects. Storing your data in
a resource file allows you to change the data without recompiling your
entire application.

 Styles.css
Styles.css is the default stylesheet file for the Web application.

 Web.config file
This Web.config file contains configuration settings that the common
language runtime reads, such as assembly binding policy, remoting objects,
and so on, and settings that the application can read. Web.config files also
contain the global application classes that support a project.

Any files that are not based on a programming language will have their own
extensions. For example, a Crystal Report file uses the .rpt extension, and a text
files uses .txt.

When a Web project is compiled, two additional types of files are created:

 Project Assembly files (.dll)
All of the code-behind pages (.aspx.vb and .aspx.cs) in a project are
compiled into a single assembly file that is stored as ProjectName.dll. This
project assembly file is placed in the /bin directory of the Web site.

 AssemblyInfo.vb or AssemblyInfo.cs
The AssemblyInfo file is used to write the general information, specifically
assembly version and assembly attributes, about the assembly.

For more information on files that support ASP.NET Web applications,
see the Visual Studio .NET documentation.

Other files

Project assembly

Note

28 Module 2: Using Microsoft Visual Studio .NET

Web Application File Structure

wwwrootwwwroot

BinBin

InetpubInetpub

ProjectAProjectA

My DocumentsMy Documents

Development FilesDevelopment Files

Assembly FilesAssembly Files

WebForm1.aspx
WebForm1.aspx.vb
(Code-behind page)

Visual Studio
Projects

Visual Studio
Projects

SolutionSolution

Solution.sln ProjectA.vbproj

ProjectA.dllBuild

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create an ASP.NET Web application, Visual Studio .NET creates
two folders to store the files that support that application. When you compile a
project, a third folder is created to store the resulting .dll file.

Visual Studio .NET creates a folder for the solution, ProjectA, containing the
file ProjectA.sln. This file is a map of all of the various files that support the
project.

You can also create a blank solution and then add projects to it. By creating a
blank solution, you will have a solution that has a different name than the
project.

Visual Studio .NET also creates a folder named ProjectA, in the
Inetpub\wwwroot folder, that contains the files that are required by the Web
application. These files include:

 The project file, ProjectA.vbproj or ProjectA.csproj, which is an XML
document that contains references to all project items, such as forms and
classes, in addition to project references and compilation options.

 ASP.NET Web Forms, WebForm1.aspx, or XML Web services,
WebService.asmx.

 Code-behind pages, WebForm1.aspx.vb, WebService1.asmx.vb,
WebForm1.aspx.cs or WebService1.asmx.cs.

 A Web.config file, which contains the configuration setting for the Web
application.

 A Global.asax file that handles events that are fired while the Web
application is running.

When you build a Web application project, Visual Studio .NET creates an
assembly in the Inetpub\wwwroot\ProjectA\bin folder. An assembly is one .dll
file that is created from all of the code-behind pages that make up a Web
application.

Introduction

My Documents

Inetpub

The Assembly

 Module 2: Using Microsoft Visual Studio .NET 29

Demonstration: Creating a Web Application Project

Populate the ASP.NET Web Form

Add a new ASP.NET Web Form

Add a new project

Write code for the button

Build and debug the solution

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to add Web Forms to a Web
Application project, add a new project to a solution, and build and run a Web
Application project.

 To run this demonstration

1. Open the MyFirstSolution solution file.
2. Open the WebForm1.aspx file in Design view.
3. There are already two controls, a Button control and a Label control, that

you placed in the previous demonstration.
4. Select the label and change the ID property to lblMessage in the Properties

window.
5. Double-click the Button control to open the code-behind page for the Web

Form, and add the following comment to the event procedure:
'TODO: Write Hello World

//TODO: Write Hello World

A new task is automatically added to the Task List because of the TODO
token.

6. On the Project menu, click Add Web Form.
7. In the Add New Item dialog box, change the default name to login.aspx,

and click Open.

You can also add an ASP.NET Web Form to a project by
right-clicking the project in Solution Explorer, clicking Add, and then
clicking Add Web Form.

8. In the Task List, select the Add a new ASP.NET Web Form task check.

Populate an ASP.NET
Web Form

Visual Basic .NET

C#

Add a new ASP.NET
Web Form

Note

30 Module 2: Using Microsoft Visual Studio .NET

9. In Solution Explorer, right-click the solution, click Add, and then click
New Project.

10. In the Add New Project dialog box:
Click Visual Basic, click ASP.NET Web Service, set the location to
http://localhost/MyFirstWebServiceVB, and then click OK.
Click Visual C#, click ASP.NET Web Service, set the location to
http://localhost/MyFirstWebServiceCS, and then click OK.
The new project also contains a XML Web service.

11. In the Task List, check the Add a new project to the solution task.
12. In the Task List, double-click the TODO: Write Hello World task.

The correct file is opened and the cursor is placed at the correct spot in the
code.

13. Write the following code:
lblMessage.Txt = "Hello World!"

lblMessage.Txt = "Hello World!";

This is a syntax error because the code sets the Txt property instead
of the Text property. This error is there to show you what happens when the
build fails.

14. Remove the TODO from the TODO: Write Hello World comment.
The TODO task disappears automatically from the Task List.

15. Verify that MyFirstWebApplicationVB or MyFirstWebApplicationCS is the
startup project. In Solution Explorer, MyFirstWebApplicationVB or
MyFirstWebApplicationCS should appear in bold text.

To set MyFirstWebApplicationVB or MyFirstWebApplicationCS
as the startup project, right-click the MyFirstWebApplicationVB or
MyFirstWebApplicationCS project in Solution Explorer and click Set as
StartUp Project.

16. On the Build menu, click Build Solution to build the solution.
Both MyFirstWebApplicationVB or MyFirstWebApplicationCS and
MyFirstWebServiceVB or MyFirstWebServiceCS are built, but the
Output window displays the following error condition:
Build: 1 succeeded, 1 failed, 0 skipped

And an error message is added to the Task List because Txt is not a member
of System.Web.UI.WebControls.Label.

17. To view all of the tasks from both projects, on the View menu, click
Show Tasks, and then click All.

Add a new project

Visual Basic .NET

C#

Write code for a button
control

Visual Basic .NET

C#

Note

Build and run the
solution

Note

 Module 2: Using Microsoft Visual Studio .NET 31

18. Double-click the error message in the Task List. The cursor jumps to the
correct spot in the code.

19. Correct the syntax error.
The correct code should look like the following:
lblMessage.Text = "Hello World!"

lblMessage.Text = "Hello World!";

For Visual Basic .NET, when you move the cursor off of the corrected line
of code, the error is removed from the Task List.

20. On the Build menu, click Rebuild Solution to rebuild the solution.
Verify that you have the following message in the Output window:
Rebuild All: 2 succeeded, 0 failed, 0 skipped

21. To view the Web page in a browser, right-click WebForm1.aspx in the
MyFirstWebApplicationVB or MyFirstWebApplicationCS project in
Solution Explorer, and then click View in Browser.

You can build and browse a Web Form in one step by right-clicking
the page in Solution Explorer and then clicking Build and Browse.

22. In the browser, click the button on the Web Form, and make sure that you
see the message Hello World.

Visual Basic .NET

C#

View the result

Note

32 Module 2: Using Microsoft Visual Studio .NET

Review

Overview of Visual Studio .NET

Creating an ASP.NET Web Application Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the difference between a Visual Studio .NET solution and a
Visual Studio .NET project?
The solution is just a development tool for organizing projects. The
project is the actual Web application.

2. What is the difference between Server Explorer and Solution Explorer in
Visual Studio .NET?
Server Explorer lists server resources. Solution Explorer lists the
projects in the open solution and the files in the projects.

3. How do you add a new Web Form to a project?
You can either click Add Web Form on the Project menu, or right-click
the project in Solution Explorer, click Add, and then click Add Web
Form.

4. When you create a Web application project, where are the project files
stored?
In the \Inetpub\wwwroot\projectname folder.

 Module 2: Using Microsoft Visual Studio .NET 33

5. When you build a project, what file(s) is created?
The assembly DLL for the project is created and stored in the \bin
folder of the project.

6. How do you view a Web Form in the Visual Studio .NET browser?
Before you can view a Web Form, you must build the project. You can
either right-click the Web Form and click Build and Browse, or click
Build Project on the Build menu, then right-click the Web Form and
click View in Browser.

34 Module 2: Using Microsoft Visual Studio .NET

Lab 2: Using Microsoft Visual Studio .NET

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dentists
Dental.aspx
Dentists
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create a Microsoft® Visual Studio® .NET solution.
 Create a Web Application project.
 Add files to a Web Application project.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

There are no prerequisites for this lab.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In this lab, you will create a Microsoft ASP.NET Web Application project for
the Web site. You can work through the labs by using either C# or Microsoft
Visual Basic® .NET.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
15 minutes

 Module 2: Using Microsoft Visual Studio .NET 35

Exercise 1
Creating an ASP.NET Web Application Project

In this exercise, you will create the ASP.NET Web Application project that will
be used for the Benefits Web site that is built throughout the labs that comprise
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

 Create the ASP.NET Web application and add the starter files

1. Using Visual Studio .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.
The 2310LabApplication solution contains several projects. Each project
represents a different application or component. The solution serves as a
container to group these related projects.

2. Create a new ASP.NET Web Application project named BenefitsVB or
BenefitsCS in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application.
d. Set the Location to http://localhost/BenefitsVB for a

Visual Basic .NET project, or to http://localhost/BenefitsCS for a C#
project.

e. Click Add to Solution and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some prebuilt Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Visual Studio .NET creates a virtual root named BenefitsVB or BenefitsCS.
List the 6 files for a Visual Basic project or 5 files for a C# project that
appear in Solution Explorer.
For a Visual Basic .NET project:

AssemblyInfo.vb, BenefitsVB.vsdisco, Global.asax, Styles.css,
Web.config, WebForm1.aspx

For a C# project:
AssemblyInfo.cs, BenefitsCS.vsdisco, Global.asax, Web.config,
WebForm1.aspx

__

__

Caution

36 Module 2: Using Microsoft Visual Studio .NET

The Benefits project will be the main Web application that you will build
throughout the labs in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET. Two versions of the project can be
created: BenefitsVB is a Visual Basic .NET solution and BenefitsCS is a
C# solution.

3. Add the starter lab files to the Benefits project:
a. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to

Add, and then click Add Existing Item.
b. For the Visual Basic .NET Project, browse to the install folder\Labfiles\

Lab02\VB\Starter\BenefitsVB folder for the Visual Basic .NET files.
For the Visual C# project, browse to the install
folder\Labfiles\Lab02\CS\Starter\BenefitsCS folder for the C# files.

The default installation folder for this class is
C:\Program Files\Msdntrain\2310.

c. In the Files of type box of the Add Existing Item – Benefits dialog
box, select All Files (*.*).

d. Select all of the files in this folder, and then click Open.
e. Click Yes if asked if you want to create a new class file for the

medical.aspx Web Form.
When you add files to the Benefits project, they become part of the Benefits
Web application. The files that you copied in the preceding step provide a
foundation upon which you will build your Web application.

4. Right-click the WebForm1.aspx page in Solution Explorer and then click
Build and Browse.
When you build and browse a project, the code files are compiled and the
default Web Form is displayed in the built-in browser in
Visual Studio .NET.
At this stage, WebForm1.aspx is blank. The browser displays a blank Web
page.

5. Each project in Visual Studio .NET has its own virtual directory in Internet
Information Services (IIS). Using Windows Explorer, find where the files
were created for the Benefits project. Fill in your answer below.
\Inetpub\wwwroot\BenefitsVB\
-or-
\Inetpub\wwwroot\BenefitsCS\

Note

 Module 2: Using Microsoft Visual Studio .NET 37

Exercise 2
Using Visual Studio .NET

In this exercise, you will set up a profile, configure the Benefits project, and
then add tasks to the Task List.

 Set attributes for a profile

1. Click the Start Page tab to view the Start page of Visual Studio .NET.
If the Start Page tab is not available, on the Help menu, click Show Start
Page.

2. Click My Profile to open the profile attribute section.
3. In the Help Filter drop-down list, click .NET Framework SDK.

Setting a profile allows Visual Studio .NET to customize the interface for
the type of development you are doing.

 Set properties for the Visual Basic .NET project

1. In Solution Explorer, right-click the BenefitsVB project, and then click
Properties.

2. In the BenefitsVB Property Pages dialog box, in the Common Properties
folder, click Build.

3. In the Option Strict drop-down list, click On, and then click OK to apply
the changes.
Enabling Option Strict causes Visual Basic .NET to enforce stronger data
type conversion rules, and helps to ensure a well-running Web application.

 Set properties for the Visual C# project

• Option Strict does not need to be set for a Microsoft Visual C# project
because C# enforces stronger type conversion rules by definition.

 Add tasks to the Task List

1. On the View menu, point to Show Tasks, and then click All to display the
Task List.

2. On the Task List, click the area labeled Click here to add a new task. In
the Description field, type Build the BenefitsList component and then
press ENTER.

3. Create a second task named Build the Benefits Web application and then
press ENTER.
The Task List is a convenient place to list the tasks that you have yet to
accomplish.

4. On the File menu, click Exit.
5. Click Yes to save changes.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Overview of the .NET-Based
Languages 2

Lesson: Comparison of the .NET-Based
Languages 12

Lesson: Creating a Component Using
Visual Studio .NET 19

Review 29

Lab 3: Building a Microsoft
Visual Studio .NET Component 31

Module 3:
Using Microsoft .NET-
Based Languages

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 3: Using Microsoft .NET-Based Languages iii

Instructor Notes
This module provides students with an overview of the languages that are
supported by Microsoft® ASP.NET and how the common language runtime
manages those languages. Emphasis will be placed on the decision between
using Microsoft Visual Basic® .NET and C#. The remainder of Course 2310B
will use both Visual Basic .NET and Microsoft Visual C#™ in the sample code
and demonstrations.

In this module, students will gain an understanding of the Microsoft
.NET-based languages. Students will be introduced to the different languages
that are available for use when developing .NET applications and how the
Microsoft .NET Framework manages different languages. Students will then
learn some of the fundamental aspects of writing code and creating components
by using either Visual Basic .NET or C#.

After completing this module, students will be able to:

 Identify the languages that support ASP.NET.
 Choose an appropriate development language for your needs.
 Create a component by using Visual Basic .NET or C#.

To teach this module, you need the Microsoft PowerPoint® file 2310B_03.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices and the lab.
 Practice the steps for the instructor-led demonstrations.

Presentation:
45 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 3: Using Microsoft .NET-Based Languages

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Overview of the .NET-Based Languages
This section describes the instructional methods for teaching each topic in this
lesson.

Do not spend a lot of time on this slide; you should just talk briefly about the
different components.

Open the object browser to show that the namespaces are hierarchical.

Lesson: Comparison of the .NET-Based Languages
This section describes the instructional methods for teaching each topic in this
lesson.

Explain why it is important to know both the C# and Visual Basic .NET
languages. You can emphasize that there might be situations when the
Visual Basic .NET developers might have to read C# source code and vice
versa. Highlight the fact that there is a possibility that the developers might
have to work on a solution that contains projects in both languages.

Have the students perform the two translations on their own in the workbook.
You can then write the answers on the board with input from the class. Solution
files are provided in install folder\Practices\Mod03\.

1. Answer:
public double getPi()

{

 double pi;

 pi = 4 * System.Math.Atan(1);

 return pi;

}

The Common Language
Runtime Components

What Are Namespaces?

Visual Basic .NET and
C#

Practice: Language
Translation

 Module 3: Using Microsoft .NET-Based Languages v

2. Answer:
Private Function Test() As String

 Dim sReturn As String = ""

 Dim j As Integer = 1

 Do While j < 10

 sReturn &= j

 j += 2

 Loop

 Return sReturn

End Function

Lesson: Creating a Component Using Visual Studio .NET
This section describes the instructional methods for teaching each topic in this
lesson.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 3: Building a Microsoft Visual Studio .NET Component
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

 Module 3: Using Microsoft .NET-Based Languages 1

Overview

Overview of the .NET-Based Languages

Comparison of the .NET-Based Languages

Creating a Component Using Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this module, you will gain an understanding of the Microsoft® .NET
development languages. You will be introduced to the different languages that
are available for use when developing .NET applications and learn how the
Microsoft .NET Framework uses different languages. You will also learn some
of the fundamental aspects of writing code and creating components by using
two of the .NET-based languages, Microsoft Visual Basic® .NET and C#.

After completing this module, you will be able to:

 Identify the languages that support the .NET Framework.
 Choose an appropriate development language for your needs.
 Create a component by using Visual Basic .NET or Microsoft Visual C#™.

Introduction

Objectives

2 Module 3: Using Microsoft .NET-Based Languages

Lesson: Overview of the .NET-Based Languages

Multiple Language Support

The Common Language Runtime

The Common Language Runtime Components

Runtime Compilation and Execution

What are Namespaces?

Using Namespaces

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn about the programming languages that are
supported by the .NET Framework. You will see how the .NET Framework is
designed to support an unlimited number of development languages, assuming
those languages conform to .NET requirements.

You will also learn about namespaces, which are a fundamental feature of the
.NET Framework and the .NET-based languages.

After completing this lesson, you will be able to:

 Name several of the .NET development languages.
 Explain how the .NET Framework supports multiple development

languages.
 Explain the functionality of the common language runtime.
 Illustrate the process that a Web application goes through when it is

compiled and executed by the common language runtime.
 Add a namespace to a page.

Introduction

Lesson objectives

 Module 3: Using Microsoft .NET-Based Languages 3

Multiple Language Support

The .NET Framework is designed to support many
languages

More than 20 languages currently supported

Microsoft provides Visual Basic .NET, C#,
Visual J# .NET, and JScript .NET

Benefits of multiple-language support
Code modules are reusable
API access is the same for all languages
The right language is used for the right task
Performance is roughly equal between all languages

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework was developed so that it could support a theoretically
infinite number of development languages. Currently, more than 20
development languages work with the .NET Framework.

The design of the .NET Framework allows developers to use their preferred
language when developing .NET applications. Currently, the .NET Framework
supports more than 20 languages, including those shown in the following table.

.NET Languages

Visual Basic .NET C# Microsoft Visual J#™ .NET

Microsoft JScript® .NET Oberon Scheme

Perl Python COBOL

Haskell Pascal ML

Mercury Eiffel ADA

SmallTalk CAML Microsoft Visual C++®

APL C n/a

Introduction

Multiple language
support

4 Module 3: Using Microsoft .NET-Based Languages

Because the .NET Framework supports multiple development languages, you
gain the following benefits over single-language frameworks:

 Code modules are reusable. A code module written in one language can be
used by an application written in a different language.

 The object library is the same for all languages. All languages use the same
object model, which is supplied by the .NET Framework class library.

 Language flexibility allows you to choose the right language for the task.
For example, Perl is a better choice for regular expressions, whereas
COBOL was the preferred language for business applications for many
years. Language flexibility not only lets you choose the right language for
new projects, but it also allows you to upgrade existing applications with
new technologies, without rewriting the entire application in a new
language.

 All languages that are supported by the .NET Framework offer essentially
equal performance. Every .NET-based language compiles to the Microsoft
intermediate language (MSIL), and all MSIL is then compiled to native
code, at run-time, by the same compiler.

Benefits of multiple
language support

 Module 3: Using Microsoft .NET-Based Languages 5

The Common Language Runtime

One runtime for all . NET-Based Languages

Manages threads and memory

Garbage collection

Enforces code security

Eliminates DLL versioning problems

Multiple versions of a DLL can run simultaneously

Applications can specify a version of a DLL to use

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The common language runtime (hereafter referred to as “runtime”) is the
runtime engine of the .NET Framework. The runtime also provides several
other services, including code security and solving dynamic-link library (DLL)
versioning problems.

The runtime manages application threading, providing application memory
isolation. When objects are no longer used by a .NET application, the runtime
performs garbage collection, which frees up the memory that was used by those
objects.

The runtime ensures that a .NET application is secure and will run properly.
The runtime provides type safety, and also ensures that there are:

 No unsafe casts.
 No uninitialized variables.
 No out-of-bounds array indexing.

The runtime also performs exception handling for applications.

Introduction

Manages threads and
memory

Code security

6 Module 3: Using Microsoft .NET-Based Languages

Prior to the .NET Framework, applications shared DLL files. If one application
needed a newer version of the DLL, it would update the DLL during application
installation. As a result of this update, other programs using the DLL may no
longer function properly. These DLL versioning issues are commonly referred
to as “DLL Hell.”

With the runtime, versioning is part of a DLL's identity, not something the
developer has to set. If an application requires a particular version of a DLL,
you can specify that version in the application. The runtime ensures that the
correct version of the DLL is available for the application. Thus, the runtime
allows multiple versions of a DLL to exist and run at the same time.

You specify a DLL version for an application in Extensible Markup
Language (XML)-based configuration files. Applications can be configured to
always use a specific version, or to always use the latest version of a DLL.

DLL versioning

Note

 Module 3: Using Microsoft .NET-Based Languages 7

The Common Language Runtime Components

.NET Framework Class Library Support.NET Framework Class Library Support

Thread SupportThread Support COM MarshalerCOM Marshaler

Type CheckerType Checker Exception ManagerException Manager

MSIL to NativeMSIL to Native
CompilersCompilers

CodeCode
ManagerManager

GarbageGarbage
CollectorCollector

Security EngineSecurity Engine Debug EngineDebug Engine

Class LoaderClass Loader

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because the common language runtime is an integral part of developing
applications with Microsoft Visual Studio® .NET, it is important to be familiar
with the internal components of the runtime.

The runtime is referred to as a managed environment, one in which common
services, such as garbage collection and security, are automatically provided.
The following table describes the features of the common language runtime.

Component Description

Class loader Manages metadata, in addition to the loading and layout of

classes.

MSIL to native
compiler

Converts MSIL to native code (just-in-time [JIT] compilation).

Code manager Manages code execution.

Garbage collector Provides automatic lifetime management of all of your objects.
This is a multiprocessor, scalable garbage collector.

Security engine Provides evidence-based security that is based on the origin of
the code and the user.

Debug engine Allows you to debug your application and trace the execution of
code.

Type checker Will not allow unsafe casts or uninitialized variables. MSIL can
be verified to guarantee type safety.

Exception manager Provides structured exception handling, which is integrated with
Microsoft Windows® structured exception handling (SEH).

Thread support Provides classes and interfaces that enable multithreaded
programming.

COM marshaler Provides marshaling to and from COM.

.NET Framework
Class Library
support

Integrates code with the runtime that supports the .NET
Framework Class Library.

Introduction

Components of the
runtime

8 Module 3: Using Microsoft .NET-Based Languages

Runtime Compilation and Execution

Native
code

C# code Visual Basic .NET
code

Which language?

Visual Basic .NET
compiler

C#
compiler

MSILJIT
compiler

default.aspx

Runtime

HTML

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each .NET-compatible language provides its own compiler to compile code to
MSIL. After the code is compiled in MSIL, the runtime compiles the MSIL to
native code and then runs the application.

As shown in the preceding illustration, a Web browser requests a Web page
from a Web server that is running Internet Information Services (IIS). The
requested Web page, default.aspx, is compiled with the appropriate language
compiler, depending on the language that is used to write the page. Regardless
of the compiler and language used, the application is compiled to MSIL.

The MSIL is handled by the runtime. The runtime uses a JIT compiler to
compile the MSIL to native code. After the application is JIT-compiled, it is
cached so that it does not need to be recompiled for each request.

After the application is compiled, the runtime executes the application on the
Web server and then generates the Hypertext Markup Language (HTML) and
script that is returned to the client.

In the example provided on the preceding slide, the application being
compiled is a Web application that was requested by a Web browser. The
process of compilation and execution is the same for Microsoft Windows®
applications. After the application is JIT-compiled, it is executed.

Introduction

Language compilation

JIT compilation

Application execution

Note

 Module 3: Using Microsoft .NET-Based Languages 9

What are Namespaces?

Group related classes

Logical, not physical, grouping

Namespaces are hierarchical

Decrease naming conflicts

Imports keyword in Visual Basic .NET code

Using keyword in C# code

Imports System.Data.SqlClientImports System.Data.SqlClient

using System.Data.SqlClient;using System.Data.SqlClient;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework class library, an object-oriented library, is composed of
namespaces. The library is a collection of reusable types (classes, structures,
enumerations, delegates, and interfaces) that reduces development time and
increases cross-language support.

Do not confuse the .NET Framework namespaces with XML
namespaces. Although they share the same name, the two concepts are entirely
different.

Namespaces provide a logical grouping of classes that can be used by all
.NET-compatible development languages. Each namespace contains types that
you can use in your application. The namespaces are arranged hierarchically,
which helps reduce naming conflicts and increases the reusability of code.

To use classes within a namespace, you can fully qualify each type with the full
namespace hierarchy, or you can provide a declarative statement at the
beginning of the application. To issue a declarative statement, you use the
Imports statement in Visual Basic .NET or the using keyword in C#.

The following code shows you how to import a namespace in
Visual Basic .NET:

Imports System.Data.SqlClient

The following code shows the same declaration in Visual C#:

using System.Data.SqlClient;

All namespaces provided by Microsoft begin with either Microsoft or
System.

Introduction

Note

Definition

Importing namespaces

Example of importing
namespaces

Note

10 Module 3: Using Microsoft .NET-Based Languages

Using Namespaces

Implicit object declaration

Explicit object declaration
Dim listBox1 As New System.Web.UI.WebControls.ListBox()
listBox1.Items.Add("First Item")

Dim listBox1 As New System.Web.UI.WebControls.ListBox()
listBox1.Items.Add("First Item")

Imports System.Web.UI.WebControls
...
Dim listBox1 As New ListBox()
listBox1.Items.Add("First Item")

Imports System.Web.UI.WebControls
...
Dim listBox1 As New ListBox()
listBox1.Items.Add("First Item")

using System.Web.UI.WebControls;
...
ListBox listBox1 = new ListBox();
listBox1.Items.Add("First Item");

using System.Web.UI.WebControls;
...
ListBox listBox1 = new ListBox();
listBox1.Items.Add("First Item");

System.Web.UI.WebControls.ListBox listBox1 =
new System.Web.UI.WebControls.ListBox();

listBox1.Items.Add("First Item");

System.Web.UI.WebControls.ListBox listBox1 =
new System.Web.UI.WebControls.ListBox();

listBox1.Items.Add("First Item");

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When using namespaces, you can import the namespace by using a declarative
statement at the beginning of the application, or you can explicitly use the
namespace within your code.

When you use the Imports statement (or, in Visual C#, the using keyword),
you can then reference a method within the namespace by using only the
method name. The following code demonstrates using the listBox class of the
System.Web.UI.WebControls namespace:

Imports System.Web.UI.WebControls
...
Dim listBox1 As New ListBox()
listBox1.Items.Add("First Item")

using System.Web.UI.WebControls;
...
ListBox listBox1 = new ListBox();
listBox1.Items.Add("First Item");

Introduction

Implicit object
declaration

Visual Basic .NET

C#

 Module 3: Using Microsoft .NET-Based Languages 11

If you do not use the Imports statement or using keyword, you must specify
the entire namespace name with the method, as shown in the following code:

Dim listBox1 As New System.Web.UI.WebControls.ListBox()
listBox1.Items.Add("First Item")

System.Web.UI.WebControls.ListBox listBox1 = new
 System.Web.UI.WebControls.ListBox();
listBox1.Items.Add("First Item");

Although both methods of using namespaces are valid, there are distinct
advantages to both. Implicit namespace use almost always reduces the amount
of code. If you use a type from a namespace more than once in an application,
you save time by declaring the namespace. Explicit use may make your code
more readable and understandable to someone else, because every type you use
is shown with its namespace.

Explicit object
declaration

Visual Basic .NET

C#

Advantages and
disadvantages

12 Module 3: Using Microsoft .NET-Based Languages

Lesson: Comparison of the .NET-Based Languages

Visual Basic .NET

C#

Choosing a Language

Practice: Language Translation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET is shipped with two .NET-based languages: C# and
Visual Basic .NET, which are the two most popular .NET-based languages.

In this lesson, you will be introduced to Visual C# and Visual Basic .NET.
Some of the advantages and disadvantages of these two languages will be
explained, and you will be provided with guidance in choosing a development
language to meet your needs.

After completing this lesson, you will be able to:

 List the common features of C#.
 List the common features of Visual Basic .NET.
 Pick the appropriate .NET development language for your needs.

Introduction

Lesson objectives

 Module 3: Using Microsoft .NET-Based Languages 13

Visual Basic .NET

Visual Basic .NET is the latest version of Visual Basic

True object-oriented language

Visual Basic Scripting Edition (and JScript) are still
used for client-side script

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer = 0
Dim x As Double = TextBox1.Text
For i = 0 To 4

x *= 2
Label1.Text = Label1.Text & x & ","

Next
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer = 0
Dim x As Double = TextBox1.Text
For i = 0 To 4

x *= 2
Label1.Text = Label1.Text & x & ","

Next
End Sub

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Basic .NET is the latest version of Microsoft Visual Basic, but it should
not be viewed as simply the next version after Visual Basic 6.0. The language
has been rewritten for the .NET Framework, and it is now a true object-oriented
language.

Visual Basic .NET, like its predecessor Visual Basic 6.0, is a good language to
use for rapid application development. However, Visual Basic .NET has many
enhancements over Visual Basic 6.0:

 Inheritance
 Overloading
 Parameterized constructors
 Free threading
 Structured exception handling
 Strict type checking
 Shared members
 Initializers

Unlike C#, Visual Basic .NET is not case-sensitive.

Introduction

Features of Visual Basic
.NET

Tip

14 Module 3: Using Microsoft .NET-Based Languages

The following code example shows an event procedure written in
Visual Basic .NET:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim i As Integer = 0
 Dim x As Double = TextBox1.Text
 For i = 0 To 4
 x *= 2
 Label1.Text = Label1.Text & x & ","
 Next
End Sub

Although Visual Basic .NET replaces Visual Basic 6.0 as a development
language for .NET applications, Visual Basic Scripting Edition is still used for
client-side scripting in Web pages. JScript also remains a suitable choice for
client-side script.

Note

 Module 3: Using Microsoft .NET-Based Languages 15

C#

C# is a new language

Similar to Java, Visual C++, and Pascal

private void Button1_Click(object sender,
System.EventArgs e)

{
int i = 0;
double x = Convert.ToDouble(TextBox1.Text);
for (i=0; i<=4; i++)
{

x *= 2;
Label1.Text = Label1.Text + x + ",";

}
}

private void Button1_Click(object sender,
System.EventArgs e)

{
int i = 0;
double x = Convert.ToDouble(TextBox1.Text);
for (i=0; i<=4; i++)
{

x *= 2;
Label1.Text = Label1.Text + x + ",";

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

C# is a new language, introduced with the .NET Framework. It has its origin in
C and Visual C++, but it is an entirely new language that takes full advantage of
the object-oriented nature of .NET development.

C# is very closely related to Visual C++, Pascal, and Java. C# is a true
object-oriented language. Features of Visual C# include:

 It is an object oriented programming (OOP) language
 Type safety
 Automatic garbage collection
 It is case-sensitive
 All class and pointer attributes are accessed by a dot (.)
 Everything is treated as an object (class, structure, array, etc.)

The following code example shows an event procedure written in C#:

private void Button1_Click(object sender, System.EventArgs e)
{
 int i = 0;
 double x = Convert.ToDouble(TextBox1.Text);
 for (i=0; i<=4; i++)
 {
 x *= 2;
 Label1.Text = Label1.Text + x + ",";
 }
}

Introduction

Features of Visual C#

16 Module 3: Using Microsoft .NET-Based Languages

Choosing a Language

.NET Framework class library is the same regardless of language
Performance

All languages are compiled to MSIL

Only performance difference is how each language compiler
compiles to MSIL
The runtime compiles all MSIL the same, regardless of its origin

Development experience
C# is similar to Java, C, Visual C++, and Pascal
Visual Basic .NET is similar to Visual Basic

Browser compatibility
ASP.NET code is server-side code, so browser compatibility is not
an issue

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because the .NET Framework uses a runtime, and because all .NET-based
languages compile to MSIL, there is little difference between the two
languages. Choosing which language to use when developing your Web
application mainly depends on your previous development experience.

Because all of the .NET-based languages are compiled to MSIL and the JIT
compiler treats all MSIL the same, there is no noticeable performance
difference amongst the different languages. The only difference is how each
language-specific compiler writes the MSIL. In general, these differences are
small and have an insignificant effect on performance.

Because performance is not a factor in choosing the .NET-based language with
which you will develop your application, you should consider your existing
language experience and background. If you are familiar with Java, C# is an
appropriate choice. If your background is in C and Visual C++ development,
C# is a clear choice for .NET applications. If you are a Visual Basic 6.0
developer, you should choose Visual Basic .NET.

Because ASP.NET code runs only on the server, browser compatibility is not a
consideration when choosing a .NET-based development language. The
ASP.NET code runs on the server, and the server then returns the appropriate
HTML and client-side script to the client’s browser.

Introduction

Performance

Development experience

Browser compatibility

 Module 3: Using Microsoft .NET-Based Languages 17

Practice: Language Translation

Students are:

Given code in C#, and will then translate it
into Visual Basic .NET

Given code in Visual Basic .NET, and will
then translate it into C#

Time: 5 minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will translate Visual Basic .NET code into C#. You will
then translate C# code into Visual Basic .NET.

 Perform the following translations

Visual Basic .NET code to translate:
Function getPi() As Double
 Dim pi As Double
 pi = 4 * System.Math.Atan(1)
 return pi
End Function

Answer:
public double getPi()

{

 double pi;

 pi = 4 * System.Math.Atan(1);

 return pi;

}

__

__

18 Module 3: Using Microsoft .NET-Based Languages

C# code to translate:
string Test()
{
 string sReturn = "";
 int j = 1;
 while (j < 10)
 {
 sReturn += j;
 j += 2;
 }
 return sReturn;
}

Answer:
Private Function Test() As String

 Dim sReturn As String = ""

 Dim j As Integer = 1

 Do While j < 10

 sReturn &= j

 j += 2

 Loop

 Return sReturn

End Function

__

__

 Module 3: Using Microsoft .NET-Based Languages 19

Lesson: Creating a Component Using Visual Studio .NET

What are Classes and Components?

Creating a Class

Using Components in an ASP.NET Web Form

Demonstration: Creating a Class in Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will be introduced to classes and components. You will then
create a component by using Visual Studio .NET and learn how to use that
component in other applications.

After completing this lesson, you will be able to:

 Distinguish between a class and a component.
 Create a class.
 Use a component from another application.
 Build a component in Visual Basic .NET or C#.

Introduction

Lesson objectives

20 Module 3: Using Microsoft .NET-Based Languages

What are Classes and Components?

Classes are groups of code with no user interface

Components are compiled classes

Components are compiled as DLL files

Components are used for sharing code between
applications

componentcomponent

Web
application

Web
application

Windows
application
Windows

application
Web

application
Web

application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When developing in an object-oriented language (such as Visual Basic .NET or
C#), you can make of use existing classes and components. For example, the
.NET Framework class library is comprised of many classes.

Classes are groups of code statements that have no user interface (UI). Classes
provide functionality within an application and can be shared amongst different
parts of an application. Classes are used to organize functions and give them a
single name by which they are referenced. Classes also have properties and
methods. Whereas properties are the way you set the characteristics of a class,
methods are the way that you invoke the actions of a class. When you want to
use a class and its methods, you actually use an object of that class. An object is
an instantiation of the class.

Components are classes that are compiled into a DLL file. Because the
component is its own file, the functionality of a component can be shared
among different applications. You reference a component from an application
by using the component’s namespaces and class names.

Introduction

Class definition

Component definition

 Module 3: Using Microsoft .NET-Based Languages 21

For example, suppose you build a component that calculates the salary increase
that an employee receives. This calculation is based on numerous formulas that
are specific to your organization, including current base salary, performance
rating, and tenure at the company. The calculations are very complex and
time-consuming to develop. In addition, the company frequently changes the
formula by which raises are calculated.

After the component is created and compiled as a DLL file, other applications
can use it. For example, you might have a Windows application that the Human
Resources department uses to determine an employees new salary for their next
paycheck. You might also build a Web application that employees can use to
determine what their new salary will be. You may also have an additional Web
application, available only to managers, that also uses the component.

By using a component to handle the calculations, you only need to create the
complicated algorithm once—after that, all applications can use it. Furthermore,
when changes occur, you can update the component without needing to update
the applications that use the component.

Example of component
sharing

22 Module 3: Using Microsoft .NET-Based Languages

Creating a Class

Create a Class Library project in Visual Studio .NET

Visual Studio .NET creates a default namespace

Create methods of the class
Public Class Shipping

Function ShippingCost _
(ByVal sngPrice As Single) As Single
'…
Return (sngShipping)

End Function
End Class

Public Class Shipping
Function ShippingCost _

(ByVal sngPrice As Single) As Single
'…
Return (sngShipping)

End Function
End Class

public class Shipping
{

public Single ShippingCost (Single sngPrice)
{

//…
return sngShipping;

}
}

public class Shipping
{

public Single ShippingCost (Single sngPrice)
{

//…
return sngShipping;

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In object-oriented languages, the concept of abstraction is important.
Abstraction is a form of organization in which methods, data, and functions that
serve a common purpose are grouped together. A fundamental component of
abstraction is the creation and use of classes.

A class is a template for an object. This template defines attributes for storing
data and defines operations for manipulating that data. A class also defines a set
of restrictions that can be used to allow or deny access to its attributes and
operations.

You can create a class in any Visual Studio .NET project. You can also create a
new class library, which contains only the class and its methods, but no UI
(windows or forms). If you create a class within an existing project, the class
exists within the project namespace. If you create a new class library,
Visual Studio .NET creates a default namespace and places that new class
within that namespace.

When you create a class within a project, the class file is compiled into the
application DLL and cannot be reused by other applications. If you create a
class library, you are creating a component that can be reused.

 To create a new class

1. Open a solution in Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. In the Project Types dialog box, select the language that you want to use.

In the Templates pane, select Class Library. Click Add to solution to add
the new project to the current solution.

4. In the Name box, type the name of your new class library, and then click
OK.

Introduction

Definition

Creating a new class

 Module 3: Using Microsoft .NET-Based Languages 23

Visual Studio .NET creates a new class file with a template for the class, as
shown in the following code:
Public Class Class1

End Class

using System;
namespace ClassLibrary1
{
 public class Class1
 {
 public class1()
 {
 }
 }
}

Visual Basic .NET creates a default namespace for the class that has the
same name as the project. To change the namespace name, follow these
steps:
a. Right-click the project in the Solution Explorer, and then click

Properties.
b. In the Property Pages dialog box, on the General Properties tab, set

the Root namespace to the new name for your component.
If you are using C#, the namespace is contained in the class file and can be
changed by editing the file, as shown in the following code:
namespace ClassLibrary1
{
 public class Class1
 {

 }
}

5. Build the project to create the component for your new class.

Visual Basic .NET

C#

Visual Basic .NET

C#

24 Module 3: Using Microsoft .NET-Based Languages

After the class is created, you add the methods (functions and sub procedures)
that are contained within the class. The following code example shows the new
class, Shipping. The class contains a single function, named ShippingCost:

Public Class Shipping
 Function ShippingCost(ByVal sngPrice As Single) _
 As Single
 ' . . .
 Return sngShipping
 End Function
End Class

public class Shipping
{
 public Single ShippingCost (Single sngPrice)
 {
 //...
 return sngShipping;
 }
}

Creating the methods
for a class

Visual Basic .NET

C#

 Module 3: Using Microsoft .NET-Based Languages 25

Using Components in an ASP.NET Web Form

Add a reference to the DLL

Instantiate the class object:

Use the object:
sngShipping =

x.ShippingCost(sngPrice);

sngShipping =
x.ShippingCost(sngPrice);

Dim x As New CompanyA.ShippingDim x As New CompanyA.Shipping

Namespace CompanyA
Class Shipping
Function ShippingCost (…)

End Class
End Namespace

component.dll

sngShipping = _
x.ShippingCost(sngPrice)

sngShipping = _
x.ShippingCost(sngPrice)

CompanyA.Shipping x =
new CompanyA.Shipping();

CompanyA.Shipping x =
new CompanyA.Shipping();

namespace CompanyA
{

class Shipping
{

public void ShippingCost (…) { }
}

}

component.dll

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Classes created within a component are available to other programs. First, you
must reference the component (DLL). Then, to access the methods within the
class, you instantiate the class object by referencing its namespace and class
name.

Before using the classes in a component, you must first add a reference to the
component within your project.

 To add a reference to the DLL

1. Open a Web application project in Visual Studio .NET.
2. Right-click the project in the Solution Explorer and then click

Add Reference.
3. In the Add Reference dialog box, on the Projects tab, double-click the

class library project, and then click OK.
The component is added to the References folder in Solution Explorer.
The reference makes the namespace of the component accessible to the
application.

If you keep the Web application project and the class library project in the
same solution, any changes you make to the component are automatically
reflected by the reference.

Introduction

Referencing the DLL

Tip

26 Module 3: Using Microsoft .NET-Based Languages

After you add a reference to the component, you instantiate the class object.
The following line of code declares a new variable named x of the class
Shipping, within the Company namespace:

Dim x As New CompanyA.Shipping

CompanyA.Shipping x = new CompanyA.Shipping();

You can also use the Imports or using statement to import the namespace, and
then instantiate the class directly, as shown in the following code:

Imports CompanyA
Dim x As New Shipping

using CompanyA;
Shipping x = new Shipping();

After it is instantiated, the object is used like any other object in your project.
All of the public methods within the class are available for use. For example,
the following line of code passes one parameter to the ShippingCost function
of the Shipping class and assigns the returned value to the sngShipping
variable:

sngShipping = x.ShippingCost(sngPrice)

sngShipping = x.ShippingCost(sngPrice);

Instantiating the object

Visual Basic .NET

C#

Visual Basic .NET

C#

Using the object

Visual Basic .NET

C#

 Module 3: Using Microsoft .NET-Based Languages 27

Demonstration: Creating a Class in Visual Studio .NET

Create a new Class Library project

Create a “Hello World” method

Call it from an ASP.NET page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

 To run the demonstration

1. In Visual Studio .NET, create a new Class Library project in
Visual Basic .NET or C# named HelloWorld.
You can use the solution that you created in Module 2 to run this
demonstration, or you can create a new solution.

2. Show the Class1.vb or Class1.cs file. A default class, Class1, is created.
3. Create a Hello method:

Function Hello() As String
 Return "Hi from Visual Basic .NET component."
End Function

public string Hello()
{
 return "Hi from C# component.";
}

4. Build the project.
5. Create a new Web application project and add it to your current solution.
6. In the Web application, add a reference to the HelloWorld component.
7. Expand the bin folder in the Web application project and show that the

HelloWorld.dll file has been copied there. Ensure that Show All Files is
selected in Solution Explorer.

8. Open the default WebForm1.aspx page in the Web application project.

Visual Basic .NET

C#

28 Module 3: Using Microsoft .NET-Based Languages

9. Place a Button control on the page and create a Click event procedure for it.

You will learn more about event procedures in Module 5, “Adding
Code to a Microsoft ASP.NET Web Form,” in Course 2310B: Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Add the following code to the Click event procedure, showing the
Microsoft IntelliSense® for the HelloWorld component and the x variable.
Dim x As New HelloWorld.Class1()
Button1.Text = x.Hello()

HelloWorld.Class1 x = new HelloWorld.Class1();
Button1.Text = x.Hello();

10. Build and browse the WebForm1.aspx page and click the button.

Note

Visual Basic .NET

C#

 Module 3: Using Microsoft .NET-Based Languages 29

Review

Overview of the .NET-Based Languages

Comparison of the .NET-Based Languages

Creating a Component Using Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How would you select a .NET-based language to create a new Web
application project?
Based on the developer's experience with existing languages.

2. What role does the common language runtime play in running an ASP.NET
page?
The runtime compiles the MSIL to native code and then runs the native
code on the server.

3. What is the role of the just-in-time (JIT) compilation?
The runtime uses a JIT compiler to compile the MSIL to native code.

30 Module 3: Using Microsoft .NET-Based Languages

4. List four languages that are currently supported by .NET.
Visual Basic .NET, Visual C#, JScript .NET, C, Perl, Cobol, etc.

5. What is garbage collection and why is it so useful in the .NET Framework?
When an object is no longer used by an application, the garbage
collector cleans up the memory. Garbage collection prevents memory
leaks caused by applications that do not release all resources.

6. Why would you create a component for a Web application?
To share business logic code with other applications.

 Module 3: Using Microsoft .NET-Based Languages 31

Lab 3: Building a Microsoft Visual Studio .NET
Component

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb

Menu
Component
Class1.vb

XML
Files

Web.
config

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create a component in Microsoft® Visual Studio® .NET.
 Add a reference to a component in Visual Studio .NET.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to write a Microsoft Visual Basic® or C# function.
 Knowledge of how to create a Visual Basic structure or C# structure.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

The list of benefits that are offered by Coho Winery is displayed on a number
of pages in the Web site. Rather than code the list on every Web page that
displays the offered benefits, you have been asked to develop a component that
returns the benefit names.

In this lab, you will create a component. The component you create will contain
an array that holds the benefit name and the name of the Web page that
implements that benefit.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

32 Module 3: Using Microsoft .NET-Based Languages

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application
project. If you have not created this project, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Visual Studio .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, in the Name text box, type

2310LabApplication, and then click OK.

 Create the Benefits solution

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Microsoft ASP.NET Web Application project, named
BenefitsVB or BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application.
d. Set the Location to http://localhost/BenefitsVB for a Visual Basic

.NET project or to http://localhost/BenefitsCS for a Visual C# project.
e. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the project
name is important. Because you may be using some pre-built Web Forms in this
and other labs in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET, you must verify that you have
capitalized the Benefits project as shown. Two versions of the project can be
created; BenefitsVB would be a Visual Basic .NET solution and BenefitsCS
would be a Visual C# solution.

Important

Important

Caution

 Module 3: Using Microsoft .NET-Based Languages 33

Exercise 1
Creating a Class

In this exercise, you will first create a Visual Basic .NET or Visual C# Class
Library project and then create a class that returns a string of names.

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
a. Browse to the install folder\Labfiles\Lab03\VB\Starter\BenefitsVB

folder for the Visual Basic .NET files.
b. In the Files of type box of the Add Existing Item – BenefitsVB dialog

box, click All Files.
a. Browse to the install folder\Labfiles\Lab03\CS\Starter\BenefitsCS folder

for the Visual C# files.
b. In the Files of type box of the Add Existing Item – BenefitsCS dialog

box, click All Files.
3. Select all of the files in this folder, and then click Open.
4. Click Yes if prompted to overwrite or reload files.

 Create a Class Library project

1. In Visual Studio .NET, open the 2310LabApplication solution:
a. On the File menu, click Open Solution.
b. In the My Documents\Visual Studio Projects\2310LabApplication

folder, select 2310LabApplication.sln, and then click Open.

If 2310LabApplication is listed in the list of projects on the Start Page,
you can click the 2310LabApplication link in the list to open the solution.

2. Create a new Visual Basic or Visual C# Class Library project:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click Class Library, set the Name to

BenefitsListVB or BenefitsListCS, click Add to Solution, and then
click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the BenefitsListVB or BenefitsListCS project as
shown.

For the Visual Basic
.NET project

For the C# project

Tip

Caution

34 Module 3: Using Microsoft .NET-Based Languages

Visual Studio .NET creates a new class library named BenefitsListVB or
BenefitsListCS and adds this project to the 2310LabApplication solution.
List the two new files that appear in Solution Explorer, under the
BenefitsListVB or BenefitsListCS project:
For a Visual Basic .NET project:

AssemblyInfo.vb and Class1.vb
For a Visual C# project:

AssemblyInfo.cs and Class1.cs
__

__

3. In Windows Explorer, find where the files were created. Fill in your answer
below.
C:\Documents and Settings\UserName\My Documents\Visual Studio
Projects\2310LabApplication\BenefitsListVB
-or-
C:\Documents and Settings\UserName\My Documents\Visual Studio
Projects\2310LabApplication\BenefitsListCS
__

__

4. In Solution Explorer, double-click the Class1.vb file or the Class1.cs file to
open it.

5. What is the name of the class that is created by default?
Class1
__

__

6. In Solution Explorer, right-click the BenefitsListVB or BenefitsListCS
project, and then click Properties.

7. What is the name of the namespace that is created by default?
BenefitsListVB or BenefitsListCS
__

__

 Module 3: Using Microsoft .NET-Based Languages 35

 Create the component methods

1. In the Class1.vb or Class1.cs file, change the name of the class to Benefits.
In the Class1.cs file change the name of the constructor to Benefits.

When using C#, the class constructor must have the same name as the
class.

2. In the Benefits class in the Class1.vb or Class1.cs file, create a custom
structure to hold the name of the benefit and the name of the Web page that
implements it, as shown in the following code:
Structure BenefitInfo
 Dim strName As String
 Dim strPage As String
End Structure

public struct BenefitInfo
{
 public string strName;
 public string strPage;
}

3. In the Benefits class, create a method named GetBenefitsList that creates
an array of BenefitInfo structures, fills in the structures with the
information that is shown in the following table, and then returns the array
to the calling component.
strName strPage

Dental dental.aspx

Medical medical.aspx

Life Insurance life.aspx

Note

In the Visual Basic .NET
class

In the C# class

36 Module 3: Using Microsoft .NET-Based Languages

Your code should look like the following:
Public Function GetBenefitsList() As BenefitInfo()
 Dim arBenefits(2) As BenefitInfo
 arBenefits(0).strName = "Dental"
 arBenefits(0).strPage = "dental.aspx"
 arBenefits(1).strName = "Medical"
 arBenefits(1).strPage = "medical.aspx"
 arBenefits(2).strName = "Life Insurance"
 arBenefits(2).strPage = "life.aspx"
 Return arBenefits
End Function

Your code should look like the following:
public BenefitInfo[] GetBenefitsList()
{
BenefitInfo[] arBenefits = new BenefitInfo[3];
 arBenefits[0].strName = "Dental";
 arBenefits[0].strPage = "dental.aspx";
 arBenefits[1].strName = "Medical";
 arBenefits[1].strPage = "medical.aspx";
 arBenefits[2].strName = "Life Insurance";
 arBenefits[2].strPage = "life.aspx";
 return arBenefits;
}

4. Save your changes.
5. Right-click BenefitsListVB or BenefitsListCS in Solution Explorer and

then click Build to build the BenefitsList project.

In the Visual Basic .NET
class

In the C# class

 Module 3: Using Microsoft .NET-Based Languages 37

Exercise 2
Calling the Component

In this exercise, you will call the component that you created in the preceding
exercise, Exercise 1, from an ASP.NET page.

 Add a reference to the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created.
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project, and then click OK.
The component is added to the References folder in Solution Explorer.

2. Open the test.aspx.vb or test.aspx.cs code-behind page and look at the code
that is already there.
Which line(s) of code instantiate the component?
In Visual Basic .NET:

Dim clBenefits As New BenefitsListVB.Benefits()
In C#:

BenefitsListCS.Benefits clBenefits = new
 BenefitsListCS.Benefits();

3. Right-click the test.aspx page in Solution Explorer and then click Build
and Browse.
A browser window opens in Visual Studio .NET that displays the test.aspx
page. test.aspx displays all of the benefits options from the component.

 Make a change in the component

1. Edit the Class1.vb or Class1.cs file in the BenefitsList project.
2. Increase the size of the array by one, as shown in the following code:

Dim arBenefits(3) as BenefitInfo

BenefitInfo[] arBenefits = new BenefitInfo[4];

Visual Basic .NET

C#

38 Module 3: Using Microsoft .NET-Based Languages

3. Add another benefit to the array, as shown in the following code:
arBenefits(3).strName = "Retirement Account"
arBenefits(3).strPage = "retirement.aspx"

arBenefits[3].strName = "Retirement Account";
arBenefits[3].strPage = "retirement.aspx";

4. Build the component.
5. Refresh the browser that is displaying the test.aspx page.

You should see the new benefit option. Notice that you did not have to
rebuild the Web application, because it automatically uses the new
dynamic-link library (DLL).

 Test a C# component

1. Remove the BenefitsListVB reference from the BenefitsVB project:
a. In Solution Explorer, expand References.
b. Right-click BenefitsListVB and then choose Remove.

2. Add a reference to the C# BenefitsList component, BenefitsListCS.dll,
which is in the install folder\Labfiles\Lab03\VB\Starter\bin folder:
a. Right-click the BenefitsVB project in Solution Explorer and then click

Add Reference.
b. In the Add Reference dialog box, click Browse.
c. In the Select Component dialog box, navigate to the install folder\

Labfiles\Lab03\VB\Starter\bin folder, select the BenefitsListCS.dll file,
and then click Open, and then click OK.
The component is added to the References folder of the Benefits project,
in Solution Explorer.

3. Modify the code to use the new component.
a. In the test.aspx page, modify the code to match the new component, as

shown in the following code:
 Dim clBenefits As New BenefitsListCS.Benefits()
 Dim bi As BenefitsListCS.Benefits.BenefitInfo

4. Right-click the test.aspx page in Solution Explorer and then click Build and

Browse.
You should see new benefits options from the C# component.

Visual Basic .NET

C#

For the Visual Basic
.NET project

 Module 3: Using Microsoft .NET-Based Languages 39

 Test a Visual Basic .NET component

1. Remove the BenefitsListCS reference from the BenefitsCS project:
a. In Solution Explorer, expand References.
b. Right-click BenefitsListCS and then choose Remove.

2. Add a reference to the Visual Basic BenefitsList component,
BenefitsListVB.dll, which is in the install folder\Labfiles\
Lab03\CS\Starter\bin folder:
a. Right-click the BenefitsCS project in Solution Explorer and then click

Add Reference.
b. In the Add Reference dialog box, click Browse.
c. In the Select Component dialog box, navigate to the install folder\

Labfiles\Lab03\CS\Starter\bin folder, select the BenefitsListVB.dll file,
and then click Open, and then click OK.
The component is added to the References folder of the Benefits project,
in Solution Explorer.

3. Modify the code to use the new component:
a. In the test.aspx, modify the code to match the new component, as shown

in the following code:
 BenefitsListVB.Benefits clBenefits = new
 BenefitsListVB.Benefits();
 foreach(BenefitsListVB.Benefits.BenefitInfo bi in
 clBenefits.GetBenefitsList())

4. Right-click the test.aspx page in Solution Explorer and then click Build

and Browse.
You should see new benefits options from the Visual Basic .NET
component.

Code changes to the test.aspx page are only required because of the
different naming system that is used for BenefitsListCS and
BenefitsListVB. When interchanging equivalent Visual Basic .NET and C#
components with the same names, no further code modification is required.

 Reset to the original component

1. Remove the BenefitsList reference in the Benefits project.
2. Add a reference to the Visual Basic .NET or Visual C# BenefitsList

component that you created previously in this lab.
3. Remove the code modification in test.aspx.
4. Right-click the test.aspx page in Solution Explorer and then click Build

and Browse.
You should see your original list of benefits options.

For the Visual C# project

Note

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Creating Web Forms 2

Lesson: Using Server Controls 12

Review 30

Lab 4: Creating a Microsoft ASP.NET Web
Form 32

Module 4: Creating a
Microsoft ASP.NET
Web Form

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property...

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Creating a Microsoft ASP.NET Web Form iii

Instructor Notes
After completing this module, students will be able to:

 Add a Web Form to a Microsoft® ASP.NET Web Application project,
including students being able to:

• Identify and explain the Hypertext Markup Language (HTML) code that
comprises a Web Form.

• Create a Web Form by using Microsoft Visual Studio® .NET.
 Use the Visual Studio .NET toolbox to add server controls to a Web Form,

including students being able to:

• Describe the features of server controls.

• Describe the available server control types.

• Explain how Web Forms save Web server control ViewState.

• Add HTML server controls to Web Forms.

• Add Web server controls to Web Forms.

• Select the appropriate control for a situation.

• Use server controls in Web Forms by using Visual Studio .NET.

To teach this module, you need the Microsoft PowerPoint® file 2310B_04.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the instructor-led demonstrations

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Presentation:
75 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 4: Creating a Microsoft ASP.NET Web Form

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Creating Web Forms
This lesson is a follow-up to the section in Module 2, “Using Microsoft
Visual Studio .NET,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET, that introduces creating Web projects in
Visual Studio .NET

The goal of this topic is to help students to recognize an .aspx Web Form. The
key directive is runat="server".

A source of student confusion is the difference between a Web From, and a
form on the page defined by <Form> HTML tags.

Remember to discuss smart navigation.

Emphasize that when a Web Form is created all you really do is change the
extension from .htm to .aspx. Visual Studio .NET will then add the
runat="server" directive to the Web Form for you.

Alternative delivery: You can do this demonstration as an instructor-led
practice.

Talk about the difference between creating a new site from the ground up and
upgrading an existing site.

Lesson: Using Server Controls
In this lesson, you will need to talk in detail about how server controls work and
what the differences are between server and HTML controls.

Again, the key point is the runat="server" directive. Highlight the round trip
to the server that is required by the runat="server" directive.

Do not spend more than the allotted time on this information. Each option will
be reviewed in context in later modules in this course.

Do not spend more that the allotted time on this information. Saving state is
covered in depth in Module 14, “Managing State,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Alternative delivery: You can do this demonstration as an instructor-led
practice.

What is a Web Form?

Creating a Web Form
with Visual Studio .NET

Demonstration:
Converting an HTML
page to a Web Form

What is a Server
Control?

Types of Server
Controls

Saving View State

Demonstration: Adding
Server Controls to a
Web Form

 Module 4: Creating a Microsoft ASP.NET Web Form v

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 4: Creating a Microsoft ASP.NET Web Form
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

 Module 4: Creating a Microsoft ASP.NET Web Form 1

Overview

Creating Web Forms

Using Server Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this module, you will learn how to create and populate Web Forms. Web
Forms are programmable Web pages that serve as the user interface (UI) for a
Microsoft® ASP.NET Web Application project. A Web Form presents
information to the user in any type of browser, and it implements application
logic by using server-side code.

After completing this module, you will be able to:

 Add a Web Form to an ASP.NET Web Application project.
 Use the Microsoft Visual Studio® .NET toolbox to add server controls to a

Web Form.

Introduction

Objectives

2 Module 4: Creating a Microsoft ASP.NET Web Form

Lesson: Creating Web Forms

What is a Web Form?

Creating a Web Form with Visual Studio .NET

Demonstration: Converting an HTML Page to a Web
Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to create a Web Form. You will also learn
how to identify the key characteristics of Web Forms.

After completing this lesson, you will be able to:

 Identify and explain the Hypertext Markup Language (HTML) code that
comprises a Web Form.

 Create a Web Form by using Visual Studio .NET.

Introduction

Lesson objectives

 Module 4: Creating a Microsoft ASP.NET Web Form 3

What Is a Web Form?

<%@ Page Language="vb" Codebehind="WebForm1.aspx.vb"
SmartNavigation="true"%>

<html>
<body ms_positioning="GridLayout">

<form id="Form1" method="post" runat="server">
</form>

</body>
</html>

<%@ Page Language="vb" Codebehind="WebForm1.aspx.vb"
SmartNavigation="true"%>

<html>
<body ms_positioning="GridLayout">

<form id="Form1" method="post" runat="server">
</form>

</body>
</html>

.aspx extension
Page attributes

@ Page directive
Body attributes
Form attributes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Web Forms consist of a combination of HTML, code, and controls that execute
on a Web server that is running Microsoft Internet Information Services (IIS).
Web Forms display a UI by generating HTML that is sent to the browser, while
the supporting code and controls that run the UI stay on the Web server. This
split between client-side interface and server-side code is a crucial difference
between Web Forms and traditional Web pages. While a traditional Web page
requires all of the code to be sent to and be processed at the Browser, Web
Forms need to send only the interface controls to the browser, and the page
processing is kept on the server. This UI/code split increases the range of
supported browsers while increasing the security and functionality of the Web
page.

Web Forms are commonly referred to as ASP.NET pages or ASPX pages. Web
Forms have an .aspx extension and work as the containers for the text and
controls that you want to display on the browser.

ASP.NET (.aspx) pages and Active Server Pages (ASP) (.asp) can coexist on
the same server. The file extension determines whether ASP or ASP.NET
processes it.

Web Forms are often comprised of two separate files: the .aspx file contains the
UI for the Web Form, while the .aspx.vb or .aspx.cs file, which is called a
code-behind page, contains the supporting code.

Introduction

.aspx extension

4 Module 4: Creating a Microsoft ASP.NET Web Form

The functions of a Web Form are defined by three levels of attributes. Page
attributes define global functions, body attributes define how a page will be
displayed, and form attributes define how groups of controls will be processed.

The <@Page> tag defines page-specific attributes that are used by the
ASP.NET page parser and compiler. You can include only one <@ Page>tag
per .aspx file. The following examples are typical <@ Page>tags for Microsoft
Visual Basic® .NET and for Microsoft Visual C#™ .NET:

<%@ Page Language="vb" Codebehind="WebForm1.aspx.vb"
SmartNavigation="true" %>

<%@ Page Language="c#" Codebehind="WebForm1.aspx.cs"
SmartNavigation="true" %>

The attributes of an <@ Page>tag include:

 Language
The Language attribute defines the language in which the script on the Web
page is written. Some of the values for this attribute are: vb, c#, and
JScript.

 Codebehind page
The Codebehind page attribute identifies the code-behind page that carries
the logic that supports the Web Form. When Visual Studio .NET creates a
Web Form, such as WebForm1.aspx, it also creates a code-behind page,
WebForm1.aspx.vb or WebForm1.aspx.cs.

For more information about code-behind pages, see Module 5,
“Adding Code to a Microsoft ASP.NET Web Form,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

 SmartNavigation
The SmartNavigation attribute in ASP.NET allows the browser to refresh
only the sections of the form that have changed. The advantages of Smart
Navigation are that the screen does not flash as it updates; instead, the scroll
position is maintained and the "last page" in history is maintained. Smart
navigation is only available to users with Microsoft Internet Explorer 5 or
later.

Page attributes

Visual Basic .NET

C#

Note

 Module 4: Creating a Microsoft ASP.NET Web Form 5

The <Body> tag attributes define the appearance of objects that are displayed
on the client's browser. The following is a typical <Body>tag:

<body ms_positioning="GridLayout">

The attributes of a <Body>tag include:

 PageLayout
The pageLayout attribute (tagged as ms_positioning) determines how
controls and text are positioned on the page. There are two options for
pageLayout:

• FlowLayout
In FlowLayout, the text, images, and controls wrap across the screen,
depending on the width of the browser window.

• GridLayout
In GridLayout, the text fields, images, and controls on a page are fixed
by absolute coordinates. GridLayout is the default pageLayout for
Visual Studio .NET.
The following code example shows how to implement GridLayout and
locate a text box:
<body ms_positioning="GridLayout">
 <form id="Form1" method="post" runat="server">
 <asp:textbox id="txtField1" style="Z-INDEX: 101;
 LEFT: 65px; POSITION: absolute; TOP: 98px"
 runat="server" Height="26px" Width="194px">
 </asp:textbox>
 </form>
</body>

The <Form> tag defines how groups of controls will be processed. The
<Form> tag is different from the Web Form term that is used to define the
entire Web page. <Form> tag attributes define how controls will be processed.
Although you can have many HTML forms on a page, you can only have one
server-side form on an .aspx page.

The following is a typical <Form>tag:

<form id="Form1" method="post" runat="server">
 ...
</form>

Body attributes

Form attributes

6 Module 4: Creating a Microsoft ASP.NET Web Form

Attributes of a <Form> tag include:

 Method
The Method attribute identifies the method of sending control values back
to the server. The options for this attribute are:

• Post
Data is passed in name/value pairs within the body the Hypertext
Transfer Protocol (HTTP) request.

• Get
Data is passed in a query string.

 Runat
A key feature of a Web Form is that the controls run on the server. The
runat="server" attribute causes the form to post control information back
to the ASP.NET page on the server where the supporting code runs. If the
runat attribute is not set to "server", the form works as a regular HTML
form.

The following code is from the default Web Form that Visual Studio .NET
creates when you create a new ASP.NET Web Application project using
Visual Basic .NET:

<%@Page Language="vb" AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb"
Inherits="WebApplication1.WebForm1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>WebForm1</title>
 <meta name="GENERATOR" content="Microsoft Visual
 Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript"
 content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </head>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 'HTML and controls go here
 </form>
 </body>
</html>

Visual Basic .NET
example

 Module 4: Creating a Microsoft ASP.NET Web Form 7

The following code is from the default Web Form that Visual Studio .NET
creates when you create a new Visual C# ASP.NET Web Application project:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
AutoEventWireup="false" Inherits="WebApplication1.WebForm1" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>WebForm1</title>
 <meta name="GENERATOR" Content="Microsoft Visual
 Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript"
 content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </head>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 'HTML and controls go here
 </form>
 </body>
</html>

C# example

8 Module 4: Creating a Microsoft ASP.NET Web Form

Creating a Web Form with Visual Studio .NET

New ASP.NET Web Applications create a default Web
Form: WebForm1.aspx

Create additional Web Forms from the Solution
Explorer

Upgrade existing HTML pages into Web Forms

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Depending on where you are in your development cycle, there are several ways
that you can create a Web Form.

When you create a new project in Visual Studio .NET, a default Web Form
named WebForm1.aspx is automatically included in the project.

 To create a new ASP.NET Web Application project and a default Web
Form

1. In Visual Studio .NET, on the Start Page, click New Project.
2. In the New Project dialog box, click ASP.NET Web Application, type the

project name in the Location field, and then click OK.
Visual Studio .NET creates a new Web application and a default Web Form
that is named WebForm1.aspx.

If you are expanding an existing project, you can use Solution Explorer to
quickly add additional Web Forms.

 To add additional Web Forms to a Web Application project

1. In the Solution Explorer window, right-click the project name, point to Add,
and then click Add Web Form. The Add New Item - ProjectName dialog
box opens.

2. In the Add New Item - ProjectName dialog box, change the name of the
Web Form, and then click Open.
A new Web Form will be created and added to the project.

Introduction

New Web applications

Creating additional Web
Forms

 Module 4: Creating a Microsoft ASP.NET Web Form 9

If you are revising an existing Web site, you can import HTML pages into
Visual Studio .NET and then upgrade those pages to Web Forms.

 To upgrade existing HTML pages

1. In Solution Explorer, right-click the project name, point to Add, and then
click Add Existing Item.

2. In the Add Existing Item dialog box, navigate to the location of the HTML
file, click the file name, and then click Open.

3. Rename the file from fileName.htm to fileName.aspx, and then click Yes
when asked if you are sure that you want to change the file extension.

4. When prompted whether to create a new class file now, click Yes.

Upgrading HTML pages

10 Module 4: Creating a Microsoft ASP.NET Web Form

Demonstration: Converting an HTML Page to a Web Form

Change .htm extension to .aspx
extension

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One quick way to create ASP.NET Web pages is to convert existing HTML
pages.

 To run this demonstration

1. Start Visual Studio .NET.
2. Create a new ASP.NET Web Application project and set the location to

http://localhost/Mod04.
3. Click Add Existing Item on the File menu.
4. In the Files of type box of the Add Existing Item dialog box, click All

Files (*.*).
5. Select the HTMLPage.htm page in the install folder\DemoCode\Mod04

folder, and then click Open.
6. Open the HTMLPage.htm page and switch to HTML view.
7. Add a fourth option to the list box containing Lead Program Manager to

show that the contextual Microsoft IntelliSense® is working in the HTML
file.
Your code should look like the following:
<option>Lead Program Manager</option>

8. Save your changes to the page.
9. In Solution Explorer, right-click HTMLPage.htm and then click Rename.

Change the .htm extension of the page to .aspx, click Yes when asked if you
are sure, and then click Yes again when you are asked to create a new class
file.

10. In the HTMLPage.aspx page, point out that an @Page directive was added
to the page.

11. Click Show All Files in Solution Explorer to show the code-behind page
that was created.

 Module 4: Creating a Microsoft ASP.NET Web Form 11

12. Click Save All to save the project.
13. Right-click HTMLPage.aspx in Solution Explorer, then click Build and

Browse to build the project and view the page in the Visual Studio .NET
browser.
You must build the project because Visual Studio .NET needs to compile
the new code-behind page.

14. Type a name in the Name text box, click a profession in the Profession list,
and then click Save.
When the page is displayed again, the information in the controls is lost.
This is the default behavior of HTML forms.

15. Right-click the page and then click View Source to show the source HTML
on the client.
The HTML delivered to the client is the same as the HTML created on the
server.

16. Close the view of the HTML source code in the browser.

12 Module 4: Creating a Microsoft ASP.NET Web Form

Lesson: Using Server Controls

What is a Server Control?
Types of Server Controls
Saving View State
Demonstration: Converting HTML Controls to Server
Controls
HTML Server Controls
Web Server Controls
Practice: Identifying the HTML Generated by Web Server
Controls
Selecting the Appropriate Control
Demonstration: Adding Server Controls to a Web Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to use ASP.NET server controls, such as
buttons, text boxes, and drop-down lists. These server controls are different
from HTML controls in that the supporting logic is run on the server and not on
the user's browser.

After completing this lesson, you will be able to:

 Describe the features of server controls.
 Describe the available server control types.
 Explain how Web Forms save Web server control ViewState.
 Add HTML server controls to Web Forms.
 Add Web server controls to Web Forms.
 Select the appropriate control for a situation.

Introduction

Lesson objectives

 Module 4: Creating a Microsoft ASP.NET Web Form 13

What is a Server Control?

Runat="server"

Events happen on the server

View state saved

Have built-in functionality

Common object model

All have Id and Text attributes

Create browser-specific HTML

<asp:Button id="Button1" runat="server"
Text="Submit"/>
<asp:Button id="Button1" runat="server"
Text="Submit"/>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET server controls are components that run on the server and encapsulate
UI and other related functionality. Server controls are used in ASP.NET pages
and in ASP.NET code-behind classes. Server controls include buttons, text
boxes, and drop-down lists.

The following is an example of a Button server control:

<asp:Button id="Button1" runat="server" Text="Submit" />

Server controls have a runat="server" attribute, the same attribute as Web
Forms. This means that the logic in the control runs on the server and not on the
user’s browser. Server controls are different from HTML controls in that they
run only on the client’s browser and have no action on the server.

Another feature of server controls is that the view state, the settings, and the
user input of the control are automatically saved when the page is sent back and
forth between the client and the server. Traditional HTML controls are stateless
and revert to their default setting when the page is returned from the server to
the client.

The functionality of a control is what happens when the user clicks a button or a
list box. These processes are called event procedures. As the Web Form
programmer, you determine the event procedures that are associated with each
server control.

For more information about server control functionality, see Module 5,
“Adding Code to a Microsoft ASP.NET Web Form,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Introduction

Runat=“server”

Built-in functionality

Note

14 Module 4: Creating a Microsoft ASP.NET Web Form

In ASP.NET, server controls are based on a common object model, and as a
result, they share a number of attributes with each other.

For example, when you want to set the background color for a control, you
always use the same BackColor attribute, irrespective of the control. The
following HTML for a Web server control button shows some of the typical
attributes of a server control:

<asp:Button id="Button1" runat="server" BackColor="red"
Width="238px" Height="25px" Text="Web control"></asp:Button>

When a page is rendered for a browser, the Web server controls determine
which browser is requesting the page and then delivers the appropriate HTML.

For example, if the requesting browser supports client-side scripting, such as
Internet Explorer version 4.0 or later, the controls create client-side script to
implement their functionality. But, if the requesting browser does not support
client-side script, the controls create server-side code and require more round
trips to the server to obtain the same functionality.

The following is the ASP.NET HTML from a Web Form that you would write
to create a text box with the default text: "Enter your Username"

<asp:TextBox id="TextBox1" runat="server" Width="238px"
Height="25px">Enter your Username</asp:TextBox>

When this page is accessed by a user with Internet Explorer 6, the common
language runtime creates the following HTML customized for
Internet Explorer 6:

<input name="TextBox1" type="text" value="Enter your Username"
id="TextBox1" style="height:25px;width:238px" />

Because the server control creates customized HTML for the features that are
available in the client's browser, you can write for the latest browsers without
worrying about browser errors blocking your less up-to-date users.

Common object model

Create browser-specific
HTML

 Module 4: Creating a Microsoft ASP.NET Web Form 15

Types of Server Controls

HTML server controls

Web server controls

Intrinsic controls

Validation controls

Rich controls

List-bound controls

Internet Explorer Web controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are many types of sever controls that are available in ASP.NET. Some
server controls closely resemble traditional HTML controls, while others are
new in ASP.NET. This wide range of controls enables you to customize your
Web Form to match the application that you are creating.

By default, HTML elements on a Web Forms page are not available to the
server; HTML elements are treated as opaque text that is passed through to the
browser. However, adding the runat="server" attribute converts HTML
elements to HTML server controls, thereby exposing them as elements that you
can program with server-side code.

Web server controls include not only form-type controls, such as buttons and
text boxes, but also special-purpose controls, such as a calendar. Web server
controls are more abstract than HTML server controls in that their object model
does not necessarily reflect HTML syntax.

Web server controls are categorized as follows:

 Intrinsic controls
Intrinsic controls match the simple HTML elements, such as buttons and
listBoxes. You use these controls in the same way that you use HTML
server controls.

 Validation controls
Validation controls incorporate logic that allows you to test a user's input.
To test a user’s input, you attach a validation control to the input control and
specify the conditions of correct user input.

For more information about validation controls, see Module 7,
“Validating User Input,” in Course 2310B, Developing Microsoft ASP.NET
Web Applications Using Visual Studio .NET.

Introduction

HTML server controls

Web server controls

Note

16 Module 4: Creating a Microsoft ASP.NET Web Form

 Rich controls
Rich controls are complex controls that include multiple functions.
Examples of rich controls include the AdRotator control, which is used to
display a sequence of advertisements or the Calendar control, which
provides an appointment calendar.

 List-bound controls
List-bound controls can display lists of data on an ASP.NET Web page.
These controls enable you to display, reformat, sort, and edit data.

For more information about list-bound controls and data access, see
Module 9, “Accessing Relational Data Using Microsoft Visual Studio
.NET,” and Module 10, “Accessing Data with Microsoft ADO.NET,” in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

 Internet Explorer Web controls
Internet Explorer Web controls are a set of complex controls, such as the
MultiPage, TabStrip, Toolbar, and TreeView controls, which can be
downloaded from the Internet and integrated into the Visual Studio .NET
environment for reuse in any ASP.NET Web application. These controls can
render in all commonly used browsers, while also taking advantage of
powerful features that are supported by Internet Explorer 5.5 or later
versions. You can download these controls from:
http://msdn.microsoft.com/library/default.asp?url=/workshop/webcontrols/
overview/overview.asp.

This example shows the HTML for three button controls: an HTML button, an
HTML server control button, and a Web server control button. All button
controls appear identical on the user’s browser. The HTML button can only
raise client-side events, while the HTML server control button and the Web
server control button raise server-side events.

 The following is an HTML button control:
<INPUT type="button" value="HTML Button">

 Adding the attribute runat="server" converts the preceding HTML
button control to an HTML server control that will run on the server. Note
that in addition to the runat="server" attribute, you also need to add an id
attribute for the control to function as a server control.
The HTML server control button is shown in the following example:
<INPUT type="button" value="HTML Server Control"
id="button1" runat="server">

 The Web server control button uses ASP.NET HTML:
<asp:Button id="Button1" runat="server" Text="Web
control"/>

Note

Example of equivalent
controls

 Module 4: Creating a Microsoft ASP.NET Web Form 17

Saving View State

Hidden ViewState control of name-value pairs stored
in the Web Form

On by default, adjustable at Web Form and control
level

<%@ Page EnableViewState="False" %>

<asp:ListBox id="ListName"
EnableViewState="true" runat="server">

</asp:ListBox>

<%@ Page EnableViewState="False" %>

<asp:ListBox id="ListName"
EnableViewState="true" runat="server">

</asp:ListBox>

<input type="hidden" name="__VIEWSTATE"
value="dDwtMTA4MzE0MjEwNTs7Pg==" />

<input type="hidden" name="__VIEWSTATE"
value="dDwtMTA4MzE0MjEwNTs7Pg==" />

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the problems for Web sites is how to save the state of controls (settings
and user input) on a Web page as the HTML travels back and forth between the
client and the server. As is true for any HTTP-based technology, Web Forms
are stateless, which means that the server does not retain any information on
prior client requests.

ASP.NET Web Forms handle this problem of storing Web server control state
by adding a hidden control named _VIEWSTATE that records the state of the
controls on the Web Form. Specifically, _VIEWSTATE is added to the
server-side form denoted by the tag <Form … runat="server">, and only
records the state of controls in this section. As the page travels back and forth
from the client to the server, Web server control state is kept with the page and
can be updated at either end of the transaction (at the client or the server).

Because the state of the Web page is kept inside the server form, the Web page
can be randomly routed in a Web server farm and does not need to keep
returning to the same server. The advantage of the _VIEWSTATE process is
that the programmer can focus on the page design and does not need to build
the infrastructure to keep track of the page state.

Introduction

18 Module 4: Creating a Microsoft ASP.NET Web Form

The _VIEWSTATE control is a hidden control containing a string value of
name-value pairs that lists the name of each control and the last value of that
control.

With each request, the _VIEWSTATE control is updated and sent to the
server. The server response may in turn update the _VIEWSTATE control,
which is then returned with the response. The result is that the settings in the
page remain consistent from one request to the next.

The following is the HTML that is generated by a Web Form and sent to the
client:

<form name="Form1" method="post" action="WebForm1.aspx"
 id="Form1">
 <input type="hidden" name="__VIEWSTATE"
 value="dDw3NzE0MTExODQ7Oz4=" />
 'HTML here
</form>

By default, a Web Form saves the view state of the controls on the Web Form.
But for Web Forms with multiple controls, the size of the _VIEWSTATE
properties value field can slow performance. To maximize page performance,
you may want to disable the ViewState attribute at the page level and enable
ViewState for selected controls only.

To disable saving view state at the Web page level, set the EnableViewState
attribute of the @Page directive, as shown in the following code:

<%@ Page EnableViewState="False" %>

To enable saving view state for a specific control, set the EnableViewState
attribute of the control as shown in the following code:

<asp:ListBox id="ListName" EnableViewState="true"
runat="server"></asp:ListBox>

For more information about saving state, see Module 14, “Managing
State,” in Course 2310B, Developing Microsoft ASP.NET Web Applications
Using Visual Studio .NET.

Hidden control

Disabling and enabling
ViewState

Note

 Module 4: Creating a Microsoft ASP.NET Web Form 19

Demonstration: Converting HTML Controls to Server Controls

Upgrade HTML controls to HTML server
controls

Add a Web server control

Use SmartNavigation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET makes it easy to convert HTML controls into server
controls.

 To run this demonstration

1. View the HTMLPage.aspx page that you converted from an HTML page in
the previous demonstration, in HTML view, and then add a
runat="server" attribute to the text box, select, and submit controls.

2. Click Save All to save the project.
3. View the HTMLPage.aspx page in the browser by right-clicking the page in

Solution Explorer and then clicking View in Browser. You do not have to
rebuild the project because you did not change any code.

4. View the source of the page to show the changes that were made. Notice
that a name attribute was added to each server control.

5. Close the view of the HTML source code in the browser.
6. In the browser, enter information in the controls, and then click Save. The

controls still lose their values.
7. Edit the page and add a runat="server" attribute to the form.
8. Save your changes and view the page in the browser again. You do not have

to rebuild the project because you did not add any code.
9. View the source of the page to show the changes that were made. Among

other changes made, action and method attributes were added to the form
tag and a hidden control named __VIEWSTATE was created.

10. Close the view of the HTML source code in the browser.
11. Enter information in the controls and click Save. The controls now save

their values.

20 Module 4: Creating a Microsoft ASP.NET Web Form

12. Edit the page and add a Label Web server control to the Web Form, below
the Save button:
<asp:label id="lblMessage" runat="server">Label</asp:label>

13. Save your changes and view the page in the browser.
14. View the source of the page. The Label Web server control generates a

 element.
15. Close the view of the HTML source code in the browser.
16. View the page http://localhost/Mod04/HTMLPage.aspx in Internet Explorer

and resize the browser to vertically show less than the whole page. The
vertical scroll bar should be visible.

17. Scroll down, and click Save. You are redirected to the top of the page
because of the postback.

18. Close the browser.
19. Edit the page in HTML view and add SmartNavigation= "true" to the

@ Page directive.
Your HTML should look like the following:
<%@ Page SmartNavigation="true" Language="vb"
CodeBehind="HTMLPage.aspx.vb" AutoEventWireup="false"
Inherits="Mod04.HTMLPage" %>

<%@ Page SmartNavigation="true" Language="c#"
CodeBehind="HTMLPage.aspx.cs" AutoEventWireup="false"
Inherits="Mod04.HTMLPage" %>

20. Save your changes and view the page in another resized browser.
21. Scroll down and click Save. This time you are not redirected to the top of

the page during the postback, as the page maintains its current position.
22. View the source of the page in the browser. In Internet Explorer 4.0 and

later, the SmartNavigation attribute creates IFrames to refresh only the
changed portion of the page.

23. Close the view of the HTML source code in the browser.

Add a label to the Web
Form

Using SmartNavigation

Visual Basic .NET

C#

 Module 4: Creating a Microsoft ASP.NET Web Form 21

HTML Server Controls

Based on HTML elements

Exist within the
System.Web.UI.HtmlControls
namespace

<input type="text" id="txtName"
runat="server" />

<input type="text" id="txtName"
runat="server" />

*****************************ILLEGAL FOR NON-TRAINER USE******************************

HTML controls on a Web Form are not available to the server. By converting
HTML controls to HTML server controls, you can expose them as elements to
your server-side code. This conversion enables you to use the controls to trigger
events that are handled on the server.

HTML server controls include the runat="server" attribute, and must reside
within a containing <form …runat="server">…</form> tag.

The advantage of HTML server controls is that they enable you to quickly
update existing pages to Web Forms. In addition, you can optimize the
performance of a page by adjusting which controls work locally on the browser
and which controls are processed on the server.

The following code example shows a simple HTML text box control that is
processed on the client side by the browser:

<input type="text" id="txtName" >

Adding the runat="server" attribute converts the control to an HTML server
control that is processed on the server side by ASP.NET:

<input type="text" id="txtName" runat="server" />

Introduction

Example

22 Module 4: Creating a Microsoft ASP.NET Web Form

Web Server Controls

Exist within the
System.Web.UI.WebControls
namespace

Control syntax

HTML that is generated by the control

<asp:TextBox id="TextBox1"
runat="server">Text_to_Display
</asp:TextBox>

<asp:TextBox id="TextBox1"
runat="server">Text_to_Display
</asp:TextBox>

<input name="TextBox1" type="text"
value="Text_to_Display"
Id="TextBox1"/>

<input name="TextBox1" type="text"
value="Text_to_Display"
Id="TextBox1"/>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Web server controls are server controls that are created specifically for
ASP.NET. Unlike HTML server controls, Web server controls will not function
if the runat="server" attribute is missing.

As Web server controls are based on a common object model, all controls share
several attributes, including the tag <asp:ControlType ...>, and an id attribute.
Web server controls exist within the System.Web.UI.WebControls namespace
and may be used on any Web Form.

Intrinsic Web server controls correspond to simple HTML elements. Some of
the commonly used intrinsic Web server controls are shown in the following
table.

Web server control HTML control equivalent Web server control function

<asp:button> <input type=submit> Creates a button that sends a

request to the server.

<asp:checkbox> <input type=checkbox> Creates a check box that can be
selected by clicking.

<asp:hyperlink> Creates a hyperlink to an
HTML anchor tag.

<asp:image> Creates an area that is used to
display an image.

<asp:imagebutton> <input type=image> Creates a button that
incorporates the display of an
image instead of text.

<asp linkButton> None Creates a button that has the
appearance of a hyperlink.

<asp:label> Creates text that users cannot
edit.

<asp:listbox> <select size="5">
</select>

Creates a list of choices. Allows
multiple selections.

Introduction

Intrinsic Web server
controls

 Module 4: Creating a Microsoft ASP.NET Web Form 23

(continued)
Web server control HTML control equivalent Web server control function

<asp:panel> <div> </div> Creates a borderless division on

the form that serves as a
container for other controls.

<asp:radiobutton> <input type=radiobutton> Creates a single radio button
control.

<asp:table> <table> </table> Creates a table.

<asp:textbox> <input type=text> Creates a text box control.

Validation controls are hidden controls that validate the user’s input against
predetermined patterns. Some of the commonly used validation controls are
shown in the following table.

Control Function

CompareValidator Requires that the input match a second input or

existing field.

CustomValidator Requires that the input match a condition such as
prime or odd numbers.

RangeValidator Requires that the input match a specified range.

RegularExpressionValidator Requires that the input match a specified format
such as a U.S. telephone number or a strong
password with numbers and letters.

RequiredFieldValidator Requires that the user enter some value before the
control is processed.

ValidationSummary Collects all of the validation control error messages
for centralized display.

For more information about validation controls, see Module 7,
“Validating User Input,” in Course 2310B, Developing Microsoft ASP.NET
Web Applications Using Visual Studio .NET.

Rich controls provide a rich functionality to your Web Form by inserting
complex functions into your Web Form. The presently available rich controls
are shown in the following table.

Control Function

AdRotator Displays a sequence (pre-defined or random) of

images.

Calendar Displays a graphic calendar on which users can
select dates.

Validation controls

Note

Rich controls

24 Module 4: Creating a Microsoft ASP.NET Web Form

List-bound controls can display data from a data source. Some of the commonly
used list-bound controls are shown on the following table.

Control Function

CheckBoxList Displays data as a column of check boxes.

Repeater Displays information from a data set by using a set of
HTML elements and controls that you specify. The
Repeater control repeats the element once for each record
in the DataSet.

DataList Similar to the Repeater Control, but with more formatting
and layout options, including the ability to display
information in a table. The DataList control also allows you
to specify editing behavior.

DataGrid Displays information, usually data-bound in tabular form,
with columns. Also provides mechanisms to allow editing
and sorting.

DropDownList Displays data as a drop-down menu.

Listbox Displays data in a window.

RadioButtonList Displays data as a column of option buttons.

For more information about list-bound controls and data access, see
Module 10, “Accessing Data with Microsoft ADO.NET,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

List-bound controls

Note

 Module 4: Creating a Microsoft ASP.NET Web Form 25

Practice: Identifying the HTML Generated by Web Server Controls

Students will:

Add Web server controls to a Web Form
and identify the HTML that is sent to a
client

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add Web server controls to a Web Form and then view
the source in a browser to see what HTML was sent to the client.

 Fill out the table below by following the steps

1. Start Visual Studio .NET.
2. Create a Web Application project and set the location to

http://localhost/Mod04Practice.
3. Open the WebForm1.aspx page.
4. Add TextBox, Button, Label, ListBox, Image, Hyperlink, and Calendar

controls to the Web Form.
5. Right-click WebForm1.aspx in Solution Explorer and click Build and

Browse.
6. Right-click in the browser and click View Source to view the HTML that

was sent to the client.
7. Fill out the following table with the HTML tags for the control.

Web server control HTML Sent to the Client

asp:textbox <input type="text"…/>

asp:button <input type="submit"…/>

asp:label <span…> Label

asp:listbox <select…>…</select>

asp:image

asp:hyperlink Hyperlink

asp:calendar <table id="Calendar1"…>… </table>

26 Module 4: Creating a Microsoft ASP.NET Web Form

Selecting the Appropriate Control

You need specific functionality
such as a calendar or ad rotator

The control will interact with
client and server script

You are writing a page that
might be used by a variety of
browsers

You are working with existing
HTML pages and want to
quickly add ASP.NET Web page
functionality

You prefer a Visual Basic-like
programming model

You prefer an HTML-like object
model

Use Web Server Controls if:Use Web Server Controls if:Use HTML Server Controls if:Use HTML Server Controls if:

Bandwidth is not a problemBandwidth is limited

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create ASP.NET pages, you have the option of using HTML server
controls or Web server controls. You can mix these control types on the same
page as a means of quickly updating an HTML page.

As an example of mixing control types, your ASP.NET page might include an
HTML span element that lists the local time, an HTML server control button
converted from an HTML element, and a Web server control text box that
accesses data from the server.

The best practice is to avoid HTML server controls. Web server controls are
more capable and have a richer object model than HTML server controls.

HTML server controls are modified HTML elements that run on the server
instead of on the client browser.

Use HTML server controls if:

 You prefer an HTML-like object model. HTML server controls have almost
the same HTML as the basic HTML controls. HTML server controls also
have server-side functionality just like Web server controls.

 You are working with existing HTML pages and you want to quickly add
Web Form functionality. Because HTML server controls map exactly to
HTML elements, you do not need to replace controls and risk substitution
errors or page formatting problems.

 The control needs to run both client-side and server-side script. You can
write a client-side script and target a regular HTML control because the
controls are visible in the client. At the same time, you can have server-side
code because it is also a sever control.

 Bandwidth is limited and you need to do a large amount of client side
processing to reduce bandwidth usage.

Introduction

HTML server controls

 Module 4: Creating a Microsoft ASP.NET Web Form 27

ASP.NET Web server controls not only approximate HTML controls, but they
also include a number of new controls that do not exist in HTML.

Use Web server controls if:

 You prefer a Visual Basic-like programming model. You will be able to use
object-oriented programming, identify controls by their ID attribute, and
easily separate the page logic from the UI. With Web server controls, you
can also create applications with nested controls and catch events at the
container level.

 You are creating a Web page that might be viewed by a variety of browsers.
Because the logic inside the Web server controls is able to create HTML
that is tailored to the features that are available in the client's browser, you
can write for the latest browsers without worrying about browser errors
keeping your less up-to-date users from accessing all of the Web page
functions.

 You need specific functionality, such as a calendar or advertisement, or ad
rotator, that is available only as a Web server control.

 Your bandwidth is not limited and the request-response cycles of Web
server controls will not cause bandwidth problems.

Web server controls

28 Module 4: Creating a Microsoft ASP.NET Web Form

Demonstration: Adding Server Controls to a Web Form

Create a Web Form

Add TextBox, Button, and Label controls

Add a Calendar control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to add Web server controls to a Web
Form.

 To run this demonstration

1. Open the WebForm1.aspx page in the Mod04 Web Application project.
2. Add a TextBox, a Button, and a Label Web server control to the

WebForm1.aspx page.
3. Using the Properties window, set the ID and Text properties of the controls

to the values in the following table.
Control ID Text

TextBox txtName Name

Button cmdSubmit Submit

Label lblMessage Message

4. View the page in HTML view.
Notice that the Web Form was created with the runat="server" attribute,
and that style attributes were added to the controls to place them on the Web
Form in GridLayout mode.
Point out how the ID and Text properties were implemented in HTML for
the different controls.

5. Build and browse WebForm1.aspx.
6. Enter some text in the text box and then click Submit to show that the value

is preserved.
7. View the source of the page. Notice that the positioning of the controls is

done by using DHTML.
8. Close the source view of the page.

Adding simple Web
server controls

 Module 4: Creating a Microsoft ASP.NET Web Form 29

9. Right-click the form in Design view and then click Properties.
10. Change the Target Schema to Internet Explorer 3.02 / Navigator 3.0, and

then click OK.
11. Save your changes and view the page in the browser again.
12. View the source of the page.

Notice that now the positioning of the controls is done by using HTML
tables.

13. Close the source view of the page.
14. Right-click the form in Design view and then click Properties.
15. In the Property Pages dialog box, return the Target Schema to

Internet Explorer 5.0.
16. In the Property Pages dialog box, select FlowLayout (instead of

GridLayout) in the Page Layout field, and then click OK.
The grid disappears.

17. Add a Button control to the Web form, and view the page in HTML view.
The new button does not have a style attribute.

18. In Design view, add a Calendar Web server control onto the Web Form,
and then view the page in HTML view.
Locate the HTML for the Calendar control:
<asp:Calendar id="Calendar1" runat="server"></asp:calendar>

19. Save your changes and view the page in the browser, and then view the
source of the page.
Notice all of the HTML that is generated by the Calendar control.

20. Close the source view of the page.
21. Edit the WebForm1page and point out the properties of the Calendar

control in the Properties window.
22. Right click the Calendar control on the Web Form in Design view and

select Auto Format to show the different styles in the Calendar Auto
Format dialog box. Click Colorful 1, and then click OK.

23. Save your changes and view the page in browser again to see the new
appearance of the Calendar control.

Change the target
browser

Change the page layout

Add a Calendar control

30 Module 4: Creating a Microsoft ASP.NET Web Form

Review

Creating Web Forms

Using Server Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. If you were given a Web page with an .aspx extension, what would you look
for to verify that it is a Web Form?
Look for:
<%@ Page Language="vb" Codebehind="_.aspx.vb" Inherits="_"%>
in Visual Basic .NET, or
<%@ Page Language="c#" Codebehind="_.aspx.cs" Inherits="_"%>
in Visual C# .NET
Also look for a <form … runat="server"> tag

2. If you were given a Web page with an .aspx extension, what would you look
for to see if there are Web server controls?
Look for:
<asp:ControlType …>
Also look for the attribute runat="server"

3. What type of code or script does a Web server control generate on the
client?
HTML

 Module 4: Creating a Microsoft ASP.NET Web Form 31

4. What is the difference between FlowLayout and GridLayout?
In FlowLayout, the text, images, and controls wrap across the screen,
depending on the width of the browser window.
In GridLayout, the text fields, images, and controls on a page are fixed
by absolute coordinates.

5. How does ASP.NET save the state of Web server control during the
client-server roundtrip?
Using a hidden control named _VIEWSTATE.

32 Module 4: Creating a Microsoft ASP.NET Web Form

Lab 4: Creating a Microsoft ASP.NET Web Form

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create a Microsoft® ASP.NET Web Form and populate it with Web
controls.

 Set properties of Web controls on an ASP.NET Web Form.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have knowledge of the Microsoft
Visual Studio® .NET integrated development environment (IDE).

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In Lab 2, “Using Microsoft Visual Studio .NET,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET, you created a
Visual Studio .NET solution and a Web Application project for the Benefits
Web Application.

In this lab, you will create the user interface (UI) of the default.aspx and
life.aspx Web Form pages in the Benefits Web Application. The default.aspx
Web Form is the home page for the Benefits Web site. The default.aspx Web
Form displays the list of benefits that are offered by your company. The
life.aspx Web Form allows a user to enter life insurance information, such as
their name, birth date, and coverage amount.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 4: Creating a Microsoft ASP.NET Web Form 33

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Visual Basic .NET or Visual C# .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Perform this procedure only if you have not created
a 2310LabApplication solution file.

1. Using Visual Studio .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits solution

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, on the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application.
d. Set the Location to http://localhost/BenefitsVB for a

Visual Basic .NET project or to http://localhost/BenefitsCS for a
Visual C# project, click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

34 Module 4: Creating a Microsoft ASP.NET Web Form

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files

Browse to the install folder\Labfiles\Lab04\VB\Starter\BenefitsVB
folder.
Browse to the install folder\Labfiles\Lab04\CS\Starter\BenefitsCS folder.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Perform these steps only if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a Class Library Project
Create a new Microsoft Visual Basic® .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects. On the Templates list, click Class Library, set
the Name to BenefitsListVB, click Add to Solution, and then click
OK.

Create a new Microsoft Visual C#™ .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects. On the Templates list, click Class Library, set the
Name to BenefitsListCS, click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For a Visual Basic .NET
Project

For a Visual C# Project

Caution

 Module 4: Creating a Microsoft ASP.NET Web Form 35

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab04\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab04\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

36 Module 4: Creating a Microsoft ASP.NET Web Form

Exercise 1
Creating the Default.aspx Web Form

In this exercise, you will create a new Web Form named default.aspx. You will
then add a user control, a list-bound control, a Button control, and a Label
control to the default.aspx page. Finally, you will set attributes of the list-bound
control to display a static list of information.

 Place controls on a Web Form

1. Create a new Web Form named default.aspx. This Web Form will serve as
the main entry page for your Web application. To create the Web Form:
a. Right-click the BenefitsVB or BenefitsCS project, point to Add, and

then click Add Web Form.
b. In the Add New Item dialog box, type default.aspx in the Name field

and then click Open.
2. From Solution Explorer, use a drag-and-drop operation to place the file

header.ascx from Solution Explorer to the top of the Web Form.

You will learn more about user controls in Module 8, “Creating User
Controls,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET.

3. From the Toolbox, drag a CheckBoxList control, a Button control, and a
Label control onto the Web Form. Your Web Form should look like the
following illustration.

4. Set the ID and Text properties for the CheckBoxList, Button, and Label
controls as shown in the following table.
Control ID Text

CheckBoxList chkListBenefits None

Button cmdSubmit Submit

Label lblSelections Selected items:

5. View the page in Hypertext Markup Language (HTML) view by clicking
the HTML tab located at the bottom left of the editor window.
Notice the dynamic HTML (DHTML) that was added by
Visual Studio .NET to the CheckBoxList, Button, and Label controls. The
style attribute containing Z-INDEX, LEFT, POSITION, and TOP
parameters positions the controls on the page.

Note

 Module 4: Creating a Microsoft ASP.NET Web Form 37

6. Right-click the default.aspx page in Solution Explorer and then click Build
and Browse.

You have to build the project even though you have not written any
code. This is because when you add UI components to the page
Visual Studio .NET generates code to support those UI elements.

The page should look like the following illustration, with nothing in the
CheckBoxList control.

 Add items to the CheckBoxList control

1. View the default.aspx page in Design view.
2. Click the chkListBenefits CheckBoxList control on the default.aspx Web

Form.
3. In the Properties window, click the Items property and then click the …

button to open the ListItem Collection Editor dialog box.
4. In the ListItem Collection Editor dialog box, add the items that are shown

in the following table (with the property Selected set to False).
Text Value

First Item First Item

Second Item Second Item

Third Item Third Item

5. Click OK to close the ListItem Collection Editor dialog box.
6. Save your changes to default.aspx and view the page in the browser.

Now that you have added items to the CheckBoxList control, the list of
items overwrites the Submit button.

7. View the default.aspx page in Design view again.
8. Click the background of the default.aspx page, and in the Properties

window, set the pageLayout property to FlowLayout (instead of
GridLayout).
While FlowLayout makes page design slightly more difficult, it allows the
UI elements to move automatically when other items on the page change
size. For example, when the chkListBenefits control had more items added
to the list, it wrote over the Submit button. By using FlowLayout, the
button will move automatically to make room for a longer list.

Note

38 Module 4: Creating a Microsoft ASP.NET Web Form

9. Move the controls on the page, by using carriage returns, to make your page
look like the following illustration.

10. View the page in the browser again.
Now the list of check boxes does not overwrite the Submit button.

11. Close the browser window.

 Module 4: Creating a Microsoft ASP.NET Web Form 39

Exercise 2
Creating the Life.aspx Web Form

In this exercise, you will create the UI for the life.aspx page. This page
implements the life insurance benefit for your company.

 Add controls to the life.aspx page

1. Create a new Web Form named life.aspx. To create the Web Form:
a. Right-click the BenefitsVB or BenefitsCS project, point to Add, and

then click Add Web Form.
b. In the Add New Item dialog box, type life.aspx in the Name field and

then click Open.
2. Put a Calendar control on the Web Form.
3. Right click the Calendar control in Design view and then select Auto

Format to open the Calendar Auto Format dialog box.
4. Click Colorful 1 in the Select a scheme list, and then click OK.
5. Put the header.ascx user control, three TextBox controls, two CheckBox

controls, one Button, and five Label controls on the page.

40 Module 4: Creating a Microsoft ASP.NET Web Form

6. Set the ID and Text properties of each control as shown in the following
table.
Control ID Text

Name text box txtName none

Birth date text box txtBirth none

Coverage text box txtCoverage none

Short-term disability
check box

chkShortTerm Short-term disability

Long-term disability
check box

chkLongTerm Long-term disability

Save button cmdSave Save

Label1 default Life Insurance
Application

Label2 default Proof of good health
appointment

Label3 default Name:

Label4 default Birth Date:

Label5 default Coverage:

To change the font size for Label1, in the Properties window for the
label, expand Font, select Size, and then choose Large.

7. Right-click the life.aspx page in Solution Explorer and then click Build and
Browse.

8. Type your name and birth date in the fields and then click Save. The values
that you entered should remain on the page.

Note

Contents

Overview 1

Lesson: Using Code-Behind Pages 2

Lesson: Adding Event Procedures to Web
Server Controls 8

Lesson: Using Page Events 21

Review 36

Lab 5: Adding Functionality to a Web
Application 39

Module 5: Adding Code
to a Microsoft ASP.NET
Web Form

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Adding Code to a Microsoft ASP.NET Web Form iii

Instructor Notes
This module provides students with information about the various methods that
can be used for adding code to Microsoft® ASP.NET Web applications. The
students will also learn about event procedures for Web server controls. The
students will then learn how to use code-behind pages, which are the Microsoft
Visual Studio® .NET preferred method for adding code to Web pages. Finally,
students will learn how page events are used.

After completing this module, students will be able to:

 Use code-behind pages in a Web application.
 Create event procedures for Web server controls.
 Use Page events in a Web application.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_05.ppt
 Multimedia file 2310B_05A001
 Multimedia file 2310B_05A002

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the instructor-led demonstrations.
 Review the multimedia demonstrations.

Presentation:
75 minutes

Lab:
45 minutes

Required materials

Preparation tasks

iv Module 5: Adding Code to a Microsoft ASP.NET Web Form

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Using Code-Behind Pages
This section describes the instructional methods for teaching each topic in this
lesson.

This topic should focus on the change from inline code to code-behind pages.

This slide is to provide a contrast between inline code and code-behind pages.
Emphasize that if the students write inline code, the code is directly inserted in
the .aspx Web Form.

Do not spend too much time on this slide.

Emphasize the fact that using code-behind pages is the default way to write
code for ASP.NET Web Forms.

Lesson: Adding Event Procedures to Web Server Controls
This section describes the instructional methods for teaching each topic in this
lesson.

Explain event handling so that students can understand why it is important.

Use this demonstration to establish how client-side and server-side event
procedures run in a Web site.

There is a “Code Example” link at the bottom of the slide. After discussing the
bullets on the slide, click the link to show the students the complete piece of
code. The “Code Example” link also contains code for client-side and
server-side event procedures.

The students will also perform this practice. Make sure that your pace is slow
and that the students are able to understand the procedure and perform the steps
along with you.

Lesson: Using Page Events
This section describes the instructional methods for teaching each topic in this
lesson.

Make students aware that page events may not come back in the order that they
were coded.

In this practice, students will predict what events will happen for given
scenarios. Be sure to tell students not to worry about getting the exact name of
the events correct, and that the idea is to get the order correct. The only events
that they should be listing are page load, control change, and control click,
where control is the name of the control in the scenario.

How to Implement Code

Writing Inline Code

What are Code-Behind
Pages?

What are Event
Procedures?

Demonstration: Using
Events

Creating Event
Procedures

Instructor-led Practice:
Creating an Event
Procedure

Understanding the Page
Event Life Cycle

Practice: Placing Events
in Order

 Module 5: Adding Code to a Microsoft ASP.NET Web Form v

Review
The review questions are mostly based on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 5: Adding Functionality to a Web Application
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 1

Overview

Using Code-Behind Pages

Adding Event Procedures to Web Server Controls

Using Page Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this module, you will learn about the various methods that can be used for
adding code to your Microsoft® ASP.NET Web application. You will also learn
about event procedures for Web server controls, how to use them, and the order
in which they work. You will then learn how to use code-behind pages, which
are the Microsoft Visual Studio® .NET preferred method for adding code to
Web pages. Finally, you will learn how page events, especially the Page_Load
event, are used.

After completing this module, you will be able to:

 Use code-behind pages in a Web application.
 Create event procedures for Web server controls.
 Use Page events in a Web application.

Introduction

Objectives

2 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Lesson: Using Code-Behind Pages

How to Implement Code

Writing Inline Code

What are Code-Behind Pages?

Understanding How Code-Behind Pages Work

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to implement code with Visual Studio .NET.
You will also learn how code-behind pages are used and how they are different
from inline code.

After completing this lesson, you will be able to:

 Identify the three ways to implement code in an ASP.NET Web Form.
 Use code-behind pages.

Introduction

Lesson objectives

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 3

How to Implement Code

Three methods for adding code:

Put code in the same file as content (mixed)

Put code in a separate section of the content file (inline
code)

Put code in a separate file (code-behind pages)

Code-behind pages are the Visual Studio .NET default

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can add code to your Web Form in the following three ways:

 Mixed code. The code is in the same file as the Web content, intermingled
with the Hypertext Markup Language (HTML). This method is the least
preferred, as it is difficult to read and work with such a file. However, this is
the method that is often used in Active Server Pages (ASP).

 Inline code. The code is in a separate SCRIPT section of the same file as
the HTML content.

 Code-behind. The code is in a separate file from the HTML content. The
code file is called a code-behind page. When using Visual Studio .NET, the
default method is to place all of the code in a code-behind page.

Implementing code

4 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Writing Inline Code

Code and content in the same file

Different sections in the file for code and HTML
<HTML>
<asp:Button id="btn" runat="server"/>
</HTML>
<SCRIPT Language="vb" runat="server">

Sub btn_Click(s As Object, e As EventArgs) Handles btn.Click
...
End Sub

</SCRIPT>

<HTML>
<asp:Button id="btn" runat="server"/>
</HTML>
<SCRIPT Language="vb" runat="server">

Sub btn_Click(s As Object, e As EventArgs) Handles btn.Click
...
End Sub

</SCRIPT>

<HTML>
<asp:Button id="btn" runat="server"/>
</HTML>
<SCRIPT Language="c#" runat="server">

private void btn_Click(object sender, System.EventArgs e)
{

. . .
}

</SCRIPT>

<HTML>
<asp:Button id="btn" runat="server"/>
</HTML>
<SCRIPT Language="c#" runat="server">

private void btn_Click(object sender, System.EventArgs e)
{

. . .
}

</SCRIPT>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although the default method for implementing server-side code in
Visual Studio .NET is to use a code-behind page, you might encounter pages
that use inline code, especially pages that were developed for ASP.

When inline code is used on a Web page, the HTML and code are in separate
sections of a single .aspx file. This separation is for clarity when reading the
page; functionally, the code and HTML can exist anywhere on the page.

The following is an example of inline code:

<HTML>
<asp:Button id="btn" runat="server"/>
...
</HTML>

<SCRIPT Language="vb" runat="server">
 Sub btn_Click(s As Object, e As EventArgs) _
 Handles btn.Click
 ...
 End Sub
</SCRIPT>

<HTML>
<asp:Button id="btn" runat="server" />
...
</HTML>

<SCRIPT Language="c#" runat="server">
 private void btn_Click(object sender, System.EventArgs e)
 {
 . . .
 }
</SCRIPT>

Introduction

Inline code

Visual Basic .NET

C#

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 5

What are Code-Behind Pages?

Separation of code from content

Developers and UI designers can work independently

Form1.aspxForm1.aspx Form1.aspxForm1.aspx Form1.aspx.vbForm1.aspx.vb
or Form1.aspx.csor Form1.aspx.cs

<tags>
<tags> codecode

codecode
Separate filesSingle file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The default method for implementing server-side code in Visual Studio .NET is
to use code-behind pages. When you use code-behind pages, the programming
logic is in a separate file than the visual elements of the page. Separating the
logic from the design allows developers to work on the code-behind page while
user interface (UI) designers work on the ASP.NET page.

Code-behind pages contain all of the programming logic for a single Web page.
Each Web page in a Web application has its own code-behind page. By default,
a code-behind page has the same name as the Web page with which it is
associated; however, the code-behind page also has an .aspx.vb or .aspx.cs
extension, depending on the language that is used in the code-behind page. For
example, the Web page Form1.aspx will have a Microsoft Visual Basic® .NET
code-behind page named Form1.aspx.vb or a C# code-behind page named
Form1.aspx.cs.

A code-behind page can only contain code in a single language. You
cannot mix Visual Basic .NET and C# in the same code-behind page.

Introduction

Naming code-behind
pages

Note

6 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Understanding How Code-Behind Pages Work

Create separate files for user interface and interface
logic

Use @ Page directive to link the two files

Pre-compile or JIT-compile

Page1.aspx
<% @ Page Language="c#"
Inherits="Project.WebForm1"
Codebehind="Page1.aspx.cs"
Src = "Page1.aspx.cs" %>

Page1.aspx.cs

public class WebForm1
{

private void cmd1_Click()
{

…
}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For code-behind pages to work, each .aspx page must be associated with a
code-behind page, and that code-behind page must be compiled before
information is returned to a requesting client browser.

Although each Web Form page consists of two separate files (the .aspx page
and the code-behind page), the two files form a single unit when the Web
application is run. The code-behind page can either be precompiled by
Visual Studio .NET when you build the Web application project, or can be just-
in-time (JIT) compiled the first time that a user accesses the page.

The .aspx page must be associated with the code-behind page.
Visual Studio .NET adds the following three attributes to the @ Page directive
of the .aspx page to accomplish this association:

 Codebehind. This is the attribute that Visual Studio .NET uses internally to
associate the files.

 Src. This attribute is the name of the code-behind page, and it is used if the
Web application is not precompiled.

 Inherits. This attribute allows the .aspx page to inherit classes and objects
from the code-behind page.

The Inherits attribute is case-sensitive.

Introduction

Linking the two files

Note

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 7

An example @ Page directive for a file named Page1.aspx is shown in the
following code:

<%@ Page Language="vb" Inherits="Project.WebForm1"
 Codebehind="Page1.aspx.vb" Src="Page1.aspx.vb" %>

<%@ Page Language="c#" Inherits="Project.WebForm1"
 Codebehind="Page1.aspx.cs" Src="Page1.aspx.cs" %>

When a page is JIT compiled, the code-behind pages are compiled the first time
that a client requests the .aspx page. After the first request, all subsequent
requests use the existing compiled file. Therefore, the first request of a page is
longer, but subsequent requests are faster.

If you want to use JIT compiling for a page, you would use the Src attribute of
the @ Page directive.

JIT compiling will keep the size of the project small and allow for code
updates without recompiling the entire site.

When a user requests the .aspx page, the dynamic-link library (DLL) file
processes the incoming request and responds by creating the appropriate HTML
and script and returning them to the requesting browser.

If you omit the Src attribute from the @ Page directive in an .aspx file, the
page is precompiled when you build the application in Visual Studio .NET. By
default, Visual Studio .NET does not add the Src attribute, so all of the
code-behind pages for Web Forms in a project are compiled when the project is
built. This process saves considerable processing time on the Web server.

Precompiling code-behind pages also simplifies the deployment of the Web site
because you do not have to deploy the code-behind pages along with the .aspx
pages.

For more information about Web site deployment, see Module 15,
“Configuring, Optimizing and Deploying a Microsoft ASP.NET Web
Application,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET.

Visual Basic .NET

C#

JIT compile

Note

Execution

Precompilation

Note

8 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Lesson: Adding Event Procedures to Web Server
Controls

What are Event Procedures?

Demonstration: Using Events

Client-Side Event Procedures

Server-Side Event Procedures

Multimedia: Client-Side and Server-Side Events

Creating Event Procedures

Instructor-Led Practice: Creating an Event Procedure

Interacting with Controls in Event Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn about event procedures and how to add them to
Web server controls. You will learn to distinguish between the two types of
events (server-side and client-side) and understand when it is appropriate to use
each kind.

After completing this lesson, you will be able to:

 Identify event procedures.
 Distinguish between server-side and client-side events.
 Create a server-side event procedure.
 Interact with controls in event procedures.

Introduction

Lesson objectives

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 9

What are Event Procedures?

Action in response to a user’s interaction with the
controls on the page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Dynamic, interactive Web Forms typically react to user input. Event procedures
are used to handle user interactions on a Web Form.

When a user interacts with a Web Form, an event is generated. You design your
Web application to perform an appropriate task when the event is generated. An
event procedure is the action that occurs in response to the generated event.

Many Web Forms allow the user to enter information and then click a Submit
button. An event is generated when the user clicks the Submit button. For
example, an event procedure for an event might be to send the user information
to a Microsoft SQL Server™ database.

Introduction

Definition

Example of an event
procedure

10 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Demonstration: Using Events

Open an ASP.NET page with controls and
client-side and server-side event
procedures

Click on the controls to view client-side
and server-side events running

In the browser, view the source of the
page

In the editor, view the event procedure
code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This demonstration can be performed using either the Visual Basic .NET or the
Microsoft Visual C#™ project. In this demonstration, you will see how
client-side and server-side event procedures run in a Web site.

 To run the demonstration

1. In Visual Studio .NET, open the eventorderstart.aspx page in the Mod05VB
or Mod05CS project in the 2310Demos solution.

2. View the page in the browser. It is not necessary to build the project first.
3. Click the controls in the page. Each control has a client-side event procedure

that outputs a string when it runs.
4. Click Save. This submits the form and causes all of the server-side event

procedures to run.
5. In the browser, view the source of the page. Only the code for the client-side

event procedures is visible.
6. Close the source view of the page.
7. In Visual Studio .NET, open the page in HTML view. There is code for both

client-side and server-side event procedures.

Introduction

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 11

Client-Side Event Procedures

Internet .HTM
Pages

Typically, used only with HTML controls only

Interpreted by the browser and run on the client

Does not have access to server resources
Uses <SCRIPT language="language">

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are two types of event procedures: client-side and server-side. There are
advantages and disadvantages to both client-side and server-side event
procedures.

Client-side event procedures are events that are handled on the computer that
requests the Web Form (the client). When an event is generated, no information
is sent to the server. Instead, the client browser interprets the code and also
performs the action.

Client-side event procedures can only be used with HTML controls. In addition,
client-side event procedures never have access to server resources. For
example, you cannot use client-side script to access a SQL Server database.

Client-side event procedures are useful for events that you want to happen
immediately because they do not require a round trip to the Web server
(sending information to the Web server and waiting for a response). For
example, you may want to validate information in a text box before it is
submitted to the server. You can use client-side script to validate the
information quickly and effectively before sending the user information to the
Web server for further processing.

You specify a client-side event procedure by creating a <SCRIPT> block in the
Web page, as shown in the following code:

<SCRIPT language="javascript">

Introduction

Client-side event
procedures

Uses for client-side
event procedures

Specifying client-side
event procedures

12 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Server-Side Event Procedures

Used with both Web and HTML server controls

Code is compiled and run on the server

Have access to server resources

Use <SCRIPT language="vb" runat="server"> or
<SCRIPT language=“cs" runat="server">

Internet
.ASPX
Pages

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Unlike client-side event procedures, server-side event procedures require
information to be sent to the Web server for processing. Although there is a
time cost to using server-side event procedures, they are much more powerful
than client-side event procedures.

Server-side event procedures consist of compiled code that resides on the Web
server. Server-side event procedures can be used to handle events that are
generated from both Web and HTML server controls. Server-side event
procedures have access to server resources that are normally unavailable to
client-side event procedures.

You specify a server-side event procedure by using the runat="server"
attribute in the script tag, as shown in the following code:

<SCRIPT language="vb" runat="server">

<SCRIPT language="c#" runat="server">

Because server-side event procedures require a round trip to the Web server,
there are a limited number of types of control events that are supported. With
client-side event procedures, you can include code to process mouse key events
and onChange events. While server-side event procedures support click events
and a special version of the onChange event, they cannot support events that
occur frequently, like mouse key events.

Introduction

Server-side event
procedures

Visual Basic .NET

C#

Event Support

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 13

Multimedia: Client-Side and Server-Side Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how client-side and server-side event procedures
are processed on the client and on the server.

1. The client requests an ASP.NET page from the Web server.
2. The server returns a page containing HTML and script to the client. The

page includes a text box control and a Submit button. The page also
contains client-side script that validates the contents of the text box.

3. The user enters invalid information into the text box, and the client-side
script generates a message box.

4. Because no information has been sent to the server, client-side processing
reduces network traffic and response times.

5. The user corrects the information in the text box, and then clicks the Submit
button.

6. The information is validated on the client side, and then sent to the server,
where server-side processing can take place.

7. The server repeats the validation and stores the information from the text
box in a database.

8. Because the client-side script cannot access server resources, server-side
processing offers a greater range of flexibility in data processing.

Introduction

14 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Creating Event Procedures

Visual Studio .NET declares variables and creates an
event procedure template

Using the Handles keyword adds many event
procedures to one event

protected System.Web.UI.WebControls.Button cmd1;
private void InitializeComponent()
{
this.cmd1.Click += new System.EventHandler(this.cmd1_Click);
this.Load += new System.EventHandler(this.Page_Load);

}
private void cmd1_Click(object s, System.EventArgs e)

protected System.Web.UI.WebControls.Button cmd1;
private void InitializeComponent()
{
this.cmd1.Click += new System.EventHandler(this.cmd1_Click);
this.Load += new System.EventHandler(this.Page_Load);

}
private void cmd1_Click(object s, System.EventArgs e)

Protected WithEvents cmd1 As System.Web.UI.WebControls.Button
Private Sub cmd1_Click(ByVal s As System.Object, _

ByVal e As System.EventArgs) Handles cmd1.Click

Protected WithEvents cmd1 As System.Web.UI.WebControls.Button
Private Sub cmd1_Click(ByVal s As System.Object, _

ByVal e As System.EventArgs) Handles cmd1.Click

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Creating a server-side event procedure in Visual Studio .NET involves two
steps. In the first step, you create the control that generates the event on the
Web Form. Secondly, you provide the code on the code-behind page that is
needed to handle the event.

When you double-click a control in Visual Studio .NET, Visual Studio .NET
declares a variable (with the same name as the id attribute of the control) and
creates an event procedure template. When you use Visual Basic .NET,
Visual Studio .NET also adds the Handles keyword, which attaches the event
procedure to the control. The Handles keyword allows you to create multiple
event procedures for a single event.

By default, Visual Studio .NET uses the Handles keyword because the
AutoEventWireup attribute of the @ Page directive is set to false. If this
attribute is set to true, controls are bound to event procedures through specific
names, which is how event procedures are handled in Visual Basic 6.0.

The following HTML code shows a Web Form that has a single button with an
id attribute of cmd1; the click event for the button will be handled on the
server:

<form id="form1" method="post" runat="server">
 <asp:Button id="cmd1" runat="server"/>
</form>

Introduction

Creating a server-side
event procedure

Note

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 15

The following Visual Basic .NET code shows the variable declaration that is
needed in the code-behind page.

Protected WithEvents cmd1 As _
 System.Web.UI.WebControls.Button

In the preceding code, the name of the variable must match the id of the Web
control, and you must use the WithEvents keyword to indicate that this control
causes event procedures to run.

In the following Visual Basic .NET code, which shows the event procedure for
the Click event, the Handles keyword indicates that the event procedure runs in
response to the Click event of the cmd1 control:

Private Sub cmd1_Click(ByVal s As System.Object, _
 ByVal e As System.EventArgs) _
 Handles cmd1.Click
...
End Sub

All events pass two arguments to the event procedure: the sender of the event,
and an instance of the class that holds data for the event. The latter is usually of
the type EventArgs, and it often does not contain any additional information;
however, for some controls, it is of a type that is specific to that control.

For example, for an ImageButton Web control, the second argument is of the
type ImageClickEventArgs, which includes information about the coordinates
where the user clicked. The following event procedure outputs the coordinates
of the location where a click occurs within a Label control:

Sub img_OnClick(ByVal s As System.Object, _
 ByVal e As System.Web.UI.ImageClickEventArgs) _
 Handles ImageButton1.Click
 Label1.Text = e.X & ", " & e.Y
End Sub

In C#, the way that you create an ASP.NET event procedure is slightly different
than how you would create it in Visual Basic .NET. C# does not support the
Handles keyword. Instead, in C#, you add the event procedure to the event
property of the control.

For example, the following is the same HTML form as shown in the preceding
code:

<FORM ID="Form1" runat="server">
 <asp:Button id="cmd1" runat="server" />
</FORM>

Event arguments

Creating a server-side
event procedure in C#

16 Module 5: Adding Code to a Microsoft ASP.NET Web Form

In the code-behind page, a variable is created with the same name as the
control. In the InitializeComponent method, you add the event procedure to
the event property of the control. The Click property of the cmd1 variable is
handled as follows:

public class WebForm1 : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.Button cmd1;

 private void InitializeComponent()
 {
 this.cmd1.Click += new
 System.EventHandler(this.cmd1_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }

 private void cmd1_Click(object sender, System.EventArgs e)
 {
 ...
 }
}

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 17

Instructor-Led Practice: Creating an Event Procedure

Create a Web Form using Visual Studio
.NET

Add controls to the Web Form

Double-click one or more controls to add
event procedures

Build and Browse

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This instructor-led practice can be performed by using either the
Visual Basic .NET files or the Visual C# files.

In this practice, you will see how to add an event procedure to a Web control by
using Visual Studio .NET.

 To run the practice

1. In Visual Studio .NET, add a new Web Form named events.aspx to the
Mod05VB or Mod05CS project, in the 2310Demos solution.

2. Open the events.aspx page.
3. Put a Button and a Label Web Form control on the form.

The controls are assigned a default ID that you can view and change in the
Properties window.

4. In Design view, double-click the Button control to open the code-behind
page and create a Click event procedure.
In the code-behind page, notice the variable that is declared and the event
procedure template that is created by Visual Studio .NET.

5. Enter the following code in the Click event procedure:
Label1.Text = "You clicked the button"

Label1.Text = "You clicked the button";

6. Notice the Handles keyword on the Button1_Click event procedure.
C# does not support the Handles keyword, instead C# binds a procedure to
an event in the InitializeComponent procedure. To see the binding for
Button1_Click, expand the Web Form Designer generated code section in
the code window. Find the InitializeComponent procedure and notice the
event handler binding.

Introduction

Visual Basic .NET

C#

Visual Basic .NET
C#

18 Module 5: Adding Code to a Microsoft ASP.NET Web Form

7. In Solution Explorer, right-click the events.aspx page and then click Build
and Browse.

8. In the browser, click the button on the form.
The text of the label changes.

9. In the browser, view the source of the page to show that there is no
client-side code. There is just server-side code.

10. Close the source view of the page.
11. In Design view, change the ID property of the Button control to

cmdSubmit.
12. In the code-behind page, notice that the Handles keyword was removed

from the Button1_Click event procedure.
In the code-behind page, notice that the event binding in the
InitializeComponent has changed to the new button name.

13. Add the Handles keyword to the Button1_Click event procedure to run the
procedure for the cmdSubmit.Button event, as shown in the following
code:
Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles cmdSubmit.Click

The Handles keyword is not supported in C#. Instead the procedure is
bound to the event in the InitializeComponent procedure. Visual Studio
adds the correct binding, as shown in step 12.

14. Build and Browse the page.
The Click event procedure still fires with the new name of the control.

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 19

Interacting with Controls in Event Procedures

Read the properties of Web server controls

Output responses to other Web server controls

lblGreeting.Text = "new text"lblGreeting.Text = "new text"

strGreeting = "Hello " & txtName.TextstrGreeting = "Hello " & txtName.Text

strGreeting = "Hello " + txtName.Text;strGreeting = "Hello " + txtName.Text;

lblGreeting.Text = "new text";lblGreeting.Text = "new text";

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In many Web applications, you need to read from and write to controls on a
form. You can do this within server-side event procedures.

Within a server-side event procedure, you can read information from a server
control. For example, if you have the following form with a Textbox and a
Button control:

<FORM id="Form1" runat="server">
 <asp:TextBox id="txtName" runat="server" />
 <asp:Button id="cmd1" runat="server" />
</FORM>

When the user clicks the button, you can read the text that the user typed into
the text box. The following code assigns the string variable strGreeting to a
concatenation of the text “Hello” and the text in the txtName text box:

Dim strGreeting As String = "Hello " & txtName.Text

string strGreeting = "Hello " + txtName.Text;

For example, if a user typed "Shannon" in the txtName text box, the
strGreeting variable would contain the text string "Hello Shannon".

Introduction

Reading properties from
a server control

Visual Basic .NET

C#

20 Module 5: Adding Code to a Microsoft ASP.NET Web Form

You can output information directly to a Web server control by using the
control’s properties. For example, suppose you have a Label Web server
control on the ASP.NET page, as follows:

<asp:Label id="lblGreeting"
 runat="server">Greeting</asp:Label>

The following server-side code assigns the Text property of lblGreeting Web
server control to a text string:

lblGreeting.Text = "new text"

lblGreeting.Text = "new text";

In ASP, you use the Request.Forms collection to read the properties of
controls on a form, and use Response.Write to output text. Although these
methods still work with ASP.NET, they are not the preferred methods. Instead,
you will want to use server control labels and spans.

Outputting to a Web
server control

Visual Basic .NET

C#

Tip

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 21

Lesson: Using Page Events

Understanding the Page Event Life Cycle

Multimedia: The PostBack Process

Demonstration: Handling Events

Practice: Placing Events in Order

Handling Page.IsPostback Events

Linking Two Controls Together

Demonstration: Linking Controls Together

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to use page events. You will first learn about
the page event life cycle. You will then see how the postback process works,
and then learn about event order. You will also see how to work with the
Page_Load event. The lesson ends with linking controls together.

After completing this lesson, you will be able to:

 Describe the page event life cycle.
 Use postback forms.
 Link one control to another control.

Introduction

Lesson objectives

22 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Understanding the Page Event Life Cycle

Page_LoadPage_Load

Page_UnloadPage_Unload

Textbox1_ChangedTextbox1_Changed

Button1_ClickButton1_Click

Page is disposed

Page_InitPage_Init

Control eventsControl events

Change EventsChange Events

Action EventsAction Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When an ASP.NET page is requested, there are a series of page events that
occur. These events always occur in the same order, which is referred to as the
page event life cycle.

The page event life cycle consists of the following page events, which occur in
the following order:

1. Page_Init. This page event initializes the page by creating and initializing
the Web server controls on the page.

2. Page_Load. This page event runs every time the page is requested.
3. Control events. This page event includes change events (for example,

Textbox1_Changed) and action events (for example, Button1_Click).
4. Page_Unload. This page event occurs when the page is closed or when the

control is passed to another page.

The end of the page event life cycle includes the disposal of the page from
memory.

Most control events do not occur until the Web Form is posted back to the
server. For example, Change events are handled in a random order on the
server after the form is posted. Conversely, Click events can cause the form to
be sent to the server immediately.

If, for example, a user enters text into a number of controls on a form and then
clicks a Submit button, the Change events for the text controls will not be
processed until the form is sent to the server by the Click event.

For more information on page events, see “Page Members” and “Control
Execution Lifecycle” in the Visual Studio .NET online documentation.

Introduction

The page event life cycle

Note

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 23

In ASP.NET, forms are designed to post information back to the sending
ASP.NET page for processing. This process is called postback. Postbacks may
occur with certain user actions. By default, only Button click events cause the
form to be posted back to the server. However, if you set the AutoPostBack
property of a control to true, a postback is forced for events of that control.

For example, the following HTML code is an example of using AutoPostBack
on a list box. Every time the user changes the value of the list box, the
SelectedIndexChanged event will be raised on the server and it will update the
text box:

<asp:DropDownList id="ListBox1" runat="server"
 AutoPostBack="True">
 <asp:ListItem>First Choice</asp:ListItem>
 <asp:ListItem>Second Choice</asp:ListItem>
</asp:DropDownList>

The code in the code-behind page is as follows:

Private Sub ListBox1_SelectedIndexChanged _
 (ByVal s As System.Object, ByVal e As System.EventArgs) _
 Handles ListBox1.SelectedIndexChanged
 TextBox1.Text=ListBox1.SelectedItem.Value
End Sub

private void ListBox1_SelectedIndexChanged
 (object sender, System.EventArgs e)
{
 TextBox1.Text = ListBox1.SelectedItem.Value;
}

Postbacks

Visual Basic .NET

C#

24 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Multimedia: The Postback Process

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how forms work in ASP.NET and how the
Page_Load event can be coded to only run the first time a page is displayed,
and how controls can be made to post immediately to the server.

 The first time that a user requests a page from the server, the test for
Page.IsPostBack in the Page_Load event succeeds and the code in the
block runs. In this example, the code fills in a list box.

 The server then returns the page to the user. In this example, the page has a
ListBox, a blank Label, and a Submit button on it.

 When the user changes the selection in the list box, and then clicks the
Submit button, the information is sent back to the server.

 The server can determine that this is a page that is being posted back to
itself, and so the test for Page.IsPostBack in the Page_Load event fails and
the code in the block does not run.

 Instead, the event procedures for the controls on the form (the list box and
the button) run and in this scenario, the list box event procedure changes the
label to reflect the new list box selection.

 Then, the server returns the updated information to the client. The user sees
the same page, but the label has now changed to reflect the list box
selection.

 If you want the new value of the list box to be sent to the server
immediately, and not wait for the user to click the Submit button, you can
set the list box control’s AutoPostBack property to True.

 With the AutoPostBack property set to True, as soon as the user changes
the selection in the list box, the information is sent to the server.

 The server updates the label to reflect the change, and then sends the
updated information back to the client.

Introduction

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 25

Demonstration: Handling Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This demonstration can be performed by using the Visual Basic .NET project or
the Visual C# project.

In this demonstration, you will see how HTML and Web server controls can
support both client-side and server-side events.

The completed code for this demonstration is in the:

install folder\DemoCode\Mod05VB\eventorderFinal.aspx page.

install folder\DemoCode\Mod05CS\eventorderFinal.aspx page.

The eventorderFinal.aspx page is also in the Mod05VB and Mod05CS projects
in the 2310Demos solution.

Introduction

Visual Basic .NET

C#

26 Module 5: Adding Code to a Microsoft ASP.NET Web Form

 To run the demonstration

1. In Visual Studio .NET, view the page eventorderstart.aspx in the Mod05VB
or Mod05CS project in the browser.
Type a name in the Name field, click a value in the Profession list box,
select the check box, and then click Save.
The page has client-side and server-side event procedures for the text box,
list box, check box, button, and the page.

2. In Visual Studio .NET, edit the page in HTML view and change the check
box into a Web server control, adding a Text attribute, as shown in the
following code:
<asp:checkbox onclick="checkClick()"
 onserverclick="checkServerClick"
 onserverchange="checkServerChange"
 runat="server"
 id="Checkbox1"
 Text="Certified Professional"/>

Although the onclick, onserverclick, and onserverchange attributes
are not recognized by the syntax checker, you can leave them in the code.

3. View the page in the browser again.
Type a name in the Name field, click a value in the Profession list box,
select the check box, and then click Save.
The check box only fires client-side events now.
While the client event still runs because <asp:checkbox> generates <input
type=checkbox>, the server event does not run because the name of the
server event is oncheckedchange, not onserverchange.

4. Edit the page in HTML view and change the name of the server-side event
procedure attribute from onserverchange to oncheckedchange, as shown
in the following code:
<asp:checkbox onclick="checkClick()"
 onserverclick="checkServerClick"
 oncheckedchanged="checkServerChange"
 runat="server"
 id="Checkbox1"
 Text="Certified Professional"/>

5. View the page in the browser again.
Enter a name in the Name field, click a value in the Profession list box,
select the check box, and then click Save.
Both client and server event procedures run again.

6. Edit the page and set the AutoPostBack attribute to true for the check box.
7. View the page in the browser again.

When you select the check box, you get the client-side event and then the
server-side event.

8. In the browser, view the source of the page to see how AutoPostBack is
implemented.

Note

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 27

9. Close the source view page.
10. Edit the page and add a Page.IsPostBack test to the Page_Load event

procedure, as shown in the following code:
Sub Page_Load(s As Object, e As EventArgs)
 If Not Page.IsPostback Then
 Label1.Text &= "<P>Page_Load first time, "
 Else
 Label1.Text &= "<P>Page_Load postback, "
 End If
End Sub

void Page_Load(object s, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 Label1.Text += "<P>Page_Load first time, ";
 }
 else
 {
 Label1.Text += "<P>Page_Load postback, ";
 }
}

11. View the page in the browser again.
While the form is loaded the first time, and then posted back, you can see
the different messages displayed.

Visual Basic .NET

C#

28 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Practice: Placing Events in Order

Students will:

Given scenarios, list the events that will
happen and the order in which they will
occur

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will predict what events will happen for given scenarios.
The events to include are: page load, control change, and control click.

 List the order of events for the following scenarios

Enter Name, enter age, click Female, and click Submit.

Answer: Page load, name change, age change, gender click, submit
click.
__

__

Introduction

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 29

Select state, and click Submit.

Answer: If autopostback is false: Page load, list change, submit click.
If autopostback is true: Page load, list change, page load, submit click.
__

__

30 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Select start date, select end date, and click Submit.

Answer: Page load, calendar1 change.
Page load, calendar 2 change.
Page load, submit click.
__

__

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 31

Handling Page.IsPostback Events

Page_Load fires on every request

Use Page.IsPostBack to execute conditional logic

Page.IsPostBack prevents reloading for each postback

Private Sub Page_Load(ByVal s As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
If Not Page.IsPostBack Then
'executes only on initial page load

End If
'this code executes on every request

End Sub

Private Sub Page_Load(ByVal s As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
If Not Page.IsPostBack Then
'executes only on initial page load

End If
'this code executes on every request

End Sub

private void Page_Load(object sender, System.EventArgs e)
{ if (!Page.IsPostBack)

{
// executes only on initial page load

}
//this code executes on every request

}

private void Page_Load(object sender, System.EventArgs e)
{ if (!Page.IsPostBack)

{
// executes only on initial page load

}
//this code executes on every request

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Page_Load event runs on every request for a page, whether it is the first
request of the page or a postback.

Because the Page_Load event runs with every request for a page, all of the
code within the Page_Load event will execute each time the page is requested.
However, when you are using postback events, you may not want all of the
code to execute again. If this is the case, you can use the Page.IsPostBack
property to control which code executes only when the page is initially
requested, as shown in the following code:

Private Sub Page_Load(ByVal s As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 If Not Page.IsPostBack Then
 'executes only on initial page load
 End If
 'this code executes on every request
End Sub

private void Page_Load(object sender,
 System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 // executes only on initial page load
 }
 //this code executes on every request
}

Introduction

Using Page.IsPostBack

Visual Basic .NET

C#

32 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Linking Two Controls Together

Linking one control to another is useful for taking
values from list boxes or drop-down lists

Data binding

<asp:DropDownList id="lstOccupation"
autoPostBack="True" runat="server" >

You selected: <asp:Label id="lblSelectedValue"
Text="<%# lstOccupation.SelectedItem.Text %>"
runat="server" />

<asp:DropDownList id="lstOccupation"
autoPostBack="True" runat="server" >

You selected: <asp:Label id="lblSelectedValue"
Text="<%# lstOccupation.SelectedItem.Text %>"
runat="server" />

private void Page_Load(object sender, System.EventArgs e)
{

lblSelectedValue.DataBind();
}

private void Page_Load(object sender, System.EventArgs e)
{

lblSelectedValue.DataBind();
}

Sub Page_Load(s As Object, e As EventArgs) Handles MyBase.Load
lblSelectedValue.DataBind()

End Sub

Sub Page_Load(s As Object, e As EventArgs) Handles MyBase.Load
lblSelectedValue.DataBind()

End Sub

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can link one control to the contents of another. Linking is particularly
useful for displaying values from list boxes or drop-down lists.

The following code example demonstrates how to link a Label control to the
contents of a drop-down list. Using the linking tags <%# and %>, you set the
Text attribute of the Label control to the SelectedItem of the list box:

<asp:Label id="lblSelectedValue" runat="server"
 Text="<%# lstOccupation.SelectedItem.Text %>" />

The following example shows the code in a Web Form that is used to link the
Label control to the list box:

<form runat="server">
 <asp:DropDownList id="lstOccupation"
 autoPostBack="true" runat="server" >
 <asp:ListItem>Program Manager</asp:ListItem>
 <asp:ListItem>Tester</asp:ListItem>
 <asp:ListItem>User Assistance</asp:ListItem>
 </asp:DropDownList>
 <p>You selected: <asp:Label id="lblSelectedValue"
 Text="<%# lstOccupation.SelectedItem.Text %>"
 runat="server" />
 </p>
</form>

In the preceding code, notice that the AutoPostBack property of the drop-down
list is set to True, which causes automatic postback whenever the value of the
list box changes.

Introduction

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 33

In the Page_Load event procedure, you call the DataBind method of either the
entire page or just the Label control, as shown in the following code:

Sub Page_Load (s As Object, e As EventArgs) _
 Handles MyBase.Load
 lblSelectedValue.DataBind()
End Sub

private void Page_Load(object sender, System.EventArgs e)
{
 lblSelectedValue.DataBind();
}

You can use Page.DataBind() if you want the page to data bind all of the
elements on the page. The preceding code example binds only the Label
control to data, thereby using the control.DataBind() syntax, where control is
the id attribute of the Label control.

Visual Basic .NET

C#

34 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Demonstration: Linking Controls Together

Link a Label to a ListBox

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This demonstration can be performed by using either the Visual Basic .NET or
Visual C# project files.

In this demonstration, you will see how to link controls together.

The completed code for this demonstration is in the:

install folder\DemoCode\Mod05VB\binding.aspx page.

install folder\DemoCode\Mod05CS\binding.aspx page.

The eventorderFinal.aspx page is also in the Mod05VB and Mod05CS projects
in the 2310Demos solution.

 To run the demonstration

1. In Visual Studio .NET, edit the page beforebinding.aspx in the Mod05
project. There is a DropDownList and a Label control on this page. View
the HTML for the page. Note the AutoPostBack attribute for the
DropDownList.

2. Link the Label control to the DropDownList control by setting its Text
attribute, as shown in the following code example:
<asp:label id="lblListValue"
Text="<%# lstTitle.SelectedItem.Text %>" runat="server"/>

Introduction

Visual Basic .NET

C#

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 35

3. Create a Page_Load event procedure and call lblListValue.DataBind(), as
shown in the following code example:
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 lblListValue.DataBind()
End Sub

private void Page_Load(object sender, System.EventArgs e)
{
 lblListValue.DataBind();
}

4. Build and browse to view the page in Microsoft Internet Explorer.
When you select an item in the DropDownList, the value is reflected in the
Label control.

Visual Basic .NET

C#

36 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Review

Using Code-Behind Pages

Adding Event Procedures to Web Server Controls

Using Page Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the advantage of using code-behind pages when adding
functionality to a Web Form?
Code-behind pages allow separation of code from content and allow the
code developer to work on the code-behind file while the UI designer
works on the .aspx file.

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 37

2. How is an event procedure associated with an event of a server control?
In Visual Basic .NET, the Handles keyword references the id of the
control and the name of the event. For example:
Private Sub cmd1_Click(ByVal s As System.Object, _

 ByVal e As System.EventArgs) _

 Handles cmd1.Click

...

End Sub

In Visual C#, in the code-behind page, a variable is created with the
same name as the control. In the InitializeComponent method, you add
the event procedure to the event property of the control.
private void InitializeComponent()

{

 this.cmd1.Click += new System.EventHandler(this.cmd1_Click);

}

private void cmd1_Click(object sender, System.EventArgs e)

{

...

}

3. What are the two arguments to an event procedure?
Object is the object firing of the event; EventArgs is specific
information for the event.

4. How is a code-behind page associated with an .aspx page?
The following attributes of the @ Page directive:

• Src is the location of the code-behind page.

• CodeBehind is used by Visual Studio .NET to locate the code-behind
page for editing.

• Inherits is the class that is implemented in the code-behind page and
compiled into the assembly for the project.

38 Module 5: Adding Code to a Microsoft ASP.NET Web Form

5. List the three ways you can add code to an ASP.NET page.
Mixed, inline, and code-behind.

6. Why would you want to set up your code-behind pages to be precompiled
instead of “just-in-time”?
If you precompile all the code for a Web application, it saves time and
resources on the Web server because the server does not have to
compile the pages as they are accessed.

7. When does a form post back to itself?
When the user clicks a button on a server form or a control with
AutoPostBack set to true.

8. How can you determine through code if the Page_Load event is being run
as a result of a postback?
In the Page_Load event procedure, test the Page.IsPostBack property.
If it is true, the page was posted back to itself.

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 39

Lab 5: Adding Functionality to a Web Application

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create a Page_Load event procedure for a Microsoft® ASP.NET Web page.
 Create Click event procedures for Web controls on an ASP.NET Web page.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to call a Microsoft Visual Basic® .NET function.
 Knowledge of how to use Web controls on a Web Form.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In Lab 3, “Building a Microsoft Visual Studio .NET Component,” in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you created a component that returned a list of all the
benefits that are offered by your company. In this lab, you will call that
component from the default.aspx page of your company's Web site, display the
information in a CheckBoxList control, and then implement the Submit button
on the form to display which benefits are selected.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
45 minutes

40 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects may be created by
using Visual Basic .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application, set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 41

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse the Benefits project.

Browse to the install folder\Labfiles\Lab05\VB\Starter\BenefitsVB folder
for the Visual Basic .NET files.
Browse to the install folder\Labfiles\Lab05\CS\Starter\BenefitsCS folder for
the Visual C# files.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
choose All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a Class Library project.
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET Project
For the Visual C# Project

Important

For the Visual Basic
.NET Project

For the Visual C# Project

Caution

42 Module 5: Adding Code to a Microsoft ASP.NET Web Form

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse the BenefitsList project.

Browse to the install folder\Labfiles\Lab05\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab05\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET Project
For the Visual C# Project

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 43

Exercise 1
Creating a Page_Load Event Procedure

In this exercise, you will create the Page_Load event procedure for the
default.aspx page. In the Page_Load event procedure, you will add code to read
the list of benefits from the BenefitsListVB or BenefitsListCS component that
you created in Lab 3, “Building a Microsoft Visual Studio .NET Component,”
in Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET. You will then display the benefits in a CheckBoxList
control.

 Call the BenefitsListVB or BenefitsListCS component

1. Using Visual Studio .NET, open the 2310LabApplication solution.
2. Open the default.aspx page in the BenefitsVB or BenefitsCS project.
3. Double-click the background of the default.aspx page in Design view to

create a Page_Load event procedure.
The code-behind page opens and a template is added for the Page_Load
event procedure, which contains the following code:
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
End Sub

private void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here
}

4. Create a new instance of the BenefitsList.Benefits class and save it in a
variable named clBenefits.
Your code should look like the following:
Dim clBenefits As New _
 BenefitsListVB.Benefits()

BenefitsListCS.Benefits clBenefits = new
 BenefitsListCS.Benefits();

5. If you are completing this lab in Visual Basic .NET, declare a variable of
type BenefitsListVB.Benefits.BenefitInfo and name it bi.
Your code should look like the following:
Dim bi As BenefitsListVB.Benefits.BenefitInfo

If you are completing this lab in Visual C#, the variable bi is declared in the
foreach loop later in this lab.

6. Call the GetBenefitsList method of the class, which returns an array of
BenefitsListVB.Benefits.BenefitInfo or BenefitsListCS.Benefits.BenefitInfo
variables.

7. Iterate through the returned array with a For Each loop.

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

44 Module 5: Adding Code to a Microsoft ASP.NET Web Form

8. For each item in the array, generate a string of the following format:
 item.strName

Add the string to the Items collection of the chkListBenefits CheckBoxList
control by using the chkListBenefits.Items.Add method.
Your code should look like the following:
For Each bi In clBenefits.GetBenefitsList()
 chkListBenefits.Items.Add("<a href=" & bi.strPage & _
 ">" & bi.strName & "")
Next

foreach (BenefitsListCS.Benefits.BenefitInfo bi
 in clBenefits.GetBenefitsList())
{
 chkListBenefits.Items.Add("<a href=" + bi.strPage +
 ">" + bi.strName + "");
}

9. Right-click the default.aspx page in Solution Explorer and then click Build
and Browse.
The chkListBenefits list now contains hyperlinks to other pages, in addition
to the initial collection of values, as shown in the following illustration.

Visual Basic .NET

C#

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 45

10. Click the Life Insurance hyperlink.
The life.aspx page is displayed.

11. Click the Home hyperlink to return to the default.aspx page.
12. Click Submit twice. What happens? Why?

The list of benefits is added to the CheckBoxList control each time you
click Submit. This is because the GetBenefitsList method is called in the
Page_Load event procedure and that event procedure is run each time
the Web Form is posted back to the server.
__

__

The chkBenefitsList list box display should only display the benefits list
that was provided by the BenefitsList component, not the first three
temporary items. Furthermore, the list of benefits should not be added to the
list box with every refresh of the page. To fix these issues, perform the
following procedures.

 Remove temporary list items

1. Open the default.aspx page.
2. Select the chkListBenefits list box control.
3. In the Properties window, click Items, and then click the … next to

(Collection).
4. In the ListItem Collection Editor, select an item in the Members list and

then click Remove. Repeat this step until all three members have been
removed from the collection, and then click OK.

 Add a Page.IsPostBack test

1. In the default.aspx page, add a Page.IsPostBack test to the Page_Load
event procedure.
Only add items from the component to the CheckBoxList control if the
page is being displayed for the first time.
When complete, the entire Page_Load event procedure should look like the
following (the new code is in bold font):
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not Page.IsPostBack Then
 Dim clBenefits As New BenefitsListVB.Benefits()
 Dim bi As BenefitsListVB.Benefits.BenefitInfo

 For Each bi In clBenefits.GetBenefitsList()
 chkListBenefits.Items.Add("<a href=" & _
 bi.strPage & ">" & bi.strName & "")
 Next
 End If
End Sub

Visual Basic .NET

46 Module 5: Adding Code to a Microsoft ASP.NET Web Form

private void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 BenefitsListCS.Benefits clBenefits = new
 BenefitsListCS.Benefits();

 foreach (BenefitsListCS.Benefits.BenefitInfo bi
 in clBenefits.GetBenefitsList())
 {
 chkListBenefits.Items.Add("<a href=" +
 bi.strPage + ">" + bi.strName + "");
 }
 }
}

2. Build and browse the default.aspx page.
The list now only displays the items from the BenefitsList component.

3. Click Submit two or more times. What happens? Why?
The BenefitsList component is called only the first time the page is
displayed because you added the test for Page.IsPostBack. Thus, the
items are added to the CheckBoxList only once.
__

__

C#

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 47

Exercise 2
Creating Click Event Procedure

In this exercise, you will create a Click event procedure for the Submit button
on the default.aspx page. When the user clicks Submit, the event procedure
will read the list of benefits and output the benefits in the list that are selected to
a label on the default.aspx page.

 Read benefits checked

1. Open the default.aspx page.
2. Double-click the Submit button in Design view to create a Click event

procedure for the Submit button.
The default.aspx.vb or default.aspx.cs page opens with the new
cmdSubmit_Click event procedure already created.

3. In the Click event procedure, iterate through the list of items in the
CheckBoxList control. For each item, if the Selected property is True, then
add a string to the Text property of the lblSelections Label control.
Your code should look like the following:
Dim li As ListItem
For Each li In chkListBenefits.Items
 If li.Selected Then
 lblSelections.Text &= ", " & li.Value
 End If
Next

foreach (ListItem li in chkListBenefits.Items)
{
 if (li.Selected)
 {
 lblSelections.Text += ", " + li.Value;
 }
}

4. Build and browse the default.aspx page.
5. Select a few benefits from the list, and then click Submit.

The label displays a list of the selected items as hyperlinks.

Visual Basic .NET

C#

48 Module 5: Adding Code to a Microsoft ASP.NET Web Form

Exercise 3 (If Time Permits)
Using a Component in a User Control

Each page of the Benefits Web site displays some of the same information. This
information is stored in a user control that is named header.ascx. This header
control does not read its list of benefits from the BenefitsList component.
Rather, the list of benefits is hard-coded in the page.

In this exercise, you will redesign the header.ascx page to read the list of
benefits from the BenefitsList component and then display them in hyperlink
controls.

You will learn more about user controls in Module 8, “Creating User
Controls,” in Course 2310B, Developing Microsoft ASP.NET Web Applications
Using Visual Studio .NET.

 Call the BenefitsList component

1. Open the header.ascx page.
2. Complete the following steps to change each of the four benefit hyperlinks

that are across the top of the page, excluding the Home hyperlink, to Web
server controls:

Do not perform the following steps for the Home hyperlink. That
hyperlink will remain hard-coded in this lab.

a. In Design view, right-click each hyperlink and then click Run as Server
Control.

b. Click the HTML button to View the Hypertext Markup Language
(HTML) for the page.
List the id of each of the four hyperlink controls that are used for the
benefits:
A1, A2, A3, A4
__

__

3. Create a Page_Load event procedure for the header.ascx page.
4. Create a new instance of the BenefitsList.Benefits class and save it in a

variable that is named clBenefits.
5. Declare an array of BenefitsList.Benefits.BenefitInfo variables that is

named arBenefits.
6. Call the GetBenefitsList method of the class, which returns an array of

BenefitsList.Benefits.BenefitInfo variables.

Note

Note

 Module 5: Adding Code to a Microsoft ASP.NET Web Form 49

7. Set the HRef and InnerText properties of each hyperlink to the strPage
and strName properties of an item in the returned array.
Your code should look like the following:
Dim clBenefits As New BenefitsListVB.Benefits()
Dim arBenefits As BenefitsListVB.Benefits.BenefitInfo()

arBenefits = clBenefits.GetBenefitsList()
A1.HRef = arBenefits(0).strPage
A1.InnerText = arBenefits(0).strName
A2.HRef = arBenefits(1).strPage
A2.InnerText = arBenefits(1).strName
A3.HRef = arBenefits(2).strPage
A3.InnerText = arBenefits(2).strName
A4.HRef = arBenefits(3).strPage
A4.InnerText = arBenefits(3).strName

You can copy-and-paste the preceding code from the file install
folder\Labfiles\Lab05\VB\Solution\header.aspx.vb.

BenefitsListCS.Benefits clBenefits = new
 BenefitsListCS.Benefits();
BenefitsListCS.Benefits.BenefitInfo[] arBenefits;

arBenefits = clBenefits.GetBenefitsList();
A1.HRef = arBenefits[0].strPage;
A1.InnerText = arBenefits[0].strName;
A2.HRef = arBenefits[1].strPage;
A2.InnerText = arBenefits[1].strName;
A3.HRef = arBenefits[2].strPage;
A3.InnerText = arBenefits[2].strName;
A4.HRef = arBenefits[3].strPage;
A4.InnerText = arBenefits[3].strName;

You can copy-and-paste the preceding code from the file install
folder\Labfiles\Lab05\CS\Solution\header.aspx.cs.

8. Build the Benefits project.
Because header.ascx is a user control, you cannot view it directly in a
browser.

9. View the default.aspx page in a browser.
The page looks the same, but if you change the items that were returned by
the BenefitslistVB or BenefitsCS component, both the chkListBenefits
control on the default.aspx Web Form and the set of hyperlinks on the
header.ascx user control will reflect the change.

Visual Basic .NET

Tip

C#

Tip

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Understanding Tracing 2

Lesson: Remote Debugging 18

Review 21

Lab 6: Tracing in Microsoft ASP.NET Web
Applications 23

Module 6: Tracing in
Microsoft ASP.NET
Web Applications

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 6: Tracing in Microsoft ASP.NET Web Applications iii

Instructor Notes
This module provides students with information about how to catch runtime
errors by using the Microsoft® Visual Studio® .NET debugger, the Trace
object, and the Debug object. Students will also learn about remote debugging.

After completing this module, students will be able to:

 Use the Trace object to view runtime information about a Microsoft
ASP.NET Web application.

 Use the Debug object to view runtime information about an ASP.NET Web
application.

 Debug applications remotely.

To teach this module, you need the Microsoft PowerPoint® file 2310B_06.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Complete the demonstrations and lab.

Presentation:
45 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 6: Tracing in Microsoft ASP.NET Web Applications

How to Teach This Module
This section contains information that will help you to teach this module.

There is a teachable appendix on debugging at the end of the
workbook. The PowerPoint file is also provided. After understanding the
background of the students in your class, if you feel that students need to be
refreshed on general debugging concepts, you can use the material that is
provided in Appendix B, “Debugging with Microsoft Visual Studio .NET.”

Lesson: Understanding Tracing
Talk about Web.config with this slide, and be sure to mention that it is in
Extensible Markup Language (XML) format. It is important for you to establish
the importance of using camelCase.

Do not spend too much time on this topic; the demonstration should have
covered most of this information.

Do not spend too much time on this topic; the demonstration should have
covered most of this information.

It is advisable not to run this demonstration as an instructor-led practice because
it is too complicated. The demonstration is written in two parts, the first using
Visual Basic .NET, and the second using C#.

At the end of the demonstration, enable trace and have the students in the class
access the page; however, make note that only the instructor can see the trace.
Then, you can change local only to “false” and all of the students should see the
trace.

You can then set pageoutput = false with trace enabled and open a browser to
http://localhost/callclassVB/trace.axd or http://localhost/callclassCS/trace.axd
to see the trace output. This page allows students to use trace from a different
computer.

Important

Enabling Tracing

Viewing Trace Results

Using Application-Level
Trace

Demonstration: Tracing
Through a Web
Application

 Module 6: Tracing in Microsoft ASP.NET Web Applications v

Review
The review questions are mostly based on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that all of the students get the
benefit of knowing the right answers.

Lab 6: Tracing in Microsoft ASP.NET Web Applications
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

In Exercise 1, “Using Trace Statements,” students will discover that when you
display trace information on a page that is created in GridLayout, the trace
information overwrites the page information. To avoid overwriting the page
information, you can edit the page, change the pageLayout property to
FlowLayout, and then add a number of carriage returns to the page until the
cursor is positioned after the contents of the page.

 Module 6: Tracing in Microsoft ASP.NET Web Applications 1

Overview

Understanding Tracing

Remote Debugging

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is difficult, if not impossible, to catch every possible error in code when you
first develop the Web application. Errors can either be compile-time errors or
run-time errors. Compile-time errors are found by the Microsoft®

Visual Studio® .NET compiler. To find runtime errors, you can use the
Visual Studio .NET debugger, the Trace object, or the Debug object.

After completing this module, you will be able to:

 Use the Trace object to view runtime information about a Web application.
 Use the Debug object to view runtime information about a Web application.
 Debug applications remotely.

Introduction

Objectives

2 Module 6: Tracing in Microsoft ASP.NET Web Applications

Lesson: Understanding Tracing

Runtime Information

Enabling Tracing

Using the Trace Object

Viewing Trace Results

Using Application-Level Trace

Demonstration: Tracing Through a Web Application

Tracing into a Component

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Tracing means receiving informative messages about the execution of a Web
application at runtime. These informative messages from the running Web
application can help diagnose problems or analyze performance.
Visual Studio .NET offers two objects that can be used for gathering such
information during runtime: the Debug object and the Trace object.

After completing this lesson, you will be able to:

 Identify the types of information that can be collected during runtime.
 Use the Debug object to display runtime information in the

Visual Studio .NET debugger.
 Enable tracing on a Web Form.
 Use the Trace.Write and Trace.Warn methods.
 Use application-level tracing.
 Interpret trace results.
 Trace into a component.

Introduction

Lesson objectives

 Module 6: Tracing in Microsoft ASP.NET Web Applications 3

Runtime Information

During runtime, you can:

Output values of variables

Assert whether a condition is met

Trace through the execution path of the application

You can collect runtime information using:

The Trace object

The Debug object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can collect information while your Web application is running by using the
Debug and Trace objects.

If you want to refresh your debugging knowledge, see Appendix B,
“Debugging with Microsoft Visual Studio .NET” at the end of the workbook.

You can perform the following steps during runtime:

 Output values of variables.
 Determine whether certain conditions have been met. For example, there is

a Trace.WriteIf method that only outputs a message if the condition is met.
 Follow the execution path of the application. You can follow the

programming logic of a Web Form while it is executing to ensure that
processing is occurring properly.

There are two objects that you use for displaying debugging information during
runtime. Those objects are:

 The Trace object. The Trace object in Microsoft ASP.NET enables you to
display information on a Web page or save it in memory.
In traditional ASP pages, you use Response.Write statements to track a
Web application’s progress. The advantage of using the Trace object over
using Response.Write statements, or outputting debug information to labels
on a Web Form, is that all of the tracing can be enabled or disabled by
changing a single setting in the Web.config file. Therefore, you do not have
to revise all of your code; you just remove the trace statements on a
production server.

Introduction

Note

Types of information

Runtime objects

4 Module 6: Tracing in Microsoft ASP.NET Web Applications

 The Debug object. You can also use the Debug object to output debugging
information. Statements that use the Debug object will only run when they
are compiled in debug mode and when the Web application is run in the
debugger. If you create a release build, the statements will not run.
With the Debug object, messages are displayed in the Output window of the
debugger.
When you use the Debug object to print debugging information and check
your logic, you can make your code more stable without impacting the final
product's performance or code size.

To use the Debug object, you need to import the System.Diagnostics
namespace.

Note

 Module 6: Tracing in Microsoft ASP.NET Web Applications 5

Enabling Tracing

Page-level tracing displays trace statements only on the configured
page
Enabling page-level tracing

Application-level tracing displays trace information for all pages in a
Web application
Enabling application-level tracing in the Web.config file

Practice: Check default settings

<trace enabled="true" pageOutput="true"
localOnly="true"/>

<trace enabled="true" pageOutput="true"
localOnly="true"/>

<%@ Page Language="vb" Trace="true" %><%@ Page Language="vb" Trace="true" %>

<%@ Page Language="c#" Trace="true" %><%@ Page Language="c#" Trace="true" %>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you use tracing, you can write trace statements directly to the page or to a
storage object.

When you use page-level tracing, all trace messages are appended to the end of
the Web page, which allows you to quickly view trace messages at the same
time that you are viewing the Web page.

To enable page-level tracing for a page, you set the Trace attribute of the
@ Page directive to true, as shown in the following code:

<%@ Page Language="vb" Trace="true" %>
-or-
<%@ Page Language="c#" Trace="true" %>

After tracing is enabled, all Trace.Write statements in your code will appear on
the page. When you are finished using trace, you can disable trace rather than
removing all Trace.Write statements from your code.

When you enable application-level tracing, you enable tracing for all of the
pages in the Web application. Application-level tracing also allows you more
flexibility in writing trace statements. For example, with page-level tracing, all
trace messages are appended to their page, whereas with application-level
tracing, you can write trace messages to the page or to memory. Trace
statements that are saved to memory are accessible by the application-level
trace viewer, trace.axd.

Introduction

Page-level tracing

Application-level tracing

6 Module 6: Tracing in Microsoft ASP.NET Web Applications

To enable application-level tracing, you need to configure the Web.config file
for the Web application, as shown in the following code:

<configuration>
 <system.web>
 <trace enabled="true"/>
 </system.web>
</configuration>

To configure trace messages to be written to the page, you use the pageOutput
attribute of the trace element. A setting of true writes trace statements to each
page. A setting of false writes trace statements to memory, where they are then
accessible by the application-level trace viewer, trace.axd, as shown in the
following code:

<trace enabled="true" pageOutput="true|false"/>

You can also set the localOnly attribute of the trace element to ensure that
trace messages are only visible on the local computer, as shown in the
following code:

<trace enabled="true" pageOutput="true" localOnly="true"/>

In Visual Studio .NET, open the benefits project. From Solution Explorer,
double-click the Web.config file. What are the default settings for application-
level tracing?

Answer: By default, application-level tracing is disabled.
__

__

Practice (optional)

 Module 6: Tracing in Microsoft ASP.NET Web Applications 7

Using the Trace Object

Inserting trace messages

Conditional execution with Trace.IsEnabled

Dynamically change state of trace

Trace.Write ("category", "message")
Trace.Warn ("category", "message")

Trace.Write ("category", "message")
Trace.Warn ("category", "message")

If Trace.IsEnabled Then
strMsg = "Tracing is enabled!"
Trace.Write("myTrace", strMsg)

End If

If Trace.IsEnabled Then
strMsg = "Tracing is enabled!"
Trace.Write("myTrace", strMsg)

End If

Trace.IsEnabled = FalseTrace.IsEnabled = False

if (Trace.IsEnabled)
{
strMsg = "Tracing is enabled!";
Trace.Write("myTrace", strMsg);

}

if (Trace.IsEnabled)
{
strMsg = "Tracing is enabled!";
Trace.Write("myTrace", strMsg);

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To write trace messages on a page (or in memory), you use the Trace.Write
and Trace.Warn methods. You can use the IsEnabled property of the Trace
object to dynamically change the state of tracing in a page.

You use the Write and Warn methods of the Trace object to output trace
messages. Trace.Write and Trace.Warn work exactly the same way, except
that Warn writes trace messages in the color red.

When using the Write and Warn methods, you provide a message to be
written, along with a corresponding category for the message, as shown in the
following code:

Trace.Write ("category", "message")
Trace.Warn ("category", "message")

Trace.Write ("category", "message");
Trace.Warn ("category", "message");

The category parameter is used to classify and group trace messages. For
example, you can set the sort order of trace messages to display messages of the
same category together.

The following code writes two trace messages to a page, with the second trace
message appearing in red, because it is using the Warn method:

Trace.Write("Custom Trace", "Beginning User Code...")
Trace.Warn("Custom Trace", "Array count is null!")

Trace.Write("Custom Trace", "Beginning User Code...");
Trace.Warn("Custom Trace", "Array count is null!");

Introduction

Trace.Write and
Trace.Warn

Visual Basic .NET

C#

Note

Example using Write
and Warn

Visual Basic .NET

C#

8 Module 6: Tracing in Microsoft ASP.NET Web Applications

The resulting trace messages appear as shown in the following illustration.

There are situations when you may want to generate trace messages only when
tracing is enabled for Web page or Web application. For these situations, the
Trace object has a Boolean property named IsEnabled that allows you to call
the Write and Warn methods only when tracing is enabled, as shown in the
following code:

If Trace.IsEnabled Then
 strMsg = "Tracing is enabled!"
 Trace.Write("myTrace", strMsg)
End If

if (Trace.IsEnabled)
{
 strMsg = "Tracing is enabled!";
 Trace.Write("myTrace", strMsg);
}

You can also use the IsEnabled property to dynamically change the state of
tracing for a page, as show in the following code:

Trace.IsEnabled = False

Trace.IsEnabled = false;

Trace.IsEnabled

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 6: Tracing in Microsoft ASP.NET Web Applications 9

Viewing Trace Results

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Page-level trace results are appended to the bottom of the .aspx page for which
they are enabled. An abundant amount of information is displayed in the trace
results, along with the custom messages that you created with the Trace.Write
and Trace.Warn statements.

There are several categories of information that are displayed in the trace
results. The following table lists each category and the description of the type of
information it contains.

Category Description

Request Details Information about the request: session identification (ID),

time of request, type of request, and request status.

Trace Information Output from standard and custom trace statements. The
“From First(s)” column contains the total time since
execution until the trace is executed, and the “From Last(s)”
column displays the increment duration.

Control Tree List of all of the items that are on the page, along with the
size of each item.

Cookies Collection List of cookies that are being used.

Headers Collection List of items in the Hypertext Transfer Protocol (HTTP)
header.

Form Collection List of the controls, and their values, on the form that is being
posted.

Server Variables List of all the server variables and their values.

Introduction

Trace categories

10 Module 6: Tracing in Microsoft ASP.NET Web Applications

Using Application-Level Trace

Application-level trace statements are displayed on
individual pages

Set pageOutput=false in the Web.config file and trace
results are viewable by trace viewer
http://server/project/trace.axdhttp://server/project/trace.axd

PagePagePage

Trace=TrueTrace=True

Trace=FalseTrace=False

Trace not setTrace not set

ApplicationApplicationApplication
Trace=True or
Trace=False
Trace=True or
Trace=False
Trace=True or
Trace=False
Trace=True or
Trace=False

Trace=TrueTrace=True

ResultResultResult

Trace results are displayed on pageTrace results are displayed on page

Trace results are not displayedTrace results are not displayed

Trace results are displayed on pageTrace results are displayed on page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For a Web application, you enable application-level tracing in the Web.config
file. After application-level tracing is enabled, you can view trace statements on
individual pages or in the trace viewer.

When you enable application-level tracing, the page-level trace settings remain
in effect. For example, if you disable page-level tracing for a page, and that
page is part of a Web application in which application-level tracing is enabled,
tracing is disabled for that specific page. The following table shows possible
combinations of enabling and disabling tracing and the corresponding result for
that page.

Page setting Application setting Result for page

Trace=True Trace=True or

Trace=False

Trace results are displayed
on the page.

Trace=False Trace=True or

Trace=False

Trace results are not
displayed on the page.

Trace not set Trace=True Trace results are displayed
on the page.

Introduction

Trace settings

 Module 6: Tracing in Microsoft ASP.NET Web Applications 11

You can display application-level trace messages in two places: on the page
itself, or in the trace viewer. To determine how trace results are displayed, you
set the pageOutput attribute of the trace element in the Web.config file. While
a setting of true displays the results on the page, a setting of false keeps the
trace messages in memory. The following code shows an example of disabling
output to the page:

<configuration>
 <system.web>
 <trace enabled="true" pageOutput="false"/>
 </system.web>
</configuration>

If page output is disabled for application-level tracing, the trace messages are
stored in memory. The trace messages can then be viewed by using the trace
viewer, which is a Web page that is included with each Web application. You
use the trace viewer by viewing the trace.axd page in a browser:

http://servername/projectname/trace.axd

For security reasons, you may want to disable the trace viewer. You can disable
the trace viewer for a Web server by editing the machine.config file. The
machine.config file is found in the following directory:

system folder\Microsoft.NET\Framework\version number\Config\

Within the machine.config file, the reference to trace.axd (the trace viewer) is in
the httpHandlers section:

<httpHandlers>
 <add verb="*" path="trace.axd"
 type="System.Web.Handlers.TraceHandler"/>
</httpHandlers>

To disable the trace viewer, set the path attribute to an empty string (path="").

The localOnly attribute that is used for tracing in ASP.NET pages also
applies to the trace.axd page. If localOnly is set to true, the trace.axd page can
only be viewed from the local computer.

Displaying trace
messages

Tip

12 Module 6: Tracing in Microsoft ASP.NET Web Applications

Demonstration: Tracing Through a Web Application

Page-level tracing

Application-level tracing

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to enable page-level and application-
level tracing and to add trace statements to a Web Form.

 To run the demonstration using Microsoft Visual Basic® .NET

1. In Visual Studio .NET, open the CallClassVB project in the 2310Demos
solution.

2. In the CallClassVB project, turn tracing on in the CallClassLibraries.aspx
page, by including the Trace attribute in the @ Page directive, as shown in
the following code:
<%@ Page Language="vb" Trace="true"
 Codebehind="CallClassLibraries.aspx.vb"
 AutoEventWireup="false"
 Inherits="CallClassVB.CallClassLibraries" %>

Trace information shows up best on pages that are built with
flowLayout. If a page is built with gridLayout, the trace messages show up
behind the page content.

3. Add two custom trace messages to end of the cmdUseVb_Click event
procedure in the CallClassLibraries.aspx.vb code behind page, as shown in
the following code:
Trace.Write("UseVB", "price = " & CStr(TextBox1.Text))
Trace.Warn("UseVB", "shipping cost = " & CStr(sngShipping))

4. Build and browse the CallClassLibraries.aspx page.
Trace information is shown on the page.

5. Enter a price, and then click VB .NET Shipping Cost.
Point out the custom trace messages.

Note

 Module 6: Tracing in Microsoft ASP.NET Web Applications 13

6. Disable tracing for the page, and then view the page again.

You do not have to rebuild the project because you did not change
any code.

No trace messages are shown on the page.
7. Turn tracing on at the application level by editing the trace tag in the

Web.config file. Set the pageOutput attribute to true, as shown in the
following code:
<trace enabled="true" requestLimit="10" pageOutput="true"
 traceMode="SortByTime" localOnly="true" />

Notice that the localOnly attribute is set to true. This allows only local
browsers to see trace information.

8. Refresh the view of the CallClassLibraries.aspx page and note that trace
messages are not displayed because trace is explicitly turned off for this
page.

9. Build and browse the VBForm.aspx page. These pages do not have tracing
turned on, but the trace results show anyway because application-level
tracing is turned on.

10. Have a student browse to the VBForm.aspx page on the instructor computer.
They should not see the trace output because the localOnly attribute is set to
true.

11. Add the following trace statement to the CSharpForm.aspx page in the
button1_onclick event procedure:
Trace.Warn ("C#", "Value to double " + Textbox1.Text)

12. Build and browse the CSharpForm.aspx page. This page also does not have
tracing turned on, but the trace results, including the custom message you
just added, are shown anyway.

13. Change the trace tag in the Web.config to turn off pageOutput:
<trace enabled="true" pageOutput="false"/>

14. View the VBForm.aspx page in the browser. The trace output is not
displayed on the page; instead, it is written to memory.

15. View the http://localhost/CallClassVB/trace.axd page to see the trace
statements that were saved to memory.

Note

14 Module 6: Tracing in Microsoft ASP.NET Web Applications

 To run the demonstration using C#

1. In Visual Studio .NET, open the CallClassCS project in the 2310Demos
solution.

2. In the CallClassCS project, turn tracing on in the CallClassLibraries.aspx
page, by including the Trace attribute in the @ Page directive, as shown in
the following code:
<%@ Page Language="c#" Trace="true"
 Codebehind="CallClassLibraries.aspx.cs"
 AutoEventWireup="false"
 Inherits="CallClassCS.CallClassLibraries" %>

Trace information shows up best on pages that are built with
flowLayout. If a page is built with gridLayout, the trace messages show up
behind the page content.

3. Add two custom trace messages to end of the cmdUseCSharp_Click event
procedure in the CallClassLibraries.aspx page, as shown in the following
code:
Trace.Write("UseC#", "price = " +
 Convert.ToString(TextBox1.Text));
Trace.Warn("UseC#", "shipping cost = " +
 Convert.ToString(sngShipping));

4. Build and browse the CallClassLibraries.aspx page.
Trace information is shown on the page.

5. Enter a price, and then click C# Shipping Cost.
Point out the custom trace messages.

6. Disable tracing for the page, and then view the page again.

You do not have to rebuild the project because you did not change
any code.

No trace messages are shown on the page.
7. Turn tracing on at the application level by editing the trace tag in the

Web.config file. Set the pageOutput attribute to true, as shown in the
following code:
<trace enabled="true" requestLimit="10" pageOutput="true"
 traceMode="SortByTime" localOnly="true" />

Notice that the localOnly attribute is set to true. This allows only local
browsers to see trace information.

8. Refresh the view of the CallClassLibraries.aspx page and note that trace
messages is not displayed because trace is explicitly turned off for this page.

9. Build and browse the VBForm.aspx page. These pages do not have tracing
turned on, but the trace results are shown because application-level tracing
is turned on.

Note

Note

 Module 6: Tracing in Microsoft ASP.NET Web Applications 15

10. Have a student browse to the VBForm.aspx page on the instructor computer.
They should not see the trace output because the localOnly attribute is set to
true.

11. Add the following trace statement to the VBForm.aspx page in the
button1_onclick event procedure:
Trace.Warn ("VB", "Value to double " + Textbox1.Text);

12. Build and browse the VBForm.aspx page. This page also does not have
tracing turned on, but the trace results, including the custom message you
just added, show anyway.

13. Change the trace tag in the Web.config to turn off pageOutput:
<trace enabled="true" pageOutput="false"/>

14. View the VBForm.aspx page in the browser. The trace output is not
displayed on the page; instead, it is written to memory.

15. View the http://localhost/CallClassCS/trace.axd page to see the trace
statements that were saved to memory.

16 Module 6: Tracing in Microsoft ASP.NET Web Applications

Tracing into a Component

Import the System.Web Library

Enable Tracing

Call Trace methods

HttpContext.Current.Trace.IsEnabled = TrueHttpContext.Current.Trace.IsEnabled = True

Imports System.WebImports System.Web

HttpContext.Current.Trace.Write _
("component", "this is my trace statement")

HttpContext.Current.Trace.Write _
("component", "this is my trace statement")

using System.Web;using System.Web;

HttpContext.Current.Trace.IsEnabled = true;HttpContext.Current.Trace.IsEnabled = true;

HttpContext.Current.Trace.Write
("component", "this is my trace statement");

HttpContext.Current.Trace.Write
("component", "this is my trace statement");

*****************************ILLEGAL FOR NON-TRAINER USE******************************

If you have a component that is called from a Web Form, you can add trace
statements to that component, which then allows you to generate trace messages
for both the Web Form and the component.

To use trace in a component, you must import the System.Web namespace,
enable tracing in the component, and then add the trace messages by using the
Write and Warn methods.

 To add trace to a component

1. At the top of the component, import the System.Web namespace:
Imports System.Web

using System.Web;

2. In the constructor of the class to which you want to add trace statements,
enable tracing with the following statement:
HttpContext.Current.Trace.IsEnabled = True

HttpContext.Current.Trace.IsEnabled = true;

Because trace is attached to a page, you need to determine which page is
running the component. In the preceding code, this is accomplished by using
HttpContext.Current, which gets the Context object for the current
request.

Introduction

Tracing in a component

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 6: Tracing in Microsoft ASP.NET Web Applications 17

3. In the method in which you want to generate trace messages, use
Trace.Write or Trace.Warn:
HttpContext.Current.Trace.Write _
 ("component", "this is my trace statement")

HttpContext.Current.Trace.Write
 ("component", "this is my trace statement");

When trace is enabled in a component, trace results are written to any page that
accesses the component, even if trace is disabled for that page.

The following table lists results of enabling or disabling trace on a page or in a
component.

Component setting Page setting Result

Trace is enabled in the
constructor

Trace disabled Trace is enabled when calling
all of the component methods.

Trace is enabled in a
method

Trace disabled Trace is enabled when calling
only that one method.

Trace is disabled in the
constructor

Trace enabled Trace is disabled when calling
the component methods.

Trace is not set in the
component

Trace enabled Trace is enabled when calling
the component methods.

Trace messages in a component will appear in any trace-enabled
page that calls the component if trace is not intentionally disabled in the
component.

Visual Basic .NET

C#

Important

18 Module 6: Tracing in Microsoft ASP.NET Web Applications

Lesson: Remote Debugging

How to Perform Remote Debugging

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Debugging is generally used to catch errors during the creation of a Web
application. Most debugging occurs locally; that is, you run the
Visual Studio .NET debugger on the computer that hosts the Web application.
Remote debugging enables you to debug a Web application running at a remote
location. In this lesson, you will learn how to perform remote debugging.

After completing this lesson, you will be able to debug applications remotely.

Introduction

Lesson objectives

 Module 6: Tracing in Microsoft ASP.NET Web Applications 19

How to Perform Remote Debugging

Remote debugging:
Debug Web applications remotely
Simplifies team development
Simplifies Web site management

Requirements for remote debugging:
Requires Visual Studio .NET or remote components on the
server
Visual Studio .NET must be installed on the client
Requires administrative access to the server
Requires access for the user who is performing debugging

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Remote debugging is the process of debugging Web applications that are
running on a separate server. Remote debugging enables you to debug Web
applications on numerous disparate servers from a single workstation.

For remote debugging to work, the following conditions must be met:

 Either Visual Studio .NET or the remote components of Visual Studio .NET
must be installed on the server that hosts the Web application you want to
debug.

 Visual Studio .NET must be installed on the client computer, which is the
workstation from which debugging will occur.

 You must have administrative access to the server that hosts the Web
application.

 The remote server must grant access to the user performing the debugging.
To grant access to a user, you add the user to the Debugger Users group on
the server. This permission is required even if the user is an administrator on
the remote server.

Introduction

Requirements for
remote debugging

20 Module 6: Tracing in Microsoft ASP.NET Web Applications

 To debug remotely

1. On the client computer, start Visual Studio .NET.
2. On the File menu, click Open, and then click Project From Web.
3. In the Open Project From Web dialog box, type the Uniform Resource

Locator (URL) of the server from which you want to open the project, and
then click OK.

4. In the Open Project dialog box, navigate to the project on the remote server
and click Open.

5. After you open the project, you can set breakpoints and run the Web
application in debug mode, exactly as you would run a local application.

For more information about remote debugging, see “Debugging Web
Applications on a Remote Server” and “Setting Up Remote Debugging” in the
Microsoft .NET Framework software development kit (SDK).

Remote debugging
procedure

Note

 Module 6: Tracing in Microsoft ASP.NET Web Applications 21

Review

Understanding Tracing

Remote Debugging

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the difference between using the Trace object and using the Debug
object?
Messages written to the Debug object will only be displayed when
running the Web application in the debugger. Messages written to the
Trace object will be displayed to the Web page as long as trace is
enabled.

2. What is the difference between page-level tracing and application-level
tracing?
When you turn on page-level tracing for one page, trace information
will only be displayed for that page. When you enable application-level
tracing, trace information will be displayed on all pages in the Web
application.

3. How do you enable application-level tracing?
Set the enabled attribute of the trace element to true in the Web.config
file:
<trace enabled="true"/>

22 Module 6: Tracing in Microsoft ASP.NET Web Applications

4. How do you configure trace so that trace information is visible only to local
users of your Web site?
Set the localOnly attribute of the trace element to true in the
Web.config file:
<trace enabled="true" localOnly="true"/>

5. Read the following scenarios and determine whether trace messages will be
displayed or not.
a. Trace turned on in page1.aspx, but off in Web.config. View page1.aspx.

Trace statements are displayed.

b. Trace turned off in page1.aspx, but on in Web.config. View page1.aspx.

Trace statements are not displayed.

c. Trace turned on in page1.aspx, but off in Web.config. View page2.aspx.

Trace statements are not displayed.

d. Trace turned on in page1.aspx, and on in Web.config. View page2.aspx.

Trace statements are displayed.

e. Trace turned off in page1.aspx, but on in component A. View

page1.aspx and click a button that calls component A.
Trace statements from component A are displayed, but page
Trace.write statements are not displayed.

f. Trace turned on in page1.aspx, but off in component A. View

page1.aspx and click a button that calls component A.
Trace statements from page are displayed, but trace statements
from component are not displayed.

g. Trace turned on in page1.aspx, and not explicitly set in component A.

View page1.aspx and click a button that calls component A.
Trace statements from page and component are displayed.

 Module 6: Tracing in Microsoft ASP.NET Web Applications 23

Lab 6: Tracing in Microsoft ASP.NET Web Applications

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Add trace statements to a Microsoft® ASP.NET Web Form.
 Turn Trace on and off at the page and application level.
 Trace into a component.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to build a class library.
 Knowledge of how to add a reference to a project.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In this lab, you will trace through the execution of the Benefits Web
application.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

24 Module 6: Tracing in Microsoft ASP.NET Web Applications

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. If you have not created these projects,
complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application, and then set

the Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http://localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the project
name is important. Because you may be using some pre-built Web Forms in this
and other labs in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET, you must verify that you have
capitalized the Benefits project as shown. Two versions of the project can be
created; BenefitsVB would be a Visual Basic .NET solution and BenefitsCS
would be a Visual C# solution.

Important

Important

Caution

 Module 6: Tracing in Microsoft ASP.NET Web Applications 25

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
a. Browse to the install folder\Labfiles\Lab06\VB\Starter\BenefitsVB

folder for the Visual Basic .NET files.
b. In the Files of type box in the Add Existing Item – BenefitsVB dialog

box, click All Files.
a. Browse to the install folder\Labfiles\Lab06\CS\Starter\BenefitsCS folder

for the Visual C# files.
b. In the Files of type box in the Add Existing Item – BenefitsCS dialog

box, click All Files.
3. Select all of the files in this folder, and then click Open.
4. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB or BenefitsListCS, and then add it to
the 2310LabApplication solution.
a. On the File menu, point to New, and then click Project:

i. In the New Project dialog box, in the Project Types list, click
Visual Basic Projects.

ii. In the Templates list, click Class Library, and then set the Name to
BenefitsListVB.

iii. Click Add to Solution, and then click OK.

i. In the New Project dialog box, in the Project Types list, click
Visual C# Projects.

ii. In the Templates list, click Class Library, and then set the Name to
BenefitsListCS.

iii. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsListVB or
BenefitsListCS project as shown.

In the Microsoft
Visual Basic .NET
project

In the Visual C# project

Important

In the Visual Basic .NET
project

In the Visual C# project

Caution

26 Module 6: Tracing in Microsoft ASP.NET Web Applications

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Copy the files from Labfiles folder:

a. Browse to the install folder\Labfiles\Lab06\VB\Starter\BenefitsListVB
folder.

b. In the Files of type box of the Add Existing Item – BenefitsListVB
dialog box, click All Files (*.*).

a. Browse to the install folder\Labfiles\Lab06\CS\Starter\BenefitsListCS
folder.

b. In the Files of type box of the Add Existing Item – BenefitsListCS
dialog box, click All Files (*.*).

4. Select all of the files in this folder, and then click Open.
5. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the Benefits project in Solution Explorer and then click Add

Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or the BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or the

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

In the Visual Basic .NET
project

In the Visual C# project

 Module 6: Tracing in Microsoft ASP.NET Web Applications 27

Exercise 1
Using Trace Statements

In this exercise, you will enable and disable tracing and add custom messages to
the trace output.

 Enable tracing on a page

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In the BenefitsVB or the BenefitsCS project, open the default.aspx file.
3. In the default.aspx page, switch to Hypertext Markup Language (HTML)

view.
4. Modify the existing @ Page directive by adding a Trace attribute and

setting its value to true.
The @ Page directive should look like the following code, with the addition
in bold font:
<%@ Page Language="vb" AutoEventWireup="false"
 Codebehind="default.aspx.vb"
 Inherits="BenefitsVB._default" Trace="true" %>

<%@ Page Language="c#" AutoEventWireup="false"
 Codebehind="default.aspx.cs"
 Inherits="BenefitsCS._default" Trace="true" %>

5. Save default.aspx.
You do not need to build the page because you did not change any of the
code. Changes to the HTML only require you to save the page.

6. View the default.aspx page in the browser.
The trace information appears at the bottom of the page.

 Add custom trace messages

1. Go to the beginning of the Page_Load event procedure for the default.aspx
page, which is located in the default.aspx.vb or default.aspx.cs code-behind
page. Add a trace message that displays the message Beginning of
Page_Load in a category that is named 2310.
Your code should look like the following:
Trace.Warn("2310", "Beginning of Page_Load")

Trace.Warn("2310", "Beginning of Page_Load");

2. In the Page_Load event procedure, immediately below the first trace
message, add another trace message that displays the value of the
Page.IsPostBack property.
Your code should look like the following:
Trace.Warn("2310", "IsPostBack=" & Page.IsPostBack)

Trace.Warn("2310", "IsPostBack=" + Page.IsPostBack);

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

28 Module 6: Tracing in Microsoft ASP.NET Web Applications

3. Build and browse the default.aspx page.
You should see your custom messages in the Trace Information section, as
shown in the following illustration.

 Use application-level tracing

1. Open the life.aspx.vb or life.aspx.cs file in the BenefitsVB or the
BenefitsCS project.

2. In the Page_Load event procedure, add a trace statement that you will
easily recognize in the trace output. Using 2310 for the category will help
you to find the trace statement.

3. Build and browse the life.aspx page.
Is trace information displayed on the page? Why or why not.
No, because Trace is not enabled on the page.
__

__

4. Open the Web.config file for the Benefits project and locate the trace
element.

 Module 6: Tracing in Microsoft ASP.NET Web Applications 29

5. List and define below the attributes that are set for the trace element. Use
the Visual Studio .NET documentation to discover what the attributes are
for.
<trace enabled="false" requestLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />

enabled: enables or disables application-level tracing
requestLimit: the number of trace requests that will be stored on the
server. If the limit is reached, trace is automatically disabled.
pageOutput: whether to display trace output on the page or not
traceMode: If set to SortByTime, then the trace information is
displayed in the order that it is processed. If it is set to SortByCategory,
then the trace information is displayed alphabetically by user-defined
category
localOnly: whether to allow trace messages to be seen by external users
or not
__

__

6. In the Web.config file, enable application-level tracing by setting the
enabled attribute of the trace element to true.

7. View the life.aspx page in the browser again.
Is trace information displayed on the page? Why or why not.
No, because although application-level tracing is turned on, the
pageOutput attribute is set to false.
__

__

8. In the Web.config file, set the pageOutput attribute of the trace element to
true.

9. View the life.aspx page in the browser again.
Is trace information displayed on the page? Why or why not.
Yes, because application-level tracing is turned on and the pageOutput
attribute is set to true.
__

__

Why is the information displayed as it is?
The trace information is displayed under the page information because
the page layout is set to GridLayout.
__

__

30 Module 6: Tracing in Microsoft ASP.NET Web Applications

Exercise 2
Tracing into a Component

In this exercise, you will add Trace statements to the BenefitsList component
that is called from the default.aspx page.

 Enable tracing in the BenefitsList component

1. In the BenefitsList project, add a reference to the System.Web.dll by
completing the following steps:
a. In the BenefitsListVB or the BenefitsListCS project, right-click the

References folder and then click Add Reference.
b. In the Add Reference dialog box, on the .NET tab, in the list of

components, double-click System.Web.dll, and then click OK.
2. Open Class1 file:

In the BenefitsListVB project, open the Class1.vb file.

In the BenefitsListCS project, open the Class1.cs file.
3. In the GetBenefitsList method, enable tracing by setting the

HttpContext.Current.Trace.IsEnabled property to True.
Your code should look like the following:
System.Web.HttpContext.Current.Trace.IsEnabled = True

System.Web.HttpContext.Current.Trace.IsEnabled = true;

You can also put the Trace.IsEnabled command in the constructor of the
class if you need to use tracing in the whole component.

 Add custom trace messages

1. Add a custom trace message to the GetBenefitsList method that displays
the message “Beginning of GetBenefitsList” in the category named
BenefitsList component.
Your code should look like the following:
System.Web.HttpContext.Current.Trace.Warn _
 ("BenefitsList component", _
 "Beginning of GetBenefitsList")

System.Web.HttpContext.Current.Trace.Warn
 ("BenefitsList component",
 "Beginning of GetBenefitsList");

In the Visual Basic .NET
project

In the Visual C# project

Visual Basic .NET

C#

Note

Visual Basic .NET

C#

 Module 6: Tracing in Microsoft ASP.NET Web Applications 31

2. Add another trace message at the end of the procedure (but before the
Return command) that displays the message “End of GetBenefitsList”.
Your code should look like the following:
System.Web.HttpContext.Current.Trace.Warn _
 ("BenefitsList component", _
 "End of GetBenefitsList")

System.Web.HttpContext.Current.Trace.Warn
 ("BenefitsList component",
 "End of GetBenefitsList");

 Save and test

1. Save your changes to the Class1 file, and the build the project.
2. View the default.aspx page in Microsoft Internet Explorer.

You should see your custom messages from the page and from the
component in the Trace Information section, as shown in the following
illustration.

Why is the GetBenefitsList method called twice?
The GetBenefitsList method is used to populate both the list box and
the links in the header component.
__

__

Visual Basic .NET

C#

32 Module 6: Tracing in Microsoft ASP.NET Web Applications

3. Open the header.ascx.vb or header.ascx.cs page.
4. In the Page_Load event procedure, add two Trace.Warn messages, both

with a Category parameter of Header:
a. Place one message at the beginning of the event procedure, and set its

message text to Start Header.
b. Place the second message at the end of the Page_Load event procedure,

and set its message text to End Header.
Your code should look like the following:
System.Web.HttpContext.Current.Trace.Warn _
 ("Header", "Start Header")
System.Web.HttpContext.Current.Trace.Warn _
 ("Header", "End Header")

System.Web.HttpContext.Current.Trace.Warn
 ("Header", "Start Header");
System.Web.HttpContext.Current.Trace.Warn
 ("Header", "End Header");

5. Build and browse default.aspx.
The trace information now includes two Header trace messages, one before
and one after the second set of BenefitsList Component trace messages.

 Disable tracing

1. Disable application-level tracing in Web.config.
2. Disable page-level tracing in the default.aspx page.
3. Disable Trace.Warn messages in the header.aspx Page_Load event.
4. View the default.aspx page in the browser again.

Is trace information displayed on the page? Why or why not?
Yes, because tracing is explicitly turned on in the method of the
component.
__

__

If trace information is displayed on the page, which custom trace messages
are displayed? Why?
Just the trace messages from the component, because trace is turned off
in the page.
__

__

Visual Basic .NET

C#

 Module 6: Tracing in Microsoft ASP.NET Web Applications 33

5. Remove or comment out the trace messages that you added in this lab,
according to the following table.
Page Code to remove

default.aspx.vb or default.aspx.cs Two lines in the Page_Load event

procedure.

life.aspx.vb or life.aspx.cs One line in the Page_Load event procedure.

header.ascx.vb or header.ascx.cs One line at the start of the Page_load event
procedure, and one line at the end.

Class1.vb or Class1.cs Three lines in the GetBenefitsList method.

You are removing these lines of code so that the pages do not look cluttered
in future labs.

6. Rebuild both the Benefits (BenefitsVB or BenefitsCS) project and the
BenefitsList (BenefitsListVB or BenefitsListCS) project.

7. Browse default.aspx to verify that trace messages are no longer displayed on
the page.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Overview of User Input Validation 2

Lesson: Using Validation Controls 8

Lesson: Page Validation 28

Review 34

Lab 7: Validating User Input 36

Module 7: Validating
User Input

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 7: Validating User Input iii

Instructor Notes
In this module, students will learn about the input validation controls that are
available in Microsoft® ASP.NET. They will also learn how to effectively apply
these controls to an ASP.NET Web Form by using Microsoft
Visual Studio® .NET.

After completing this module, students will be able to:

 Identify when input validation is appropriate in Web Forms, including being
able to:

• Explain the concept of validation.

• Explain the difference between server-side and client-side validation.

• Match the appropriate types of Microsoft ASP.NET validation controls
to the given input requirements.

 Use input validation controls to verify user input on a Web Form, including
being able to:

• Add a validation control to a Web Form and associate the validation
control with an input control.

• Position validation controls on a Web page to support the correct use of
the associated input control.

• Use the RequiredInputValidator, CompareValidator, and
RangeValidator validation controls to validate user input.

• Use the RegularExpressionValidator control to validate user input.

• Use the CustomValidator control to validate user input.

• Associate multiple input validation controls to a single input control.
 Verify that all validation controls on a page are valid, including being able

to:

• Use the Page.IsValid property to determine if all input validation
controls on a page are valid.

• Use the ValidationSummary control to display a summary of error
messages on a page.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_07.ppt
 Code sample file 2310B_07_code.htm

Presentation:
60 minutes

Lab:
15 minutes

Required materials

iv Module 7: Validating User Input

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the instructor-led demonstrations.
 Review the code example page.

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Preparation tasks

 Module 7: Validating User Input v

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Overview of User Input Validation
Do not spend more than the allotted time on this information. Each control will
be reviewed in context in later lessons in this module.

Do not spend more than the allotted time on this information. Each topic will be
reviewed in context in later topics in this module.

To avoid spoofing, the validation is always repeated on the server side.

Alternative delivery. Have the class tell you why you would repeat client-side
validation on the server side.

Do not spend more than the allotted time on this information. Each control will
be reviewed in context in the next lesson.

Lesson: Using Validation Controls
The main point is that validation controls share a common object model, so they
all have the same properties.

Do not spend more than the allotted time on this information. Using the
RegularExpressionValidator control is the focus of this topic; the expressions
themselves are additional information.

Note that not selecting a control to validate is a common beginner's error.

Show the client-side code to compare the validation code on the .aspx with the
Microsoft JScript® on the .htm page.

Unlike the other validation controls, when you use the CustomValidator
control you have to write the client-side code.

This is a complicated demonstration that will not work well as an instructor-led
practice.

Lesson: Page Validation
Repeat the earlier comments about the Validation control Text property that is
displayed next to the input control, and the Errormessage property that is
displayed in the ValidationSummary control.

What Is Input
Validation?

Client-Side and Server-
Side Validation

ASP.NET Validation
Controls

Adding Validation
Controls to a Web Form

Using the
RegularExpression
Validator Control

Demonstration: Using
Validation Controls

Using the
CustomValidator Control

Demonstration: Using
the CustomValidator
Control

Using the
ValidationSummary
Control

vi Module 7: Validating User Input

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 7: Validating User Input
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions.

Use the Lab Map to highlight what parts of the solution the students will be
building in this lab.

 Module 7: Validating User Input 1

Overview

Overview of User Input Validation

Using Validation Controls

Page Validation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create an input control, such as a TextBox control, you have
expectations for the type of input that the user will enter into that control.
Incorrect input will, at a minimum, delay the user, and may even break your
Web application. To verify that the input meets your expectations, you must
check the input against the value, range, or format that you expect to receive
from the user. To create this check, you link at least one input validation control
to the input control and then test the users input against your expectations.

In this module, you will learn about the input validation controls that are
available in Microsoft® ASP.NET. You will also learn how to effectively apply
these controls to an ASP.NET Web Form by using Microsoft Visual Studio®
.NET.

After completing this module, you will be able to:

 Identify when input validation is appropriate in Web Forms.
 Use input validation controls to verify user input on a Web Form.
 Verify that all validation controls on a page are valid.

Introduction

Objectives

2 Module 7: Validating User Input

Lesson: Overview of User Input Validation

What Is Input Validation?

Client-Side and Server-Side Validation

ASP.NET Validation Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how input validation verifies that the user has
correctly filled in input controls on a Web Form, before a request is processed
on the server. You will also learn about the types of input validation controls
that are available in ASP.NET.

After completing this lesson, you will be able to:

 Explain the concept of validation.
 Explain the difference between client-side and server-side validation.
 Match the appropriate types of ASP.NET validation controls for given input

requirements.

Introduction

Lesson objectives

 Module 7: Validating User Input 3

What Is Input Validation?

Verifies that a control value is correctly entered by the
user

Blocks the processing of a page until all controls are
valid

Avoids spoofing
or the addition of
malicious code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Input validation is the process of verifying that a user’s input on a Web Form
matches the expected data value, range, or format. Input validation improves a
user’s experience with the Web site by reducing the wait time for error
messages and the likelihood of incorrect returns or Web site crashes due to
problems with the user’s input. When combined with understandable and useful
error messages, input validation controls can greatly improve the usability of a
Web application, thereby improving the customer’s perception of the Web site’s
overall quality.

Input validation controls act to verify that the user has correctly filled in an
input control, such as a TextBox control, before the request is processed on the
server. The input validation controls on a Web Form act as data filters before
the page or server logic is processed.

In ASP.NET, input validation always runs on the server side, and can run on the
client side, if the client browser supports validation. If the browser supports
client-side validation, the input validation controls do error checking on the
client before posting the data to the server. The user receives immediate
feedback on whether the data that he or she entered is valid or not. For security
reasons, any input validation that is run on the client side is then repeated on the
server side.

Input validation works by comparing user input against a predetermined input
format. These predetermined input formats may include the number of
characters, the use of digits and/or letters, the value range, a specific character
string, or a mathematical formula.

For example, a user input control that requests the user to enter his or her
telephone number could have an attached input validation control that verifies
that the user has only entered numbers in a telephone number format. Entering
letters or too few numbers would trigger the input validation control to validate
the input.

Introduction

Verify control values

4 Module 7: Validating User Input

User input that matches the predetermined format is processed by the Web
Form. User input that does not match the predetermined format triggers an error
message and stops the Web Form from processing. Further processing of the
page is blocked until the user input is corrected to meet the expected format and
the page has been resubmitted for processing.

Validation controls protect Web Forms against two main dangers: spoofing and
malicious code. By running all validation controls on the server side, regardless
of client-side validation, ASP.NET protects against these threats:

 Spoofing
Spoofing is when a user modifies the Hypertext Markup Language (HTML)
page that is sent to him or her, and then returns values that make it appear
that he or she has entered valid data or passed an authorization check.
Validation is only susceptible to spoofing on the client side, because the
user can turn off client-side script by changing browser options and not run
the client-side validation code, which creates a false level of authorization.
With ASP.NET, client-side input validation is always repeated on the server
side, where users cannot modify or disable the validation control.

 Malicious code
When a user can add unlimited text to a Web page through user input
controls that do not have input validation, they may enter malicious code.
When the user sends the next request to the server, this added code could be
very disruptive to the Web server and any connected applications.
For example, if you decided not to validate a UserName field because you
have international customers and could not think of a universal name format
to validate against, a malicious user could exploit this lack of validation to
cause a number of problems, including:

• Creating a buffer overrun and crashing the server by entering a name
with several thousand characters.

• Creating and authenticating a new user account.

• Adding privileges to their own account, and removing privileges from
other accounts.

• Sending an SQL Query to your customer database and downloading all
of the data that is present, including user names, addresses, passwords,
and credit card numbers.

Errors block processing

Spoofing and malicious
code

 Module 7: Validating User Input 5

Client-Side and Server-Side Validation

ASP.NET can create both
client-side and server-side
validation
Client-side validation

Dependent on browser version
Instant feedback
Reduces postback cycles

Server-side validation
Repeats all client-side
validation
Can validate against stored
data

Valid?

Valid?

User Enters
Data

No

No

Yes

Yes

Error
Message

Client
Server

Web Application
Processed

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Input validation can take place on both the server and the client. Although
server-side validation is always required by ASP.NET, client-side validation is
an option with some browsers.

The validation controls in ASP.NET have both client-side and server-side
support. Client-side validation uses JavaScript and dynamic HTML (DHTML)
scripts. Server-side validation can be written in any Microsoft .NET-based
language, and it is compiled into Microsoft intermediate language (MSIL). Both
client-side and server-side validation use the same programming model,
although variations between languages may create minor differences in the
validation functions.

Client-side validation enhances the usability of the Web Form by checking user
input as the user enters data. By checking for errors when data is being entered,
client-side validation allows errors to be detected on the client before the Web
Form is submitted, thereby preventing the round trip that is necessary for
server-side validation.

Writing multiple versions of validation code to support both the server and
several different browsers can be extremely time-consuming for developers.
ASP.NET validation controls eliminate this problem because the validation
logic is encapsulated within the controls. The controls create browser-specific
code so that users with client-side script support will have client-side input
validation. Browsers that do not support scripts will not receive client-side
validation scripts.

In browser versions that support input validation, such as Microsoft
Internet Explorer 4 or later, client-side validation occurs when the user clicks
the Submit button. The page will not be posted back to the server until all
client-side validation is true. In Internet Explorer 5 or later, using the TAB key
to move from one input control to the next runs the client-side validation for the
completed input control. This validation by using the TAB feature gives the
user immediate feedback on their input.

Introduction

Client-side validation

6 Module 7: Validating User Input

All input validation controls run on the server side. Client-side validations are
repeated on the server side when the page is posted back to the server. This
repetition avoids spoofing by users who bypass the client-side script and try to
use invalid input.

Server-side validation controls can be written in any .NET-based language, and
are compiled into MSIL before being run on the server.

In addition to validating input format, server-side validation controls can be
used to compare user input with stored data. This ability to compare user input
with stored data allows validation against a variety of items, such as stored
passwords and geographic restrictions, including local laws and taxes.

Server-side validation

 Module 7: Validating User Input 7

ASP.NET Validation Controls

ASP.NET provides validation controls to:

Compare values

Compare to a custom formula

Compare to a range

Compare to a regular expression pattern

Require user input

Summarize the validation controls on a page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ASP.NET page framework includes the validation controls that are shown
in the following table.

Validation control Function

CompareValidator Compares an input control to another input control, a fixed

value, a data type, or a file. For example, this control can
be used for password verification fields.

CustomValidator Allows you to write your own code to create the validation
expression. For example, this control can be used to verify
that the input value is a prime number.

RangeValidator Similar to the CompareValidator control, but this control
can verify that the user input is between two values or the
values of other input controls. For example, this control
can be used to verify that the user matches the expected
age range.

RegularExpression
Validator

Verifies that the entry matches a pattern that has been
defined by a regular expression. This validation control
allows you to check for predictable sequences of
characters, such as those in social security numbers, e-mail
addresses, telephone numbers, and postal codes.
Visual Studio .NET provides pre-defined patterns for
common expression such as telephone numbers.

RequiredFieldValidator Checks whether a value has been entered into a control.
This is the only validation control that requires a value. All
of the other input validation controls will accept an empty
control as a valid response.

ValidationSummary Displays a summary of all of the validation errors for all of
the validation controls on the page. This control is
typically placed near the Submit button to provide
immediate feedback on the page input status.

Validation controls

8 Module 7: Validating User Input

Lesson: Using Validation Controls

Adding Validation Controls to a Web Form

Positioning Validation Controls on a Web Form

Combining Validation Controls

Input Validation Controls

Using the RegularExpressionValidator Control

Demonstration: Using Validation Controls

Using the CustomValidator Control

Demonstration: Using the CustomValidator Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to apply input validation controls to user input
controls on an ASP.NET Web Form.

Validating user input used to be difficult process. For each input control, you
first had to write validation code for the server in one language. Then, if you
were going to do client-side validation, you had to write the equivalent
client-side validation for each expected browser in a different script. ASP.NET
and Visual Studio .NET have made validating user input easier by providing
input validation controls that provide server-side and client-side code when you
add them to your Web Form.

After completing this lesson, you will be able to:

 Add a validation control to a Web Form and associate that validation control
with an input control.

 Position validation controls on a Web page to support the correct use of the
associated input control.

 Use the RequiredInputValidator, CompareValidator, and
RangeValidator validation controls to validate user input.

 Use the RegularExpressionValidator control to validate user input.
 Use the CustomValidator control to validate user input.
 Associate multiple input validation controls to a single input control.

Introduction

Lesson objectives

 Module 7: Validating User Input 9

Adding Validation Controls to a Web Form

1. Add a validation control

2. Select the input control to validate

3. Set validation properties

<asp:Type_of_Validator
id="Validator_id"
runat="server"
ControlToValidate="txtName"
ErrorMessage="Message_for_error_summary"
Display="static|dynamic|none"
Text="Text_to_display_by_input_control">

</asp:Type_of_Validator>

<asp:Type_of_Validator
id="Validator_id"
runat="server"
ControlToValidate="txtName"
ErrorMessage="Message_for_error_summary"
Display="static|dynamic|none"
Text="Text_to_display_by_input_control">

</asp:Type_of_Validator>

<asp:TextBox id="txtName" runat="server" /><asp:TextBox id="txtName" runat="server" />

111

222

333

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because all of the input validation controls share a common object model, the
process of adding validation controls to a page is the same for all of the
controls. In Visual Studio .NET, you simply drag the input validator control
onto the page, select the input control to validate, and then set the properties.

To add a validation control, open the Web Forms toolbox, select one of the
available validation controls, and then drag the validation control next to the
input control that you want to validate.

You select the input control to validate by opening the Properties window and
selecting the appropriate input control ID from the drop-down list that is next to
the ControlToValidate property. You can attach multiple validation controls to
a single input control. All of the attached validation controls must evaluate as
True before that input control is accepted and the ASP.NET Web Form can be
processed.

After the input validation control is placed on the page, use the Properties
window to enter the control-specific properties, such as the validation
expression, error message, and text message.

The shared syntax for input validation controls is as follows:

<asp:type_of_validator id="validator_id" runat="server"
 ControlToValidate="control_id"
 ErrorMessage="error_message_for_error_summary"
 Display="static|dynamic|none"
 Text="Text_to_display_by_input_control">
</asp:type_of_validator>

Introduction

Add a validation control

Select the input control
to validate

Set validation properties

10 Module 7: Validating User Input

Each validation control has additional unique properties that define how the
control will perform. Two of the properties that are shared with all validation
controls, with the exception of the ValidationSummary control, are Type and
EnableClientScript:

 Type
The Type property is the data type that will be validated.
Visual Studio .NET will automatically adjust the data type to match the
attached input control when you select the ControlToValidate.
Available data types include String, Integer, Double, Date, and Currency.

 EnableClientScript
The EnableClientScript property indicates whether to perform client-side
validation. This property is set to true by default.
ASP.NET creates client-side validation procedures in Microsoft
JScript® .NET, and creates server-side validation procedures in C# and
Microsoft Visual Basic® .NET. This language difference can lead to minor
differences between the client-side and server-side validation control
implementations.

 Module 7: Validating User Input 11

Positioning Validation Controls on a Web Form

Create error messages
Select display mode

Static

Dynamic

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Input validation controls can display an error message when an input violation
has occurred. It is important to position input validation controls so that it is
clear to the user which control has the incorrect input. In Visual Studio .NET,
you must position the validation control on the page where the error message
text should appear.

The standard HTML for an input validation control is as follows:

<asp:type_of_validator id="validator_id" runat="server"
 ControlToValidate="control_id"
 ErrorMessage="error_message_for_error_summary"
 Display="static|dynamic|none"
 Text="Text_to_display_by_input_control">
</asp:type_of_validator>

ASP.NET input validation controls contain two error message properties, an
ErrorMessage property and a Text property, both of which can be displayed at
the location of the input validation control. The distinction between these two
error message properties is:

 ErrorMessage property
The ErrorMessage property is the error message that is displayed at the
location of a validation control when the validation control is triggered, if
the Text property is not set. This message will also be included in a
ValidationSummary control if one is used on the Web Form.

Introduction

Error messages

12 Module 7: Validating User Input

 Text property
The Text property is the alternative text that will be displayed at the
location of the validation control when both the ErrorMessage property
and Text property are used, and the validation control is triggered. If a
ValidationSummary control is used to collect error messages, a red
asterisk (*) is typically used to the right of the invalid input control to
indicate the location of the error.
In Visual Studio .NET, the default script for the Text property is to print the
Text content between the start and stop tags of the validation control, as
shown in the following code:
<asp:type_of_validator…>Text</asp:type_of_validator>

Throughout this module, you will see the Text property explicitly declared,
as shown in the following code:
<asp:type_of_validator…Text="Text">
</asp:type_of_validator>

The Display property sets the spacing of error messages from multiple
validation controls when the Web Form is displayed in FlowLayout. The
Display property only affects error messages at the validation control location.
Messages that are displayed in the ValidationSummary are not affected by the
Display property.

The following table describes the Display property options.

Options Description

Static Defines a fixed layout for the error message, causing each validation

control to occupy space, even when no error message text is visible.
This option allows you to define a fixed layout for the page as shown
on the preceding illustration.

Visual Studio .NET, by default, uses Display="static" to position the
error message text.

Dynamic Enables validation controls to render in the page as part of the text
flow. Using this option prevents blank spaces from being displayed on
the page when input validation controls are not triggered, as shown in
the preceding illustration. This option sometimes causes controls to
move on the Web Form when error messages are displayed.

None Blocks the display of the error message at the location of the
validation control.

Setting the Display
property

 Module 7: Validating User Input 13

Combining Validation Controls

Can have multiple validation controls on a single input control

Only the RequiredFieldValidator checks empty controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Sometimes a single validation function or control is not sufficient to verify that
the user has correctly entered data into an input control.

For example, a telephone number TextBox control may require an input, must
conform to one of several telephone number patterns, and must be checked
against a stored telephone number database. In this scenario, the TextBox
would need to be linked to a RequiredFieldValidator control, a
RegularExpressionValidator control with several patterns, and a
CustomValidator control with access to a database.

You can associate multiple validation controls to a single input control. This
many-to-one association of validation controls allows you to check the user’s
input for more than one validation requirement.

The following code example shows a single input control for a telephone
number. The input control is checked for content by using a
RequiredFieldValidator control, and checked for correct format by using a
RegularExpressionValidator control:

 Input control
The following code defines the TextBox control that is being validated:
<asp:TextBox id="txtPhone1" runat="server" >
</asp:TextBox>

Introduction

Multiple validation
controls on a single
input control

Example

14 Module 7: Validating User Input

 RequiredFieldValidator control
The following code defines the RequiredFieldValidator control that
verifies that there is an input in txtPhone1:
<asp:RequiredFieldValidator
 id="RequiredtxtPhone1Validator1"
 runat="server"
 ErrorMessage=
 "A telephone number is required"
 ControlToValidate="txtPhone1"
 Text="*">
</asp:RequiredFieldValidator>

 RegularExpressionValidator control
The following code defines the RegularExpressionValidator control that
verifies that the input in txtPhone1 matches the United States telephone
number pattern:
<asp:RegularExpressionValidator
 id="RegulartxtPhone1Validator1"
 runat="server"
 ErrorMessage=_
 "This telephone number is not formatted correctly"
 ControlToValidate="txtPhone1"
 ValidationExpression=
 "((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}"
 Text="*">
</asp:RegularExpressionValidator>

 CustomValidator control
The following code defines the CustomValidator control that calls the
function MyServerValidation, which compares the input in txtPhone1
with a database of telephone numbers:
<asp:CustomValidator
 id="CustomValidator1"
 OnServerValidate = "MyServerValidation"
 runat="server"
 ErrorMessage="This telephone number is not recognized"
 ControlToValidate="txtPhone1"
 Text="*">
</asp:CustomValidator>

 Module 7: Validating User Input 15

Input Validation Controls

RequiredFieldValidator
InitialValue

CompareValidator
ValueToCompare or ControlToCompare
Type
Operator

RangeValidator
MinimumValue
MaximumValue
Type

Code Examples
*****************************ILLEGAL FOR NON-TRAINER USE******************************

The simplest validation controls are the RequiredFieldValidator,
CompareValidator, and RangeValidator controls. All of these validation
controls validate against fixed values or a second input control.

Use the RequiredFieldValidator control to force a user to provide input in an
input control. Any character is a valid response with this validation control.
Only no input (blank), or spaces, is invalid input with this control.

The RequiredFieldValidator control is typically used only on input controls
that are required to complete a requested process. For example, a
RequiredFieldValidator control would be used for the username and
password fields on a sign-in page, but not for incidental information, such as
an offer to become a preferred Web site visitor.

An option for the RequiredFieldValidator control is to have an initial value
that is not an empty string (blank). It is useful to have an initial value when you
have a default value for an input control and you want the user to enter a
different value. To require a change to the initial value for the associated input
control, set the InitialValue property to match the initial value of the input
control.

Introduction

RequiredFieldValidator
control

16 Module 7: Validating User Input

In the following example, a RequiredFieldValidator control verifies that the
TextBox control txtName value is not the initial value of Enter your name:

<asp:TextBox id="txtName" runat="server">
Enter your name</asp:TextBox>

<asp:RequiredFieldValidator id="txtNameValidator"
 runat="server"
 ControlToValidate="txtName"
 InitialValue="Enter your name"
 ErrorMessage="You must enter your name"
 Display="dynamic"
 Text="*">
</asp:RequiredFieldValidator>

Only the RequiredFieldValidator control requires that a value be
entered into a control. The other validator controls will accept an empty control
or a space as a valid response.

Use the CompareValidator control to test the user’s input against a specific
value, or against a second input control. The CompareValidator control is
often used where the risk of typographic errors is high, such as password fields
that do not show the users actual input.

The CompareValidator control will evaluate an empty input control as valid.

The CompareValidator control uses the following properties:

 ValueToCompare
Use the ValueToCompare property to reference against a constant value.
Use the pipe character (|) to separate multiple values. This property is best
used to validate against unchanging values, such as a minimum age limit.
Use the CustomValidator control to compare against values that are likely
to change.

 ControlToCompare
Use the ControlToCompare property to identify another control to
compare against. This property can be used to check for typographic errors
by having the user enter the same data in two adjacent fields.
If you set both the ValueToCompare and ControlToCompare properties,
the ControlToCompare property takes precedence.

 Type
The Type property is used to specify the data type. Use this property if you
want to compare the value in an input control against a DataType.

 Operator
The Operator property specifies the comparison operator to use. Operators
are specified with the name of the comparison operators, such as Equal,
NotEqual, GreaterThan, and GreaterThanEqual.

Note

Using the
CompareValidator
control

 Module 7: Validating User Input 17

In the following example, a CompareValidator control verifies that the values
of the TextBox controls, txtPassword1 and txtPassword2, match:

<asp:TextBox id="txtPassword1" runat="server">
Enter your password </asp:TextBox>

<asp:TextBox id="txtPassword2" runat="server" >
Enter your password again </asp:TextBox>

<asp:CompareValidator id="CompareValidator1" runat="server"
 ErrorMessage="These fields do not match"
 ControlToCompare="txtPassword1"
 ControlToValidate="txtPassword2"
 Text="*">
</asp:CompareValidator>

The RangeValidator control is used to test whether an input value is within a
given range. The range measured is inclusive and the minimum and maximum
values are considered valid. The RangeValidator control is typically used to
verify that the value entered (for example: age, height, salary, or number of
children) matches an expected range.

The RangeValidator control will evaluate an empty input control as valid.

The RangeValidator control has the following properties:

 MinimumValue
The MinimumValue property specifies the minimum value of the valid
range for numeric variables, or the minimum character length of the string
for string variables.

 MaximumValue
The MaximumValue property specifies the maximum value of the valid
range for numeric variables, or the maximum character length of the string
for string variables.

 Type
The Type property is used to specify the data type of the values to compare.
The values to compare are converted to this data type before any
comparison is performed.

In the following example, a RangeValidator control verifies that the TextBox
named txtAge has a value between 18 and 50:

<asp:textbox id="txtAge" runat="server">
Enter your age</asp:textbox>
<asp:RangeValidator id="txtAgeValidator" runat="server"
 ControlToValidate="txtAge"
 Type="Integer"
 MinimumValue="18"
 MaximumValue="50"
 ErrorMessage="Applicants must be between 18 and 50"
 Display="dynamic"
 Text="*">
</asp:RangeValidator>

Using the
RangeValidator control

18 Module 7: Validating User Input

Using the RegularExpressionValidator Control

Used when input must conform to a pre-defined pattern

Visual Studio .NET includes patterns for:

Telephone numbers

Postal codes

E-mail addresses

<asp:RegularExpressionValidator …
ControlToValidate="US_PhoneNumber"…
ValidationExpression="((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4} "
…>*</asp:RegularExpressionValidator >

<asp:RegularExpressionValidator …
ControlToValidate="US_PhoneNumber"…
ValidationExpression="((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4} "
…>*</asp:RegularExpressionValidator >

Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you must verify that a user’s input matches a pre-defined pattern, such as
a telephone number, postal code, or e-mail address, you must use the
RegularExpressionValidator control. This validation control compares the
pattern of characters, digits, and symbols entered by the user with one or more
patterns in the control.

When you click ValidationExpression in the Properties window,
Visual Studio .NET provides a set of preset regular expression patterns. These
patterns include e-mail and Web site addresses, telephone numbers, and postal
codes. To create a new pattern, select the Custom template. The last pattern
that was used will then be available for editing. This last used feature gives you
a foundation from which to create your own pattern.

Introduction

 Module 7: Validating User Input 19

You build your own custom regular expressions by using the set of control
characters that are shown on the following table.

Character Definition

a Must use the letter a in lower case. Any letter that is not preceded by a

backslash (\), or part of a range, is a requirement for that literal value.

1 Must use the number 1. Any number that is not preceded by a
backslash (\), or part of a range, is a requirement for that literal value.

? 0 or 1 item.

* 0 to N items.

+ 1 to N items (at least 1).

[0-n] Integer value range from 0 to n.

{n} Length must be n characters.

| Separates multiple valid patterns.

\ The following character is a command character.

\w Must have a character.

\d Must have a digit.

\. Must have a period.

For more information about control characters, see “Introduction to
Regular Expressions,” in the online JScript reference.

The following code example shows how you can use a
RegularExpressionValidator control to check whether a user has entered a
valid e-mail address:

<asp:TextBox id="txtEmail" runat="server" />

<asp:RegularExpressionValidator id="txtEmail_validation"
 runat="server"
 ControlToValidate="txtEmail"
 ErrorMessage="Use the format username@organization.xxx"
 ValidationExpression="\w+@\w+\.\w+"
 Text="*">
</asp:RegularExpressionValidator>

Regular expression
characters

Note

Example of a simple
expression

20 Module 7: Validating User Input

This RegularExpression validation control checks for a specific pattern, as
shown in the following table.

Characters Definition

\w+ A string of at least one character.

@ An at sign (@).

\w+ A string of at least one character.

\. A period.

\w+ A string of at least one character.

A valid e-mail address for this control is: someone@example.com.

An invalid e-mail address for this control is: someone.com, or someone@.com.

The default Visual Studio .NET e-mail regular expression is more complex than
the preceding example. The default e-mail pattern also limits the separation of
terms before and after the at sign (@) to xx.xx or xx-xx.

The default regular expression for e-mail addresses is as follows:

\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*

This RegularExpression validation control checks for a specific pattern, as
shown in the following table.

Characters Definition

\w+ A string of at least one character.

([-+.]\w+)* May have one or more hyphens or a period, and a string of at least
one character.

@ An at sign (@).

\w+ A string of at least one character.

([-.]\w+)* May have a hyphen or period, and a string of at least one character.

\. A period.

\w+ A string of at least one character.

([-.]\w+)* May have a hyphen or period, and a string of at least one character.

A valid e-mail address for this control is: some-one@example.company.com.

An invalid e-mail address for this control is:
some,one@example..company.com.

Example of a complex
expression

 Module 7: Validating User Input 21

Demonstration: Using Validation Controls

Create an ASP.NET Web Form with
TextBox and Button controls

Add a RequiredFieldValidator control

Add a RangeValidator control

Add a RegularExpressionValidator
control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how a RequiredFieldValidator control can
be used to verify that a TextBox control is filled in before a Web Form is
processed.

 To run this demonstration

1. Create a new Web application project named ValidationTst1.
2. Switch to FlowLayout.
3. Drag the following Web Controls from the Toolbox to the WebForm1: a

TextBox and a Button.
4. Add a RequiredFieldValidator control next to the TextBox input control.
5. Set the properties of the RequiredFieldValidator control in the Properties

window, as shown in the following table.
Property Value

ControlToValidate TextBox1

ErrorMessage Summary error message

Text An input is required

6. Show that the property Display of the RequiredFieldValidator is set to
Static by default.

7. Save, build and browse the page.
8. Leave the control blank and click the Button1.

Notice that you get the Text error message, and not the ErrorMessage
message.

Create an ASP.NET Web
Form with TextBox and
Button controls

Add a
RequiredFieldValidator
control

22 Module 7: Validating User Input

9. Add a RangeValidator control to the Web Form next to the
RequiredFieldValidator.

10. Set the properties of the RangeValidator control in the Properties window,
as shown in the following table.
Property Value

ControlToValidate TextBox1

ErrorMessage Summary error message

Text Out of range

MaximumValue 100

MinimumValue 16

Type Integer

11. Save, build and browse the page.
12. Leave the value blank and click the Button.

You should get the message An input is required from the
RequiredFieldValidator control.

13. Type a value greater than 100 or less than 16, and then click the Button.
You should get the text message Out of range from the RangeValidator
control.
Notice that the text message Out of range is not directly next to the input
control. Because the page is in static display mode, the
RequiredFieldValidator control holds a space for its text message.

14. Reopen the Web Form, select the RequiredFieldValidator control and
change the property Display to Dynamic.

15. Save, build and browse the page.
16. Enter a value greater than 100 or less than 16, and then click the Button.

You should get the text message Out of range from the RangeValidator
control.
Notice that this time the text message Out of range is directly next to the
input control because the RequiredFieldValidator does not hold the space
for its text message (dynamic display mode).

17. Add a second TextBox control and a RegularExpressionValidator control
next to it.

18. Right-click the RegularExpressionValidator control and click Properties,
or click the RegularExpressionValidator control if the Properties window
is still open, and enter the following properties:
a. In the ErrorMessage property, type Invalid E-mail address!
b. In the ControlToValidate property, select TextBox2.
c. In the ValidationExpression property, select Internet E-mail Address.

19. Save, build and browse the page.
Type an incorrect e-mail address in the second textbox and then click the
Button. You should get the Text message Invalid E-mail address! from
the RegularExpressionValidator control.

20. Select View Source and show the client-side validation HTML.

Add a RangeValidator
control

Add a second TextBox
and a
RegularExpression
Validator control

 Module 7: Validating User Input 23

Using the CustomValidator Control

Can validate on client-side, server-side, or both

ClientValidationFunction

OnServerValidate

Validate with:

Formula

Data

COM objects

Web Service

Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the CustomValidator control when you want to use your own customized
validation logic to check the user’s input against a variable, formula, or input
from a second source. The CustomValidator control is often used for
situations, such as password verification, in which the user’s input is compared
with a password that is stored in a user database.

The CustomValidator control validates on the server side, and it can validate
on the client side if the browser supports validation. Unlike the other validation
controls, where ASP.NET creates the client and server validation scripts, you
must write the validation scripts for the CustomValidator control. You set the
CustomValidator control as valid or invalid by using the args.IsValid
property.

Properties of the CustomValidator control include:

 ClientValidationFunction
The ClientValidationFunction property is the script that you want the
CustomValidator control to run on the client side. Because you write your
own client script, it is important to check for logical consistency with the
server-side code.

 OnServerValidate
The OnServerValidate property is the script that you want the
CustomValidator to run on the server side. Because you write your own
server code, it is important to check for logical consistency with the
client-side script.

Introduction

Client-side and
server-side validation

24 Module 7: Validating User Input

The following code example shows the server-side and client-side procedures
for a CustomValidator control and will verify that a number entered into an
input control is even:

<asp: CustomValidator…
 ClientValidationFunction = "MyClientFunction"
 OnServerValidate = "MyServerFunction" />

 Client-side procedure
The following JScript code is designed to run on Internet Explorer 6, and
will verify that a number is even:
<script language = "Jscript">
function MyClientFunction(source, arguments) {
 alert("I am running on the client! ");
 var intValue = arguments.Value;
 if (intValue % 2 == 0) {
 arguments.IsValid = true;
 } else {
 arguments.IsValid = false;
 }
}
</script>

 Server-side procedure
The following code is designed to run on a .NET server, and will verify that
a number is even:
Sub MyServerFunction(objSource as Object, _
 args as ServerValidateEventArgs)
 Dim intValue As Integer = args.Value
 If intValue mod 2 = 0 Then
 args.IsValid = True
 Else
 args.IsValid = False
 End If
End Sub

private void MyServerFunction(object objSource,
 ServerValidateEventArgs args)
{
 int intValue = Convert.ToInt16(args.Value);
 if (intValue%2 == 0)
 {
 args.IsValid = true;
 }
 else
 {
 args.IsValid = false;
 }
}

Example

Visual Basic .NET

C#

 Module 7: Validating User Input 25

Demonstration: Using the CustomValidator Control

Add a CustomValidator control

Write the server-side code

Write the client-side script

Test the result

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use a CustomValidator control.

The starting code for this demonstration is in the Mod07VB or Mod07CS
project within the 2310Demos solution.

 To run this demonstration

1. Open the Web Form named CustomValidator.aspx in Visual Studio .NET.
The Web Form already has a TextBox and a Button control.

2. Add a CustomValidator control to the Web Form.
3. In the Text property of the CustomValidator control, type It’s an odd

number.
4. Set the ControlToValidate property to TextBox1.
5. Double-click the CustomValidator to open the server-side event procedure

and add the following code:
Dim intValue As Integer = args.Value
If intValue mod 2 = 0 Then
 args.IsValid = True
Else
 args.IsValid = False
End If

Introduction

Add a CustomValidator
control

Write the server-side
code
Visual Basic .NET

26 Module 7: Validating User Input

int intValue = Convert.ToInt16(args.Value);
if (intValue % 2 == 0)
{
 args.IsValid = true;
}
else
{
 args.IsValid = false;
}

The server-side event procedure that was automatically created by
Visual Studio .NET should have the name
CustomValidator1_ServerValidate, and have two parameters: source
(type Object) and args (type ServerValidateEventArgs).

6. In the ClientValidationFunction property of the CustomValidator control,
type MyClientValidation.

7. Open the HTML source of the page CustomValidator.aspx (and not
CustomValidator.aspx.vb).

8. Uncomment the following code that is located just after the <head> tag.
This example is in JScript:
function MyClientValidation(source, arguments)
{
 alert("I am running on the client! ");
 var intValue = arguments.Value;
 if (intValue % 2 == 0)
 {
 arguments.IsValid = true;
 } else {
 arguments.IsValid = false;
 }
}

9. Verify that the target browser is Internet Explorer 5.
Right-click CustomValidator.aspx in Design view or HTML view, select
Properties, and then verify that Target Schema is set to Internet
Explorer 5.0.

10. Set the EnableClientScript property of the CustomValidator control to
True.
The client-side script will run before the server-side code to avoid the server
round trip with the page if this property is set to True and the client browser
is Internet Explorer 4 or later.

C#

Write the client-side
script

Test the result

 Module 7: Validating User Input 27

11. Build and browse CustomValidator.aspx.
12. Type a number into the text box.
13. You should get the message box I am running on the client! when you

click the Button. In addition, you should get the message It’s an odd
number when the number is odd.

14. Set the EnableClientScript property of the CustomValidator control to
False, so that only the server-side code will run.

15. Build and browse the page.
16. Now you should not get the message box because you are running the

server-side code. However, you should still get the message It’s an odd
number when the number is odd.

28 Module 7: Validating User Input

Lesson: Page Validation

Using the Page.IsValid Property

Using the ValidationSummary Control

Demonstration: Using the Page.IsValid Property and
the ValidationSummary Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to use the Page.IsValid property and the
ValidationSummary control to verify that all validation controls on an
ASP.NET Web Form are valid before processing is initiated.

After completing this lesson, you will be able to:

 Use the Page.IsValid property to determine if all input validation controls
on a page are valid.

 Use the ValidationSummary control to display a summary of error
messages on a page.

Introduction

Lesson objectives

 Module 7: Validating User Input 29

Using the Page.IsValid Property

Polls all validation controls

Sub cmdSubmit_Click(s As Object, e As EventArgs)
If Page.IsValid Then

Message.Text = "Page is valid!"
' Perform database updates or other logic here

End If
End Sub

Sub cmdSubmit_Click(s As Object, e As EventArgs)
If Page.IsValid Then

Message.Text = "Page is valid!"
' Perform database updates or other logic here

End If
End Sub

private void cmdSubmit_Click(object s, System.EventArgs e)

{ if (Page.IsValid)

{ Message.Text = "Page is Valid!";

// Perform database updates or other logic here

}

}

private void cmdSubmit_Click(object s, System.EventArgs e)

{ if (Page.IsValid)

{ Message.Text = "Page is Valid!";

// Perform database updates or other logic here

}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

.NET enables you to verify that all of the controls on a page are valid before the
controls perform some action. This verification of validity can be conducted on
either the client or the server, depending on the browser being used. Client-side
verification is done with the ValidationSummary control, while server-side
verification is done with the Page.IsValid property.

To determine whether all of the validation controls on a page are currently
valid, you check the IsValid property of the page at run time. The IsValid
property rolls up the values of all the validation controls that are on the page
(using a logical AND). If any one validation control is not valid, the IsValid
property returns False. This property provides a simple way to determine
whether the input controls on the Web Form are valid and whether the Web
Form is ready to proceed with business logic.

Validation controls test user input, set an error state, and produce error
messages. However, validation controls do not change the flow of page
processing. For example, validation controls do not bypass your code if they
detect a user input error. Instead, you test the state of the controls in your code
before performing application-specific logic. If you detect an error, you prevent
your own code from running; the page will continue to process and is returned
to the user with error messages.

Validation information is not available during a page’s initialization or
load stage. For details about page states, see “Web Forms Page Processing
Stages,” in the Visual Studio .NET documentation.

Introduction

Using the Page.IsValid
property

Note

30 Module 7: Validating User Input

The following example shows the event handler for a button. The code tests the
IsValid property of the entire page. Note that there is no need for an Else
clause, because the page will be returned automatically to the browser and the
validation controls will display their own error messages:

Sub cmdSubmit_Click (s As Object, e As EventArgs)
 If Page.IsValid Then
 Message.Text = "Page is valid!"
 ' Perform database updates or other logic here
 End If
End Sub

private void cmdSubmit_Click(object s, System.EventArgs e)
{
 if (Page.IsValid)
 {
 Message.Text = "Page is Valid!";
 // Perform database updates or other logic here
 }
}

Example

Visual Basic .NET

C#

 Module 7: Validating User Input 31

Using the ValidationSummary Control

Collects error messages from all validation controls on
the page

Can display text and error messages

Use Text="*" to indicate the location of the error

<asp:ValidationSummary id="valSummary"
runat="server"
HeaderText="These errors were found:"
ShowSummary="True"
DisplayMode="List"/>

<asp:ValidationSummary id="valSummary"
runat="server"
HeaderText="These errors were found:"
ShowSummary="True"
DisplayMode="List"/>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ValidationSummary control displays when the Page.IsValid property
returns False. Each of the validation controls on the page is polled and the
ErrorMessage messages are aggregated by the ValidationSummary control.

The ValidationSummary control can display a message box or a text area,
with a header and a list of errors, depending on the value of the DisplayMode,
you can display the error list as a bulleted list or a single paragraph.
ValidationSummary controls are typically placed near the Submit button so
that all of the error messages will be highly visible to the user when the input
validation controls are triggered.

The following HTML shows a typical ValidationSummary control:

<asp:ValidationSummary id="valSummary"
 runat="server"
 HeaderText="These errors were found:"
 ShowSummary="True"
 DisplayMode="List" />

When the ValidationSummary control is used, the Text property (if used) is
displayed at the location of the validation control, while the ErrorMessage
property is displayed in the ValidationSummary control display.

A Text property with a red asterisk (*)is typically displayed to the right of the
input control to warn the user that the input control is not correctly filled in. An
ErrorMessage property, with a description of the input error, is displayed in
the ValidationSummary control, which is typically placed near the event that
is triggering the control.

Introduction

Displays text and error
messages

Using * to locate errors

32 Module 7: Validating User Input

The following illustration shows a pair of password fields with several input
validation controls and a ValidationSummary control.

Example

 Module 7: Validating User Input 33

Demonstration: Using the Page.IsValid Property and the
ValidationSummary Control

Open an ASP.NET page with multiple
TextBox and validation controls

Add a ValidationSummary control

Add a script that uses the Page.IsValid
property

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Page.IsValid method and the
Validation Summary control.

The files for this demonstration are in the Mod07VB or Mod07CS project in the
2310Demos solution.

 To run this demonstration

1. Open the Web Form named ValidationSummary.aspx in
Visual Studio .NET.
The page already contains two TextBox controls. There is a
RequiredFieldValidator and a RangeValidator control, which validate the
first text box. The page also contains a RequiredFieldValidator control
and a RegularExpressionValidator control, which validate the second text
box. In addition, there is a Submit button and a Label.

2. Drag a ValidationSummary control to the bottom of the page.

3. Double-click the Button control to open the Click event handler, and then

uncomment the following code:
If Page.IsValid Then
 lblMessage.Text = "Page is valid!"
End If

if (Page.IsValid)
{
 lblMessage.Text = "Page is valid!";
}

4. Save, build and browse the ValidationSummary.aspx page.
You should see the message Page is valid! when the entire page is valid.

Introduction

Open an ASP.NET page

Add a Validation
Summary control
Add code to test the
validity of the page
Visual Basic .NET

C#

34 Module 7: Validating User Input

Review

Overview of User Input Validation

Using Validation Controls

Page Validation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For the following questions, you will select the type of validation control(s) that
should be used for each scenario.

The types of validation controls available for a Web Form include:

 CompareValidator
 CustomValidator
 RangeValidator
 RegularExpressionValidator
 RequiredFieldValidator
 ValidationSummary

 Given the following user input fields, what kind of validation control(s)
would you use?

1. The user’s age.
RequiredFieldValidator, RangeValidator (0–120)

2. The user’s telephone number.
RequiredFieldValidator, RegularExpressionValidator

3. The user’s password, which is entered twice.
RequiredFieldValidator, CompareValidator (comparing two input
controls)

 Module 7: Validating User Input 35

4. Whether an entered number is prime.
RequiredFieldValidator, CustomValidator

5. Whether all of the fields in a form are correctly filled in.
ValidationSummary

6. Whether the date format is correct.
CompareValidator (comparing with the Date type)

7. Whether a new employee’s requested e-mail address matches the company
policy.
RegularExpressionValidator (using a custom pattern that is based on
the pre-defined e-mail pattern)

36 Module 7: Validating User Input

Lab 7: Validating User Input

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Use validation controls to validate text box values in a Microsoft®
ASP.NET Web Form.

 Use a ValidationSummary validation control to summarize validation
errors on a Web Form.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to add Web controls to an ASP.NET Web Form.
 Knowledge of how to write a client-side Microsoft Visual Basic®

Scripting Edition (VBScript) function.
 Knowledge of how to create an event procedure for a Web control.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

The Benefits Web application has a Web Form named life.aspx. This page is
used for the life insurance benefit, and asks for a Name, a Birth date, and a
Coverage amount from the user. In this lab, you will add validation controls to
validate the entries in these text fields. You will also add a summary validation
control to summarize the invalid entries on the page.

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
15 minutes

 Module 7: Validating User Input 37

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects may be created by
using Visual Basic .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps.

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# .NET project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

38 Module 7: Validating User Input

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
Browse to the install folder\Labfiles\Lab07\VB\Starter\BenefitsVB
folder
Browse to the install folder\Labfiles\Lab07\CS\Starter\BenefitsCS folder

3. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

4. Select all of the files in this folder, and then click Open.
5. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a Class Library project.
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click Visual

Basic Projects.
c. In the Templates list, click Class Library. Set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library. Set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as
shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Important

 Module 7: Validating User Input 39

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse to the BenefitsList project.

Browse to the install folder\Labfiles\Lab07\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab07\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

40 Module 7: Validating User Input

Exercise 1
Using RequiredFieldValidator Controls

In this exercise, you will add RequiredFieldValidator controls for the Name,
Birth Date, and Coverage text boxes on the life.aspx ASP.NET Web Form.

 Add RequiredFieldValidator controls

1. Open the life.aspx page in the Benefits project in the 2310LabApplication
solution.

2. Using a drag-and-drop operation, place three RequiredFieldValidator
controls onto the Web Form such that your form looks like the following
illustration.

3. Set the properties of the three RequiredFieldValidator controls by using
the values that are shown in the following table.
ID Error Message Text ControlToValidate

vldName Name cannot be blank * txtName

vldBirth Birth date cannot be blank * txtBirth

vldCoverage Coverage cannot be blank * txtCoverage

When you change the Text property of the controls, you will change the text
that appears in Design view. Your page should now look like the following
illustration.

 Module 7: Validating User Input 41

4. Build and browse the life.aspx page.
5. In the browser, leave the Name, Birth Date, and Coverage fields blank and

then click Save.
What happens and why?
Red asterisks appear next to each field because a blank entry is invalid.
__

__

6. In the browser, enter values for the Name, Birth Date, and Coverage fields
and then click Save.
What happens and why?
The red asterisks disappear because the fields are valid.
__

__

42 Module 7: Validating User Input

Exercise 2
Using the ValidationSummary Control

In this exercise, you will use a ValidationSummary control to summarize the
validation errors for the life.aspx page.

 Add a ValidationSummary control to the life.aspx page

1. Using a drag-and-drop operation, place a ValidationSummary control onto
the bottom of the life.aspx Web Form and set its ID property to
vldSummary.

2. Set the HeaderText property of the vldSummary control to These errors
were found:
Your page should look like the following illustration.

3. Build and browse the life.aspx page.
4. In the browser, leave the Name, Birth Date, and Coverage fields blank and

then click Save.
In addition to the red asterisk appearing next to the invalid entries, you now
should see a summary of errors at the bottom of the page.

5. Where did the summary error messages come from?
The messages come from the ErrorMessage property of the
RequiredFieldValidator validation controls on the Web Form.
__

__

 Module 7: Validating User Input 43

 Test if the page is valid

1. Add a Label control to the bottom of the Web Form and set the control’s ID
property to lblMessage and then clear the default value of its Text property.
Your page should look like the following illustration.

2. Open the Click event procedure for the Save button.
3. Modify the event procedure code to test if the controls on the page are valid,

and, if they are, write a message in the lblMessage control indicating that
the page is valid.
Your code should look like the following:
If Page.IsValid Then
 lblMessage.Text = "The page is valid"
End If

if (Page.IsValid)
{
 lblMessage.Text = "The page is valid";
}

4. Build and browse the life.aspx page.
5. In the browser, enter values for the Name, Birth Date, and Coverage fields

and then click Save.
Verify that the message The page is valid appears.

Visual Basic .NET

C#

44 Module 7: Validating User Input

Exercise 3
Using the CompareValidator Control

In this exercise, you will use a CompareValidator control to validate the user
entry into the Birth Date text field.

 Add a CompareValidator control

1. Using a drag-and-drop operation, place a CompareValidator control onto
the life.aspx Web Form, next to the vldBirth RequiredFieldValidator
control.

2. Set the properties for the CompareValidator control as shown in the
following table.
Property Value

ErrorMessage Birth date format is invalid

Text *

ControlToValidate txtBirth

Operator DataTypeCheck

Type Date

ID vldBirthType

Your page should look like the following illustration.

3. Build and browse the life.aspx page.
4. Enter an invalid date, such as 14/3/02 (month 14 is wrong here), in the

Birth Date field, and then click Save.
The red asterisk next to the Birth Date field should appear.

5. Enter a valid date, such as 12/3/02, in the Birth Date field, and then click
Save.
The red asterisk next to the Birth Date field should now disappear.

 Module 7: Validating User Input 45

Exercise 4
Using the RegularExpressionValidator Control

In this exercise, you will use a RegularExpressionValidator control to
validate the user entry in the Coverage text field.

 Add a RegularExpressionValidator control

1. Using a drag-and-drop operation, place a RegularExpressionValidator
control onto the life.aspx Web Form, next to the vldCoverage
RequiredFieldValidator control.

2. Set the properties for the control as shown in the following table.
Property Value

ErrorMessage Coverage must be a currency value

Text *

ControlToValidate txtCoverage

ValidationExpression \ d + (\ . \ d { 2 }) ?

ID vldCoverageType

Your page should look like the following illustration.

3. What are the valid entries for the Coverage field?
Decimal numbers with an optional two decimal places.
__

__

4. Build and browse the life.aspx page.
5. Enter an incorrect value, such as 333.3, into the Coverage field, and then

click Save.
The red asterisk next to the Coverage field should appear.

6. Enter a correct value, such as 3.33, into the Coverage field, and then click
Save.
The red asterisk next to the Coverage field should now disappear.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Adding User Controls to an ASP.NET
Web Form 2

Lesson: Creating User Controls 12

Review 18

Lab 8: Creating User Controls 20

Module 8: Creating
User Controls

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 8: Creating User Controls iii

Instructor Notes
After completing this module, students will be able to:

 Add a user control to a Microsoft® ASP.NET Web Form.
 Create a user control.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_08.ppt

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices, demonstrations, and lab.

Presentation:
45 minutes

Lab:
30 minutes
Required materials

Preparation tasks

iv Module 8: Creating User Controls

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Adding User Controls to an ASP.NET Web Form
This section describes the instructional methods for teaching each topic in this
lesson.

Ensure that the students understand that user control and Web server control are
not the same. Students can get easily get confused between the two terms. Also,
inform the students that user control, Web Forms user control, and Web user
control are three different terms that are used to refer to the same thing.
Microsoft Visual Studio® .NET IDE uses the term Web user control.

Establish the importance of using user controls.

After you explain how user controls work, have the students suggest items that
could become user controls.

Naming is an area that creates confusion for students. Ensure that students are
clear about the difference between:

 TagPrefix
 TagName
 Src

Lesson: Creating User Controls
Emphasize that it is important to use the flow layout mode while creating user
controls. Inform the students that while creating a new user control (called Web
user control in the Visual Studio .NET IDE), an .ascx file is created. The .ascx
file is in the flow layout mode by default. To have the .ascx file in the grid
layout mode, the students have to explicitly drag-and-drop a Grid Layout Panel
control onto the user control.

Establish the fact that the host page of any user control (created in flow layout
or grid layout) should be in flow layout mode to avoid overlap between the user
control and the content of the host page.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that all the students get the benefit
of knowing the right answers.

Lab 8: Creating User Controls
Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

What Is a User Control?

Why Use User Controls?

Practice: Listing User
Controls

Adding a User Control

Creating a User Control

 Module 8: Creating User Controls 1

Overview

Adding User Controls to an ASP.NET Web Form

Creating User Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In addition to Hypertext Markup Language (HTML) and Web server controls,
you can easily create your own controls that can be reused across Web
applications. These controls are called user controls. User controls provide an
easy way to reuse common user interface (UI) components and code across a
Web application.

After completing this module, you will be able to:

 Add a user control to a Microsoft® ASP.NET Web Form.
 Create a user control.

Objectives

2 Module 8: Creating User Controls

Lesson: Adding User Controls to an ASP.NET Web Form

What is a User Control?

Why Use User Controls?

Practice: Listing User Controls

Adding a User Control

Demonstration: Creating a User Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A user control is an ASP.NET page that can be imported as a server control by
other ASP.NET Web Forms. Similar to Web server controls, which are
components that run on the server, user controls provide UI and other related
functionality. After you have created a user control, it can then be used by other
pages in the same Web application.

In this lesson, you will learn what user controls are, why you should consider
using them in your Web applications, how to reference a user control from an
ASP.NET Web Form, and then learn how to access the properties in a user
control.

After completing this lesson, you will be able to:

 Explain what a user control is and why you might use one.
 Add a user control in an ASP.NET page.
 Access user control properties in an ASP.NET page.

Introduction

Lesson objectives

 Module 8: Creating User Controls 3

What is a User Control?

User controls simplify the reuse of code and UI
components within a Web application
A user control is a user-defined Web server control
with an .ascx extension
Contains HTML, but not the <HTML>, <BODY>, or
<FORM> tags

or

Contains code to handle its own events

<%@ Control Language="vb" %><%@ Control Language="vb" %>

<%@ Control Language="c#" %><%@ Control Language="c#" %>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because user controls can simplify the reuse of code and common UI
components, understanding what they are and how they work is an important
part of learning about ASP.NET development.

User controls are ASP.NET pages with an .ascx file extension. User controls
offer you an easy way to partition and reuse common UI functionality across
your ASP.NET Web applications. Similar a Web Forms page, you can author
these controls with any text editor, or develop them by using code-behind
classes. Also, similar to a Web Forms page, user controls are compiled when
first requested and then stored in server memory to reduce the response time for
subsequent requests. Unlike Web Form pages, however, user controls cannot be
requested independently; user controls must be included in a Web Forms page
to work.

The Microsoft .NET Framework prevents files with the .ascx file
extension from being viewed in a Web browser. This is a security measure that
ensures that the user control cannot be viewed as a stand-alone ASP.NET page.

A user control consists of HTML and code, but because user controls are used
by Web Forms, they do not contain the <HEAD>, <BODY>, or <FORM>
HTML tags. Instead, these tags are included in each Web Form that uses the
user control.

When a user control is used by a Web Form, the user control participates in the
event life cycle for the Web Form. Also, because a user control is an ASP.NET
page, it has its own page logic. For example, a user control can handle its own
postback in its Page_Load event procedure.

User controls are different from custom server controls. To learn more
about creating custom server controls, see “Developing ASP.NET Server
Controls” in the Microsoft Visual Studio® .NET documentation.

Introduction

Definition

Note

What is in a user
control?

Note

4 Module 8: Creating User Controls

Just as Web Forms have code-behind pages, user controls also have an
associated code-behind page. The @ Page directive is used in Web Forms to
associate a code-behind page, whereas the @ Control directive is used to
reference a code-behind page from a user control page. The @ Control
directive can only be used with user controls, and you can only include one @
Control directive per .ascx file. For example, to reference a code-behind page
for a user control that is named WebUserControl1, in a Web application project
named test, you use the following @ Control directive:

<%@ Control Language="vb" Codebehind="WebUserControl1.ascx.vb"
Inherits="test.WebUserControl1" %>

<%@ Control Language="c#" Codebehind="WebUserControl1.ascx.cs"
Inherits="test.WebUserControl1" %>

The @ Control directive supports the same attributes as the @ Page
directive, except for the AspCompat and Trace attributes. Because the @
Control directive does not use the Trace attribute, you must add the Trace
attribute to the @ Page directive for the .aspx page that calls the user control, if
you want to enable tracing for the user control.

A user control is not same as a Web server control. Web server controls include
not only form-type controls, such as buttons and text boxes, but also include
specific controls such as a calendar.

For more information about Web server controls, see Module 4,
“Creating a Microsoft ASP.NET Web Form,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

User controls and their
associated code-behind
pages

Visual Basic .NET

C#

Note

User control vs. Web
server control

Note

 Module 8: Creating User Controls 5

Why Use User Controls?

Reuse user interface and code

Page2.aspx

Control1.ascx

Page1.aspx

Page3.aspx

Application A Application B

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are several advantages to using user controls in your ASP.NET Web
applications. User controls are self-contained, can be used multiple times, and
can be written in a different language from the main hosting page.

User controls are used for numerous purposes, such as creating headers and
navigation bars, and for repeating blocks of code in a Web application project.

In traditional Active Server Pages (ASP) Web pages, include files are
used for code and UI reuse. In ASP.NET, user control pages replace the
functionality of include files.

User controls offers many advantages when developing a Web application:

 User controls are self-contained. User controls provide separate variable
namespaces, which means that none of the methods and properties of the
user control conflict with any existing methods or properties of the hosting
page.

 User controls can be used more than once within a hosting page, without
causing property and method conflicts.

 User controls can be written in a different language from the main hosting
page. For example, a user control that is written in Microsoft Visual C# can
be used on a Web Form that is written in Microsoft Visual Basic® .NET.

Introduction

Advantages to using
user controls

Note

6 Module 8: Creating User Controls

A single user control can be shared amongst all pages within a Web application.
However, .aspx pages in one Web application cannot host a user control from
another Web application. To use a user control in multiple Web applications,
the user control must be copied to the virtual root folder of each Web
application.

To share controls amongst multiple Web applications, you can also create a
Web custom control, which acts like a shareable user control. Web custom
controls are more difficult to create than user controls, because, unlike user
controls, Web custom controls cannot be created by using the visual tools of
Visual Studio .NET; therefore, all development is done by code only.

For more information about user controls and Web custom controls, see
“Web User Controls and Web Custom Controls” in the Visual Studio .NET
documentation.

Sharing user controls

Note

 Module 8: Creating User Controls 7

Practice: Listing User Controls

Students will:

List examples of when it is appropriate to
use user controls

Time: 5 minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will list ideas for when you would use user controls and
then discuss these examples with the rest of the class.

List four examples where a user control simplifies Web page development

 Text box to only accept integers in a specific range. The user control would
include validation controls.

 Data Grid control that always connects to the same data source, to display
data from a stored procedure or table.

 Grouping of text boxes and other controls to accept mailing information
(name, address, state, city, postal code) from a user.

 Grouping of text boxes and other controls to accept contact information
(home telephone number, business telephone number, mobile telephone, e-
mail address) from a user.

Introduction

8 Module 8: Creating User Controls

Adding a User Control

Use the @ Register directive to include a user control
in an ASP.NET Page

Insert the user control in a Web Form

Use Get and Set properties of the user control

or

<%@ Register TagPrefix="demo"
TagName="validNum" Src="numberbox.ascx" %>
<%@ Register TagPrefix="demo"
TagName="validNum" Src="numberbox.ascx" %>

<demo:validNum id="num1" runat="server"/> <demo:validNum id="num1" runat="server"/>

num1.pNum = 5 'uses Set
x = num1.pNum 'uses Get
num1.pNum = 5 'uses Set
x = num1.pNum 'uses Get

num1.pNum = 5; //uses Set
x = num1.pNum; //uses Get
num1.pNum = 5; //uses Set
x = num1.pNum; //uses Get

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can place a user control in any ASP.NET Web Form. The page that
references the user control is called a host, and the control is included in that
host.

User controls are included in an ASP.NET Web Form by using the @ Register
directive, as shown in the following code:

<%@ Register TagPrefix="demo" TagName="validNum"
 Src="numberbox.ascx" %>

The TagPrefix attribute determines a unique namespace for the user control so
that multiple user controls with the same name can be differentiated from each
other. The TagName attribute is the unique name for the user control. The Src
attribute is the virtual path to the user control file.

After registering the user control with the @ Register directive, you can place
the user control tag in the Web Form just as you would place an ordinary Web
server control, including using the runat="server" attribute. The following
code example adds two user controls to a Web Form:

<demo:validNum id="num1" runat="server"/>
<demo:validNum id="num2" runat="server"/>

When the primary Web Form is requested, the runtime compiles the user
control file and makes it available to the page.

Introduction

Including user controls

Using the user control

 Module 8: Creating User Controls 9

In event procedures on the host page, you can access the properties of the user
control by adding declarations for the user control. The following code shows
declarations for two numberbox user controls:

Protected num1 As numberbox
Protected num2 As numberbox

protected numberbox num1;
protected numberbox num2;

In the preceding code examples, numberBox is the name of the class that
implements the user control. The variable name (num1 or num2) must be the
same as the id attribute that is used when adding the user control to the Web
Form.

The following example calls the Get property of the num1 and num2 user
controls:

lblSum.Text = (num1.pNum + num2.pNum).ToString()

lblSum.Text = (num1.pNum + num2.pNum).ToString();

The following example calls the Set property of the num1 and num2 user
controls to display the constants 5 and 7 in the user control:

num1.pNum = 5
num2.pNum = 7

num1.pNum = 5;
num2.pNum = 7;

Using the Get and Set
properties

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

10 Module 8: Creating User Controls

Demonstration: Creating a User Control

Create a new user control

Create a property

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to create a user control by using
Visual Studio .NET.

The completed code for this demonstration is in the numberbox.ascx file in the
install folder\Democode\Mod08VB folder or install folder\Democode\
Mod08CS folder.

 To run this demonstration

1. Either create a new Web application project or use an existing project.
2. Add the beforeuser.aspx page to the Web application project.

Add the install folder\Democode\Mod08VB\beforeuser.aspx page to the
project.
Add the install folder\Democode\Mod08CS\beforeuser.aspx page to the
project.

3. Open the page and show the source HTML. The HTML uses the same
combination of controls (a text box and two validation controls) in two
places.

4. In design view, group select and copy the first set of text box and validation
controls from the page.

5. Create a new user control by adding a new Web User Control to the project.
Name it numberbox.ascx.

6. Show the HTML for the page and point out the @ Control directive that
was created by Visual Studio .NET.

7. In design view, paste in the text box and validation controls.
8. Open the code-behind page for the new user control.

Introduction

For the Visual Basic
.NET project
For the Visual C# project

 Module 8: Creating User Controls 11

9. In the code-behind page named numberbox.ascx.vb or numberbox.ascx.cs,
create a public property for the value of the text box, as shown in the
following code example:
Public Property pNum() As Integer
 Get
 Return CInt(txtNum1.Text)
 End Get
 Set(ByVal Value As Integer)
 txtNum1.Text = Value.ToString()
 End Set
End Property

Point out that when you enter the header for the pNum property,
Visual Studio .NET creates a template for the Get and Set properties.
public int pNum
{
 get
 {
 return Convert.ToInt32(txtNum1.Text);
 }
 set
 {
 txtNum1.Text = Convert.ToString(value);
 }
}

Point out that the set property does not take any arguments. The value being
passed is automatically placed into a variable called value, which is
accessible to the set property.

10. Save your changes to the numberbox.ascx page.

For the Visual Basic
.NET Project

For the Visual C# Project

12 Module 8: Creating User Controls

Lesson: Creating User Controls

Creating a User Control

Demonstration: Using a User Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you create a user control, the user control can be used by other pages in
the same Web application. In this lesson, you will learn how to create user
controls.

After completing this lesson, you will be able to:

 Create a user control.
 Convert an existing Web Form to a user control.

Introduction

Lesson objectives

 Module 8: Creating User Controls 13

Creating a User Control

Two methods for user control creation:
Create a new user control using Visual Studio .NET

Convert an existing ASP.NET page to a user control

Host page interacts with the control using properties

Host page should use flow layout
Public Property pNum() As Integer

Get
Return Convert.ToInt32(txtNum.Text)

End Get
Set (ByVal value As Integer)

txtNum.Text = CStr(value)
End Set

End Property

Public Property pNum() As Integer
Get

Return Convert.ToInt32(txtNum.Text)
End Get
Set (ByVal value As Integer)

txtNum.Text = CStr(value)
End Set

End Property

public int pNum
{

get
{

return
Convert.ToInt32(txtNum.Text);

}
set
{

txtNum.Text =
Convert.ToString(value);

}
}

public int pNum
{

get
{

return
Convert.ToInt32(txtNum.Text);

}
set
{

txtNum.Text =
Convert.ToString(value);

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create a new user control or convert an existing ASP.NET Web Form
to a user control.

 To create a new user control

1. Right-click a Web application project in Solution Explorer in Visual Studio
.NET, point to Add, and then click Add Web User Control.

2. Give the control a name and then click Open.
A page with an .ascx extension is created.

The page is created with the page layout set to the flow layout mode, and
an @ Control directive. You can drag a Grid Layout Panel control from the
HTML section of the toolbox if you need to build the user control with grid
layout instead of flow layout.

3. Add the UI elements. You build the page just as you would build an
ASP.NET Web Form, adding UI elements from the Toolbox in
Visual Studio .NET or by writing the HTML.

When you build the UI portion of a user control in Visual Studio
.NET, you must use flow layout rather than grid layout.

4. Add event procedures for UI elements and Page events. Similar to building
any other ASP.NET page, you add event procedures to the code-behind
page.

5. Create properties for interacting with the host page. Properties allow the
hosting Web Form to read and write values into the UI elements on the user
control. Properties on the user control hide the implementation of the
control.

Introduction

Creating a new user
control

Note

Note

14 Module 8: Creating User Controls

 To convert an existing Web Form to a user control

1. Remove all <HTML>, <BODY>, and <FORM> tags.
2. If there is an existing @ Page directive on the page, change it to an @

Control directive. Although most @ Page attributes are also supported by
the @ Control directive, ensure that there are no unsupported attributes.

For more information on the attributes that are supported by the @
Page and @ Control directives, see “Directive Syntax” in the Visual Studio
.NET documentation.

3. Add a className attribute to the @ Control directive. The className
attribute allows the user control to be strongly typed when it is added to a
page.

4. Rename the file to a name that reflects its purpose, and then change the file
extension from .aspx to .ascx.

The host page is the Web Form that will include the user control. This page
should be in flow layout to avoid overlap between the content of the user
control and the content of the page.

The host page does not have direct access to the UI elements that are on a user
control. Therefore, you use public properties in a user control to expose the UI
elements that are in the control so that the host can use the UI elements.

For example, if a user control is composed of two text boxes, you would need a
property for each text box so that the host page can read and write the value in
each text box.

The following code is the HTML part of a Visual Basic .NET user control that
includes a text box and two input validation controls:

<%@ Control Language="vb" Codebehind="WebUserControl1.ascx.vb"
 Inherits="test.WebUserControl1" %>
<asp:textbox id="txtNum" runat="server" />
<asp:RequiredFieldValidator id="txtNumValidator"
 runat="server"
 controlToValidate="txtNum"
 errorMessage="You must enter a value"
 display="dynamic">
</asp:RequiredFieldValidator>
<asp:RangeValidator id="txtNumRngValidator" runat="server"
 controlToValidate="txtNum"
 errorMessage="Please enter a number between 0 and 99"
 type="Integer"
 minimumValue="0"
 maximumValue="99"
 display="dynamic">
</asp:RangeValidator>

Converting an existing
Web Form to a user
control

Note

Host page

 Module 8: Creating User Controls 15

To expose the values of the text box to the host, you must create a public
property. For example, the following code in the code-behind page creates a
property named pNum. The pNum property exposes the Text property of the
text box control in the user control:

Public Property pNum() As Integer
 Get
 Return CInt(txtNum.Text)
 End Get
 Set(ByVal Value As Integer)
 txtNum.Text = Value.ToString()
 End Set
End Property

public int pNum
{
 get
 {
 return Convert.ToInt32(txtNum1.Text);
 }
 set
 {
 txtNum1.Text = Convert.ToString(value);
 }
}

All public variables, properties, and methods of a user control become the
properties and methods of the control in the host page. From the preceding code
examples, you can access the pNum property as a tag attribute on the host page.
If the user control is named userText1, you can read and write the
userText1.pNum property. Likewise, if you create a public function in the user
control, it becomes a method that can be used from the host page.

Visual Basic .NET

C#

16 Module 8: Creating User Controls

Demonstration: Using a User Control

Insert a user control on a page

Use the user controls in the code-behind
page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use a user control on a host page.

The completed code for the Visual Basic .NET demonstration is in the
install folder\Democode\Mod08VB\afteruser.aspx file.

The completed code for the Visual C# demonstration is in the
install folder\Democode\Mod08CS\afteruser.aspx file.

This demonstration builds on the first demonstration in this module,
“Creating a User Control.”

 To use a user control in a new ASP.NET page

1. Edit the beforeuser.aspx page.
2. Delete the two sets of text boxes and validation controls (six controls in all).
3. Using a drag-and-drop operation, place the numberbox.ascx user control

from Solution Explorer onto the Web Form at the location of the first set of
controls that you just deleted.

4. View the HTML for the page; the @ Register directive was added by
Visual Studio .NET, along with the tag for the user control, as shown in the
following code example:
<%@ Register TagPrefix="uc1" TagName="numberbox"
Src="numberbox.ascx" %>
...
<uc1:numberbox id=Numberbox1 runat="server">
</uc1:numberbox>
...

Introduction

Note

 Module 8: Creating User Controls 17

5. Place a second numberbox.ascx control onto the beforeuser.aspx Web Form
at the location of the second set of controls that you just deleted.
Visual Studio .NET adds the following HTML to create the user control:
<uc1:numberbox id=Numberbox2 runat="server">
</uc1:numberbox>

6. In the code-behind page for the file beforeuser.aspx, add declarations for the
two new controls:
Protected Numberbox1 As numberbox
Protected Numberbox2 As numberbox

protected numberbox Numberbox1;
protected numberbox Numberbox2;

If your project name is not Mod08CS or Mod08VB, then you should
change the name of the namespace in beforeuser.aspx.cs or .vb to match the
project name.

7. Change the Compute button's event procedure to read the values from the
user controls:
Sub Button1_Click(s As Object, e As EventArgs)
 If Page.IsValid Then
 lblSum.Text = _
 CStr(Numberbox1.pNum + Numberbox2.pNum)
 End If
End Sub

private void Button1_Click(object sender, System.EventArgs
e)
{
 if (Page.IsValid)
 lblSum.Text = Convert.ToString(Numberbox1.pNum +
 Numberbox2.pNum);
}

8. Build and browse the beforeuser.aspx page.
9. View the HTML source in the browser.
10. Notice how the user controls are rendered in HTML.
11. In the numberbox.ascx user control, add initialization code to the

Page_Load event procedure:
If Not Page.IsPostBack Then
 txtNum1.Text = "0"
End If

if (!Page.IsPostBack)
 txtNum1.Text = "0";

12. Build and browse the beforeuser.aspx page.
13. You will notice that the user control now has an initial value of 0.

Visual Basic .NET

Visual C#

Note

Visual Basic .NET

C#:

Visual Basic .NET

C#

18 Module 8: Creating User Controls

Review

Adding User Controls to an ASP.NET Web Form

Creating User Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are two differences between a user control and a component?
User controls provide reusable code and UI elements, while components
only offer reusable code. Components are pre-compiled, whereas user
controls are not.

2. How do you access the properties of a user control’s UI elements from the
host page?
You create public properties in the user control that the host can then
access.

3. What are the four general steps in creating a user control?
1. Create a Web User Control in Visual Studio .NET
2. Add the UI elements
3. Add event procedures
4. Create public properties

4. How do you reference a user control from an ASP.NET Web Form?
Use the @ Register directive in the ASP.NET Web Form.

 Module 8: Creating User Controls 19

5. Can you use two different user controls with the same name in the same
ASP.NET page? Why or why not?
Yes. You use the TagPrefix and TagName attributes of the @ Register
directive to distinguish each user control.

6. How can you use a user control in two different Web applications?
You must copy the user control file to the virtual directory of the other
Web application. You can also create a Web custom control that can be
used by all of the Web applications on the server.

20 Module 8: Creating User Controls

Lab 8: Creating User Controls

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create a user control.
 Use a user control on a Microsoft® ASP.NET Web Form.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to use Web server controls on an ASP.NET Web Form.
 Knowledge of how to use validation controls on a Web Form.
 Knowledge of how to create event procedures for controls on a Web Form.
 Knowledge of how to create a property in Microsoft Visual Basic® .NET or

C#.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using Visual
Studio .NET, you will create a Web site that enables employees to select and set
up their chosen benefits.

In many pages of your company's Web site, you are collecting the name and
birth date from the user. In this lab, you will create a user control to collect that
information and then use the user control on the medical.aspx page of the Web
site.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 8: Creating User Controls 21

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application
project. If you have not created this project, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created a
2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, enter 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, click Visual Basic Projects or

Visual C# Projects in the Project Types list, click ASP.NET Web
Application in the Templates list, set the Location to
http://localhost/BenefitsVB for the Visual Basic .NET project or to
http://localhost/BenefitsCS for the Visual C# project, click Add to
Solution, and then click OK.

When adding projects to the solution, the capitalization of the project
name is important. Because you may be using some pre-built Web Forms in this
and other labs in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET, you must verify that you have
capitalized the Benefits project as shown. Two versions of the project can be
created; BenefitsVB would be a Visual Basic .NET solution and BenefitsCS
would be a Visual C# solution.

Important

Important

Caution

22 Module 8: Creating User Controls

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item:
a. Browse to install folder\Labfiles\Lab08\VB\Starter\BenefitsVB folder

for the Visual Basic .NET files.
b. In the Files of type box of the Add Existing Item – BenefitsVB dialog

box, choose All Files.
a. Browse to install folder\Labfiles\Lab08\CS\Starter\BenefitsCS folder for

the Visual C# files.
b. In the Files of type box of the Add Existing Item – BenefitsCS dialog

box, choose All Files.
3. Select all of the files in this folder, and then click Open.
4. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB or BenefitsListCS, and then add it to the
2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. Create Class Library Project

In the New Project dialog box, click Visual Basic Projects in the
Project Types list, click Class Library in the Templates list, set the
Name to BenefitsListVB, click Add to Solution, and then click OK.
In the New Project dialog box, click Visual C# Projects in the Project
Types list, click Class Library in the Templates list, set the Name to
BenefitsListCS, click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsListVB or
BenefitsListCS project as shown.

For the Visual Basic
.NET Project

For the Visual C# Project

Important

For the Visual Basic
.NET Project

For the Visual C# Project

Caution

 Module 8: Creating User Controls 23

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Copy files from Labfiles folder.

Browse to install folder\Labfiles\Lab08\VB\Starter\BenefitsListVB.
In the Files of type box of the Add Existing Item – BenefitsListVB dialog
box, choose All Files (*.*).
Browse to install folder\Labfiles\Lab08\CS\Starter\BenefitsListCS folder.
In the Files of type box of the Add Existing Item – BenefitsListCS dialog
box, choose All Files (*.*).

4. Select all of the files in this folder, and then click Open.
5. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the BenefitsVB project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsListVB component that
you just created:
a. Right-click the BenefitsVB project in Solution Explorer and then click

Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB project.
c. In the Selected Components list, select the BenefitsListVB component,

and then click OK.
The component is added to the References folder in Solution Explorer.

1. In the BenefitsCS project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsListCS component that you
just created:
a. Right-click the BenefitsCS project in Solution Explorer and then click

Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListCS component,

and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET Project:

For the Visual C#
Project:

For the Visual Basic
.NET project:

For the Visual C#
project:

24 Module 8: Creating User Controls

Exercise 1
Creating a User Control

In this exercise, you will create a user control from the Name and Birth Date
controls on the life.aspx page.

 Create the user interface

1. Using Visual Studio .NET, open the 2310LabApplication solution.
2. Add a new user control to the BenefitsVB or BenefitsCS project named

namedate.ascx:
a. Right-click on the Benefits project, point to Add, and then click Add

Web User Control.
b. In the Add New Item dialog box, type namedate.ascx in the Name

field, and then click Open.
3. Open the life.aspx page in the Benefits project.
4. Copy the Label, TextBox, and validation controls for the name and birth

date input fields (seven controls in total).
5. Paste the controls that you just copied onto the namedate.ascx page.
6. Using the Enter key and spacebar, arrange the controls to look like the

following illustration.

 Module 8: Creating User Controls 25

 Create the properties for the user control

1. Open the code-behind page for the namedate.ascx page, which is named
namedate.ascx.vb or namedate.ascx.cs.

2. Add a property named strName of type String to read and write the Text
property of the txtName control.
Your code should look like the following:
Public Property strName() As String
 Get
 Return txtName.Text
 End Get
 Set(ByVal Value As String)
 txtName.Text = Value
 End Set
End Property

public String strName
{
 get
 {
 return txtName.Text;
 }
 set
 {
 txtName.Text = value;
 }
}

When using C#, the set and get keywords are specified in
lowercase.

3. Add a property named dtDate to read and write the Text property of the
txtBirth control.
Add a property named dtDate of type Date to read and write the Text
property of the txtBirth control.
Add a property named dtDate of type DateTime to read and write the Text
property of the txtBirth control.
The data type of the dtDate property is Date for Visual Basic .NET and
DateTime for C#, but the txtBirth control holds a String value. Therefore,
in the Get property, you need to convert the control's value to a Date data
type, and in the Set property, you need to convert the passed in value to a
String data type.

Visual Basic .NET

C#

Caution

Visual Basic .NET

C#

26 Module 8: Creating User Controls

Your code should look like the following:
Public Property dtDate() As Date
 Get
 Return CDate(txtBirth.Text)
 End Get
 Set(ByVal Value As Date)
 txtBirth.Text = Value.ToString()
 End Set
End Property

public DateTime dtDate
{
 get
 {
 return Convert.ToDateTime(txtBirth.Text);
 }
 set
 {
 txtBirth.Text = value.ToString();
 }
}

4. Save your changes.
Save your changes to the files namedate.ascx and namedate.ascx.vb.
Save your changes to the files namedate.ascx and namedate.ascx.cs
You will test the user control in Exercise 2.

Visual Basic .NET

C#

Visual Basic .NET
C#

 Module 8: Creating User Controls 27

Exercise 2
Using the User Control

In this exercise, you will use the user control on the medical.aspx page to
request the user's name and birth date.

 Place user control on medical.aspx page

1. Open the medical.aspx page in the BenefitsVB or BenefitsCS project.
2. Using a drag-and-drop operation, place the namedate.ascx control from

Solution Explorer into the first row of the table on the medical.aspx page.
Your page should look like the following illustration.

3. View the HTML created.
Enter the @ Register directive that was created by Visual Studio .NET on
the lines below.
<%@ Register TagPrefix="uc1" TagName="namedate"
Src="namedate.ascx" %>
__

__

Enter the HTML that was created by Visual Studio .NET for the user
control on the lines below.
<uc1:namedate id="Namedate1" runat="server"></uc1:namedate>
__

__

4. Open the code-behind page for the medical.aspx Web Form,
medical.aspx.vb or medical.aspx.cs.

28 Module 8: Creating User Controls

5. Declare a Protected variable named Namedate1 of data type namedate.
Protected Namedate1 As BenefitsVB.namedate

protected BenefitsCS.namedate Namedate1;

6. Create a Click event procedure for the Save button.
When the user clicks Save, the event procedure should output the name and
birth date values from the user control into the Label2 control on the
medical.aspx page.
Your code should look like the following:
Private Sub cmdSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSave.Click

 Label2.Text = Namedate1.strName & " born on " & _
 Namedate1.dtDate.ToString()
End Sub

private void cmdSave_Click(object sender, System.EventArgs
e)
{
 Label2.Text = Namedate1.strName + " born on " +
 Namedate1.dtDate.ToString();
}

7. Build and browse the medical.aspx page.
8. In the browser, enter a name and birth date, and then click Save.

Visual Basic .NET

C#

Visual Basic .NET

C#

Contents

Overview 1

Lesson: Overview of ADO.NET 2

Lesson: Creating a Connection
to a Database 9

Lesson: Displaying a DataSet in a
List-Bound Control 20

Review 29

Lab 9: Accessing Relational Data Using
Microsoft
Visual Studio .NET 31

Module 9: Accessing
Relational Data Using
Microsoft Visual Studio
.NET

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET iii

Instructor Notes
After completing this module, students will be able to:

! Describe Microsoft® ADO.NET.
! Create a connection to a database by using ADO.NET.
! Display data in a Web Form.

To teach this module, you need the Microsoft PowerPoint® file 2310B_09.ppt.

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices, demonstrations, and lab.

Presentation:
120 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

How to Teach This Module
This section contains information that will help you to teach this module.

This is the first of three modules on ADO.NET in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET:

! Module 9, �Accessing Relational Data Using Microsoft
Visual Studio .NET,� introduces ADO.NET and focuses on accessing data
with ADO.NET through the Microsoft Visual Studio® .NET IDE, as
opposed to accessing data programmatically.

! Module 10, �Accessing Data with Microsoft ADO.NET,� introduces and
compares the use of DataSets, and DataReaders for accessing data from
data sources. This module focuses on using ADO.NET programmatically.
DataReaders are not covered initially because there is no support for them
in the Visual Studio .NET tools.

! Module 11, �Calling Stored Procedures with Microsoft ADO.NET,�
introduces the use of stored procedures for accessing and modifying data in
a database.

Lesson: Overview of ADO.NET
This section describes the instructional methods for teaching each topic in this
lesson.

Do not spend more than the allotted time on this information. Each option will
be reviewed in context in later topics in this lesson.

This is an animated slide. The numbered items and matching arrows appear in
sequence.

Alternative delivery. You can open the 2310B_09A001.htm page on the
instructor machine to show the puzzle.

Lesson: Creating a Connection to a Database
This section describes the instructional methods for teaching each topic in this
lesson.

�The DataAdapter Object Model� topic is the only instance when
SelectCommand, UpdateCommand, InsertCommand, and DeleteCommand
will be covered. Later in the module, stored procedures will be used to select
and update data.

What is ADO.NET?

Accessing Data with
ADO.NET

Practice: Identifying
ADO.NET Components

The DataAdapter Object
Model

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET v

Lesson: Displaying a DataSet in a List-Bound Control
This section describes the instructional methods for teaching each topic in this
lesson.

Note that list-bound controls can also be bound to arrays, as well as to
databases.

You can add a demonstration of the Data Form Wizard if students are
interested. The steps are listed below:

! To use the Data Form Wizard
1. Right-click the project and click Add, then click Add New Item.
2. In the Add New Item dialog box, click Data Form Wizard in the

Templates list, enter Customers in the Name field, and then click Open.
3. Complete the steps of the wizard as shown in the following table.

On this page Do this

Welcome � Click Next.

Choose the dataset you want to use Click Create a new dataset named,
then type dsCustomers in the field, and
then click Next.

Choose a data connection Select an existing connection or create a
new connection to the Northwind
database, and then click Next.

Choose tables or views Add the Customers table to the Selected
item(s) list.

Choose tables and columns to display� Keep the defaults to display all of the
columns in the master table, and then
click Finish.

The Data Form Wizard creates a Web Form with a DataGrid control and a
Load button.

The Data Form Wizard can also be used to create a Master/Detail
view of two related tables in a database, but that is beyond the scope of this
module.

4. Right-click the Customers.aspx page in Solution Explorer and click Build
and Browse.

5. In the browser, click Load.
The DataGrid control is loaded with data and displayed.

To complete this practice, students have to know the machinename. Inform
students how they can find out the machinename.

What are List-Bound
Controls?

Demonstration: Binding
List-Bound Controls to a
Database

Note

Practice: Using a
DataGrid

vi Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that all the students get the benefit
of knowing the right answers.

Lab 9: Accessing Relational Data Using
Microsoft Visual Studio .NET

Before beginning the lab, students should have completed all of the practices
and answered all of the Review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 1

Overview

! Overview of ADO.NET

! Creating a Connection to a Database

! Displaying a DataSet in a List-Bound Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft® ADO.NET is the technology that you use to connect
Microsoft .NET-based Web applications and Microsoft Windows® applications
to data sources, such as Microsoft SQL Server� databases and Extensible
Markup Language (XML) files. ADO.NET is specifically designed to work in
disconnected environments, such as the Internet, and it provides a flexible and
simple way for developers to integrate data access and data manipulation into
their Web applications.

In this module, you will learn what ADO.NET is and how you can incorporate
it into a Microsoft ASP.NET Web application by using data tools that are built
into Microsoft Visual Studio® .NET.

After completing this module, you will be able to:

! Describe ADO.NET.
! Create a connection to a database by using ADO.NET.
! Display data in a Web Form by using a list-bound control.

Introduction

Objectives

2 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Lesson: Overview of ADO.NET

! What is ADO.NET?

! Using Namespaces

! The ADO.NET Object Model

! What is a DataSet?

! Accessing Data with ADO.NET

! Practice: Identifying ADO.NET Components

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because of the importance of data storage in Web applications, you should have
a thorough understanding of the data access methods that ADO.NET provides
for ASP.NET Web Forms. In this lesson, you will learn what ADO.NET is and
how it works.

After completing this lesson, you will be able to:

! Import the appropriate ADO.NET namespaces into your Web application.
! Describe the purpose of individual objects in ADO.NET.
! Explain the purpose of a DataSet.
! Connect to a database by using ADO.NET.

Introduction

Lesson objectives

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 3

What is ADO.NET?

ADO.NET provides a set of classes for working with
data. ADO.NET provides:

! An evolutionary, more flexible successor to ADO

! A system designed for disconnected environments

! A programming model with advanced XML support

! A set of classes, interfaces, structures, and
enumerations that manage data access from within
the .NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO.NET is a new technology that is based on the usefulness of Microsoft
ActiveX® Data Objects (ADO). ADO.NET is not a revision of ADO; it is a
completely new way to manipulate data, built on ADO. ADO.NET contains
numerous improvements over the previous version of ADO, and it greatly
simplifies the process of connecting your Web application to a database.

ADO.NET coexists with ADO. While most new .NET-based Web applications
will be written by using ADO.NET, ADO remains available to the .NET
programmer through the .NET COM interoperability services.

ADO.NET is a set of classes that you use to connect to and manipulate data
sources. Unlike ADO, which relies on connections, uses OLE DB to access
data, and is COM-based, ADO.NET is specifically designed for data-related
connections in a disconnected environment, thereby making it the perfect
choice for Internet-based Web applications. ADO.NET uses XML as the format
for transmitting data to and from the database and your Web application,
thereby ensuring greater compatibility and flexibility than ADO.

Introduction

Definition

4 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Using Namespaces

! Use the Imports or using statement to import
namespaces

! Namespaces used with ADO.NET include:
" System.Data
" System.Data.SqlClient
" System.Data.OleDb

Imports System.Data
Imports System.Data.SqlClient
Imports System.Data
Imports System.Data.SqlClient

using System.Data;
using System.Data.SqlClient;

using System.Data;
using System.Data.SqlClient;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are three namespaces that you import into your ASP.NET Web Form if
you are using ADO.NET. You will always use the System.Data namespace;
and you will also use either System.Data.SqlClient or System.Data.OleDb,
depending on the data source.

When using ADO.NET, you must import the System.Data namespace. To
import this namespace, you use the Imports or using keyword:

Imports System.Data

using System.Data;

If you are working with data in a SQL Server 2000 database, you also import
the System.Data.SqlClient namespace. If you are working with data from
other database sources, you need to import the System.Data.OleDb namespace.
The following code example shows how to import both of these namespaces:

Imports System.Data.SqlClient
Imports System.Data.OleDb

using System.Data.SqlClient;
using System.Data.OleDB;

Introduction

ADO.NET namespaces

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 5

The ADO.NET Object Model
DataSet

SQL Server .NET
Data Provider

OLE DB .NET
Data Provider

SQL Server 7.0
(and later)

OLEDB sources
(SQL Server 6.5)

OleDbConnectionOleDbConnection

OleDbDataAdapterOleDbDataAdapter
SqlDataAdapterSqlDataAdapter

SqlConnectionSqlConnection

DataTable
DataTable

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ADO.NET object model provides the structure for accessing data from
different data sources. There are two main components of the ADO.NET object
model: the DataSet and the .NET data provider.

A DataSet is made up of one or more DataTables, and it is designed for data
access, regardless of the data source. For example, a DataSet may contain data
from a SQL Server 2000 database, an OLE DB source, and an XML file. The
DataSet may also use a DataView, which is a customizable view of a
DataTable.

The .NET data provider provides the link between the data source and the
DataSet. Examples of objects that are provided by the .NET data providers are
listed in the following table.

.NET data provider objects Purpose

Connection Provides connectivity to the data source.

Command Provides access to database commands.

DataReader Provides data streaming from the source.

DataAdapter Uses the Connection object to provide a link between
the DataSet and the data provider. The DataAdapter
object also reconciles changes that are made to the data
in the DataSet.

The Microsoft .NET Framework includes the SQL Server .NET Data Provider
(for SQL Server version 7.0 or later), and the OLE DB .NET Data Provider.
You use the SqlConnection, SqlCommand, SqlDataReader, and
SqlDataAdapter objects to read and manipulate data in a SQL Server 7.0 or
later database. You use OleDbConnection, OleDbCommand,
OleDbDataReader, and OleDbDataAdapter objects to read and manipulate
data in all of the other types of databases.

Introduction

ADO.NET components

Using the objects

6 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

What is a DataSet?

SQL Server 2000

DataSet

DataTable

DataTable

Physical storage

OleDb Database

SqlDataAdapterSqlDataAdapter

SqlConnectionSqlConnection

DataTable

Web server memory

OleDbDataAdapterOleDbDataAdapter

OleDbConnectionOleDbConnection

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataSet stores information in a disconnected environment. After you
establish a connection to a database, you can then access its data. The DataSet
object is the primary way to store that data when using ADO.NET.

The DataSet object allows you to store data, which has been collected from a
data source, in your Web application. The data stored in a DataSet can be
manipulated without the ASP.NET Web Form maintaining a connection to the
data source. A connection is re-established only when the data source is updated
with changes.

The DataSet object stores the data in one or more DataTables. Each
DataTable may be populated with data from a unique data source. You can
also establish relationships between two DataTables by using a DataRelation
object.

You will learn more about the DataRelation object in Module 10,
�Accessing Data with Microsoft ADO.NET,� in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Introduction

DataSet object

DataTables and
DataRelations

Note

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 7

Accessing Data with ADO.NET

DatabaseDatabase

4. Return the DataSet to the Client
5. Client manipulates the data

2. Create the SqlConnection and SqlDataAdapter objects

3. Fill the DataSet from the DataAdapter
and close the connection

SqlDataAdapter

SqlConnection

List-Bound
Control

List-Bound
Control

1. Client makes request111

222

333

444

555
6. Update the DataSet
7. Use the SqlDataAdapter to open

the SqlConnection, update the
database, and close the
connection

666

777

ClientClient

Web serverWeb server

DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are typically three stages in data access: first, the accessing of the data
from a data source and displaying it on an ASP.NET Web Form; second,
manipulating the data; and third, sending the data updates back to the database.

In a typical scenario, a client makes a request to an ASP.NET page. The page
creates the SqlConection and SqlDataAdapter objects, populates a DataSet
from the database by using the SqlDataAdapter object, and then returns the
DataSet to the client by means of a list-bound control.

The data is transferred as XML data. Although the DataSet is transmitted as
XML, ASP.NET and ADO.NET automatically transform the XML data into a
DataSet, thereby creating a complete, yet simplified, programming model.

After the DataSet is populated, the client can view and manipulate the data.
While the data is being viewed and manipulated there is no connection between
the client and the Web server, nor is there a connection between the Web server
and the database server. The design of the DataSet makes this disconnected
environment easy to implement. Because the DataSet is stateless, it can be
safely passed between the Web server and the client without tying up server
resources, such as database connections.

When the user is finished viewing and modifying the data, the client passes the
modified DataSet back to the ASP.NET page, which uses a DataAdapter to
reconcile the changes in the returned DataSet with the original data that is in
the database. The data is sent as XML data between the client and Web server,
and then between the Web server and the database server.

Introduction

Accessing data

Manipulating data

Updating the database

8 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Practice: Identifying ADO.NET Components

! Students will:

" Move icons of various components of
ADO.NET to the correct locations

! Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will run a Macromedia Flash animation and construct a
picture of the ADO.NET architecture.

! To run the practice
1. Open the 2310B_09A001.htm page from the install folder\Practices\Mod09

folder.
2. Organize the pieces of the ADO.NET architecture onto the frame at the

bottom of the page.
3. When you think you have the correct answer, click Reveal.

Introduction

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 9

Lesson: Creating a Connection to a Database

! Using Server Explorer to Generate a Connection

! The DataAdapter Object Model

! Demonstration: Connecting to a Database

! Generating a DataSet

! Demonstration: Generating a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO.NET is used to connect a Web Form to a database. In this lesson, you will
learn how to connect to different types of databases by using ADO.NET
objects. You will also learn how to store data in a DataSet.

After completing this lesson, you will be able to:

! Generate a connection to a database by using Server Explorer.
! Explain how a DataAdapter works.
! Generate a typed DataSet from a DataAdapter.

Introduction

Lesson objectives

10 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Using Server Explorer to Generate a Connection

! Create a new data
connection by dragging
a Table from Server
Explorer

! Create a new data
connection using the
Data Links dialog box

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can establish a connection to a data source from within the
Visual Studio .NET integrated development environment (IDE). By using the
Visual Studio .NET IDE, you simplify the process of establishing a connection
to a data source and have the opportunity to verify the connection during design
time.

Server Explorer, which is part of the Visual Studio .NET IDE, allows you to
browse for servers that are running SQL Server and other databases.

Introduction

Create a connection

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 11

! To connect to a database table
1. In Server Explorer, expand the list of servers, expand the database that you

want to use, and then expand the Tables list.
Server Explorer displays the list of tables in the selected database, as shown
in the following illustration. The server list in Server Explorer only displays
servers that are running SQL Server 7.0 or later. If you need to connect to a
different type of database, you use the Data Links Properties dialog box.

2. Within the list of tables, click the specific table that you want to connect to,
and drag it to the open project.

12 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Visual Studio .NET automatically configures a connection and a
DataAdapter to connect to that table. A SqlConnection or
OleDbConnection object is added to the project, and the object is then
displayed at the bottom of the Web Form, as shown in the following
illustration.

To add a connection to a database that is not running SQL Server, you use the
Data Connections option, which is located at the top of the Server Explorer
list. In Server Explorer, right-click Data Connections and then click Add
Connection, as shown in the following illustration.

Data Link Properties
dialog box

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 13

In the resulting Data Link Properties dialog box, select the data type that you
will be connecting to, as shown in the following illustration.

14 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

After selecting the data type, click Next or select the Connection tab and
provide the necessary information to connect to the database, as shown in the
following illustration.

After you have created a connection from the Data Link Properties dialog
box, you can click on the connection and drag it to the project, just as you
would drag a connection from the SQL Servers list in Server Explorer.

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 15

The DataAdapter Object Model

sp_SELECT

CommandCommand

SelectCommand UpdateCommand InsertCommand DeleteCommand
DataAdapter

CommandCommand CommandCommand CommandCommand

ConnectionConnection

sp_UPDATE sp_INSERT sp_DELETE

Database

DataSetDataSet

DataReaderDataReader

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a DataAdapter connects to a database, it uses several other objects to
communicate with the database.

The DataAdapter object uses the Connection object to connect to a database,
and it then uses Command objects to retrieve data and resolve changes to the
database.

The DataAdapter object has properties. These properties are SqlCommand or
OleDbCommand objects that contain SQL statements. The DataAdapter
object has the following four Command-type properties:

! SelectCommand. This property issues a SQL SELECT statement.
! UpdateCommand. This property issues a SQL UPDATE statement.
! InsertCommand. This property issues a SQL INSERT statement.
! DeleteCommand. This property issues a SQL DELETE statement.

Each of these DataAdapter properties can have SQL statements or can be calls
to stored procedures in the database. By using stored procedures, you reduce the
amount of code that is required to perform SELECT, INSERT, UPDATE, and
DELETE operations.

If your data connects to, or is generated from, a single database table, you can
take advantage of the CommandBuilder object to automatically generate the
DeleteCommand, InsertCommand, and UpdateCommand properties of the
DataAdapter. Using the CommandBuilder object reduces development time.

Introduction

DataAdapter definition

16 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Demonstration: Connecting to a Database

! Expand Server Explorer to a table in a SQL
Server database

! Drag the table to an ASP.NET Web Form

! View the data using the SqlDataAdapter

! View the source of the page that was
created

! Configure the DataAdapter object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to add a SqlConnection object and a
SqlDataAdapter object to a Web Form.

The completed code for this demonstration is in the DemoSolution.aspx page in
the install folder\Democode\Mod09VB, install folder\Democode\Mod09CS
folder, or in the 2310Demos solution.

! To run the demonstration
1. Open the Mod09VB or Mod09CS project in the 2310Demos solution.
2. Open the WebForm1.aspx page.
3. Open Server Explorer and expand the folders Servers, machinename,

SQL Servers, machinename, pubs, and Tables.
4. Select the authors table and drag it onto the WebForm1.aspx page.

This creates a sqlConnection1 object and a sqlDataAdapter1 object.
5. Right-click sqlDataAdapter1, and then click Preview Data.
6. In the Data Adapter Preview dialog box, click Fill DataSet to display the

data from the database.
7. Close the Data Adapter Preview dialog box.
8. View the Hypertext Markup Language (HTML) for the page. There are no

HTML tags for the Connection or DataAdpater objects.
9. View the code-behind page for the page. There is a lot of code that is

generated by Visual Studio .NET that sets up the DataAdapter object to
retrieve, modify, and delete data from the database that it is connected to.

Introduction

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 17

Generating a DataSet

! You can generate a DataSet�

" �through the UI�
Creates a DataSet that allows you to access data as an
object

" �or through code�

! and then fill�

Dim ds As New DataSet()Dim ds As New DataSet()

DataAdapter1.Fill(ds)
DataAdapter2.Fill(ds)

DataAdapter1.Fill(ds)
DataAdapter2.Fill(ds)

DataSet ds = new DataSet();DataSet ds = new DataSet();

DataAdapter1.Fill(ds);
DataAdapter2.Fill(ds);

DataAdapter1.Fill(ds);
DataAdapter2.Fill(ds);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you drag a table from Server Explorer onto a Web Form, most of the
code that is needed to create the Connection and DataAdapter objects is
generated by Visual Studio .NET, in the code-behind page. However, you need
to add code to populate the DataSet. You add this code to the Page_Load
event procedure or to an event procedure of a control that uses the
DataAdapter object.

There are two ways to generate a DataSet in Visual Studio .NET. You can
generate it graphically, through the user interface (UI), or with a single line of
code.

! To generate a DataSet from the UI
1. On the ASP.NET page where you have created the Connection and

DataAdapter objects, right-click the DataAdapter object and click
Generate Dataset.

Introduction

Generating a DataSet

18 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

2. In the Generate Dataset dialog box, create a new typed DataSet, select
Add this dataset to the designer, as shown in the following illustration,
and then click OK.

The Generate Dataset Dialog then creates a strongly typed DataSet in an
.xsd file. This .xsd file allows you to reference tables and fields in the
Dataset by name.

You will learn more about using typed DataSets in Module 10,
�Accessing Data with Microsoft ADO.NET,� in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

! To generate a DataSet using code
1. In the code-behind page, in the Page_Load event procedure, declare a new

variable as a DataSet. The following code demonstrates how to create a
new DataSet called ds:
Dim ds As New DataSet()

DataSet ds = new DataSet();

2. After you have a DataSet in your Web Form, you can fill it in with data by
using the Fill method of the DataAdapter
DataAdapter1.Fill(ds)

DataAdapter1.Fill(ds);

Note

Visual Basic .NET

C#

Filling the DataSet

Visual Basic .NET

C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 19

Demonstration: Generating a DataSet

! Create a typed DataSet from a
DataAdapter

! Add a second DataTable from a different
DataAdapter

! Show the schema of DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to generate a Dataset from a
DataAdapter and then fill the DataSet with data.

The completed code for this demonstration is in the DemoSolution.aspx page in
the install folder\Democode\Mod09VB, install folder\Democode\Mod09CS
folder, or in the 2310Demos solution.

! To run the demonstration
1. In the Mod09VB or the Mod09CS project, open the WebForm1.aspx page

that has the sqlConnection and sqlDataAdapter objects on it.
2. Right-click the sqlDataAdapter1 object and then click Generate Dataset.
3. In the Generate Dataset dialog box, create a new DataSet named DataSet5.

A file called DataSet5.xsd is created in the project.
4. Open the DataSet5.xsd file. This file contains the schema of the data that

was retrieved by the DataAdapter object.
5. Close the DataSet5.xsd file.

Introduction

20 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Lesson: Displaying a DataSet in a List-Bound Control

! What are List-Bound Controls?

! Displaying DataSet Data in List-Bound Controls

! Demonstration: Binding List-Bound Controls to a
Database

! Practice: Using a DataGrid

! Demonstration: Customizing the DataGrid Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to display, on a Web Form, the data from an
ADO.NET connection. You will specifically learn about list-bound controls,
which are the controls that can be populated automatically with data from a data
source.

After completing this lesson, you will be able to:

! Describe what list-bound controls are and how they are used.
! Use a DataGrid to display data.
! Customize the appearance of a DataGrid.

Introduction

Lesson objectives

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 21

What are List-Bound Controls?

! Controls that connect to a data source and display the
data

! List-bound controls include the following:

" DropDownList

" ListBox

" CheckBoxList

" RadioButtonList

" DataGrid

" DataList

" Repeater

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can directly link data-bound controls that are on a Web Form to a data
source. There are two types of data-bound controls:

! Single-bound control
! List-bound control

List-bound controls are controls that connect to a data source and then display
the data from that source. The list-bound controls are directly linked to a data
source. ASP.NET automatically fills the list-bound control with data.

The following table shows Web controls that are list-bound controls.

Control Description

CheckBoxList A multi-selection check box group that can be dynamically

generated by using data binding.

DataGrid A control that displays the fields of a data source as columns in
a table.

DataList A control that displays a template-defined data bound list.

DropDownList A single selection, drop-down list control.

ListBox A list control that allows single or multiple item selection.

RadioButtonList A single-selection radio button group that can be dynamically
generated through data binding.

Repeater A data-bound list that uses a template. This control has no
built-in layout or styles, so you must explicitly declare all
HTML layout, formatting, and style tags within the control's
templates.

Introduction

Definition

Examples of list-bound
controls

22 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Displaying DataSet Data in List-Bound Controls

! Set the properties

! Fill the DataSet, then call the DataBind method
DataAdapter1.Fill(ds)
lstEmployees.DataBind()

DataAdapter1.Fill(ds)
lstEmployees.DataBind()

PropertyPropertyProperty DescriptionDescriptionDescription

DataSourceDataSource # The DataSet containing the data# The DataSet containing the data

DataMemberDataMember # The DataTable in the DataSet# The DataTable in the DataSet

DataTextFieldDataTextField # The field in the DataTable that is displayed# The field in the DataTable that is displayed

DataValueFieldDataValueField # The field in the DataTable that becomes the
value of the selected item in the list

The field in the DataTable that becomes the
value of the selected item in the list

DataAdapter1.Fill(ds);
lstEmployees.DataBind();

DataAdapter1.Fill(ds);
lstEmployees.DataBind();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can connect a DataSet to a list-bound control, which automatically fills the
list-bound control with the data from the DataSet.

Each list-bound control in Visual Studio .NET has properties that are specific to
list-bound controls. The following table describes the properties that you must
set to bind a list-bound control to a DataSet.

Property Description

DataSource Specifies the DataSet containing the data.

DataMember Specifies the DataTable in the DataSet.

DataTextField Specifies the field in the DataTable that will be displayed in the
list.

DataValueField Specifies the field in the DataTable that becomes the value of
the selected item in the list.

The DataTextField and DataValueField properties are used by the ListBox,
DropDownList, CheckBoxList, and RadioButtonList controls because these
controls can only display one field from a row of the DataSet.

After a DataSet has been filled with data, you call the DataBind method of the
list-bound control to connect the control to the DataSet. The following code
binds the data that is specified in the DataSource property to the lstEmployees
list box:

lstEmployees.DataBind()

lstEmployees.DataBind();

Introduction

Setting list-bond control
properties

Bind the data

Visual Basic .NET

C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 23

Demonstration: Binding List-Bound Controls to a Database

! Add a DataGrid to a Web Form

! Set the DataSource and DataMember
properties

! Fill the DataSet

! Call DataBind()

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to bind an existing DataSet to a
DataGrid control that is on a Web Form.

The completed code for this demonstration is in the DemoSolution.aspx page in
the install folder\Democode\Mod09VB, install folder\Democode\Mod09CS
folder, or in the 2310Demos solution.

! To run the demonstration
1. In the Mod09 project, open the WebForm1.aspx page that has the

sqlConnection objects, sqlDataAdapter objects, and the DataSet on it.
2. Using the Toolbox, put a Button control and a DataGrid control on

WebForm1.aspx.
3. Select the DataGrid control and set the DataSource property to the

dataSet51 DataSet and the DataMember property to the authors
DataTable in the Properties window.

4. Create a Click event procedure for the Button control and add the following
code to fill the DataSet and bind the authors table to the DataGrid:
SqlDataAdapter1.Fill(DataSet51)
DataGrid1.DataBind()

sqlDataAdapter1.Fill(dataSet51);
DataGrid1.DataBind();

5. In Project Explorer, right-click the WebForm1.aspx page and click Build
and Browse.

6. In the browser, click Button1 on the Web Form.
You see the data in the DataGrid control.

7. Double-click the Web Form in Design mode, this will ensure the
Page_Load procedure is correctly bound to the page load event.

Introduction

Visual Basic .Net

C#

24 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

8. Move the two lines of code from the Button1_Click event procedure to the
Page_Load event procedure and add an If Not Page.IsPostBack check:
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not Page.IsPostBack Then
 SqlDataAdapter1.Fill(DataSet51)
 DataGrid1.DataBind()
 End If
End Sub

private void Page_Load(object sender, System.EventArgs e)
{
 if (!Page.IsPostBack)
 {
 sqlDataAdapter1.Fill(dataSet51);
 DataGrid1.DataBind();
 }
}

9. In Project Explorer, right-click the WebForm1.aspx page and click Build
and Browse.

10. In the browser, click Button1 on the Web Form. The DataGrid control
continues to show the data without re-reading the data from the database.

11. Open the ListboundControls.aspx page.
The ListboundControls.aspx page has four list-bound controls that are
bound to the same DataSet.

12. Build and browse the ListboundControls.aspx page.
13. Show the source of the page and point out the properties that you have to set

to bind these list-bound controls to a DataSet. Compare the properties of the
list-bound controls to the properties that you have to set for a DataGrid
control.

Visual Basic .NET

C#

Using other list-bound
controls

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 25

Practice: Using a DataGrid

! Students will:

" Create a SqlConnection

" Create a SqlDataAdapter

" Generate a DataSet

" Place a DataGrid on a Web Form

" Bind the DataGrid to the DataSet

! Time: 5 minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a Connection and a DataAdapter to connect to
a table in a database, generate a DataSet, place a DataGrid control on a Web
Form, and then bind the DataGrid control to the DataSet.

! To display data in a DataGrid control
1. Create a new Web application project and set the location to

http://localhost/Mod09PracticeVB
http://localhost/Mod09PracticeCS

2. Open the WebForm1.aspx page.
3. Open Server Explorer and expand the folders machinename, SQL Servers,

machinename, pubs, and Tables.
4. Click the authors table and drag it onto the WebForm1.aspx page.

Visual Studio .NET creates a sqlConnection and a sqlDataAdapter object.
5. Right-click the sqlDataAdapter object and click Generate DataSet.
6. In the Generate DataSet dialog box, create a new DataSet named DataSet1

and click OK.
A strongly typed DataSet and a file named DataSet1.xsd are created.

7. Using the Toolbox, put a DataGrid control on WebForm1.aspx.
8. Select the DataGrid control and set the DataSource property to the

DataSet11 DataSet and the DataMember property to the authors table.

Introduction

Visual Basic .NET
C#

26 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

9. Create a Page_Load event procedure and add the following code to bind the
authors table to the DataGrid:
SqlDataAdapter1.Fill(DataSet11)
DataGrid1.DataBind()

sqlDataAdapter1.Fill(dataSet11);
DataGrid1.DataBind();

10. In Solution Explorer, right-click the WebForm1.aspx page and click Build
and Browse.

Visual Basic .NET

C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 27

Demonstration: Customizing the DataGrid Control

! Using AutoFormat

! Setting custom column headers

! Paging

! Sorting

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to customize the look and feel of the
DataGrid control.

The completed code for this demonstration is in the DemoSolution.aspx page in
the install folder\Democode\Mod09VB, install folder\Democode\Mod09CS
folder, or in the 2310Demos solution.

! To run the demonstration
1. In the Mod09 project, open the WebForm1.aspx page with the

SqlConnection, SqlDataAdapter, DataSet, and DataGrid objects on it.
2. Select the DataGrid control and then select the Auto Format hyperlink in

the Properties window.
3. In the Auto Format dialog box, select a format.
4. Save your changes and view the page in the browser. You do not have to

rebuild the project because you did not change any code.
a. Select the DataGrid control and then click the Property Builder

hyperlink in the Properties window.
5. In the Properties dialog box, on the Columns tab, do the following:

a. Clear the Create columns automatically at run time check box.
b. Select a couple of columns (such as au_lname, au_fname, or phone) and

add them to the Selected columns list.
c. Set the Header text for each column to be more "user friendly."
d. Click Apply and then click OK.

6. Save your changes and view the page in the browser.

Introduction

Auto Format

Custom Column
Headers

28 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

7. Select the DataGrid control and then click the Property Builder hyperlink
in the Property window.

8. In the Properties dialog box, on the Paging tab:
a. Select the Allow paging check box.
b. Point out the Allow custom paging check box. This option lets you

define the paging algorithm.
c. Set the Page size field to 5.
d. Select the Show navigation buttons check box and set the position and

mode for the navigation buttons. Set the Mode to Page numbers.
e. Click Apply and then click OK.

9. In the code-behind page, for the WebForm1.aspx page, create a
PageIndexChanged event procedure for the DataGrid control:
Private Sub DataGrid1_PageIndexChanged(_
 ByVal source As Object, _
 ByVal e As _
 System.Web.UI.WebControls.DataGridPageChangedEventArgs
) _
 Handles DataGrid1.PageIndexChanged

End Sub

private void DataGrid1_PageIndexChanged(

object source,
System.Web.UI.WebControls.DataGridPageChangedEventArgs
e)

{
}

Notice that the EventArgs argument is of type
DataGridPageChangedEventArgs.

10. Add the following code to the DataGrid1_PageIndexChanged event
procedure to implement paging:
DataGrid1.CurrentPageIndex = e.NewPageIndex
SqlDataAdapter1.Fill(DataSet51)
DataGrid1.DataBind()

DataGrid1.CurrentPageIndex = e.NewPageIndex;
sqlDataAdapter1.Fill(dataSet51);
DataGrid1.DataBind();

11. Save your changes, build the project (because you added code), and then
view the WebForm1.aspx page in the browser.

12. Click the page numbers to move through the DataSet.

Paging

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 29

Review

! Overview of ADO.NET

! Creating a Connection to a Database

! Displaying a DataSet in a List-Bound Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How many DataTables can there be in a DataSet?
As many as you want.

2. How do you create a connection to a database?
Either drag a table from a SQL Server database in Server Explorer, or
create a new connection with the Data Links dialog box.

3. What namespaces do you use when accessing a SQL Server 2000 database?
System.Data and System.Data.SqlClient

4. When you create a SqlDataAdapter with the Visual Studio .NET tools,
what are the SelectCommand, UpdateCommand, InsertCommand, and
DeleteCommand properties set to?
By default, Visual Studio .NET creates SQL statements and
SQLCommand objects for each of the command properties of the
SqlDataAdapter. You can configure the SqlDataAdapter to create
stored procedures instead.

30 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

5. How do you create a DataSet?
Either generate one from a SqlDataAdapter through the Visual Studio
.NET IDE, or declare one in an event procedure with the following
code:
For Visual Basic .NET
 Dim ds As New DataSet()

For C#
 DataSet ds = new DataSet();

6. After you have created a SqlConnection object, a SqlDataAdapter object,
and a DataSet object, how do you display the data in a DataGrid control?
Set the DataSource and DataMember properties of the DataGrid to the
DataSet and DataTable that you want to display; then, in an event
procedure, fill the DataSet (named ds) and call the DataBind method of
the DataGrid (named DataGrid1), as shown in the following code:
For Visual Basic .NET
 SqlDataAdapter1.Fill(ds)

 DataGrid1.DataBind()

For C#
 SqlDataAdapter1.Fill(ds);

 DataGrid1.DataBind();

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 31

Lab 9: Accessing Relational Data Using Microsoft
Visual Studio .NET

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Create a connection to a Microsoft® SQL Server� database.
! Read data from a SQL Server database into a DataSet object.
! Display DataSet data in a DataGrid control.
! Format a DataGrid control to display custom headers.
! Implement paging for a DataGrid control.

This lab focuses on the concepts in Module 9, �Accessing Relational
Data Using Microsoft Visual Studio .NET,� in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET, and as a result
may not comply with Microsoft security recommendations.

Before working on this lab, you must have:

! Knowledge of how to use Web controls on a Microsoft ASP.NET Web
Form.

! Knowledge of how to create event procedures for controls on a Web Form.

Objectives

Note

Prerequisites

32 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

One benefit that is offered by Coho Winery is medical insurance. When
applying for medical insurance, a user must select a primary care physician.
The doctors that are approved by your company are all listed in a SQL Server
database that is called doctors. In this lab, you will create a page to display all
of the doctors in the database and allow a user to select one of the doctors as
their primary care physician.

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 33

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#� .NET.

If you have not created these projects, complete the following steps:

! Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

! Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, �Lab Recovery,� in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

34 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

! Update the Benefits project
1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files.

Browse to the install folder\Labfiles\Lab09\VB\Starter\BenefitsVB
folder.
Browse to the install folder\Labfiles\Lab09\CS\Starter\BenefitsCS
folder.

4. In the Files of type box of the Add Existing Item � Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

! Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, �Lab Recovery,� in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project.
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.

Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. in the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 35

! Update the BenefitsList project
1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab09\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab09\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item � BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

! Create a reference to the BenefitsList component in the Benefits project
1. In the Benefits project in the 2310LabApplication solution, complete the

following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or the BenefitsCS project in Solution

Explorer and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

36 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Exercise 1
Connecting to the Doctors Database

In this exercise, you will use Visual Studio .NET to connect to the Doctors
database and display the data in a DataGrid control on the doctors.aspx page.

! Create the connection and data adapter
1. In Visual Studio .NET, open the 2310LabApplication solution.
2. Right click the BenefitsVB or BenefitsCS project, point to Add, and then

click Add Existing Item.
3. Add the doctors.aspx file from:

The install folder\Labfiles\Lab09\VB\Starter\BenefitsVB folder.
The install folder\Labfiles\Lab09\CS\Starter\BenefitsCS folder.

4. Expand Server Explorer to view the databases on the local SQL Server.
5. Using a drag-and-drop operation, place the doctors table, from the doctors

database, onto the doctors.aspx page.

! Create the DataSet
1. Right-click the sqlDataAdapter1 object on the doctors.aspx page and then

click Generate Dataset.
2. In the Generate Dataset dialog box, create a new DataSet named

dsDoctors, ensure that the Add this dataset to the designer option is
selected, and then click OK.

! Display the DataSet in a DataGrid control
1. Drag a DataGrid control from the Toolbox onto the doctors.aspx page, so

your page looks like the following illustration.

Visual Basic .NET
C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 37

2. Set the properties of the DataGrid control in the Properties window,
according to the information in the following table.

Property Value

ID dgDoctors

DataSource dsDoctors1

DataMember doctors

3. In the Properties window, click the Auto Format link below the list of
properties.

4. In the Auto Format dialog box, click a formatting option, such as Simple 1,
and then click OK.

5. Open the code-behind page for the doctors.aspx page and locate the
following comment:
'TODO Lab 9: bind the datagrid to the doctors table

//TODO Lab 9: bind the datagrid to the doctors table

6. Add the following code to display the DataSet data in the DataGrid
control:
SqlDataAdapter1.Fill(DsDoctors1)
dgDoctors.DataBind()

sqlDataAdapter1.Fill(dsDoctors1);
dgDoctors.DataBind();

7. Save your changes.

Visual Basic .NET

C#

Visual Basic .NET

C#

38 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

Exercise 2
Paging and Selection in a DataGrid Control

In this exercise, you will implement paging for the DataGrid control on the
doctors.aspx page, and allow the user to select a doctor from the DataGrid.

! Implement paging
1. Open the doctors.aspx page in the Benefits project.
2. Select the DataGrid control and then click Property Builder in the

Properties window.
3. In the dgDoctors Properties dialog box, on the Paging tab, set the

properties, as shown in the following table, and then click OK.

Property Value

Allow paging Checked

Page size 5

Show navigation buttons Checked

Position Bottom

Mode Page numbers

Numeric buttons 10

4. Click Apply, and then click OK.
5. Create a PageIndexChanged event procedure.

Open the code-behind page for the doctors.aspx page and create a
PageIndexChanged event procedure for the DataGrid control:
a. In the code-behind page, click dgDoctors in the Class Name drop-down

list.
b. Click PageIndexChanged in the Method Name drop-down list.
In the properties for the dgDoctors DataGrid control, click the events
button. Scroll down the list of events, double click the PageIndexChanged
event.

6. Add the following code to the dgDoctors_PageIndexChanged event
procedure to implement paging:
dgDoctors.CurrentPageIndex = e.NewPageIndex
SqlDataAdapter1.Fill(DsDoctors1)
dgDoctors.DataBind()

dgDoctors.CurrentPageIndex = e.NewPageIndex;
sqlDataAdapter1.Fill(dsDoctors1);
dgDoctors.DataBind();

7. Build and browse the doctors.aspx page.
8. Click the page numbers on the DataGrid control to move through the pages

of doctor names.

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET 39

! Add a select column
1. Open the doctors.aspx page in the Benefits project.
2. Select the DataGrid control and then click Property Builder in the

Properties window.
3. In the dgDoctors Properties dialog box, on the Columns tab, add a Select

column:
a. Expand the Button Column list in the Available columns list.
b. Click Select, then click the > button to add it to the Selected columns

list.
4. Set the Header text for the new column to Select, and then click OK.

! Send the selected doctor to the medical.aspx page
1. Open the doctors.aspx page in the Benefits project.
2. Create a click event procedure for the cmdSubmit button.
3. Add the following code to read the selected doctor's name and send it to the

medical.aspx page:
Dim strDrName As String
strDrName = Trim(dgDoctors.Items _
 (dgDoctors.SelectedIndex).Cells(3).Text) & " " & _
 Trim(dgDoctors.Items _
 (dgDoctors.SelectedIndex).Cells(2).Text)
Response.Redirect("medical.aspx?pcp=" & strDrName)

string strDrName;
strDrName = dgDoctors.Items
 [dgDoctors.SelectedIndex].Cells[3].Text
 .Trim() + " " +
 dgDoctors.Items[dgDoctors.SelectedIndex].Cells[2]
 .Text.Trim();
Response.Redirect("medical.aspx?pcp=" + strDrName);

4. Open the code-behind page for the medical.aspx page in the Benefits
project.

Visual Basic .NET

C#

40 Module 9: Accessing Relational Data Using Microsoft Visual Studio .NET

5. Modify the Page_Load event procedure, so that if there is an argument on
the Uniform Resource Locator (URL), display it in the Primary Care
Physician text box:
If Not Page.IsPostBack Then
 If Request.QueryString("pcp") <> "" Then
 txtDoctor.Text = Request.QueryString("pcp")
 End If
End If

if (!Page.IsPostBack)
{
 if (Request.QueryString["pcp"] != "")
 {
 txtDoctor.Text = Request.QueryString["pcp"];
 }
}

6. Save your changes to the doctors.aspx and medical.aspx pages.
7. Build and browse the medical.aspx page:

a. In the browser, click the Select a doctor hyperlink.
The hyperlink displays the doctors.aspx page.

b. Move through the doctors on the doctors.aspx page and select a doctor
by clicking Select.

c. Click Submit to send your selection back to the medical.aspx page.

Visual Basic .NET

C#

Contents

Overview 1

Lesson: Introduction to Using ADO.NET 2

Lesson: Connecting to a Database 8

Lesson: Accessing Data with DataSets 16

Lesson: Using Multiple Tables 36

Lesson: Accessing Data with DataReaders 46

Review 58

Lab 10: Accessing Data with Microsoft
ADO.NET 60

Module 10: Accessing
Data with Microsoft
ADO.NET

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 10: Accessing Data with Microsoft ADO.NET iii

Instructor Notes
In this module, students will learn how to use Microsoft® ADO.NET to add data
access to Microsoft ASP.NET Web applications.

After completing this module, students will be able to:

 Describe the Microsoft ADO.NET object model for accessing data:

• Describe how DataSet and DataReader objects access data.

• Chose between DataSet and DataReader objects, depending on the data
access needs of a Web application.

 Manually connect to a Microsoft SQL Server™ database by using
SqlConnection and SqlDataAdapter objects:

• Explain the difference between mixed-mode and Microsoft Windows®-
only authentication.

• Create a connection with Windows-only authentication to a SQL Server
database.

 Store multiple tables of data in a DataSet object and then display that data
in DataGrid controls:

• Explain the difference between mixed-mode and Windows-only
authentication.

• Create a connection with Windows-only authentication to a SQL Server
database.

 Manually read data from a SQL Server database by using a SqlDataReader
object:

• Store data in multiple tables that could come from multiple sources.

• Create relationships between data that comes from multiple sources.

• Use relationships to navigate between tables of data that come from
multiple sources.

 Bind a list-bound server control to a DataSet or DataReader object:

• Explain how the DataReader class works.

• Create a DataReader object.

• Read data from a DataReader object.

• Bind a list-bound server control to a DataReader object.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_10.ppt
 Multimedia file 2310B_10A001.htm
 Sample Code page 2310B_10_code.htm

Presentation:
90 minutes

Lab:
30 minutes

Required materials

iv Module 10: Accessing Data with Microsoft ADO.NET

To prepare for this module:

 Read all of the materials for this module.
 Complete all of the practices.
 Practice the steps for the instructor-led demonstrations.
 Review the multimedia demonstration.
 Review the code in the code examples page.

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Preparation tasks

 Module 10: Accessing Data with Microsoft ADO.NET v

How to Teach This Module
This section contains information that will help you to teach this module.

This is the second of three modules on ADO.NET in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET:

 Module 9, “Accessing Relational Data Using Microsoft
Visual Studio .NET,” introduces ADO.NET and focuses on using the
Microsoft Visual Studio® .NET toolbox to access one table of data.

 Module 10, “Accessing Data with Microsoft ADO.NET,” introduces and
compares the use of DataSets and DataReaders for accessing data from
data sources.

 Module 11, “Calling Stored Procedures with Microsoft ADO.NET,”
introduces the use of stored procedures for accessing and modifying data in
a database.

Lesson: Introduction to Using ADO.NET
There is no sound for this multimedia.

Do not spend more than the allotted time on this information. The underlying
processes for each option will be reviewed in context in later lessons in this
module.

Lesson: Connecting to a Database
Remind the students that this lesson is an overview and does not necessarily
provide sufficient information to guarantee the security of their SQL Server
databases.

The reason that security is included here is that you cannot talk about the
database connection without addressing security. Remind students that security
is covered in more detail in Module 16, “Securing a Microsoft ASP.NET Web
Application,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET.

Emphasize that the Persist Security Info parameter is useful when building an
administration tool or when debugging.

Lesson: Accessing Data with DataSets
You need to be very clear when you differentiate DataSet tables and SQL
tables. To reduce confusion, do not use the term tables by itself.

The name of the Dataset table does not have to match the name of the source
SQL table. However, it is a good practice to use consistent naming conventions.

This practice has several correct answers.

The page ErrorHandling.aspx in the Mod10 project shows this code. If students
are interested, you can run the page, and capture errors.

Multimedia: The
ADO.NET Object Model

Using DataSets vs.
DataReaders

SQL Server Security

Creating the Connection

Creating a DataSet

Practice: Organizing
Code to Create a
DataSet
Handling Errors

vi Module 10: Accessing Data with Microsoft ADO.NET

Lesson: Using Multiple Tables
A best practice for storing multiple tables is to use one DataAdapter for each
table in the DataSet.

This is very similar to an SQL Select statement.

Step 5 goes beyond what is taught in this course. This step is included so that
students can see what is possible.

Lesson: Accessing Data with DataReaders
Mention that it is a good practice to minimize the amount of code that is run
while the connection is open.

This practice has several correct answers.

Alternate delivery. You can also deliver this demonstration as an instructor-led
practice.

Review
The review questions are mostly based on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 10: Accessing Data with Microsoft ADO.NET
Before beginning the lab, students should have completed all of the practices
and answered all of the review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

Storing Multiple Tables

Programmatically
Navigating Between
Tables Using
Relationships

Instructor-led Practice:
Displaying Data from
Multiple Tables

Creating a DataReader

Practice: Organizing
Code to Create a
DataReader
Demonstration:
Displaying Data Using
DataReaders

 Module 10: Accessing Data with Microsoft ADO.NET 1

Overview

Introduction to Using ADO.NET

Connecting to a Database

Accessing Data with DataSets

Using Multiple Tables

Accessing Data with DataReaders

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Creating a dynamic Web site that responds to user requests with customized
data may require you to link your Web application to various data sources.
Microsoft® ADO.NET is the tool that allows you to programmatically access
data sources from a Web Form.

In this module, you will learn how to use ADO.NET to add data access to your
Microsoft ASP.NET Web application.

After completing this lesson, you will be able to:

 Describe the ADO.NET object model for accessing data.
 Create secure connections to a Microsoft SQL Server™ database by using

the SqlConnection and SqlDataAdapter objects.
 Use DataSet objects to support the local data storage and manipulation

requirements of Web Forms.
 Store multiple tables of data in a DataSet object, and then display that data

in DataGrid controls.
 Programmatically read data from a SQL Server database by using a

SqlDataReader object.

Introduction

Lesson objectives

2 Module 10: Accessing Data with Microsoft ADO.NET

Lesson: Introduction to Using ADO.NET

Multimedia: The ADO.NET Object Model

Using DataSets vs. DataReaders

Practice: When to Use DataSets or DataReaders

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO.NET is designed to load data from a data source and then work with that
data in a disconnected state. This disconnected state allows the Web Form to
operate semi-independently from data sources, thereby reducing network
traffic. ADO.NET uses Extensible Markup Language (XML) as the universal
transmission format, which guarantees interoperability with any platform where
an XML parser is available.

In this lesson, you will learn about using the ADO.NET object model to access
data. You will also learn about how to use DataSet and DataReader objects to
access data.

After completing this lesson, you will be able to:

 Describe how DataSet and DataReader objects access data.
 Choose between DataSet and DataReader objects, depending on the data

access needs of a Web application.

Introduction

Lesson objectives

 Module 10: Accessing Data with Microsoft ADO.NET 3

Multimedia: The ADO.NET Object Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how to use DataSet and DataReader objects to
access data from a data source.

 When a user requests data, DataSetCommand pulls data out of a data store
and pushes it into a DataTable.

 After the DataTables are on the server, the link can be severed.
 A DataView is then created and bound to a list-bound control to be

displayed.
 When a user requests data, the Command retrieves data into the

DataReader.
 The DataReader is a read-only, forward-only stream that is returned from

the database.

Introduction

DataSet

DataReader

4 Module 10: Accessing Data with Microsoft ADO.NET

Using DataSets vs. DataReaders

Supported by Visual Studio
.NET tools

Slower access

Forward-only

Bind to one control only

Based on one SQL statement
from one database

Read-only

Manually coded

Faster access

Forward and backward
scanning of data

Bind to multiple controls

Includes multiple tables from
different databases

Read/write access to data

DataReaderDataSet

Disconnected Connected

*****************************ILLEGAL FOR NON-TRAINER USE******************************

DataSet objects are complex objects that allow you to store multiple
DataTables of data from a data source. DataSet objects are similar to a virtual
database that is inside a Web Application. DataSet objects can also contain
relationships between the data in the DataTables, and can use these
relationships to retrieve data.

DataReader objects are light-weight objects that are used for reading data from
a data source; DataReader objects provide forward-only, read-only access to
the data in a database.

The choice between using DataSet or DataReader objects should be based on
your intended use for the data. Generally, DataReader objects are used for
reading data in one-time, read-only situations, such as when accessing a stored
password, or filling in a list-bound control. DataSet objects are used for more
complicated data access, such as accessing a customer’s entire order history.

Some of the data access issues to consider when selecting between DataSet and
DataReader objects include:

 Access to data
If you intend to both read from and write to your data source, you must use
a DataSet object. DataReader objects are read-only connections and
should only be used when the data will be used in a read-only situation.

 Access to multiple databases
If you intend to combine tables from one or more databases, you must use a
DataSet object. DataReader objects are based on a single SQL statement
from a single database.

 Binding to controls
If you intend to bind the data to more than one control, you must use a
DataSet object. DataReader objects can only be bound to a single control.

Introduction

Using DataSets and
DataReaders

 Module 10: Accessing Data with Microsoft ADO.NET 5

 Connection mode
If you intend to run in a disconnected mode, you must use a DataSet object.
DataReader objects must run in a connected mode.

 Data scanning
If you intend to scan both backwards and forwards through the data, you
must use a DataSet object. DataReader objects must scan forwards as the
data is streamed from the database.

 Access speed
If you need high-speed access to your data source, use a DataReader
object. DataSet objects are slower than DataReader objects when it comes
to accessing data from a database because DataSet objects store the data in
an object on the Web server. There is also more overhead in creating the
DataSet object because of the ability to read and write data and scan
forwards and backwards. DataReader objects are faster due to the
light-weight nature of the object. There is very little overhead to the
DataReader object since it is forward-only and read-only.

 Tool support
If you intend to use Microsoft Visual Studio® .NET to create the data
connection, use a DataSet object. With DataSet objects, you have the
choice of writing your own code or using Visual Studio .NET machine
code. With DataReader objects, you need to write all of the supporting
code yourself.

6 Module 10: Accessing Data with Microsoft ADO.NET

Practice: When to Use DataSets or DataReaders

Students will:

Select the best data access choice for
given scenarios

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

 Read the following scenarios, and then decide whether to use a DataSet
or DataReader object

You want to get information from two tables that are in two different
databases, and then you want to display the tables to the user.
If you want to store the data from both tables in one object, use a
DataSet object.
If you just want to display the data to the user, you could use two
separate ListBox controls, each bound to a DataReader object.
__

__

You want to get the information from one table in a database, allow the user
to make changes to the data, and then save those changes back into the
database.
DataSet object. DataReader objects are read-only.
__

__

 Module 10: Accessing Data with Microsoft ADO.NET 7

You want to get information from two tables in the same database and then
display that information to the user.
A DataReader object built from a JOIN SQL statement is the fastest
method.
__

__

You want to get information from one table in a database and let the user
view the data in many different configurations.
DataSet object. DataReader objects are forward-only, so you can only
display the data once.
__

__

8 Module 10: Accessing Data with Microsoft ADO.NET

Lesson: Connecting to a Database

SQL Server Security
Creating the Connection
Demonstration: Setting SQL Server Security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The first step in using a database to support your Web application is to create a
secure connection to the database. Non-secure connections may expose both the
Web application and the database to malicious attacks.

In this lesson, you will learn how to create secure connections to a SQL Server
database by using the SqlConnection and SqlDataAdapter objects.

After completing this lesson, you will be able to:

 Explain the difference between mixed-mode and Windows-only
authentication.

 Create a connection, with Windows-only authentication, to a SQL Server
database.

Introduction

Lesson objectives

 Module 10: Accessing Data with Microsoft ADO.NET 9

SQL Server Security

ClientClient

Send the username
and password in

clear text.

Do not send the
username and

password.
Just send that the user
has been authenticated.

Mixed mode
authentication
Mixed mode

authentication

Windows only
authentication
Windows only
authentication

SQL Server
Only ASPNET account

is granted access

SQL Server
Only ASPNET account

is granted accessWeb Server
Windows authentication

Web Server
Windows authentication

or…or…

SQL Server
Each user account added

to SQL Server logins group

SQL Server
Each user account added

to SQL Server logins group

Web Server
Default ASP.NET settings

Web Server
Default ASP.NET settings

Here is the
username and

password

*****************************ILLEGAL FOR NON-TRAINER USE******************************

From the user’s perspective, accessing data from a SQL Server database is a
two-step process. First, the user sends a request to the Web application, and
then the Web application connects to the SQL Server database to comply with
the request. There are two primary methods for connecting a Web application to
a SQL Server database: mixed-mode authentication and Windows-only
authentication. The preferred method is Windows-only authentication.

Mixed-mode authentication uses the default ASP.NET and Web application
settings. Each user of the Web application must have a user account added to
the SQL Server Logins Group. The weakness of mixed-mode authentication is
that the user names and passwords are sent to the computer running SQL Server
in unencrypted Hypertext Markup Language (HTML). This exposed data could
allow third parties to obtain logon credentials. In addition, you need to manage
user accounts on both the Web Server and the computer running SQL Server.

To use mixed-mode authentication, set the SQL Server to mixed-mode
authentication (SQL Server and Windows). The following code can be used to
connect to a SQL Server with mixed-mode authentication:

Dim strConn As String = _
 "data source=localhost; " & _
 "initial catalog=northwind; " & _
 "user id=CohoUser;password=1Coho"
Dim conn As New SqlConnection(strConn)

string strConn =
 "data source=localhost; " +
 "initial catalog=northwind; " +
 "user id=CohoUser; " +
 "password=1Coho";
SqlConnection conn = new SqlConnection(strConn);

Introduction

Mixed-mode
authentication

Visual Basic .NET

C#

10 Module 10: Accessing Data with Microsoft ADO.NET

Using mixed-mode authentication to access a SQL Server from a
Web application is a security risk and it is not recommended. Mixed-mode
authentication is discussed here only as a technique that may be used during
Web application development.

Windows-only authentication is the preferred method to use when connecting a
Web application to a SQL Server database. When you use Windows-only
authentication, the SQL Server does not need the user name and password.
Only a confirmation that the user has been authenticated by a trusted source is
required to process the database request.

The Windows-only authentication process uses a single account named
ASPNET for all SQL Server access from the Web application. This single
account eliminates the issues of transmitting unencrypted user names and
passwords between the Web application and SQL Server, along with the need
to keep user accounts on both servers.

With Windows-only authentication, users access the Web Form as anonymous
users. ASP.NET then connects to the SQL Server and is authenticated by using
the ASPNET user account. The requested data is returned from the SQL Server
and it is used by the Web application. Finally, the Web Form that includes the
requested data is returned to the user.

To use Windows-only authentication, you set the SQL Server with Windows-
only authentication. The following code can be used to connect to a SQL Server
with Windows-only authentication:

Dim strConn As String = _
 "data source=localhost; " & _
 "initial catalog=northwind; " & _
 "integrated security=true"
Dim conn As New SqlConnection(strConn)

string strConn =
 "data source=localhost; " +
 "initial catalog=northwind; " +
 "integrated security=true";
SqlConnection conn = new SqlConnection(strConn);

Warning

Windows-only
authentication

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 11

When you use Windows-only authentication, you can leave SQL Server with
the default authentication mode of Windows-only. If you use mixed-mode
authentication, you need to change the authentication mode of the SQL Server.

 To change the Authentication mode of the SQL Server

1. On the Start menu, right-click My Computer and then click Manage.
2. In the Computer Management console, expand the Services and

Applications folder and then expand the Microsoft SQL Servers folder.
3. Right-click the (local) SQL Server and then click Properties.
4. In the SQL Server Properties dialog box, on the Security tab, click either

the SQL Server and Windows option button or the Windows only option
button in the Authentication section, and then click OK.

For more information on securing a Web application, see Module 16,
“Securing a Microsoft ASP.NET Web Application,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Configuring the SQL
Server to run
mixed-mode or
Windows-only
authentication

Note

12 Module 10: Accessing Data with Microsoft ADO.NET

Creating the Connection

Using SqlConnection

Setting connection string parameters

Connection timeout

Data source

Initial catalog

Integrated security

Dim strConn As String = "data source=localhost; " & _
"initial catalog=northwind; integrated security=true"

Dim conn As New SqlConnection(strConn)

Dim strConn As String = "data source=localhost; " & _
"initial catalog=northwind; integrated security=true"

Dim conn As New SqlConnection(strConn)

Password

Persist security info

Provider

User ID

string strConn = "data source=localhost; " +
"initial catalog=northwind; integrated security=true";

SqlConnection conn = new SqlConnection(strConn);

string strConn = "data source=localhost; " +
"initial catalog=northwind; integrated security=true";

SqlConnection conn = new SqlConnection(strConn);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To move data between a database and your Web application, you must first
have a connection to the database. To create a connection to a database, you
need to identify the name of the database server, the name of the database, and
the required login information.

Depending on the type of database that you are accessing, you can use either a
SqlConnection or OleDbConnection object. You would use a SqlConnection
object to connect to SQL Server 7.0 and later databases, and use
OleDbConnection objects to connect to all other databases.

You create a SqlConnection object by passing in a connection string that
provides the parameters needed to create a connection to a data source.

The following sample code creates a SQLConnection object to the Northwind
SQL Server Database:

Dim strConn As String = _
 "data source=localhost; " & _
 "initial catalog=northwind; " & _
 "integrated security=true"
Dim conn As New SqlConnection(strConn)

string strConn =
 "data source=localhost; " +
 "initial catalog=northwind; " +
 "integrated security=true";
SqlConnection conn = new SqlConnection(strConn);

Introduction

Creating a connection
string

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 13

The following table describes some of the commonly used parameters of a
connection object:

Parameter Description

Connection Timeout The length of time, in seconds, to wait for a connection to the

server before terminating the attempt and generating an
exception. 15 seconds is the default length of time.

Data Source The name of the SQL Server to be used when a connection is
open, or the file name to be used when connecting to a
Microsoft Access database.

Initial Catalog The name of the database.

Integrated Security The parameter that determines whether or not the connection is
to be a secure connection. True, False, and SSPI are the
possible values. SSPI is the equivalent of True.

Password The login password for the SQL Server database.

Persist Security Info When set to False, security-sensitive information, such as the
password, is not returned as part of the connection, if the
connection is open or has ever been in an open state. Setting
this property to True can be a security risk. The default setting
is False.

Provider The property that is used to set or return the name of the
provider for the connection; this parameter used only for
OleDbConnection objects.

User ID The SQL Server login account name.

Connection string
parameters

14 Module 10: Accessing Data with Microsoft ADO.NET

Demonstration: Setting SQL Server Security

Open SQL Server Enterprise Manager

Set authentication
mode

Test with integrated
security

Test with mixed
mode security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to set and test an integrated security
connection between a Web application and a SQL Server.

 To run this demonstration

1. On the Start menu, right-click My Computer and then click Manage.
2. In the Computer Management console, expand the Services and

Applications folder and then expand the Microsoft SQL Servers folder.
3. Right-click the (local) SQL Server and then click Properties.
4. In the SQL Server Properties dialog box, on the Security tab, click the

Windows only option button in the Authentication section, and then click
OK.

5. Open the SQLSecurityModes.aspx Web Form in the Mod10VB or
Mod10CS project in the 2310Demos solution.

6. Build and browse the SQLSecurityModes.aspx page.
7. Click Use integrated security, and then click Get Data.

The data is retrieved from the database and is displayed in the DataGrid
control.

8. Click Use standard security, and then click Get Data.
You get an error because the user does not exist in the SQL Server.

9. Create a new user for SQL Server:
a. In the Computer Management console, expand the (local) SQL Server

folder and then expand the Security folder.
b. Right-click Logins and then click New Login.
c. In the SQL Server Login Properties dialog box, type CohoUser in the

Name field, click SQL Server Authentication in the Authentication
section, type 1Coho in the Password field, and then click OK.

d. Type 1Coho in the Confirm Password dialog box, and then click OK.

Introduction

Open SQL Server
Enterprise Manager

Set the authentication
mode

Test with integrated
security

 Module 10: Accessing Data with Microsoft ADO.NET 15

10. Change the SQL Server authentication mode to mixed-mode.
a. In the Computer Management console, right-click the (local)

SQL Server and click Properties.
b. In the SQL Server Properties dialog box, on the Security tab, click the

SQL Server and Windows option button in the Authentication
section, and then click OK.

c. When prompted to restart the SQL Server service, click Yes.
11. View the SQLSecurityModes.aspx page in the browser again and test both

methods of accessing the SQL Server. Both methods will now work.

Test with mixed-mode
security

16 Module 10: Accessing Data with Microsoft ADO.NET

Lesson: Accessing Data with DataSets

Creating a DataAdapter
Creating a DataSet
Demonstration: Programmatically Using a DataSet
Using a DataView
Practice: Organizing Code to Create a DataSet
Binding a DataSet to a List-Bound Control
Instructor-Led Practice: Displaying a DataSet
Handling Errors

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataSet object represents a local copy of data that comes from one or more
data sources. Using a DataSet object allows a Web Form to run
semi-independently from the data sources. The DataSet object can use a
DataAdapter object to load data from a data source and can then disconnect
from that data source. The user can then use and manipulate the data. When the
data needs to be updated in the data source, a DataAdapter is used to reconnect
and update the data source.

In this lesson, you will learn how to use DataSet objects to support the local
data storage and the manipulation requirements of Web Forms.

After completing this lesson, you will be able to:

 Create a DataAdapter object to link a DataSet object to a data source.
 Create a DataSet object to hold data from a data source.
 Use DataView objects to hold a subset of data from a DataSet object.
 Bind a DataSet object and a DataView object to a list-bound control.
 Handle the typical errors that are encountered while accessing data.

Introduction

Lesson objectives

 Module 10: Accessing Data with Microsoft ADO.NET 17

Creating a DataAdapter

Store the query in a DataAdapter

The DataAdapter constructor sets the SelectCommand
property

Set the InsertCommand, UpdateCommand, and
DeleteCommand properties if needed

Dim da As New SqlDataAdapter _
("select * from Authors", conn)

Dim da As New SqlDataAdapter _
("select * from Authors", conn)

da.SelectCommand.CommandText
da.SelectCommand.Connection

da.SelectCommand.CommandText
da.SelectCommand.Connection

SqlDataAdapter da = new SqlDataAdapter
("select * from Authors",conn);

SqlDataAdapter da = new SqlDataAdapter
("select * from Authors",conn);

da.SelectCommand.CommandText;
da.SelectCommand.Connection;

da.SelectCommand.CommandText;
da.SelectCommand.Connection;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataSet object represents a local copy of data from a data source. When
used without a data source, the DataSet object is useful for holding local data
that Web Forms can access. However, to serve as an actual data-management
tool, a DataSet object must be able to interact with one or more data sources.
To accomplish this interaction, the Microsoft .NET Framework provides the
SqlDataAdapter and OleDbDataAdapter classes.

A DataAdapter object serves as a link between a DataSet object and a data
source that can be used for retrieving and saving data. The DataAdapter class
represents a set of database commands and a database connection that you use
to fill a DataSet object and update the data source. Each DataAdapter object
exchanges data between a single DataTable object in a DataSet object and a
single result set from a SQL statement or stored procedure.

Visual Studio .NET makes two primary DataAdapter classes available for use
with databases:

 OleDbDataAdapter class
This class is suitable for use with any data source that is exposed by an OLE
DB Data Provider.

 SqlDataAdapter class
This class is specific to a SQL Server version 7.0 or later database. The
SqlDataAdapter object is faster than the OleDbDataAdapter object
because it works directly with SQL Server and does not go through an OLE
DB Data Provider layer.

In addition, DataAdapter classes for other types of data sources can be
integrated with Visual Studio .NET.

Introduction

DataAdapter

18 Module 10: Accessing Data with Microsoft ADO.NET

When you use DataAdapter objects to exchange data between a DataSet
object and a data source, you can specify the actions that you want to perform
by using one of the four DataAdapter properties. The DataAdapter properties
then execute a SQL statement or call a stored procedure.

The properties that are available with the DataAdapter class are shown in the
following table.

Property Function

SelectCommand The SelectCommand property retrieves rows from the data

source.

InsertCommand The InsertCommand property writes inserted rows from the
DataSet into the data source.

UpdateCommand The UpdateCommand property writes modified rows from the
DataSet into the data source.

DeleteCommand The DeleteCommand property deletes rows in the data source.

The following code example shows how to create a SqlDataAdapter object
named da that contains a query statement:

'Create a connection
Dim conn As New SqlConnection _
 ("data source=localhost;initial catalog=pubs;" & _
 "integrated security=true;persist security info=True;")

'Create the DataAdapter
Dim da As New SqlDataAdapter _
 ("select * from Authors", conn)

//Create a connection
SqlConnection conn = new SqlConnection
 ("data source=localhost; initial catalog=pubs; " +
 "integrated security=true; persist security info=True;");

//Create the DataAdapter
SqlDataAdapter da = new SqlDataAdapter
 ("select * from Authors", conn);

DataAdapter properties

SqlDataAdapter example

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 19

Creating a DataSet

Create and populate a DataSet with DataTables

Fill method executes the SelectCommand

Access a DataTable

Dim ds As New DataSet()
da.Fill(ds, "Authors")

Dim ds As New DataSet()
da.Fill(ds, "Authors")

Dim r As DataRow
Dim str As String
For Each r in _

ds.Tables("Authors").Rows
str &= r(2)
str &= r("au_lname")

Next

Dim r As DataRow
Dim str As String
For Each r in _

ds.Tables("Authors").Rows
str &= r(2)
str &= r("au_lname")

Next

ds.Tables("Authors").Rows.Countds.Tables("Authors").Rows.Count

DataSet ds = new DataSet();
da.Fill(ds, "Authors");

DataSet ds = new DataSet();
da.Fill(ds, "Authors");

ds.Tables["Authors"].Rows.Count;ds.Tables["Authors"].Rows.Count;

string str="";

foreach(DataRow r in
ds.Tables["Authors"].Rows)

{
str += r[2];
str += r["au_lname"];

}

string str="";

foreach(DataRow r in
ds.Tables["Authors"].Rows)

{
str += r[2];
str += r["au_lname"];

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To create a local copy of a database, you create and populate a DataSet object
by using DataTable objects.

The first step in creating a DataSet object is to declare the DataSet object
name. The following code creates a DataSet object named ds:

Dim ds As New DataSet()

DataSet ds = new DataSet();

After you create a DataSet object, you fill the DataTable objects by creating a
DataAdapter object. You call the Fill method on the DataAdapter object and
then specify the DataTable object that you want to fill. The following code fills
the Authors table of the ds DataSet object by using a DataAdapter named da:

da.Fill(ds, "Authors")

da.Fill(ds, "Authors");

The Fill method implicitly executes an SQL query in the SelectCommand
property of the DataAdapter object. The results of the SQL query are used to
define the structure of the DataTable object, and to populate the table with
data.

Introduction

Create a DataSet

Visual Basic .NET

C#

Fill the DataSet

Visual Basic .NET

C#

20 Module 10: Accessing Data with Microsoft ADO.NET

The following code example shows how to create a SqlDataAdapter object da,
and then call the Fill method to store the data in the DataSet object ds.

'Create a connection
Dim conn As New SqlConnection _
 ("data source=localhost;initial catalog=pubs;" & _
 "integrated security=SSPI;persist security info=True;")

'Create the DataSet
Dim ds As New DataSet()

'Create the DataAdapter
Dim da As New SqlDataAdapter _
 ("select * from Authors", conn)

'Fill the DataSet ds
da.Fill(ds, "Authors")

//Create a connection
SqlConnection conn = new SqlConnection
 ("data source=localhost;initial catalog=pubs; " +
 "integrated security=SSPI;persist security info=True;");

//Create the DataSet
DataSet ds = new DataSet();

//Create the DataAdapter
SqlDataAdapter da = new SqlDataAdapter
 ("select * from Authors", conn);

//Fill the DataSet ds
da.Fill(ds, "Authors");

The second argument to the Fill method is a name for the DataTable object
that is created. You use this name to access the returned data.

After you have placed data in a DataSet object, you can programmatically
access the data. As shown in the following code, each DataSet object is
comprised of one or more DataTable objects that you can refer to by name or
by ordinal position:

ds.Tables("Authors")
-or-
ds.Tables(0)

ds.Tables["Authors"];
-or-
ds.Tables[0];

Visual Basic .NET

C#

Accessing a DataTable

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 21

The DataRow and DataColumn classes are primary components of a
DataTable class. You would use a DataRow object and its properties and
methods to retrieve and evaluate the values in a DataTable object. The
DataRowCollection represents the actual DataRow objects that are in the
DataTable object, and the DataColumnCollection contains the DataColumn
objects that describe the schema of the DataTable object. The Rows property
of the DataTable object provides programmatic access to the
DataRowCollection. The Columns property of the DataTable object provides
programmatic access to the DataColumnCollection.

The following sample code adds the column names from a DataSet object to
the ListBox control named lstItems:

Dim col As DataColumn
For Each col In ds.Tables(0).Columns
 lstItems.Items.Add(col.ColumnName)
Next

foreach(DataColumn col in ds.Tables[0].Columns)
{
 lstItems.Items.Add(col.ColumnName);
}

Both the DataRowCollection and DataColumnCollection objects have a
Count property that Enables you to determine the number of rows or columns
in a DataTable object, as shown in the following sample code:

ds.Tables("Authors").Rows.Count
ds.Tables("Authors").Columns.Count

ds.Tables["Authors"].Rows.Count;
ds.Tables["Authors"].Columns.Count;

Counting the rows and columns of the DataTable object allows you to access
individual fields in the DataTable object. You can either access fields by
ordinal (0-based) position or by name. In the following code, X is the index of
the row of data that you want to access:

DataSet.Tables(0).Rows(x)(1)
DataSet.Tables(0).Rows(x)("fieldname")

ds.Tables["Authors"].Rows[x][1];
ds.Tables["Authors"].Rows[x]["fieldname"];

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

22 Module 10: Accessing Data with Microsoft ADO.NET

The following code loops through each row in the DataTable object named
Authors and creates a string by using the second and au_lname fields in
Authors:

Dim r As DataRow
Dim str As String
For Each r in ds.Tables("Authors").Rows
 str &= r(1)
 str &= r("au_lname")
Next

string str = "";
foreach(DataRow r in ds.Tables["Authors"].Rows)
{
 str += r[1];
 str += r["au_lname"];
}

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 23

Demonstration: Programmatically Using a DataSet

Create a Connection

Create DataAdapter

Create DataSet

Read data from DataSet programmatically

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will review code that creates and fills a DataSet
object, and then see how that code dynamically fills a ListBox control from the
DataSet object.

 To run the demonstration

1. Open the UseDataSet.aspx page in the Mod10VB or Mod10CS project in
the 2310Demos solution.

2. Build and browse the page.
The first time the page is loaded, the lstItems list box is dynamically filled
with the column names from the DataSet.
The Get Number of Rows button and the Get Values button read
information from the DataSet.

3. Click Get Number of Rows.
The code in the click event procedure displays the Count property of the
Rows collection.

4. Select a column in the list box and then click Get Values.
The code in the click event procedure loops through the rows of the DataSet
and displays the selected field.

5. In Visual Studio .NET, view the code-behind page for the UseDataSet.aspx
page.

Introduction

24 Module 10: Accessing Data with Microsoft ADO.NET

6. In the Page_Load event procedure, show the code that creates the following
objects:

• SqlConnection

• SqlDataAdapter

• DataSet
7. In the Page_Load event procedure, show how, the first time that the page is

displayed, the lstItems list box is filled with column names only.
8. In the cmdRows_Click event procedure, show how the number of rows is

retrieved from the DataSet.
9. In the cmdGetValues_Click event procedure, show how the selected field

is retrieved from the DataSet.

 Module 10: Accessing Data with Microsoft ADO.NET 25

Using a DataView

A DataView can be customized to present a subset of
data from a DataTable

The DefaultView property returns the default DataView
of the table

Setting up a different view of a DataSet

DataView dv = new DataView(ds.Tables["Authors"]);
dv.RowFilter = "state = 'CA'";

DataView dv = new DataView(ds.Tables["Authors"]);
dv.RowFilter = "state = 'CA'";

Dim dv As DataView = ds.Tables("Authors").DefaultViewDim dv As DataView = ds.Tables("Authors").DefaultView

Dim dv As New DataView (ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"

Dim dv As New DataView (ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"

DataView dv = ds.Tables["Authors"].DefaultView;DataView dv = ds.Tables["Authors"].DefaultView;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To display the data that is held in a DataSet object, you can bind the DataSet
object directly to a list-bound control or use a DataView object. A DataView
object is a bindable, customized display of a single DataTable object. After
you have created a DataView object, the user can use the DataView object for
data sorting, filtering, searching, editing, and navigation.

DataView objects can be customized to present a subset of data from a
DataTable object. This customization allows you to have two controls that are
bound to the same DataTable object, but with each control showing different
versions of the data. For example, one control may be bound to a DataView
object showing all of the rows in the table, while a second control is bound to
another DataView object that is configured to display only the rows that have
been deleted from the DataTable object.

Each DataTable object in a DataSet object has a DefaultView property, which
returns the default view for the table. The following code shows how you can
access the default DataView object dv, of a DataTable object named Authors:

Dim dv As DataView = ds.Tables("Authors").DefaultView

DataView dv = ds.Tables["Authors"].DefaultView;

Introduction

DataViews as a subset
of a DataTable

DefaultView

Visual Basic .NET

C#

26 Module 10: Accessing Data with Microsoft ADO.NET

You can also create a custom DataView object that is based on a subset of the
data that is in a DataTable object. For example, you can set the DataView
RowFilter property by using a filter expression. The filter expression must
evaluate to True or False. You can also set the DataView object Sort property
by using a sort expression. The sort expression can include the names of
DataColumn objects or a calculation.

In the following code, the RowFilter property, of a DataView object dv, is set
to retrieve only authors from the state of California, and it then sorts the results
by last name:

Dim dv As New DataView(ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"
dv.Sort = "au_lname"

DataView dv = new DataView(ds.Tables["Authors"]);
dv.RowFilter = "state = ‘CA’";
dv.Sort = "au_lname";

Customized DataView

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 27

Practice: Organizing Code to Create a DataSet

Student will:

Reorder lines of code to create a DataSet

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will rearrange lines of ADO.NET code into the correct
order to create a DataSet object.

 To run the practice

• View the http://localhost/Mod10VB/DataSetCode.aspx or
http://localhost/Mod10CS/DataSetCode.aspx page and organize the lines of
ADO.NET code into the correct order to create a DataSet object.

There are several correct answers to this practice.

Note

28 Module 10: Accessing Data with Microsoft ADO.NET

Binding a DataSet to a List-Bound Control

Create the control

Bind to a DataSet or a DataView

dg.DataSource = ds
dg.DataMember = "Authors"

dg.DataBind()

dg.DataSource = ds
dg.DataMember = "Authors"

dg.DataBind()

<asp:DataGrid id="dg" runat="server" /><asp:DataGrid id="dg" runat="server" />

dg.DataSource = ds;
dg.DataMember = "Authors";

dg.DataBind();

dg.DataSource = ds;
dg.DataMember = "Authors";

dg.DataBind();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET includes a set of list-bound controls, such as the DataGrid,
DataList, and DataRepeater controls, which make displaying data from a data
source simple and flexible. Developers only need to bind these controls to a
data source to display the selected data.

The first step in binding the DataSet object to the list-bound control is to create
the control. The following code shows how to create a DataGrid control dg
that produces the HTML output that resembles a spreadsheet:

<asp:DataGrid id="dg" runat="server" />

To bind a DataSet object to a DataGrid control, you first need to set the
DataSource property of the DataGrid control to a DataSet, DataTable, or
DataView object, and then call the DataBind method.

If you set the DataSource property of the DataGrid control directly to a
DataSet object, the DataTable object with the index of 0 is used by default. To
specify a different DataTable object, set the DataMember property of the
DataGrid control to the name of the desired DataTable object.

The following code example shows how to bind the Authors table, of the ds
DataSet object, to a DataGrid control named dg:

dg.DataSource = ds
dg.DataMember = "Authors"
dg.DataBind()

dg.DataSource = ds;
dg.DataMember = "Authors";
dg.DataBind();

Introduction

Create the control

Bind to a Dataset or
DataView

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 29

The following code shows how you can also use the Tables collection of the
DataSet object ds to assign the DataTable object Authors directly to the
DataSource property of the DataGrid control named dg:

dg.DataSource = ds.Tables("Authors")
dg.DataBind()

dg.DataSource = ds.Tables["Authors"];
dg.DataBind();

If you want to display a different view of the data in the DataGrid control, you
will need to create a new DataView object from the DataSet object, and then
bind that object to the control.

The following code example shows how to bind a DataView object dv, filtered
for the state of California, to a DataGrid control dg:

Dim dv As New DataView(ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"
dg.DataSource = dv
dg.DataBind()

DataView dv = new DataView(ds.Tables["Authors"]);
dv.RowFilter = "state = 'CA'";
dg.DataSource = dv;
dg.Databind();

The following illustration shows the default format of the DataGrid control,
displaying data for authors who are living in the state of California.

Visual Basic .NET

C#

Example of Using a
custom view

Visual Basic .NET

C#

30 Module 10: Accessing Data with Microsoft ADO.NET

Instructor-Led Practice: Displaying a DataSet

Create a Connection

Create a DataAdapter

Create a DataSet

Create a DataView

Bind both the DataSet and DataView to
DataGrid controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this instructor-led practice, you will review code that creates and fills a
DataSet object, creates a DataView object by using sorted and filtered data
from the DataSet object, and then binds DataGrid controls to the DataSet and
DataView objects.

 To run the instructor-led practice

1. Open the UseGrid.aspx page in the Mod10VB or Mod10CS project in
the 2310Demos solution.

2. Build and browse the UseGrid.aspx page.
There are two DataGrid controls that are bound to the same DataSet
object. The first DataGrid control shows all of the data in the DataSet
object. The second DataGrid control is bound to a DataView object, which
filters and sorts the data. The second DataGrid control also implements
sorting by setting the Sort property of the DataView object.

3. In Visual Studio .NET, view the code-behind page for the UseGrid.aspx
page.

4. In the Page_Load event procedure, show the code that does the following:

• Creates the SqlConnection object.

• Creates the SqlDataAdapter object.

• Creates a DataSet object.

• Binds the first DataGrid control to the DataSet object.

• Creates a DataView object and sets the RowFilter and Sort properties.

• Binds the second DataGrid control to the DataView object.

Introduction

 Module 10: Accessing Data with Microsoft ADO.NET 31

Handling Errors

Connection will not open

Connection string is invalid

Server or database not found

Login failed

DataAdapter cannot create a DataSet

Invalid SQL syntax

Invalid table or field name

Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are two main sources of error when you try to access data from a Web
Form by using ADO.NET: connection problems and misalignment with the
database.

More than one error can occur when the Open method call is made. As a result
of the possibility of more than one error occurring, you must be able to handle
multiple errors by using Try…Catch…Finally statements. If one or more
SqlException exceptions occur, you can loop through all of the SQL exception
objects that are returned to your Web application.

The following code shows how to use a Try...Catch statement to catch multiple
types of exceptions. In this example, the code catches the
InvalidOperationException type of exception, along with other exceptions, by
using a generic exception handler:

Introduction

Connection will not
open

32 Module 10: Accessing Data with Microsoft ADO.NET

Try
 Dim conn As New SqlConnection(...)
 Dim da As New SqlDataAdapter(..., conn)
 Dim ds As New DataSet()
 da.Fill(ds)

Catch ex1 As System.Data.SqlClient.SqlException
 Select Case ex1.Number
 Case 17
 lblErrors.Text = lblErrors.Text & _
 ("invalid Server name")
 Case 156, 170 'bad SQL syntax
 lblErrors.Text = lblErrors.Text & _
 ("incorrect syntax")
 Case 207 'bad field name in select
 lblErrors.Text = lblErrors.Text & _
 ("invalid column name")
 Case 208 'bad table name in select
 lblErrors.Text = lblErrors.Text & _
 ("invalid object name")
 Case 18452
 lblErrors.Text = lblErrors.Text & _
 ("invalid user name")
 Case 18456
 lblErrors.Text = lblErrors.Text & _
 ("invalid password")
 Case 4060
 lblErrors.Text = lblErrors.Text & _
 ("invalid database")
End Select

Catch ex2 As System.Exception
 lblErrors.Text = lblErrors.Text & _
 ("Unexpected exception: " & ex2.Message & ". ")
End Try

Visual Basic .NET

 Module 10: Accessing Data with Microsoft ADO.NET 33

try
{
 SqlConnection conn = new SqlConnection("...");
 SqlDataAdapter da = new SqlDataAdapter("...",conn);
 DataSet ds = new DataSet();
 da.Fill(ds);
}
catch (System.Data.SqlClient.SqlException ex1)
{
 switch(ex1.Number)
 {
 case 17:
 lblErrors.Text = lblErrors.Text +
 ("invalid Server name");
 break;
 case 156:
 case 170: //bad SQL syntax
 lblErrors.Text = lblErrors.Text +
 ("incorrect syntax");
 break;
 case 207: //bad field name in select
 lblErrors.Text = lblErrors.Text +
 ("invalid column name");
 break;
 case 208: //bad table name in select
 lblErrors.Text = lblErrors.Text +
 ("invalid object name");
 break;
 case 18452:
 lblErrors.Text = lblErrors.Text +
 ("invalid user name");
 break;
 case 18456:
 lblErrors.Text = lblErrors.Text +
 ("invalid password");
 break;
 case 4060:
 lblErrors.Text = lblErrors.Text +
 ("invalid database");
 break;
 }
}
catch (System.Exception ex2)
{
 lblErrors.Text = lblErrors.Text +
 ("Unexpected exception: " + ex2.Message + ". ");
}

C#

34 Module 10: Accessing Data with Microsoft ADO.NET

The SqlException class contains the exception that is thrown when SQL Server
returns a warning or error. This class is created whenever the SQL Server .NET
Data Provider encounters a situation that it cannot handle. The SqlException
class always contains at least one instance of a SqlError object. You can use
the severity level of the class to help you determine the content of a message
that is displayed by an exception.

To catch SqlException objects, you need to look for errors of type
System.Data.SqlClient.SqlException. When a SqlException object occurs,
the exception object contains an Errors collection.

The following example shows how you can loop through the Errors collection
to find details about the errors that occurred:

Dim erData As SqlClient.SqlErrorCollection = ex1.Errors
Dim i As Integer
For i = 0 To erData.Count - 1
 lblErrors.Text &= ("Error " & i & ": " & _
 erData(i).Number & ", " & _
 erData(i).Class & ", " & _
 erData(i).Message & "
")
Next i

SqlErrorCollection erData = ex1.Errors;
for(int i = 0; i < erData.Count; i++)
{
 lblErrors.Text += "Error" + i + ": " +
 erData[i].Number + ", " +
 erData[i].Class + ", " +
 erData[i].Message + "
";
}

SQL Server errors share common properties and are identified by number and
severity level:

 The SqlError class and common properties
Each SqlError object has the common properties that are shown in the
following table.

Property Description

Class Gets the severity level of the error that was returned from the

SQL Server.

LineNumber Gets the line number within the Transact-SQL command batch
or the stored procedure that contains the error.

Message Gets the text describing the error.

Number Gets a number that identifies the type of error.

For a complete list of SqlError class properties, see the
Visual Studio .NET documentation.

DataAdapter cannot
create a DataSet

Visual Basic .NET

C#

SQL Server errors

Note

 Module 10: Accessing Data with Microsoft ADO.NET 35

 SQL Server error numbers
The Number property allows you to determine the specific error that
occurred. For example, the following table lists some common SQL Server
error numbers and their descriptions.

Number Description

17 Invalid server name

4060 Invalid database name

18456 Invalid user name or password

 SQL Server severity levels
The following table describes SQL Server error severity levels, which are
accessed through the Class property, of the SqlError class.
Severity Description Action

11-16 Generated by user Can be corrected by user.

17-19 Software or hardware
errors

You can continue working, but you might
not be able to execute a particular
statement. SqlConnection remains open.

20-25 Software or hardware
errors

The server closes SqlConnection. The user
can reopen the connection.

36 Module 10: Accessing Data with Microsoft ADO.NET

Lesson: Using Multiple Tables

Storing Multiple Tables

Creating Relationships

Programmatically Navigating Between Tables Using
Relationships

Visually Navigating Between Tables Using
Relationships

Instructor-Led Practice: Displaying Data from Multiple
Tables

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the strengths of DataSet objects is that they can contain multiple
DataTable objects, and each DataTable object can come from a different data
source.

In this lesson, you will learn how to store multiple tables of data in a DataSet
object and then learn how to display that data in DataGrid controls.

After completing this lesson, you will be able to:

 Store data in multiple tables from multiple sources.
 Create relationships between data from multiple data sources.
 Use relationships to navigate between tables of data from multiple sources.

Introduction

Lesson objectives

 Module 10: Accessing Data with Microsoft ADO.NET 37

Storing Multiple Tables

Add the first table

Add the subsequent table(s)

daCustomers = New SqlDataAdapter _
("select * from Customers", conn1)

daCustomers.Fill(ds, "Customers")

daCustomers = New SqlDataAdapter _
("select * from Customers", conn1)

daCustomers.Fill(ds, "Customers")

Orders

Customers

daOrders = New SqlDataAdapter _
("select * from Orders", conn2)

daOrders.Fill(ds, "Orders")

daOrders = New SqlDataAdapter _
("select * from Orders", conn2)

daOrders.Fill(ds, "Orders")

conn2conn1

DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To fill a DataSet object with multiple DataTable objects that come from one
or more data sources, you need to use multiple DataAdapter objects. Each
DataAdapter object fills a separate table in the DataSet object. Because the
order of the DataAdapter objects controls the order of implementation, you
can control the order in which updates are written to and from the database.
This control over implementation order helps you to preserve referential
integrity between related tables in the database.

An example of controlling the order in which DataTable objects are created is
a salesperson who needs to retrieve customer information, and information
about purchase orders that were placed by each customer, from a central
database. To meet this requirement, you could create a Web application that
contains two DataAdapter objects, a first one to retrieve customer records, and
a second one to retrieve purchase order records. By loading the customer data
first, you can preserve the referential integrity between customers and their
purchase orders.

Introduction

Add first table

38 Module 10: Accessing Data with Microsoft ADO.NET

The following code populates a Customers DataTable object by using a
DataAdapter object named daCustomers:

Dim conn As SqlConnection
Dim daCustomers As SqlDataAdapter
Dim daOrders As SqlDataAdapter
Dim ds As New DataSet()

'create a connection to the Pubs database
conn = New SqlConnection("data source=localhost;" & _
 "integrated security=true;initial catalog=northwind")

'create the first DataTable
daCustomers = New SqlDataAdapter _
 ("select CustomerID, CompanyName from Customers", conn)
daCustomers.Fill(ds, "Customers")

SqlConnection conn;
SqlDataAdapter daCustomers;
SqlDataAdapter daOrders;
DataSet ds = new DataSet();

// Create a connection to the Pubs database
conn = new SqlConnection("data source=localhost; " +
 "integrated security=true;initial catalog=northwind");

// Create the first DataTable
daCustomers = new SqlDataAdapter
 ("select CustomerID, CompanyName from Customers", conn);
daCustomers.Fill(ds, "Customers");

After the first DataTable object is loaded, you can fill additional DataTable
objects and define the relationships between the objects based on the initial
DataTable object. Continuing with the preceding example, you would fill the
Orders DataTable object.

The following code populates the Orders DataTable object by using a
DataAdapter object named daOrders:

'Create the second DataTable
daOrders = New SqlDataAdapter _
 ("select CustomerID, OrderID, OrderDate, ShippedDate " & _
 "from Orders", conn)
daOrders.Fill(ds, "Orders")

// Create the second DataTable
daOrders = new SqlDataAdapter
 ("select CustomerID, OrderID, OrderDate, ShippedDate " +
 "from Orders", conn);
daOrders.Fill(ds, "Orders");

You should use a new DataAdapter object for each DataTable object in
a DataSet object.

Visual Basic .NET

C#

Add subsequent tables

Visual Basic .NET

C#

Note

 Module 10: Accessing Data with Microsoft ADO.NET 39

Creating Relationships

Identify parent column

Identify child column

Create DataRelation

Dim dr As New DataRelation _
("name", parentCol, _
childCol)

ds.DataRelations.Add(dr)

Dim dr As New DataRelation _
("name", parentCol, _
childCol)

ds.DataRelations.Add(dr)

Dim parentCol As DataColumn = _
ds.Tables("Customers").Columns("CustomerID")

Dim parentCol As DataColumn = _
ds.Tables("Customers").Columns("CustomerID")

Dim childCol As DataColumn = _
ds.Tables("Orders").Columns("CustomerID")

Dim childCol As DataColumn = _
ds.Tables("Orders").Columns("CustomerID")

Orders table

Customers table

DataSet

parentCol

childCol

DataRelation

C# Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataRelation object is used to reference two DataTable objects to each
other through DataColumn objects. For example, in a Customer/Orders
relationship, the Customers table is the parent of the relationship and the Orders
table is the child of the relationship. This relationship is similar to a primary
key/foreign key relationship. Relationships are created between matching
columns in the parent and child tables. The DataType value for both columns
must be identical.

DataRelation objects are contained in a DataRelationCollection object, which
you can access not only through the Relations property of the DataSet object,
but also through the ChildRelations and ParentRelations properties of the
DataTable object.

To create a DataRelation object, you use the DataRelation constructor and the
Add method of the Relations collection of a DataSet object.

Introduction

40 Module 10: Accessing Data with Microsoft ADO.NET

The following example creates a DataRelation object dr and adds it to the
DataSet object ds:

'Create DataRelation: each publisher publishes many titles
Dim dr As DataRelation
Dim parentCol As DataColumn
Dim childCol As DataColumn

parentCol = ds.Tables("Customers").Columns("CustomerID")
childCol = ds.Tables("Orders").Columns("CustomerID")
dr = New DataRelation("CustOrders", parentCol, childCol)
ds.Relations.Add(dr)

// Create DataRelation: each publisher publishes many titles
DataRelation dr;
DataColumn parentCol;
DataColumn childCol;

parentCol = ds.Tables["Customers"].Columns["CustomerID"];
childCol = ds.Tables["Orders"].Columns["CustomerID"];
dr = new DataRelation("CustOrders", parentCol, childCol);
ds.Relations.Add(dr);

For more information on data relationships, see “Navigating a
Relationship between Tables,” in the Visual Studio .NET documentation.

DataRelation object
example

Visual Basic .NET

C#

Note

 Module 10: Accessing Data with Microsoft ADO.NET 41

Programmatically Navigating Between Tables Using Relationships

ds.Tables(index).Rows(index).GetChildRows("relation")
ds.Tables(index).Rows(index).GetParentRow("relation")

ds.Tables(index).Rows(index).GetChildRows("relation")
ds.Tables(index).Rows(index).GetParentRow("relation")

Customers Orders

GetChildRows

GetParentRow
DataSet

ds.Tables[index].Rows[index].GetChildRows("relation");
ds.Tables[index].Rows[index].GetParentRow("relation");

ds.Tables[index].Rows[index].GetChildRows("relation");
ds.Tables[index].Rows[index].GetParentRow("relation");

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In many Web application scenarios, you will want to work with data from more
than one table, and often you will want to work with data from related tables.
The relationship between a parent and child table is called a master-detail
relationship. An example of this relationship would be retrieving a customer
record and also viewing related customer order information.

The disconnected DataSet object model allows you to work with multiple
DataTables objects in your Web application and to define a relationship
between those DataTable objects. You can then use the relationship to navigate
between related records in the tables.

One of the primary functions of a DataRelation class is to allow navigation
from one DataTable object to another DataTable object within a DataSet
object. This ability to navigate allows you to retrieve all of the related
DataRow objects in one DataTable object when you are given a single
DataRow object from a related DataTable object. For example, after
establishing a DataRelation object between a DataTable object of customers
and a DataTable object of purchase orders, you can retrieve all of the order
rows for a particular customer row by using the DataRow.GetChildRows
method.

The GetChildRows method of a DataRow object retrieves related rows that
are from a child DataTable object. The GetParentRow method of a DataRow
object then retrieves the parent row from a parent DataTable object.

Introduction

Navigating
programmatically

42 Module 10: Accessing Data with Microsoft ADO.NET

For example, you can have a DataGrid control named dgCustomers that is
displaying data that is from the DataTable object Customers, which is in a
DataSet object ds. The following code shows a loop through all the
childOrder records to get a list of order numbers:

currentParentRow = ds.Tables("Customers"). _
 Rows(dgCustomers.SelectedIndex)
For Each r In currentParentRow.GetChildRows("CustOrders")
 Label1.Text &= r("OrderID") & ", "
Next

currentParentRow = ds.Tables["Customers"].
 Rows[dgCustomers.SelectedIndex];
foreach(DataRow r
 in currentParentRow.GetChildRows("CustOrders"))
{
 Label1.Text += r["OrderID"] + ",";
}

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 43

Visually Navigating Between Tables Using Relationships

Dim tableView As DataView
Dim currentRowView As DataRowView

tableView = New DataView(ds.Tables("Customers"))
currentRowView = tableView(dgCustomers.SelectedIndex)
dgChild.DataSource = currentRowView.CreateChildView("CustOrders")

Dim tableView As DataView
Dim currentRowView As DataRowView

tableView = New DataView(ds.Tables("Customers"))
currentRowView = tableView(dgCustomers.SelectedIndex)
dgChild.DataSource = currentRowView.CreateChildView("CustOrders")

Customers Orders

CreateChildView

DataRowView

DataView

DataSet

DataView tableView;
DataRowView currentRowView;

tableView = new DataView(ds.Tables["Customers"]);
currentRowView = tableView[dgCustomers.SelectedIndex];
dgChild.DataSource = currentRowView.CreateChildView("CustOrders");

DataView tableView;
DataRowView currentRowView;

tableView = new DataView(ds.Tables["Customers"]);
currentRowView = tableView[dgCustomers.SelectedIndex];
dgChild.DataSource = currentRowView.CreateChildView("CustOrders");

*****************************ILLEGAL FOR NON-TRAINER USE******************************

With Visual Studio .NET, you can also display relationships by dragging
controls from the toolbox. If you want to display the child rows of a
relationship in a separate list-bound control, you can use the CreateChildView
method and then bind the list-bound control to the resulting DataView object.

To connect two list-bound controls through a DataRelation object, you need to
get the DataRowView object of the selected row of the parent list-bound
control, and then call the CreateChildView method of the DataRowView
object.

The following code creates a DataView object from a DataRelation object to
display child records in a DataGrid control:

Dim parentTableView As New _
 DataView(ds.Tables("Customers"))
Dim currentRowView As DataRowView = _
 parentTableView(dgCustomers.SelectedIndex)
dgChild.DataSource = _
 currentRowView.CreateChildView("CustOrders")
dgChild.DataBind()

DataView parentTableView = new
 DataView(ds.Tables["Customers"]);
DataRowView currentRowView =
 parentTableView[dgCustomers.SelectedIndex];

dgChild.DataSource =
 currentRowView.CreateChildView("CustOrders");
dgChild.DataBind();

Navigating Visually

Visual Basic .NET

C#

44 Module 10: Accessing Data with Microsoft ADO.NET

Instructor-Led Practice: Displaying Data from Multiple Tables

Programmatically:

Create a DataSet

Create a DataRelation

Display child records using the
DataRelation

Visually:

Call CreateChildView

*****************************ILLEGAL FOR NON-TRAINER USE******************************

 To run the instructor-led practice

1. Open the UseRelations.aspx page in the Mod10VB or the Mod10CS project
in the 2310Demos solution.

2. Build and browse the UseRelations.aspx page.
There are two DataGrid controls on the page. When you select a customer
in the first DataGrid control, the event procedure reads the related rows
from the Orders DataTable object, based on the relation and the displayed
order numbers, and then builds a DataView for the child DataGrid control.

3. In Visual Studio .NET, view the code-behind page for the
UseRelations.aspx page.

4. The Page_Load event procedure calls three sub procedures:
CreateDataSet, MakeDataRelation ,and BindToDataGrid:

• CreateDataSet. This sub procedure creates the Connection object,
DataAdapter object, and DataSet object.

• MakeDataRelation. This sub procedure creates the DataRelation
object between the two tables. The relationship is Publishers to Titles.

• BindToDataGrid. This sub procedure binds the DataGrid control to
the parent table, Customers.

5. The dgParent_SelectedIndexChanged event procedure displays child rows
in two ways: programmatically and visually:

• Programmatically. The procedure calls the GetChildRows method of
the current row and then loops through the returned records to output the
OrderID field of each row.

• Visually. The procedure calls the CreateChildView method of the view
of the current row and then binds it to a second DataGrid control.

 Module 10: Accessing Data with Microsoft ADO.NET 45

 To demonstrate the Data Form Wizard

1. Right-click the Mod10 project, click Add, and then click Add New Item.
2. In the Add New Item dialog box, click Data Form Wizard in the

Templates list, type CustOrders.aspx in the Name field, and then click
Open.

3. Complete the steps of the wizard as shown in the following table.
On this page Do this

Welcome … Click Next.

Choose the dataset you want to use Click Create a new dataset named,
then type dsCustOrders in the field,
and then click Next.

Choose a data connection Select an existing connection or create a
new one to the Northwind database, and
then click Next.

Choose tables or views Add the Customers and Orders tables to
the Selected item(s) list, and then click
Next.

Create a relationship between tables Enter CustOrders in the Name field,
select Customers for the Parent table,
select Orders for the Child table, select
CustomerID for the Key, for both the
parent and child tables, click the >
button, and then click Next.

Choose tables and columns to display Keep the defaults to display all of the
columns in the Master and Detail tables,
and then click Finish.

The Data Form Wizard creates a Web Form with a DataGrid control and a
Load button.

4. Right-click the CustOrders.aspx page in Solution Explorer and then click
Build and Browse.

5. In the browser, click Load.
The DataGrid control is loaded with data from the Customers table and the
data is displayed.

6. Click Show Details for one of the Customers, and then scroll to the bottom
of the page.
The detailed information for the selected customer is displayed in a separate
table.

46 Module 10: Accessing Data with Microsoft ADO.NET

Lesson: Accessing Data with DataReaders

What is a DataReader?

Creating a DataReader

Reading Data from a DataReader

Binding a DataReader to a List-Bound Control

Practice: Organizing Code to Create a DataReader

Demonstration: Displaying Data Using DataReaders

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The benefit of using a DataSet object is that it gives you a disconnected copy
of the database. For long-running Web applications, using a DataSet object is
often the best approach. However, developers often perform short and simple
operations, such as displaying a single set of data directly to the user or
accessing a single password, with each data request. For such operations,
developers do not need to maintain a DataSet object; instead, they can use a
DataReader object.

In this section, you will learn how to read data from a data source by using the
DataReader class.

After completing this lesson, you will be able to:

 Explain how the DataReader class works.
 Create a DataReader object.
 Read data from a DataReader object.
 Bind a list-bound server control to a DataReader object.

Introduction

Lesson objectives

 Module 10: Accessing Data with Microsoft ADO.NET 47

What is a DataReader?

Forward-only, read-only

Fast access to data

Connected to a data source

Manage the connection yourself

Manage the data yourself, or bind it to a list-bound
control

Uses fewer server resources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a large amount of data is being retrieved from a data source, holding
memory open becomes an issue. For example, reading 10,000 rows out of a
database causes a DataTable object to allocate and maintain memory for
those 10,000 rows for the lifetime of the table. If 1,000 users do this against the
same computer at the same time, memory usage becomes critical. To address
such memory usage situations, the DataReader class is designed to produce a
read-only, forward-only data stream that is returned from the database.
Therefore, only one record at a time is ever in server memory.

The DataReader class provides a read-only, forward-only transfer of data that
can be bound to a single list-bound control. For example, if you only want to
show the results of a database query in a single list-bound control, and if you
will not be manipulating that data, a DataReader class is an ideal way to
accomplish this.

DataReader objects are faster than DataSet objects due to the light-weight
nature of the DataReader class. There is more overhead in creating the
DataSet object because DataSet objects have the ability to read and write data
and scan forwards and backwards. There is very little overhead to a
DataReader object because it is forward-only and read-only. This relative lack
of overhead means that accessing data with a DataReader object is faster than
accessing data with a DataSet object.

ADO.NET includes two types of DataReader objects: the SqlDataReader
object for SQL Server version 7.0 or later data, and the OleDbDataReader
object for OLE DB Data Provider data. You use the OleDbCommand and
SqlCommand objects, and the ExecuteReader method, to transfer data into a
DataReader object.

Introduction

Forward-only, read-only

Fast access to data

Connected to data
source

48 Module 10: Accessing Data with Microsoft ADO.NET

Unlike a DataAdapter object that opens and closes automatically, you need to
manage the DataReader object connection yourself. The DataReader class is
similar to the DataAdapter class in that you create a Command object from a
SQL statement and a connection. However, with the DataReader Command
object, you must explicitly open and close the Connection object.

You have the option of looping through the DataReader object data and
displaying it programmatically, or you can bind a DataReader object to a
list-bound control. In both cases, you must write the code yourself.

Because the DataReader is not an in-memory representation of the data, using
a DataReader has little effect on the availability of server resources.

Manage the connection
yourself

Manage the data
yourself

Uses fewer server
resources

 Module 10: Accessing Data with Microsoft ADO.NET 49

Creating a DataReader

Code Example

To use a DataReader:
1. Create and open the database connection
2. Create a Command object
3. Create a DataReader from the Command object
4. Call the ExecuteReader method
5. Use the DataReader object
6. Close the DataReader object
7. Close the Connection object
Use Try…Catch…Finally error handling

111

222

333

444

555

666

777

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To use a SqlDataReader object, you need to create a SqlCommand object
instead of a SqlDataAdapter object, which was what was needed with DataSet
objects. The SqlCommand object exposes an ExecuteReader method that
returns a SqlDataReader object.

Similar to a DataAdapter object, you create a Command object from a SQL
statement and a connection. However, with the DataReader Command object,
you must explicitly open and close the Connection object.

To use a DataReader object, you need to manually code the entire connection
process. The following steps are required to use a DataReader object:

1. Create and open the database connection.
2. Create a Command object.
3. Create the DataReader object from the Command object.
4. Call the ExecuteReader method.
5. Use the DataReader object.
6. Close the DataReader object.
7. Close the Connection object.

Introduction

To use a DataReader

50 Module 10: Accessing Data with Microsoft ADO.NET

The following sample code opens a connection to a database, creates a
DataReader object from a Command object, and then loops through the
DataReader object and adds fields from the records to a ListBox control:

'Create connection and command objects
Dim conn As New SqlConnection _
 ("data source=localhost;integrated security=true;" & _
 "initial catalog=pubs")
Dim cmdAuthors As New SqlCommand _
 ("select * from Authors", conn)
conn.Open()

'create DataReader and display data
Dim dr As SqlDataReader
dr = cmdAuthors.ExecuteReader()
Do While dr.Read()
 lstBuiltNames.Items.Add(dr("au_lname") + ", " + _
 dr("au_fname"))
Loop

'close DataReader and Connection
dr.Close()
conn.Close()

// Open Connection and create command
SqlConnection conn = new SqlConnection
 ("data source=localhost; integrated security=true; " +
 "initial catalog=pubs;");
SqlCommand cmdAuthors = new SqlCommand
 ("select * from Authors", conn);
conn.Open();

// Create DataReader and read data
SqlDataReader dr;
dr = cmdAuthors.ExecuteReader();
while (dr.Read())
{
 lstBuiltNames.Items.Add(dr["au_lname"] + ", " +
 dr["au_fname"]);
}

// Close DataReader and Connection
dr.Close();
conn.Close();

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 51

When using connections with the DataReader object, you need to always use a
Try…Catch…Finally statement to ensure that if anything fails, the connection
will be closed. Otherwise, the connection may be left open indefinitely.

The following code for a DataReader object catches errors and closes the
connection:

Try
 conn.Open()
 dr = cmdAuthors.ExecuteReader()
 'use the returned data in the DataReaders
Catch e As Exception
 'handle the error
Finally
 dr.Close()
 conn.Close()
End Try

try
{
 conn.Open();
 dr = cmdAuthors.ExecuteReader();
 // use the returned data in the DataReaders
}
catch(Exception e)
{
 // Handle error
}
finally
{
 dr.Close();
 conn.Close();
}

Use Try…Catch…Finally
error handling

Visual Basic .NET

C#

52 Module 10: Accessing Data with Microsoft ADO.NET

Reading Data from a DataReader

Call Read for each record
Returns false when there are no more records

Access fields
Parameter is the ordinal position or name of the field
Get functions give best performance

Close the DataReader
Close the connection

Do While myReader.Read()
str &= myReader(1)
str &= myReader("field")
str &= myReader.GetDateTime(2)

Loop

Do While myReader.Read()
str &= myReader(1)
str &= myReader("field")
str &= myReader.GetDateTime(2)

Loop

while (myReader.Read())
{
str += myReader[1];
str += myReader["field"];
str += myReader.GetDateTime(2);

}

while (myReader.Read())
{
str += myReader[1];
str += myReader["field"];
str += myReader.GetDateTime(2);

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have called the ExecuteReader method of the Command object, you
can access a record in the DataReader object by calling the Read method. The
default positioning in the DataReader object is before the first record;
therefore, you must call the Read method before accessing any data. When
there are no more records available, the Read method returns a null value.

The following code loops through all of the records in a DataReader object dr,
and displays the au_fname field in the Label control lblName:

Do While dr.Read()
 lblName.Text &= dr("au_fname")
Loop

while (dr.Read())
{
 lblName.Text += dr["au_name"];
}

Call Read for each
record

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 53

To get the data from the fields in the current record, you can access a field by
ordinal position, by name, or by calling an appropriate Get method, such as
GetDateTime, GetDouble, GetInt32, or GetString.

Using a specific Get method is faster than accessing by ordinal position or
by name because the DataReader does not need to check the data format.

For example, the following sample code reads the first name and last name
fields, both string values, from the first record of the DataReader object dr, by
using the GetString() method:

dr.Read()
lblName.Text = dr.GetString(1) + ", " + _
 dr.GetString(2)

dr.Read();
lblName.Text = dr.GetString(1) + ", " +
 dr.GetString(2);

You can also reference, by name, the fields of data in the current record of the
DataReader object. You can then call an appropriate conversion function, as
shown in the following example code:

myReader("au_fname")

myReader["au_fname"];

While the DataReader object is in use, the associated connection is busy
serving the DataReader object. Therefore, you must call the Close method to
close the DataReader object when you are finished using it, as shown in the
following code example:

myReader.Close()

myReader.Close();

The DataReader does not automatically close the connection. You must
explicitly call the Close method to close the connection when you are finished
using it, as shown in the following code example:

conn.Close()

conn.Close();

Access fields

Tip

Visual Basic .NET

C#

Visual Basic .NET

C#

Close the DataReader

Visual Basic .NET

C#

Close the Connection

Visual Basic .NET

C#

54 Module 10: Accessing Data with Microsoft ADO.NET

Binding a DataReader to a List-Bound Control

Create the Control

Bind to a DataReader

dgAuthors.DataSource = dr
dgAuthors.DataBind()

dgAuthors.DataSource = dr
dgAuthors.DataBind()

<asp:DataGrid id="dgAuthors" runat="server" /><asp:DataGrid id="dgAuthors" runat="server" />

dgAuthors.DataSource = dr;
dgAuthors.DataBind();

dgAuthors.DataSource = dr;
dgAuthors.DataBind();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In addition to looping through DataReader object data and displaying it
programmatically, you can bind a DataReader object to a list-bound control.

To bind a DataReader object to a list-bound control, you set the DataSource
property of the list-bound control to the DataReader object. The following
sample code creates a DataReader object dr, binds it to a ListBox control
au_lname, and then closes the DataReader and Connection objects:

Dim conn As New SqlConnection _
 ("data source=localhost;integrated security=true;" & _
 "initial catalog=pubs")
conn.Open()
Dim cmdAuthors As New SQLCommand _
 ("select * from Authors", conn)

'bind the datareader to a listbox
Dim dr As SqlDataReader
dr = cmdAuthors.ExecuteReader()
lstBoundNames.DataSource = dr
lstBoundNames.DataTextField = "au_lname"
lstBoundNames.DataBind()

'close the datareader and the connection
dr.Close()
conn.Close()

Introduction

Visual Basic .NET

 Module 10: Accessing Data with Microsoft ADO.NET 55

SqlConnection conn = new SqlConnection
 ("data source=localhost; integrated security=true; " +
 "initial catalog=pubs");
conn.Open();

SqlCommand cmdAuthors = new SqlCommand
 ("select * from Authors", conn);

//bind the datareader to a listbox
SqlDataReader dr;
dr = cmdAuthors.ExecuteReader();
lstBoundNames.DataSource = dr;
lstBoundNames.DataTextField = "au_lname";
lstBoundNames.DataBind();

//close the datareader and the connection
dr.Close();
conn.Close();

C#

56 Module 10: Accessing Data with Microsoft ADO.NET

Practice: Organizing Code to Create a DataReader

Students will:

Reorder lines of code to create a
DataReader

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will rearrange the lines of ADO.NET code into the correct
order to create a DataReader object.

 To run the practice

• View the http://localhost/Mod10VB/DataReaderCode.aspx or
http://localhost/Mod10CS/DataReaderCode.aspx page and organize the
lines of ADO.NET code into the correct order to create a DataReader
object.

There are several correct answers to this practice.

Note

 Module 10: Accessing Data with Microsoft ADO.NET 57

Demonstration: Displaying Data Using DataReaders

Create a SqlConnection

Create a DataReader

Bind the DataReader to a ListBox

Build ListBox items from data supplied
by the DataReader

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will review code that creates and fills a DataReader
object by using a SQLCommand object that binds the DataReader object to
one ListBox control, and that then recreates the DataReader to bind it to a
second ListBox control.

 To run the demonstration

1. Open the datareader.aspx page in the Mod10VB or Mod10CS project in the
2310Demos solution.

2. Build and browse the datareader.aspx page.
There are two list boxes that are displaying the same data. The first list box
is bound to a DataReader object, while the second list box is built by
looping through the records in the DataReader object and
programmatically building each ListBox control entry.

3. In Visual Studio .NET, view the code-behind page for the datareader.aspx
page.

4. In the Page_Load event procedure, show the code that does the following:

• Creates a SqlConnection object.

• Creates a SqlCommand object.

• Creates a DataReader object.

• Binds the DataReader object to the first ListBox control.

• Closes the DataReader object and then creates it again.
This step is necessary because a DataReader object is a forward-only
view of the data and you had already reached the end of the data when
the DataReader object was bound to the ListBox control.

• Steps through the DataReader object and adds two fields for each item
in the second ListBox control.

Introduction

58 Module 10: Accessing Data with Microsoft ADO.NET

Review

Introduction to Using ADO.NET

Connecting to a Database

Accessing Data with DataSets

Using Multiple Tables

Accessing Data with DataReaders

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the code that is used to create a connection to a database named
Coho, on the local SQL Server, using integrated security?
For Visual Basic .NET
conn = New SqlConnection("data source=localhost;" & _

 "integrated security=true;initial catalog=coho")

For C#
conn = new SqlConnection("data source=localhost;" +

 "integrated security=true; initial catalog=coho");

2. What is the difference between a DataSet and a DataView object?
A DataSet object is a collection of DataTables objects.
A DataView object is a custom view of DataTable objects that are in
DataSet objects.

 Module 10: Accessing Data with Microsoft ADO.NET 59

3. What is the difference between a DataSet and a DataReader object?
The DataSet object is designed to handle the actual data from a data
store. The DataSet class represents a cache of data, with database-like
behavior. The DataSet object contains tables, columns, relationships,
constraints, and data. After the connection to the database is closed, the
DataSet continues to exist.
The DataReader class is designed to produce a read-only, forward-only
stream that is returned from the database. The DataReader is
destroyed when the connection to the database is closed.

4. What is the purpose of the DataAdapter object?
A DataAdapter object is a tool that is used to create and initialize
various tables. A DataAdapter object allows for the retrieval and saving
of data between a DataSet object and the source data store. A
DataAdapter object is responsible for pulling out data from the
physical store and pushing it into data tables and relations.

5. Which method is used to populate a DataSet object with the results from a
query?
The method that is used to populate the DataSet object with results of a
query is the Fill method.

6. How do you add multiple tables into a DataSet object?
Create a separate DataAdapter object for each DataTable object and
call the Fill method of each table with a unique table name.

7. How do you create a relationship between two DataTable objects in a
DataSet object?
Create a new DataRelation object from the two related DataColumns of
the DataTable objects, and then add the DataRelation object to the
Relations collection of the DataSet object.

60 Module 10: Accessing Data with Microsoft ADO.NET

Lab 10: Accessing Data with Microsoft ADO.NET

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Retrieve data from a Microsoft® SQL Server™ database by using the
SqlConnection and SqlDataAdapter objects.

 Store data in a DataSet object and then display that data to users in a
DataGrid control.

 Retrieve data from a SQL Server database by using SqlConnection and
SqlDataReader objects.

 Bind a SqlDataReader object to a DataGrid control to display data.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations. For instance, this lab does
not comply with the recommendation that all data access be done through
stored procedures.

Before working on this lab, you must have:

 Knowledge of how to use Microsoft ADO.NET SqlConnection,
SqlDataAdapter, SqlDataReader, and DataSet objects to read data from a
SQL Server database.

 Knowledge of how to display DataSet data in a DataGrid control.

Objectives

Note

Prerequisites

 Module 10: Accessing Data with Microsoft ADO.NET 61

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

One benefit that is offered by Coho Winery is medical insurance. When
applying for medical insurance, a user must select a primary care physician.
The doctors that are approved by your company are all listed in a SQL Server
database named doctors. The doctors’ addresses are also in the database. In this
lab, you will enhance the doctors.aspx page in the Coho Winery Web site to
allow users to list doctors that are in specific cities.

Scenario

Estimated time to
complete this lab:
30 minutes

62 Module 10: Accessing Data with Microsoft ADO.NET

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not
created 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution
named 2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Microsoft ASP.NET Web Application project, named
BenefitsVB or BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list click ASP.NET Web Application, set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 10: Accessing Data with Microsoft ADO.NET 63

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files.

Browse to the install folder\Labfiles\Lab10\VB\Starter\BenefitsVB folder
for the Visual Basic .NET files.
Browse to the install folder\Labfiles\Lab10\CS\Starter\BenefitsCS folder for
the Visual C# files.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project.
Create a new Microsoft Visual Basic® .NET Class Library project, named
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Microsoft Visual C#™ .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, Point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

64 Module 10: Accessing Data with Microsoft ADO.NET

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for the project files:

Browse to the install folder\Labfiles\Lab10\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab10\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or the

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

 Module 10: Accessing Data with Microsoft ADO.NET 65

Exercise 1
Using a SqlDataReader

In this exercise, you will fill in a list box on the doctors.aspx page with the
cities where the doctors are located. When the user selects a city, you will
create a new view of the DataSet data and display the data in the DataGrid.

 Add the list box

1. Open the doctors.aspx page in the BenefitsVB or the BenefitsCS project.
2. Using a drag-and-drop operation, place a DropDownList control on the

doctors.aspx page, as shown in the following illustration. This list box will
display the cities where the doctors are located.

3. Set the ID property of the DropDownList control to lstCities.

 Read the list of cities from the doctors database

1. Open the code-behind page for the doctors.aspx page, doctors.aspx.vb or
doctors.aspx.cs, and go to the Page_Load event procedure.

2. If you are using C# to complete this lab enter the following using statement
after the using statements at the top of the doctors.aspx.cs file.
using System.Data.SqlClient;

3. Locate the following comment:
'TODO Lab10: bind the listbox to city field in the doctors
table

//TODO Lab10: bind the listbox to city field in the doctors
table

Visual C#

Visual Basic .NET

C#

66 Module 10: Accessing Data with Microsoft ADO.NET

4. Write code to create a SqlCommand object to read the city field from the
doctors table in the doctors SQL Server database. Use the SqlConnection
object that is already created in the page.
The SqlCommand should be "SELECT city FROM doctors."

5. Write code to open the database connection.
6. Write code to create a SqlDataReader object from the SqlCommand

object by calling the ExecuteReader method of the SqlCommand object.
7. Write code to set the properties of the lstCities drop-down list box as shown

in the following table.
Property Value

DataSource SqlDataReader object

DataTextField "city"

8. Write code to call the DataBind method of the lstCities drop-down list box.
9. Write code to close the DataReader and Connection objects.

Your code should look like the following:
Dim cmdCities As New SqlCommand _
 ("SELECT city FROM doctors", SqlConnection1)
Dim drCities As SqlDataReader
SqlConnection1.Open()
drCities = cmdCities.ExecuteReader()
lstCities.DataSource = drCities
lstCities.DataTextField = "city"
lstCities.DataBind()
drCities.Close()
SqlConnection1.Close()

SqlCommand cmdCities = new SqlCommand
 ("Select city FROM doctors", sqlConnection1);
sqlDataReader drCities;
sqlConnection1.Open();
drCities = cmdCities.ExecuteReader();
lstCities.DataSource = drCities;
lstCities.DataTextField = "city";
lstCities.DataBind();
drCities.Close();
sqlConnection1.Close();

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 67

10. Build and browse the doctors.aspx page.
The City drop-down list box should display the list of cities where the
doctors are located.
Notice that the City list box shows a city for every row in the database.
Although this method works, it is not the most user-friendly way to display
the city information. What can you do to improve the display?
There are several possible answers. For example, you can change the
SQL statement to use DISTINCT, call a stored procedure that selects
distinct city names, or write a For loop that selects only unique city
names.
__

__

One solution for this problem is presented in Lab 11, “Calling Stored
Procedures with Microsoft ADO.NET,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

 Create a DataView for the DataGrid

1. Set the AutoPostBack property of the lstCities drop-down list box to true.
2. Create a SelectedIndexChanged event procedure for the lstCities

drop-down list box.
In the SelectedIndexChanged event procedure, you will add the code to
display only the doctors from the selected city in the DataGrid control. For
example, if Seattle is selected in the drop-down list box, the DataGrid
control will only display doctors from the city of Seattle.

3. Read the city that is selected in the lstCities drop-down list box and store
the city name in a String variable named strCity.

4. Fill the DsDoctors1 DataSet by using the sqlDataAdapter1 DataAdapter.
5. Create a new DataView from Table(0) of the DataSet.
6. Set the RowFilter property of the DataView to display only the records

where the city field is equal to the city that is selected in the lstCities
drop-down list box.

7. Set the DataSource property of the DataGrid control to the new
DataView.

Note

68 Module 10: Accessing Data with Microsoft ADO.NET

8. Call the DataBind method of the DataGrid control.
Your code should look like the following:
Dim strCity As String = Trim(lstCities.SelectedItem.Value)
SqlDataAdapter1.Fill(DsDoctors1)
Dim dvDocs As New DataView(DsDoctors1.Tables(0))
dvDocs.RowFilter = "city = '" & strCity & "'"
dgDoctors.DataSource = dvDocs
dgDoctors.DataBind()

string strCity = lstCities.SelectedItem.Value.Trim();
sqlDataAdapter1.Fill(dsDoctors1);
DataView dvDocs = new DataView(dsDoctors1.Tables[0]);
dvDocs.RowFilter = "City = '" + strCity + "' ";
dgDoctors.DataSource = dvDocs;
dgDoctors.DataBind();

9. In Design view, remove the DataSource and DataMember property
settings for the DataGrid control:
a. On the doctors.aspx page, select the dgDoctors DataGrid control.
b. In the Properties window, select DataMember, highlight the value

doctors, and then press DELETE.
c. In the Properties window, select DataSource, highlight the value

dsDoctors1, and then press DELETE.

You are removing these property settings because they conflict with
the code that you added in the preceding steps. When properties are set in
both the code and user interface (UI), you will get unpredictable results.

10. In the Page_Load event procedure, immediately after the code to fill the
dsDoctors1 DataSet object, set the DataSource of the dgDoctors DataGrid
to the DsDoctors1 DataSet object. Your code should look like the
following, with the newly-added line in bold font:
SqlDataAdapter1.Fill(DsDoctors1)
dgDoctors.DataSource = DsDoctors1
dgDoctors.DataBind()

sqlDataAdapter1.Fill(dsDoctors1);
dgDoctors.DataSource = dsDoctors1;
dgDoctors.DataBind();

11. Build and browse the doctors.aspx page.
When you select a city in the City list box, the dgDoctors DataGrid will
display only the doctors that are located in the selected city.

Visual Basic .NET

C#

Note

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 69

Exercise 2
Viewing Doctors from All Cities

In this exercise, you will add the All option to the City drop-down list box and
reset functionality to the doctors.aspx Web page, which will then reset the
DataGrid and Specialties list box controls to a default configuration.

 Add an [All] item to the list box

1. Open the code-behind page for the doctors.aspx page, doctors.aspx.vb or
doctors.aspx.cs, and go to the Page_Load event procedure.

2. Locate the following comment:
'TODO Lab10: add the "All" item to the list and select it

//TODO Lab10: add the "All" item to the list and select it

3. Call the Add method of the lstCities.Items collection to add a new item to
the list named [All].

4. Set the SelectedIndex property of the lstCities drop-down list box to the
last item in the list (which is the [All] item that you just added).
Your code should look like the following:
lstCities.Items.Add("[All]")
lstCities.SelectedIndex = lstCities.Items.Count – 1

lstCities.Items.Add("[All]");
lstCities.SelectedIndex = lstCities.Items.Count – 1;

 Check for the [All] selection in the SelectedIndexChanged event
procedure

1. In the doctors.aspx.vb or the doctors.aspx.cs file, go to the
lstCities_SelectedIndexChanged event procedure.

2. Add a test to the lstCities_SelectedIndexChanged event procedure, after
filling the DataSet, but before calling the DataBind method, to see if the
[All] item was selected.

3. If the [All] item is selected, set the DataSource of the dgDoctors DataGrid
control to the entire DsDoctors1 DataSet.

4. If a city is selected in the lstCities drop-down list box, create a DataView to
display only doctors that are located in that city, and then set the
DataSource of the dgDoctors DataGrid to the DataView.

5. Call the reset function to remove any page or selection from the DataGrid.
The reset function is already in the doctors.aspx.vb or the doctors.aspx.cs
code-behind page.

Visual Basic .NET

C#

Visual Basic .NET

C#

70 Module 10: Accessing Data with Microsoft ADO.NET

The lstCities_SelectedIndexChanged event procedure should look like the
following:
Private Sub lstCities_SelectedIndexChanged(...
 Dim strCity As String = _
 Trim(lstCities.SelectedItem.Value)
 SqlDataAdapter1.Fill(DsDoctors1)

 If strCity = "[All]" Then
 dgDoctors.DataSource = DsDoctors1
 Else
 Dim dvDocs As New DataView(DsDoctors1.Tables(0))
 dvDocs.RowFilter = "city = '" & strCity & "'"
 dgDoctors.DataSource = dvDocs
 End If

 reset()
 dgDoctors.DataBind()
End Sub

private void lstCities_SelectedIndexChanged(...
{
 string strCity =
 lstCities.SelectedItem.Value.Trim();
 sqlDataAdapter1.Fill(dsDoctors1);

 if (strCity == "[All]")
 {
 dgDoctors.DataSource = dsDoctors1;
 }
 else
 {
 DataView dvDocs =
 new DataView(dsDoctors1.Tables[0]);
 dvDocs.RowFilter = "city = '" + strCity + "'";
 dgDoctors.DataSource = dvDocs;
 }

 reset();
 dgDoctors.DataBind();
}

6. Build and browse the doctors.aspx page.
7. Click a city in the City drop-down list box.

You should see only doctors that are from that city.
8. Click [All] in the City drop-down list box.

You should see all of the doctors in the doctors database.

 Paging with city selection

1. In the doctors.aspx.vb or the doctors.aspx.cs file, go to the existing
dgDoctors_PageIndexChanged event procedure.

2. Retrieve the currently selected item from the lstCities drop-down list box
and save it in a variable named strCity.

Visual Basic .NET

C#

 Module 10: Accessing Data with Microsoft ADO.NET 71

3. Add a test, after filling the DataSet, but before calling the DataBind
method, to see if the [All] item was selected.

4. If the [All] item is selected, set the DataSource property of the dgDoctors
DataGrid to the entire DsDoctors1 DataSet.

5. If a city is selected in the lstCities drop-down list box, create a DataView to
display only doctors that are located in that city, and then set the
DataSource property of the dgDoctors DataGrid to the DataView.
When complete, the entire dgDoctors_PageIndexChanged event procedure
should look like the following:
Private Sub dgDoctors_PageIndexChanged(...
 Dim strCity As String = _
 Trim(lstCities.SelectedItem.Value)
 dgDoctors.CurrentPageIndex = e.NewPageIndex
 SqlDataAdapter1.Fill(DsDoctors1)

 If strCity = "[All]" Then
 dgDoctors.DataSource = DsDoctors1
 Else
 Dim dvDocs As New DataView(DsDoctors1.Tables(0))
 dvDocs.RowFilter = "city = '" & strCity & "'"
 dgDoctors.DataSource = dvDocs
 End If
 dgDoctors.DataBind()
End Sub

private void dgDoctors_PageIndexChanged(...
{
 string strCity =
 lstCities.SelectedItem.Value.Trim();
 dgDoctors.CurrentPageIndex = e.NewPageIndex;
 sqlDataAdapter1.Fill(dsDoctors1);

 if (strCity == "[All]")
 {
 dgDoctors.DataSource = dsDoctors1;
 }
 else
 {
 DataView dvDocs =
 new DataView(dsDoctors1.Tables[0]);
 dvDocs.RowFilter = "city = '" + strCity + "'";
 dgDoctors.DataSource = dvDocs;
 }
 dgDoctors.DataBind();
}

6. Build and browse the doctors.aspx page.
Test by selecting a city and then a page number.

Visual Basic .NET

C#

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Overview of Stored Procedures 2

Lesson: Calling Stored Procedures 9

Review 22

Lab 11: Calling Stored Procedures with
Microsoft ADO.NET 24

Module 11: Calling
Stored Procedures with
Microsoft ADO.NET

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 11: Calling Stored Procedures with Microsoft ADO.NET iii

Instructor Notes
In this module, students will learn how to access data from a Microsoft®

ASP.NET Web application by using stored procedures.

After completing this module, students will be able to:

 Explain what a stored procedure is and the reasons for using stored
procedures when accessing a database:

 Call stored procedures, including being able to:

• Call a stored procedure from a Web Form.

• Identify the type of parameters that are available when calling stored
procedures.

• Pass input parameters when calling stored procedures from a Web Form.

• Read output parameters from a stored procedure.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_11.ppt
 Sample code page 2310B_11_code.htm

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the instructor-led demonstrations.
 Review the code in the sample code page.

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Presentation:
45 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 11: Calling Stored Procedures with Microsoft ADO.NET

How to Teach This Module
This section contains information that will help you to teach this module.

This is the third of three modules on Microsoft ADO.NET in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET:

 Module 9, “Accessing Relational Data Using Microsoft
Visual Studio .NET,” introduces ADO.NET and focuses on accessing data
with ADO.NET through the Microsoft Visual Studio® .NET IDE, as
opposed to accessing data programmatically.

 Module 10, “Accessing Data with Microsoft ADO.NET,” introduces and
compares the use of DataSets, and DataReaders for accessing data from
data sources. This module focuses on using ADO.NET programmatically.
DataReaders are not covered in Module 9 because there is no support for
them in the Visual Studio .NET tools.

 Module 11, “Calling Stored Procedures with Microsoft ADO.NET,”
introduces the use of stored procedures for accessing and modifying data in
a database.

Lesson: Overview of Stored Procedures
Check to see how familiar your students are with stored procedures. You may
be able to skim or completely omit this first lesson.

Alternative delivery. You can present this practice as a discussion.

Lesson: Calling Stored Procedures
Mention that the lesson starts with simple stored procedures and then covers
more complex stored procedures with parameters.

Alternative delivery. You can cover the teaching points on this slide in the
demonstration.

Alternative delivery. You can cover the teaching points on this slide in the
demonstration.

Alternative delivery. You can cover the teaching points on this slide in the
demonstration.

Practice: Select the
Correct Stored
Procedures

Calling Stored
Procedures

Passing Input
Parameters

Using Output
Parameters

 Module 11: Calling Stored Procedures with Microsoft ADO.NET v

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 11: Calling Stored Procedures with Microsoft ADO.NET
Before beginning the lab, students should have completed all of the practices
and answered all of the review questions. Use the Lab Map to highlight what
parts of the solution the students will be creating in this lab.

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 1

Overview

Overview of Stored Procedures

Calling Stored Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Directly accessing and manipulating data in a database from a Web Form can
be a very inefficient use of resources, and may create security risks. One way of
improving the efficiency and security of database access is to create stored
procedures on the database server, and then call these stored procedures from
your Web Form. Accessing a database through a stored procedure limits the
Web Form code and the network bandwidth that you have to use when
performing complicated tasks. Accessing a database through a stored procedure
also protects the database by limiting direct access to the database to trusted,
local stored procedures.

In this module, you will learn how to accomplish data access tasks from Web
applications by using Microsoft® ADO.NET to access stored procedures.

After completing this module, you will be able to:

 Explain what a stored procedure is and the reasons for using stored
procedures when accessing a database.

 Call stored procedures.

Introduction

Objectives

2 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Lesson: Overview of Stored Procedures

What Is a Stored Procedure?

Why Use Stored Procedures?

Practice: Select the Correct Stored Procedure

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One alternative to directly accessing databases from your Web application is to
call a stored procedure that will access the database for you. Using stored
procedures has several advantages over direct database access, including
efficiency, security, and the protection of the database.

In this lesson, you will learn what a stored procedure is and the reasons for
calling stored procedures when accessing a database.

After completing this lesson, you will be able to:

 Describe what a stored procedure is.
 Explain the reasons for using stored procedures to access and manipulate

databases.

Introduction

Lesson objectives

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 3

What Is a Stored Procedure?

A common data procedures that can be called by
many Web applications

Programmatic access to a database

Return records

Return value

Perform action

ClientClient

SQL ServerSQL Server

Web Form
Stored

Procedure
Stored

Procedure

Web ServerWeb Server

Database

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A stored procedure is a database procedure that a database developer writes for
use with a specific database. Other Web applications can then call these stored
procedures to access and manipulate data in the database.

Stored procedures allow you to access a database by calling an existing
procedure rather than having to write your own SQL statements. Stored
procedures are built from sequences of Transact-SQL statements, and they
function similarly to procedures in a Web application in that the statements are
called by name, and can have both input and output parameters.

The three types of stored procedures are:

 Return records stored procedures
Return records stored procedures are used to find specific records, sort and
filter those records, and then return the result of the find, sort and filter
operations to a DataSet object or to a list-bound control. These stored
procedures are based on SQL Select statements.
An example of a return records stored procedure is a request for the amount,
date, and recipient of the last three checks that have been processed in a
bank account. This data could be loaded into a DataSet object for further
processing, or displayed directly to the user in a ListBox control.

Introduction

Programmatic access to
a database

4 Module 11: Calling Stored Procedures with Microsoft ADO.NET

 Return value stored procedures, also known as scalar stored procedures
Return value stored procedures are used to execute a database command or
function that returns a single value. Because only a value is returned, return
value stored procedures are often used in code and then the result is
displayed to users.
An example of a return value stored procedure is to return the total value of
the last three checks that have been processed in a bank account.

 Action stored procedures
Action stored procedures are used to perform some function in the database,
but not return a record or a value. These database functions may include
updating, editing, or modifying the data.
An example of an action stored procedure is a request to update a single
mailing address in a company’s customer database.

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 5

Why Use Stored Procedures?

Modular programming

Distribution of work

Database security

Faster execution

Reduces network traffic

Provides flexibility

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is easier, more efficient, and more secure to use a stored procedure than it is
to write the code that is required to connect directly to a database and run your
own Transact-SQL statements. Calling a stored procedure does not require that
you understand how the database is designed, and the database is only accessed
by a tested procedure.

Stored procedures are classic examples of modular programming. You create
the procedure once, test it once, store it on the database server, and then call it
any number of times from multiple applications. Any updates or changes to the
database are hidden from all of the accessing applications by the stored
procedure.

Stored procedures can be created independently by a developer who specializes
in database programming, while the Web applications that will use the stored
procedure can be created in parallel by other developers. This distribution of
work allows each developer to focus on their own specialty, and meet their own
deadlines.

Using stored procedures provides increased security for a database by limiting
direct access. Only the tested and proven stored procedures that are developed
by the owner of the database directly access the database. Because other Web
applications and developers do not directly access the database, there is a
minimum risk of accidental damage to the structure or to the content of the
database.

Using SQL or Transact-SQL statements directly in the Microsoft ASP.NET
code is also a security risk because the statements can give a hacker information
about the database and its structure. In addition, with direct access to a
database, you also have the security issue of trying to determine what kind of
permissions you should give to the Webuser account on the individual tables.

Introduction

Modular programming

Distribution of work

Increase database
security

6 Module 11: Calling Stored Procedures with Microsoft ADO.NET

If a procedure requires a large amount of Transact-SQL code or if it is
performed repetitively, using stored procedures can be faster than direct
database access with Transact-SQL code. Stored procedures are parsed and
optimized when they are created, and an in-memory version of the procedure
can be used after the procedure is executed for the first time.

Direct access through Transact-SQL statements requires that the statements be
sent from the client each time they run. The statements are then compiled and
optimized every time they are executed by the database server.

An operation requiring hundreds of lines of Transact-SQL code can sometimes
be performed through a single statement that calls a stored procedure. Sending
one call over the network, rather than hundreds of lines of code, reduces
network traffic.

Because database access is through the stored procedure, the database developer
can change the structure of the database without breaking the Web applications
that use it. This protection allows for continual improvement of the database
without putting the rest of the system at risk.

Faster execution

Reduce network traffic

Provides flexibility

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 7

Practice: Select the Correct Stored Procedure

Students will:

Given scenarios, decide what type of
stored procedure needs to be used

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

 Read the following scenarios and decide what type of the following
stored procedure would be used:

 Return records
 Return value
 Perform action

You need to determine the top 10 best sellers of the company.
Return records.
__

__

You need to determine the net profit for a given quarter.
Return value.
__

__

You need to change all the 425 United States telephone area codes to 415.
Perform action.
__

__

8 Module 11: Calling Stored Procedures with Microsoft ADO.NET

You need to determine which records have 425 United States telephone area
codes.
Return records.
__

__

You need to delete all of the items that have been discontinued in a given
category.
Perform action.
__

__

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 9

Lesson: Calling Stored Procedures

Calling Stored Procedures

Demonstration: Calling a Stored Procedure

Practice: Displaying Data from a Stored Procedure

Using Parameters

Passing Input Parameters

Using Output Parameters

Demonstration: Passing Parameters

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you can call a stored procedure, you need to have identified the
procedure name and the available parameters. After you have identified the
stored procedure, you can call the procedure, pass any input parameters that are
required to process your request, and handle the output parameters that are
included in the response.

In this lesson, you will learn how to call stored procedures, pass input
parameters, and handle output parameters.

After completing this lesson, you will be able to:

 Call a stored procedure from a Web Form.
 Identify the type of parameters that are available when calling stored

procedures.
 Pass input parameters when calling stored procedures from a Web Form.
 Use output parameters from a stored procedure.

Introduction

Lesson objectives

10 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Calling Stored Procedures

Identify the stored procedure
Set up the SelectCommand property of the DataAdapter

Run the stored procedure and store returned records

Dim daCategory As New SqlDataAdapter()
daCategory.SelectCommand = New SqlCommand()
daCategory.SelectCommand.Connection = conn
daCategory.SelectCommand.CommandText = "ProductCategoryList"
daCategory.SelectCommand.CommandType = CommandType.StoredProcedure

Dim daCategory As New SqlDataAdapter()
daCategory.SelectCommand = New SqlCommand()
daCategory.SelectCommand.Connection = conn
daCategory.SelectCommand.CommandText = "ProductCategoryList"
daCategory.SelectCommand.CommandType = CommandType.StoredProcedure

daCategory.Fill(ds, "Categories")daCategory.Fill(ds, "Categories")

SqlDataAdapter daCategory = new SqlDataAdapter();
daCategory.SelectCommand = new SqlCommand();
daCategory.SelectCommand.Connection = conn;
daCategory.SelectCommand.CommandText = "ProductCategoryList";
daCategory.SelectCommand.CommandType = CommandType.StoredProcedure;

SqlDataAdapter daCategory = new SqlDataAdapter();
daCategory.SelectCommand = new SqlCommand();
daCategory.SelectCommand.Connection = conn;
daCategory.SelectCommand.CommandText = "ProductCategoryList";
daCategory.SelectCommand.CommandType = CommandType.StoredProcedure;

daCategory.Fill(ds, "Categories");daCategory.Fill(ds, "Categories");

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To call a stored procedure, you first need to identify the stored procedure, create
a DataAdapter object, and point the DataAdapter object to the database
connection. You then set the CommandText property to the name of the
identified stored procedure, and finally, you set the CommandType property to
CommandType.StoredProcedure.

The first step in using a stored procedure is to identify the type and name of the
stored procedure. You can use a DataAdapter object or a DataReader object
to call all three types of stored procedures. The method that you call to execute
the stored procedure will vary depending on the type of stored procedure that
you are calling:

 Return records stored procedures
When you call a stored procedure that returns a set of records, you need to
store that set of records either in a DataSet, or directly into a list-bound
control by using a DataReader. If you want to use a DataSet, you need to
use a DataAdapter and the Fill method. If you want to use a DataReader,
you need to use a Command object and the ExecuteReader method, and
then bind the returned record into a list-bound control.

 Return value stored procedures
When you call a stored procedure that returns a value, call the
ExecuteScalar method of the Command object, and save the result in a
variable of the appropriate data type.

 Perform action stored procedures
When you call a stored procedure that performs some action on the database
but does not return a set of records or a value, use the ExecuteNonQuery
method of the Command object.

Introduction

Identify the stored
procedure

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 11

To set up the call to the stored procedure, you need to create a SqlCommand
object and save it as the SelectCommand property of a DataAdapter. Then,
you need to set the Connection, CommandText, and CommandType
properties.

You can set up the call to a stored procedure visually by using the stored
procedure tools in the Microsoft Visual Studio® .NET Toolbox, or you can
manually write the code to call the stored procedure. The following examples
use manual code to show both the complete code and the logical process of
calling a stored procedure.

The following examples calls the ProductCategoryList stored procedure. The
ProductCategoryList stored procedure returns a list of category IDs and
category names from the Categories table:

Procedure ProductCategoryList
As
 SELECT CategoryID,CategoryName
 FROM Categories

The following code uses a Connection object and a DataAdapter object to call
the ProductCategoryList return records stored procedure:

Dim daCategory as New SqlDataAdapter()
daCategory.SelectCommand = New SqlCommand()
daCategory.SelectCommand.Connection = conn
daCategory.SelectCommand.CommandText = _
 "ProductCategoryList"
daCategory.SelectCommand.CommandType = _
 CommandType.StoredProcedure

SqlDataAdapter daCategory = new SqlDataAdapter();
daCategory.SelectCommand = new SqlCommand();
daCategory.SelectCommand.Connection = conn;
daCategory.SelectCommand.CommandText =
 "ProductCategoryList";
daCategory.SelectCommand.CommandType =
 CommandType.StoredProcedure;

You can also directly set the connection and command text when you
create the SqlDataAdapter object. The following code performs the same task
as the preceding code:
Dim daCategory As New SqlDataAdapter _
 ("ProductCategoryList", conn)
daCategory.SelectCommand.CommandType = _
 CommandType.StoredProcedure

SqlDataAdapter daCategory = new SqlDataAdapter
 ("ProductCategoryList", conn);
daCategory.SelectCommand.CommandType =
 CommandType.StoredProcedure;

Set the SelectCommand
property

Visual Basic .NET

C#

Note

Visual Basic .NET

C#

12 Module 11: Calling Stored Procedures with Microsoft ADO.NET

To execute the stored procedure and save the returned records in a DataSet, call
the Fill method of the SqlDataAdapter object. This method fills a DataTable
object with the returned records of the stored procedure.

For example, the following code fills the DataSet object ds with the records
that were returned from the ProductCategoryList stored procedure by using
the daCategory SqlDataAdapter:

daCategory.Fill(ds, "Categories")

daCategory.Fill(ds, "Categories");

After you have filled a DataTable with the results of a Select stored procedure,
you can bind the DataTable to a list-bound control to display the data.

Run the stored
procedure

Visual Basic .NET

C#

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 13

Demonstration: Calling a Stored Procedure

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to call a stored procedure in a Microsoft
SQL Server™ database, and then bind the results to a DataGrid.

 To run the demonstration

1. Open the SPGetRecords.aspx page in the Mod11VB or Mod11CS project in
the 2310Demos solution.

2. Build and browse the page.
The DataGrid is bound to the Ten Most Expensive Products stored
procedure in the Northwind Traders database.

3. In Visual Studio .NET, view the code-behind page for the
SPGetRecords.aspx page.

4. In the Page_Load event procedure, show the code that does the following:

• Creates the SqlConnection.

• Creates the SqlDataAdapter and SqlCommand.

• Sets the properties of the SqlCommand object to call the stored
procedure.

• Creates a new DataSet and fills that DataSet from the DataAdapter.

Introduction

14 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Practice: Displaying Data from a Stored Procedure

Students will:

Drag a stored procedure from Server
Explorer onto an ASP.NET Web form

Create a DataReader to read data From
the stored procedure

Bind a DataGrid to the DataReader

Time: 15 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a DataReader to call a stored procedure in a
SQL Server database, and then bind the results to a DataGrid.

 To run the practice

1. Create a new Web application project and set location to
http://localhost/Mod11PracticeVB
http://localhost/Mod11PracticeCS

2. Open the WebForm1.aspx page.
3. Open Server Explorer and expand the following folders: machinename,

SQL Servers, machinename, Northwind, and Stored Procedures.
4. Click the Ten Most Expensive Products stored procedure and drag it onto

the WebForm1.aspx page.
Visual Studio .NET automatically creates a SqlConnection object named
sqlConnection1 and a SqlCommand object named sqlCommand1.

5. Using the Toolbox, put a DataGrid control on WebForm1.aspx page.

Introduction

Visual Basic .NET
C#

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 15

6. Create a Page_Load event procedure and add the following code to create a
DataReader from the SqlCommand object and bind it to the DataGrid:
Dim dr As SqlClient.SqlDataReader
SqlConnection1.Open()
dr = SqlCommand1.ExecuteReader()
DataGrid1.DataSource = dr
DataGrid1.DataBind()
dr.Close()
SqlConnection1.Close()

SqlDataReader dr;
sqlConnection1.Open();
dr = sqlCommand1.ExecuteReader();
DataGrid1.DataSource = dr;
DataGrid1.DataBind();
dr.Close();
sqlConnection1.Close();

7. If you are using C# to build this project, you must enter the following code
at the start of the code-behind page.
using System.Data.SqlClient;

8. Build and browse the WebForm1.aspx page.

Visual Basic .NET

C#

C#

16 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Using Parameters

Identify the available parameters

Input

Output

InputOutput

ReturnValue

Include parameters in the parameters collection

or

Include parameter values in the command string

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you are using stored procedures on a SQL Server database or on another
procedure-based database, parameters can be used to pass and retrieve
information from the stored procedure.

When you use parameters with a SQL Server database, the names of the
parameters that are added to the Parameters collection of the Command object
must match the names of the parameters that are in the stored procedure;
however, the order of the parameters is flexible.

When using parameters in an OLE DB database, the order of the
parameters in the Parameters collection must match the order of the
parameters that are defined in the stored procedure.

The following table describes the types of parameters that are available with
stored procedures.

Parameter Use

Input Used by your Web application to send specific data values to a stored

procedure.

Output Used by a stored procedure to send specific values back to the calling
Web application.

InputOutput Used by a stored procedure to both retrieve information that was sent
by your Web application and to send specific values back to the Web
application.

ReturnValue Used by a stored procedure to send a return value back to the calling
application.

Introduction

Note

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 17

Passing Input Parameters

Create parameter, set direction and value, add to the
Parameters collection

Run stored procedure and store returned records

SqlParameter param = new SqlParameter
("@Beginning_Date", SqlDbType.DateTime);

param.Direction = ParameterDirection.Input;
param.Value = Convert.ToDateTime

(txtStartDate.Text);
da.SelectCommand.Parameters.Add(param);

SqlParameter param = new SqlParameter
("@Beginning_Date", SqlDbType.DateTime);

param.Direction = ParameterDirection.Input;
param.Value = Convert.ToDateTime

(txtStartDate.Text);
da.SelectCommand.Parameters.Add(param);

ds = New DataSet();
da.Fill(ds, "Products");

ds = New DataSet();
da.Fill(ds, "Products");

Code Examples

ds = New DataSet()
da.Fill(ds, "Products")

ds = New DataSet()
da.Fill(ds, "Products")

param = New SqlParameter _
("@Beginning_Date", SQLDbType.DateTime)

param.Direction = ParameterDirection.Input
param.Value = CDate(txtStartDate.Text)
da.SelectCommand.Parameters.Add(param)

param = New SqlParameter _
("@Beginning_Date", SQLDbType.DateTime)

param.Direction = ParameterDirection.Input
param.Value = CDate(txtStartDate.Text)
da.SelectCommand.Parameters.Add(param)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have identified the parameters that a stored procedure supports, you
need to add the parameters you will be using to the Parameters collection of
the Command object.

To create a parameter, create a new SqlParameter object with the name and
data type of the parameter, as specified by the stored procedure. Next, set the
Direction property of the new parameter to indicate how the parameter is used
by the stored procedure. If the stored procedure returns a return value, create a
parameter named returnValue. If the parameter is an input parameter, set the
Value property to specify the data that should be sent to the SQL Server.

For example, the ProductsByCategory stored procedure takes one input
parameter, named @CategoryID of type int, as shown in the following code:

Procedure ProductsByCategory (
 @CategoryID int)
As
 SELECT ProductID, ModelName, UnitCost, ProductImage,
 Chairman
 FROM Products
 WHERE CategoryID=@CategoryID

Introduction

Creating a parameter

18 Module 11: Calling Stored Procedures with Microsoft ADO.NET

To call the ProductsByCategory stored procedure, create an input parameter
named @CategoryID and set its value to the value of a text box:

Dim workParam1 As New SqlParameter _
 ("@CategoryID", SqlDbType.Int)
workParam1.Direction = ParameterDirection.Input
workParam1.Value = Cint(txtStartDate.Text)

SqlParameter workParam1 = new SqlParameter
 ("@CategoryID", SqlDbType.Int);
workParam1.Direction = ParameterDirection.Input;
workParam1.Value = Convert.ToInt16(txtStartDate.Text);

You should always validate the contents of a text box before sending the
user input to the stored procedure. For simplicity, the preceding code does not
do this.

After you have created the Parameter object, use the Add method of the
Parameters collection of the SelectCommand object. If a stored procedure has
more than one parameter, it does not matter in what order you add them because
you create them by name:

Dim daSales as New SqlDataAdapter()
daSales.SelectCommand = New SqlCommand()
daSales.SelectCommand.Connection = conn
daSales.SelectCommand.CommandText = "ProductsByCategory"
daSales.SelectCommand.CommandType = _
 CommandType.StoredProcedure
daSales.SelectCommand.Parameters.Add(workParam1)

SqlDataAdapter daSales = new SqlDataAdapter();
daSales.SelectCommand = new SqlCommand();
daSales.SelectCommand.Connection = conn;
daSales.SelectCommand.CommandText = "ProductsByCategory";
daSales.SelectCommand.CommandType =
 CommandType.StoredProcedure;
daSales.SelectCommand.Parameters.Add(workParam1);

After you have created the Command object, you use the Fill method to run
the stored procedure and retrieve the records:

ds = New DataSet()
daSales.Fill(ds, "Products")

ds = new DataSet();
daSales.Fill(ds, "Products");

Visual Basic .NET

C#

Note

Visual Basic .NET

C#

Running a stored
procedure

Visual Basic .NET

C#

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 19

Using Output Parameters

Create parameter, set direction, add to the Parameters
collection

Run stored procedure and store returned records

Read output parameters

param = New SqlParameter("@ItemCount", SQLDbType.Int)
param.Direction = ParameterDirection.Output
da.SelectCommand.Parameters.Add(param)

param = New SqlParameter("@ItemCount", SQLDbType.Int)
param.Direction = ParameterDirection.Output
da.SelectCommand.Parameters.Add(param)

ds = new DataSet()
da.Fill(ds)

ds = new DataSet()
da.Fill(ds)

iTotal = da.Parameters("@ItemCount").ValueiTotal = da.Parameters("@ItemCount").Value

param = new SqlParameter("@ItemCount", SqlDbType.Int);
param.Direction = ParameterDirection.Output;
da.SelectCommand.Parameters.Add(param);

param = new SqlParameter("@ItemCount", SqlDbType.Int);
param.Direction = ParameterDirection.Output;
da.SelectCommand.Parameters.Add(param);

ds = new DataSet();
da.Fill(ds);

ds = new DataSet();
da.Fill(ds);

iTotal = da.Parameters("@ItemCount").Value;iTotal = da.Parameters("@ItemCount").Value;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To read the value of an output parameter, or to read a returned value from a
return records stored procedure, you need to access the value of the output
parameter in the Parameters collection after the stored procedure has executed.

The OrdersCount stored procedure takes a customer’s ID and returns the
number of outstanding orders that the customer has, but not the actual orders.
The stored procedure uses the input parameters @CustomerID, and the output
parameter @ItemCount, both of type int, as shown in the following stored
procedure:

Procedure OrdersCount (
 @CustomerID int,
 @ItemCount int OUTPUT)
As
 SELECT @ItemCount=COUNT(OrderID)
 FROM Orders
 WHERE CustomerID=@CustomerID

Because the preceding stored procedure returns the number of rows, and it does
not return the data in those rows, you do not need to use a DataAdapter object.
Instead, you can use a Command object directly, and call the
ExecuteNonQuery method to run the stored procedure.

Introduction

Example of using output
parameters

20 Module 11: Calling Stored Procedures with Microsoft ADO.NET

To call the OrdersCount stored procedure, you need to create an input
parameter named @CustomerID, and an output parameter named
@ItemCount, add them to the Parameters collection of a Command object,
and then call ExecuteNonQuery to run the stored procedure:

Dim myCmd As SqlCommand = New SqlCommand("OrdersCount", conn)
myCmd.CommandType = CommandType.StoredProcedure

'add an input parameter
Dim workParam as SqlParameter
workParam = New SqlParameter("@CustomerID", SqlDbType.Int)
workParam.Direction = ParameterDirection.Input
workParam.Value = CInt(txtCustID.Text)
myCmd.Parameters.Add (workParam)

'add an output parameter
workParam = New SqlParameter("@ItemCount", SqlDbType.Int)
workParam.Direction = ParameterDirection.Output
myCmd.Parameters.Add (workParam)

SqlCommand myCmd = new SqlCommand("OrdersCount", conn);
myCmd.CommandType = CommandType.StoredProcedure;

// add an input parameter
SqlParameter workParam;
workParam = new SqlParameter("@CustomerID", SqlDbType.Int);
workParam.Direction = ParameterDirection.Input;
workParam.Value = Convert.ToInt16(txtCustID.Text);
myCmd.Parameters.Add(workParam);

// add an output parameter
workParam = new SqlParameter("@ItemCount", SqlDbType.Int);
workParam.Direction = ParameterDirection.Output;
myCmd.Parameters.Add(workParam);

The following code runs the MyCmd stored procedure:

conn.Open()
myCmd.ExecuteNonQuery()
conn.Close()

conn.Open();
myCmd.ExecuteNonQuery();
conn.Close();

If you are retrieving a value from a stored procedure that returns a value or sets
an output parameter, you need to use the Value method of the returned
parameter in the Parameters collection. You can reference the value of the
output parameter by name or index. The following example code retrieves the
value of the @ItemCount output parameter by name:

curSales = myCmd.Parameters("@ItemCount").Value

curSales = myCmd.Parameters["@ItemCount"].Value;

Calling a return value
stored procedure

Visual Basic .NET

C#

Running the stored
procedure

Visual Basic .NET

C#

Reading output
parameters

Visual Basic .NET

C#

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 21

Demonstration: Passing Parameters

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to call a stored procedure with two
input parameters, and then bind the results to a DataGrid.

 To run the demonstration

1. Open the SPUseParameters.aspx page in the Mod11VB or Mod11CS
project in the 2310Demos solution.

2. Build and Browse.
Enter dates for the Beginning Date and Ending Date, and then click Get
Sales by Year.
A DataGrid is bound to the Sales by Year stored procedure in the
Northwind Traders database.

3. In Visual Studio .NET, view the code-behind page for the
SPUseParameters.aspx page.

4. In the cmdSale_Click event procedure, show the code that does the
following:

• Creates the SqlConnection.

• Creates the SqlDataAdapter and sets properties of the SelectCommand
to call the Sales by Year stored procedure.

• Creates two input parameters.

• Creates a new DataSet and fills the DataSet from the DataAdapter.

Introduction

22 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Review

Overview of Stored Procedures

Calling Stored Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What type of stored procedure would you use to select and retrieve a
customer’s billing record?
A return records stored procedure.

2. What are the three steps in calling a stored procedure?

• Create a Command object, set the CommandText property to the
name of the stored procedure, and set the CommandType property
to CommandType.StoredProcedure.

• Add any needed parameters to the Parameters collection.

• Run the stored procedure by either calling Fill on the DataAdapter
or ExecuteNonQuery on the Command object.

3. Do the parameter names and the order of the names in the Parameters
collection have to match the stored procedure when working with a data
source?
Yes and no. The names have to match, but the order of the parameters
in the parameters collection only have to match the stored procedure in
the OLE DB Managed Provider.

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 23

4. What method of the Command object do you use when calling a return
value stored procedure?
ExecuteNonQuery.

5. What are the four types of stored procedure parameters?
Input, Output, InputOutput, and ReturnValue.

24 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Lab 11: Calling Stored Procedures with Microsoft
ADO.NET

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Retrieve data from a Microsoft® SQL Server™ database by using stored
procedures.

 Access stored procedures by using SqlCommand and SqlDataReader
objects.

 Bind a SqlDataReader object to a list box.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to use Microsoft ADO.NET SqlConnection,
SqlDataAdapter, SqlDataReader, and SqlCommand objects to read data
from a SQL Server database by using stored procedures.

 Knowledge of how to create event procedures for server controls.
 Knowledge of how to display DataSet and DataReader data in a list-bound

control.

Objectives

Note

Prerequisites

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 25

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

One benefit that is offered by Coho Winery is medical insurance. When
applying for medical insurance, a user must select a primary care physician.
The doctors that are approved by your company are all listed in a SQL Server
database that is named doctors. The doctors’ specialties are also in the database.
In this lab, you will enhance the doctors.aspx page on the Coho Winery Web
site to allow users to view the list of specialties of a selected doctor.

Scenario

Estimated time to
complete this lab:
30 minutes

26 Module 11: Calling Stored Procedures with Microsoft ADO.NET

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution
named 2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Microsoft ASP.NET Web Application project, named
BenefitsVB or BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 27

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files.

Browse to install folder\Labfiles\Lab11\VB\Starter\BenefitsVB folder for
the Visual Basic .NET files.
Browse to install folder\Labfiles\Lab11\CS\Starter\BenefitsCS folder for the
Visual C# files.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

28 Module 11: Calling Stored Procedures with Microsoft ADO.NET

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab11\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab11\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 29

Exercise 1
Get Unique City Names

In this exercise, you will bind the lstCities drop-down list box on the
doctors.aspx page so that the drop-down list box displays only unique city
names from the doctors database. When the user selects a city, the code will
create a new view of the DataSet data and display the data in the DataGrid.

The lstCities drop-down list box is currently bound to the city field in the
doctors table by using a SqlCommand object. This binding results in all cities
being displayed in the drop-down list box. In this exercise, you will use a stored
procedure to select only unique city names from the doctors table.

Because the lstCities drop-down list box is currently bound, you must first
remove that binding before using the stored procedure.

 Remove existing binding code

1. Open the doctors.aspx.vb page in the BenefitsVB project or the
doctors.aspc.cs page in the BenefitsCS project.

2. In the Page_Load event procedure, find the following code:
'TODO: Lab10: bind the listbox to city field
'in the doctors
table
Dim cmdCities As New SqlCommand _
 ("Select city from doctors", SqlConnection1)
Dim drCities As SqlDataReader
SqlConnection1.Open()
drCities = cmdCities.ExecuteReader()
lstCities.DataSource = drCities
lstCities.DataTextField = "city"
lstCities.DataBind()
drCities.Close()
SqlConnection1.Close()

//TODO Lab10: bind the listbox to city field
//in the doctors table
SqlCommand cmdCities = new SqlCommand
 ("Select city from doctors", sqlConnection1);
sqlDataReader drCities;
sqlConnection1.Open();
drCities = cmdCities.ExecuteReader();
lstCities.DataSource = drCities;
lstCities.DataTextField = "City";
lstCities.DataBind();
drCities.Close();
sqlConnection1.Close();

3. Comment this code by selecting all of the lines of code, and then clicking

the Comment icon on the toolbar.

Visual Basic .NET

C#

30 Module 11: Calling Stored Procedures with Microsoft ADO.NET

 Bind the drop-down list box using a stored procedure

1. Locate the following comment:
TODO: Lab11: bind the listbox to the getUniqueCities stored
procedure

2. Create a new SqlCommand object named cmdCities that uses the
sqlConnection1 object to call the getUniqueCities stored procedure.

3. Set the CommandType for the cmdCities object to Stored Procedure.
4. Open the sqlConnection1 SqlConnection object.
5. Create a SqlDataReader object from the SqlCommand object by calling

the ExecuteReader method of the SqlCommand object. Name the
SqlDataReader object drCities.

6. In the code, set the properties of the lstCities drop-down list box as shown
in the following table.
Property Value

DataSource drCities

DataTextField "City"

7. Call the DataBind method of the lstCities drop-down list box.
8. Close the DataReader and the Connection objects.

Your code should look like the following:
Dim cmdCities As SqlCommand = New _
 SqlCommand("getUniqueCities", SqlConnection1)
cmdCities.CommandType = CommandType.StoredProcedure
SqlConnection1.Open()
Dim drCities As SqlDataReader
drCities = cmdCities.ExecuteReader()
lstCities.DataSource = drCities
lstCities.DataTextField = "City"
lstCities.DataBind()
drCities.Close()
SqlConnection1.Close()

SqlCommand cmdCities = new SqlCommand
 ("getUniqueCities", sqlConnection1);
cmdCities.CommandType = CommandType.StoredProcedure;
sqlConnection1.Open();
sqlDataReader drCities;
drCities = cmdCities.ExecuteReader();
lstCities.DataSource = drCities;
lstCities.DataTextField = "City";
lstCities.DataBind();
drCities.Close();
sqlConnection1.Close();

9. Build and browse the doctors.aspx page.
The City drop-down list box displays the list of cities where the doctors are
located. There are no duplicate cities listed.

Visual Basic .NET

C#

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 31

Exercise 2
Get Doctor Specialties

In this exercise, you will display a doctor’s specialties in a list box. When a
doctor is selected in the dgDoctors DataGrid object, call the
getDoctorSpecialty stored procedure and display the results in the
lstSpecialties list box.

 Call the getDrSpecialty stored procedure

1. Create SelectedIndexChanged event procedure.
Open the code-behind page for the doctors.aspx page and create a
SelectedIndexChanged event procedure for the DataGrid control:
a. In the code-behind page, in the Class Name drop-down list, click

dgDoctors.
b. In the Method Name drop-down list, click SelectedIndexChanged.
In the properties for the dgDoctors DataGrid control, click Events. Scroll
down the list of events, and then double click the SelectedIndexChanged
event.

2. Create a string variable named strDrID to hold the value of the dr_id
column for the row that was selected by the user.

3. Using the Cells collection of the SelectedItem of the dgDoctors DataGrid,
read the value of the dr_id field and store it in the strDrID variable.
Your code should look like the following:
Dim strDrID As String
strDrID = dgDoctors.SelectedItem.Cells.Item(1).Text

string strDrID;
strDrID = dgDoctors.SelectedItem.Cells[1].Text;

4. Create a new SqlCommand object named cmdSpecialty that uses the
sqlConnection1 object to call the getDrSpecialty stored procedure.

5. Set the SqlCommand command type to a stored procedure.
Your code should look like the following:
Dim cmdSpecialty As New _
 SqlCommand("getDrSpecialty", SqlConnection1)
cmdSpecialty.CommandType = CommandType.StoredProcedure

SqlCommand cmdSpecialty = new
 SqlCommand("getDrSpecialty", sqlConnection1);
cmdSpecialty.CommandType = CommandType.StoredProcedure;

6. Create a SqlParameter object named paramSpecialty by using the
parameter that is shown in the following table.
Parameter name Data type Size

@dr_id SqlDbType.Char 4

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

32 Module 11: Calling Stored Procedures with Microsoft ADO.NET

7. Set the Direction property of the SqlParameter to Input.
8. Set the value of the SqlParameter to the variable strDrID.
9. Add the parameter to the SqlCommand object by using the Add method.

Your code should look like the following:
Dim paramSpecialty As New SqlParameter _
 ("@dr_id", SqlDbType.Char, 4)
paramSpecialty.Direction = ParameterDirection.Input
paramSpecialty.Value = strDrID
cmdSpecialty.Parameters.Add(paramSpecialty)

SqlParameter paramSpecialty = new SqlParameter
 ("@dr_id", SqlDbType.Char, 4);
paramSpecialty.Direction = ParameterDirection.Input;
paramSpecialty.Value = strDrID;
cmdSpecialty.Parameters.Add(paramSpecialty);

10. Open the sqlConnection1 SqlConnection object.
11. Create a new SqlDataReader object named drSpecialty.
12. Fill the SqlDataReader object from the SqlCommand object by calling the

ExecuteReader method of the SqlCommand object.
Your code should look like the following:
SqlConnection1.Open()
Dim drSpecialty As SqlDataReader
drSpecialty = cmdSpecialty.ExecuteReader()

sqlConnection1.Open();
sqlDataReader drSpecialty;
drSpecialty = cmdSpecialty.ExecuteReader();

 Bind the lstSpecialties list box to the drSpecialties DataReader and
make the list box visible

1. In your code, set the properties for the lstSpecialties list box as shown in the
following table.
Property Value

DataSource drSpecialty

DataTextField "Specialty"

2. Call the DataBind method of the list box.

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 11: Calling Stored Procedures with Microsoft ADO.NET 33

3. Close the SqlDataReader and SqlConnection objects.
Your code should look like the following:
lstSpecialties.DataSource = drSpecialty
lstSpecialties.DataTextField = "Specialty"
lstSpecialties.DataBind()
drSpecialty.Close()
SqlConnection1.Close()

lstSpecialties.DataSource = drSpecialty;
lstSpecialties.DataTextField = "Specialty";
lstSpecialties.DataBind();
drSpecialty.Close();
sqlConnection1.Close();

4. Add code to make the lstSpecialties list box and lblSpecialties label visible,
but only if there are specialties in the DataReader.
Your code should look like the following:
If Not IsDBNull(drSpecialty) Then
 lstSpecialties.Visible = True
 lblSpecialties.Visible = True
End If

if (drSpecialty != null)
{
 lstSpecialties.Visible = true;
 lblSpecialties.Visible = true;
}

5. Build and browse the doctors.aspx page:
a. In the browser, select a doctor from the list.

The Specialties list box displays the specialties for the selected doctor.
b. Choose a city from the City drop-down list box, and then select a new

doctor.
The Specialties list box may display a different list of specialties. If it
does not, select a different doctor to ensure that your code is working
properly.

c. Click Submit.
You are redirected to the medical.aspx page, and the selected doctor’s
name displays in the Primary Care Physician text box.

Visual Basic .NET

C#

Visual Basic .NET

C#

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Overview of XML Architecture in
ASP.NET 2

Lesson: XML and the DataSet Object 10

Lesson: Working with XML Data 24

Lesson: Using the XML Web
Server Control 34

Review 40

Lab 12: Reading XML Data 42

Module 12: Reading
and Writing XML Data

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 12: Reading and Writing XML Data iii

Instructor Notes
After completing this module, students will be able to:

 Describe Extensible Markup Language (XML) architecture in
Microsoft® ASP.NET.

 Read and write XML data into a DataSet.
 Identify how to store, retrieve, and transform XML data by using

XmlDataDocument and XslTransform objects.
 Use the XML Web server control to display, load, and save XML data.

To teach this module, you need the Microsoft PowerPoint® file 2310B_12.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices, demonstrations, and lab.

Presentation:
75 minutes

Lab:
30 minutes

Required materials

Preparation tasks

iv Module 12: Reading and Writing XML Data

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Overview of XML Architecture in ASP.NET
After explaining all of the parts of an XML document, this topic explains well-
formed and valid XML. There are examples provided in the student notes to
help students understand the difference between well-formed XML and non-
well-formed XML. The examples given in the workbooks are given below.

Example of a well-formed XML:

<employees>
 <employee>
 <name>Stuart Munson</name>
 <jobtitle>Programmer</jobtitle>
 </employee>
 <employee>
 <name>Robert Brown</name>
 <jobtitle>Tester</jobtitle>
 </employee>
</employees>

Example of a non-well-formed XML:

<employees>
 <employee>
 <name>Stuart Munson</Name>
 <Jobtitle>Programmer</jobtitle>
 <employee>
 <Name>Robert Brown</name>
 <jobtitle>Tester</jobtitle>
 </employee>
</Employees>

Point the students to these examples in the student notes and have a small quiz
in the class. Ask students what are the errors in the non-well-formed XML
example.

Lesson: XML and the DataSet Object
Spend some time explaining the picture on this slide. To understand the rest of
the module, it is important that the students understand this overview clearly.

The XML Schema is not included in this topic because the ReadXML method
can handle well-formed XML.

What is XML?

Overview of XML and
DataSets

The XML-Based
Methods of the DataSet
Object

 Module 12: Reading and Writing XML Data v

Explain to the students that when they get the data into a DataSet, they can use
all of the list-bound controls.

You may receive an Access Denied error message while performing the steps in
this demonstration. If you do receive the error message, grant the ASP.NET
user full permission to the wwwroot folder to resolve the problem.

Point out to the students that to understand the details of how to create nested
XML data, they should read the material that is provided in the student
workbook.

Lesson: Working with XML Data
Ensure that the students understand the use of the XmlDataDocument object.

Ensure that students understand the use of the XslTransform object.

Lesson: Using the XML Web Server Control
Ensure that the students understand the two methods that can be used for adding
an XML Web server control to a Web Forms page. Similarly, make sure that
the students understand the three different methods that can be used to load
XML data into an ASP .NET Web application.

Review
The review questions are based mostly on conceptual understanding and the
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that all of the students get the
benefit of knowing the right answers.

Lab 12: Reading XML Data
Before beginning the lab, students should have completed all of the practices
and answered all of the review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

You may receive an Access Denied error message while performing the steps in
the Lab, Exercise 3. If you do receive the error message, grant the ASP.NET
user full permission to the wwwroot folder to resolve the problem.

Demonstration: Reading
and Writing XML to and
from a DataSet

Creating Nested XML
Data

How to Synchronize a
DataSet with an
XmlDataDocument
Transforming XML data
with XSLT

Loading and Saving
XML Data

 Module 12: Reading and Writing XML Data 1

Overview

Overview of XML Architecture in ASP.NET

XML and the DataSet Object

Working with XML Data

Using the XML Web Server Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although a lot of data is stored in Microsoft® SQL Server™ databases and
managed through Microsoft ADO.NET, Extensible Markup Language (XML)
has recently become a strong standard for storage, management, and
transmission of data. XML has two big advantages when it comes to storing and
transferring data:

 XML is an accepted industry standard.
 XML is only plain text.

In this module, you will learn how to read, write, and display XML data.

After completing this module, you will be able to:

 Describe XML architecture in Microsoft ASP.NET.
 Read and write XML data into a DataSet object.
 Identify how to store, retrieve, and transform XML data by using

XmlDataDocument and XslTransform objects.
 Use the XML Web server control to display, load, and save XML data.

Introduction

Objectives

2 Module 12: Reading and Writing XML Data

Lesson: Overview of XML Architecture in ASP.NET

What is XML?

XML Core Technologies

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET provides various types of classes and objects that can be used to
access and synchronize XML data. These classes and objects represent
low-level XML processing components that integrate XML into ASP.NET Web
applications.

In this lesson, you will learn about what comprises an XML document. You
will also learn about XML core technologies. You will then learn about the
classes and objects that are used to read and write XML data.

After completing this lesson, you will be able to:

 Distinguish between valid and well-formed XML.
 Describe the XML core technologies.

Introduction

Lesson objectives

 Module 12: Reading and Writing XML Data 3

What is XML?

<?xml version="1.0"?>
<authors>

<author ID="1">
<name>Jay</name>

</author>
<!-- There are more authors. -->
</authors>

<?xml version="1.0"?>
<authors>

<author ID="1">
<name>Jay</name>

</author>
<!-- There are more authors. -->
</authors>

Provides a uniform method for describing and
exchanging structured data

You can define your own elements and attributes

Elements can be nested

Valid XML vs. Well-formed XML

Processing
Instruction
Processing
Instruction

ElementsElements

AttributesAttributes

CommentsComments

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Currently, companies confront many problems when it comes to organizing
data because they need to fulfill the following requirements:

 Data must be readable by both computers and users.
 Both the content and the structure of the data must be defined.
 The structure of the data must be separate from the presentation of the data.
 The structure of the data must be open and extensible.

XML fulfills all of these requirements, thereby assisting companies in the
organization of data.

XML is the universal format that is used for describing and exchanging
structured documents and data on the Internet. XML is a subset of the Standard
Generalized Markup Language (SGML), and it is defined by the World Wide
Web Consortium (W3C), thereby ensuring that the structured data will be
uniform and independent of Web applications or vendors.

XML defines the structure of data in an open and self-describing manner. The
open and self-describing manner allows data to be easily transferred over a
network and to be consistently processed by the receiver. XML describes how
the data is structured, not how it should be displayed or used, similar to
Hypertext Markup Language (HTML). XML documents contain tags that
assign meaning to the content of the document. These tags allow programmers
to find the data that they need in the XML document.

The parts of an XML document include:

 Processing Instruction
 Elements
 Attributes
 Comments

Introduction

Definition

Parts of an XML
document

4 Module 12: Reading and Writing XML Data

Most XML documents begin with a processing instruction to the XML
processor that the document is formed according to the W3C XML
Recommendation.

A set of nested elements can be defined following the processing instruction.
With regard to elements:

 An element usually consists of a start tag and a closing tag pair.
 Between the start tag and closing tag pair, an element can contain data

content or other elements.
 An element can consist of just the closing tag.
 The first element that the XML processor encounters must consist of a start

tag and a closing tag. This first element contains all of the other elements
and it is called the root element.

 All other elements, after the first element, but within the root element, are
called child elements.

 Any child element may nest subsequent child elements. Most of the content
data in XML is stored between the start tag and closing tag of the child
elements.

Any element can contain attributes. Using attributes is an alternative to using
elements to store content. Attributes define data that belongs to a single
element. With regard to attributes:

 Create an attribute in the start tag of an element.
 Declare the name of the attribute, followed by a value assignment.
 Use either single or double quotation marks to set the value of an attribute.

Comments are optional.

A well-formed XML document conforms to specifications that are listed in the
W3C Recommendation for XML 1.0. An XML document is considered
well-formed if:

 It contains exactly one root element (the document element).
 All of the child elements are nested properly within each other.
 The beginning and end tags of a given element exist within the body of the

same parent element.

Example of well-formed XML:

<Temp>22</Temp>

Example of non-well-formed XML:

<Temp>22</temp>

The error in the preceding example is that the closing tag <temp> does not
match the start tag <Temp>.

Processing instruction

Elements

Attributes

Comments

Well-formed XML

 Module 12: Reading and Writing XML Data 5

XML is valid if its vocabulary conforms to a set of requirements that are listed
in a schema:

 In XML, a schema is a description of an XML document.
 A schema is used to validate XML documents. An XML document that you

validate with a schema is called an instance document. If an instance
document matches the schema definition, the instance document is said to
be valid.

There are three types of schemas that can be used for validating an XML
instance document, as shown in the following table.

Type of schema Description

Document Type
Definition (DTD)

DTD is the original validation method that is described in W3C
XML Recommendation version 1.0. XML Schema Definition
(XSD) superceded the DTD. DTDs are not based on XML.

XML-Data Reduced
(XDR schema)

XDR is an interim schema technology that was developed by
Microsoft. While XDR is similar to XSD, XDR schemas are
written in XML.

XML Schema
Definition language
(XSD)

XSD is the W3C Recommendation for validating XML
Schemas. XSD replaces both DTDs and XDR schemas. XSD
schemas are written in XML.

XSD is the most commonly used schema in the Microsoft .NET Framework.

Valid XML

6 Module 12: Reading and Writing XML Data

XML Core Technologies

XML Schema definition
Defines the required structure of a valid XML document

Extensible Stylesheet Language Transformation
Transforms the content of a source XML document into another
document that is different in format or structure

XML Path Language
Addresses parts of an XML document

Document Object Model
Object model for programmatically working with XML documents in
memory

XML Query
Easily implementable language in which queries are concise and
easily understood

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Since its inception, XML has initiated other technology innovations and
developments that work with XML to manipulate data. The core technologies
related to XML, which are all W3C recommendations, include:

 XML Schema definition (XSD)
 Extensible Stylesheet Language Transformation (XSLT)
 XML Path Language (XPath)
 Document Object Model (DOM)
 XML Query (XQuery)

XSD is the current schema definition standard that defines the required
structure of a valid XML document. You can create an XSD schema as a
stand-alone document that is referenced by instance documents. An instance
document is an XML document validated by an XML schema. You can also
include an XSD schema in an XML document. The extension of a stand-alone
schema file is .xsd.

You can define an XML document as a schema by using the <xsd:schema>
element. The W3C schema namespace qualifies the xsd: prefix. Each element
you identify with the xsd: prefix belongs to the XSD namespace.

In XSD, you can reference multiple namespaces (xmlns). For example, the
following schema definition references two namespaces, the first for the W3C
XML Schema, and the second for a Microsoft Office 10 data schema:

<xsd:schema xmlns:xsd="http://www.w3c.org/2000/10/XMLSchema"
xmlns:od="urn:schemas-microsoft-com:officedata">

Introduction

XSD

Schema definition

 Module 12: Reading and Writing XML Data 7

You use element and attribute declarations to define the use of elements and
attributes in an XML document. The following properties can be defined for an
element or attribute: name, contents, number, sequence of occurrences, data
type.

In the following example, the name of the element is declared as <LastName>.
Within the document, <LastName> can occur 0 or more times. The element
type is string:

<xsd:element name="LastName" minOccurs="0" maxOccurs="*"
type="string"></xsd:element>

For many purposes, XML data must be transformed into other forms and
variants. W3C has produced XSLT as one of the programming languages that
can be used to transform data. XSLT is a part of Extensible Stylesheet
Language (XSL).

XSLT is an XML-based language that performs transformations of XML
documents into arbitrary text-based formats, which may or may not be XML.

The following three documents are used with XSLT:

 The source document
The source document is simply a well-formed XML document that provides
the input for the transformation. For example, the following code is a
sample of an XML source document:
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="Employees1.xsl"?>
<employees>
 <employee>
 <name>Stuart Munson</name>
 <jobtitle>Programmer</jobtitle>
 </employee>
 <employee>
 <name>Robert Brown</name>
 <jobtitle>Tester</jobtitle>
 </employee>
</employees>

Element and attribute
declarations

XSLT

8 Module 12: Reading and Writing XML Data

 The XSLT style sheet document
The XSLT style sheet document is an XML document that uses the XSLT
vocabulary for expressing transformation rules. For example, the following
code is the XSLT style sheet document (Employees1.xsl) that will be
applied to the source document in the preceding code:
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:template match="/">
 <xsl:apply-templates select="//employee" />
 </xsl:template>
 <xsl:template match="employee">
 <P>
 <xsl:apply-templates />
 <HR />
 </P>
 </xsl:template>
 <xsl:template match="name">

 <xsl:value-of select="." />

 </xsl:template>
 <xsl:template match="jobtitle">

 <xsl:value-of select="." />
 </xsl:template>
</xsl:stylesheet>

 The result document
The result document is a text document that is produced by running the
source document through the transformations that are found in the XSLT
style sheet. For example, by running the source document in the preceding
code through the preceding XSLT style sheet Employees1.xsl, the following
result document is produced:

For more information about XSLT, see Course 1913, Exchanging and
Transforming Data Using XML and XSLT.

Note

 Module 12: Reading and Writing XML Data 9

XPath is a comprehensive language that is used referencing elements in an
XML documents. XPath version 2.0 is a W3C recommendation.

The XPath language specifies an object model for XML documents. In the
XPath object model, an XML document is represented as a tree of nodes. You
query an XML source by using its XPath node properties.

The DOM is an in-memory cache tree representation of an XML document. The
DOM enables the navigation and editing of the XML document. W3C defines
the properties, methods, and events of the DOM.

With ASP.NET, you can write script that runs on the Web server and then uses
the DOM to create an XML document that will be sent to the browser.
Alternatively, you can write client-side script that builds an XML document at
the client and then submits the XML data to the Web server, when appropriate.

As increasing amounts of information are stored, exchanged, and presented by
using XML, the ability to intelligently query XML data sources becomes
increasingly important. XQuery provides features for retrieving and interpreting
information from these data sources:

 XQuery is designed to be an easily implementable language in which
queries are concise and easily understood.

 XQuery is flexible enough to query a broad spectrum of XML information
sources, including both databases and documents.

 XQuery is based on several other W3C technologies. For example, XQuery
uses path statements from the XPath 2.0 Recommendation.

 XQuery greatly depends upon XPath to target its queries within a particular
XML source. XQuery also borrows its object model from XPath.

For more information about XML core technologies, see Module 4,
“Technologies for Handling XML Data,” in Course 2500, Introduction to XML
and the Microsoft .NET Platform, and see the W3C Web site at
http://www.w3c.org.

XPath

DOM

XQuery

Note

10 Module 12: Reading and Writing XML Data

Lesson: XML and the DataSet Object

Why use XML with DataSets?

Overview of XML and DataSets

The XML-Based Methods of the DataSet Object

Demonstration: Reading and Writing XML to and from a
DataSet

Practice: Using the ReadXml Method

Creating Nested XML Data

Demonstration: Creating Nested XML

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML and DataSets share a close connection with each other. DataSets are the
basis for disconnected storage and the manipulation of relational data. DataSets
are also a container for one or more data tables. XML is the standard format for
data that is present in DataSets.

After completing this lesson, you will be able to:

 Describe the use of XML with DataSets.
 Identify the relationship of XML with DataSets.
 Identify the use of the ReadXml, WriteXml and GetXml methods.
 Create nested XML data.

Introduction

Lesson objectives

 Module 12: Reading and Writing XML Data 11

Why Use XML with DataSets?

XML is the universal format for exchanging data on the Internet
Datasets serialize data as XML
XML provides a convenient format for transferring the contents of
a dataset to and from remote clients
XML objects synchronize and transform data

Human ReadableHuman Readable

Mainframe ReadableMainframe Readable

XML File

Or
Stream

Browser ReadableBrowser Readable

Web ServerWeb Server

DataSet

FirewallFirewall

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML is a universal format that is used for exchanging data on the Internet and a
DataSet is a relational view of data that can be represented in XML. XML is
used with the DataSets in the following ways:

 Serialize data
DataSets can serialize data as XML. The schema of a DataSet that includes
tables, columns, data types, and constraints is defined by using an XML
Schema (.xsd file).

 XML and XML Schema
XML and XML Schemas provide a convenient format for transferring the
contents of a DataSet to and from remote clients. You can infer XML
Schemas from existing DataSets and create DataSets from existing XML
Schemas.

 Synchronize and transform data
You can use different XML objects to synchronize and transform data that
is represented by DataSets.

Introduction

12 Module 12: Reading and Writing XML Data

Overview of XML and DataSets

XML File

DataSet
Object

DataSet
Object

XmlDataDocument
Object

XmlDataDocument
Object

XslTransform
Object

XslTransform
Object

XML or
HTML File

Database

DataAdapterDataAdapter

ReadXMLReadXML

Doc.SaveDoc.Save

WriteXMLWriteXML

XSLT File

XML File

XML File

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML plays an important role in the way that data is handled in the
.NET Framework. XML is the format that is used in the .NET Framework for
storing and transmitting all kinds of data. DataSets are able to store and
transmit data in XML format. Regarding DataSets and XML features:

 Structure of a DataSet can be defined in an XML Schema
The structure of a DataSet that includes tables, columns, relationships, and
constraints can be defined by using an XML Schema. XML Schemas are a
standards-based format of the W3C that can be used for defining the
structure of XML data.

 Generate a DataSet class
You can generate a DataSet class that incorporates schema information to
define its data structures (such as tables and columns) as class members.

 DataSet methods
You can read an XML document or stream it into a DataSet by using the
ReadXML method of the DataSet and then write a DataSet in XML by
using the WriteXML method of the DataSet. Because XML is a standard
interchange format for data between different Web applications, you can
load a DataSet with XML-formatted information that was sent by other
applications. Similarly, a DataSet can write out its data as an XML stream
or document that will be shared with other applications or simply stored as
an XML document.

Introduction

 Module 12: Reading and Writing XML Data 13

 Create an XML view of the contents of a DataSet
You can create an XML view (an XmlDataDocument object) of the
contents of a DataSet, and then view and manipulate the data by using either
relational methods (by means of the DataSet) or XML methods. The two
views are automatically synchronized as they are changed.

 Transformation of data
You can use the XSLTransform object to load an .xsl style sheet file and
apply the transformation. The resulting document can be an XML or HTML
file.

DataSets can read and write schemas that store structured information by
using the ReadXmlSchema and WriteXmlSchema methods. If no schema is
available, the DataSet can infer one, by means of its InferXmlSchema method,
from the data that is in an XML document that is structured in a relational way.

Note

14 Module 12: Reading and Writing XML Data

The XML-Based Methods of the DataSet Object

Use ReadXml to load data from a file or stream

Use WriteXml to write XML data to a file or stream

Use GetXml to write data to a string variable

DataSet ds = new DataSet();

ds.ReadXml(Server.MapPath("filename.xml"));

DataSet ds = new DataSet();

ds.ReadXml(Server.MapPath("filename.xml"));

DataSet ds = new DataSet();
SqlDataAdapter da = new SqlDataAdapter("select * from

Authors", conn);
da.Fill(ds);
ds.WriteXml(Server.MapPath("filename.xml"));

DataSet ds = new DataSet();
SqlDataAdapter da = new SqlDataAdapter("select * from

Authors", conn);
da.Fill(ds);
ds.WriteXml(Server.MapPath("filename.xml"));

string strXmlDS = ds.GetXml();string strXmlDS = ds.GetXml();

Visual Basic .NET Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

The contents of a DataSet can be created from an XML stream or document. In
addition, with the .NET Framework, you have great flexibility over what
information is loaded from XML, and how the schema or relational structure of
the DataSet is created.

To fill a DataSet with data from XML, you use the ReadXml method of the
DataSet object. The ReadXml method reads from a file, a stream, or an
XmlReader.

The ReadXml method reads the contents of the XML stream or document and
then loads the DataSet with that data. ReadXml also creates the relational
schema of the DataSet, depending on the XmlReadMode that is specified and
whether or not a relational schema already exists.

The following code shows how to fill a DataSet with data:

Dim ds As New DataSet()
ds.ReadXml(Server.MapPath("filename.xml"))

DataSet ds = new DataSet();
ds.ReadXml(Server.MapPath("filename.xml"));

The Server.MapPath method returns the physical file path, which
corresponds to the specified virtual path on the Web server.

To write a DataSet to a file, stream, or XmlWriter, use the WriteXml method.
The first parameter you pass to WriteXml is the destination of the XML output.
For example, you could pass a string containing a file name, a
System.IO.TextWriter object, and so on. You can pass an optional second
parameter of an XmlWriteMode to specify how the XML output is to be
written.

Introduction

ReadXML

Microsoft Visual Basic®
.NET

C#

Note

WriteXML

 Module 12: Reading and Writing XML Data 15

The following code examples show how to write a DataSet:

Dim ds As New DataSet()
Dim da As New SqlDataAdapter(_
 "select * from Authors", conn)
da.Fill(ds)
ds.WriteXml(Server.MapPath("filename.xml"))

DataSet ds = new DataSet();
SqlDataAdapter da = new SqlDataAdapter
 ("select * from Authors", conn);
da.Fill(ds);
ds.WriteXml(Server.MapPath("filename.xml"));

The XML representation of the DataSet can be written to a file, a stream, an
XmlWriter, or to a string. These choices provide great flexibility for how you
transport the XML representation of the DataSet. To obtain the XML
representation of the DataSet as a string, you would use the GetXml method,
as shown in the following code examples:

Dim strXmlDS As String = ds.GetXml()

string strXmlDS = ds.GetXml();

GetXml returns the XML representation of the DataSet without schema
information. To write the schema information from the DataSet (as XML
Schema) to a string, you use GetXmlSchema.

Visual Basic .NET

C#

GetXML

Visual Basic .NET

C#

16 Module 12: Reading and Writing XML Data

Demonstration: Reading and Writing XML to and from a DataSet

Reading XML

Create a DataSet

Load DataSet from an XML file

Display in DataGrid

Writing XML

Create DataSet from database

Create an XML file from a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to read and write XML to and from a
DataSet.

The files for this demonstration are in the Mod12CS and Mod12VB projects in
the 2310Demos solution.

 To run the demonstration

1. Open the file Books.xml in Microsoft Visual Studio® .NET.
This file contains the data that will be displayed.

2. Build and browse the DisplayXML.aspx page.
3. In the text box, click Books.xml and then click Load.
4. In the text box, click Employees.xml and then click Load.
5. Open the code-behind file DisplayXML.aspx.vb or DisplayXML.aspx.cs in

Visual Studio .NET.

Introduction

Reading XML data

 Module 12: Reading and Writing XML Data 17

6. In the cmdLoad_Click event procedure, show the code that reads an XML
file into a DataSet and then binds the DataGrid to the DataSet.

The DataGrid can only handle one level of elements in an XML file.

If there is too much nesting of elements, the data will not be displayed. You
can demonstrate excessive nesting by adding an author element to the book
elements in the Books.xml file:
<book>
 ...
 <author>
 <firstname>Jay</firstname>
 <lastname>Bird</lastname>
 </author>
</book>

7. Build and browse the DisplayXML.aspx page.
The data is not displayed due to excessive nesting.

8. Build and browse the SaveAsXML.aspx page.
The DataGrid displays the DataSet data that will be saved into an XML
file.

9. Click Save as XML, and then click the View XML hyperlink.
This is the XML data that was created from the DataSet.

10. Open one of the code-behind files SaveAsXml.aspx.vb or
SaveAsXml.aspc.cs in Visual Studio .NET.
There is a function called CreateDataSet that builds the DataSet from a
SQL Server database.

11. To create an XML file, show the code in the cmdSave_Click event
procedure that calls the WriteXml method of the DataSet.

12. To create an XSD schema file, show the code in the cmdSchema_Click
event procedure that calls the WriteXmlSchema method of the DataSet.

Note

Writing XML data

18 Module 12: Reading and Writing XML Data

Practice: Using the ReadXml Method

Students will:

Create a DataSet

Load a DataSet from an XML file

Display in a DataGrid

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will learn how to use the ReadXml method.

The files for this practice are in the Mod12VB and Mod12CS projects in the
2310Demos solution.

 To run the practice

1. Open the Employees.xml file in Visual Studio .NET. In the following steps
you will create a webform to display the data found in Employees.xml.

2. Create a new Web Form in the Mod12VB or Mod12CS project named
ReadXmlForm.aspx.

3. Drag a DataGrid control into the Web Form. Set its ID property to
dgEmployees.

4. In the Page_Load event procedure, create a DataSet, call ReadXml to read
the XML data from the Employees.xml file into the DataSet, and then bind
the DataGrid to the DataSet.
Your code should look like the following:
Dim ds As New DataSet()
ds.ReadXml(Server.MapPath("Employees.xml"))
dgEmployees.DataSource = ds
dgEmployees.DataBind()

DataSet ds = new DataSet();
ds.ReadXml(Server.MapPath("Employees.xml"));
dgEmployees.DataSource = ds;
dgEmployees.DataBind();

5. Build and browse your page.

Introduction

Visual Basic .NET

C#

 Module 12: Reading and Writing XML Data 19

Creating Nested XML Data

By default, the output of DataTables is sequential

To make XML nested, make the DataRelation nested

Sequential Nested

Dim dr As New DataRelation _
("name", parentCol, childCol)

dr.Nested = True
ds.Relations.Add(dr)

Dim dr As New DataRelation _
("name", parentCol, childCol)

dr.Nested = True
ds.Relations.Add(dr)

<Title name="title1" />
<Title name="title2" />
<Title name="title3" />
<Publisher name="pub1" />
<Publisher name="pub2" />

<Title name="title1" />
<Title name="title2" />
<Title name="title3" />
<Publisher name="pub1" />
<Publisher name="pub2" />

<Publisher name="pub1" >
<Title name="title1" />
<Title name="title3" />

</Publisher>
<Publisher name="pub2" >

<Title name="title2" />
</Publisher>

<Publisher name="pub1" >
<Title name="title1" />
<Title name="title3" />

</Publisher>
<Publisher name="pub2" >

<Title name="title2" />
</Publisher>

DataRelation dr = new
DataRelation("name",
parentCol,
childCol);

dr.Nested = true;
ds.Relations.Add(dr);

DataRelation dr = new
DataRelation("name",
parentCol,
childCol);

dr.Nested = true;
ds.Relations.Add(dr);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In a relational representation of data, individual tables contain rows that are
related to one another by using a column or a set of columns. In the ADO.NET
DataSet, the relationship between tables is implemented by using a
DataRelation.

When you create a DataRelation, the parent-child relationships are managed
only through the relation between the rows and columns. The tables and
columns are separate entities. In the hierarchical representation of data that
XML provides, the parent-child relationships are represented by parent
elements that contain nested child elements.

When using nested relationships, a child element can have only one
parent element.

To facilitate the nesting of child objects when a DataSet is synchronized with
an XmlDataDocument, or when it is written as XML data by using WriteXml,
the DataRelation exposes a Nested property.

Setting the Nested property of a DataRelation to true causes the child rows of
the relation to be nested within the parent column when the DataSet is written
as XML data or is synchronized with an XmlDataDocument. The Nested
property of the DataRelation is set to false by default.

Introduction

DataRelation

Note

20 Module 12: Reading and Writing XML Data

In the following illustration of a DataSet, you will see how to write the code
when the Nested property of the DataRelation is set to false, in addition to
when the Nested property of the DataRelation is set to true. You will also see
the output of the result from calling WriteXml on the DataSet.

DataSet

The following code demonstrates how to set the Nested property of the
DataRelation to false:

Dim ds As New DataSet()
'fill the DataSet
...
Dim parentCol As DataColumn = _
 ds.Tables("Publishers").Columns("pub_id")
Dim childCol As DataColumn = _
 ds.Tables("Titles").Columns("pub_id")
Dim dr As New DataRelation _
 ("TitlePublishers", parentCol, childCol)
ds.Relations.Add(dr)
ds.WriteXml(Server.MapPath("PubTitlesNotNested.xml"), _
 XmlWriteMode.IgnoreSchema)

DataSet ds = new DataSet();
//fill the DataSet
...
DataColumn parentCol =
 ds.Tables["Publishers"].Columns["pub_id"];
DataColumn childCol= ds.Tables["Titles"].Columns["pub_id"];
DataRelation dr = new DataRelation ("TitlePublishers",
 parentCol, childCol);
ds.Relations.Add(dr);
ds.WriteXml(Server.MapPath("PubTitlesNotNested.xml"),
 XmlWriteMode.IgnoreSchema);

Because the Nested property of the DataRelation object is not set to true for
the preceding DataSet, the child objects will not be nested within the parent
elements when this DataSet is represented as XML data.

Visual Basic .NET

C#

title1

title2

title3

title pub_id

1

2

1

price

40.00

60.00

30.00

1

2

pub1

pub2

pub_id pub_name

PPuubblliisshheerrss DDaattaaTTaabbllee

TTiittlleess DDaattaaTTaabbllee

Child
Parent

 Module 12: Reading and Writing XML Data 21

The following XML example shows the output that will result from calling
WriteXml on the DataSet:

<?xml version = "1.0" standalone = "yes"?>
<NewDataSet>
 <Titles>
 <title>title1</title>
 <pub_id>1</pub_id>
 <price>40.00</price>
 </Titles>
 <Titles>
 <title>title2</title>
 <pub_id>2</pub_id>
 <price>60.00</price>
 </Titles>
 <Titles>
 <title>title3</title>
 <pub_id>1</pub_id>
 <price>30.00</price>
 </Titles>
 <Publishers>
 <pub_id>1</pub_id>
 <pub_name>pub1</pub_name>
 </Publishers>
 <Publishers>
 <pub_id>2</pub_id>
 <pub_name>pub2</pub_name>
 </Publishers>
</NewDataSet>

Note that the Titles element and the Publishers elements are shown as
sequential elements. To have the Titles elements show up as children of their
respective parent elements, the Nested property of the DataRelation would
need to be set to true and you would add the following code:

…
Dim dr As New DataRelation _
 ("TitlePublishers", parentCol, childCol)
dr.Nested = True
ds.Relations.Add(dr)
ds.WriteXML(Server.MapPath("PubTitlesNested.xml"), _
 XmlWriteMode.IgnoreSchema)

…
DataRelation dr = new DataRelation("TitlePublishers",
 parentCol, childCol);
dr.Nested = true;
ds.Relations.Add(dr);
ds.WriteXML(Server.MapPath("PubTitlesNested.xml"),
 XmlWriteMode.IgnoreSchema);

Visual Basic .NET

C#

22 Module 12: Reading and Writing XML Data

The following XML shows what the resulting output would look like with the
Titles elements nested within their respective parent elements:

<?xml version = "1.0"standalone = "yes"?>
<NewDataSet>
 <Publishers>
 <pub_id>1</pub_id>
 <pub_name>pub1</pub_name>
 <Titles>
 <title>title1</title>
 <pub_id>1</pub_id>
 <price>40.00</price>
 </Titles>
 <Titles>
 <title>title3</title>
 <pub_id>1</pub_id>
 <price>30.00</price>
 </Titles>
 </Publishers>
 <Publishers>
 <pub_id>2</pub_id>
 <pub_name>pub2</pub_name>
 <Titles>
 <title>title2</title>
 <pub_id>2</pub_id>
 <price>60.00</price>
 </Titles>
 </Publishers>
</NewDataSet>

 Module 12: Reading and Writing XML Data 23

Demonstration: Creating Nested XML

WriteXml out of a DataSet without nesting

View the resulting XML file

WriteXml out of a DataSet with nesting

View the resulting XML file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to create a nested XML document.

The files for this demonstration are in the Mod12VB or Mod12CS project in the
2310Demos solution.

 To run the demonstration

1. Open the SaveNestedXML.aspx page in Visual Studio .NET.
2. View the code-behind page, explain the code, and make note of the

following:
a. In the CreateDataSet function, a DataSet with two DataTables is

created.
b. In the MakeDataRelation function, a DataRelation is created between

the two tables, setting the Nested property to True or False, depending
on the argument to the function.

c. In the cmdSave_Click event procedure, the DataRelation is created
with Nested set to false, and then the DataSet is written to an XML file.

d. In the cmdSaveNested_Click event procedure, the DataRelation is
created with the Nested property set to true, and then the DataSet is
written to an XML file.

3. Build and browse the SaveNestedXML.aspx page.
4. Click Save as XML, and then click the View XML hyperlink.

This is the XML data that was created from the DataSet with the Nested
property set to false. Notice that the Titles elements are all listed, followed
by the Publishers elements.

5. Click Save as Nested XML, and then click the View Nested XML
hyperlink.
This is the XML data that was created from the DataSet with the Nested
property set to True. Notice that the Titles elements are nested inside the
related Publishers elements.

Introduction

24 Module 12: Reading and Writing XML Data

 Module 12: Reading and Writing XML Data 25

Lesson: Working with XML Data

Overview of Synchronizing a DataSet with an
XmlDataDocument

How to Synchronize a DataSet with an
XmlDataDocument

Working with an XmlDataDocument

Transforming XML Data with XSLT

Demonstration: Transforming Data with XSLT

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The XmlDataDocument class allows XML documents to be stored, retrieved,
and manipulated through a relational DataSet. XmlDataDocument has a close
affiliation with the DataSet class, which provides a relational view of the
loaded XML document. Any changes that are made to the XmlDataDocument
are reflected in the DataSet and vice versa.

Similarly, to transform the contents of a source XML document into another
format, such as XML or HTML, you can use XSLT Transformation.

In this lesson, you will learn how to synchronize a DataSet with an
XmlDataDocument. You will also learn how to use XmlDataDocument.
Finally, you will learn how to transform XML data by using the XslTransform
object.

After completing this lesson, you will be able to:

 Identify the different ways that are available for synchronizing a DataSet
with an XmlDataDocument.

 Identify how to synchronize a DataSet with an XmlDataDocument.
 Use an XmlDataDocument.
 Transform XML data by using the XslTransform object.

Introduction

Lesson objectives

26 Module 12: Reading and Writing XML Data

Overview of Synchronizing a DataSet with an XmlDataDocument

Database

DataAdapter

DataSet

Tables

XmlDataDocument

XML Transformations

Other XML Document Types

XML Document Navigation

Synchronized

System.Data System.Xml

*****************************ILLEGAL FOR NON-TRAINER USE******************************

DataSets provide you with a relational representation of data. For hierarchical
data access, you can use the XML classes that are available in the
.NET Framework. Previously, hierarchical and relational representations of data
have been used separately. However, the .NET Framework enables real-time,
synchronous access to both the relational and hierarchical representations of
data through the DataSet object and the XmlDataDocument object,
respectively.

When a DataSet is synchronized with an XmlDataDocument, both objects are
working with a single set of data. This means that if a change is made to the
DataSet, the change will be reflected in the XmlDataDocument, and vice
versa.

The relationship between the DataSet and the XmlDataDocument creates
great flexibility by allowing a single application, using a single set of data, to
access the entire suite of services that are built around the DataSet.

Synchronizing an XmlDataDocument with a DataSet preserves the fidelity of
an XML document. If the DataSet is populated from an XML document by
using ReadXml, the data may differ dramatically from the original XML
document when the data is written back as an XML document by using
WriteXml. The data can be different because the DataSet does not maintain
formatting, such as white space, or hierarchical information, such as element
order, from the original XML document. The DataSet also does not contain
elements from the XML document that were ignored because they did not
match the schema of the DataSet. Synchronizing an XmlDataDocument with
a DataSet allows the formatting and hierarchical element structure of the
original XML document to be maintained in the XmlDataDocument, while the
DataSet contains only the data and schema information that is appropriate to
the DataSet.

Introduction

Single set of data

 Module 12: Reading and Writing XML Data 27

How to Synchronize a DataSet with an XmlDataDocument

Store XML Data into an XmlDataDocument

Store a DataSet in an XmlDataDocument
Dim ds As New DataSet()
'fill in ds
Dim objXmlDataDoc As New XmlDataDocument(ds)

Dim ds As New DataSet()
'fill in ds
Dim objXmlDataDoc As New XmlDataDocument(ds)

XmlDataDocument objXmlDataDoc = new XmlDataDocument();
objXmlDataDoc.Load(Server.MapPath ("file.xml"));

-or-
objXmlDataDoc.DataSet.ReadXml(Server.MapPath ("file.xml"));

XmlDataDocument objXmlDataDoc = new XmlDataDocument();
objXmlDataDoc.Load(Server.MapPath ("file.xml"));

-or-
objXmlDataDoc.DataSet.ReadXml(Server.MapPath ("file.xml"));

DataSet ds = new DataSet();
//fill in ds
objXmlDataDoc = new XmlDataDocument(ds);

DataSet ds = new DataSet();
//fill in ds
objXmlDataDoc = new XmlDataDocument(ds);

Dim objXmlDataDoc As New XmlDataDocument()
objXmlDataDoc.Load(Server.MapPath ("file.xml"))

-or-
objXmlDataDoc.DataSet.ReadXml(Server.MapPath ("file.xml"))

Dim objXmlDataDoc As New XmlDataDocument()
objXmlDataDoc.Load(Server.MapPath ("file.xml"))

-or-
objXmlDataDoc.DataSet.ReadXml(Server.MapPath ("file.xml"))

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are two ways to synchronize a DataSet with an XmlDataDocument.
You can:

 Store XML data into an XmlDataDocument.
 Store a DataSet in an XmlDataDocument.

The following code samples demonstrate how to store XML data in an
XmlDataDocument:

Dim objXmlDataDoc As New XmlDataDocument()
objXmlDataDoc.Load(Server.MapPath("file.xml"))

XmlDataDocument objXmlDataDoc = new XmlDataDocument();
objXmlDataDoc.Load(Server.MapPath("file.xml"));

While the first line of the preceding code creates an XmlDataDocument object,
the second line of the preceding code loads the XML file into the
XmlDataDocument object.

You can also store XML data into an XmlDataDocument by using one line of
code as shown in the following examples:

objXmlDataDoc.DataSet.ReadXml(Server.MapPath("file.xml"))

objXmlDataDoc.DataSet.ReadXml(Server.MapPath("file.xml"));

Introduction

Store XML Data into an
XmlDataDocument

Visual Basic .NET

C#

Visual Basic .NET

C#

28 Module 12: Reading and Writing XML Data

The following code samples demonstrate how to store a DataSet in an
XmlDataDocument:

Dim ds As New DataSet()
'fill in ds
...
Dim objXmlDataDoc As New XmlDataDocument(ds)

DataSet ds = new DataSet();
//fill in ds
...
XmlDataDocument objXmlDataDoc = new XmlDataDocument(ds);

The first line of the preceding code creates a new DataSet called ds. The last
line of the preceding code creates an object called XmlDataDocument and
passes ds, a DataSet, as a parameter. The process of filling ds has been omitted
from the example.

Store a DataSet in an
XmlDataDocument

Visual Basic .NET

C#

 Module 12: Reading and Writing XML Data 29

Working with an XmlDataDocument

Display data in a list-bound control

Extract Dataset rows as XML

Use XML DOM methods
XmlDataDocument inherits from XmlDocument

Apply an XSLT transformation
XslTransform object

dg.DataSource = objXmlDataDoc.DataSetdg.DataSource = objXmlDataDoc.DataSet

Dim elem As XmlElement
elem = objXmlDataDoc.GetElementFromRow _

(ds.Tables(0).Rows(1))

Dim elem As XmlElement
elem = objXmlDataDoc.GetElementFromRow _

(ds.Tables(0).Rows(1))

XmlElement elem;
elem = objXmlDataDoc.GetElementFromRow(ds.Tables[0].Rows[1]);

XmlElement elem;
elem = objXmlDataDoc.GetElementFromRow(ds.Tables[0].Rows[1]);

dg.DataSource = objXmlDataDoc.DataSet;dg.DataSource = objXmlDataDoc.DataSet;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataSet represents a relational data source in ADO.NET. The
XmlDocument implements the DOM in XML, and the XmlDataDocument
unifies ADO.NET and XML by representing relational data from a DataSet and
synchronizing that data with the XML document model.

The DataGrid control displays all of the rows in the table within the DataSet.
The following code demonstrates how to assign the DataSet object
(objXmlDataDoc.DataSet) to the DataGrid control (dg):

dg.DataSource = objXmlDataDoc.DataSet

dg.DataSource = objXmlDataDoc.DataSet;

To extract individual rows as XML, you need to query the DataSet. To query
the DataSet, you use the GetElementFromRow method. The following code
demonstrates how the GetElementFromRow method of XmlDataDocument
returns an XmlElement object:

Dim elem As XmlElement
elem = objXmlDataDoc.GetElementFromRow _
 (ds.Tables(0).Rows(1))

XmlElement elem;
elem = objXmlDataDoc.GetElementFromRow(ds.Tables[0].Rows[1]);

Introduction

Display data in
list-bound control

Visual Basic .NET

C#

Extract DataSet Rows

Visual Basic .NET

C#

30 Module 12: Reading and Writing XML Data

The.NET Framework implements the XML DOM to provide access to data in
XML documents and to provide access to the additional classes to read, write,
and navigate within XML documents. The XmlDataDocument provides
relational access to data with its ability to synchronize with the relational data
in the DataSet.

The XmlDataDocument class extends the XmlDocument class. Because the
XmlDocument class implements the DOM, it enables you to load either
relational data or XML data. The XmlDataDocument also allows you to
manipulate that data by using the DOM.

If data is stored in a relational structure and you want it to be input into an
XSLT transformation, you can load the relational data into a DataSet and then
associate it with the XmlDataDocument.

By taking relational data, loading it into a DataSet, and using the synchronizing
within the XmlDataDocument, the relational data can have XSLT
transformations performed on it. The XslTransform object transforms XML
data by using an XSLT style sheet.

Use XML DOM methods

Apply an XSLT
Transformation

 Module 12: Reading and Writing XML Data 31

Transforming XML Data with XSLT

Create XmlDataDocument

Create XSLTransform object and call Transform
method

Dim ds As New DataSet()
'fill in DataSet
...
Dim xmlDoc As New XmlDataDocument(ds)

Dim ds As New DataSet()
'fill in DataSet
...
Dim xmlDoc As New XmlDataDocument(ds)

Dim xslTran As New XslTransform()
xslTran.Load(Server.MapPath("PubTitles.xsl"))
Dim writer As New XmlTextWriter _

(Server.MapPath("PubTitles_output.html"), _
System.Text.Encoding.UTF8)

xslTran.Transform(xmlDoc, Nothing, writer)
writer.Close()

Dim xslTran As New XslTransform()
xslTran.Load(Server.MapPath("PubTitles.xsl"))
Dim writer As New XmlTextWriter _

(Server.MapPath("PubTitles_output.html"), _
System.Text.Encoding.UTF8)

xslTran.Transform(xmlDoc, Nothing, writer)
writer.Close()

C# Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

The objective of the XSLT Transformation is to transform the content of a
source XML document into another document that is different in format or
structure. For example, to transform XML into HTML for use on a Web site or
to transform XML into a document that contains only the fields that are
required by an application.

In the .NET Framework, the XslTransform class is the XSLT processor that
transforms one XML document into another.

Before transforming XML data, you need to create a DataSet and an
XmlDataDocument object:

Dim ds As New DataSet()
'fill in DataSet
...
Dim xmlDoc As New XmlDataDocument(ds)

DataSet ds = new DataSet();
//fill in DataSet
...
XmlDataDocument xmlDoc = new XmlDataDocument(ds);

The first line of the preceding code creates the DataSet. The next line of code
(code not displayed; instead, the comment is present) fills the DataSet. The last
line of the preceding code creates an XmlDataDocument object that is called
xmlDoc and it passes a parameter to xmlDoc, the DataSet ds.

Introduction

Create
XmlDataDocument

Visual Basic .NET

C#

32 Module 12: Reading and Writing XML Data

The following steps demonstrate the process of transforming XML data by
creating a XslTransform object and calling the Transform method:

1. Create an XslTransform object:
Dim xslTran As New XslTransform()

XslTransform xslTran = new XslTransform();

2. Use the Load method to load the .xsl style sheet file for the transformation:
xslTran.Load(Server.MapPath("PubTitles.xsl"))

xslTran.Load(Server.MapPath("PubTitles.xsl"));

3. Create an XmlTextWriter object to output the document:
Dim writer As New XmlTextWriter _
 (Server.MapPath("PubTitles_output.html"), _
 System.Text.Encoding.UTF8)

XmlTextWriter writer = new XmlTextWriter
 (Server.MapPath("PubTitles_output.html"),
 System.Text.Encoding.UTF8);

4. Use the Transform method of the XslTransform object to transform the
data. The Transform method has several overloads and can handle different
types of input and output.
Notice that the XmlDoc variable of the XmlDataDocument type is one of
the parameters that was passed to the Transform method:
xslTran.Transform(xmlDoc, Nothing, writer)

xslTran.Transform(xmlDoc, null, writer);

5. Close the XmlTextWriter:
writer.Close()

writer.Close();

The transformation process is specified by the W3C XSLT Version 1.0
recommendation. For more information, see www.w3c.org/TR/xslt.

Create the XslTransform
object and call the
Transform method

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

Note

 Module 12: Reading and Writing XML Data 33

Demonstration: Transforming Data with XSLT

Create a DataSet with two DataTables

Create XslTransform

Transform the DataSet into HTML
document

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to transform data by using the
XslTranform object.

The files for this demonstration are in the Mod12VB or Mod12CS project in the
2310Demos solution.

 To run the demonstration

1. Open the TransformPubTitles.aspx page.
The two DataGrid controls display the two DataTables in the DataSet.

2. View the code-behind page.
3. Show the code in the cmdTransform_Click event procedure and explain

the code:
a. The DataSet is created by calling CreateDataSet to create the DataSet,

and then it calls the MakeDataRelation to create the DataRelation.
However, for the XmlDataDocument mapping to work, the parent
table, Publishers, must be added to the DataSet first, before the Titles
table.

b. An XmlDataDocument is created from the DataSet.
c. An XslTransform object is created and loaded with the PubTitles.xsl

style sheet.
d. The Transform method of the XslTransform object is called to apply

the style sheet to the XmlDocument.

The Transform method can only output to an XmlReader, a
TextReader, or to XmlWriter objects.

Introduction

Note

34 Module 12: Reading and Writing XML Data

4. View the page in a browser.
5. Click Transform Data, and then click the View Transform Output

hyperlink.
This is the HTML page that was created from DataSet data.

6. Open the Transform.aspx page in Visual Studio .NET.
7. View the code-behind page.
8. Show the code in the cmdTransform_Click event procedure and explain

the code:
a. The DataSet is created by calling CreateCustOrdersDataSet to create

the DataSet and the DataRelation.
b. An XmlDataDocument is created from the DataSet.
c. An XslTransform object is created and loaded with the

CustomerOrders.xslt style sheet.
d. The Transform method of the XslTransform object is called to apply

the style sheet to the XmlDocument.
9. Open the PubTitles.xsl style sheet to show how it works.

 Module 12: Reading and Writing XML Data 35

Lesson: Using the XML Web Server Control

What is the XML Web Server Control?

Loading and Saving XML Data

Demonstration: Using the XML Web Server Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Information in an XML file is raw, containing only the data and no indication
about how to format or display it. To display XML data in a Web Forms page,
you must provide formatting and display information.

In this lesson, you will learn how to display, load, and save XML data.

After completing this lesson, you will be able to:

 Describe the XML Web server control.
 Load and save XML data.

Introduction

Lesson objectives

36 Module 12: Reading and Writing XML Data

What is the XML Web Server Control?

<asp:Xml id="Xml1"
Document="XmlDocument object to display"
DocumentContent="String of XML"
DocumentSource="Path to XML Document"
Transform="XslTransform object"
TransformSource="Path to XSL Document"
runat="server"/>

<asp:Xml id="Xml1"
Document="XmlDocument object to display"
DocumentContent="String of XML"
DocumentSource="Path to XML Document"
Transform="XslTransform object"
TransformSource="Path to XSL Document"
runat="server"/>

Write to an XML document

Writes the results of an XSLT Transformations into a
Web page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To present XML data in a Web Forms page, you need to specify the tags, such
as the <TABLE> tags, <P> tags, or any other tags that you would like to use to
display the data. You must also provide instructions for how the data from the
XML file fits into these tags, for example whether each element in the XML file
should be displayed as a table row or a column and so on.

One way to provide all of these instructions is to use the XSLT Transformation
language and create XSLT files. After you have XSLT Transformations, you
must apply them to the XML file. The output is a new file with the XML
information formatted according to the transformation file.

You can use the XML Web server control to write an XML document, or to
write the results of an XSLT Transformations, into a Web page. The XML
output appears in the Web page at the location of the control.

The XML and the XSLT information can be in external documents, or you can
include the XML inline. There are two ways to reference external documents by
using the property settings in the XML Web server control. You can provide a
path to the XML document in the control tag, or you can load the XML and
XSLT documents as objects and then pass them to the control. If you prefer to
include the XML inline, you must write it between the opening and closing tags
of the control.

The following code sample shows how to use the XML Web server control to
display the contents of an XML document or the results of an XSLT
Transformation:

<asp:Xml id="Xml1"
 Document="XmlDocument object to display"
 DocumentContent="String of XML"
 DocumentSource="Path to XML Document"
 Transform="XslTransform object"
 TransformSource="Path to XSL Transform Document"
 runat="server">

Introduction

XSLT Transformation
language

Use the XML Web server
control to write an XML
document

 Module 12: Reading and Writing XML Data 37

Loading and Saving XML Data

xmlCtl.Document.Save(Server.MapPath("text.xml"))xmlCtl.Document.Save(Server.MapPath("text.xml"))

XML Web server control (in the Web Form)

Loading data dynamically (in the code-behind page)

Saving data (in the code-behind page)

xmlCtl.Document.Load(Server.MapPath("text.xml"))xmlCtl.Document.Load(Server.MapPath("text.xml"))

<asp:Xml id="xmlCtl" runat="server" /><asp:Xml id="xmlCtl" runat="server" />

xmlCtl.Document.Save(Server.MapPath("text.xml"));xmlCtl.Document.Save(Server.MapPath("text.xml"));

xmlCtl.Document.Load(Server.MapPath("text.xml"));xmlCtl.Document.Load(Server.MapPath("text.xml"));

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before loading and saving XML data into a Web application, you need to add
the XML Web server control to the Web Forms page, in the location where you
want the output to appear.

There are two ways to add an XML Web server control to a Web Forms page:

1. Drag an XML control from the Web Forms tab of the Toolbox onto the
Design view, as shown in the following illustration.

Introduction

To add an XML Web
server control to a Web
Forms page

38 Module 12: Reading and Writing XML Data

2. To add an XML Web server control programmatically, in HTML view, add
the following line of code:
<asp:Xml id="xmlCtl" runat="server" />

There are three ways to load XML data into a Web application. You can:

 Provide a path to an external XML document by using the
DocumentSource property.

 Load an XML document as an object and pass it to the control, using the
Load method in the Page_Load event, and then assigning the document to
the Document property of the XML control.

 Include the XML content inline, between the opening and closing tags of the
XML Web server control.

To provide a path to an external XML document, perform the following steps:

1. Set the DocumentSource property of the XML Web server control to the
path of the XML source document.

2. The XML document will be written directly to the output stream unless you
also specify the TransformSource property. TransformSource must be a
valid XSLT Transformations document, which will be used to transform the
XML document before its contents are written to the output stream. The
following example shows how to refer to source documents by using a
relative path:
<body>
 <h3>XML Example</h3>
 <form runat="server">
 <asp:Xml id="xml1" DocumentSource="MySource.xml"
 TransformSource="MyStyle.xsl" runat="server" />
 </form>
</body>

To load an XML document as an object and pass it to the control, perform the
following steps:

1. On the View menu, click Code. In the Code Editor, find the Page_Load
event procedure.

2. Add code to load the XML source document, and then assign the source to
the Document property of the control. For example:
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim xmlDoc As System.Xml.XmlDocument = _
 New System.Xml.XmlDocument()
 xmlDoc.Load(Server.MapPath("MySource.xml"))
 Dim xslTran As System.Xml.Xsl.XslTransform = _
 New System.Xml.Xsl.XslTransform()
 xslTran.Load(Server.MapPath("MyStyle.xsl"))
 Xml1.Document = xmlDoc
 Xml1.Transform = xslTran
End Sub

To load XML data into
the XML Web server
control

To provide a path to an
external XML document

To load an XML
document as an object
and pass it to the
control

Visual Basic .NET

 Module 12: Reading and Writing XML Data 39

private void Page_Load(object sender, System.EventArgs e)
{
 System.Xml.XmlDocument xmlDoc = new
 System.Xml.XmlDocument();
 xmlDoc.Load(Server.MapPath("MySource.xml"));
 System.Xml.Xsl.XslTransform xslTran = new
 System.Xml.Xsl.XslTransform();
 xslTran.Load(Server.MapPath("MyStyle.xsl"));
 Xml1.Document = xmlDoc;
 Xml1.Transform = xslTran;
}

To include the XML content inline, perform the following steps:

1. In HTML view, find the <asp:Xml> and </asp:Xml> tags.
2. Add your XML code between these two tags. For example:

<asp:xml TransformSource="MyStyle.xsl" runat="server">
 <clients>
 <name>Frank Miller</name>
 <name>Judy Lew</name>
 </clients>
</asp:xml>

You can save the XML data by using the Save method, as shown in the
following code examples:

XmlCtl.Document.Save(Server.MapPath("xmlResult.xml"))

XmlCtl.Document.Save(Server.MapPath("xmlResult.xml"));

C#

To include the XML
content inline

To save XML data

Visual Basic .NET

C#

40 Module 12: Reading and Writing XML Data

Demonstration: Using the XML Web Server Control

Add the XML Web server control to a Web
Form

Set the DocumentSource property to read
an XML file

View the result

Set the TransformSource property to read
an XSLT file

View the result

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to use the XML Web Server control.

The files for this demonstration are in the Mod12VB and Mod12CS projects in
the 2310Demos solution.

The completed code for this demonstration is in the UseXmlControl.aspx file.

 To run the demonstration

1. Open the PubTitlesData.xml file.
This file contains the data that will be displayed from the ASPX page.

2. Create a new Web Form in the Mod12VB or Mod12CS project named
MyUseXmlControl.aspx.

3. Drag the XML control from the Toolbox onto the Web Form.
4. Set the DocumentSource property of the XML control to the

PubTitlesData.xml file.
5. Build and browse.

This is the default view of the data as set by the control. The default view of
the data is unformatted.

6. Set the TransformSource property of the XML control to the PubTitles.xsl
file.

7. Build and browse the page again.
This is the view of the data as set by the PubTitles.xsl style sheet.

Introduction

 Module 12: Reading and Writing XML Data 41

Review

Overview of XML Architecture in ASP.NET

XML and the DataSet Object

Working with XML Data

Using the XML Web Server Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the advantage of using XML to manage data?
XML provides a universal format for describing and exchanging
structured data. XML is defined by the W3C. In addition, you can use a
schema to define the type and structure of the XML data.

2. What is the difference between a well-formed and XML document and a
valid XML document?
A well-formed XML document conforms to specifications that are listed
in the W3C Recommendation.
A valid XML document conforms to rules that are defined in a given
schema.

3. Which of the following code samples is a well-formed XML sample?
a. <employee>12</employee>
b. <employee>12</Employee>
c. <Employee>12</employee>
a. <employee>12</employee>

42 Module 12: Reading and Writing XML Data

4. What is the importance of XSD?
XSD is the current schema definition standard. The goal of XSD is to
define the structure of a valid XML document.

5. What is the role of the XmlDataDocument class in the XML architecture?
The XmlDataDocument class allows structured data to be stored,
retrieved, and manipulated through a relational DataSet object. You
can also synchronize a DataSet object with an XmlDataDocument
object.

6. Write the Visual Basic .NET or C# code that reads the XML file named
titles.xml into the existing DataSet object named dsTitles.
The file title.xml is located in the same folder as the Web Form and the
code-behind page that is executing the code.
dsTitles.ReadXml(Server.MapPath("titles.xml"))

dsTitles.ReadXml(Server.MapPath("titles.xml"));

 Module 12: Reading and Writing XML Data 43

Lab 12: Reading XML Data

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Read an Extensible Markup Language (XML) file and store it in a DataSet.
 Apply transformation to an XML file.

Before working on this lab, you must have:

 Knowledge of how to use a DataGrid control.
 Knowledge of how to create event procedures for Web server controls.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

One benefit that is offered by Coho Winery is the retirement benefit. When
applying for the retirement benefit, employees can view the prospectuses of
several mutual funds that are offered by Coho Winery.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

44 Module 12: Reading and Writing XML Data

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects may be created by
using Microsoft® Visual Basic® .NET or Microsoft Visual C#™.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution
named 2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Microsoft ASP.NET Web Application project, named
BenefitsVB or BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 12: Reading and Writing XML Data 45

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files.

Browse to the install folder\Labfiles\Lab12\VB\Starter\BenefitsVB folder
for the Visual Basic .NET files.
Browse to the install folder\Labfiles\Lab12\CS\Starter\BenefitsCS folder for
the Visual C# files.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project:
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET Project
For the Visual C# Project

Important

For the Visual Basic
.NET Project

For the Visual C# Project

Caution

46 Module 12: Reading and Writing XML Data

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab12\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab12\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

 Module 12: Reading and Writing XML Data 47

Exercise 1
Reading a List of Mutual Funds from an XML File

In this exercise, you will read a list of mutual funds from the mutual_funds.xml
file and store them in a DataSet. You will then display the DataSet in a
DataGrid control.

 Read a list of mutual funds

1. Open the Benefits project in the 2310LabApplication Visual Studio .NET
solution.

2. Add files to the Benefits project:
a. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to

Add, and then choose Add Existing Item.
b. Browse to the benefits folder:

install folder\Labfiles\Lab12\VB\Starter\BenefitsVB folder.
install folder\Labfiles\Lab12\CS\Starter\BenefitsCS folder.

c. In the Files of type drop-down list box, click All Files (*.*).
d. Select the following files, and then click Open:

• retirement.aspx

• prospectus.aspx

• mutual_funds.xml

• lgcap.xml

• growth.xml

• midcap.xml

• smcap.xml

• prospectus_style.xsl
3. Open the mutual_funds.xml file and examine its contents. What are the two

fields (elements) of each fund?
<name> and <prospectus>
__

__

4. Open the retirement.aspx Web Form.
A DataGrid control has already been added to the page. This DataGrid has
two custom columns, a Name column for displaying the name of a mutual
fund, and a Link to prospectus column, which contains a hyperlink to the
prospectus.aspx Web Form. In the following steps, you will fill this
DataGrid with data from an XML file.

Visual Basic .NET
C#

48 Module 12: Reading and Writing XML Data

5. Open the retirement.aspx.vb or retirement.aspx.cs code-behind page and
locate the following comment in the Page_Load event procedure:
'TODO Lab 12: Create a DataSet, fill it with the
'XML file, and display it

//TODO Lab 12: Create a DataSet, fill it with the
//XML file, and display it

6. Fill the DataSet with the data in the XML file and display the DataSet in
the dgRetirement DataGrid control:
a. Create a DataSet named dsRetirement.
b. Call the ReadXml method of the DataSet to read the mutual_funds.xml

file.
c. Set the data source of the dgRetirement DataGrid to dsRetirement.
d. Call the DataBind method of the DataGrid.
Your code should look like the following:
Dim dsRetirement As New DataSet()
dsRetirement.ReadXml(_
 Server.MapPath("mutual_funds.xml"))
dgRetirement.DataSource = dsRetirement
dgRetirement.DataBind()

DataSet dsRetirement = new DataSet();
dsRetirement.ReadXml(Server.MapPath("mutual_funds.xml"));
dgRetirement.DataSource = dsRetirement;
dgRetirement.DataBind();

What is the purpose of the Server.MapPath method?
The Server.MapPath method returns the physical file path that
corresponds to the specified virtual path that is on the Web server for
the current request.
__

__

7. Save your changes.
8. Build and browse the retirement.aspx page.

You should see all of the mutual fund names, in addition to links to the
mutual fund prospectuses in the DataGrid.
Although the links to the prospectuses currently do not work, the links will
open a page called prospectus.aspx and pass to it a prospectus id in the
ProspID parameter. You will build the prospectus.aspx page to display the
requested prospectus in Exercise 2.

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 12: Reading and Writing XML Data 49

Exercise 2
Reading, Transforming, and Displaying XML

In this exercise, you will use the Xml control to read, transform, and display a
prospectus for a given mutual fund.

 Read and display a prospectus

1. Open the lgcap.xml file and examine its contents.
What are the three fields (elements) of a prospectus?
<fundName>, <fundGeneralDescription>, and
<fundDetailedDescription>
__

__

2. Open the prospectus_style.xsl file and examine its content.
Prospectus_style.xsl is an XML style sheet file that uses XSLT to display
XML data. What will the title of the prospectus page be? What color will be
used to display the text General Description?
Title: Prospectus; Color: brown
__

__

3. Open the prospectus.aspx Web Form.
This page currently contains the header.ascx user control and a single
hyperlink.

4. Drag an Xml control from the Toolbox onto the prospectus.aspx page, so
that your page looks like the following illustration.

50 Module 12: Reading and Writing XML Data

5. Set the properties of the Xml control in the Properties window, as shown in
the following table.
Property Value

ID xmlProspectus

DocumentSource lgcap.xml

6. Build and browse the prospectus.aspx page.
You should see the content of the lgcap.xml prospectus as a continuous,
unformatted string of text.

 Apply a transformation to the prospectus

1. Open the prospectus.aspx Web Form.
2. Set the TransformSource property of the xmlProspectus control to

prospectus_style.xsl.
3. Build and browse the prospectus.aspx page.

You should see now the content of the lgcap.xml prospectus as formatted
Hypertext Markup Language (HTML).

 Modify the DocumentSource property of the Xml control dynamically

You will now use a string parameter named ProspID to select which prospectus
will be displayed:

1. Open the prospectus.aspx Web Form.
2. In the Properties window, clear the DocumentSource property of the

xmlProspectus control.
3. Open the prospectus code-behind page.

Open the prospectus.aspx.vb page and locate the following comment in the
Page_Load event procedure:
'TODO Lab 12: Dynamically select the prospectus

Open the prospectus.aspx.cs page and locate the following comment in the
Page_Load event procedure:
//TODO Lab 12: Dynamically select the prospectus

4. Read the ProspID parameter from the requested query string and store the
parameter in a variable named strProspID.
Your code should look like the following:
Dim strProspID As String = Request.Params("ProspID")

string strProspID = Request.Params["ProspID"];

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 12: Reading and Writing XML Data 51

5. In the code, set the DocumentSource property of the xmlProspectus
control to the value of the variable strProspID, concatenated with an .xml
extension.
Your code should look like the following:
xmlProspectus.DocumentSource = strProspID & ".xml"

xmlProspectus.DocumentSource = strProspID + ".xml";

6. Save your changes to the prospectus.aspx page.
7. Build and browse the retirement.aspx page.
8. Click the Prospectus link that is next to Large cap stocks.

You should see the prospectus for the Large cap stocks mutual fund.
9. Click the Back to retirement page link.
10. Test the Prospectus links for the Growth stocks, Mid-cap stocks, and

Small-cap stocks.

Visual Basic .NET

C#

52 Module 12: Reading and Writing XML Data

Exercise 3 (If Time Permits)
Nested Data

In this exercise, you will experiment with the generation of nested XML data
from a Microsoft SQL Server™ database.

 Generate sequential data

1. Add the nestedData.aspx Web Form from the benefits folder. This file can
be found at:
install folder\Labfiles\Lab12\VB\Starter\BenefitsVB folder to the Benefits
project.
install folder\Labfiles\Lab12\CS\Starter\BenefitsCS folder to the Benefits
project.

2. Open the nestedData.aspx Web Form.
3. Open the nestedData.aspx.vb or the nestedData.aspx.cs code-behind page

and examine the code.
The code generates a DataSet named dsDoctorsSpecialities, which
contains three DataTable objects: doctors, drspecialties, and specialties.
The code then creates relationships between the three tables.
What column links the doctors and drspecialties DataTable objects together
in the relation1 DataRelation? What is the parent DataTable of this
relationship?
Column: dr_id; parent: doctors DataTable
__

__

4. Build and browse the nestedData.aspx page and analyze the XML that was
created.
Is the data nested?
No, the data is sequential. First, the doctors are listed, then all of the
drspecialties are listed, and then all of the specialties are listed.
__

__

5. Locate the following comment in the Page_Load event procedure:
'TODO Lab 12: Create a nested relationship between the
doctors and drspecialties DataTable objects

//TODO Lab 12: Create a nested relationship between the
doctors and drspecialties DataTable objects

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 12: Reading and Writing XML Data 53

6. Uncomment the following line of code to create a nested relationship
between the doctors and drspecialties DataTable objects:
'dr1.Nested = True

//dr1.Nested = true;

7. Build and browse nestedData.aspx and analyze the XML that was created.

You may need to refresh the browser after the page loads to see the
changes to the XML data.

What has changed from the preceding XML response?
The doctors and drspecialties are nested (for each doctor the
drspecialties are listed), and then the specialties are sequentially placed
at the end of the file.
__

__

8. Comment out the line of code that you uncommented in Step 6.
9. Locate the following comment in the Page_Load event procedure:

'TODO Lab 12: Create a nested relationship between the
specialties and drspecialties DataTable objects

//TODO Lab 12: Create a nested relationship between the
specialties and drspecialties DataTable objects

10. Uncomment the following line of code to create a nested relationship
between the specialties and drspecialties DataTable objects:
'dr2.Nested = True

//dr2.Nested = true;

Visual Basic .NET

C#

Tip

Visual Basic .NET

C#

Visual Basic .NET

C#

54 Module 12: Reading and Writing XML Data

11. Build and browse the nestedData.aspx page and analyze the XML that was
created.

You may need to refresh the browser after the page loads to see the
changes to the XML data.

What has changed from the preceding XML response?
Now, at the beginning of the file, all of the doctors are listed
sequentially, then the specialties and drspecialties are nested (for every
specialty, all of the drspecialties children are listed).
__

__

You cannot use the two nested relationships at the same time because
the same DataTable (drspecialties) cannot be a child in two nested
relations.

Tip

Note

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Overview of Using XML
Web Services 2

Lesson: Calling an XML Web Service Using
HTTP 13

Lesson: Using a Proxy to Call an XML Web
Service 18

Lesson: Creating an XML Web Service 30

Review 40

Lab 13: Consuming and Creating XML Web
Services 42

Module 13: Consuming
and Creating XML Web
Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 13: Consuming and Creating XML Web Services iii

Instructor Notes
In this module, students will learn how to consume and create an XML Web
service from a Web application. Students will also learn how to create XML
Web services by using Microsoft® Visual Studio® .NET.

After completing this module, students will be able to:

 Describe the purpose and process behind calling an XML Web service from
a Web Form, including being able to:

• Explain what an XML Web service is.

• Explain why XML Web services are important.

• Describe how to find existing XML Web services.

• Identify the process by which XML Web services are integrated into
Web sites.

 Call an XML Web service directly from a browser by using Hypertext
Transfer Protocol (HTTP), including:

• Calling an XML Web service with a browser by using HTTP-GET
protocol direct access.

• Identifying the Web methods that are available from an XML Web
service.

• Invoking Web methods from an XML Web service by using
HTTP_GET protocol direct access, and then viewing the response.

 Create a Web reference proxy for an XML Web service Web method, and
call the method from a Web Form, including:

• Explaining how a proxy calls an XML Web service.

• Creating a proxy to call an XML Web service.

• Incorporating the response from an XML Web service into a Web site.

• Handling errors from an XML Web service.

• Testing the availability of an XML Web service.
 Use the templates in Visual Studio .NET to create an XML Web service,

including:

• Creating an XML Web service by using Visual Studio .NET.

• Describing the classes and structures that are used in an XML Web
service project that is built by using Microsoft ASP.NET.

• Explaining the code that is generated when you create a new XML Web
service project by using ASP.NET.

Presentation:
75 minutes

Lab:
45 minutes

iv Module 13: Consuming and Creating XML Web Services

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_13.ppt
 Multimedia pages 2310B_13A001.htm and 2310B_13A001.swf

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the instructor-led practices.
 Review the animations.

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Required materials

Preparation tasks

 Module 13: Consuming and Creating XML Web Services v

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Overview of Using XML Web Services
The key point in understanding XML Web services is that they do not have a
user interface (UI), but they do use Internet-based protocols to communicate
with other applications.

The advantages of the XML Web service model may not be obvious to
developers who do not have a lot of experience in connecting applications.

Do not spend more than the allotted time on this slide. The steps for creating a
proxy to consume an XML Web service will be covered in the lesson “Using a
Proxy to Call an XML Web Service.”

Alternative delivery. If you have access to the Internet, go to either of the
following Web sites, http://uddi.micorosft.com or http://www.uddi.org, and find
an XML Web service.

Lesson: Calling an XML Web Service Using HTTP
Explain that accessing an XML Web service directly from a browser by HTTP
is for research and development purposes only.

Alternative delivery. You can open the default page from the section “Practice:
Calling an XML Web Service Using HTTP,” and show the process of calling an
XML Web service by HTTP.

The default page also lists the SOAP-formatted reply that the XML Web
service will send to a proxy.

If students are interested, after the practice, you can show the code of the XML
Web service that students just called. A Microsoft Visual Basic® .NET and C#
version of the code-behind page located at:
2310Demos\Mod13VB\WeatherService.asmx.vb and
2310Demos\Mod13CS\WeatherService.asmx.cs.

Lesson: Using a Proxy to Call an XML Web Service
Explain that using a proxy to call an XML Web service is the production
method of calling XML Web services.

Alternative delivery. You can open the default page from the section “Practice:
Calling an XML Web Service by HTTP,” and show the SOAP-formatted reply
that the XML Web service will send to a proxy.

This slide builds directly on the “Finding an XML Web Service” slide from the
first Lesson, “Overview of XML Web Services.” You may want to return to the
“Finding an XML Web Service” slide to refresh the context for building a
proxy.

Do not spend more than the allotted time on this slide. The steps for creating a
proxy to consume an XML Web service are repeated in the following
instructor-led practice.

What are XML Web
Services?

Why Use XML Web
Services?

Finding an XML Web
Service

How to Call an XML Web
Service Using HTTP

Practice: Calling an XML
Web Service Using
HTTP

Using Proxies to Call
XML Web Services

How to Use a Proxy to
Call an XML Web
Service

vi Module 13: Consuming and Creating XML Web Services

Alternative delivery. You can go directly to the “Instructor-Led Practice: Using
a Proxy to Call an XML Web Service” and use this page as a reference.

When you come to Step 2 in this practice, “Create a proxy,” mention that you
would have gotten the Uniform Resource Locator (URL) for the XML Web
service from either of the following Web sites: http://www.uddi.org or
http://uddi.microsoft.com.

Alternative delivery. You can have students access the XML Web service on the
Instructor’s computer (http://Instructorsmachine/stocksCS/service1.asmx or
http://Instructorsmachine/stocksVB/service1.asmx) or on another student’s
computer.

Lesson: Creating an XML Web Service
This lesson is last in the module to show the power of XML Web services as a
method of adding features to a Web application, before the focus shifts to the
details of how to create an XML Web service.

Alternative delivery. You can go directly to the “Demonstration: Creating an
XML Web Service” and use this page as a reference.

The key point is that while the code that creates the XML Web service is
constant, the XML Web service could be a wrapper for almost any application,
on any platform.

Alternative delivery. You can go directly to the “Demonstration: Creating an
XML Web Service” and use this page as a reference.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 13: Consuming and Creating XML Web Services
Before beginning the lab, students should have completed all of the practices
and answered all of the review questions.

Use the Lab Map to highlight what parts of the solution the students will be
building in this lab.

Instructor-Led Practice:
Using a Proxy to Call an
XML Web Service

How to Create an XML
Web Service

XML Web Service Code

 Module 13: Consuming and Creating XML Web Services 1

Overview

Overview of Using XML Web Services

Calling an XML Web Service Using HTTP

Using a Proxy to Call an XML Web Service

Creating an XML Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Internet has helped to facilitate better communication within and between
companies by providing fast access to information. However, for many
companies, browsing data-driven pages do not adequately satisfy their business
needs. Programmable Web sites that directly link organizations, applications,
and services would better meet their business needs. This direct linking of
applications is the role of the Extensible Markup Language (XML) Web
service. By linking your Web sites and applications to XML Web services, you
have the opportunity to expand the functionality your Web site offers to users.

In this module, you will learn how to call an XML Web service directly with a
browser and by proxy from a Web Form. You will also learn how to create and
publish XML Web services by using Microsoft® Visual Studio® .NET.

After completing this module, you will be able to:

 Describe the purpose and process behind calling an XML Web service from
a Web Form.

 Call an XML Web service directly from a browser by using Hypertext
Transfer Protocol (HTTP).

 Create a Web reference proxy for an XML Web service method, and call
that Web method from a Web Form.

 Use the templates in Visual Studio .NET to create an XML Web service.

Introduction

Objectives

2 Module 13: Consuming and Creating XML Web Services

Lesson: Overview of Using XML Web Services

What is an XML Web Service?
Why use XML Web Services?
Finding an XML Web Service
Multimedia: XML Web Service Execution Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the challenges that you may encounter in creating feature-rich Web sites
is application integration. You often need to combine a number of applications
into a single, easy-to-use solution. The problem with trying to achieve a single,
easy-to-use solution is that the applications you want to combine may be on a
variety of platforms, each running different operating system. The applications
also might have been created in several different programming languages.

XML Web services provide a simple, flexible, standards-based model for
connecting applications together over the Internet. XML Web services allow
you to take advantage of the existing Internet infrastructure, and link
applications, regardless of which platforms, programming languages, or object
models have been used to implement them.

In this lesson, you will learn the purpose and process behind calling an XML
Web service from a Web Form.

After completing this lesson, you will be able to:

 Explain what an XML Web service is.
 Explain why XML Web services are important to Web application

developers.
 Describe how to find existing XML Web services.
 Identify the process by which XML Web services are integrated into Web

sites.

Introduction

Lesson objectives

 Module 13: Consuming and Creating XML Web Services 3

What is an XML Web Service?

Programmable logic accessible by standard Web
protocols

Allows applications to send and receive information
across the Internet

Language, protocol, and platform independent

Stateless architecture

Can be asynchronous

Based on an evolving W3C standard

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services are similar to components in that they represent black-box
functionality that developers can use to add features to a Web Form, Microsoft
Windows® applications, or even another XML Web service, without worrying
about how the supporting service is implemented.

XML Web services are designed to interact directly with other applications over
the Internet. As a result, XML Web services do not have user interfaces (UIs);
instead, XML Web services provide standard defined interfaces called contracts
that describe the services that they provide.

An XML Web service can be used internally by a single application, or it can
be used externally by many applications that access it through the Internet.

A connection to an XML Web service can be written in any
Microsoft .NET-based language. As a result of this flexibility, you do not need
to learn a new language every time you want to use an XML Web service.

Unlike current component technologies, XML Web services do not use
protocols that are specific to certain object models, such as the Distributed
Component Object Model (DCOM). XML Web services communicate by using
standard Web protocols and data formats, such as HTTP, XML, and Simple
Object Access Protocol (SOAP). Any server that supports these Web standards
can access or host XML Web services.

Because XML Web services are accessible through a standard interface, they
allow disparate systems to work together. Servers that can support Web Forms
can also support XML Web services.

Introduction

Application–to-
application
communication across
the Internet

Language independent

Protocol independent

Platform independent

4 Module 13: Consuming and Creating XML Web Services

The XML Web Services model assumes a stateless service architecture.
Stateless architectures are generally more scalable than statefull architectures.
Each response from the XML Web service is a new object, with a new state.
Unless the XML Web services uses Microsoft ASP.NET State Management
services to maintain state between requests, the state of the response is lost on
the XML Web service server.

For more information about saving state, see Module 14, “Managing
State,” in Course 2310B, Developing Microsoft ASP.NET Web Applications
Using Visual Studio .NET.

XML Web services are asynchronous, because the request object from the
client application and response object from the XML Web service are unique
SOAP envelopes that do not require a shared connection. Interactions between
the client application and the XML Web service can be further split into an
initial request and response to start the XML Web service method, and a second
request and response to collect the results. This asynchronous communication
allows both the requesting application and the XML Web service the
opportunity to continue processing while the interaction is ongoing.

XML Web services are based on a World Wide Web Consortium (W3C)
standard that is still evolving. As a result, the generic features of XML Web
services are fixed; however, new features may be added in the future.

For more information on the W3C XML Web service standard, see the
official W3C Web site, at http://www.w3c.org.

Stateless architecture

Note

Asynchronous

Based on W3C

Note

 Module 13: Consuming and Creating XML Web Services 5

Why Use XML Web Services?

InternetInternet

Weather
XML Web Service

Weather
XML Web Service

Exchange Rate
XML Web Service
Exchange Rate

XML Web Service

Pick your destination:

The weather
Forecast calls for:

The exchange rate is:

We can fly you there for only:

RainRain

Redmond

$1.56

$1,999.98

Airfare
Database
Airfare

Database

Airfare
XML Web Service

Airfare
XML Web Service

Northwind Traders Travel SiteNorthwind Traders Travel Site

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services enable you to share programming logic and capabilities
with numerous Web and Windows applications, with applications that are
running on other platforms. Consider an XML Web service as a component that
can expose its methods through the Web.

XML Web services are also based on W3C standards. XML Web services also
offer the use of a standard Web protocols and the support tools that are
available in Visual Studio .NET. With Visual Studio .NET, XML Web services
are extremely easy to develop and to consume.

You can imagine an infinite number of XML Web services that you can use to
add features to you Web applications. The following table lists some of the
XML Web services that can be used.

XML Web Service Features

Authentication services Provides user authentication.

For example, Microsoft Passport.

Weather reports Provides updated weather reports for selected locations.

For example, a Web site could provide local weather
forecasts for a given city or area by consuming a weather
report XML Web service.

Exchange rates Provides updated exchange rates for all currencies.

For example, a travel Web site could provide exchange rates
for likely vacation destinations based on user profiles, by
consuming an exchange rates XML Web service.

Airfare quotes Provides updated airfares from one or more airlines.

For example, a travel Web site could offer automatically
discounted prices from preferred airlines by consuming an
airfare quotes XML Web service.

Introduction

Adding XML Web
services to Web
applications

6 Module 13: Consuming and Creating XML Web Services

(continued)
XML Web Service Features

Stock quotes Provides updated stock market quotes.

For example, a company could offer to post their own stock
price on their Web site by consuming a stock quotes XML
Web service.

Partnering services Provides business partners the opportunity to access your
services on their Web site.

For example, Convention Web sites could offer hotel
registration services.

News headlines Provides updated news headlines.

For example, a company could post headlines from their
business market on their Web site by consuming a news
headline XML Web service.

Order tracking Provides status of orders by linking existing enterprise
resource management (ERP) systems to internal and
external Web sites.

For example, coupling results from internal ERP
applications with suppliers and shipping companies order
tracking XML Web services would give customers a
complete view of their order’s status.

The preceding illustration shows a hypothetical travel Web site that offers
several features that are based on XML Web services. In this scenario, the user
enters a destination city name, and the Web Form uses the city name as a
parameter in calls to several XML Web services. From the user’s perspective,
this is a highly featured travel Web site. From a code perspective, the Web site
is more of a graphical interface combining a number of XML Web services
from unrelated companies.

This travel agency Web site, by using XML Web services, provides advantages
to both the consuming Web site, and the various XML Web services:

 Advantages for the Web site:

• The applications that the travel agency has access to are not limited by
the agency developer’s programming skills, availability, or subject
expertise.

• The travel agency does not bear the high maintenance costs of keeping
data, such as weather reports or exchange rates, up-to-date.

• XML Web services use the Internet, so the travel agency does not have
to create or maintain dedicated connections to offer the service.

• XML Web services are language, protocol, and platform-independent, so
the travel agency developers do not need to learn how the XML Web
service was built and deployed to be able to use it.

• The Web site may be able to charge the XML Web service providers for
the right to offer services to the travel agency Web site customer base.

XML Web service
example

 Module 13: Consuming and Creating XML Web Services 7

 Advantages for the XML Web service providers:
Creating new applications as XML Web services, and updating existing
applications with XML Web services, offers a number of advantages to
service providers:

• The XML Web service provider may be able to charge the Web site for
the use of the service.

• By offering an application, such as an exchange rate calculator, as an
XML Web service, a bank can access the customer base of a number of
travel agencies.

• The XML Web service provider does not bear the high cost of
developing and marketing a Web site to the traveling public.

• Because XML Web services use the Internet to communicate, the
service providers do not need expensive dedicated connections to offer
your service.

• Because XML Web services are language-independent, protocol-
independent, and platform-independent, the XML Web service can be
consumed by a wide variety of applications.

8 Module 13: Consuming and Creating XML Web Services

Finding an XML Web Service

Publish XML Web service URL
and description

.disco

.wsdl

Web ServiceProxyProxy

Web
Form

UDDI

111222

333

444

555 666

111

222

333

444

555

Discover XML Web service
Locate XML Web service URL
Read .wsdl description
Bind XML Web Service to Proxy
Call XML
Web Service
from the
Web Form
by Proxy

666

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can find existing XML Web services to add to your Web site by using one
or more of a series of discovery services. These discovery services are evolving
and changing rapidly as the development and use of XML Web services gains
acceptance in the Internet community.

The process for finding and binding to an XML Web service is as follows:

1. XML Web service developers publish descriptions and locations for their
XML Web services to a Universal Description, Discovery, and Integration
(UDDI) Web site.

2. You query the UDDI Web site to find the available XML Web services that
meet your requirements. The UDDI Web site provides a listing of XML
Web services that includes the Discovery file (DISCO) document Uniform
Resource Locators (URLs) for the XML Web services.

3. You select an XML Web service and access the DISCO document to locate
the XML Web service URL and the related Web Services Description
Language (WSDL) document URLs.

4. You build a proxy object from the WSDL document.
A proxy class is code that looks exactly like the class it is meant to
represent; however, the proxy class does not contain any of the application
logic. Instead, the proxy class contains marshaling and transport logic. A
proxy object allows a client to access an XML Web service as if it were a
local COM object.

5. You use the proxy object to bind the XML Web service.
6. You call the XML Web service from the Web Form by using the proxy.

Introduction

Finding an XML Web
service

 Module 13: Consuming and Creating XML Web Services 9

The UDDI specification defines a way to publish and discover information
about XML Web services and the companies that supply them.

Companies individually register information about the XML Web services that
they expose for other businesses to then use. After the data has been registered,
it becomes freely available to anyone who needs to discover which XML Web
services are exposed by a particular business.

For more information on UDDI, see the UDDI Web site at
http://www.uddi.org or the Microsoft UDDI Project Web site at
http://uddi.microsoft.com.

Discovery (DISCO) files are used to group common services together on a Web
server. Discovery files, .disco and .vsdisco, are XML-based files that contain
links in the form of URLs to resources that provide discovery information for
an XML Web service. These files enable programmatic discovery of XML Web
services. The following examples show the difference between static and
dynamic discovery files:

 .disco files
A static discovery (.disco) file is an XML document that contains links to
other resources that describe XML Web services. .disco files are
automatically generated for an XML Web service when the service is
accessed by using a URL with ?DISCO provided in the query string.
The following code shows an example of a .disco file:
<?xml version="1.0" ?>
<disco:discovery
xmlns:disco="http://schemas.xmlsoap.org/disco"
xmlns:wsdl="http://schemas.xmlsoap.org/disco/wsdl">
 <wsdl:contractRef
 ref="http://MyWebServer/UserName.asmx?WSDL"/>
</disco:discovery>

 .vsdisco files
Dynamic discovery (.vsdisco) files are dynamic discovery documents that
are automatically generated by Visual Studio .NET during the development
phase of an XML Web service.
A .vsdisco file is an XML-based file with a root node called
<dynamicDiscovery>. This node can contain <exclude> nodes. Each
<exclude> node contains a path that the dynamic discovery process should
not search.

To maintain control over which XML Web services clients can
discover, you should only use dynamic discovery on development Web
servers.

UDDI

Note

DISCO files

Caution

10 Module 13: Consuming and Creating XML Web Services

The following code shows an example of a .vsdisco file:

<?xml version="1.0" encoding="utf-8" ?>
<dynamicDiscovery xmlns="urn:schemas-
dynamicdiscovery:disco.2000-03-17">
 <exclude path="_vti_cnf" />
 <exclude path="_vti_pvt" />
 <exclude path="_vti_log" />
 <exclude path="_vti_script" />
 <exclude path="_vti_txt" />
 <exclude path="Web References" />
</dynamicDiscovery>

A WSDL file defines the XML grammar that is used for communicating with
an XML Web service. Visual Studio .NET uses the WSDL file to build proxy
objects to communicate with an XML Web service.

WSDL files contain the following information about an XML Web service:

 Where to find the URL.
 XML Web service methods and properties.
 Data types used.
 Communication protocols.

For more information on DISCO and WSDL files, see “XML Web
service discovery” in the Visual Studio .NET documentation.

WSDL files

Note

 Module 13: Consuming and Creating XML Web Services 11

Multimedia: XML Web Service Execution Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how XML Web services interact with browsers
and other Web Forms.

 To create an XML Web service

1. Create the .asmx file that includes the namespace, classes, properties, and
Web methods of the XML Web service.

2. Declare methods as XML Web service methods, which can then be accessed
over the Internet.

Direct access to an XML Web service involves a user sending the URL request
in HTTP by using a browser. The XML Web service responds with a list of the
designed methods and properties in XML. The user then has the opportunity to
send a request directly to the XML Web service and receive results in XML.

This direct access process is not recommended for normal use, but it does allow
you to test the XML Web service’s functionality.

 To directly access an XML Web service

1. Call the XML Web service from the browser to determine which methods
are available.
When you call an XML Web service from a browser, you access the
Hypertext Markup Language (HTML) description page, which lists the
methods that are included in the XML Web service. The protocol that is
used in this case is HTTP, and the data is returned as XML.

2. Call a method of the XML Web service from the browser.
When you call a method of an XML Web service from a browser, the
protocol that is used is HTTP, and the data is returned as XML.

Introduction

XML Web service model

Access from a browser

12 Module 13: Consuming and Creating XML Web Services

You can also call methods of the XML Web service by using code on a Web
Form.

 To call an XML Web service from a Web Form

1. Find out which XML Web services are available.
This involves finding the URL for the XML Web service.

2. Create a WebReference to the XML Web service.
This creates a .vb or .cs file that contains the source code for the proxy as
created by Visual Studio .NET.

3. Compile the project, which in turn compiles the proxy.
The proxy is compiled into the Web application assembly in the /bin folder.

4. Open a Web Form.
5. Create an instance of the WebReference.
6. Call the methods of the XML Web service.
7. Use the data that is returned by the XML Web service.

Access from a Web
Form

 Module 13: Consuming and Creating XML Web Services 13

Lesson: Calling an XML Web Service Using HTTP

How to Call an XML Web Service Using HTTP

Practice: Calling an XML Web Service Using HTTP

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to access an XML Web service directly from
a browser by using HTTP-Get. This process, called direct access, is typically
used by developers at design time to identify and test XML Web services.
Direct access lets you view the methods, properties, and output of an XML
Web service in a developer-friendly environment.

After completing this lesson, you will be able to:

 Call an XML Web service with a browser by using HTTP-GET protocol
direct access.

 Identify the Web methods that are available from an XML Web service.
 Invoke Web methods from an XML Web service by using HTTP_GET

protocol direct access, and then view the response.

Introduction

Lesson objectives

14 Module 13: Consuming and Creating XML Web Services

How to Call an XML Web Service Using HTTP

1. Navigate to the XML Web service URL

2. Select an XML
Web service
method

3. Call the XML Web
service method

4. View the XML
response

111

222

333

444

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you access an XML Web service directly with a browser, you first access
the HTML description page, DefaultWsdlHelpGenerator.aspx. From this page,
you can select from the available XML Web service methods and call the
method with parameters. You will then receive a response in XML.

You can also use the HTTP-POST protocol to access an XML Web service.
You will not access the default page, DefaultWsdlHelpGenerator.aspx;
however, the final response from the XML Web service will be identical to an
HTTP-GET request.

After you have found an XML Web service on UDDI, you use the .asmx URL
to navigate to the HTML description page. This description page provides
information about what an XML Web service does, the available Web methods
it contains, the Web method parameters, and responses. In addition, you can use
the HTML description page to test the functionality of the XML Web service.

The following illustration shows the browser view of the XML Web service
Stocks that is used in the demonstrations in this module.

Introduction

Navigate to the XML
Web service URL

 Module 13: Consuming and Creating XML Web Services 15

When you access the HTML description page for an XML Web service, the
browser displays the available XML Web service methods. Click a Web
method to view the available parameters for that Web method.

The following illustration shows the browser view resulting from the selection
of the GetRating Web method in the XML Web service Stocks.

You can also click the Service Description link at the top of the HTML
description page to view the WSDL contract, which contains an XML
description of the XML Web service and its contents.

To call a Web method, you fill in the form and then click Invoke. The Web
Form passes the name of the method, the required parameters, and the values of
the parameters to the URL of the XML Web service.

XML Web services always return data in XML format. The following
illustration shows the browser view resulting from invoking the XML Web
service Stocks with the parameter Contoso.

Select an XML Web
service method

Call the Web method

View the XML response

16 Module 13: Consuming and Creating XML Web Services

Practice: Calling an XML Web Service Using HTTP

The Student will:

Enter an XML Web Service URL on the
instructor machine

Select the XML Web service method to call

Enter values for parameters

View the returned XML

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will access an XML Web service on the Instructor’s
computer and test the three available Web methods.

 To access this XML Web service

1. Open http://Instructorsmachine/Mod13VB/WeatherService.asmx or
http://Instructorsmachine/Mod13CS/WeatherService.asmx in a browser.

2. Click WeatherByCity.
3. In the City field, type the name of a city, such as Seattle, for which you

would like to have tomorrow’s weather prediction.
4. Click Invoke.

Enter the XML response on the following lines.
<?xml version="1.0" encoding="utf-8"?>

<string
xmlns="http://microsoft.com/webservices/">sun</string>

__

__

5. Call the WeatherByCity Web method again, this time passing another city
name, such as London, as a parameter in the City field.
Note the XML response.
Note also that with city names other than Seattle, you will receive a random
weather forecast of sun, cloudy, or rain. When Seattle is entered in the City
field, you will always receive the weather forecast of sun.

Introduction

Call the WeatherByCity
Web method

 Module 13: Consuming and Creating XML Web Services 17

6. Return to the http://Instructorsmachine/Mod13VB/WeatherService.asmx
or the http://Instructorsmachine/Mod13CS/WeatherService.asmx
introductory page.

7. Click TemperatureByCity.
8. In the City field, enter the name of a city for which you would like to have

the present temperature.
9. Click Invoke.

The result value should be a random value between 31 and 60 degrees
Fahrenheit.

10. Return to the http://Instructorsmachine/Mod13VB/WeatherService.asmx
or the http://Instructorsmachine/Mod13CS/WeatherService.asmx
introductory page.

11. Click TravelAdviceByCity.
12. In the City field, type the name of a city, such as Seattle, for which you

would like to have travel advice.
13. Click Invoke.

Note the XML response.
14. Call the TravelAdviceByCity Web method again, this time passing another

city name, such as London, as a parameter in the City field.
15. Note the XML response.

Call the
TemperatureByCity Web
method

Call the
TravelAdviceByCity Web
method

18 Module 13: Consuming and Creating XML Web Services

Lesson: Using a Proxy to Call an XML Web Service

Using Proxies to Call XML Web Services

How to Use a Proxy to Call an XML Web Service

Instructor-Led Practice: Using a Proxy to Call an XML
Web Service

XML Web Service Error Handling

Demonstration: Testing the Availability of an XML
Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To programmatically call an XML Web service from a Web Form, you need to
create a proxy to handle the call. In this lesson, you will learn how to create a
Web reference proxy for an XML Web service method, and call the Web
method from a Web Form.

After completing this lesson, you will be able to:

 Explain how a proxy calls an XML Web service.
 Create a proxy to call an XML Web service.
 Incorporate content from an XML Web service into a Web site.
 Handle errors from an XML Web service.
 Test the availability of an XML Web service.

Introduction

Lesson objectives

 Module 13: Consuming and Creating XML Web Services 19

Using Proxies to Call XML Web Services

Appear the same as the original class, but do not
contain application logic
Use SOAP to interact with the XML Web Service

Created from the ServiceName.asmx.wsdl file

Add members to manage interactions with the XML
Web service and support asynchronous calls

InternetInternet XML Web
Service

XML Web
Service

ProxyProxy

Web
Form

SOAP

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To call an XML Web service from a Web Form, you need to create a Web
reference to the XML Web service in your Web Application project. The Web
reference creates the proxy object that is used to communicate with the XML
Web service by using SOAP.

A proxy class is code that looks exactly like the class it is meant to represent,
but it does not contain any of the application logic. Instead, the proxy class
contains marshaling and transport logic. A proxy object allows a client to
access an XML Web service as if it were a local COM object. The proxy must
be on the computer that has the Web application.

Visual Studio .NET automatically creates a proxy named reference.vb or
reference.cs when you add a Web reference to an XML Web service. When you
create the Web reference, Visual Studio .NET creates the reference file, which
is the proxy code.

Introduction

What is a proxy?

20 Module 13: Consuming and Creating XML Web Services

Proxies and XML Web services interact by using SOAP, which is an XML
protocol that is used for exchanging structured and typed information.

To see a preview of the SOAP messages from an XML Web service,
access the XML Web service URL directly and review the code that is
displayed by the HTML description page.

The process of accessing an XML Web service by using a proxy is:

1. The user sends a URL request to a Web Form that requires a call to an XML
Web service.

2. The Web Form instantiates the proxy, which then calls the XML Web
service by using SOAP.
The following is the SOAP request for the GetRating Web method in a
Stocks XML Web service that is passing the argument Contoso:
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetRating xmlns="http://tempuri.org/">
 <Ticker>Contoso</Ticker>
 </GetRating>
 </soap:Body>
</soap:Envelope>

3. The XML Web service sends a response to the proxy by using SOAP.
The following is the SOAP response from the GetRating XML Web
service:
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetRatingResponse xmlns="http://tempuri.org/">
 <GetRatingResult>Buy</GetRatingResult>
 </GetRatingResponse>
 </soap:Body>
</soap:Envelope>

4. The ASP.NET Web Form consumes the response from the XML Web
service.

Visual Studio .NET automatically creates a proxy when you select Add Web
Reference from the Project menu and enter the XML Web service URL. The
.asmx.wsdl file on the XML Web service server is used to identify the Web
methods and parameters that are available in the XML Web service.

Interact with SOAP

Note

Created from the
.asmx.wsdl file

 Module 13: Consuming and Creating XML Web Services 21

When you create a proxy by using Visual Studio .NET, a number of methods
and properties that support programmatic access to the XML Web service are
available. The members that are available to a proxy include:

 Members built into the proxy
The infrastructure for making asynchronous calls from a Web Form to an
XML Web service is built into the proxy class that is created automatically
by Visual Studio .NET, when you add a Web reference. A
BeginWebMethodName method and an EndWebMethodName method are
automatically created in the proxy for every Web method of the XML Web
service:

• BeginWebMethodName
The Begin method is used to start asynchronous communication with an
XML Web service method WebMethodName.

• EndWebMethodName
The End method is used to finish an asynchronous communication with
an XML Web service method WebMethodName, and retrieve the
completed reply from the XML Web service method.

For example, creating a Web reference to the Stocks XML Web service
creates a proxy with two additional methods: BeginGetRating and
EndGetRating.

For more information on asynchronously calling an XML Web
service, see “Communicating With XML Web Services Asynchronously,”
in the Visual Studio .NET documentation.

 Members Inherited from SoapHttpClientProtocol
A proxy inherits a number of methods and properties from the
System.Web.Services.Protocols.SoapHttpClientProtocol class that can be
used to manage interactions with the XML Web service. Some of the proxy
properties include:

• Timeout
The Timeout property indicates the amount of time, in milliseconds, an
XML Web service client waits for a synchronous XML Web service
request to complete.

• Url
The Url property gets or sets the base URL of the XML Web service
that the client is requesting.

For more information on SoapHttpClientProtocol members, see
“SoapHttpClientProtocol Members,” in the Visual Studio .NET
documentation.

Adds members to
manage interactions
with the XML Web
service and support
asynchronous calls

Note

Note

22 Module 13: Consuming and Creating XML Web Services

How to Use a Proxy to Call an XML Web Service

1. Create a Web reference for the XML Web Service

2. Create an instance of the XML Web Service

3. Call the Web methods of the XML Web Service

4. Build the ASP.NET Web Application

Sub Button1_Click(s As Object, e As EventArgs)...
Dim ProxyGetStocks As New _

GetStocks.localhost.Service1()
lblResults.Text = _

ProxyGetStocks.GetRating("Contoso")
End Sub

Sub Button1_Click(s As Object, e As EventArgs)...
Dim ProxyGetStocks As New _

GetStocks.localhost.Service1()
lblResults.Text = _

ProxyGetStocks.GetRating("Contoso")
End Sub

111

222

333

444

C# Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

To use an XML Web service from a Web Form that was created in
Visual Studio .NET, you must first identify the XML Web service URL, and
then create a Web reference.

 To create a proxy to call an XML Web service from a Web Form

1. Open the Web application and the Web Form from which you will be
calling the XML Web service, and then create a Web reference for the XML
Web service:
a. On the Project menu, click Add Web Reference.
b. In the Address field of the Add Web Reference dialog box, type the

URL of the XML Web service that you are accessing, press ENTER, and
then click Add Reference.
Visual Studio .NET creates a Web reference to the XML Web service,
with the name of the server that is hosting the XML Web service.
For example, if you created a Web reference to the
http://localhost/Stocks/Service1.asmx, Visual Studio .NET will name the
Web reference localhost by default.

Visual Studio .NET is optimized for XML Web services that are
created by Visual Studio .NET. ASP.NET may not read .wsdl files that are
created with other programs, if the files include null terminated strings.

Introduction

Note

 Module 13: Consuming and Creating XML Web Services 23

2. In an event procedure in the Web Form, create an instance of the proxy of
the XML Web service.
For example, if you have a button to call the GetRating method of the
Stocks XML Web service, use the following code in the Click event
procedure GetStocks.localhost.Service1:
Dim ProxyGetStocks As New GetStocks.localhost.Service1()

GetStocks.localhost.Service1 ProxyGetStocks =
 new GetStocks.localhost.Service1();

GetStocks is the name of the Web application, localhost is the name of the
Web reference, and Service1 is the name of the Web service.

3. Call the Web methods of the XML Web service:
Label1.Text = ProxyGetStocks.GetRating("Contoso")

Label1.Text = ProxyGetStocks.GetRating("Contoso");

The complete code in a button_Click event procedure would look like:
Sub Button1_Click(s As Object, e As EventArgs) _
 Handles Button1.Click
 Dim ProxyGetStocks As New _
 GetStocks.localhost.Service1()
 lblResults.Text = ProxyGetStocks.GetRating("Contoso")
End Sub

private void Button1_Click(object sender,
 System.EventArgs e)
{
 GetStocks.localhost.Service1 ProxyGetStocks = new
 GetStocks.localhost.Service1();
 lblResults.Text = ProxyGetStocks.GetRating("Contoso");
}

4. Build the ASP.NET Web Application project.
Compile the Web application by clicking Build on the Build menu.

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

24 Module 13: Consuming and Creating XML Web Services

Instructor-Led Practice: Using a Proxy to Call an XML Web Service

Create a new ASP.NET Web Application
project

Create a proxy for an XML Web service

Test with a browser

View the reference.vb or reference.cs file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use a proxy to call an XML Web service.

 To run the instructor-led practice

1. Create a new ASP.NET Web Application project called GetWeatherVB or
GetWeatherCS in Visual Studio .NET.

2. Add a Web Reference to the XML Web service located at
http://localhost/Mod13VB/WeatherService.asmx or
http://localhost/Mod13CS/WeatherService.asmx.
The Web reference you are adding will create a proxy and a new Web
Reference called localhost in Solution Explorer.
Note that the proxy is created in the language of your project. For instance,
if you are using Microsoft Visual Basic®, the proxy will be created in
Visual Basic.

3. In Solution Explorer, view the files that were automatically created for you
by Visual Studio .NET.

4. Rename the Web Reference in Solution Explorer to WeatherWebRef.
5. Open the default Webform1.aspx page in Design view and add a Text Box

control, a Button control, and a Label control to the Web Form. Keep the
default properties for each control.

Introduction

Create a new project

Create a proxy

 Module 13: Consuming and Creating XML Web Services 25

6. Create a Click event procedure for the Button1 button, and add the
following code:
Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim ProxyGetWeather As New _
 GetWeatherVB.WeatherWebRef.WeatherService()
 Label1.Text = _
 ProxyGetWeather.WeatherByCity(TextBox1.Text)
End Sub

private void Button1_Click(object sender,
 System.EventArgs e)
{
 GetWeatherCS.WeatherWebRef.WeatherService
 ProxyGetWeather = new
 GetWeatherCS.WeatherWebRef.WeatherService();
 Label1.Text =
 ProxyGetWeather.WeatherByCity(TextBox1.Text);
}

7. Build and Browse Webform1.aspx.
8. To test the XML Web service, type Seattle in the text box and then click the

button. Next, type another city name, such as London, in the text box and
click the button again.
Entering Seattle should result in a weather forecast of sun.
Entering any other city name should result in a random weather forecast of:
sun, cloudy, or rain.

9. View the reference.vb or the reference.cs file. The Reference.vb or
Reference.cs file can be found by clicking Show All Files in Solution
Explorer and expanding Web References, WeatherWebRef, and
Reference map.
Note that the reference file is the source code of the proxy that was
automatically generated by Visual Studio .NET. The proxy has Begin and
End methods for the asynchronous calling of every Web method in the
XML Web service.

Visual Basic .NET

C#

Test with a browser

View the reference file

26 Module 13: Consuming and Creating XML Web Services

XML Web Service Error Handling

Service unavailable

SOAP exceptions from XML Web Services

GetStocks.StockWebRef.Service1 ProxyGetStocks = new
GetStocks.StockWebRef.Service1();

ProxyGetStocks.Timeout = 10000;
try
{
lblMessage.Text =
ProxyGetStocks.GetRating(TextBox1.Text);

}
catch (Exception err)
{
lblMessage.Text = err.Message;

}

GetStocks.StockWebRef.Service1 ProxyGetStocks = new
GetStocks.StockWebRef.Service1();

ProxyGetStocks.Timeout = 10000;
try
{
lblMessage.Text =
ProxyGetStocks.GetRating(TextBox1.Text);

}
catch (Exception err)
{
lblMessage.Text = err.Message;

}

Visual Basic .NET Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are three major sources of error when you use an XML Web service:
unavailable service, long response delays, and errors that are internal to the
XML Web service, thereby resulting in error messages from the service in the
form of SOAP exceptions. Your Web Form needs to be able to identify and
handle all three of these errors types.

To test the availability of an XML Web service from an ASP.NET Web Form,
you need to set a timeout for the XML Web service proxy. You need to use a
Try…Catch…Finally statement to handle the timeout exception:

 Set the timeout parameter in the proxy
Set the Timeout property of the XML Web service proxy to a value in
milliseconds, as shown in the following code:
ProxyName.Timeout = value in millisec

 Handle any timeout exceptions
The following code calls the XML Web service, catches any exception, and
displays an error message in Label1:
Try
 'call the XML Web service
Catch err As Exception
 Label1.Text = err.Message
End Try

Introduction

XML Web service
unavailable

Visual Basic .NET

 Module 13: Consuming and Creating XML Web Services 27

try
{
 //call the XML Web service
}
catch (Exception err)
{
 Label1.Text = err.Message;
}

If an XML Web service is unable to process a request, it may return an error
message by using an instance of the System.Web.Services class
SoapException object. To handle these exceptions, you need to use a
Try…Catch…Finally statement.

The following code catches the exception and displays an error message in
Label1:

Try
 'call your XML Web service
Catch err As SoapException
 Label1.Text = "Unable to process your request"
End Try

try
{
 //call your XML Web service
}
catch (SoapException err)
{
 Label1.Text = "Unable to process your request";
}

C#

SOAP Exceptions from
XML Web services

Visual Basic .NET

C#

28 Module 13: Consuming and Creating XML Web Services

Demonstration: Testing the Availability of an XML Web Service

Set a timeout error handling Try…Catch
statement

Slow the Web service

Test the exception

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to test if the XML Web service is
available.

 To run the demonstration

1. Reopen the GetWeather project from the previous Instructor-led Practice.
2. Modify the code of the button event handler to set a timeout of 10 seconds

(10,000) and add code to the button event handler to add a try…catch
statement around the call to the XML Web service.
Your code should look like the following:
Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim ProxyGetWeather As New _
 GetWeatherVB.WeatherWebRef.WeatherService()
 ProxyGetWeather.Timeout = 10000
 Try
 Label1.Text = _
 ProxyGetWeather.WeatherByCity(TextBox1.Text)
 Catch err As Exception
 Label1.Text = err.Message
 End Try
End Sub

Introduction

Set the timeout
try…catch

Visual Basic .NET

 Module 13: Consuming and Creating XML Web Services 29

private void Button1_Click(object sender,
 System.EventArgs e)
{
 GetWeatherCS.WeatherWebRef.WeatherService
 ProxyGetWeather = new
 GetWeatherCS.WeatherWebRef.WeatherService();
 ProxyGetWeather.Timeout = 10000;
 try
 {
 Label1.Text =
 ProxyGetWeather.WeatherByCity(TextBox1.Text);
 }
 catch (Exception err)
 {
 Label1.Text = err.Message;
 }
}

3. Build and Browse WebForm1.aspx.
4. Test the XML Web service by entering Seattle in the text box and clicking

the button to verify that the application is still working as before.
5. Open the Mod13 project in the 2310Demos solution that contains the XML

Web service.
6. At the top of the WeatherService.asmx.vb or the WeatherService.asmx.cs

page, add the following import statement:
Imports System.Threading

using System.Threading;

7. At the beginning of the WeatherByCity Web method, add the following
code to slow the response to 40 seconds:
Thread.Sleep(40000)

Thread.Sleep(40000);

This code will force the XML Web service to operate very slowly to
simulate an XML Web service that is not online or is operating very slow.

8. Build the Web application by right-clicking Mod13VB or Mod13CS in
Solution Explorer, and then clicking Build.

9. In the GetWeather project, view the WebForm1.aspx page in the browser.
10. To test the XML Web service by, type Seattle in the text box and click the

button.
After 10 seconds, you should get the message “The operation has
timed-out” in the label.

C#

Slow the XML Web
service

Visual Basic .NET

C#

Visual Basic .NET

C#

Test the exception

30 Module 13: Consuming and Creating XML Web Services

Lesson: Creating an XML Web Service

How to Create an XML Web Service

XML Web Service Code

Instructor-Led Practice: Creating an XML Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides the templates that make developing XML Web
services easy. In this lesson, you will learn how to use these templates to create
an XML Web service.

After completing this lesson, you will be able to:

 Create an XML Web service by using Visual Studio .NET.
 Describe the classes and structures that are used in an XML Web service

project that is built by using ASP.NET.
 Explain the code that is generated when you create a new XML Web service

project by using ASP.NET.

Introduction

Lesson objectives

 Module 13: Consuming and Creating XML Web Services 31

How to Create an XML Web Service

1. Create a new XML Web Service project in
Visual Studio .NET

2. Declare the WebMethod functions

3. Build the XML Web Service project

4. Test with
a browser

111

222

333

444

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides templates and a default XML Web service method
to help you get started in creating XML Web services.

 To create an XML Web service in Visual Studio .NET

1. Open Visual Studio .NET, and create a new ASP.NET Web service project.
Visual Studio .NET will automatically create the required folders, files, and
the XML Web service page. Renaming the project and the XML Web
service is recommended to help identify and maintain the project and files.

2. Declare the Web-callable functions.
Visual Studio .NET creates a default “Hello World” function on the XML
Web service page. The function can be activated by removing the comment
tags.
Almost any kind of function can be written as an XML Web service method
function, from a simple local calculation to a complex database query.

3. Build the ASP.NET Web service project.
After your functions are written, you need to build the Web Service before
you can test the logic. As with Web Forms, ASP.NET compiles the XML
Web service into Microsoft Intermediate Language (MSIL) for later
execution.

Introduction

32 Module 13: Consuming and Creating XML Web Services

4. Test with a browser.
To verify that your functions work correctly, you can test them by accessing
the XML Web service directly with a browser. In Visual Studio .NET, you
do this by right-clicking XML Web service in Solution Explorer and then
clicking Build and Browse.
You can also test the XML Web service with a remote browser, from
Visual Studio .NET, by right-clicking XML Web service in Solution
Explorer and then clicking Browse with…, or by opening the browser and
entering the Web service URL:
http://serverName/WebService1/Service1.asmx

 Module 13: Consuming and Creating XML Web Services 33

XML Web Service Code

.asmx page

.asmx.vb page

<%@ WebService Language="vb"
Codebehind="Service1.asmx.vb"
Class="XMLWebServiceName.Service1" %>

<%@ WebService Language="vb"
Codebehind="Service1.asmx.vb"
Class="XMLWebServiceName.Service1" %>

Imports System
Imports System.Web.Services

Class Service1
<WebMethod()> Public Function function1() As type

'function_here
End Function
End Class

Imports System
Imports System.Web.Services

Class Service1
<WebMethod()> Public Function function1() As type

'function_here
End Function
End Class

C# Code Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create an XML Web service with Visual Studio .NET, two primary
files are created that comprise the XML Web service: the .asmx file and the
.asmx.vb or .asmx.cs file. The .asmx file identifies the Web page as an XML
Web service, while the .asmx.vb or .asmx.cs file, also known as the
code-behind page, contains the XML Web service logic.

Because there is no UI on an XML Web service, the .asmx page only contains
the file type information and a directive to the code-behind page.

The code in an .asmx page is as follows:

<%@ WebService Language="vb" Codebehind="Service1.asmx.vb"
Class="XMLWebServiceName.Service1" %>

<%@ WebService Language="c#" Codebehind="Service1.asmx.cs"
Class="XMLWebServiceName.Service1" %>

.asmx pages have the following attributes:

 @ Web Service
The @ Web Service attribute identifies the file as an XML Web service.

 Language
The Language attribute defines the language in which the script on the Web
page is written. Some of the values for this attribute are: vb, c#, and
JScript™.

Introduction

.asmx page

Visual Basic .NET

C#

34 Module 13: Consuming and Creating XML Web Services

 Codebehind page
The Codebehind attribute identifies name and location of the .asmx.vb or
.asmx.cs code-behind page that contains the logic of the XML Web Service.

 Class
The Class attribute identifies the base class that supports this instance of an
XML Web service.
In the .asmx file, you must define a class that encapsulates the functionality
of the XML Web Service. This defined class should be public, and should
inherit from the XML Web service base class.
The default XML Web service class is:
Class Service1

class Service1

The code-behind file is the page that caries the XML Web service logic.

The default code for a code-behind page is:

Imports System.Web.Services

<WebService(Namespace := "http://tempuri.org/")> _
Public Class Service1
 Inherits System.Web.Services.WebService

'<WebMethod()> Public Function HelloWorld() As String
' HelloWorld = "Hello World"
' End Function

End Class

Visual Basic .NET

C#

Code-behind page

Visual Basic .NET

 Module 13: Consuming and Creating XML Web Services 35

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace Service1
{
 public class Service1 : System.Web.Services.WebService
 {
 public Service1()
 {
 //CODEGEN: This call is required by the ASP.NET Web
Services Designer
 InitializeComponent();
 }

// [WebMethod]
// public string HelloWorld()
// {
// return "Hello World";
// }
 }
}

Code-behind pages have the following attributes:

 Namespaces
XML Web services import the System and the System.Web.Services
namespaces:

• Imports System
The ASP.NET System namespace contains the classes that support
general ASP.NET classes.

• Imports System.Web.Services
The ASP.NET Web.Services namespace contains the methods and
properties classes that support XML Web services.

C#

Visual Basic .NET

36 Module 13: Consuming and Creating XML Web Services

XML Web services import the System and the System.Web.Services
namespaces:

• using System
The ASP.NET System namespace contains the classes that support
general ASP.NET classes.

• using System.Web.Services
The ASP.NET Web.Services namespace contains the methods and
properties classes that support XML Web services.

• using System.Collections

• using System.ComponentModel

• using System.Data

• using System.Diagnostics

• using System.Web
 Class

The Class attribute identifies the base class that supports this instance of an
XML Web service.
The default XML Web service class is Service1.

 XML Web service methods
Each method that will be exposed from the XML Web service must be
flagged with a custom <WebMethod()>attribute. This attribute is required
to create a Web-callable method. If the method does not have the
<WebMethod()> custom attribute, the method will not be exposed from the
XML Web service.
Visual Studio .NET creates a default "Hello World" Web method, which
can be activated by removing the comment tags on the XML Web service
page. You can edit the default function, or add your own functions.
The following code is the default Visual Studio .NET XML Web service
method:
<WebMethod()> Public Function HelloWorld() As String
 HelloWorld = "Hello World"
End Function

[WebMethod]
public string HelloWorld()
{
 return "Hello World";
}

C#

Visual Basic .NET

C#

 Module 13: Consuming and Creating XML Web Services 37

Instructor-Led Practice: Creating an XML Web Service

Create an XML Web Service

Test the XML Web Service

Change the Namespace

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a simple stock market rating service. This rating
service returns a Buy value if the company name Contoso is entered as an input
parameter. All of the other company names should return a Sell value.

 To run this practice

1. Create a new ASP.NET Web Service project in Visual Studio .NET and
then specify the location of the Web service as
http://localhost/StocksVB
http://localhost/StockCS.
A StocksVB or StocksCS folder is automatically created in the
\Inetpub\wwwroot folder.

2. Open the default .asmx file, Service1.asmx, in Code view by right-clicking
the file in Solution Explorer and clicking View Code.
Note that the default name of the class is Service1, and
Visual Studio .NET has automatically opened the code-behind file
Sevice1.asmx.vb or Sevice1.asmx.cs.

Introduction

Create an XML Web
service
Visual Basic .NET
C#

38 Module 13: Consuming and Creating XML Web Services

3. Create a GetRating function as follows:
<WebMethod()> Public Function GetRating(_
 ByVal Ticker As String) As String
 If Ticker ="Contoso" Then
 Return "Buy"
 Else
 Return "Sell"
 End If
End Function

[WebMethod]
public string GetRating(String Ticker)
{
 if (Ticker == "Contoso")
 return "Buy";
 else
 return "Sell";
}

4. Save the file.
5. Build and browse the XML Web service in Microsoft Internet Explorer by

viewing
http://localhost/StocksVB/Service1.asmx.
http://localhost/StocksCS/Service1.asmx.
To open the XML Web service, you can also right-click Service1.asmx in
Solution Explorer and then click View in Browser.
Note that there is a comment about the namespace.

6. Click GetRating.
7. Type the name of a company for which you would like a stock

recommendation, such as Contoso or Northwind Traders, in the Ticker
field, and then click Invoke.
To prevent the namespace comment from appearing when you browse the
XML Web service, you must change the namespace URL. If you are using
Visual Basic .NET, you change the default URL that Visual Studio .NET
provides. If you are using C#, Visual Studio .NET does not generate a
default namespace. You must add a WebService attribute and then add the
namespace directive to it.

Visual Basic .NET

C#

Test the XML Web
service
Visual Basic .NET
C#

Change or add the
namespace

 Module 13: Consuming and Creating XML Web Services 39

8. Add or modify the WebService attribute.
Modify the namespace directive in Sevice1.asmx.vb to use
http://microsoft.com/webservices/:
<WebService(Namespace:= _
 "http://microsoft.com/webservices/")> _

Add the WebService attribute and namespace directive below the summary
information in Service1.asmx.cs.
Your C# code should look like the following (with the new code that you
must add in bold font):
/// Summary description for WeatherService
/// </summary>
///
[WebService(Namespace="http://microsoft.com/webservices/")]
public class Service1 : System.Web.Services.WebService

9. Save and rebuild the file.
10. Browse the Web service in Internet Explorer by viewing

http://localhost/StocksVB/Service1.asmx.
http://localhost/StocksCS/Service1.asmx.
Note that the comment about the namespace disappears.

11. Add a description for the Class. Your code should look like the following:

<WebService(Namespace:= _
"http://microsoft.com/webservices/", _
Description:="My class description...")> _

[WebService(Namespace=
"http://microsoft.com/webservices/",
Description="My class description...")]

12. Add a description to the WebMethod directive. Your code should look like
the following:
<WebMethod(Description:="My WebMethod description...")>

[WebMethod(Description="My WebMethod description...")]

13. Save and rebuild the file.
14. Browse the Web service in Internet Explorer at

http://localhost/StocksVB/Service1.asmx.
http://localhost/StocksCS/Service1.asmx.
and verify that the descriptions appear.

Visual Basic .NET

C#

Visual Basic .NET
C#

Add a description to the
class and Web method

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET
C#

40 Module 13: Consuming and Creating XML Web Services

Review

Overview of Using XML Web Services

Calling an XML Web Service Using HTTP

Using a Proxy to Call an XML Web Service

Creating an XML Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Does an XML Web Service have a user interface?
No, XML Web services do not have user interfaces. However, users can
interact with XML Web services directly through the description page
if they know the URL and have the authorization, but this is normally
used for testing only.

2. Where would you look for information about available XML Web services?
http://www.UDDI.org or http://uddi.microsoft.com

3. How could you quickly test an XML Web service to see what Web methods
and parameters are available?
Use a browser to access the XML Web service URL. The Web methods
and parameters will be displayed.

4. How do you access an XML Web service from a Web Form?
You create a Web reference to the XML Web service, which then
creates a proxy. In an event procedure on the Web Form, instantiate
the proxy and call the Web methods of the XML Web service.

 Module 13: Consuming and Creating XML Web Services 41

5. How do you check to see if an XML Web service is available for use at
runtime?
You set a timeout for the proxy, and look for timeout exceptions when
you call the Web methods of the XML Web service.

6. What is the protocol that is used to communicate between a proxy and an
XML Web service?
SOAP.

7. What attribute do you add to methods that you want to be exposed to the
Web from your XML Web service?
WebMethod() is required. Without it, the function will not be exposed
on the Web.

8. What is the difference between the .asmx and .asmx.vb (or .asmx.cs) files?
.asmx files identify the ASP.NET Web.NET page type, language, and
code-behind page.
.asmx.vb files are code-behind pages. .asmx.vb (or .asmx.cs) pages
include the classes that are used, and the XML Web service logic in the
form of Web functions.

42 Module 13: Consuming and Creating XML Web Services

Lab 13: Consuming and Creating XML Web Services

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create an XML Web service that returns complex data types.
 Test an XML Web service by using a browser.

Before working on this lab, you must have:

 Knowledge of how to add a Microsoft® SQL Server™ table to a project.
 An understanding of Microsoft ADO.NET.
 Knowledge of how to add a Web reference to a Web Form.
 Knowledge of how to use a DataGrid control.
 Knowledge of how to create event procedures for server controls.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In this lab, you will:

 Create an XML Web Service that enables you to retrieve the list of all of the
dentists that are used by Coho Winery.

 Retrieve the list of dentists for a given postal code.
 Consume the Web service from the dental.aspx page.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
60 minutes

 Module 13: Consuming and Creating XML Web Services 43

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution
named 2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Microsoft ASP.NET Web Application project, named
BenefitsVB or BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

44 Module 13: Consuming and Creating XML Web Services

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab13\VB\Starter\BenefitsVB
folder.
Browse to the install folder\Labfiles\Lab13\Starter\BenefitsCS folder.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

 Module 13: Consuming and Creating XML Web Services 45

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab13\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab13\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

For the Visual Basic
.NET project
For the Visual C# project

46 Module 13: Consuming and Creating XML Web Services

Exercise 1
Create the Dentist XML Web Service GetAllDentists XML Web
Service Method

In this exercise, you will use Visual Studio .NET to create an XML Web
service.

 Create an XML Web service

1. Using Visual Studio .NET, open the 2310LabApplication solution.
2. Create a new ASP.NET Web Service project, named DentalServiceVB or

DentalServiceCS, in the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Service. Set the Location

to http://localhost/DentalServiceVB for a Visual Basic project or to
http://localhost/DentalServiceCS for a Visual C# project.

d. Click Add to Solution, and then click OK.
3. In Solution Explorer, right-click Service1.asmx and rename it

DentalService1.asmx
4. In Solution Explorer, make sure that the DentalService1.asmx file is open,

and then double-click the design surface to open the code-behind page.
5. Change the name of the class:

In the DentalService1.asmx.vb file, change the name of the class from
Service1 to DentalService1.
In the DentalService1.asmx.cs file, change the name of the class and the
constructor from Service1 to DentalService1.

 Create the Connection and DataAdapter

1. In Server Explorer, expand Servers, expand machinename, expand SQL
Servers, expand machinename, expand dentists, and then expand tables to
view the tables of the dentists database.

2. In Design mode, use a drag-and-drop operation to place the Dentists table
from the dentists database onto the DentalService1.asmx page.
A SqlConnection1 object and a SqlDataAdapter1 object are created and
are placed on the design surface of the DentalService1.asmx XML Web
service.
A sqlConnection1 object and a sqlDataAdapter1 object are created and
are placed on the design surface of the DentalService1.asmx XML Web
service.

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 13: Consuming and Creating XML Web Services 47

 Create the DataSet

1. Click anywhere on the design surface to unselect the SqlConnection1 and
SqlDataAdapter1 objects.

2. Right-click the SqlDataAdapter1 object on the DentalService1.asmx page
and click Generate Dataset.

3. In the Generate Dataset dialog box, create a new DataSet named
dsDentists, ensure that the Add this dataset to the designer option is
selected, and then click OK.
A dsDentists object is created and is placed on the Design view of the
DentalService1.asmx page, and a new schema file named dsDentists.xsd is
added to the DentalService project in Solution Explorer.

When creating the dsDentists DataSet, Visual Basic .NET will
create a dsDentists instance named “DsDentists1” whereas Visual C# will
create a dsDentists instance named “dsDentists1”.

 Create the GetAllDentists XML Web service method

1. In the code-behind page of the DentalService1.asmx page,
DentalService1.asmx.vb or DentalService1.asmx.cs, create an XML Web
service method named GetAllDentists, which returns a DataSet object.

2. In the XML Web service method, call the Fill method of the
SqlDataAdapter1 object to fill the DataSet, dsDentists1, and then return
the DataSet.
Your code should look like the following:
<WebMethod()> _
 Public Function GetAllDentists() As DataSet
 SqlDataAdapter1.Fill(DsDentists1)
 Return DsDentists1
End Function

[WebMethod()]
 public DataSet GetAllDentists()
{
 sqlDataAdapter1.Fill(dsDentists1);
 return dsDentists1;
}

3. Save your changes.

Note

Visual Basic .NET

C#

48 Module 13: Consuming and Creating XML Web Services

4. Build and browse the DentalService1.asmx page.
The description page of the XML Web service is displayed.
Where does this description page come from?
This page is automatically created by ASP.NET from the XML Web
Service description.
__

__

There is a warning message at the bottom of the page about the use of
tempuri.org. The warning is here because this temporary URL is the
temporary namespace of the XML Web service and it is used for testing
purposes only.

5. In the browser, click the GetAllDentists link and then click Invoke.
The browser displays the XML response from the XML Web service.
What is the purpose of the content between the <xs:schema> and
</xs:schema> tags?
The content is the XSD schema, which defines the data types of the
response. In this scenario, it lists the data types of the returned dataset.
__

__

 Modify the output of the XML Web service

1. In the DentalService1.asmx code-behind page, set the attributes of the Web
service according to the following table. If you are working in C#, you will
need to create the WebService attribute.
Attribute Value

Namespace http://microsoft.com/webservices/

Description This XML Web service contains information about the dentists

Your code should look like the following:
<WebService(_
Namespace:="http://microsoft.com/webservices/", _
Description:="This XML Web service contains " & _
"information about the dentists.")> _
Public Class DentalService1
 Inherits System.Web.Services.WebService

[WebService(Namespace="http://microsoft.com/webservices/",
 Description="This XML Web service contains " +
 "information about the dentists.")]
public class DentalService1 :
 System.Web.Services.WebService

Note

Visual Basic .NET

C#

 Module 13: Consuming and Creating XML Web Services 49

2. Add a description attribute to the GetAllDentists XML Web service
method and set it to This XML Web service method returns all the
dentists.
Your code should look like the following:
<WebMethod(Description:= _
"This XML Web service method returns all the dentists")> _
 Public Function GetAllDentists() As DataSet

[WebMethod(Description= "This XML Web service method
returns all the dentists")]
public DataSet GetAllDentists()

3. Build and browse the DentalService1.asmx page.
4. In the browser, notice that the description of the XML Web service and that

the description of the XML Web service method have changed. In addition,
notice that the warning message at the bottom of the page, regarding the use
of tempuri.org, no longer appears because you changed the namespace of
the service.

 Test your neighbor’s XML Web service

1. In Microsoft Internet Explorer, navigate to your neighbor’s DentalService
XML Web service by navigating to the following URL, where
MachineName is the name of another student’s computer:
http://MachineName/DentalServiceVB/DentalService1.asmx or
http://MachineName/DentalServiceCS/DentalService1.asmx

You can also use the Instructor computer named London.

2. Invoke the GetAllDentists XML Web service method.

Visual Basic .NET

C#

Note

50 Module 13: Consuming and Creating XML Web Services

Exercise 2
Create the GetDentistsByPostalCode XML Web Service Method

In this exercise, you will add another XML Web service method to your
DentistService XML Web service. The new XML Web service method is
named GetDentistsByPostalCode and returns a DataSet containing all of the
dentists that are in a given postal code. In this exercise, you will write code that
uses ADO.NET to call a SQL Server stored procedure.

 Create the GetDentistsByPostalCode XML Web service method

1. In the DentalService1.asmx.vb or DentalService1.asmx.cs file, import the
System.Data.SqlClient namespace.
Your code should look like the following:
Imports System.Data.SqlClient

using System.Data.SqlClient;

2. Create an XML Web service method named GetDentistsByPostalCode that
has one String parameter that is passed by the value named strPostalCode
and returns a DataSet.

3. Set the description of the XML Web service method to This XML Web
service method returns the dentists from a supplied postal code.
Your code should look like the following:
<WebMethod(Description:= _
 "This XML Web service method returns the " & _
 "dentists from a supplied postal code.")> _
Public Function GetDentistsByPostalCode(_
 ByVal strPostalCode As String) As DataSet

End Function

[WebMethod(Description=
 "This XML Web service method returns the " +
 "dentists from a supplied postal code.")]
public DataSet GetDentistsByPostalCode(
 String strPostalCode)
{
}

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 13: Consuming and Creating XML Web Services 51

4. Inside the GetDentistsByPostalCode XML Web service method, add code
to fill a new DataSet, with the dentists that are in a given a postal code, by
calling the DentistByPostalCode stored procedure.
Your code should look like the following:

You can copy and paste this code from: the file install folder\Labfiles
\Lab13\VB\Starter\DentalServiceVB\DentistsPoCode.txt, or install folder\
Labfiles\Lab13\CS\Starter\DentalServiceCS\DentistsPoCode.txt.

Dim conn As New SqlConnection _
 ("data source=localhost; " & _
 "initial catalog=Dentists; " & _
 "integrated security=true")
Dim daDentistsPoCode As SqlDataAdapter
Dim dsDentistsPoCode As New DataSet()
Dim workParam As SqlParameter = Nothing

'call the DentistsByState stored procedure
daDentistsPoCode = _
 New SqlDataAdapter("DentistsByPostalCode", conn)
daDentistsPoCode.SelectCommand.CommandType = _
 CommandType.StoredProcedure

'add the postal code input parameter
workParam = New SqlParameter("@PostalCode", _
 System.Data.SqlDbType.NVarChar)
workParam.Direction = ParameterDirection.Input
workParam.Value = strPostalCode
daDentistsPoCode.SelectCommand.Parameters.Add(workParam)

'run the stored procedure and fill a dataset
daDentistsPoCode.Fill(dsDentistsPoCode, _
 "DentistsPoCode")

'close the connection
conn.Close()

Return dsDentistsPoCode

Note

Visual Basic .NET

52 Module 13: Consuming and Creating XML Web Services

SqlConnection conn = new SqlConnection
 ("data source=localhost;" +
 "initial catalog=Dentists;" +
 "integrated security=true");
SqlDataAdapter daDentistsPoCode;
DataSet dsDentistsPoCode = new DataSet();
SqlParameter workParam = null;

//call the DentistsByState stored procedure
daDentistsPoCode = new
 SqlDataAdapter("DentistsByPostalCode", conn);
daDentistsPoCode.SelectCommand.CommandType =
 CommandType.StoredProcedure;

//add the postal code input parameter
workParam = new SqlParameter("@PostalCode",
 System.Data.SqlDbType.NVarChar);
workParam.Direction = ParameterDirection.Input;
workParam.Value = strPostalCode;
daDentistsPoCode.SelectCommand.Parameters.Add(workParam);

//run the stored procedure and fill a dataset
daDentistsPoCode.Fill(dsDentistsPoCode, "DentistsPoCode");

//close the connection
conn.Close();

return dsDentistsPoCode;

5. Save your changes.
6. Build and browse the DentalService1.asmx page.
7. In the browser, click the GetDentistsByPostalCode link, type 98052 in the

strPostalCode field, and then click Invoke.
You should see all of the dentists for the postal code 98052. There should be
six dentists for this postal code.

8. Test the GetDentistsByPostalCode XML Web service method again with
the postal code 94111.
Now, you should see all of the dentists for the postal code 94111. There
should be three dentists for this postal code.

9. Test the GetDentistsByPostalCode XML Web service method again with
the postal code 02703.
You should see no dentists.

C#

 Module 13: Consuming and Creating XML Web Services 53

Exercise 3
Consume the GetAllDentists XML Web Service Method

In this exercise, you will call the GetAllDentists XML Web service method of
the DentalService XML Web service. You will then display the resulted
DataSet in a DataGrid control.

 Consume the DentalService XML Web service

1. Open the BenefitsVB or BenefitsCS project in the 2310LabApplication
Visual Studio .NET solution.

2. Add the dental.aspx Web Form from the
install folder\Labfiles\Lab13\VB\Starter\BenefitsVB or install
folder\Labfiles\Lab13\CS\Starter\BenefitsCS folder to the BenefitsVB or
BenefitsCS project.

3. Add a Web reference to the DentalService XML Web service. The XML
Web service should be located at
http://localhost/DentalServiceVB/DentalService1.asmx or
http://localhost/DentalServiceCS/DentalService1.asmx
a. In Solution Explorer, right-click BenefitsVB or BenefitsCS, then click

Add Web Reference.
b. In the Address field of the Add Web Reference dialog box, type

http://localhost/DentalServiceVB/DentalService1.asmx or
http://localhost/DentalServiceCS/DentalService1.asmx, and then
press ENTER.

c. Click Add Reference.
A new folder named Web References is automatically created in the
BenefitsVB or BenefitsCS project, inside Solution Explorer. The Web
References folder contains a proxy and a new Web Reference named
localhost.

The proxy is created in the default language of your project settings.
For instance, if you are using Visual Basic .NET, the proxy will be created
in Visual Basic .NET, and its name will be Reference.vb.

4. Click the Show All Files icon in Solution Explorer.
5. In Solution Explorer, rename the Web Reference from localhost to

DentalWebRef.
6. Expand Web References, expand DentalWebRef, and then click the

Reference.map icon in Solution Explorer.

Note

54 Module 13: Consuming and Creating XML Web Services

7. Open the Reference.vb or Reference.cs file.
What is the purpose of the BeginGetAllDentists and EndGetAllDentists
methods?
These methods are used for asynchronous calls to the GetAllDentists
XML Web service method.
__

__

8. Close Reference.vb or Reference.cs.

 Call the GetAllDentists XML Web service method

1. Open the dental.aspx Web Form.
There are already TextBox, Button, and DataGrid controls on the page.

2. Open the dental.aspx code-behind page and locate the following comment in
the cmdGetAllDentists_Click event procedure:
'TODO Lab 13: call the XML Web service method
'GetAllDentists

//TODO Lab 13: call the XML Web service method
//GetAllDentists

3. Write the code to consume the GetAllDentists XML Web service method:
a. Create a DentalService proxy named ProxyGetAllDentists.
b. Create a DataSet named dsAllDentists.
c. Call the GetAllDentists XML Web service method and save the results

in dsAllDentists.
d. Set the data source of the dgDentists DataGrid to dsAllDentists.
e. Bind the DataSet to the DataGrid.

Visual Basic .NET

C#

 Module 13: Consuming and Creating XML Web Services 55

Your code should look like the following:
Dim ProxyGetAllDentists As New _
 BenefitsVB.DentalWebRef.DentalService1()
Dim dsAllDentists As New DataSet()
dsAllDentists = _
 ProxyGetAllDentists.GetAllDentists()
dgDentists.DataSource = dsAllDentists.Tables(0)
dgDentists.DataBind()

BenefitsCS.DentalWebRef.DentalService1 ProxyGetAllDentists
 = new BenefitsCS.DentalWebRef.DentalService1();
DataSet dsAllDentists = new DataSet();
dsAllDentists = ProxyGetAllDentists.GetAllDentists();
dgDentists.DataSource = dsAllDentists.Tables[0];
dgDentists.DataBind();

If the DentalWebRef displays as localhost in Microsoft
IntelliSense®, you need to close Visual Studio .NET and reopen it before
writing the code to consume the XML Web service methods from the Web
Reference.

4. Save your changes.
5. Build and browse the dental.aspx page.
6. In the browser, click Get All Dentists.

You should see all the dentists in the DataGrid.

Visual Basic .NET

C#

Note

56 Module 13: Consuming and Creating XML Web Services

Exercise 4
Consume the GetDentistsByPostalCode XML Web Service Method

In this exercise, you will call the GetDentistsByPostalCode XML Web service
method of the Dentists.asmx XML Web Service. You will use a DataGrid to
display the resulting DataSet of the dentists for a given postal code.

 Call the GetDentistsByPostalCode XML Web service method

1. Open the dental.aspx code-behind page and locate the following comment in
the cmdSubmit_Click event procedure:
'TODO Lab 13: call the XML Web service methods
'GetDentistsByPostalCode

//TODO Lab 13: call the XML Web service methods
//GetDentistsByPostalCode

2. Write the code to call the GetDentistsByPostalCode XML Web service
method:
a. Create a proxy named ProxyGetDentistsByPostalCode.
b. Create a DataSet named dsDentistsByPostalCode.
c. Call the GetDentistsByPostalCode XML Web service method, passing

to it the content of the txtPostalCode text box, and then save the
resulting DataSet in the DataSet dsDentistsByPostalCode.

d. Set the DataSource of the dgDentists DataGrid to
dsDentistsByPostalCode.

e. Bind the DataSet to the DataGrid.
Your code should look like the following:
Dim ProxyGetDentistsByPostalCode As New _
 BenefitsVB.DentalWebRef.DentalService1()
Dim dsDentistsByPostalCode As New DataSet()
dsDentistsByPostalCode = _
 ProxyGetDentistsByPostalCode. _
 GetDentistsByPostalCode(txtPostalCode.Text)
dgDentists.DataSource = dsDentistsByPostalCode.Tables(0)
dgDentists.DataBind()

BenefitsCS.DentalWebRef.DentalService1
 ProxyGetDentistsByPostalCode = new
 BenefitsCS.DentalWebRef.DentalService1();
DataSet dsDentistsByPostalCode = new DataSet();
dsDentistsByPostalCode =
 ProxyGetDentistsByPostalCode.GetDentistsByPostalCode
 (txtPostalCode.Text);
dgDentists.DataSource = dsDentistsByPostalCode.Tables[0];
dgDentists.DataBind();

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 13: Consuming and Creating XML Web Services 57

3. Save your changes.
4. Build and browse dental.aspx.
5. Type 98052 in the Postal Code text box, and then click Submit.

You should see all of the dentists for the postal code 98052 in the
DataGrid.

6. Type 94111 in the Postal Code text box, and then click Submit.
You will see all the dentists for the postal code 94111 in the DataGrid.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: State Management 2

Lesson: Application and Session Variables 13

Lesson: Cookies and Cookieless Sessions 22

Review 31

Lab 14: Storing Application and
Session Data 33

Module 14:
Managing State

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 14: Managing State iii

Instructor Notes
This module describes how to maintain state in a Microsoft® ASP.NET Web
application.

After completing this module, students will be able to:

 Describe state management and the different types of options that are
available to manage state in an ASP.NET Web application.

 Use application and session variables to manage state in ASP.NET Web
applications.

 Use cookies and cookieless sessions to manage state in ASP.NET Web
applications.

To teach this module, you need the Microsoft PowerPoint® file 2310b_14.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Complete the instructor-led practice, demonstration, and lab.

Presentation:
60 minutes

Lab:
90 minutes

Required materials

Preparation tasks

iv Module 14: Managing State

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: State Management
The focus of this module is application state, session state, and cookies.
Therefore, do not spend too much time discussing the ViewState property and
query strings.

The Global.asax file topic has two slides. The first slide covers the features of
the global.asax file and the second slide focuses on the categories of events that
are supported by the global.asax file.

There are three categories of events that are supported by global.asax:

 Events that are fired when a page is requested.
 Events that are fired when the requested page is sent.
 Conditional application events.

The second slide shows only two categories of events: events that are fired
when a page is requested and the events that are fired when the requested page
is sent. The third category, conditional application events, is covered in the
student workbook. In the student workbook, take a few minutes to point out the
conditional application events to the students.

Lesson: Application and Session Variables
Ask students what is the use of Application.Lock() and
Application.UnLock(), while using application and session variables.

Lesson: Cookies and Cookieless Sessions
The slide in the “Using Cookies to Store Session Data” topic is an animated
slide and might take longer to teach.

When the slide appears, it shows the code that should be used to create a
temporary/non-persistent cookie. After the instructor clicks the slide for the first
time, it adds a line of code to the earlier code, indicating that the setting of the
expiration time creates a persistent cookie. On the third click, the slide shows
the bullet and the code box that specifies that the cookies contain information
about the domain.

Show a cookie that is created on the Instructor computer and show the students
the format of the text file and how it contains the domain name.

Types of State
Management

The Global.asax File

Using Application and
Session Variables

Using Cookies to Store
Session Data

 Module 14: Managing State v

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that all the students get the benefit
of knowing the right answers.

Lab 14: Storing Application and Session Data
Before beginning the lab, students should have completed all of the practices
and answered all of the review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

 Module 14: Managing State 1

Overview

State Management

Application and Session Variables

Cookies and Cookieless Sessions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft® ASP.NET enables you to manage state in a Web application. State
is the ability of a Web application to retain user information.

In this module, you will learn how to manage state in an ASP.NET Web
application.

After completing this module, you will be able to:

 Describe state management and its different types of options that are
available to manage state in an ASP.NET Web application.

 Use application and session variables to manage state in ASP.NET Web
applications.

 Use cookies and cookieless sessions to manage state in ASP.NET Web
applications.

Introduction

Objectives

2 Module 14: Managing State

Lesson: State Management

What is State Management?

Types of State Management

Server-Side State Management

Client-Side State Management

The Global.asax File

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The connection that is established between a user (the client computer) and a
Web server is called a session. Sessions can span multiple Web pages and are
tracked through state management.

State management is the process by which you maintain the same information
throughout multiple requests for the same or different Web pages.

In this lesson, you will begin to understand in detail what state management is
and why it is important to manage state. You will learn about server-side state
management and client-side state management. You will also learn about the
global.asax file.

After completing this lesson, you will be able to:

 Describe state management.
 Identify the different types of state management options.
 Describe server-side state management.
 Describe client-side state management.
 Describe the different events that are handled by the global.asax file.

Introduction

Lesson objectives

 Module 14: Managing State 3

What is State Management?

First Name

Last Name

Please enter your logon
information:

John

SubmitSubmit

Chen

Web ServerWeb Server

Login.aspx Login.aspx

Web ServerWeb Server

Hello John Chen

Greetings.aspx

Please enter your
logon information:

John

SubmitSubmit

Chen

Hello

Greetings.aspx

I forget who you
are!!

I forget who you
are!!

First Name

Last Name

Without State
Management

With State
Management

*****************************ILLEGAL FOR NON-TRAINER USE******************************

As is true for any Hypertext Transfer Protocol (HTTP)-based technology, Web
Forms are stateless, which means that they do not automatically indicate
whether the requests in a sequence are all from the same client or even whether
a single browser instance is still actively viewing a Web page or a Web site.
Furthermore, Web pages are destroyed and then recreated with each new
request to the Web server; therefore, page information does not exist beyond the
life cycle of a single page.

ASP.NET provides state management that saves information on the server
between pages, which helps to maintain the continuity of user information
(state) throughout a visit to a Web Site.

If state is maintained between pages, the information that is originally supplied
by users can be reused; consequently, users do not need to reenter the same
information multiple times each time a page is sent back to the server.

For example, in the preceding illustration, the user, John Chen, enters his name
in the login.aspx form. After he enters his personal details, that information is
sent to the server and the next page, the greetings.aspx form, is displayed.
Without state management, the details that were entered by the user on the first
page are lost.

However, with state management being used in your Web application, you can
maintain state across multiple Web pages. Therefore, when the user’s personal
information is sent to the server, the second page, which is the greetings.aspx
form, welcomes the user by his name, John Chen, which he entered in the
login.aspx form, which is the first page of the Web application.

Introduction

State Management

Example

4 Module 14: Managing State

Types of State Management

Query strings
Information appended to the end of
a URL

Database
In some cases, use database
support to maintain state on your
Web site

The ViewState property
Retains values between multiple
requests for the same page

Session state
Information is available only to a
user of a specific session

Cookies
Text file stores information to
maintain state

Application state
Information is available to all
users of a Web application

ClientClient--Side StateSide State
ManagementManagement

ServerServer--Side State Side State
ManagementManagement

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET provides two types of state management that can be used to maintain
state between server roundtrips. Choosing between the two types of state
management that are available in ASP.NET depends mostly on the nature of
your Web application.

The two types of state management are:

 Server-side
Server-side state management options use server resources to store state
information. These options have higher security than client-side.

 Client-side
Client-side state management does not use server resources to store state
information. Client-side options tend to have minimal security, but they do
offer fast server performance because the demand on the server to maintain
state is none.

Server-side state management further contains different options to choose from,
including:

 Application state
In application state, information is available to all of the users of a Web
application; for example, storing the number of visitors to a Web
application.

 Session state
In session state, information is available only to a user of a specific session
of a Web application; for example, storing the preferred color scheme of a
user.

Introduction

Server-side and
client-side state
management

Server-side

 Module 14: Managing State 5

 Microsoft SQL Server™ database or a state server
Another option of server-side state management is using the database
technology. You can use a SQL Server database or a state server to store
user-specific information when the information store is large. The
SQL Server database or a state server can be used in conjunction with
session state and cookies.

 The Cache object
You can also use the Cache object to manage state at the application level.

For more information about the Cache object, see Module 15,
“Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web
Application,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET.

Client-side state management also offers different options to maintain state.
These options include:

 Cookies
A cookie is a text file that can be used to store small amounts of information
that is needed to maintain state.

 The ViewState property
Web Forms provide the ViewState property as a built-in structure for
automatically retaining values between multiple requests for the same page.
The ViewState property is maintained as a hidden field in the page.

 Query strings
A query string is information that is appended to the end of a Uniform
Resource Locator (URL). A typical example might look like the following:
http://www.contoso.com/listwidgets.aspx?category=basic&price=100
In the preceding URL path, the query string starts with the question mark
(?) and includes two attribute-value pairs, category and price.

This module covers information pertaining to cookies only. For more
information about ViewState and query strings, see the Microsoft
Visual Studio® .NET documentation.

Note

Client-side

Note

6 Module 14: Managing State

Server-Side State Management

Application state is a global storage mechanism
accessible from all pages in the Web application

Session state is limited to the current browser session

Values are preserved through the use of application
and session variables
Scalability

ASP.NET session is identified by the SessionID string

Web ServerWeb Server

Client ComputerClient Computer

Application and Session variables

SessionID

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET offers several options to implement server-side state management.
The application and session states are two of those options. This topic covers
the application and session states in greater detail.

ASP.NET provides application state by using an instance of the
HttpApplicationState class for each active Web application. Application state
is a global storage mechanism that is accessible from all of the pages in the
Web application, and it is therefore useful for storing user information that must
be maintained between server round trips and between pages.

Application state is a key-value dictionary structure that is created during each
request to a specific URL. You can add the application-specific information to
this structure to store it between page requests. After you add the
application-specific information to application state, the server manages it.

ASP.NET provides the application variables that maintain application state. The
ideal data to insert into application variables is the data that is shared by
multiple sessions and does not change often.

ASP.NET provides session state by using an instance of the HttpSessionState
class for each active Web application session.

Session state is similar to application state, except that it is limited to the
current browser session. If different users are using a Web application, each
user will have a different session state. In addition, if the same user leaves the
Web application and then returns later, that user will also have a different
session state than the one he or she had previously.

Session state is structured as a key-value dictionary structure that is used for
storing session-specific information that needs to be maintained between server
round trips and between requests for pages. After you add the
application-specific information to session state, the server manages it. You can
configure ASP.NET to automatically serialize and store session information in
a SQL Server database or in a state server.

Introduction

Application state

Application variables

Session state

 Module 14: Managing State 7

ASP.NET provides the session variables that are needed to maintain session
state. The ideal data to store in session state variables is short-lived, sensitive
data that is specific to an individual session.

The application and session states are implemented as a hashtable, and
store data based on key/value pair combinations. Hashtable is similar to the
concept of a dictionary object.

With ASP.NET, session state can be used in both multicomputer and
multiprocess configurations; thereby optimizing the scalability scenarios of a
Web application.

Each active Web application session is identified and tracked by using a 120-bit
SessionID string containing only the ASCII characters that are allowed in the
URLs. The SessionID strings are communicated across client-server requests,
either by means of an HTTP cookie or a modified URL, with the SessionID
string embedded, commonly called cookieless SessionID, depending on how
you configure the Web application settings.

Server-side state management requires a cookie to store the SessionID on the
client computer. Because the life duration of a SessionID is very short, just the
duration of a session, the mechanism that is used by ASP.NET to store session
information, either in a SQL Server database or in a state server, is also used to
allow the application to be scalable, but not for long-term storage. If you want
to implement long-term storage of user session information, you must require
the users to enter their personal information, and then you need to implement
your own storage solution by using a database that permanently stores the
personal information of registered users.

Session variables

Note

Scalability

Identifying and tracking
a session

8 Module 14: Managing State

Client-Side State Management

Uses cookies to maintain state

Persistent cookies

Temporary/ Non-persistent cookies

Less reliable than server-side state management options

User can delete cookies

Less secure than server-side state management options

Limited amount of information

Client-side restrictions on file sizes
Web ServerWeb Server

Client ComputerClient Computer

Cookies

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Most Web applications use cookies for client-side state management.

A cookie is a small amount of data that is stored either in a text file on the file
system of the client computer or in-memory in the client-browser session. A
cookie contains page-specific information that the server sends to the client,
along with page output.

You can use cookies to store information about a particular client, session, or
application. The cookies are stored on the client computer, and when the
browser requests a page, it sends the information in the cookie, along with the
request information. The server is authorized to read the cookie and extract its
value. Every cookie contains the information of the domain that issued the
cookie. You can have several cookies issued for one domain.

The two types of cookies are:

 Temporary
Temporary cookies, also called the session or non-persistent cookies, exist
only in the memory of the browser. When the browser is shut down, any
temporary cookies that were added to the browser are lost.

 Persistent
Persistent cookies are similar to temporary cookies, except that persistent
cookies have a definite expiration period. When a browser requests a page
that creates a persistent cookie, the browser saves that cookie to the user’s
hard disk. You can create a persistent cookie that last months, or even years,
on the client computer. With Microsoft Internet Explorer, persistent cookies
are stored in a file named username@domainname.txt, which is created on
the client’s hard disk.

Introduction

Cookies

Types of cookies

 Module 14: Managing State 9

Cookies can expire when the browser session ends (temporary cookies), or they
can exist indefinitely on the client computer, subject to the expiration rules on
the client (persistent cookies).

Users can also choose to delete cookies from their computer before the cookie
expires. Therefore, there is no guarantee that a persistent cookie will remain on
a user’s computer for the period of time that is specified.

Cookies are less secure as compared to server-side state management options.
Cookies are also subject to tampering. Users can manipulate cookies on their
computer, which can potentially represent a security compromise or can cause
the application that is dependent on the cookie to fail.

There is also a limit on how much information you can store in a cookie
because client computers have restrictions on file sizes. In addition, each
individual cookie can contain a limited amount of information, no more than 4
kilobytes (KB).

Expiration

Security

Limited information

10 Module 14: Managing State

The Global.asax File

Only one Global.asax file per Web application

Stored in the virtual root of the Web application

Used to handle application and session events

The Global.asax file is optional

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The global.asax file is a declarative file that is used to handle events while your
Web application is running.

Some of the features of the global.asax file are:

 Every ASP.NET Web application supports one global.asax file per Web
application.

 The global.asax file is stored in the virtual root of the Web application.
 The global.asax file can handle application and session (start and end)

events that can be used to initialize application and sessions variables.
 The global.asax file is optional. If you do not define the file, the ASP.NET

page framework assumes that you have not defined any application or
session event handlers.

Introduction

 Module 14: Managing State 11

The Global.asax File (continued)

ASP.NET Web Server

Client

ASP.NET HTTP RuntimeASP.NET HTTP Runtime

IISIIS

Application_BeginRequestApplication_BeginRequest

Application_AuthenticateRequestApplication_AuthenticateRequest

Application_AuthorizeRequestApplication_AuthorizeRequest

Application_ResolveRequestCacheApplication_ResolveRequestCache

Application_AquireRequestStateApplication_AquireRequestState

Application_PreRequestHandlerExecuteApplication_PreRequestHandlerExecute

Application_EndRequestApplication_EndRequest

Application_UpdateRequestCacheApplication_UpdateRequestCache

Application_ReleaseRequestStateApplication_ReleaseRequestState

Application_PostRequestHandlerExecuteApplication_PostRequestHandlerExecute

Page executionPage execution

RequestRequest ResponseResponse

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The global.asax file is a declarative file that is used to handle events while your
Web application is running.

The global.asax file supports three categories of events:

 Events that are fired when a page is requested.
 Events that are fired when the requested page is sent.
 Conditional application events.

The following table lists the events that are fired when a page is requested.

Event Name Description

Application_BeginRequest This event is fired whenever a new

request is received.

Application_AuthenticateRequest This event indicates that the request is
ready to be authenticated.

Application_AuthorizeRequest This event signals that the request is
ready to be authorized.

Application_ResolveRequestCache This event is used by the output cache
module to stop the processing of requests
that have been cached.

Application_AcquireRequestState This event signals that per-request state
should be obtained.

Application_PreRequestHandlerExecute This event signals that the request
handler is about to execute.

Introduction

Categories of events

Events that are fired
when a page is
requested

12 Module 14: Managing State

Global.asax also includes events that are fired when the requested page is sent
back to the client. The following table lists these events.

Event Name Description

Application_PostRequestHandlerExecute This event is first available after the

handler, such as an ASP.NET page or a
Web service, has completed its work.

Application_ReleaseRequestState This event is called when the request
state should be stored, because the
ASP.NET Web application is finished
with it.

Application_UpdateRequestCache This event signals that code processing
is complete and that the file is ready to
be added to the ASP.NET cache.

Application_EndRequest This event is the last event that is called
when the ASP.NET Web application
ends.

Conditional application events are events that may or may not be raised during
the processing of a request. Some of the common conditional applications
events are listed in the following table.

Event Name Description

Application_Start This event is raised when an ASP.NET

Web application starts.

Application_End This event is another single occurrence
event. This event is the reciprocal event
to Application_Start; this event is
raised when the ASP.NET Web
application is shutting down.

Session_Start This event is raised when a user’s
Session begins within an ASP.NET Web
application.

Session_End This event is a reciprocal event to
Session_Start; this event is raised when
a user’s session ends.

Application_Error This event is fired when an unhandled
error occurs within an ASP.NET Web
application.

Events that are fired
when the requested
page is sent

Conditional application
events

 Module 14: Managing State 13

Lesson: Application and Session Variables

Initializing Application and Session Variables

Using Application and Session Variables

Demonstration: Using Session Variables

Application and Session Variable Duration

Scalable Storage of Application and Session Variables

Saving Application and Session Variables in a
Database

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the application and session variables to share information between
the pages of an ASP.NET Web application. In this lesson, you will learn how to
initialize and use the application and session variables. You will also learn how
to specify the duration for the application and session variables and learn how
the application and session variables impact scalable storage. Finally, you will
learn how to save the application and session variables in a database.

After completing this lesson, you will be able to:

 Initialize application and session variables.
 Set and read application and session variables.
 Modify the application and session variable duration.
 Describe the in process and out of process methods that are used to store

session state.
 Save application and session variables in a database.

Introduction

Lesson objectives

14 Module 14: Managing State

Initializing Application and Session Variables

Variables are initialized in Global.asax
The Application object shares information among all
users of a Web application

The Session object stores information for a particular
user session

Sub Application_Start(s As Object,e As EventArgs)
Application("NumberofVisitors") = 0

End Sub

Sub Application_Start(s As Object,e As EventArgs)
Application("NumberofVisitors") = 0

End Sub

protected void Application_Start(Object sender,EventArgs e)
{

Application["NumberofVisitors"] = 0;
}

protected void Application_Start(Object sender,EventArgs e)
{

Application["NumberofVisitors"] = 0;
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You initialize session and application variables in the Start event procedures of
the Application and Session objects in the global.asax file.

You use the Session object to store the information that is needed for a
particular user session. Variables that are stored in the Session object will not
be discarded when the user goes between the different pages in the Web
application. Instead, these variables will persist for the entire user session.

The following code example illustrates how session variables are used to store
the preferred color scheme of a particular user session:

Sub Session_Start(ByVal Sender As Object, _
 ByVal e As EventArgs)
 Session("BackColor") = "beige"
 Session("ForeColor") = "black"
End Sub

protected void Session_Start(Object sender, EventArgs e)
{
 Session["BackColor"] = "beige";
 Session["ForeColor"] = "black";
}

Introduction

Session variables

Visual Basic® .NET

C#

 Module 14: Managing State 15

You can use the Application object to share state information among all of the
users of a Web application. An Application object is created when the first user
of the Web application requests an .aspx file. The Application object is
destroyed when all users have exited the Web application and the Web
application is then unloaded.

For example, you might store the total number of visitors to a Web site in an
application-level variable:

Sub Application_Start(ByVal Sender As Object, _
 ByVal e As EventArgs)
 Application("NumberofVisitors") = 0
End Sub

protected void Application_Start(Object sender, EventArgs e)
{
 Application["NumberofVisitors"] = 0;
}

Application variables

Visual Basic .NET

C#

16 Module 14: Managing State

Using Application and Session Variables

Set session and application variables

Read session and application variables

Session("BackColor") = "blue"
Application.Lock()
Application("NumberOfVisitors") += 1

Application.UnLock()

Session("BackColor") = "blue"
Application.Lock()
Application("NumberOfVisitors") += 1

Application.UnLock()

strBgColor = Session("BackColor")
lblNbVisitor.Text = Application("NumberOfVisitors")

strBgColor = Session("BackColor")
lblNbVisitor.Text = Application("NumberOfVisitors")

Session["BackColor"] = "blue";
Application.Lock();
Application["NumberOfVisitors"] =

(int)Application["NumberOfVisitors"] + 1;
Application.UnLock();

Session["BackColor"] = "blue";
Application.Lock();
Application["NumberOfVisitors"] =

(int)Application["NumberOfVisitors"] + 1;
Application.UnLock();

strBgColor = (string)Session["BackColor"];
lblNbVisitor.Text = Application["NumberOfVisitors"].ToString();

strBgColor = (string)Session["BackColor"];
lblNbVisitor.Text = Application["NumberOfVisitors"].ToString();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To use application and session variables in ASP.NET, you simply use a string
key and set a value.

To set the session variable, you must provide a key, which identifies the item
that you are storing, by using a statement such as the following:

Session("BackColor") = "blue"

The preceding statement adds a key, named BackColor, to the session state
with a value of blue.

Since application variables are accessible in a multi-user environment,
whenever Application data is updated, you must prevent other users or
applications from updating the data simultaneously. ASP.NET provides a
simple set of locking methods, Application.Lock() and
Application.UnLock(), which can be used to prevent multiple, concurrent
access of the application variable. The following code demonstrates the use of
the Application.Lock() and Application.UnLock() methods:

Application.Lock()
Application("NumberOfVisitors") += 1
Application.UnLock()

Application.Lock();
Application["NumberofVisitors"] =
 (int)Application["NumberOfVisitors"] + 1;
Application.UnLock();

Introduction

Set session and
application variables

Visual Basic .NET

C#

 Module 14: Managing State 17

To use a session or application variable in an ASP.NET page, you simply need
to read the value from the Session or Application object:

strBgColor = Session("BackColor")
lblNbVisitor.Text = Application("NumberOfVisitors")

strBgColor = (string)Session["BackColor"];
lblNbVistitor.Text =
 Application["NumberofVisitors"].ToString();

Read session and
application variables

Visual Basic.NET

C#

18 Module 14: Managing State

Demonstration: Using Session Variables

Initialize a session variable (a number) in
global.asax

Access the session variable from one page

Access the session variable from another
page and modify it

Re-access the session variable from the
first page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn to use session variables.

The code for this demonstration is in the Mod14VB and Mod14CS projects in
the 2310Demos Solution.

 To run the demonstration

1. Open the Mod14VB or Mod14CS project in the 2310Demos solution.
2. Open the code-behind page for global.asax.
3. Initialize a session variable, named intNumber, to 3 by adding the

following code to the Session_Start event procedure:
Session("intNumber") = 3

Session["intNumber"] = 3;

4. Open the UsingSessionVar1.aspx and the UsingSessionVar2.aspx files.
The session variable is retrieved and displayed in the Page_Load event
procedure.

5. Build and browse the UsingSessionVar1 page.
The value of the session variable, 3, is displayed.

6. Click Next Page.
The UsingSessionVar2.aspx page opens, increments the session variable
by 4, and then displays the new value, 7.

7. Click Previous Page to return to the UsingSessionVar1.aspx, which
displays the new value of the session variable.

Introduction

Visual Basic .NET

C#

 Module 14: Managing State 19

Application and Session Variable Duration

Session variables have a set duration after last access

Default is 20 minutes

Session duration can be changed in Web.config:

Application variables persist until the Application_End
event is fired

<configuration>
<system.web>

<sessionState timeout="10" />
</system.web>

</configuration>

<configuration>
<system.web>

<sessionState timeout="10" />
</system.web>

</configuration>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

HTTP is a stateless protocol. A Web server has no means of detecting when a
user leaves a Web site. Instead, the Web server detects that a certain period of
time has passed without the user requesting a page. At that point, the Web
server assumes that the user has left the Web site, and it removes all of the
items in session state that are associated with that user.

By default, a session times out when a user has not requested a page for more
than 20 minutes. If the same user requests a page after a 20 minutes, that user is
treated as a new user.

Setting smaller session duration makes your Web site save resources on
your Web server. Conversely, if you expect the user to spend more than 20
minutes at your Web site, you should set a longer session duration.

You can modify the session duration in the Web.config file. Web.config files
are standard, human-readable Extensible Markup Language (XML) files that
you can open and modify with any text editor. For example, in the following
Web.config file, the session duration is set to10 minutes:

<configuration>
 <system.web>
 <sessionState timeout="10" />
 </system.web>
</configuration>

Application variables persist until the Application_End event is fired.
Application_End is raised immediately before the end of all application
instances.

Introduction

Default session duration

Note

Modify session duration

Application variable

20 Module 14: Managing State

Scalable Storage of Application and Session Variables

By default, the session state is managed in process
Disadvantage of in process storage:

Not Scalable
ASP.NET provides out of process storage of session state

State can be stored in a SQL Server database or a state server
Advantages of out of process storage:

Scalable

SQL

Session and Application variables

Client

Web farm

Session and Application variables

-Or-

State server

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By default, the session state is managed in process. In process means that all of
the information that is added to a session state is stored in the same Web server
that is running the ASP.NET Web application. However, storing session state in
process has some significant disadvantages.

One of the major disadvantages in storing session state in process is that it
limits the scalability of your Web site. You cannot configure multiple servers to
handle requests.

ASP.NET provides two methods that can be used to store session state out of
process. You can:

 Manage session state with a SQL Server database.
 Manage session state with a separate state server.

A state server can be any Microsoft Windows®-based server.

To store session state out of process, you must modify the Web.config file to set
the sessionstate mode to the value sqlserver or stateserver, and then specify
the location of the server. The sqlserver option is similar to the stateserver
option, except that in the former the information persists to SQL Server rather
than being stored in the computer’s memory.

The main advantage of separating the storage of session state from the Web
application is that you can use an external state server or a computer running
SQL Server to store session state, thereby making the Web application scalable.
To have scalable ASP.NET Web applications, session state is shared across
multiple servers that are supporting the Web farm scenario. In a Web farm
scenario, multiple servers are configured to handle user requests and as a result,
users can be routed dynamically from one server to another without losing the
application and session variables. Moreover, session variables can be retrieved
from any server of the Web farm because they are stored in a separate computer
running SQL Server or state server.

Introduction

Disadvantage of in
process

Out of process

Advantage of out of
process

 Module 14: Managing State 21

Saving Application and Session Variables in a Database

Configure the session state in Web.config
Mode is set to sqlserver or stateserver

Then, configure the SQL server

OSQL creates several stored procedures and
temporary databases for storing the variables

<sessionState mode="SQLServer"
sqlConnectionString="data source=SQLServerName;
Integrated security=true" />

<sessionState mode="SQLServer"
sqlConnectionString="data source=SQLServerName;
Integrated security=true" />

c:\> OSQL –S SQLServerName –E <InstallSqlState.sqlc:\> OSQL –S SQLServerName –E <InstallSqlState.sql

111

222

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To save application and session variables in a SQL Server database or in a state
server, you have to perform two steps:

1. Configure the session state in the Web.config file of your Web server.
2. Configure the SQL Server or the state server.

In the Web.config file, you need to modify the configuration settings to set the
mode attribute of the sessionstate to sqlserver or stateserver. Then, you need
to modify the sqlconnectionstring attribute to identify the name of the
computer running SQL Server or the state server.

For example, if you are using the sqlserver mode with integrated security, you
must set the session state in Web.config as shown in the following code:

<sessionState mode="SQLServer"
 sqlConnectionString="data source=SQLServerName;
 Integrated security=true" />

To configure the SQL Server, you must use the command line tool that
SQL Server provides, OSQL.exe.

OSQL.exe installs the database that is called ASPState, which is used to save
the application and session variables.

To install the ASPState database by using integrated security, use the following
syntax:

c:\> OSQL –S SQLServerName -E <InstallSqlState.sql

The switches for the OSQL command are case-sensitive.

If you use a state server instead of SQL Server, you must start the ASP.NET
Windows service instead of installing a database.

Introduction

Configure the session
state in the Web.config
file of your ASP.NET
Web server

Configure the
SQL Server

Important

22 Module 14: Managing State

Lesson: Cookies and Cookieless Sessions

Using Cookies to Store Session Data

Instructor-Led Practice: Using Variables and Cookies

Retrieving Information from a Cookie

Using Cookieless Sessions

Setting Up Cookieless Sessions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Cookies are a means by which the Web application running on the Web server
can cause a client to return information to the Web server with each HTTP
request. The returning of the information can be used to maintain state with the
client across multiple requests. Cookies are sent to the client as part of the
HTTP header in a client request, or are sent in a server response.

In this lesson, you will learn how to use cookies to store session data, and then
learn how to retrieve that data from a cookie. You will also learn about
cookieless sessions and setting up cookieless sessions.

After completing this lesson, you will be able to:

 Use cookies to store session data.
 Retrieve information from a cookie.
 Describe cookieless sessions.
 Set up a cookieless session.

Introduction

Lesson objectives

 Module 14: Managing State 23

Using Cookies to Store Session Data

Creating a cookie:

Cookie contains information about the domain name

HttpCookie objCookie = new HttpCookie("myCookie");
DateTime now = DateTime.Now;

objCookie.Values.Add("Time", now.ToString());
objCookie.Values.Add("ForeColor", "White");
objCookie.Values.Add("BackColor", "Blue");

Response.Cookies.Add(objCookie);

HttpCookie objCookie = new HttpCookie("myCookie");
DateTime now = DateTime.Now;

objCookie.Values.Add("Time", now.ToString());
objCookie.Values.Add("ForeColor", "White");
objCookie.Values.Add("BackColor", "Blue");

Response.Cookies.Add(objCookie);

HttpCookie objCookie = new HttpCookie("myCookie");
DateTime now = DateTime.Now;

objCookie.Values.Add("Time", now.ToString());
objCookie.Values.Add("ForeColor", "White");
objCookie.Values.Add("BackColor", "Blue");

objCookie.Expires = now.AddHours(1);

Response.Cookies.Add(objCookie);

HttpCookie objCookie = new HttpCookie("myCookie");
DateTime now = DateTime.Now;

objCookie.Values.Add("Time", now.ToString());
objCookie.Values.Add("ForeColor", "White");
objCookie.Values.Add("BackColor", "Blue");

objCookie.Expires = now.AddHours(1);

Response.Cookies.Add(objCookie); To create a persistent
cookie, specify the

expiration time

Set-Cookie: Username=John+Chen; path=/;
domain=microsoft.com;
Expires=Tuesday, 01-Feb-05 00.00.01 GMT

Set-Cookie: Username=John+Chen; path=/;
domain=microsoft.com;
Expires=Tuesday, 01-Feb-05 00.00.01 GMT

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create cookies by using the Cookies property of the Response object
and Request class. The Cookies property represents a collection of cookies and
is an instance of the HttpCookieCollection class.

The following code creates a new cookie named myCookie:

Dim objCookie As New HttpCookie("myCookie")
Dim now As DateTime = DateTime.Now

HttpCookie objCookie = new HttpCookie("MyCookie");
DateTime now = DateTime.Now;

The following code adds a pair of keys and values:

objCookie.Values.Add("Time", now.ToString())
objCookie.Values.Add("ForeColor", "White")
objCookie.Values.Add("BackColor", "Blue")

objCookie.Values.Add("Time", now.ToString());
objCookie.Values.Add("ForeColor", "White");
objCookie.Values.Add("BackColor", "Blue");

The following code sets the expiration time of the cookie to one hour:

objCookie.Expires = now.AddHours(1)

objCookie.Expires = now.AddHours(1);

Introduction

Creating a cookie

Visual Basic .NET

C#

Visual Basic .NET

C#

Making a cookie
persistent

Visual Basic .NET

C#

24 Module 14: Managing State

If you do not add the preceding code while creating a cookie, the cookie that is
created is a temporary cookie. The temporary cookie is added to the memory of
the browser, but it will not be recorded to a file. When the user shuts down the
browser, the cookie is deleted from the memory.

Adding the expiration time code turns the temporary cookie into a persistent
cookie. The persistent cookie is saved to the hard disk. With a persistent cookie,
if the user closes the browser and opens it again, the user can access the same
Web page again until the persistent cookie expires. The expiration of the
persistent cookie depends on the expiration time that was set in the code. In the
preceding code, the persistent cookie will be deleted after one hour.

Persistent cookies are often used to store information about user names
and user IDs so that the server can identify the same users when they return to
the Web site.

The following code adds the new cookie to the cookie collection of the
Response object:

Response.Cookies.Add(objCookie)

Response.Cookies.Add(objCookie);

Suppose you want to create a cookie, named Username, which contains the
name of a visitor to your Web site. To create this cookie, the Web server will
send an HTTP header as shown in the following code:

Set-Cookie: Username=John+Chen; path=/; domain=microsoft.com;
Expires=Tuesday, 01-Feb-05 00.00.01 GMT

The header in the preceding code example instructs the browser to add an entry
to its cookie file. The browser adds the cookie, named Username, with the value
John Chen.

The domain attribute in the preceding code example restricts where the cookie
can be sent by the browser. In the preceding code example, the cookie can be
sent only to the Microsoft.com Web site. The cookie will never be sent to any
other Web site on the Internet.

After the Web server creates a cookie, the browser returns the cookie in every
request that it makes to that Web site. The browser returns the cookie in a
header that looks like the following:

Cookie: Username: John+Chen

The cookies that are stored in a text file format are the persistent cookies. By
default, this file is stored in the folder \Documents and Settings\
Username\Cookies.

When persistent cookies are stored by using Internet Explorer, the format of the
text file is:

Username@DomainName.txt

Note

Visual Basic .NET

C#

How cookies work

 Module 14: Managing State 25

Instructor-Led Practice: Using Variables and Cookies

Students will:

See how the application and session
variables, and persistent cookies, are used
to store user information

Time: 15 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will see how application and session variables, and
persistent cookies, are used to store user information.

 Log on to the Web application

1. Open Internet Explorer and browse to:
http://instructorsmachine/Mod14VB/default.aspx or
http://instructorsmachine/Mod14CS/default.aspx.

2. Type your name in the text box, select a color from the drop-down list box,
and then click Submit.
You are redirected to results.aspx, which displays your name, selected color,
and the date and time when you last accessed default.aspx. The results.aspx
also displays the number of visitors.

3. Refresh the browser a few times.
Each refresh results in the number of visitors increasing, but your name and
color selection remain.

4. Close Internet Explorer.
5. Reopen Internet Explorer and browse to:

http://instructorsmachine/Mod14VB/results.aspx or
http://instructorsmachine/Mod14CS/results.aspx.
Your name appears, but the color you previously chose is not displayed. The
date and time you last accessed default.aspx is also displayed.

Introduction

Testing functionality

26 Module 14: Managing State

6. Close Internet Explorer.
Why do you think that your name is remembered when you revisit the site,
but not your color choice?
Name is stored in a cookie, while the color choice is stored in a session
variable.
__

__

How is the page keeping track of the number of visitors?
Using an application variable
__

__

 Viewing the code

1. In the address box of Windows Explorer, type:
\\instructorsmachine\c$\inetpub\wwwroot\mod14VB or
\\instructorsmachine\c$\inetpub\wwwroot\mod14CS
and then press ENTER.

2. Open the code-behind page for the Default.aspx page.
In the btnSubmit_Click event procedure, what two actions occur?
A Session variable named Color is created to store the selected color,
and a cookie, named nameCookie, is created; the cookie has two values:
Name and Time.
__

__

3. In Windows Explorer, double-click results.aspx.vb or results.aspx.cs to
open the results.aspc code-behind page file in Visual Studio .NET.
In the Page_Load event procedure, how are the numbers of visits to the
page stored?
In an Application variable
__

__

Why is the code placed in an If statement in the Page_Load event
procedure?
So that page postbacks are not recorded as new visits
__

__

4. Close Visual Studio .NET.

 Module 14: Managing State 27

 View the cookie

1. In Windows Explorer, browse to the following directory on your computer:
c:\Documents and Settings\Student\Cookies
<<Note>>

If you are logged on as someone other than Student, browse to the
Cookies folder for that user account.

2. Double-click to open the cookie named student@instructorsmachine[n].txt,
where n is an instance number.
What information can you find in this cookie?
The cookie name (nameCookie), and the two values, which are Name
and Time.
__

__

3. Close Microsoft Notepad and Windows Explorer.

Note

28 Module 14: Managing State

Retrieving Information from a Cookie

Read the cookie

Retrieve values from the cookie
lblTime.Text = objCookie.Values("Time")
lblTime.ForeColor = System.Drawing.Color.FromName _

(objCookie.Values("ForeColor"))
lblTime.BackColor = System.Drawing.Color.FromName _

(objCookie.Values("BackColor"))

lblTime.Text = objCookie.Values("Time")
lblTime.ForeColor = System.Drawing.Color.FromName _

(objCookie.Values("ForeColor"))
lblTime.BackColor = System.Drawing.Color.FromName _

(objCookie.Values("BackColor"))

Dim objCookie As HttpCookie = Request.Cookies("myCookie")Dim objCookie As HttpCookie = Request.Cookies("myCookie")

HttpCookie objCookie = Request.Cookies["myCookie"];HttpCookie objCookie = Request.Cookies["myCookie"];

lblTime.Text = objCookie.Values["Time"];
lblTime.ForeColor = System.Drawing.Color.FromName

(objCookie.Values["ForeColor"]);
lblTime.BackColor = System.Drawing.Color.FromName

(objCookie.Values["BackColor"]);

lblTime.Text = objCookie.Values["Time"];
lblTime.ForeColor = System.Drawing.Color.FromName

(objCookie.Values["ForeColor"]);
lblTime.BackColor = System.Drawing.Color.FromName

(objCookie.Values["BackColor"]);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Retrieving information from a cookie involves reading a cookie and retrieving
the key/value pairs from the cookie.

A cookie is returned to the server by the client in an HTTP "Cookie:" header.
Multiple cookies, separated by semicolons, can appear in this header. To read
an existing cookie, you access the cookies collection of the Request object, as
shown in the following code:

Dim objCookie As HttpCookie = Request.Cookies("myCookie")

HttpCookie objCookie = Request.Cookies["myCookie"];

The following code displays the values that need to be retrieved from a cookie:

lblTime.Text = objCookie.Values("Time")
lblTime.ForeColor = System.Drawing.Color.FromName _
 (objCookie.Values("ForeColor"))
lblTime.BackColor = System.Drawing.Color.FromName _
 (objCookie.Values("BackColor"))

lblTime.Text = objCookie.Values["Time"];
lblTime.ForeColor = System.Drawing.Color.FromName
 (objCookie.Values["ForeColor"]);
lblTime.BackColor = System.Drawing.Color.FromName
 (objCookie.Values["BackColor"]);

Introduction

Read a cookie

Visual Basic

C#

Retrieve values from the
cookie

Visual Basic .NET

C#

 Module 14: Managing State 29

Using Cookieless Sessions

Each active session is identified and tracked using
session IDs

Session IDs are communicated across client-server
requests using an HTTP cookie or included in the URL

Cookieless sessions

Session ID information is encoded into URLs

Cannot use absolute URLs

Most browsers limit the URL size to 255 characters,
which limits use of cookieless Session IDs

http://server/(h44a1e55c0breu552yrecobl)/page.aspxhttp://server/(h44a1e55c0breu552yrecobl)/page.aspx

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each active session is identified and tracked using a SessionID. The SessionID
is communicated across client-server requests by using an HTTP cookie or by
including it in the URL. By default, SessionID is stored in cookies.

Users can, however, disable cookies through a setting in their browsers. If the
cookie cannot be added to a user’s browser, every request that is made by the
user starts a new user session. Any session data that was associated with that
user is lost when a new page is requested.

The ASP.NET page framework includes an option to enable cookieless
sessions. Cookieless sessions enable you to take advantage of session state even
with browsers that have cookie support disabled.

When a user makes the first request to a Web site with cookieless sessions
enabled, the URL that is used for the request is automatically modified to
include the user’s SessionID. For example, when a user makes a request for
http://server/page.aspx, the request is automatically modified to:

http://server/(h44a1e55c0breu552yrecobl)/page.aspx

The part of the URL that appears in parentheses is the SessionID for the current
user.

After the SessionID is embedded in the URL of the first page request, the
SessionID tracks the user throughout his or her visit to the Web site.

There are certain limitations to using cookieless sessions:

 If you choose to use cookieless sessions, you cannot use absolute URLs
when linking between pages. You must design your Web site in a way that
every link uses a URL that is relative to the current page.

 Most browsers limit the URL size to 255 characters.

Introduction

Cookieless sessions

Limitation of cookieless
sessions

30 Module 14: Managing State

Setting Up Cookieless Sessions

Session state is configured in the <SessionState>
section of Web.config

Set cookieless = true

<sessionState cookieless="true" /><sessionState cookieless="true" />

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You enable cookieless sessions by modifying a single attribute in the
Web.config file.

In the Web.config file, in the <sessionstate> section, the cookieless attribute is
set to the value true. Setting this value is the only thing that you need to do
enable cookieless sessions, as shown in the following code:

<sessionState cookieless="true" />

Introduction

Setting up a cookieless
session

 Module 14: Managing State 31

Review

State Management

Application and Session Variables

Cookies and Cookieless Sessions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How do you set up a Web application to use cookieless sessions?
Create a <sessionState> section in the Web.config file and set the
cookieless attribute to true.
<sessionState cookieless="true"/>

2. What are the three categories of events that are handled in the global.asax
file?
Events that are fired when a page is requested, events that are fired
when the requested page is sent, and conditional application events.

3. Where is global.asax file of an application located?
In the virtual root of the Web application.

4. Can there be more than one global.asax file for a single Web application?
No

32 Module 14: Managing State

5. What are the two steps that need to be performed with ASP.NET to use
session variables in a Web farm?
On the Web Server, configure (Web.config) the session state to use an
external SQL Server or state server, and then run the
InstallSqlState.sql script to install the database (SQL Server) or start a
special Windows service (state server).

6. What is the difference between a temporary cookie and a persistent cookie?
A temporary cookie is not stored on the disk of the client and is deleted
when a user closes the browser.
A persistent cookie is stored on the client’s hard disk until it expires.

7. What is used to retain the SessionID of a session variable?
A cookie is used if the cookieless attribute is set to false in Web.config.
If the cookieless attribute is set to true, the SessionID is passed through
the query string.

 Module 14: Managing State 33

Lab 14: Storing Application and Session Data

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Create session and application variables and then use them to store and
retrieve information.

 Create, read to, and write from persistent cookies.
 Store session variables in a Microsoft® SQL Server™ database.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge of how to create session and application variables.
 Knowledge of how to create cookies.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In this lab, you will use session and application variables to enhance the users
experience for when they are browsing the benefits Web site.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
90 minutes

34 Module 14: Managing State

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Microsoft ASP.NET Web Application project, named
BenefitsVB or BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Microsoft Visual C#™
project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 14: Managing State 35

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab14\VB\Starter\BenefitsVB
folder.
Browse to the install folder\Labfiles\Lab14\CS\Starter\BenefitsCS folder.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project.
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

36 Module 14: Managing State

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab14\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab14\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

 Create the Dental XML Web Service

Only perform this procedure if you have not previously created the
DentalService project, or if you have removed the DentalService project
according to the steps in Appendix A, “Lab Recovery,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new XML Web Service project.
Create a new Visual Basic .NET XML Web Service project, named
DentalServiceVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click ASP.NET Web Service, and then set the

Location to http://localhost/DentalServiceVB.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the DentalServiceVB project as
shown.

For the Visual Basic
.NET project
For the Visual C# Project

Important

For Visual Basic .NET
Project

Caution

 Module 14: Managing State 37

Create a new Visual C# .NET XML Web Service project named
DentalServiceCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click ASP.NET Web Service, and then set the

Location to http://localhost/DentalServiceCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the DentalServiceCS project as
shown.

 Update the DentalService project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click DentalServiceVB or DentalServiceCS,

point to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab14\VB\Starter\DentalServiceVB
folder.
Browse to the install folder\Labfiles\Lab14\CS\Starter\DentalServiceCS
folder.

4. In the Files of type box of the Add Existing Item – DentalService dialog,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.
7. Build the DentalService XML Web service by right-clicking the

DentalServiceVB or DentalServiceCS project in Solution Explorer and
clicking Build.

For Visual C# .NET
Project

Caution

For Visual Basic .NET
Project
For Visual C# .NET
Project

38 Module 14: Managing State

 Add a Web reference in the Benefits project to the DentalService Web
service

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a Web reference to the DentalService XML Web
service:
a. In Solution Explorer, right-click BenefitsVB or BenefitsCS and then

click Add Web Reference.
b. In the Address text box, type

http://localhost/DentalServiceVB/DentalService1.asmx or
http://localhost/DentalServiceCS/DentalService1.asmx and then press
ENTER.
The DentalService1 Web reference will then be displayed.

c. Click Add Reference.
The Web reference is added to the project in the Web References folder.

2. In Solution Explorer, expand Web References, right-click localhost, and
then click Rename.

3. Type DentalWebRef, and then press ENTER.
4. Build the solution by clicking Build Solution on the Build menu.

 Module 14: Managing State 39

Exercise 1
Using Session Variables

In this exercise, you will store the user’s name and birth date in session
variables. Both the namedate.ascx user control and the life.aspx page will look
for the session variables and then fill the appropriate text boxes with the
information, if it is available. If the session variables do not yet exist, either
page will create the session variables.

In the current Web application, a user must enter redundant information on
multiple pages. For example, the user is required to supply their name and birth
date on both the medical page and the life insurance page. To simplify using the
Web application, you will use a cookie to store this information in session
variables so that the user only needs to enter this information once.

 Get and set session variables in life.aspx

1. In Visual Studio .NET, open the life.aspx code behind page in the Benefits
project.

2. Add code to the Page_Load event procedure that gets the Name and Birth
session variables, but only when the page is not being posted back.

3. Set the Text property for the txtName text box to the content of the Name
session variable, and set the Text property of the txtBirth text box to the
content of the Birth session variable.

4. Your code should look like the following:
If Not (Page.IsPostBack) Then
 Dim strName As String = CStr(Session("Name"))
 Dim strBirth As String = CStr(Session("Birth"))
 txtName.Text = strName
 txtBirth.Text = strBirth
End If

if (!Page.IsPostBack)
{
 string strName = (string)Session["Name"];
 string strBirth = (string)Session["Birth"];
 txtName.Text = strName;
 txtBirth.Text = strBirth;
}

5. In the cmdSave_Click event procedure, find the following comment:
'TODO Lab 14: Set Session Variables

//TODO Lab 14: Set Session Variables

If this code section is not in your life.aspx file, you can copy the code
from the life.aspx file in the
install folder\Labfiles\Lab14\VB\Starter\BenefitsVB or
install folder\Labfiles\Lab14\CS\Starter\BenefitsCS folder.

Scenario

Visual Basic .NET

Visual C#

Visual Basic .NET

Visual C#

Note

40 Module 14: Managing State

6. Add code below this comment that assigns the text in the txtName text box
to the Name session variable, and assigns the text in the txtBirth text box to
the Birth session variable.

7. Your code should look like the following:
Session("Name") = txtName.Text
Session("Birth") = txtBirth.Text

Session["Name"] = txtName.Text;
Session["Birth"] = txtBirth.Text;

 Get and set session variables in namedate.ascx code-behind page

1. Open namedate.ascx.vb or namedate.ascx.cs.
This is the user control that displays the name and birth date on the
medical.aspx Web Form.

2. Add code to the Page_Load event procedure that retrieves the Name and
Birth session variables, but only when the page is not being posted back.

3. Set the Text property for the txtName text box to the content of the Name
session variable, and set the Text property of the txtBirth text box to the
content of the Birth session variable.

4. Your code should look like the following:
If Not (Page.IsPostBack) Then
 Dim strName As String = CStr(Session("Name"))
 Dim strBirth As String = CStr(Session("Birth"))
 txtName.Text = strName
 txtBirth.Text = strBirth
End If

if (!Page.IsPostBack)
{
 string strName = (string)Session["Name"];
 string strBirth = (string)Session["Birth"];
 txtName.Text = strName;
 txtBirth.Text = strBirth;
}

Visual Basic .NET

Visual C#

Visual Basic .NET

Visual C#

 Module 14: Managing State 41

5. In the Get statement for the Public Property strName, add a line of code
preceding the Return statement that sets the Name session variable to the
text that is in the txtName text box.
The Get statement should look like the following:
Get
 Session("Name") = txtName.Text
 Return txtName.Text
End Get

get
{
 Session["Name"] = txtName.Text;
 return txtName.Text;
}

6. In the Get statement for the Public Property dtDate, add a line of code
preceding the Return statement that sets the Birth session variable to the
text that is in the txtBirth text box.
The Get statement should look like the following:
Get
 Session("Birth") = txtBirth.Text
 Return CDate(txtBirth.Text)
End Get

get
{
 Session["Birth"] = txtBirth.Text;
 return Convert.ToDateTime(txtBirth.Text);
}

 Test the code

1. Build and browse life.aspx.
2. In the browser, type your name in the Name text box, type your birth date in

the Birthdate text box, and then type 400 in the Coverage text box.
3. Click Save.
4. At the top of the life.aspx Web Form, click the link for Medical.

In the medical.aspx Web Form, your name and birth date appear. These
values were obtained from the session variables.

5. Change your name in the text box, and then click Save.
6. Click the link to Life Insurance and verify that your name has changed in

the life.aspx Web Form.

Visual Basic .NET

Visual C#

Visual Basic .NET

Visual C#

42 Module 14: Managing State

Exercise 2
Using Cookies

In this exercise, you will use cookies to store all of the user’s benefits
selections. When the user returns to the default.aspx page, his or her selections
are listed on the page.

Before the user completes the benefits registration process, he or she should be
able to see his or her selections on a single page. You have chosen to list the
selected benefits on the default.aspx page. You will show all of the selected
benefits on the default.aspx page by using a persistent cookie.

For both the medical.aspx and life.aspx pages, you will add code that reads the
existing values from the cookie, and then updates the values and re-writes the
cookie.

 Configure the home page

1. Open the default.aspx page.
2. Add two labels and two text box controls to the bottom of the Web Form, so

that the Web Form looks like the following illustration.

Scenario

 Module 14: Managing State 43

3. Name the first text box txtDoctor and the second text box txtLife.
4. Open default.aspx.vb or default.aspx.cs.
5. In the Page_Load event procedure, add code to read from a cookie named

Benefits. This code should be added after the existing Page.IsPostBack
condition.

6. Declare two variables, strDoc and strLife, which will hold the doctors and
life values from the Benefits cookie.

7. If the cookie exists and is not empty, set the Text property of the txtDoctors
text box to strDoc, and set the text property of txtLife to strLife.
Your code should look like the following:
Dim objGetCookie As HttpCookie = _
 Request.Cookies("Benefits")
Dim strDoc As String
Dim strLife As String

If Not objGetCookie Is Nothing Then
 strDoc = objGetCookie.Values("doctor")
 strLife = objGetCookie.Values("life")
 txtDoctor.Text = strDoc
 txtLife.Text = strLife
End If

HttpCookie objGetCookie =
 Request.Cookies["Benefits"];
string strDoc;
string strLife;

if (objGetCookie != null)
{
 strDoc = objGetCookie.Values["doctor"];
 strLife = objGetCookie.Values["life"];
 txtDoctor.Text = strDoc;
 txtLife.Text = strLife;
}

8. Save default.aspx.

Visual Basic .NET

Visual C#

44 Module 14: Managing State

 Store the doctor selection

1. Open medical.aspx.vb or medical.aspx.cs.
2. In the cmdSave_Click event procedure, add code that retrieves all of the

information from the Benefits cookie, but only if the cookie exists and
contains information.
This added code should include two string variables that hold the doctor and
life insurance values from the cookie. Your code should look like the
following:
Dim objCookie As HttpCookie = Request.Cookies("Benefits")
Dim strDoc As String
Dim strLife As String

If Not objCookie Is Nothing Then
 strDoc = objCookie.Values("doctor")
 strLife = objCookie.Values("life")
End If

HttpCookie objGetCookie = Request.Cookies["Benefits"];
string strDoc ="";
string strLife ="";

if (objGetCookie != null)
{
 strDoc = objGetCookie.Values["doctor"];
 strLife = objGetCookie.Values["life"];
}

3. Add code to do the following tasks:
a. Update the value of the strDoc variable to the text that is contained in

the txtDoctor text box.
b. Create a new cookie object, objNewCookie, with a cookie name of

Benefits.
This will replace the existing Benefits cookie with a new cookie that
contains the updated information.

c. Set the expiration date for the Benefits cookie to 30 days from the
present date.

d. Add two values, named doctor and life, to the cookie. These values will
hold strDoc and strLife, respectively.

e. Write the objNewCookie cookie.

Visual Basic .NET

Visual C#

 Module 14: Managing State 45

Your code should look like the following:
strDoc = txtDoctor.Text
Dim objNewCookie As New HttpCookie("Benefits")
objNewCookie.Expires = DateTime.Now.AddDays(30)
objNewCookie.Values.Add("doctor", strDoc)
objNewCookie.Values.Add("life", strLife)
Response.Cookies.Add(objNewCookie)

strDoc = txtDoctor.Text;
HttpCookie objNewCookie = new HttpCookie("Benefits");
objNewCookie.Expires = DateTime.Now.AddDays(30);
objNewCookie.Values.Add("doctor", strDoc);
objNewCookie.Values.Add("life", strLife);
Response.Cookies.Add(objNewCookie);

4. Finally, you must add code to the cmdSave_Click event procedure that
redirects the user back to the default.aspx page. Your added code should
look like the following:
Response.Redirect("default.aspx")

Response.Redirect("default.aspx");

5. Save the medical.aspx.vb or medical.aspx.cs file.

 Store the life insurance selections

1. Open life.aspx.vb or life.aspx.cs.
2. In the cmdSave_Click event procedure, add code that retrieves all of the

information from the Benefits cookie, but only if the cookie exists and it is
not empty.
This code is identical to the code that you added to medical.aspx.

3. Find the following line of code:
'TODO Lab 14: Build the string

//TODO Lab 14: Build the string

If this code section is not in your life.aspx file, you can copy the code
from the life.aspx file in the
install folder\Labfiles\Lab14\VB\Starter\BenefitsVB or
install folder\Labfiles\Lab14\CS\Starter\BenefitsCS folder.

Visual Basic .NET

Visual C#

Visual Basic .NET

Visual C#

Visual Basic .NET

Visual C#

Note

46 Module 14: Managing State

4. Uncomment the code below this comment.
This code builds a string that includes the selected life insurance options and
the value that was entered for the coverage amount.

5. Add code to create and write the Benefits cookie.
This code is identical to the code that you added in medical.aspx.

6. Add code to redirect the page back to the default.aspx page.
7. When finished, the entire cmdSave_Click event procedure for life.aspx

should look like the following:
If Page.IsValid Then
 lblMessage.Text = "Valid!"

 'TODO Lab 14: Set Session Variables
 Session("Name") = txtName.Text
 Session("Birth") = txtBirth.Text

 Dim objCookie As HttpCookie = _
 Request.Cookies("Benefits")
 Dim strDoc As String
 Dim strLife As String

 If Not objCookie Is Nothing Then
 strDoc = objCookie.Values("doctor")
 strLife = objCookie.Values("life")
 End If

 If (chkShortTerm.Checked) Then
 If (chkLongTerm.Checked) Then
 strLife = "Short Term and Long Term"
 Else
 strLife = "Short Term"
 End If
 ElseIf (chkLongTerm.Checked) Then
 strLife = "Long Term"
 End If
 strLife &= ": Coverage = $" & txtCoverage.Text

 Dim objNewCookie As New HttpCookie("Benefits")
 objNewCookie.Expires = DateTime.Now.AddDays(30)
 objNewCookie.Values.Add("doctor", strDoc)
 objNewCookie.Values.Add("life", strLife)
 Response.Cookies.Add(objNewCookie)
 Response.Redirect("default.aspx")

End If

You can copy and paste this code from the file
install folder\LabFiles\Lab14\VB\Starter\life.txt.

Visual Basic .NET

Note

 Module 14: Managing State 47

if (Page.IsValid)
{
 lblMessage.Text = "Valid!";

 //TODO Lab 14: Set Session Variables
 Session["Name"] = txtName.Text;
 Session["Birth"] = txtBirth.Text;

 HttpCookie objCookie =
 Request.Cookies["Benefits"];
 string strDoc = "";
 string strLife = "";

 if (objCookie != null)
 {
 strDoc = objCookie.Values["doctor"];
 strLife = objCookie.Values["life"];
 }

 if (chkShortTerm.Checked)
 {
 if (chkLongTerm.Checked)
 {
 strLife = "Short Term and Long Term";
 }
 else
 {
 strLife = "Short Term";
 }
 }
 else if (chkLongTerm.Checked)
 {
 strLife = "Long Term";
 }

 strLife += ": Coverage = $" + txtCoverage.Text;

 HttpCookie objNewCookie = new HttpCookie("Benefits");
 objNewCookie.Expires = DateTime.Now.AddDays(30);
 objNewCookie.Values.Add("doctor", strDoc);
 objNewCookie.Values.Add("life", strLife);
 Response.Cookies.Add(objNewCookie);
 Response.Redirect("default.aspx");
}

You can copy and paste this code from the file
install folder\LabFiles\Lab14\CS\Starter\life.txt.

8. Save the life.aspx.vb or life.aspx.cs file.

Visual C#

Note

48 Module 14: Managing State

 Test the cookie

1. Build and browse default.aspx.
2. Click the link for Medical.
3. Fill in the required information, and then click Save.
4. You are then returned to default.aspx, and the doctor information has been

filled in.
5. Click the Life Insurance link.
6. Fill in the required information, select one or both of the term coverage

options, and then click Save.
7. You are returned to default.aspx and the life insurance information has been

filled in.

 Module 14: Managing State 49

Exercise 3
Using Application Variables

In this exercise, you will add a page counter to the retirement.aspx page.

You want to provide a quick and easy way for management to see how many
employees are accessing the new Benefits Web site. As such, you have decided
to implement a page counter on the default.aspx page by using an application
variable. You want to ensure that the counter is not increased when a page
postback occurs, but rather only counts unique visits to the page.

 Add user interface (UI) components

1. Open the retirement.aspx page.
2. Add two labels and a text box to the bottom of the form, so that the Web

Form resembles the following illustration.

3. Name the new text box txtVisits.

Scenario

50 Module 14: Managing State

 Add the code

1. In the Page_Load event procedure, add code that increments the value of
the application variable Visits by one.

2. The code should lock the application variable before incrementing it, and
the code should then unlock it after incrementing it. Place the code so that it
runs only when the page is not posted back.

3. Add code to set the Text property of txtVisits to the value that is stored in
the Visits application variable. This code should run with every page load.

4. When complete, the Page_Load event procedure should look like the
following:
If Not Page.IsPostBack Then
 Dim dsRetirement As New DataSet()
 dsRetirement.ReadXml(_
 Server.MapPath("mutual_funds.xml"))
 dgRetirement.DataSource = dsRetirement
 dgRetirement.DataBind()

 Application.Lock()
 Application("Visits") = CInt(Application("Visits")) + 1
 Application.UnLock()
End If

txtVisits.Text = CStr(Application("Visits"))

if (!Page.IsPostBack)
{
 DataSet dsRetirement = new DataSet();
 dsRetirement.ReadXml(
 Server.MapPath["mutual_funds.xml"]);
 dgRetirement.DataSource = dsRetirement;
 dgRetirement.DataBind();

 Application.Lock();
 Application["Visits"]
=Convert.ToInt16(Application["Visits"]) + 1;
 Application.UnLock();
}

txtVisits.Text = Application["Visits"].ToString();

 Test the application variable

1. Build and browse the retirement.aspx page.
2. Refresh the browser.
3. The page counter increases with each refresh of the page.

Visual Basic .NET

Visual C#

 Module 14: Managing State 51

Exercise 4
Storing Session Variables In a Database

In this exercise, you will store the user name and birth date session variables in
a SQL Server database.

To prepare your Web site for deployment on a Web form, you want the session
variables to be stored in a central location. You have chosen to use a
SQL Server database for this short-term storage solution.

 Configure Web.config

1. Open the Web.config file for the Benefits Web application.
2. Find the sessionState element.
3. Change the mode for the sessionState to SQLServer, and then set the

connection string to use integrated security to connect to localhost.
When complete, the sessionState element should look like the following:
<sessionState
 mode="SQLServer"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString="data source=127.0.0.1;
 Integrated Security=SSPI"
 cookieless="false"
 timeout="20"
/>

Because the Web.config file is an Extensible Markup Language
(XML) file, proper capitalization of the element and attribute names is
critical.

4. Save the Web.config file.

 Install and configure the databases

Session variables are stored in two pre-configured databases, which are named
ASPState and tempdb. To install and configure the databases, you must
perform the following steps:

1. From the Start menu, point to All Programs, point to Accessories, and
then click Command Prompt.
A command window opens.

2. At the command prompt, type the following command, where version is the
latest version of the Microsoft .NET Framework that is installed on your
computer, and then press ENTER:
cd\WINDOWS\Microsoft.NET\Framework\version\

The command prompt changes to the new directory.

Scenario

Important

52 Module 14: Managing State

3. At the command prompt, type the following command, and then press
ENTER:
OSQL –S localhost –E <InstallSqlState.sql

The command window displays a series of numbers and messages, and then
returns to the command prompt. The ASPState and tempdb databases have
been restored.

4. Close the command prompt, and then open Windows Explorer.
5. Browse to the following directory:

installfolder\LabFiles\lab14\VB\Starter
installfolder\LabFiles\lab14\CS\Starter

6. Double-click Lab14.bat.
This batch file runs an SQL query that configures security for the ASPState
and tempdb databases.

7. Close Windows Explorer.

 Test the Web application

1. Build and browse the default.aspx page to test the Benefits Web application.
2. Click the link to Medical, enter the necessary information, and then click

Save.
3. Click the link for Life Insurance.

Verify that the session variables that hold your name and birth date work
properly.

Visual Basic .NET
Visual C#

Contents

Overview 1

Lesson: Using the Cache Object 2

Lesson: Using ASP.NET Output Caching 14

Lesson: Configuring an ASP.NET Web
Application 23

Lesson: Deploying an ASP.NET Web
Application 41

Review 48

Lab 15: Configuring, Optimizing, and
Deploying a Microsoft ASP.NET Web
Application 50

Course Evaluation 69

Module 15: Configuring,
Optimizing, and Deploying
a Microsoft ASP.NET Web
Application

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application iii

Instructor Notes
In this module, students will learn how to configure, optimize, and deploy a
Microsoft® ASP.NET Web application.

After completing this module, students will be able to:

 Use the Cache object to store information, including being able to:

• Explain what a Cache object is.

• Explain the advantages and disadvantages of using the Cache object.

• Use the Cache object to store and retrieve items that are used by a Web
application.

• Remove items from the Cache object after a period of time or when the
item changes, to limit memory use.

 Use the ASP.NET output caching to store Web pages and Web page
fragments, including being able to:

• Explain why a developer would use output caching.

• Explain the different output cache types.

• Use page output caching.

• Use page fragment output caching.
 Configure an ASP.NET Web application by using the Machine.config and

Web.config files, including being able to:

• Explain how to configure a Web application.

• Configure a Web server by using the Machine.config file.

• Configure an application by using the Web.config files.

• Explain how the Web.config files inherit from the Machine.config file
and other Web.config files.

• Store and retrieve data by using Web.config files.

• Use dynamic properties to store property values.
 Deploy an ASP.NET Web application by using XCOPY or File Transfer

Protocol (FTP), including being able to:

• Use XCOPY deployment.

• Prepare for deployment by selecting only the files that are necessary for
running the Web application.

• Share assemblies in the Global Assembly Cache (GAC).

• Update an ASP.NET Web application.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_15.ppt
 Multimedia files 2310B_15A001.htm and 2310B_15A001.swf

Presentation:
120 minutes

Lab:
90 minutes

Required materials

iv Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

To prepare for this module:

 Read all of the materials for this module.
 Complete the practices.
 Practice the steps for the demonstrations and instructor-led practices.
 Review the additional code on the code example page.

To prepare for the lab:

 Review the completed Lab solution.
 Complete the lab.

Preparation tasks

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application v

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Using the Cache Object
Check to see how familiar your students are with the Cache object. You may be
able to skim through this lesson.

It is important that students understand the difference between the Cache object
and the output cache.

Alternative delivery. You can use two browser windows as you run this
demonstration so that you can show the changes.

Lesson: Using ASP.NET Output Caching
Check to see how familiar your students are with Cache objects. You may be
able to skim through this lesson.

It is important that students understand the difference between the Cache object
and the output cache.

The first two sections of this animation were seen in Module 1, “Overview of
the Microsoft .NET Framework,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio® .NET.

Do not spend more than the allotted time on page caching and page fragment
caching; these items will be covered in more depth later in this lesson.

Fragment caching is included in the lab, but it is not demonstrated so that the
lesson can be kept brief.

Lesson: Configuring an ASP.NET Web Application
Alternative delivery. You can open the Machine.config file and Web.config file
and show inherited and overridden settings.

Lesson: Deploying an ASP.NET Web Application
Alternative delivery. You can open the GAC and show the contents.

Demonstration: Using
the Cache Object

Multimedia: Output
Caching

Output Cache Types

Demonstration: Page
Output Caching

Sharing Assemblies in
the Global Assembly
Cache

vi Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 15: Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application

Before beginning the lab, students should have completed all of the practices
and answered all of the review questions. Use the Lab Map to highlight what
parts of the solution the students will be creating in this lab.

If you have students who are most interested in Web site deployment, you can
have them start with Exercise 5 and then continue with Exercise 1.

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 1

Overview

Using the Cache Object

Using ASP.NET Output Caching

Configuring an ASP.NET Web Application

Deploying an ASP.NET Web Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have finished development of your Microsoft® ASP.NET Web
application, you can deploy it on a production server. However, before
deployment, you may want to optimize the Web application to improve
performance.

You can optimize and then deploy the Web application by:

 Setting up the Cache object and the output cache to optimize response times
for the Web application.

 Organizing the application settings in the Machine.config and Web.config
files to both support and protect the Web site.

 Selecting the files that are necessary to run the Web site and then copying
those files to the production server.

After completing this module, you will be able to:

 Use the Cache object to store information.
 Use ASP.NET output caching to store Web pages and Web page fragments.
 Configure an ASP.NET Web application by using the Machine.config and

Web.config files.
 Deploy an ASP.NET Web application.

Introduction

Objectives

2 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Lesson: Using the Cache Object

What Is the Cache Object?

Advantages of Using the Cache Object

How to Use the Cache Object

Removing Items from the Cache Object

Demonstration: Using the Cache Object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of most effective ways to increase the performance of an ASP.NET Web
application is to use the ASP.NET Cache object. The Cache object allows you
to place items in server memory so that they can be quickly retrieved. However,
loading too many items into the Cache object can slow down server response
times by reducing the available memory on the server.

In this lesson, you will learn how to set up the Cache object to optimize the
response times for a Web application.

After completing this lesson, you will be able to:

 Explain what a Cache object is.
 Explain the advantages and disadvantages of using a Cache object.
 Use a Cache object to store and retrieve items that are used by your Web

application.
 Remove items from a Cache object after a period of time, or when the item

changes, to limit memory use.

Introduction

Lesson objectives

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 3

What Is the Cache Object?

An object used to store information

One Cache object per Web Application

An alternative to application variables

Not used to store information in session variables

Uses key-value pairs to store and retrieve items

Cache("myKey") = myValueCache("myKey") = myValue

Cache["myKey"] = myValue;Cache["myKey"] = myValue;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An issue that you will encounter when building high-performance Web
applications is the need to avoid duplication. A Cache object allows you to
cache (store) items in memory the first time they are requested, and then use the
cached copy for later requests. Using the cached copy allows you to avoid
recreating information that satisfied a previous request, particularly information
that demands significant processor time on the server every time it is created.

In addition to caching individual items, such as computational results in the
Cache object, ASP.NET offers an output cache that can be used for storing
Web pages and user controls. The Cache object and the output cache are
distinct objects with unique roles and properties.

ASP.NET provides a full-featured cache engine that can be used to store and
retrieve pieces of information. The Cache object has no information about the
content of the items it contains. The Cache object merely holds a reference to
those objects and provides a process for tracking their dependencies and setting
expiration policies.

The Cache object also provides a method to pass values between pages in the
same Web application. The cache methods implement automatic locking;
therefore, it is safe for values to be accessed concurrently from more than one
page.

The process for using the Cache object is:

1. A page requests an item that has been identified as being stored in the
Cache object.

2. ASP.NET checks the Cache object and uses the cached version if it is
available.

3. If a cached version is not available, ASP.NET recreates the item, uses that
item, and then stores that item in the Cache object for future use.

Introduction

An object used to store
information

How the Cache object
works

4 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

ASP.NET creates a single Cache object for each Web application. The items
stored in the Cache object are unique to the Web application and cannot be
accessed by other Web applications that are running on the same server or on
other servers. As a result, the use of the Cache object to increase Web
application performance is not scalable above the single Web application level.

The lifetime of the cache is the same as the lifetime of the Web application.
When the Web application is restarted, the cache is then recreated.

The Cache object can be used to store information that could also be stored in
application variables. Rather than recreating the value each time you use it, a
single cached value can be accessed by any page in the Web application.

The Cache object cannot be used to store information that is found in session
variables. Session variables can be stored in cookies, the page Uniform
Resource Locator (URL), or the hidden ViewState control.

For more information about application and session variables, see
Module 14, “Managing State,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

The Cache object uses key-value pairs to store and retrieve objects. The key is
the cache key string that is used to reference the object. The value is the object
to be cached. In the simplest case, placing an item in the cache and retrieving it
is exactly like adding an item to a dictionary.

To add an item into a Cache object:

Cache("mykey") = myValue

Cache["mykey"] = myValue;

To retrieve an item from a Cache object:

myValue = Cache("myKey")

myValue = Cache["myKey"];

One Cache object per
Web application

Storing variables

Note

Uses key-value pairs

Microsoft
Visual Basic® .NET
C#

Visual Basic .NET

C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 5

Advantages of Using the Cache Object

Faster than creating a new object for each request

Supports internal locking

Automatic cache resource management

Supports callback functions

Supports removal based on dependencies

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Cache object provides a simple dictionary interface that allows you to
easily insert values and then retrieve them later. Using the Cache object to store
values has several advantages.

An item that is stored in memory can be retrieved much more quickly than it
can be rebuilt. For example, a DataSet filled with data from a computer running
Microsoft SQL Server™ must reconnect to the SQL Server for each page
request. Placing the DataSet in the Cache object provides much more rapid
access to that data.

The Cache object provides automatic lock management on items that are in the
cache; therefore, concurrent requests for an item cannot modify the object.
Automatic lock management protects in-process transactions when items are
being updated.

ASP.NET automatically removes items from the cache on a regular schedule.
This automatic removal is an improvement over earlier cache versions where
the developer had to manually manage cache resources.

Callback functions are code that runs when an item is removed from the cache.
For example, you can use a callback function to place the newest version of an
object in cache as soon as the old version is removed.

If an item in a cache has a dependency on another cached item or a file, you can
set the Cache object to remove that item when the dependency meets certain
requirements. For example, if you store data from an Extensible Markup
Language (XML) file in the cache, you can remove the cached data when the
XML document changes.

Introduction

Faster than creating a
new object for each
request

Supports internal
locking

Automatically manages
cache resources

Supports callback
functions

Supports removal based
on dependencies

6 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

How to Use the Cache Object

Writing to the Cache object:

Retrieving values from the Cache object:

myValue = Cache("myKey")myValue = Cache("myKey")

'Implicit method
Cache("myKey") = myValue

'Explicit method
Cache.Insert("myKey", myValue, Dependency, AbsoluteExpiration, _

SlidingExpiration, CacheItemPriority, CacheItemRemovedCallBack)

'Implicit method
Cache("myKey") = myValue

'Explicit method
Cache.Insert("myKey", myValue, Dependency, AbsoluteExpiration, _
SlidingExpiration, CacheItemPriority, CacheItemRemovedCallBack)

//Implicit method
Cache["myKey"] = myValue;

//Explicit method
Cache.Insert("myKey", myValue, Dependency, AbsoluteExpiration,
SlidingExpiration, CacheItemPriority, CacheItemRemovedCallBack);

//Implicit method
Cache["myKey"] = myValue;

//Explicit method
Cache.Insert("myKey", myValue, Dependency, AbsoluteExpiration,
SlidingExpiration, CacheItemPriority, CacheItemRemovedCallBack);

myValue = Cache["myKey"];myValue = Cache["myKey"];

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To use the Cache object, you use key-value pairs to store and retrieve items.
The key is the Cache key string that is used to reference the item. The value is
the item to be cached.

You can write an item into a Cache object implicitly, as shown in the following
code:

Cache("mykey") = myValue

Cache["mykey"] = myValue;

You can also supply parameters, such as a time limit for storage in the Cache
object, when inserting an item into the Cache object. The following code shows
the explicit Insert method with parameters:

Cache.Insert("myKey", myValue, _
 Dependency, AbsoluteExpiration, SlidingExpiration, _
 CacheItemPriority, CacheItemRemovedCallBack)

Cache.Insert("myKey", myValue,
 Dependency, AbsoluteExpiration, SlidingExpiration,
 CacheItemPriority, CacheItemRemovedCallBack);

Introduction

Writing to the Cache
object

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 7

Retrieving values from the Cache object is equally simple in that you only need
to provide the correct key to receive the value.

The following code uses the key myKey to retrieve the value myValue and
then displays myValue if it is not empty:

myValue = Cache("mykey")
If myValue <> Nothing Then
 DisplayData(myValue)
End If

myValue = Cache["mykey"];
if (myValue != null)
 DisplayData(myValue);

Retrieving values from
the Cache object

Visual Basic .NET

C#

8 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Removing Items from the Cache Object

AbsoluteExpiration time

SlidingExpiration time

Dependent on a changed value

Cache item priority

DateTime.Now.AddMinutes(5)DateTime.Now.AddMinutes(5)

TimeSpan.FromSeconds(20)TimeSpan.FromSeconds(20)

AddCacheItemDependency("Variable.Value") AddCacheItemDependency("Variable.Value")

CacheItemPriority.High CacheItemPriority.High

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ASP.NET Cache object is designed to ensure that it does not use too much
of the server’s memory. As a result, the Cache object automatically removes
the least used items when available memory becomes scarce. You can influence
how the Cache object saves and removes items by defining time limits,
dependencies, and priorities for items that are in the Cache object.

Items in the Cache object are removed as soon as a dependency or time limit is
triggered. Attempts to retrieve the removed items will return null value unless
the item is added to the Cache object again.

You can define the maximum absolute lifetime for an item by using the
AbsoluteExpiration parameter. This parameter is a DateTime type parameter
that allows you to specify the time at which the item will expire.

The following code specifies that myValue be removed from the Cache object
exactly five minutes after it is created:

Cache.Insert("myKey", myValue, Nothing, _
 DateTime.Now.AddMinutes(5), Nothing)

Cache.Insert("myKey", myValue, null, _
 DateTime.Now.AddMinutes(5), Cache.NoSlidingExpiration);

Introduction

AbsoluteExpiration

Visual Basic .NET

C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 9

You can define the maximum relative lifetime for an item by using the
SlidingExpiration parameter. This is a TimeSpan type parameter that allows
you to specify the time interval between the time the cached object was last
accessed and when the object expires.

The following code specifies that myValue be removed from the Cache object
exactly 20 seconds after it is last accessed:

Cache.Insert("myKey", myValue, Nothing, _
 Nothing, TimeSpan.FromSeconds(20))

Cache.Insert("myKey", myValue, null, _
 null, TimeSpan.FromSeconds(20));

There are times when you want an object to be removed from the Cache object
because a supporting item, such as a file, has changed. ASP.NET allows you to
define the validity of a cached item, based on file dependencies or another
cached item. Dependencies based on external files and directories are referred
to as file dependencies, dependencies based on another cached item are referred
to as a key dependencies. If a dependency changes, the cached item is
invalidated and removed from the Cache object.

The following code specifies that myValue be removed from the Cache object
when the myDoc.xml file changes:

Cache.Insert("myKey", myValue, _
 new CacheDependency(Server.MapPath("myDoc.xml")))

Cache.Insert("myKey", myValue, new
CacheDependency(Server.MapPath("myDoc.xml")));

When the Web server runs low on memory, the Cache object selectively
removes items to free up system memory. Items that you assign higher priority
values to are less likely to be removed from the cache, whereas the items to
which you assign lower priority values are more likely to be removed.

The following code specifies that myValue has a high priority and should be
one of the last items removed from the Cache object when the server memory
becomes limited:

Cache.Insert("myKey", myValue, Nothing, Nothing, _
 Nothing, CacheItemPriority.High, onRemove)

Cache.Insert("myKey", myValue, null, null,
Cache.NoSlidingExpiration, CacheItemPriority.High, onRemove);

SlidingExpiration

Visual Basic .NET

C#

Dependencies

Visual Basic .NET

C#

Cache item priority

Visual Basic .NET

C#

10 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

The following code inserts a value for MyBook into the Cache object with a
number of parameter arguments. The following dependency or timeout event
that occurs first will be the dependency or timeout event that removes the item
from the Cache object:

 Remove the item 5 minutes after being stored.
 Remove the item 30 seconds after the latest access.
 Remove the item if the Books.xml file changes.
 Make the priority of the item high so that it is removed last if server

resources become a problem.
 When the item is removed from the Cache object, the callback function

onRemove runs.

Cache.Insert("MyBook.CurrentBook", CurrentBook, _
 new CacheDependency(Server.MapPath("Books.xml")), _
 DateTime.Now.AddMinutes(5), _
 TimeSpan.FromSeconds(30), _
 CacheItemPriority.High, onRemove)

Cache.Insert("MyBook.CurrentBook", CurrentBook,
 new CacheDependency(Server.MapPath("Books.xml")),
 DateTime.Now.AddMinutes(5),
 TimeSpan.FromSeconds(30),
 CacheItemPriority.High, onRemove);

Example of setting the
parameters in
Cache.Insert

Visual Basic .NET

C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 11

Demonstration: Using the Cache Object

Run the CacheTest.aspx page without the
Cache object enabled

Run the CacheTest.aspx page with the
Cache object enabled

Run the CacheTest.aspx page with the
Cache object enabled and with a
dependency

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Cache object with a
DataGrid.

All files for this demonstration are in the Mod15CS or Mod15VB project in the
2310Demos solution.

 To run the demonstration

1. Open the CacheTest.aspx page.
2. Show the code-behind page.

Point out that the DataSet reads an XML file and that the DataGrid is filled
with the XML file.

3. Set the Mod15 project as the StartUp project, set the CacheTest.aspx page
as the Start Page for the project, and then browse to the page in Microsoft
Internet Explorer.

Because of feature differences between the built-in browser in
Microsoft Visual Studio® .NET and Internet Explorer, it is important to use
Internet Explorer for this demonstration.

4. In CacheTest.aspx.vb or CacheTest.aspx.cs, comment out the lines that are
marked with the following comment in both the Page_Load and the
dgXML_PageIndexChanged event procedures:
'comment this line for caching

//comment this line for caching

Introduction

Run without caching

Note

Enable caching

Visual Basic .NET

C#

12 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

5. Uncomment all remaining code in both the Page_Load and
dgXML_PageIndexChanged event procedures.
Explain how this additional code creates a new cache key dsCache, which
places the DataSet object dsXML in the cache and sets the absolute
expiration time at two minutes.

6. Click Start to build the CacheTest.aspx page and view it in
Internet Explorer.
Verify that the DataGrid is populated with the XML data and that the
paging feature works.

7. Leave Internet Explorer open, and in Visual Studio .NET, open the
pubs.xml file.

8. Change the title of the first book listed to a title that the students can easily
detect and then save the file.

9. In Internet Explorer, switch to Page 1 of the DataGrid.
If you are already viewing Page 1, switch to another page and then go back
to Page 1.

10. Show the students that the title of the first book listed did not change
because the information is coming from cache.

11. Switch to another page, wait at least two minutes, and then switch back to
the first page.
The DataGrid will now display the new title for the first book.

12. Close Internet Explorer.
13. Open the CacheTest.aspx.vb or the CacheTest.aspx.cs page.
14. For both of the Cache.Insert lines of code in the CacheTest.aspx.vb or

CacheTest.aspx.cs pages, add a dependency on the pubs.xml file. Your code
should look like the following:
Cache.Insert("dsCache", dsXML, New _
 System.Web.Caching.CacheDependency _
 (Server.MapPath("pubs.xml")), _
 DateTime.Now.AddMinutes(1), Nothing)

Cache.Insert("dsCache", dsXML, new
 System.Web.Caching.CacheDependency
 (Server.MapPath("pubs.xml")),
 DateTime.Now.AddMinutes(1), Cache.NoSlidingExpiration);

Test the caching

Add a dependency

Visual Basic .NET

C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 13

15. Right-click the Mod15VB or Mod15CS project in Solution Explorer and
click Build.

16. Right-click CacheTest.aspx, and then click Browse With… In the Browse
With dialog box, click Microsoft Internet Explorer, and then click
Browse.

17. Click Start to build the CacheTest.aspx page and view it in
Internet Explorer.

18. Leave Internet Explorer open, and in Visual Studio .NET, open the
pubs.xml file.

19. Change the title of the first book listed to a title that the students can easily
detect. Save the pubs.xml file.

20. In Internet Explorer, switch to Page 1 of the DataGrid.
If you are already viewing Page 1, switch to another page and then go back
to Page 1.

21. Show the students that the information in the DataGrid changes to reflect
the change that was made in the pubs.xml file, because the cache is
dependent on that file.

14 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Lesson: Using ASP.NET Output Caching

Multimedia: Output Caching

Output Cache Types

How to Use Page Output Caches

Demonstration: Page Output Caching

How to Use Fragment Caching

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One factor developers must consider in creating high-performance Web
applications is the need for minimizing the response time to page requests. By
storing a page, or parts of a page, in memory the first time they are requested,
and then using that stored page, or parts of that page, for later requests, you can
avoid the processing time required to recreate the page.

In this lesson, you will learn how to set up the output cache to minimize page
response times for a Web application.

After completing this lesson, you will be able to:

 Explain why you would use output caching.
 Explain the different output cache types.
 Use page output caching.
 Use page fragment output caching.

Introduction

Lesson objectives

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 15

Multimedia: Output Caching

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how the page output cache affects server
response times when an ASP.NET Web Form is requested more than once.

Introduction

16 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Output Cache Types

Page caching

Page fragment caching as a user control

XML Web service caching

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET provides page output caching, which allows you to store entire Web
Forms and user controls in server memory. After the first request, the Web
Form, user control, or XML Web service code is not executed; instead, the
cached output is used to satisfy the request.

ASP.NET creates a single output cache for each Web server. The pages and
page fragments that are stored in the output cache are unique to the Web server
and cannot be accessed by other servers in a Web server farm. As a result, the
use of the output cache to increase server performance is not scalable above the
single Web server level.

Page caching allows you to cache dynamic content. When a Web Form is
requested for the first time, the page is compiled and cached in the output
cache, and it is then available to serve the next request. This cached page is
removed when the source file is changed or the cache time-out is reached.

Sometimes it is impractical to cache an entire page, because portions of the
page may need to be dynamically created for each request. In these situations, it
may be worthwhile for you to identify the objects or data that are associated
with the page request that do not change often, and therefore do not require
significant server resources to construct. After you identify these objects or
data, you can isolate them from the rest of the page by creating them as user
controls, and then caching the user controls with the page output cache.

An example of a page fragment that would be worthwhile to cache is a page
header that contains static graphics, or a sidebar menu system.

Introduction

Page caching

Page fragment caching
as a user control

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 17

XML Web services also support caching to increase response performance. In
the WebMethod attribute, you add the CacheDuration property and set the
value to the number of seconds that the results for the XML Web service
method will remain in the output cache.

For example, the following code places the results from the WebMethod
CachedInfo into the output cache for five minutes:

<WebMethod(CacheDuration:=300)> _
Public Function CachedInfo() As String
 ...
End Function

[WebMethod(CacheDuration=300)]
public string CachedInfo()
{
 ...
}

Creating an output cache for an application should be your final task
in Web application development. Otherwise, when you debug your pages, you
may get out-of-date pages that are stored in the output cache instead of getting
new and modified pages.

XML Web service
caching

Visual Basic .NET

C#

Important

18 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

How to Use Page Output Caches

Cache content is generated from dynamic pages

Entire Web page is available in cache

Set cache duration in seconds

Set the VaryByParam property to control the number of
page variations in the cache

<%@ OutputCache Duration="900"
VaryByParam="none" %>

<%@ OutputCache Duration="900"
VaryByParam="none" %>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET provides page output caching, which allows you to store requested
Web Forms in server memory. After the first request, the Web Form code is not
executed; instead the cached output is used to satisfy the request.

To load a page into the output cache, you must add the OutputCache directive
to the Web Form. The OutputCache directive includes two properties: a
Duration property that sets the maximum storage time for the cached page in
seconds, and a VaryByParam property that determines when a new copy of the
page is created in the cache, based on parameters that are passed to the page.

Output caching allows requests for a particular page to be satisfied from the
cache so that the code that initially creates the page does not have to be run on
subsequent page requests. Using output caching to store your Web site's most
frequently accessed pages can substantially reduce your Web server's page
response time.

You can specify the cache time-out value for a page by setting the
OutputCache page directive. For example, to cache an ASP.NET page for 15
minutes, add the following OutputCache page directive to the .aspx page:

<%@ OutputCache Duration="900" VaryByParam="None"%>

The unit of time for the Duration property is seconds. The default is 0 seconds,
which means the response is not cached.

Introduction

Cache content from
dynamic pages

Entire Web page is
available in cache

Set the cache duration

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 19

The VaryByParam property is used to determine whether ASP.NET should
create different versions of the cached page in situations in which page requests
pass specific parameters. Setting the VaryByParam property to "none" means
that only one version of the page will be cached. Setting the property to "*"
means that any variation in page parameters will result in a new version of the
page being cached. Identifying one or more parameters means that only changes
to these parameters will result in new pages being cached.

For example, the following directive in an .aspx file sets an expiration of 60
seconds for the cached output of each dynamically generated page, and
therefore requires the creation of a new page in the output cache for each new
productID:

<%@ OutputCache Duration="60" VaryByParam="productID"%>

When you use the OutputCache directive, the Duration and
VaryByParam attributes are required. If you do not include those attributes, a
parser error occurs when the page is first requested. If you do not want to use
the functionality that the VaryByParam attribute provides, you must set its
value to "none".

Set VaryByParam

Caution

20 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Demonstration: Page Output Caching

Show how a page that does not cache
changes with each refresh

Show how a page that caches does not
change with each refresh

Show how changing a parameter can
cause a new page to be cached

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how page output caching affects the user’s
experience. First, you will see a page running a clock function that does not
cache. Next you will see the same page with a 10-second output cache duration.
Finally, you will see how changing the VaryByParam property controls the
caching of different versions of the page.

All files for this demonstration are in the Mod15CS or Mod15VB project in the
2310Demos solution.

 To run the demonstration

1. Open the OutputCache.aspx page in the Mod15project in
Visual Studio .NET.

2. Show the code that gets the current time and date, and then displays the
code in a label.

3. Build and browse the page.
4. Reload the page several times consecutively to show that the seconds are

changing.
5. Add the following directive to the page, after the line of code that contains

the page directive.
<%@ OutputCache Duration="10" VaryByParam="none"%>

6. Build and browse the page.
7. Reload the page several times consecutively to show that the seconds are

changing only after a 10-second interval.
8. You can add a dummy parameter ?Name=Someone to show that there is no

impact on the caching. The page is cached regardless of the value of the
parameter.

Introduction

Show how a page that
does not cache changes
with each refresh

Show how a page that
caches does not change
with each refresh

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 21

9. Open the OutputCacheVaryByParam.aspx page.
10. Show the OutputCache directive with the VaryByParam property.
11. Build and browse the page.
12. At the end of the URL, add the parameter ?Name=Someone.
13. Show the effect on the output cache when changing the value of the

?Name=Someone parameter to a ?Name=Someone2 parameter.

Show how changing a
parameter can cause a
new page to be cached

22 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

How to Use Fragment Caching

Convert the page fragment into a user control

Set the Duration and varyByParam properties

<%@ OutputCache Duration="120"
VaryByParam="none" %>

<%@ OutputCache Duration="120"
VaryByParam="none" %>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To cache only parts of a page, you must isolate those parts from the rest of the
page by placing them in a user control. You then cache the user control for a
period of time that you specify, which is known as fragment caching.

Fragment caching allows you to separate the portions of a page—such as
database queries, which take up valuable processor time—from the rest of the
page. With fragment caching, you can choose to allow only the parts of the
page that require fewer server resources, or the parts of a page that must be
created with every request, to be generated dynamically for each request.

Items that are good candidates for fragment caching include headers, footers,
and drop-down lists that are used by multiple pages.

After you identify the parts of the page that you want to cache, you must create
user controls that encapsulate each one of those fragments.

For more information on creating user controls, see Module 8, “Creating
User Controls,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET.

You set the caching policies for the user controls, such as the duration and the
number of variations stored, the same way that you set page output caching
policies. You set these caching policies declaratively, by using the
OutputCache directive.

For example, if you include the following directive at the top of a user control
file, a version of the user control is stored in the output cache for two minutes,
and only one version of the user control will be cached:

<%@ OutputCache Duration="120" VaryByParam="none"%>

Introduction

Convert fragment to a
user control

Note

Set Duration the and
VaryByParam properties

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 23

Lesson: Configuring an ASP.NET Web Application

Overview of Configuration Methods
Configuring a Web Server Using Machine.config
Configuring an Application Using Web.config
Understanding Configuration Inheritance
Demonstration: Configuration Inheritance
Practice: Determining Configuration Inheritance
Storing and Retrieving Data in Web.config
Using Dynamic Properties
Demonstration: Using Dynamic Properties

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you can deploy your ASP.NET Web application, you must organize the
Web application settings in the Machine.config and Web.config files. In this
lesson, you will learn how to configure an ASP.NET Web application.

After completing this lesson, you will be able to:

 Explain how to configure a Web application.
 Configure a Web server by using the Machine.config file.
 Configure an application by using Web.config files.
 Explain how Web.config files inherit from the Machine.config file and other

Web.config files.
 Store and retrieve data by using Web.config files.
 Use dynamic properties to store property values.

Introduction

Lesson objectives

24 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Overview of Configuration Methods

Machine.config file

Machine-level settings

Web.config files

Application and directory-level settings

Both Machine.config and Web.config files are:

Well-formed XML

camelCase

Extendable

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Configuration information for ASP.NET resources is contained in a collection
of configuration files. Each configuration file contains a nested hierarchy of
XML tags and subtags with attributes that specify the configuration settings.

The ASP.NET configuration infrastructure makes no assumptions about the
types of configuration data that the infrastructure supports.

Machine-level configuration settings are stored in the Machine.config file.
There is only one Machine.config file on each Web server. As a result, the
Machine.config file can be used to store settings that apply to all of the
ASP.NET Web applications that are residing on that Web server.

Application and directory-level settings are stored in Web.config files. Each
Web application has at least one Web.config file. Virtual directories can have
their own Web.config files containing settings that are specific to that directory.

Because the tags in Machine.config and Web.config files must be well-formed
XML, the tags, subtags, and attributes are case-sensitive. Tag names and
attribute names are camelCased, which means that the first character of a tag
name is lowercase and the first letter of any subsequent concatenated words is
uppercase. All configuration information in a .config file resides between the
<configuration> and </configuration> root XML tags.

Introduction

Machine.config

Web.config

.config file attributes

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 25

Configuring a Web Server Using Machine.config

Settings in the Machine.config file affect all Web
applications on the server

Only one Machine.config file per Web server

Most settings can be overridden at the application level
using Web.config files

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The machine configuration file, Machine.config, contains settings that apply to
an entire computer. There is only one Machine.config file for each Web server.

The Machine.config file is located in the following directory, where version is
the Microsoft .NET Framework version that is installed on the Web server:

C:\WINDOWS\Microsoft .NET \Framework\version\CONFIG\Machine.config

Settings in the Machine.config file affect all of the Web applications that are
located on the server. The configuration system first looks in the
Machine.config file for the <appSettings> element, and then looks for local
overriding settings in the application’s Web.config files.

Placing Web application settings in the Machine.config file has advantages and
disadvantages:

 Advantages of the Machine.config file
Placing settings in the Machine.config file can make your system more
maintainable because you only have one configuration file to search, edit,
and maintain.

 Disadvantages of the Machine.config file
When you deploy a Web application to a new server, the Web application
settings that are in the Machine.config file will not be copied to the new
Web server.

Introduction

Settings affect all Web
applications

26 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Configuring an Application Using Web.config

One or more Web.config files per Web application

All configuration information for the application is
contained in the Web.config files

Contains a section for each major category of ASP.NET
functionality

Security

Mode

General application settings

Tracing

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In ASP.NET, you can share the information and settings between Web pages by
storing Web application settings in a central location called the Web.config file.
You can also store local information and settings in virtual directories by
creating additional local Web.config files.

A single Web.config file is always located in the root folder of the Web
application. Additional Web.config files can be located in the folder of the
virtual directory to which they belong.

The presence of a Web.config file within a given directory is optional. If a
Web.config file is not present, all configuration settings for the directory are
automatically inherited from the parent directory, Webconfig file.

In a Web.config file, there are sections for each major category of ASP.NET
functionality, as shown in the following table.

Section name Description

<browserCaps> Responsible for controlling the settings of the browser

capabilities component.

<compilation> Responsible for all compilation settings that are used by
ASP.NET.

<globalization> Responsible for configuring the globalization settings of an
application.

<httpModules> Responsible for configuring Hypertext Transfer Protocol
(HTTP) modules within an application. HTTP modules
participate in the processing of every request to an application.
Common uses include security and logging.

<httpHandlers> Responsible for mapping incoming URLs to IHttpHandler
classes. Subdirectories do not inherit these settings.

Introduction

One or more Web.config
files per Web application

Contains a section for
each major category of
ASP.NET functionality

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 27

(continued)
Section name Description

<processModel> Responsible for configuring the ASP.NET process model

settings on Internet Information Services (IIS) Web server
systems.

<authentication>
<identity>
<authorization>

Responsible for all security settings that are used by the
ASP.NET security httpModule.

<sessionState> Responsible for configuring the session state httpModule.

<trace> Responsible for configuring the ASP.NET Trace service.

For more information on setting up security in the Web.config file, see
Module 16, “Securing a Microsoft ASP.NET Web Application,” in
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

Note

28 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Understanding Configuration Inheritance

Application-level
Web.config file inherits
settings from
Machine.config file

Settings in Web.config
file that conflict override
inherited settings

Individual directories
may have Web.config
files that inherit from—
and can override—
application-level
settings

Machine.config

Web.config

Web.config

CONFIGCONFIG

VirtualDirVirtualDir

SubDirSubDir

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a Web server receives a request for a particular Web resource, ASP.NET
determines the configuration settings for that resource hierarchically. ASP.NET
uses all of the configuration files that are located in the virtual directory path for
the requested resource. The lowest level configuration setting may override the
settings that were provided in the parent directory configuration files.

The following are the rules of inheritance for configuration files:

 Application-level Web.config files inherit settings from the Machine.config
file.

 Conflicting settings in a child Web.config file that override inherited
settings.

 Individual directories can have Web.config files that inherit from, and can
override, application-level Web.config file settings.

The highest-level file is named Machine.config. The settings in this file apply to
all ASP.NET directories and subdirectories. Machine.config is installed with
the .NET Framework, and contains many default ASP.NET settings.

For example, the default setting for the security configuration section of the
Machine.config file allows all users to access all URL resources. As a result,
every Web application allows access to all URL resources unless the setting is
overridden in Web.config.

Introduction

Machine.config

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 29

Additional configuration information for an ASP.NET Web application is
contained in configuration files that are named Web.config, which are located
in the same directories as the application files. Child directories inherit the
settings of the parent directories, unless the settings of the parent directory are
overridden by a Web.config file in the child directory.

For example, if the Web.config file in the root directory (VirtualDir) of a Web
application contains a security configuration section that allows access only to
certain users, the subdirectory SubDir inherits that security setting. As a result,
all users have access to the ASP.NET resources in the application root
directory, VirtualDir, but only certain users have access to the ASP.NET
resources in SubDir.

Web.config files for the application in VirtualDir and the subdirectory SubDir
are located in:

C:\Inetpub\wwwroot\VirtualDir\Web.config

C:\Inetpub\wwwroot\VirtualDir\SubDir\Web.config

Web.config

30 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Demonstration: Configuration Inheritance

Create a subfolder that contains a
Web.config file

Show differences between the main
Web.config file and the subfolder's
Web.config file

Demonstrate how the Web Form reads
information from the Web.config files

Delete the Web.config file from the
subfolder and refresh the Web Form

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how configuration settings are inherited
from one Web.config file to a second Web.config file that is located in a
subdirectory.

All files for this demonstration are in the Mod15CS or Mod15VB project in the
2310Demos solution.

 To run the demonstration

1. Open the 2310Demos solution.

2. In Visual Studio .NET, show the code of the Web.config file and
GetConfigMainFolder.aspx in the main folder.
Point out the value that is stored in the Web.config file.

3. Show the code of the Web.config file and GetConfigSubFolder.aspx in the
SubFolder folder.
Point out that the value that is stored in the Web.config file is different.

4. Build and browse the GetConfigMainFolder.aspx page, and highlight the
value that was retrieved from the Web.config file.

5. Click Next to open the GetConfigSubFolder.aspx page that is located in the
SubFolder folder and emphasize the fact that the value is different here.

6. In the SubFolder folder, rename the Web.config file to oldWeb.config.
7. Build and browse the GetConfigMainFolder.aspx page, and highlight the

value that was retrieved from the Web.config file.
8. Click Next to open the GetConfigSubFolder.aspx page in the SubFolder

folder, and point out that the value is the same as the value in the
Web.config file in the main directory.

Introduction

Create a subfolder that
contains Web.config

Show differences
between the main
Web.config and the
subfolder's Web.config

Delete Web.config from
the subfolder and
refresh the Web Form

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 31

Practice: Determining Configuration Inheritance

Students will:

Determine the configuration settings for a
Web application based on several
variables

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will review a Machine.config file and two Web.config files
to determine the configuration settings for the Web server, the Web application,
and the Web application subdirectory.

Review the following code from the Machine.config file. After reviewing the
code, answer the questions.

<configuration>
 <appSettings>
 <add key="Default XML File Name"
 value="Default.xml" />
 <add key="Default Text File Name"
 value="Default.txt" />
 </appSettings>
 <authentication mode="Windows">
 <forms name=".ASPXAUTH"
 loginUrl="login.aspx"
 protection="All"
 timeout="30"
 path="/">
 </forms>
 </authentication>
 <system.web>
 <trace
 enabled="false"
 localOnly="true"
 pageOutput="false"
 requestLimit="10"
 traceMode="SortByTime"
 />
 </system.web>
</configuration>

Introduction

32 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

At this level, what is the configuration setting for the authentication
mechanism?
Windows authentication.
__

__

Is there a configuration setting for a connection string? If so, what is it?
No.
__

__

Are there other application configuration settings? If so, what are their
values?
Yes. Default XML file name (Default.xml) and Default text file name
(Default.txt).
__

__

Is there a configuration setting to enable tracing for the Web application? If
so, is it possible to trace from an external computer?
No, trace is disabled.
__

__

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 33

Review the following code from a Web.config file that is located in the virtual
root directory of the Web application. After reviewing the code, answer the
questions. Consider the preceding code example when answering the questions.

<configuration>
 <appSettings>
 <add key="northwind"
 value="data source=localhost;
 initial catalog=northwind;
 integrated security=true;" />
 </appSettings>
<system.web>
 <trace
 enabled="true"
 localOnly="true"
 pageOutput="false"
 requestLimit="30"
 traceMode="SortByCategory"
 />
 </system.web>
</configuration>

At this level, what is the authentication mechanism?
Windows authentication (inherited from Machine.config file).
__

__

Is there a connection string? If so, what is it?
Yes. It is named northwind and it points to the localhost.
__

__

Are there other application settings? If so, what are their values?
Only those inherited from the Machine.config file (default file names).
__

__

Is tracing enabled for the Web application? If so, is it possible to trace from
an external computer?
Yes, tracing is enabled. However, you cannot trace from an external
computer because localOnly is set to true.
__

__

34 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Review the following code from a Web.config file that is located in a subfolder
of the Web application. After reviewing the code, answer the questions.
Consider the preceding code example when answering the questions.

<configuration>
 <appSettings>
 <add key="Northwind"
 value="data source=SQLServ01;
 initial catalog=northwind;
 integrated security=true;" />
 </appSettings>
 <authentication mode="Forms">
 <forms name=".ASPXAUTH"
 loginUrl="loginPage.aspx"
 timeout="30"
 path="/">
 …
 </forms>
 </authentication>
<system.web>
 <trace
 enabled="true"
 localOnly="false"
 pageOutput="false"
 requestLimit="40"
 traceMode="SortByTime"
 />
 </system.web>
</configuration>

At this level, what is the authentication mechanism?
Forms-based authentication.
__

__

Is there a connection string? If so, what is it?
Yes. It is named northwind and it points to a computer named
SQLServ01.
__

__

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 35

Are there other application settings? If so, what are their values?
No, just the application settings that were inherited from the
Machine.config file.
__

__

Is tracing enabled for the Web application? If so, is it possible to trace from
an external computer?
Yes, tracing is enabled, and remote tracing is also enabled.
__

__

36 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Storing and Retrieving Data in Web.config

Storing application settings in a Web.config file

Retrieving application settings from a Web.config file

<configuration>
<appSettings>

<add key="pubs" value="server=localhost;
integrated security=true; database=pubs"/>

</appSettings>
</configuration>

<configuration>
<appSettings>

<add key="pubs" value="server=localhost;
integrated security=true; database=pubs"/>

</appSettings>
</configuration>

Dim strPubs As String = _
ConfigurationSettings.AppSettings("pubs")

Dim strPubs As String = _
ConfigurationSettings.AppSettings("pubs")

AppSettingsReader App = new AppSettingsReader();

string strPubs = (string)App.GetValue("pubs",
typeof(string));

AppSettingsReader App = new AppSettingsReader();

string strPubs = (string)App.GetValue("pubs",
typeof(string));

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the <appSettings> section of the Web.config file as a repository
for application settings. In the <appSettings> section, you can create key-value
pairs for data that is commonly used throughout your Web application. Creating
key-value pairs for data is very useful because you can define all application
configuration data in a central location. For example, you can store a database
connection string for an application in a central location, instead of having it in
each ASP.NET page.

You store application settings by entering a key-value pair for the information
that you want to store. The following Web.config file creates two key-value
pairs for the connection strings for databases that are used in a Web application:

configuration>
 <appSettings>
 <add key="pubs"
 value="data source=localhost;
 initial catalog=pubs;
 integrated security=SSPI" />
 <add key="northwind"
 value="data source=localhost;
 initial catalog=northwind;
 integrated security=SSPI" />
 </appSettings>
</configuration>

Introduction

Storing application
settings in Web.config

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 37

To retrieve application settings from Web.config files, you use the
ConfigurationSettings.AppSettings static string collection.

For example, the following sample code reads the value of the pubs key from
the <appSettings> section:

Dim strPubs As String = _
 ConfigurationSettings.AppSettings("pubs")

string strPubs = System.Configuration.
 ConfigurationSettings.AppSettings["pubs"];

Retrieving application
settings from
Web.config

Visual Basic .NET

C#

38 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Using Dynamic Properties

Store property values in
Web.config files rather
than in the application's
compiled code

Allows easy updates
without recompiling the
application

Enable and configure
through object
properties

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Dynamic properties allow you to configure your application so that its property
values are stored in an external configuration file, for example Web.config,
rather than being stored in the application's compiled code. Storing in an
external configuration file can reduce the total cost of maintaining an
application, after the application has been deployed, by providing
administrators with the means to update property values that may change over
time.

While the properties of most components and controls in a Web application can
be handled dynamically, some properties are better suited to be handled
dynamically than others. For example, you will likely use dynamic properties to
store and retrieve the properties that are connected to external resources that
might change, such as databases.

For example, suppose you are building a Web application that uses a test
database during the development process and you must switch the Web
application to a production database when you deploy it. If you store the
property values inside the Web application, you have to manually change all of
the database settings before you can deploy the database, and then you will
need to recompile the source code. If you store these property values externally,
you can make a single change in the external file and the Web application will
use the new values the next time it runs.

You configure an object to use dynamic properties in the Properties window of
the object in Visual Studio .NET. Select the DynamicProperties check box in
the configuration section of the Properties window, and then set the property to
a key in Web.config.

Introduction

Store property values in
Web.config

Allows easy updates

Enable and configure
through object
properties

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 39

Demonstration: Using Dynamic Properties

Configure a SqlConnection object to use
dynamic properties

Show the newly generated code in the
code-behind page

Open Web.config file and show the
SqlConnection1.ConnectionString key in
the appSettings section

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to enable and configure a
SqlConnection object to use dynamic properties.

All files for this demonstration are in the Mod15CS or Mod15VB project in the
2310Demos solution.

 To run the demonstration

1. Open the DataAccess.aspx page in the Mod15VB or Mod15CS project in
Visual Studio .NET.

2. Select the SqlConnection object and view the Properties window.
3. Expand the DynamicProperties property.

Notice that the ConnectionString property can be a dynamic property.
4. Select the ConnectionString property and then click the “...” button.
5. In the Dynamic Property dialog box, make the property a dynamic

property with the default key name by selecting Map property to a key in
configuration file, and then click OK.

6. In the Properties window, notice the blue glyph next to the <original>
ConnectionString property of the SqlConnection object. The glyph
indicates that this is a dynamic property.

Introduction

Configure a
SqlConnection object to
use dynamic properties

40 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

7. View the newly generated code in the code-behind page and look for the
line of code that sets the ConnectionString property of the SqlConnection
object:
Me.SqlConnection1.ConnectionString = _
CType(configurationAppSettings.GetValue _
("SqlConnection1.ConnectionString", _
GetType(System.String)), String)

this.SqlConnection1.ConnectionString =
((string)(configurationAppSettings.GetValue("SqlConnection1
.ConnectionString", typeof(string))));

8. Open the Web.config file and find the SqlConnection1.ConnectionString
key in the appSettings section.

Show the newly
generated code

Visual Basic .NET

C#

Show the
SqlConnection1.
ConnectionString key

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 41

Lesson: Deploying an ASP.NET Web Application

Web Application Deployment

Preparing a Web Application for Deployment

Practice: Selecting Necessary Files

Sharing Assemblies in the Global Assembly Cache

Updating Your Web Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have set up Cache objects and the output cache, and organized the
Web application settings between the Machine.config and Web.config files, you
are ready to deploy your ASP.NET Web application.

In this lesson, you will learn how to select the files that are necessary to run the
Web application and then use XCOPY or file transfer protocol (FTP) to copy
these files to the production directory.

After completing this lesson, you will be able to:

 Explain how to deploy a Web application.
 Prepare your Web application for deployment by selecting only the files that

are necessary for running the Web application.
 Share assemblies in the Global Assembly Cache (GAC).
 Update an ASP.NET Web application.

Introduction

Lesson objectives

42 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Web Application Deployment

Copy files locally or FTP files remotely

Configure the target folder as a virtual directory in IIS

Copy all necessary files, including the \bin directory
and content

No need to register components

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To deploy an ASP.NET Web application to a production directory or server,
you must copy all of the necessary files to their proper location. This copying is
typically done by using either Windows Explorer for local copies, or the FTP
for remote deployments. This type of copying is often referred to as XCOPY
deployment, after the Microsoft MS-DOS® utility XCOPY, which copies all of
the files and folders within a directory.

Before you can deploy a Web application to a production directory, the folder
to which you will deploy your Web application must be configured as a virtual
directory in IIS.

 To Configure a folder as a virtual directory in IIS

1. On the Start menu, right-click My Computer and then click Manage.
2. Expand Services and Applications, and then expand Internet Information

Services.
3. In the left pane of the IIS console, browse to the folder that you want to

convert to a Web application directory.
4. Right-click the folder and then click Properties.
5. On the Directory tab, in the Application Settings section, click Create.
6. Click OK.

Only subsets of the files that are required to build a Web application are
required to run the Web application in the production directory. The final step
before copying the Web application should be to build the Web application and
then remove all of the unnecessary files.

Because common language runtime applications are self-describing and require
no registry entries, you do not need to register components before or after
copying files. The Web application is ready to accept requests after it has been
copied to a folder that has been configured in IIS as a Web application
directory.

Introduction

Configure the target
folder as a virtual
directory in IIS

Copy all necessary files

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 43

Preparing a Web Application for Deployment

1. Build the Web application

2. Do not select unnecessary files

Visual Studio .NET solution files (.vbproj,
.vbproj.webinfo, .csproj, .csproj.webinfo, etc.)

Resource (.resx) files

Code-behind pages (.vb, .cs)

3. Copy or FTP necessary files to the production
directory

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are three major steps required to move your Web application from the
development environment to a production directory or server:

1. Build the Web application.
2. Remove all of the unnecessary files from the Web application.
3. Copy the files to the production environment.

The first step is to build, or compile, your Web application. This compilation
creates a dynamic-link library (DLL) file in the \bin directory that contains all
of the code for the Web application. One ApplicationName.dll file is created for
each Web application; this file contains the code from all of the resource and
code-behind files.

The second step in deploying a Web application is to select only the necessary
files from the directory that contains the Web application. By not copying
unnecessary files, you increase the security of your production environment by
limiting the exposure of uncompiled code.

Introduction

Build the application

Do not select
unnecessary files

44 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

The files that are not needed in the production directory include:

 Visual Studio .NET solution files (.vbproj, .vbproj.webinfo, .csproj,
and so on)
These files are only required by Visual Studio .NET to develop the Web
application and are not required to run the Web application in production.

 Resource (.resx) files
These files are compiled into the DLL file.

 Code-behind pages (.vb, .cs)
These files are compiled into the DLL file.

You must copy the code-behind pages if you are using dynamic
compilation in your Web application. Dynamic compilation is enabled by
using the src attribute in the @ Page directive.

The files that are required on the production server include:

 The \bin directory and the DLL files that are within it.
These files are the compiled resource files and code-behind pages.

 All Web Form, user control, and XML Web service files (.aspx, .ascx,
.asmx).
These are the user and application interface files.

 Configuration files, including Web.config and global.asax.
If you have changed configuration settings in the Machine.config file on the
development computer, you must make the same changes in the
Machine.config file on the production server.

 Any additional support files that are in the directory (such as XML files).

After you have compiled the Web application and removed all of the
unnecessary files, you need only copy or FTP all of the remaining Web
application files in the development directory to the production directory.

Note

Required files

Copy or FTP the files

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 45

Practice: Selecting Necessary Files

Students will:

Select the files necessary for a
deployment

Time: 5 Minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will select the necessary files that you need to copy to the
production directory

Visual Basic .NET File Microsoft Visual C#™ File Keep Remove

.vbproj .csproj X

.vbproj.webinfo .csproj.webinfo X

.resx .resx X

.dll .dll X

.aspx .aspx X

\bin directory and content \bin directory and content X

.aspx.vb .aspx.cs X*

.csproj .vbproj X

Global.asax Global.asax X

.exe .exe X

.ascx .ascx X

.xml .xml X

Web.config Web.config X

* You can remove this file unless you use the src attribute in the @ Page
directive of the corresponding Web Form.

46 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Sharing Assemblies in the Global Assembly Cache

The global assembly cache provides storage for
assemblies you need to share

Machine-wide cache for code

Because DLL files are not registered, they are not
easily shared between Web applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each computer with the common language runtime installed also has a
computer-wide code cache called the global assembly cache. After you have
deployed your Web application to a production Web server, you can use the
GAC to share code among Web applications on the Web server.

Although the ASP.NET Cache object is used for short-term storage of
information within a Web application, the GAC can be used to share code
across the entire Web server. The GAC stores assemblies that are specifically
designated to be shared by several Web applications on a server. An assembly
is a collection of resources in a single file (for example, a dll file).

There are several reasons why you might want to install an assembly into the
GAC, including:

 Shared location
Assemblies used by multiple applications can be put in the GAC.

 File security
The GAC is installed in the WINNT directory, which typically has access
restrictions to its contents.

 Side-by-side versioning
Multiple copies of assemblies with the same name, but with different
version information, can be maintained in the GAC.

Introduction

Storage for assemblies
you need to share

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 47

Updating Your Web Application

Copy or FTP files to update the Web application

Do not need to stop and restart IIS

.dll files can be updated while the site is still running

Output cache protects existing users

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After your Web application is running on a production directory, you can
update the Web application at any time without restarting the server, IIS, or the
Web application.

With ASP.NET, when you have a new version of the Web application, you
need only copy the new files to the directory, thereby overwriting the existing
files. When the next user connects to your Web application, they receive the
most up-to-date files. Unlike earlier versions of Active Server Pages (ASP),
updating an ASP.NET Web site does not require you to stop and restart IIS.

If you enable page output caching for the Web Forms, users will continue to
receive the older versions of the pages until the cache expires. After the cached
pages expire, users will receive an updated version of that page.

Introduction

Copy or FTP files

Output cache protects
existing users

48 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Review

Using the Cache Object

Using ASP.NET Output Caching

Configuring an ASP.NET Web Application

Deploying an ASP.NET Web Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the difference between the Cache object and page output caching?
The Cache object is used to store information that is shared between
the pages in a Web application.
Page output caching is used to store copies of entire pages or page
fragments. These copies are then made available to other users who are
requesting the same page.

2. What sort of caching would you use to place a DataSet into cache?
The Cache object. You could also place the DataSet in a user control
and use page output caching for the user control.

3. Which files can you use to configure an ASP.NET Web application?
Use the Machine.config file for machine-wide configuration.
Use Web.config files for Web application and subdirectory
configurations.

4. What are the three main steps to deploying an ASP.NET Web application?
1. Build the Web application.
2. Select only the necessary files from the directory.
3. Copy the necessary files to the production directory.

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 49

5. What is the purpose of the global assembly cache?
The global assembly cache provides a mechanism that can be used for
caching assemblies that are used by multiple applications on a single
server.

6. Why can you remove the code-behind pages (.aspx.vb and .aspx.cs) when
deploying your Web application?
When you compile the Web application, all code files are compiled into
the DLL file, and the .aspx pages reference that DLL. Therefore, the
code-behind pages are no longer needed.

7. Why would you consider using dynamic properties to store the URL to an
XML Web service in Web.config?
The URL for an XML Web service may change with time. If it does
change, you only need to update the Web.config file, rather than
changing the code in your Web application and then recompiling and
redeploying your Web application.

50 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Lab 15: Configuring, Optimizing, and Deploying a
Microsoft ASP.NET Web Application

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Use the Cache object to cache a DataSet.
 Use dynamic properties.
 Use page output caching to cache a Web Form and a user control.
 Use the VaryByParam property to manipulate page caching.
 Deploy a Microsoft® ASP.NET Web application on a remote server.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

 Knowledge about how to use the Cache object.
 Knowledge about how page output caching works.
 Knowledge about using Internet Information Services (IIS).

Objectives

Note

Prerequisites

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 51

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

In this lab, you will:

 Use the Cache object to cache a DataSet.
 Use the output cache to cache a Web Form and a user control.
 Use dynamic properties to store the Uniform Resource Locator (URL) for

an XML Web service.
 Deploy the 2310LabApplication Web site on a remote server.

Scenario

Estimated time to
complete this lab:
90 minutes

52 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution named
2310LabApplication:
a. On the File menu, point to New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 53

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab15\VB\Starter\BenefitsVB
folders.
Browse to the install folder\Labfiles\Lab15\CS\Starter\BenefitsCS folder.

4. In the Files of type box of the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project.
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

54 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab15\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab15\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

 Create the Dental XML Web Service

Perform this procedure only if you have not previously created the
DentalService project, or if you have removed the DentalService project
according to the steps in Appendix A, “Lab Recovery,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new XML Web Service project, named DentalServiceVB or
DentalServiceCS, and then add it to the 2310LabApplication solution:
a. On the File menu, point to New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click ASP.NET Web Service and then set the

Location to http://localhost/DentalServiceVB or to
http://localhost/DentalServiceCS.

d. Click Add to Solution, and then click OK.

Verify that you have capitalized the DentalService project name as
shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

Caution

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 55

 Update the DentalService project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click DentalServiceVB or DentalServiceCS,

point to Add, and then click Add Existing Item.
3. Browse to the DentalService folder:

Browse to the install folder\Labfiles\Lab15\VB\Starter\DentalServiceVB.
Browse to the install folder\Labfiles\Lab15\CS\Starter\DentalServiceCS.

4. Add files to the project:
In the Files of type box of the Add Existing Item – DentalServiceVB
dialog box, click All Files (*.*).
In the Files of type box of the Add Existing Item – DentalServiceCS
dialog box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.
7. Build the DentalService XML Web service by right-clicking the

DentalService project in Solution Explorer and clicking Build.

 Add a Web reference in the Benefits project to the DentalService Web
service

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a Web reference to the DentalService XML Web
service:
a. In Solution Explorer, right-click BenefitsVB or BenefitsCS and then

click Add Web Reference.
b. In the Address text box, type:

http://localhost/DentalServiceVB/DentalService.asmx
http://localhost/DentalServiceCS/DentalService.asmx
and then press ENTER.
The DentalService Web reference is displayed.

c. Click Add Reference.
The Web reference is added to the project in the Web References folder.

2. In Solution Explorer, expand Web References, right-click localhost, and
then choose Rename.

3. Type DentalWebRef and then press ENTER.
4. Build the solution by clicking Build Solution on the Build menu.

Visual Basic .NET
Visual C#

Visual Basic .NET

Visual C#

Visual Basic .NET
Visual C#

56 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

 Install and configure the session state databases

1. From the Start menu, point to All Programs, point to Accessories, and
then click Command Prompt.
A command window opens.

2. At the command prompt, type the following command, where version is the
latest version of the Microsoft .NET Framework that is installed on your
computer, and then press ENTER:
cd\WINDOWS\Microsoft.NET\Framework\version\

The command prompt changes to the new directory.

3. At the command prompt, type the following command, and then press
ENTER:
OSQL –S localhost –E <InstallSqlState.sql

The command window displays a series of numbers and messages, and then
returns to the command prompt. The ASPState and tempdb databases have
been restored.

4. Close the command prompt, and then open Windows Explorer.
5. Browse to the following directory:

install folder\LabFiles\Lab15\VB\Starter
install folder\LabFiles\Lab15\CS\Starter

6. Double-click Lab15.bat.
This batch file runs an SQL query that configures security for the ASPState
and tempdb databases.

7. Close Windows Explorer.

Visual Basic .NET
Visual C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 57

Exercise 1
Using the Cache Object

In this exercise, you will use the Cache object to cache the DataSet object
doctors. Placing a DataSet in cache reduces the number of times a Web Form
needs to connect to the data source, in this case Microsoft SQL Server™, to fill
the DataGrid.

Because the DataGrid uses DataViews that are based on the city name selected
from the list box, you will implement caching in the Page_Load event
procedure, and in the list box’s SelectedIndexCached event procedure.

The DataGrid also implements paging. To reduce the amount of code that you
add in this lab, you will disable this feature of the DataGrid.

 Turn off paging

1. Open the doctors.aspx file.
2. Right-click the DataGrid object dgDoctors, and then choose Property

Builder.
3. Select the Paging tab, and then clear the Allow paging check box.

This will disable paging for the DataGrid. All data that is returned from the
data source will be displayed.

4. Click OK.

 Cache the DataSet in the Page_Load event procedure

1. Open the doctors.aspx.vb or doctors.aspx.cs file.
2. In the Page_Load event for doctors.aspx, find the following line of code:

If Not Page.IsPostBack Then

if (!Page.IsPostBack)

3. Add code, immediately preceding this line, that checks the cache for a key
named doctors. The code should check to see if this key is empty or does
not exist.

4. If the doctors cache key is empty or does not exist, fill the DataSet object
dsDoctors1 by using the existing DataAdapter object sqlDataAdapter1,
and then insert a new doctors key into the cache that contains the new
DataSet. Use the information in the following table to write your code.

Property
Visual Basic
.NET Value C#

Key name doctors doctors

Value DsDoctors1 dsDoctors1

Dependencies Nothing null

Absolute Expiration Four minutes Four minutes

Sliding Expiration Nothing Caching.Cache.NoSlidingExpiration

Visual Basic .NET

C#

58 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Your code should look like the following:
If (Cache("doctors") Is Nothing) Then
 SqlDataAdapter1.Fill(DsDoctors1)
 Cache.Insert("doctors", DsDoctors1, Nothing, _
 DateTime.Now.AddMinutes(4), Nothing)
End If

if (Cache["doctors"] == null)
{
 sqlDataAdapter1.Fill(dsDoctors1);
 Cache.Insert("doctors", dsDoctors1, null,
 DateTime.Now.AddMinutes(4),
 System.Web.Caching.Cache.NoSlidingExpiration);
}

5. In the Page_Load event procedure, locate the following comment:
TODO Lab 9: bind the datagrid to the doctors table

Beneath the comment, delete or comment out the following line of code:
SqlDataAdapter1.Fill(DsDoctors1)

sqlDataAdapter1.Fill(dsDoctors1);

6. In the Page_Load event procedure, find the following line of code:
dgDoctors.DataSource = DsDoctors1

dgDoctors.DataSource = dsDoctors1;

7. Set the DataSource property of dgDoctors to the cached DataSet.
Your code should look like the following:
dgDoctors.DataSource = Cache("doctors")

dgDoctors.DataSource = Cache["doctors"];

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

Visual Basic .NET

C#

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 59

 Cache the DataSet in the lstCities_SelectedIndexChanged event
procedure

1. In the lstCities_SelectedIndexChanged event procedure for doctors.aspx,
find the following line of code:
SqlDataAdapter1.Fill(DsDoctors1)

sqlDataAdapter1.Fill(DsDoctors1);

2. Remove this line of code and replace it with the same code that you added
to the Page_Load event procedure. That code checks for the presence of the
doctors cache key, and creates a new key if the doctors key does not exist
or if it is empty.

3. In the remaining code in the lstCities_SelectedIndexChanged event
procedure, change any occurrences of dsDoctors1 to the doctors cache key
and convert it to a DataSet type.
When complete, the entire lstCities_SelectedIndexChanged event
procedure should look like the following:
Dim strCity As String = _
 Trim(lstCities.SelectedItem.Value)

If (Cache("doctors") Is Nothing) Then
 SqlDataAdapter1.Fill(DsDoctors1)
 Cache.Insert("doctors", DsDoctors1, Nothing, _
 DateTime.Now.AddMinutes(4), Nothing)
End If

If strCity = "[All]" Then
 dgDoctors.DataSource = Cache("doctors")
Else
 Dim dvDocs As New DataView(CType(Cache("doctors"), _
 DataSet).Tables(0))
 dvDocs.RowFilter = "city = '" & strCity & "'"
 dgDoctors.DataSource = dvDocs
End If
reset()
dgDoctors.DataBind()

Visual Basic .NET

C#

Visual Basic .NET

60 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

string strCity = (lstCities.SelectedItem.Text).Trim();
if (Cache["doctors"] == null)
{
 sqlDataAdapter1.Fill(dsDoctors1);
 Cache.Insert("doctors",dsDoctors1, null,
 DateTime.Now.AddMinutes(4),
 System.Web.Caching.Cache.NoSlidingExpiration);
}

if (strCity == "[All]")
 dgDoctors.DataSource = Cache["doctors"];
else
{
 DataView dvDocs = new
 DataView(((DataSet)Cache["doctors"]).Tables[0]);
 dvDocs.RowFilter = "city = '" + strCity + "'";
 dgDoctors.DataSource = dvDocs;
}
reset();
dgDoctors.DataBind();

When using a cache key with a DataView object, you must perform
an explicit data type conversion because the Benefits project has Option
Strict enabled.

 Test the Page

1. Save doctors.aspx.vb or doctors.aspx.cs, and then build and browse the
page.
If you receive a SQL Permission error when trying to browse the Benefits
Web site, close Internet Explorer, open Windows Explorer, browse to
install folder\LabFiles\Lab15\VB\Starter or
install folder\LabFiles\Lab15\CS\Starter and then double-click Lab15.bat.

2. Test the drop-down list box of city names by selecting different city names.

 If time permits

1. Add a new row to the DataTable object doctors of the DataBase object
doctors by using SQL Server Enterprise Manager. You must include a
value for the dr_id, dr_fname, and dr_lname columns.

2. Refresh doctors.aspx in the browser.
Note that the new item does not appear in the DataGrid.

3. Select any city in the drop-down list box, and then select All.
Note that the new item still does not appear in the DataGrid.

4. Wait at least four minutes, and then repeat Step 3.
Note that the new row now displays in the DataGrid.

5. In SQL Server Enterprise Manager, delete the row that you added.
Note that the deleted item still appears in the DataGrid. If you wait four
minutes and then refresh the page, the deleted item no longer displays.

C#

Note

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 61

Exercise 2
Using the Page Output Cache

In this exercise, you will cache a Web Form by using the OutputCache
directive. You will also alter the VaryByParam attribute.

The medical.aspx page displays the user’s name, birth date, and the doctor the
user has selected from the doctors.aspx page. To reduce response times for this
page, you should cache the entire page by using page output caching.

 Cache the medical.aspx page

1. Open the medical.aspx page and switch to Hypertext Markup Language
(HTML) view.

2. Add an OutputCache directive that enables output caching for the entire
page. The page should remain in the cache for two minutes and should not
be updated based on the parameters that are passed to the page. You code
should look like the following:
<%@ OutputCache Duration="120" VaryByParam="none"%>

3. Save and browse the medical.aspx page.
4. Click the Select a doctor link.
5. In the doctors.aspx page, select a doctor from the DataGrid, and then click

Submit.
You are returned to the medical.aspx page, but the selected doctor’s name
does not appear next to Primary Care Physician. Why?
The page is in cache, and does not vary by any parameters passed.
When the page is first loaded into the cache, it does not display a
doctor’s name. Therefore, regardless of what information is returned to
the medical.aspx page, the page is retrieved from cache and will not
display a doctor’s name.
__

__

 Use the VaryByParam attribute

1. Return to the HTML view for the medical.aspx page.
2. Edit the OutputCache directive you added, and change the code to create a

new cached version of the page when a different doctor is selected from the
doctors.aspx page.
What is the name of the parameter that is passed from the doctors.aspx page
to the medical.aspx page?
pcp
__

__

Scenario

62 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

Your code should look like the following:
<%@ OutputCache Duration="120" VaryByParam="pcp"%>

3. Save the medical.aspx page and view it in a browser.
4. Click the Select a doctor link.
5. In Doctors.aspx, select a doctor from the DataGrid, and then click Submit.

You are returned to medical.aspx, and the selected doctor’s name appears
next to Primary Care Physician.

6. Again, click Select a doctor.
7. Select a different doctor in the DataGrid, and then click Submit.

When you are returned to medical.aspx, the Primary Care Physician box
now shows the newly selected doctor’s name.

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 63

Exercise 3
Partial Page Caching

In this exercise, you will use the page output cache to cache the user control
header.ascx. You will first add a time stamp to the header to verify that the
cache is working properly.

The user control header.ascx displays a banner at the top of each page in your
Web application. Because this information typically does not change and is
required for every page request, you should cache the information for quick
retrieval.

 Add a time stamp to the header

1. Open the header.ascx file.
2. Using a click-and-drag operation, drag a label control to the right of the text

“Benefits Selection Site.” Rename the new label control lblTime.
3. In the code-behind page for header.ascx, at the end of the Page_Load event

procedure, add code to make the lblTime label show the current time. Your
code should look like the following:
lblTime.Text = DateTime.Now.TimeOfDay.ToString()

lblTime.Text = DateTime.Now.TimeOfDay.ToString();

4. Save and then build header.ascx.
5. Browse the doctors.aspx Web Form.

Because header.ascx cannot be viewed in a browser, you must view a page
that uses the user control.
Why can you not browse header.ascx directly?
Header.ascx is a user control, and ASP.NET prevents users from
browsing user controls.
__

__

6. Refresh the browser several times.
Note that the time displayed in header.ascx changes with every refresh of
the doctors.aspx page.

Scenario

Visual Basic .NET

C#

64 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

 Add caching to the header file

1. Open header.ascx and switch to HTML view.
2. Add an Output Cache directive to the page that enables page caching with

a duration of two minutes. The cache should not change based on any
parameters that are passed. Your code should look like the following:
<%@ OutputCache Duration="120" VaryByParam="none"%>

3. Save and then build header.ascx.
4. Browse the doctors.aspx page.

Note that you do not need to rebuild doctors.aspx, because no changes were
made to this file.

5. Refresh the browser several times.
Notice that the time in header.ascx does not change with each refresh. If
time allows, wait more than two minutes and then refresh the page once
more. The header will display the current time.

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 65

Exercise 4
Using Dynamic Properties

In this exercise, you will use dynamic properties to place the URL for the
DentalService XML Web service in the Web.config file.

An XML Web service may have a URL that changes with time. If your Web
application connects to an XML Web service, you can place the URL of that
Web service in the Web.config file of your Web application. If the URL for the
XML Web service changes, you only need to update the Web.config file, rather
than changing the proxy information and rebuilding the project. Changing the
Web.config file does not require rebuilding of the Web application.

 View the current settings of the proxy

1. Open the proxy file for the DentalService XML Web service.
The proxy file is named Reference.vb or Reference.cs, and is found in
Solution Explorer under Web References\DentalWebRef\Reference.map.

If you do not see a file listed under the Reference.map file, you must
click the Show All Files icon at the top of Solution Explorer or click Show
All Files on the Project menu.

2. In Reference.vb, find the constructor named New. In Reference.cs, find the
constructor named DentalService.
What does this method do?
The code points to a hard-coded URL for the XML Web service.
__

__

3. In Solution Explorer, right-click the Web reference and choose Properties.
The Web reference is named DentalWebRef and is located in the Web
References folder.

4. In the Properties window, change the URL Behavior property setting from
Static to Dynamic.

5. When the dialog box opens, notifying you that the Reference.vb or
Reference.cs file has changed, click Yes to reload the file.

6. In Reference.vb or Reference.cs, find the constructor again.
What has changed in the constructor? What does the added code do?
New code was added that points to a key named
BenefitsVB.DentalWebRef.DentalService or
BenefitsCS.DentalWebRef.DentalService in the appSettings section of
Web.config. This key contains the URL for the XML Web service. If the
URL is not found in the Web.config file, the proxy defaults to the
original hard-coded URL.
__

__

Scenario

Tip

66 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

7. In Solution Explorer, open the Web.config file for the Benefits project.

Be sure to open the Web.config file for the Benefits project, not the
Web.config file that is associated with the DentalService XML Web service.

8. Scroll to the end of Web.config and find the appSettings element.
What information is included in the appSettings element?
The key name and the value of that key. The key name is
BenefitsVB.DentalWebRef.DentalService or
BenefitsCS.DentalWebRef.DentalService, and the value is the URL for
the XML Web service.
__

__

Note

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 67

Exercise 5
Deploying Your Site

In this exercise, you will deploy your Web site on another server. You will use
your class partner’s computer as a deployment server.

 Prepare the folder for deployment

These steps must be completed on your class partner’s computer.

1. Open Windows Explorer and browse to the directory C:\Inetpub\wwwroot.
2. Right-click Lab15VB or Lab15CS, and then click Sharing.
3. In the Lab15VB or Lab15CS Properties window, click Share this folder,

and then click OK.

The default sharing permissions in Microsoft Windows® XP
grant the Everyone group full control of the shared folder. In a controlled
laboratory environment, used for testing purposes only, this is an acceptable
setting. On a production server, you should never grant the Everyone group
access to shared folders.

 Prepare the project for deployment

1. In Visual Studio .NET, on the Debug toolbar shortcut menu,

, click Release.
2. On the Build menu, click Rebuild Solution.
3. Close Visual Studio .NET.

 Select and copy files for deployment

1. Open Windows Explorer and browse to the directory
C:\Inetpub\wwwroot\BenefitsVB or C:\Inetpub\wwwroot\BenefitsCS.

2. Select all of the files and folders in the Benefits folder.
3. On the Edit menu, click Copy.
4. In the address box in Windows Explorer, type \\partner\Lab15VB or

\\partner\Lab15CS, where partner is the name of your class partner’s
computer, and then press ENTER.

5. On the Edit menu, click Paste.
If you receive an “Access Denied” error while copying the files, you and
your partner need to complete the following steps:
a. Open Windows Explorer and browse to the C:\Inetpub\wwwroot folder.
b. Right-click Lab15VB or Lab15CS, and then choose Properties.
c. Clear the Read-only attribute, and then click OK.
d. In the Confirm Attribute Changes dialog box, click Apply changes to

this folder, subfolders, and files, and then click OK.
After your partner has completed these four steps, repeat the file copy
procedure in Step 5.

Important

68 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application

6. Open the Lab15VB or Lab15CS folder.
The folder contains all of the files from your Web site.

7. Delete the files that are not needed for deployment. Files that you can delete
include all files with the following extensions:

• .resx

• .vbproj

• .vb

• .webinfo

• .vsdisco

• .csproj

• .cs

Normally, you would delete these files before copying them to the
production server. In this lab, you delete them after copying so that you are
not deleting any files that you may use in other labs in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .Net.

8. Close Windows Explorer.

 Test the deployment

1. Open Internet Explorer.
2. In the address bar, type http://partner/Lab15VB or

http://partner/Lab15CS, where partner is the name of your partner’s
computer.
The Default.aspx page displays.

3. Browse through the site to ensure that all of the pages appear and function
as expected.

The Lab15CS and Lab15VB folders were configured as application
directories during classroom setup. Ordinarily, you would need access to the
Web server to configure this folder as a Web application.

Note

Note

 Module 15: Configuring, Optimizing, and Deploying a Microsoft ASP.NET Web Application 69

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

At a convenient time between now and the end of the course, please complete a
course evaluation, which is available at http://www.CourseSurvey.com

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Web Application Security Overview 2

Lesson: Working with Windows-Based
Authentication 13

Lesson: Working with Forms-Based
Authentication 23

Lesson: Overview of Microsoft Passport
Authentication 34

Review 37

Lab 16: Securing a Microsoft ASP.NET Web
Application 39

Module 16: Securing a
Microsoft ASP.NET
Web Application

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 16: Securing a Microsoft ASP.NET Web Application iii

Instructor Notes
This module provides students with an overview of Microsoft®
Windows®-based authentication, Forms-based authentication, and Microsoft
Passport authentication.

After completing this module, students will be able to:

 Describe the Microsoft ASP.NET and Internet Information Services (IIS)
authentication methods.

 Use Windows-based authentication to secure ASP.NET Web applications.
 Use Forms-based authentication to secure ASP.NET Web applications.
 Use Microsoft Passport to secure ASP.NET Web applications.

To teach this module, you need the following materials:

 Microsoft PowerPoint® file 2310B_16.ppt
 Multimedia file 2310B_16A001.htm
 Multimedia file 2310B_16A002.htm

To prepare for this module:

 Read all of the materials for this module.
 Complete the demonstrations and lab.

Presentation:
75 minutes

Lab:
45 minutes

Required materials

Preparation tasks

iv Module 16: Securing a Microsoft ASP.NET Web Application

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Web Application Security Overview
This section describes the instructional methods for teaching each topic in this
lesson.

Do not spend too much time on this slide. The student notes for this slide
provide a good overview of Secure Sockets Layer (SSL) and the students can
read those notes at their own pace.

Lesson: Working with Windows-Based Authentication
The How to Enable Windows-Based Authentication topic covers the four-step
process to securing Web applications by using Windows-based authentication:

1. Configure IIS.
2. Set up authentication in the Web.config file.
3. Set up authorization in the Web.config file.
4. IIS requests logon information from the users.

This topic is split between two slides. The first slide covers the first two steps
and the second slide covers the last two steps.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that all the students get the benefit
of knowing the right answers

Lab 16: Securing a Microsoft ASP.NET Web Application
Before beginning the lab, students should have completed all of the practices
and answered all of the review questions. Use the Lab Map to highlight what
parts of the solution the students will be building in this lab.

What Is Secure Sockets
Layer?

How to Enable
Windows-Based
Authentication

 Module 16: Securing a Microsoft ASP.NET Web Application 1

Overview

Web Application Security Overview

Working with Windows-Based Authentication

Working with Forms-Based Authentication

Overview of Microsoft Passport Authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Securing Web applications is a critical and a complex matter for Web
developers. A secure system requires careful planning, and Web site
administrators and developers must have an unambiguous understanding of the
options that are available to them when securing their Web applications.

Microsoft® ASP.NET synchronizes with the Microsoft .NET Framework and
Internet Information Services (IIS) to provide Web application security.

This module covers, in detail, the various Web application security methods.

After completing this module, you will be able to:

 Describe the ASP.NET and IIS authentication methods.
 Use Windows-based authentication to secure ASP.NET Web applications.
 Use Forms-based authentication to secure ASP.NET Web applications.
 Use Microsoft Passport to secure ASP.NET Web applications.

Introduction

Objectives

2 Module 16: Securing a Microsoft ASP.NET Web Application

Lesson: Web Application Security Overview

Authentication vs. Authorization

What Are ASP.NET Authentication Methods?

Multimedia: ASP.NET Authentication Methods

Comparing the ASP.NET Authentication Methods

What Are the IIS Authentication Mechanisms?

Demonstration: Using IIS Authentication Mechanisms

What Is Secure Sockets Layer?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By definition, Web applications give users access to a central resource, the Web
server, and access through it, to database servers. By understanding and
implementing suitable security measures for your Web application, you can
protect your own resources, in addition to providing a secure environment in
which your users are comfortable working.

This lesson provides an overview of different security concepts: authentication,
authorization, and IIS authentication mechanisms. You will also learn about
Secure Sockets Layer (SSL).

After completing this lesson, you will be able to:

 Describe the two fundamental security concepts for securing a Web
application.

 Describe the three ASP.NET authentication methods.
 Distinguish between the three ASP.NET authentication methods.
 Describe the four IIS authentication mechanisms.
 Describe SSL.

Introduction

Lesson objectives

 Module 16: Securing a Microsoft ASP.NET Web Application 3

Authentication vs. Authorization

Authentication

Accepts credentials from a user

Validates the credentials

Authorization

Given the authentication credentials supplied,
determines the right to access a resource

Can be assigned by user name or by role

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To work with security, you should be familiar with the two fundamental
security concepts for securing a Web application:

 Authentication
 Authorization

Authentication is the process of obtaining identification credentials, such as a
name and a password, from a user and validating those credentials against some
authority, such as a database. If the credentials are valid, the entity that
submitted the credentials is considered an authenticated identity.

For example, all users must provide a user name and password every time they
log on to a network. These credentials are then validated against an authority,
such as a database or a Microsoft Windows®–based domain server.

After an identity has been authenticated, the authorization process determines
whether that identity has access to a specified resource. The authorization
process limits access rights by granting or denying specific permissions to an
authenticated identity.

For example, you can authorize user Robert Brown to access the color printer,
but deny access to user Bob Hohman. Similarly, you can authorize only the
users of the Media group to be able to access the color printer and deny access
to the rest of the users.

Introduction

Authentication

Authorization

4 Module 16: Securing a Microsoft ASP.NET Web Application

What Are ASP.NET Authentication Methods?

Windows-based authentication

Relies on the Windows operating system and IIS

User requests a secure Web page and the request goes through IIS

After credentials are verified by IIS, the secure Web page is returned

Forms-based authentication

Unauthenticated requests are redirected to an HTML form

User provides credentials and submits the HTML form

After credentials are verified, an authentication cookie is issued

Microsoft Passport authentication

Centralized authentication service that offers a single logon option

Microsoft Passport is an XML Web service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET implements authentication through authentication methods.
ASP.NET authentication methods contain the code that is necessary to
authenticate the user’s credentials.

ASP.NET supports three types of authentication methods:

 Windows-based authentication
 Forms-based authentication
 Microsoft Passport authentication

With Windows-based authentication, the ASP.NET Web application relies on
the Windows operating system to authenticate the user. ASP.NET uses
Windows-based authentication in conjunction with IIS authentication.

With Windows-based authentication, the user requests a secure Web page from
the Web application, and the request then goes through IIS. If the user’s
credentials do not match those of an authorized user, IIS rejects the request. The
user then has to enter his or her name and password in the logon form. The
credentials are again verified by IIS. If correct, IIS directs the original request to
the Web application. The secure Web page is then returned to the user.

Forms-based authentication refers to a system where non-authenticated requests
are redirected to a Hypertext Markup Language (HTML) form by using
Hypertext Transfer Protocol (HTTP) client-side redirection. The user provides
credentials and submits the form. If the application validates the credentials on
the form, the system issues an authentication cookie to the user. Subsequent
requests from the user are issued with the authentication cookie in the request
headers, and then the user is authenticated based on those request headers.

Passport authentication is a centralized authentication service, provided by
Microsoft, which offers a single logon option and core profile services for
member sites. Users that sign up to use Passport are authenticated to access
Web sites by using a single Passport account. Microsoft Passport is an XML
Web service, and it is an integral part of the .NET Framework.

Introduction

Authentication methods

Windows-based
authentication

Forms-based
authentication

Microsoft Passport
authentication

 Module 16: Securing a Microsoft ASP.NET Web Application 5

Multimedia: ASP.NET Authentication Methods

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see the three types of authentication methods that
you can use to secure ASP.NET Web applications:

 Windows-based authentication
 Forms-based authentication
 Microsoft Passport authentication

Introduction

6 Module 16: Securing a Microsoft ASP.NET Web Application

Comparing the ASP.NET Authentication Methods

Single sign in for many
Internet sites
No need to maintain a
database to store user
information
Allows developers to
customize the appearance of
the registration page

Good for Internet applications
Supports all client types

Uses existing Windows
infrastructure
Controls access to sensitive
information

AdvantagesAdvantages

Based on cookies
Fees involved

Microsoft
Passport
Authentication

Based on cookiesForms-based
Authentication

Not appropriate
for most Internet
applications

Windows-based
Authentication

DisadvantagesDisadvantagesMethodMethod

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each of the three authentication methods supported by ASP.NET, Windows-
based, Forms-based, and Microsoft Passport, are best suited for specific
situations. Each method has significant advantages and disadvantages.

Windows-based authentication uses the existing Windows infrastructure, and,
therefore, it is best suited to situations in which you have a fixed number of
users with existing Windows user accounts. Two such situations are:

 If you are developing an intranet for your organization. Your organization
might already have Windows user accounts configured for each employee.

 If you need to control access to sensitive information. For example, you
might want users in the Human Resources group to have access to
directories containing employee resumes and salary details. You can use
Windows-based authentication to prevent employees in other Windows
groups, such as the Developers group, from accessing these sensitive
documents.

The disadvantage of Windows-based authentication is that it is not suitable for
most Internet applications. For example, if you are building a public user
registration and password system, Windows-based authentication is not a good
authentication option. With Windows-based authentication, a valid Windows
user account must be configured for each user who accesses a restricted page.
The process of adding new user accounts cannot be easily automated.

Introduction

Windows-based
authentication

 Module 16: Securing a Microsoft ASP.NET Web Application 7

Forms-based authentication is a good solution if you want to set up a custom
user registration system for your Web site. The advantage of this type of
authentication is that it enables you to store user names and passwords in
whatever storage mechanism you want, such as the Web.config file, an
Extensible Markup Language (XML) file, or a database table.

Forms-based authentication relies on cookies to determine the identity of the
user. After Forms-based authentication is enabled, the requested page cannot be
accessed by the user unless a specific cookie is found on the client. If this
cookie is not found, or if the cookie is invalid, ASP.NET rejects the request and
returns a logon page.

Microsoft Passport authentication has several advantages, including:

 It allows users to use the same user name and password to sign into many
Web sites; therefore, users are less likely to forget their passwords. For
example, both Microsoft Hotmail® and Microsoft MSN® use Microsoft
Passport to authenticate users.

 You do not need to set up and maintain a database to store user registration
information. Microsoft does all of that maintenance for you.

 It provides you with options to customize the appearance of the registration
and sign-in pages by supplying templates.

There are two disadvantages with using Microsoft Passport authentication.
First, there is a subscription fee to use the Microsoft Passport service. Second,
Microsoft Passport authentication is based on cookies.

Forms-based
authentication

Microsoft Passport
authentication

8 Module 16: Securing a Microsoft ASP.NET Web Application

What Are the IIS Authentication Mechanisms?

High

Medium

Low
(Medium with
SSL)

None

Security LevelSecurity Level

Uses either NTLM or Kerberos
Generally good for intranets, not
Internet
Does not work through most firewalls

Integrated
Windows

Sends information as encoded hash
Requires Internet Explorer 5 or later
Requires Active Directory

Digest

Client sends username and password
as clear text
Can be encrypted by using SSL
Part of the HTTP specification and
supported by most browsers

Basic

No authentication occursAnonymous

DescriptionDescriptionMechanismsMechanisms

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you can use Windows-based authentication, you must first configure
IIS. When a user requests a page that requires authorization, the user must be
authenticated through IIS.

IIS provides several mechanisms that can be used for establishing
authentication, including:

 Anonymous access
 Basic authentication
 Digest authentication
 Integrated Windows security

For Web applications where unknown users will be making requests, typically
public Web applications, IIS supports an anonymous user, one who has no
authentication credentials. When IIS gets a request from an anonymous user,
IIS in turn makes the request to Windows by using the default
IUSR_machinename account.

The default account IUSR_machinename can be changed through the IIS
snap-in.

IIS also supports a Basic authentication model. In Basic authentication, users
without credentials are prompted to supply a user name and password. These
details are returned to IIS where they become available to the Web application.
The advantage of Basic authentication is that it is part of the HTTP
specification and it is supported by most browsers. Basic authentication
provides a useful way to provide restricted access to a public Web application.

However, because the user passes a user name and password to IIS as clear text,
Basic authentication is not highly secure. To increase the security level, use
SSL to encrypt user names and passwords as they are transmitted across the
network.

Introduction

Anonymous access

Note

Basic authentication

 Module 16: Securing a Microsoft ASP.NET Web Application 9

Digest authentication is similar to Basic authentication, but it uses encryption to
send user information to the server. If Anonymous access is disabled, users are
prompted for their credentials (logon information). The browser combines this
logon information with the other information that is stored on the client, and
then sends an encoded hash called an MD5 hash (also known as Message
Digest) to the server. The server already has a copy of this information and it
recreates the original details from its own hash and authenticates the user. This
mechanism works only with Microsoft Internet Explorer 5 and later, but it does
pass through firewalls, proxy servers, and over the Internet.

However, Digest authentication only works with Active Directory® directory
service domain accounts.

For more information about configuring Active Directory domain
accounts to allow Digest authentication, see the IIS documentation.

If the user making the request has already been authenticated in a Windows-
based network, IIS can pass the user’s credentials through when requesting
access to a resource. The credentials do not include the user name and
password, only an encrypted token indicating the user’s security status.

Integrated Windows security works with Microsoft Windows NT® Local Area
Network (LAN) Manager or Kerberos. Integrated Windows security also uses a
hash algorithm to code and decode the user’s credentials.

However, Integrated Windows security is not practical in Web applications that
must go through firewalls. Therefore, it is best suited for a corporate intranet
scenario.

When you configure IIS, you can use multiple IIS authentication
mechanisms. You can check Anonymous and other authentication methods,
such as Basic, Digest, or Integrated Windows. If you use multiple IIS
authentication mechanisms, and if Anonymous authentication fails, the Web
server attempts to use Basic, Digest, or Integrated Windows authentication,
depending on which ones are selected.

Digest authentication

Note

Integrated Windows
security

Note

10 Module 16: Securing a Microsoft ASP.NET Web Application

Demonstration: Using IIS Authentication Mechanisms

Right-click Mod16 and then click Properties

Click Directory Security tab

Click Edit

Show the authentication
methods

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see the dialog box that is used to set up the IIS
authentication mechanisms.

 To run the demonstration

1. On the Start menu, right-click My Computer and then click Manage.
2. In the Computer Management console, expand Services and

Applications, expand Internet Information Services, expand Web Sites,
and then expand Default Web Site.

3. Right-click the Mod16VB or Mod16CS Web application and then click
Properties.

4. In the Mod16VB or Mod16CS Properties dialog box, on the Directory
Security tab, in the Anonymous access and authentication control
section, click Edit.

5. Show the authentication methods available.

Introduction

 Module 16: Securing a Microsoft ASP.NET Web Application 11

What Is Secure Sockets Layer?

SSL is a protocol used for transmitting data securely
across a network. SSL secures data through:

Data encryption
-Ensures that the data sent is read only by a secure target server

Server authentication
-Ensures that data is sent to the correct server
-Uses the server and client certificates

Data integrity
-Protects the integrity of the data
-Includes a message authentication code that detects whether a
message is altered

Uses Hypertext Transfer Protocol Secure to retrieve an ASP.NET Web
page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

IIS provides users with a secure communication channel by supporting the SSL
protocol and RSA Data Security encryption on both the server and client.

RSA stands for Rivest, Shamir, and Adleman, which are the names of the
scientists who created this algorithm.

SSL is a protocol that is used for transmitting data securely across a network.
SSL secures data communication through:

 Data encryption
 Server authentication
 Data integrity

When you enter information into an HTML form and submit it to a Web site,
the information is then transmitted from your browser to the Web site server.
As the information is transmitted, the data entered into the form can be
intercepted and read.

SSL encrypts the information as it is transmitted back and forth between a Web
server and a Web browser. The information is encrypted by using a publicly
known algorithm and a session key. The Web server generates a public key that
any client can use. The client generates a session key and uses the public key to
encrypt it before sending it to the Web server. Data is transferred by using this
session key.

The number of bits in the session key determines the strength of encryption. By
default, IIS supports a 40-bit session key. However you have the option of
upgrading IIS to use a stronger 128-bit session key.

Introduction

Note

What is SSL?

Data encryption

12 Module 16: Securing a Microsoft ASP.NET Web Application

The following table shows the advantages and disadvantages of using 40-bit
and 128-bit session keys.

Session key Advantage Disadvantage

40-bit session key Communication is much

faster.
Not very secure, messages have
been cracked.

128-bit session key Very secure, messages
encrypted with 128-bit
session key are
considered unbreakable.

Communication is significantly
slowed; the longer the key, the
more work the server and browser
must perform to encrypt and
decrypt the message.

Server authentication ensures that the data is sent to the correct server and that
the server is secure.

For example, you may visit a Web site that appears to be an e-commerce Web
site that you often access. The Web site appears to be the same familiar Web
site in every way and you provide your credit card information to buy an item.
However, a person who wants to deceive you could create a Web site that is
identical to the genuine e-commerce Web site and steal your credit card
information.

To prevent one Web site from impersonating another, you would use SSL to
authenticate a Web site. When you install SSL on your Web server, you must
install a server certificate. The server certificate contains information about
your organization, your Web site, and the issuer of the certificate.

To work as a digital ID, a server certificate must be signed by a certificate
authority. A certificate authority acts as a trusted third-party that verifies the
identity of a Web site for its users.

SSL also supports client certificates. The client certificates are used to
authenticate Web browsers instead of Web servers.

SSL protects the integrity of the data as it is passed between the Web server and
Web browsers. SSL ensures that the data that was received by the target server
is not altered in any way.

When messages are transmitted with SSL, they include a message
authentication code. This code detects whether a message has been altered.

After you configure your server to use SSL, you can request any page from
your Web site by using a secure connection. To retrieve a Web page, SSL uses
Hypertext Transfer Protocol Secure (HTTPS). For example, an address with the
form https://www.yourdomain.com/login.aspx rather than
http://www.yourdomain.com/page.aspx.

This form works for any page on your Web site.

ASP.NET provides the Request.IsSecureConnection property that
allows you to determine if you are on a secure https connection or not.

Server authentication

Server certificate

Client certificate

Data integrity

Using SSL in ASP.NET
pages

Note

 Module 16: Securing a Microsoft ASP.NET Web Application 13

Lesson: Working with Windows-Based Authentication

How to Enable Windows-Based Authentication

Reading User Information

Demonstration: Using Windows-Based Authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Windows-based authentication should be used to secure Web applications when
you know which users will be accessing your Web site.

In this lesson, you will learn the procedure to use Windows-based
authentication to secure your Web applications.

After completing this lesson, you will be able to:

 Use Windows-based authentication to secure Web applications.
 Read the identity of the user who is authenticated by using Windows-based

authentication.

Introduction

Lesson objectives

14 Module 16: Securing a Microsoft ASP.NET Web Application

How to Enable Windows-Based Authentication

Configure IIS to use one or more of the following
authentication mechanisms:

Basic

Digest

Integrated Windows security

Set Windows-based authentication in Web.config

111

222

<system.web>
<authentication mode="Windows" />

</system.web>

<system.web>
<authentication mode="Windows" />

</system.web>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Securing Web applications by using Windows-based authentication is a
four-step process:

1. Configure IIS.
2. Set up authentication in Web.config.
3. Set up authorization in Web.config.
4. IIS requests logon information from the users.

The first step in securing Web applications by using Windows-based
authentication involves configuring IIS by using one or more of its three
authentication mechanisms:

 Basic authentication
 Digest authentication
 Integrated Windows security

Typically, you enable either Basic authentication or Integrated Windows.
If you want your Web application to be compatible with Netscape browsers,
you should use Basic authentication. If you are not using a firewall or proxy
server, you can use Integrated Windows.

Introduction

Configure IIS

Note

 Module 16: Securing a Microsoft ASP.NET Web Application 15

The second step in securing Web applications by using Windows-based
authentication is to set ASP.NET security to Windows-based authentication in
Web.config. The security settings in Web.config are included in the
<authentication>, <authorization>, and <identity> sections.

Set the authentication method to “Windows” for the application in an
<authentication> subsection of the <system.web> section in Web.config, as
shown in the following example:

<system.web>
 <authentication mode="Windows" />
</system.web>

Set up authentication

16 Module 16: Securing a Microsoft ASP.NET Web Application

How to Enable Windows-Based Authentication (continued)
Set up authorization in Web.config

When users access the
Web Form, IIS requests
logon information

<location path="ShoppingCart.aspx">
<system.web>

<authorization>
<deny users="?"/>

</authorization>
</system.web>

</location>

<location path="ShoppingCart.aspx">
<system.web>

<authorization>
<deny users="?"/>

</authorization>
</system.web>

</location>

444

333

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Securing Web applications by using Windows-based authentication is a
four-step process:

1. Configure IIS.
2. Set up authentication in Web.config.
3. Set up authorization in Web.config.
4. IIS requests logon information from the users.

You learned about the first two steps in the previous topic. This topic covers the
last two steps.

To indicate that only specific pages are secure, you must create a <location>
section with <system.web> and <authorization> subsections for each secure
page in your Web application:

<location path="ShoppingCart.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

Any configuration settings that are contained in the <location> section will be
directed to the file or directory that is indicated in the path attribute. There can
be multiple <location> sections within the <configuration> section.

The <location>section can be an ASP.NET Web Form or a folder. If you
specify a folder name, all of the subfolders under it are secure. If you want to
secure multiple Web Forms or folders, use multiple <location> sections.

Introduction

Set up authorization

Note

 Module 16: Securing a Microsoft ASP.NET Web Application 17

In the <system.web> section, you create an <authorization> subsection to
specify what type of authorization will be enforced. Create <allow> or <deny>
tags to allow or deny users access to a page. Within these tags, “?” indicates
anonymous users, whereas “*” means all users.

For example, the following code denies access to all anonymous users:

<authorization>
 <deny users="?" />
</authorization>

The following code allows the user “Mary” access to a page:

<authorization>
 <allow users="Mary" />
</authorization>

It is not advisable to authorize users individually, because this process
may disclose sensitive information if the Web.config file is stolen. In addition,
hard coding users in the Web.config file is not a flexible approach because you
cannot modify this information programmatically at runtime. Hard coding users
in the Web.config file is suitable for testing purposes only.

The following code denies all anonymous users access to the
ShoppingCart.aspx page:

<location path="ShoppingCart.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

After specifying the authentication mode, you need to either mark the entire
Web application as needing authorization, or specify which pages are secure
and therefore require authorization.

To mark the entire application as secure, create an <authorization> section
within the <system.web> section, as shown in the following code example:

<system.web>
 <authorization>
 <deny users="?" />
 </authorization>
</system.web>

Note

18 Module 16: Securing a Microsoft ASP.NET Web Application

You use the <identity> element to enable impersonation. Impersonation allows
the server to execute code under the security context of a request entity or as an
anonymous user. In ASP.NET, impersonation is optional, and, by default, it is
disabled.

The <identity> element must be under the <system.web> section in the
Web.config or Machine.config file. The following code shows the syntax that is
used with the <identity> element:

<identity impersonate="true|false"
 username="username"
 password="password" />

In the preceding code, the username and password attributes specify the
credentials to use if impersonate is set to true.

A special Windows account named ASPNET is used if impersonate is set to
false, which is the default value.

The last step in the process of enabling Windows-based authentication is when
users try to access a Web Form from your Web application and IIS requests
logon information from the user. The user must provide his or her user name
and password. If the user’s credentials are approved by IIS, the user gets access
to the requested, secure Web page.

IIS requests logon
information from users

 Module 16: Securing a Microsoft ASP.NET Web Application 19

Reading User Information

After authentication, the Web server can read the user
identity

lblAuthUser.Text = User.Identity.Name
lblAuthType.Text = User.Identity.AuthenticationType
lblIsAuth.Text = User.Identity.IsAuthenticated

lblAuthUser.Text = User.Identity.Name
lblAuthType.Text = User.Identity.AuthenticationType
lblIsAuth.Text = User.Identity.IsAuthenticated

lblAuthUser.Text = User.Identity.Name;
lblAuthType.Text = User.Identity.AuthenticationType;
lblIsAuth.Text = User.Identity.IsAuthenticated;

lblAuthUser.Text = User.Identity.Name;
lblAuthType.Text = User.Identity.AuthenticationType;
lblIsAuth.Text = User.Identity.IsAuthenticated;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After the process of Windows-based authentication is complete, the Web server
can read the user identity from any Web page of the Web application.

The Web server can read the user identity by using User.Identity.Name. The
Web server can also identify the IIS authentication mechanism that is used to
authenticate the user by using User.Identity.AuthenticationType. In addition,
the Web server can also test if the user is authenticated by using
User.Identity.IsAuthenticated.

The following code example shows how to write the code to allow the Web
server to read user identity:

lblAuthUser.Text = User.Identity.Name
lblAuthType.Text = User.Identity.AuthenticationType
lblIsAuth.Text = User.Identity.IsAuthenticated

lblAuthUser.Text = User.Identity.Name;
lblAuthType.Text = User.Identity.AuthenticationType;
lblIsAuth.Text = User.Identity.IsAuthenticated;

User.Identity is an object of the WindowsIdentity class.

Introduction

Visual Basic .NET

C#

Note

20 Module 16: Securing a Microsoft ASP.NET Web Application

Demonstration: Using Windows-Based Authentication

Open IIS and configure with Anonymous
authentication only

Create a new user on the local machine

Open Web.config and configure it for
authentication and authorization

Run the secure ASP.NET Web application

Students can access the secure
ASP.NET Web application on the
Instructor machine

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to set up IIS to use Windows-based
authentication with Basic IIS authentication. You will then see how to create a
new user on the local server, and how to set up authentication and authorization
in Web.config. Then, you will see some demonstrations of accessing secure and
non-secure pages. Finally, you will be able to connect to a secure page on the
Instructor computer.

The files for this demonstration are in the Mod16VB or Mod16CS project in
the 2310Demos solution.

 To run the demonstration

1. Right click My Computer and then click Manage.
2. Expand Services and Applications, expand Internet Information

Services, and then click Web Sites.
3. Right click Default Web Site and then click Properties.
4. Click the Directory Security tab, and then click Edit to open the

Authentication Methods dialog box in IIS.
5. Select the Basic authentication (password is sent in clear text) check box

and click Yes in the Internet Service Manager dialog box.

Make sure that the Anonymous access check box is selected. Verify that
the Digest authentication for Windows domain servers check box and the
Integrated Windows authentication check box are cleared.

6. Type machinename in the Default domain field, because this demonstration
will be done with a local account that was created on this computer.

7. Click OK to close the Authentication Methods dialog box of IIS.
8. Click OK to close the Default Web Site Properties dialog box. In the

Inheritance Overrides dialog box, click OK.

Introduction

Set IIS with Basic
authentication

Note

 Module 16: Securing a Microsoft ASP.NET Web Application 21

9. In the Computer Management console, expand System Tools, and then
expand Local Users and Groups.

10. Right-click the Users folder and then click New User:
Enter the following information in the New User dialog box.
Field Name Value

User name someone

Full name someone

Description someone demo account

Password Secret1

Confirm password Secret1

a. Clear the User must change password at next logon check box.
b. Select the User cannot change password check box.
c. Click Create and then click Close.
In the right-hand window of the Computer Management dialog box, you
should see the user someone.

11. Open the Mod16VB or Mod16CS project and view the Web.config file in
Microsoft Visual Studio® .NET.
There is an <authentication> section set up with Windows-based
authentication.
There are two <location> sections that are needed to secure two pages:
SecurePageDemo1.aspx and SecurePageDemo2.aspx. With the current IIS
setting, if a user tries to access one of these pages, Basic authentication will
be used. If a user tries to access the other pages, Anonymous authentication
will be used.

12. Open the SecurePageDemo1.aspx code-behind page and explain the code
User.Identity.Name and User.Identity.AuthenticationType.

No Imports statement is required to use User.Identity.xxx.

13. Build the Mod16VB or Mod16CS project in the 2310Demos solution.
14. Open a new browser and browse to:

http://localhost/Mod16VB/NonSecurePageDemo.aspx
http://localhost/Mod16CS/NonSecurePageDemo.aspx

15. Browse to:
http://localhost/Mod16VB/SecurePageDemo1.aspx
http://localhost/Mod16CS/SecurePageDemo1.aspx
Show that the Connect to localhost dialog box appears.

16. Click Cancel and show that you get a Server Error because access is denied.
17. Browse to:

http://localhost/Mod16VB/SecurePageDemo2.aspx
http://localhost/Mod16CS/SecurePageDemo2.aspx
Show that the Connect to localhost dialog box also appears.

Create a new user on the
local computer

Show the security
settings in the
Web.config file

Display the name and
authentication type on a
Web Form.

Note

Visual Basic .NET
C#

Visual Basic .NET
C#

Visual Basic .NET
C#

22 Module 16: Securing a Microsoft ASP.NET Web Application

18. Type the credentials User name as someone and Password as Secret1 and
then click OK.

19. You should see the user name someone and authentication type Basic
displayed on the SecurePageDemo2.aspx page.
You can now access any secured pages, as long as you do not close the
browser. If you close the browser, you have to go through the authentication
process again.

20. Browse to :
http://localhost/Mod16VB/SecurePageDemo1.aspx
http://localhost/Mod16CS/SecurePageDemo1.aspx
Show that this time you are not asked to enter your credentials.

21. Tell the students to browse to:

http://Instructormachinename/Mod16VB/SecurePageDemo1.aspx
http://Instructormachinename/Mod16CS/SecurePageDemo1.aspx
Type the credentials someone and Secret1 when prompted.
After entering the credentials, students should be able to see
SecurePageDemo1.aspx and SecurePageDemo2.aspx.

Visual Basic .NET
C#

Students access the
instructor computer

Visual Basic .NET
C#

 Module 16: Securing a Microsoft ASP.NET Web Application 23

Lesson: Working with Forms-Based Authentication

Overview of Forms-Based Authentication

Multimedia: Forms-Based Authentication

How to Enable Forms-Based Authentication

Creating a Logon Page

Demonstration: Using Forms-Based Authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The most commonly used authentication method to secure ASP.NET Web
applications is Forms-based authentication.

In this lesson, you will learn about the Forms-based architecture, and learn the
steps to enable Forms-based authentication. You will also learn how to set up
security in Web.config, and to create a logon page.

After completing this lesson, you will be able to:

 Identify the set of events that takes place during Forms-based
authentication.

 Identify the steps to enable Forms-based authentication.
 Set up authentication and authorization in a Web.config file.
 Describe how to create a logon page.

Introduction

Lesson objectives

24 Module 16: Securing a Microsoft ASP.NET Web Application

Overview of Forms-Based Authentication

Client requests page

Authorized

ASP.NET Forms
Authentication

Not
Authenticated

Authenticated

Logon Page
(Users enter
their credentials)

Authenticated

Authentication
Cookie

Authorized

Not
Authenticated

Access Denied

Requested
Secure Page

IIS

Username

Password
Someone

SubmitSubmit

111 222

333

444666

555
777

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a user requests a Web page that is protected by Forms-based
authentication, the request must first go through IIS. Therefore, you must set
IIS authentication to Anonymous access. Setting IIS to anonymous requires that
all requests go through ASP.NET before being authenticated.

The following is the set of events that takes place during Forms-based
authentication:

1. A client generates a request for a protected .aspx page.
2. IIS receives the request and passes it to ASP.NET. Because the

authentication mode is set to Anonymous access, the request goes directly
through IIS.

3. ASP.NET checks to see if a valid authentication cookie is attached to the
request. If it is, this means that the user’s credentials have already been
confirmed, and that the request is tested for authorization. The authorization
test is performed by ASP.NET, and it is accomplished by comparing the
credentials that are contained in the request’s authorization cookie to the
authorization settings that are in the Web.config file. If the user is
authorized, access to the requested secure page is granted.

4. If there is no cookie attached to the request, ASP.NET redirects the request
to a logon page (the path of which resides in the application’s configuration
file), where the user enters the required credentials, usually a name and
password.

Introduction

Set of events that takes
place during Forms-
based authentication

 Module 16: Securing a Microsoft ASP.NET Web Application 25

5. The application code on the logon page checks the credentials to confirm
their authenticity and, if authenticated, attaches a cookie containing the
credentials to the request.

6. If authentication fails, the request is returned with an “Access Denied”
message.

7. If the user is authenticated, ASP.NET checks authorization, as in Step 3, and
can then either allow access to the originally requested secure page or
redirect the request to another page, depending on the design of the
application.
Alternatively, ASP.NET can direct the request to some custom form of
authorization where the credentials are tested for authorization to the
protected page. Usually if authorization fails, the request is returned with an
“Access Denied” message.

26 Module 16: Securing a Microsoft ASP.NET Web Application

Multimedia: Forms-Based Authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how Forms-based authentication works with a
non-authenticated client, and with an authenticated client. The steps are as
follows:

1. When a non-authenticated client requests a secure page on the Web server,
the request first goes through IIS.

2. Because IIS must be configured as Anonymous to use Forms-based
authentication, the request goes straight to the ASP.NET Forms
authentication module.

3. ASP.NET checks if the client has an authentication cookie. Because this is
the users’ first visit to the page, he or she will not yet have a cookie. If the
client does not have an authentication cookie, the client is redirected to a
logon page.

4. The users can then enter their credentials in the logon page.
5. At this point, the user credentials are checked. In a large number of

applications, the user’s credentials are tested against a database of users.
6. If the credentials are not recognized by the application, then access is

denied.
7. If the credentials are recognized by the application, an authentication cookie

is created and the client is authorized to access the page. The client is then
redirected to the page that the user originally wanted to access.

8. When an authenticated client requests a page on the Web server, the
authentication cookie travels with the request.

9. The request goes first through IIS and then goes straight to the ASP.NET
Forms authentication module because IIS is still set to Anonymous access.

10. The ASP.NET Forms authentication module checks the authentication
cookie, and if the cookie is valid the client is authorized to see the requested
secure page.

Introduction

 Module 16: Securing a Microsoft ASP.NET Web Application 27

How to Enable Forms-Based Authentication

Configure IIS to use Anonymous authentication

Set Forms-based authentication in Web.config

Set up authorization

Build a Logon Web Form

111

222

333

444

<authentication mode="Forms" >
<forms name=".namesuffix"
loginUrl="login.aspx" />

</authentication>

<authentication mode="Forms" >
<forms name=".namesuffix"
loginUrl="login.aspx" />

</authentication>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To enable Forms-based authentication for your Web application, you must
complete the following four steps:

1. Configure IIS to use Anonymous authentication so that the user is
authenticated by ASP.NET and not by IIS.

2. Set the authentication method to Forms-based for the application in an
<authentication> subsection of the <system.web> section in Web.config, as
shown in the following example:
<system.web>
 <authentication mode="Forms">
 <forms name=".namesuffix" loginUrl="login.aspx" />
 </authentication>
</system.web>

If you set the authentication mode to “Forms”, you must add a <forms>
element to the <authentication> section, as shown in the preceding example.
In the <forms> section, you configure the settings of the cookie. Set the
name attribute to the suffix to be used for the cookies and the loginUrl
attribute to the Uniform Resource Locator (URL) of the page to which
unauthenticated requests are redirected.

3. Set up the <authorization> section in Web.config. The process of setting up
authorization for Forms-based authentication is identical to the one you
learned with Windows-based authentication.
By setting the <authorization> section in Web.config, you can deny or allow
users access to your Web application. You can also mark the entire Web
application as needing authorization or specify which pages are secure and
therefore require authorization.

4. Build a logon Web Form, login.aspx. Login.aspx can be a simple page with
two fields for a user name and a password. Login.aspx requires the users to
enter their user name and password to establish authentication and to access
your Web application.

Introduction

Enabling Forms-based
authentication
Setting up
authentication

Setting up authorization

Build a logon Web Form

28 Module 16: Securing a Microsoft ASP.NET Web Application

Creating a Logon Page

Reference System.Web.Security
Logon page verifies and checks the credentials of a user

Reading user credentials from a cookie
User.Identity.Name returns the value saved by
FormsAuthentication.RedirectFromLoginPage

Sub cmdLogin_Click(s As Object, e As eventArgs)
If (login(txtEmail.Text, txtPassword.Text))
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, False)

End If

End Sub

Sub cmdLogin_Click(s As Object, e As eventArgs)
If (login(txtEmail.Text, txtPassword.Text))
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, False)

End If

End Sub

private void cmdLogin_Click(object sender, EventArgs e)
{
if (login(txtEmail.Text, txtPassword.Text))
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, false);

}

private void cmdLogin_Click(object sender, EventArgs e)
{

if (login(txtEmail.Text, txtPassword.Text))
FormsAuthentication.RedirectFromLoginPage(txtEmail.Text, false);

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

During authentication, all requests are redirected to the logon page that is
specified in the loginUrl attribute of the <forms> tag. The logon page verifies
and checks the credentials of a user.

If the authentication mode is set to “Forms”, ASP.NET looks for an
authentication cookie attached to a request for a secure page. If ASP.NET does
not find the authentication cookie, it redirects the request to the specified logon
page.

On the logon page, the user enters the required credentials. The page checks the
entered credentials, either through application-specific code or by calling
FormsAuthentication.Authenticate. If the credentials are valid, a cookie is
generated and the user is redirected to the originally requested page by calling
FormsAuthentication.RedirectFromLoginPage. However, if the credentials
are not valid, the user stays on the logon page and is given a message that
indicates that the logon credentials are invalid.

The RedirectFromLoginPage method takes two parameters: userName,
which specifies the name of the user for Forms-based authentication purposes,
and createPersistentCookie. If the value of createPersistentCookie is true, a
persistent authentication cookie, a cookie that is written to the client file
system, is created on the user’s computer. Otherwise, a temporary
(non-persistent) authentication cookie is created.

Introduction

How does a logon page
work?

 Module 16: Securing a Microsoft ASP.NET Web Application 29

The following table lists all of the methods of the FormsAuthentication object,
which can be used in the authentication process.

Method Function

Authenticate Given the supplied credentials, this method attempts to

validate the credentials against those that are contained in
the configured credential store.

GetAuthCookie Creates an authentication cookie for a given user name.
This does not set the cookie as part of the outgoing
response; therefore, an application can have more control
over how the cookie is issued.

GetRedirectUrl Returns the redirected URL for the original request that
caused the redirect to the logon page.

RedirectFromLoginPage Redirects authenticated users back to the original URL
that they requested.

SetAuthCookie Creates an authentication ticket for the given userName
and attaches it to the cookies collection of the outgoing
response. It does not perform a redirect.

SignOut Given an authenticated user, calling SignOut removes
the authentication ticket by doing a SetCookie with an
empty value. This removes either durable or session
cookies.

To be able to use the FormsAuthentication class, you should reference the
System.Web.Security library using Imports or using.

A logon page is simply an ASP.NET page with an HTML form, a Submit
button, and a Click event procedure for the Submit button.

The following is an example of a form on a logon page:

<form id="Login" method="post" runat="server">
 <P>Email: <asp:TextBox id="txtEmail" runat="server">
 </asp:TextBox></P>
 <P>Password<asp:TextBox id="txtPassword" TextMode="password"
 runat="server">
 </asp:TextBox></P>
 <P><asp:Button id="cmdLogin" Text="Sign In Now"
OnClick="cmdLogin_Click"
 runat="server">
 </asp:Button></P>
 <P><asp:Label id="lblInfo" runat="server">
 </asp:Label></P>
</form>

In the Click event procedure of the Submit button, you validate the information
that is entered in the form, and then if it is valid, call
FormsAuthentication.RedirectFromLoginPage. The
RedirectFromLoginPage method issues the cookie and then redirects the user
to their originally requested page.

Creating a logon page

30 Module 16: Securing a Microsoft ASP.NET Web Application

The following sample code uses a custom function named Login to validate the
user name and password, and then calls RedirectFromLoginPage if the user
name and password are valid:

Private Sub cmdLogin_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles cmdLogin.Click

 Dim strCustomerId As String
 'Validate User Credentials
 strCustomerId = Login(txtEmail.Text, txtPassword.Text)

 If (strCustomerId <> "") Then
 FormsAuthentication.RedirectFromLoginPage _
 (strCustomerId, False)
 Else
 lblInfo.Text = "Invalid Credentials: Please try again"
 End If

End Sub

private void cmdLogin_Click(object sender, EventArgs e)
{
 string strCustomerId;
 //Validate User Credentials
 strCustomerId = Login(txtEmail.Text, txtPassword.Text);

 if (strCustomerId != "")
 {
 FormsAuthentication.RedirectFromLoginPage
 (strCustomerId, false);
 }
 else
 {
 lblInfo.Text = "Invalid Credentials: Please try again";
 }
}

After a user has been authenticated, you can obtain the user name of the
authenticated user programmatically by using the User.Identity.Name
property. This property is useful to build an application that uses the user’s
name as a key to save information in a database table or directory resource.

You can also identify the authentication mechanism (Forms in this case)
dynamically by using User.Identity.AuthenticationType and then test if the
user is authenticated by using User.Identity.IsAuthenticated.

With Forms-based authentication, User.Identity is an object of the
FormsIdentity class.

While using Forms-based authentication, the password that a user enters
in the logon page is sent over the network in clear text. It is important to use
SSL to encrypt these passwords.

Visual Basic .NET

C#

Reading credentials
from cookies

Note

 Module 16: Securing a Microsoft ASP.NET Web Application 31

Demonstration: Using Forms-Based Authentication

Open IIS and configure for Anonymous
authentication

Open Web.config and configure for
authentication and authorization

Open logon page and show code

Run the ASP.NET Web application

Students can access the secure
ASP.NET Web application on the
Instructor machine

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to set up IIS to use Forms-based
authentication with Anonymous authentication, then you will see how to set up
authentication and authorization in the Web.config file. You will then see how
the logon page works, along with some demonstrations of accessing secure and
non-secure pages. Finally, you will be able to connect to a secure page on the
Instructor computer.

The files for this demonstration are in the Mod16VB or Mob16CS project in
the 2310Demos solution.

 To run the demonstration

1. Right click My Computer and then click Manage.
2. Navigate to Services and Applications, expand Internet Information

Services, and then click Web Sites.
3. Right click Default Web Site and click Properties.
4. Click the Directory Security tab and then click Edit to open the

Authentication Methods dialog box in IIS.
5. Clear the Basic authentication (password is sent in clear text) check box.

Verify that the check boxes Digest authentication for Windows
domain servers and Integrated Windows authentication are cleared and that
the Anonymous access check box is selected.

6. Click OK.
7. Click OK.
8. Click OK on the Inheritance Overides dialog box.

Introduction

Set up IIS for
Anonymous access

Note

32 Module 16: Securing a Microsoft ASP.NET Web Application

9. Open the Web.config file.
Using the <!-- and --> comments, comment the <system.web> section
containing the “Windows” authentication mode and uncomment the
<system.web> section containing the authentication mode “Forms”.
Explain the new <authentication> section that redirects all
non-authenticated requests to the LoginDemo.aspx page.
The same two pages (SecurePageDemo1.aspx and SecurePageDemo2.aspx)
have been set up as secure pages.

10. Save the changes.
11. Open the LoginDemo.aspx.vb or LoginDemo.asox.cs code-behind page.

Show the following:

• The cmdLogin_Click event procedure that validates the user name and
password by calling the Login function, and then calling
RedirectFromLoginPage, if the credentials are valid.

• The first parameter of RedirectFromLoginPage is the user identity that
you want to save is in the cookie. After that, during the session, this
identity can then be read from any page by using User.Identity.Name.

• The RedirectFromLoginPage creates a temporary (non-persistent)
authentication cookie (second parameter set to false).

• To use RedirectFromLoginPage, you have to import
System.Web.Security.

• The code of the Login function. Show how the Login function calls the
EmployeeLogin stored procedure to verify the entered credentials
against the database.

• Open the Microsoft SQL Server™ Enterprise Manager, then open the
Coho database and show the record in the Logins table. Finally, show
the EmployeeLogin stored procedure.

When you see the Coho database, notice that with Forms-based
authentication, unlike with Windows-based authentication, it is up to you as
the developer to design and manage a database of users.

12. Build the project.
13. Open a new browser and browse to:

http://localhost/Mod16VB/NonSecurePageDemo.aspx
http://localhost/Mod16CS/NonSecurePageDemo.aspx

14. Browse to:
http://localhost/Mod16VB/SecurePageDemo1.aspx
http://localhost/Mod16CS/SecurePageDemo1.aspx
Show that you are automatically redirected to the LoginDemo.aspx page.
Show that the URL, which contains the SecurePageDemo1.aspx page, is the
page that is needed to redirect the user to the requested page, if the
credentials are correct.

Set up the security in
the Web.config file

Show the
LoginDemo.aspx page

Important

Visual Basic .NET
C#

Visual Basic .NET
C#

 Module 16: Securing a Microsoft ASP.NET Web Application 33

15. Type the credentials User Name (Email) name as
someone@cohowinery.com, enter an invalid password, and then click Sign
In Now.
The sign-in will fail because the password is invalid.

16. Enter the credentials User Name (Email) name as
someone@cohowinery.com and enter the Password as someone, and then
click Sign In Now again. You will be redirected to the
SecurePageDemo1.aspx page.

17. You should see the user name 1 (which is the identity that is stored in the
cookie in LoginDemo.aspx) and the authentication type Forms displayed on
the SecurePageDemo1.aspx page.
You can now access any secured pages, as long as you do not close the
browser. If you close the browser, you have to go through the authentication
process again because the cookie is temporary (non-persistent).

18. Browse to:
http://localhost/Mod16VB/SecurePageDemo2.aspx
http://localhost/Mod16CS/SecurePageDemo2.aspx
Show that this time you are not asked to enter your credentials.

19. Tell the students to browse to:

http://Instructormachinename/Mod16VB/SecurePageDemo1.aspx
http://Instructormachinename/Mod16CS/SecurePageDemo1.aspx
Type the following credentials, name: someone@cohowinery.com, and
password: someone, when prompted.
After entering the credentials, students should be able to see
SecurePageDemo1.aspx and SecurePageDemo2.aspx.

Visual Basic .NET
C#

Students access the
Instructor computer

Visual Basic .NET
C#

34 Module 16: Securing a Microsoft ASP.NET Web Application

Lesson: Overview of Microsoft Passport Authentication

How Microsoft Passport Works

Other Microsoft Passport Resources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The power of Microsoft Passport is that users can present the same credentials
to any participating Web site, and they only have to log on once during a
session. When users close their browser or indicate that they want to log off, the
cookie is destroyed and the user must log on again to access any resources on
any of the participating sites.

In this lesson, you will learn about the set of events that takes place during
Microsoft Passport authentication. You will also learn how to implement
Microsoft Passport authentication.

After completing this lesson, you will be able to:

 Describe the set of events that takes place during Microsoft Passport
authentication.

 Identify other Microsoft Passport resources.

Introduction

Lesson objectives

 Module 16: Securing a Microsoft ASP.NET Web Application 35

How Microsoft Passport Works

Website.msftWebsite.msft

ClientClient

Passport.comPassport.com

The client requests a page from the host111

222

333

444

555

The site redirects the client to Passport.com

The client is redirected and logs on to
Passport.com

Passport returns a cookie
with the ticket
information

666

The client accesses the host,
this time with ticket
information

The host returns a Web Form
and possibly a new cookie
that it can read and write

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There is a set of events that takes place during the authentication of users by
using Microsoft Passport.

1. When the client requests a secure page from the Web site (host), the request
is first sent to IIS. IIS authenticates the user as anonymous and passes the
request to ASP.NET.

2. ASP.NET checks for a special cookie on the client. If the cookie is not
present, the request is rejected, and the client is redirected to the
Passport.com Web site for authentication.

3. Passport generates a logon form that it sends back to the client. The user
provides the appropriate logon information and submits this information
back to the Passport site.

4. If the supplied credentials match those in the Passport database, Passport
authenticates the user and returns a cookie, with an authentication ticket, to
the client.

5. The client then sends the initial request, this time with the authentication
ticket information, back to the ASP.NET Web application.

6. Again, IIS authenticates the user as anonymous. ASP.NET authenticates the
user based on the authentication ticket, and then returns the secure Web
Form to the client.

After the user is authenticated with Passport, access may be granted to other
Web sites that also use Microsoft Passport authentication.

Introduction

Set of events that take
place in Microsoft
Passport authentication

36 Module 16: Securing a Microsoft ASP.NET Web Application

Other Microsoft Passport Resources

Web sites

http://www.passport.com

http://msdn.microsoft.com

*****************************ILLEGAL FOR NON-TRAINER USE******************************

While learning about Microsoft Passport, you may need to access resources to
find answers to specific questions. The following two Web sites are intended to
give you a starting point to find more information about Microsoft Passport.

You can find information about Microsoft Passport at the following sites:

 The Developer Information link at http://www.passport.com
 The resources at http://msdn.microsoft.com

Introduction

Web sites

 Module 16: Securing a Microsoft ASP.NET Web Application 37

Review

Web Application Security Overview

Working with Windows-Based Authentication

Working with Forms-Based Authentication

Overview of Microsoft Passport Authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are the three authentication methods provided with ASP.NET?
Windows-based, Forms-based, and Microsoft Passport authentication.

2. What is the difference between authentication and authorization?
Authentication is the process of obtaining and validating credentials.
Authorization is the process of determining if the authenticated user
has access to a given resource.

3. What is the main advantage of using Basic authentication instead of Digest
authentication or Integrated Windows security?
Basic authentication is part of the HTTP specification and it is
supported by most browsers.

4. What is the most important thing to remember when using Basic
authentication?
All data and information is sent in clear text, so you have to use SSL to
encrypt the communication over the network.

38 Module 16: Securing a Microsoft ASP.NET Web Application

5. Which authentication methods, Basic, Digest, or Integrated Windows,
required Active Directory?
Digest authentication.

6. Is Forms-based authentication or Microsoft Passport authentication based on
cookies? Or both?
Both are based on cookies.

7. How does ASP.NET know to which page you have to be redirected when
using the RedirectFromLoginPage method?
If you access a secure page without being authenticated, you will be
redirected to the logon page. The URL will contain the page that the
user originally requested.

 Module 16: Securing a Microsoft ASP.NET Web Application 39

Lab 16: Securing a Microsoft ASP.NET Web Application

Medical
Medical.aspx
Medical
Medical.aspx

Benefits
Home Page
Default.aspx

Benefits
Home Page
Default.aspx

Life Insurance
Life.aspx
Life Insurance
Life.aspx

Retirement
Retirement.aspx
Retirement
Retirement.aspx

Dental
Dental.aspx
Dental
Dental.aspx

Dentists

Doctors
Doctors.aspx
Doctors
Doctors.aspx

Doctors

Logon Page
Login.aspx
Logon Page
Login.aspx

Registration
Register.aspx
Registration
Register.aspx

Coho
Winery

Prospectus
Prospectus.aspx
Prospectus
Prospectus.aspx

XML Web
Service
dentalService1.asmx

XML Web
Service
dentalService1.asmx

Page Header
Header.ascx
Page Header
Header.ascx

ASPState

tempdb

Lab Web
Application

User Control
namedate.ascx
User Control
namedate.ascx

Menu
Component
Class1.vb or Class1.cs

Menu
Component
Class1.vb or Class1.cs

XML
Files

Web.
config

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Secure a Microsoft® ASP.NET Web application by using Microsoft
Windows®–based authentication.

 Secure a Web application by using Forms-based authentication.
 Create logon and registration pages.

Before working on this lab, you must have:

 Knowledge of how a Web.config file is structured.
 Knowledge of how to use stored procedures for server controls.
 Knowledge of how validation controls work.

Coho Winery offers several benefits to its employees. In the labs for
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET, you will create a Web site that enables employees to select
and set up their chosen benefits.

Now that you have implemented all of the benefits, you want to allow only
registered users to access the Web application. You will first secure the site by
using Windows-based authentication, and you will then change it to Forms-
based authentication. Then you will implement the registration page to give
new employees the opportunity to register to the Coho Winery Benefits Web
site. Finally, you will implement the sign-out page.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
45 minutes

40 Module 16: Securing a Microsoft ASP.NET Web Application

Exercise 0
Lab Setup

To complete this lab, you must have created a Benefits Web Application project
and a BenefitsList Class Library project. These projects can be created by using
Microsoft Visual Basic® .NET or Microsoft Visual C#™ .NET.

If you have not created these projects, complete the following steps:

 Create the 2310LabApplication solution

Only perform this procedure if you have not created
a 2310LabApplication solution file.

1. Using Microsoft Visual Studio® .NET, create a new blank solution
named 2310LabApplication:
a. On the File menu, click New, and then click Blank Solution.
b. In the New Project dialog box, type 2310LabApplication in the Name

text box, and then click OK.

 Create the Benefits project

Only perform this procedure if you have not previously created a
Benefits project, or if you have removed the Benefits project according to the
steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new ASP.NET Web Application project, named BenefitsVB or
BenefitsCS, in the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects or Visual C# Projects.
c. In the Templates list, click ASP.NET Web Application. Set the

Location to http://localhost/BenefitsVB for the Visual Basic .NET
project or to http:/localhost/BenefitsCS for the Visual C# project.

d. Click Add to Solution, and then click OK.

When adding projects to the solution, the capitalization of the
project name is important. Because you may be using some pre-built Web
Forms in this and other labs in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET, you must verify that
you have capitalized the Benefits project as shown.

Important

Important

Caution

 Module 16: Securing a Microsoft ASP.NET Web Application 41

 Update the Benefits project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsVB or BenefitsCS, point to Add,

and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab16\VB\Starter\BenefitsVB
folder.
Browse to the install folder\Labfiles\Lab16\CS\Starter\BenefitsCS
folder.

4. In the Files of type box in the Add Existing Item – Benefits dialog box,
click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create the BenefitsList class library

Only perform these steps if you have not previously created a
BenefitsList project, or if you have removed the BenefitsList project according
to the steps in Appendix A, “Lab Recovery,” in Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new Class Library Project.
Create a new Visual Basic .NET Class Library project, name it
BenefitsListVB, and then add it to the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListVB.
d. Click Add to Solution, and then click OK.
Create a new Visual C# .NET Class Library project, name it
BenefitsListCS, and then add it to the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual C# Projects.
c. In the Templates list, click Class Library, and then set the Name to

BenefitsListCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the BenefitsList project as shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For the Visual Basic
.NET project

For the Visual C# project

Caution

42 Module 16: Securing a Microsoft ASP.NET Web Application

 Update the BenefitsList project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click BenefitsListVB or BenefitsListCS, point

to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab16\VB\Starter\BenefitsListVB
folder.
Browse to the install folder\Labfiles\Lab16\CS\Starter\BenefitsListCS
folder.

4. In the Files of type box of the Add Existing Item – BenefitsList dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.

 Create a reference to the BenefitsList component in the Benefits project

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a reference to the BenefitsList component that you
just created:
a. Right-click the BenefitsVB or BenefitsCS project in Solution Explorer

and then click Add Reference.
b. In the Add Reference dialog box, on the Projects tab, double-click the

BenefitsListVB or BenefitsListCS project.
c. In the Selected Components list, select the BenefitsListVB or

BenefitsListCS component, and then click OK.
The component is added to the References folder in Solution Explorer.

 Create the Dental XML Web Service

Only perform this procedure if you have not previously created the
DentalService project, or if you have removed the DentalService project
according to the steps in Appendix A, “Lab Recovery,” in Course 2310B,
Developing Microsoft ASP.NET Web Applications Using Visual Studio .NET.

1. Create a new XML Web Service project.
Create a new Visual Basic .NET XML Web Service project, named
DentalServiceVB, and then add it to the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click ASP.NET Web Service and then set the

Location to http://localhost/DentalServiceVB.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the DentalServiceVB project as
shown.

For the Visual Basic
.NET project
For the Visual C# project

Important

For Visual Basic .NET
project

Caution

 Module 16: Securing a Microsoft ASP.NET Web Application 43

Create a new Visual C# .NET XML Web Service project, named
DentalServiceCS, and then add it to the 2310LabApplication solution:
a. On the File menu, click New, and then click Project.
b. In the New Project dialog box, in the Project Types list, click

Visual Basic Projects.
c. In the Templates list, click ASP.NET Web Service, and then set the

Location to http://localhost/DentalServiceCS.
d. Click Add to Solution, and then click OK.

Verify that you have capitalized the DentalServiceVB project as
shown.

 Update the DentalService project

1. In Visual Studio .NET, open the 2310LabApplication solution file.
2. In Solution Explorer, right-click DentalServiceVB or DentalServiceCS,

point to Add, and then click Add Existing Item.
3. Browse for project files:

Browse to the install folder\Labfiles\Lab16\VB\Starter\DentalServiceVB
folder.
Browse to the install folder\Labfiles\Lab16\CS\Starter\DentalServiceCS
folder.

4. In the Files of type box of the Add Existing Item – DentalService dialog
box, click All Files (*.*).

5. Select all of the files in this folder, and then click Open.
6. Click Yes if prompted to overwrite or reload files.
7. Build the DentalService XML Web service by right-clicking the

DentalServiceVB or DentalServiceCS project in Solution Explorer and
clicking Build.

 Add a Web reference in the Benefits project to the DentalService Web
service

1. In the Benefits project in the 2310LabApplication solution, complete the
following steps to add a Web reference to the DentalService XML Web
service:
a. In Solution Explorer, right-click BenefitsVB or BenefitsCS and then

click Add Web Reference.
b. In the Address text box, type

http://localhost/DentalServiceVB/DentalService1.asmx

http://localhost/DentalServiceCS/DentalService1.asmx
and then press ENTER.
The DentalService1 Web reference is displayed.

c. Click Add Reference.
The Web reference is added to the project in the Web References folder.

For Visual C# .NET
project

Caution

For Visual Basic .NET
project
For Visual C# .NET
project

Visual Basic .NET
project

Visual C# project

44 Module 16: Securing a Microsoft ASP.NET Web Application

2. In Solution Explorer, expand Web References, right-click localhost, and
then click Rename.

3. Type DentalWebRef, and then press ENTER.
4. Build the solution by clicking Build Solution on the Build menu.

 Install and configure the session state databases

1. On the Start menu, point to All Programs, point to Accessories, and then
click Command Prompt.
A command window opens.

2. At the command prompt, type the following command, where version is the
latest version of the Microsoft .NET Framework that is installed on your
computer, and then press ENTER:
cd\WINDOWS\Microsoft.NET\Framework\version\

The command prompt changes to the new directory.

3. At the command prompt, type the following command, and then press
ENTER:
OSQL –S localhost –E <InstallSqlState.sql

The command window displays a series of numbers and messages, and then
returns to the command prompt. The ASPState and tempdb databases have
been restored.

4. Close the command prompt, and then open Windows Explorer.
5. Browse to the following directory:

C:\Program Files\MSDNTrain\2310\LabFiles\Lab16\VB\Starter

C:\Program Files\MSDNTrain\2310\LabFiles\Lab16\CS\Starter
6. Double-click Lab16.bat.

This batch file runs an SQL query that configures security for the ASPState
and tempdb databases.

7. Close Windows Explorer.

Visual Basic .NET
project

Visual C# project

 Module 16: Securing a Microsoft ASP.NET Web Application 45

Exercise 1
Securing Your Web Site Using Windows-Based Authentication

In this exercise, you will set up Internet Information Services (IIS) to use Basic
authentication to gain access to secured pages, and use Anonymous
authentication to gain access to non-secured pages. You will then edit the
Web.config file to deny non-authenticated users access to the medical.aspx and
doctors.aspx pages. Finally, you will deny non-authenticated users access to
any page of the Coho Winery Web site.

 Configure IIS Authentication

1. On the Start menu, right-click My Computer and then click Manage.
2. In the Computer Management console, expand Services and

Applications, expand Internet Information Services, expand Web Sites,
and then expand Default Web Site.

3. Right-click the BenefitsVB or BenefitsCS Web application and then click
Properties.

4. In the BenefitsVB or BenefitsCS Properties dialog box, on the Directory
Security tab, in the Anonymous access and authentication control
section, click Edit.

5. In the Authentication Methods dialog box, verify that Anonymous access
is selected, and that Integrated Windows authentication is not selected,
and then select the Basic authentication (password is sent in clear text)
check box.

46 Module 16: Securing a Microsoft ASP.NET Web Application

6. When you receive the security warning about enabling Basic authentication,
click Yes. Your configuration looks like the following illustration.

Anonymous access is enabled so that you can have both
secure and non-secure pages in the same Web application.
For this exercise, Basic authentication without using Secure Sockets Layer
(SSL) has been enabled, which means passwords are sent by using clear
text. In a real-world scenario, to be secure, you must get a server certificate
and use SSL when you are using Basic authentication.

7. Click OK, click OK again, and then close the Computer Management
console.

Security Note

 Module 16: Securing a Microsoft ASP.NET Web Application 47

 Add a page to output the security information

1. Open the BenefitsVB or BenefitsCS project in the 2310LabApplication
Visual Studio .NET solution.

2. Add the securitytest.aspx Web Form to the Benefits project from the
install folder\Labfiles\Lab16\VB\Starter\BenefitsVB folder.
install folder\Labfiles\Lab16\CS\Starter\BenefitsCS folder.

3. Open the securitytest.aspx.vb or securitytest.aspx.cs file and examine its
contents. What is the purpose of the two lines of code in the Page_Load
event procedure?
They display in labels the identity (username or domain\username) of
the authenticated user, in addition to the authentication mechanism
that is used to authenticate the user
__

__

 Configure security in the Web.config file for some of the pages in the
Benefits project

1. Open the Web.config file in the BenefitsVB or BenefitsCS project.
2. Find the <authentication> section and verify that the mode is set to

Windows authentication.
Your configuration should have the following:
<authentication mode="Windows" />

3. For the Visual Basic .NET Project, remove the existing <authorization>
section of Web.config.

4. Deny access to anonymous users for the medical.aspx and the doctors.aspx
pages. Enter your configuration at the end of the Web.config file, after the
</system.web> tag, but before the </configuration> tag.
Your configuration should look like the following:
<location path="medical.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

<location path="doctors.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

Visual Basic .NET
Visual C#

48 Module 16: Securing a Microsoft ASP.NET Web Application

 Save and test

1. Save your changes.
2. Build the BenefitsVB or BenefitsCS project.
3. Open a new browser and browse to http://localhost/BenefitsVB/default.aspx

or http://localhost/BenefitsCS/default.aspx.

If you receive a SQL permission error when trying to browse the
Benefits Web site, open Windows Explorer, browse to
C:\Program Files\MSDNTrain\2310\LabFiles\Lab16VB\Starter and then
double-click Lab16.bat. Close Windows Explorer, and then refresh
Microsoft Internet Explorer.

4. Click Life Insurance and verify that the life.aspx page opens without
asking for any user credentials.

5. Browse to http://localhost/BenefitsVB/SecurityTest.aspx or
http://localhost/BenefitsCS/SecurityTest.aspx.
No authentication information is displayed on this page because you are not
yet authenticated.

6. Browse to http://localhost/BenefitsVB/Medical.aspx or
http://localhost/BenefitsCS/Medical.aspx. You should see the Connect to
localhost dialog box.

7. Enter your machinename\username and your classroom password.
You are now able to browse the medical.aspx page.

8. Browse again to http://localhost/BenefitsVB/SecurityTest.aspx or
http://localhost/BenefitsCS/SecurityTest.aspx.
The page now displays your authentication information. If your
authentication information is not displayed, refresh the page.

9. Close the browser.

 Configure the security for the BenefitsVB or BenefitsCS Web site folder
in the Web.config file

1. Open the Web.config file.
2. Deny access to anonymous users to the entire Benefits folder. To do this,

you need to remove the two <location> sections that were previously added
and create a new section to deny access to anonymous users to the whole
folder, just after the <authentication> element in the Web.config file.
Your configuration should look like the following:
<authorization>
 <deny users="?" />
</authorization>

Note

 Module 16: Securing a Microsoft ASP.NET Web Application 49

 Save and test

1. Save your changes.
You do not need to rebuild the BenefitsVB or BenefitsCS project since no
code has been changed. As soon as you save the Web.config file, changes
will take effect.

2. Open a new browser and browse to http://localhost/BenefitsVB/default.aspx
or http://localhost/BenefitsCS/default.aspx.

Make sure that you open a new browser. If you are still on the
previous authenticated session, you will not be able to test whether the
security works.

This time you should immediately see the Connect to localhost dialog box,
because all of the pages are secured, including default.aspx.

3. Enter your machinename\username and your classroom password, and then
click OK.
You can now browse all of the pages that are within the Benefits Web
application.

 Access your neighbor’s Coho Winery Web site

1. Open a new browser and browse to:
http://Neighbormachinename/BenefitsVB/default.aspx or
http://Neighbormachinename/BenefitsCS/default.aspx

2. You should see the Connect to localhost dialog box.
3. Enter your machine_name\username and your classroom password, and

then click OK.
You can now browse all of the pages of your neighbor’s Coho Winery Web
site.

Note

50 Module 16: Securing a Microsoft ASP.NET Web Application

Exercise 2
Securing Your Web Site Using Forms-Based Authentication

In this exercise, you will reconfigure IIS to use Anonymous authentication
only, and then use Forms-based authentication to manage access to secure
pages in the Benefits Web application. You will configure the Web.config file
to use Forms-based authentication by denying non-authenticated users access to
any page of the Benefits project folder. Finally, you will create the login.aspx
page and validate user credentials against those that are in the Logins table of
the Coho database.

 Configure IIS to use only Anonymous authentication

1. On the Start menu, right-click My Computer and then click Manage.
2. In the Computer Management console, expand Services and

Applications, expand Internet Information Services, expand Web Sites,
and then expand Default Web Site.

3. Right-click the BenefitsVB or BenefitsCS Web application and then click
Properties.

4. In the BenefitsVB or BenefitsCS Properties dialog box, on the Directory
Security tab, in the Anonymous access and authentication control section,
click Edit.

5. In the Authentication Methods dialog box, verify that the Anonymous
access check box is selected, and then clear the Basic authentication
(password is sent in clear text) check box.

6. Click OK, click OK again, and then close the Computer Management
console.

 Configure Forms-based authentication in the Web.config file

1. Open the Web.config file in the BenefitsVB or BenefitsCS project.
2. Find the <authentication> section and change it to use Forms-based

authentication. You want to create a cookie named .ASPXAUTH, and
redirect the user to a page named login.aspx if the user is not authenticated.
Your configuration should look like the following:
<authentication mode="Forms">
 <forms name=".ASPXAUTH" loginUrl="login.aspx" />
</authentication>

 Module 16: Securing a Microsoft ASP.NET Web Application 51

 Add a connection string to the Coho database in the Web.config file

1. In the Web.config file, add an <appSettings> section. Your configuration
must be placed at the end of the Web.config file, after the </system.web>
tag, but before the </configuration> tag.

If the Web.config file already has an <appSettings> section, do not
create a second one. Continue with the following steps and add your new
code to the existing <appSettings> section.

2. Add a new key named conStrCoho with a connection string that uses
Integrated Windows security to access the local Coho database. Your
addition to the Web.config file should look like the following:
<appSettings>
 <add key="conStrCoho" value="data source=localhost;
 initial catalog=Coho; integrated security=true" />
</appSettings>

 Add a login.aspx Web Form to enter the credentials

1. Add the login.aspx Web Form from the install
folder\Labfiles\Lab16\VB\Starter\BenefitsVB or install
folder\Labfiles\Lab16\CS\Starter\BenefitsCS folder to the BenefitsVB or
BenefitsCS project.
This page contains a text box to enter the e-mail address, a password box, a
Submit button, two labels, and a hyperlink.
Open the code-behind page for the login.aspx Web Form and locate the
following comment in the Imports section at the beginning of the page:
TODO Lab 16: add the Imports for forms-based auth

2. For this exercise, you will use the FormsAuthentication class. Using the
Help documents, determine which namespace you have to import to use this
class, and then write the import statement.
Your code should look like the following:
Imports System.Web.Security

using System.Web.Security;

Note

Visual Basic .NET

Visual C#

52 Module 16: Securing a Microsoft ASP.NET Web Application

3. Locate the Login function and investigate its contents.
What is the name of the method that is used to retrieve the connection string
to the Coho database from the <appSettings> section of the Web.config
file?
ConfigurationSettings.AppSettings
__

__

What is the name of the stored procedure that is used for the login?
EmployeeLogin stored procedure
__

__

4. Locate the following comment in the cmdLogin_Click event procedure:
TODO Lab 16: Call the Login function

5. Call the Login function, passing the value in the txtEmail TextBox and the
value in the txtPassword TextBox. Store the returned value in the
strEmployeeID variable.
Your code should look like the following:
strEmployeeId = Login(txtEmail.Text, txtPassword.Text)

strEmployeeId = Login(txtEmail.Text, txtPassword.Text);

6. Locate the following comment in the cmdLogin_Click event procedure:
TODO Lab 16: Login users and generate an auth. cookie

7. Write the code to authenticate users, create a temporary (non-persistent)
authentication cookie, and then redirect the user to the page that was
originally requested:
a. Test if the variable strEmployeeId is not an empty string. This means

whether the employee’s e-mail address and password have been found in
the database.

b. If the variable strEmployeeId is not an empty string, redirect the user to
the requested page and create a temporary (non-persistent) cookie with
the identity string strEmployeeId.

c. If the variable strEmployeeId is an empty string, redirect, and display
the message “Login Failed!” in the lblInfo label on the login.aspx page.

Visual Basic .NET

Visual C#

 Module 16: Securing a Microsoft ASP.NET Web Application 53

Your code should look like the following:
If (strEmployeeId <> "") Then
 FormsAuthentication.RedirectFromLoginPage _
 (strEmployeeId, False)
Else 'Login failed
 lblInfo.Text = "Login Failed!"
End If

if (strEmployeeId != "")
{
 FormsAuthentication.RedirectFromLoginPage
 (strEmployeeId, false);
}
else //Login failed
{
 lblInfo.Text = "Login Failed!";
}

What is the difference between creating a temporary (non-persistent) cookie
and a persistent cookie?
With a persistent cookie (second parameter of RedirectFromLoginPage
set to true) you can close the browser and still be authenticated when
you open a new browser. With a temporary (non-persistent) cookie
(second parameter of RedirectFromLoginPage set to false), you have to
log on (enter the credentials) every time you open a new browser.
__

__

What method do you use to read the identity of the authenticated user,
which is stored in the authentication cookie, from any Web Form of the
ASP.NET Web application?
User.Identity.Name is used to read the identity that is stored in the
authentication cookie.
__

__

Visual Basic .NET

Visual C#

54 Module 16: Securing a Microsoft ASP.NET Web Application

 Save and test

1. Save your changes.
2. Build the BenefitsVB or BenefitsCS project.
3. Open a new browser and browse to http://localhost/BenefitsVB/default.aspx

or to http://localhost/BenefitsCS/default.aspx.
You should be redirected to the login.aspx page because all of the pages are
secured, including default.aspx.

4. Investigate the Uniform Resource Locator (URL) in the browser. What do
you see? Why?
The requested page (default.aspx) is added to the URL. This additional
information in the URL is used by the RedirectFromLoginPage method
to redirect an authenticated user to the requested page (default.aspx, in
this scenario) after the user enters the necessary credentials.
__

__

5. Enter the e-mail address and password of an employee who is already in the
Logins table of the Coho database (e-mail address
someone@cohowinery.com, and the password someone), and then click
Sign In Now.
You are now able to browse all of the pages.

6. Click the Life Insurance link and verify that the life.aspx page opens
without asking for your credentials.

7. Browse to http://localhost/BenefitsVB/SecurityTest.aspx or to
http://localhost/BenefitsCS/SecurityTest.aspx. You should see the employee
ID 1, which corresponds to the someone@cohowinery.com e-mail address.
You will also see that you are authenticated with Forms-based
authentication.

8. Close the browser.

When using Forms-based authentication, the password that
that is entered in the login page is sent in plain text over the network. In a
real-world scenario, to prevent the possibility of someone obtaining the
password, you must use an SSL connection.

Security Note

 Module 16: Securing a Microsoft ASP.NET Web Application 55

Exercise 3 (If Time Permits)
Registering New Users

In this exercise, you will add code to the register.aspx page, which allows users
to add a new employee to the Logins table of the Coho database.

 Add a register.aspx Web Form to enter new employees

1. Open the Benefits project in the 2310LabApplication Visual Studio .NET
solution.

2. Add the register.aspx Web Form from the
install folder\Labfiles\Lab16\VB\Starter\BenefitsVB or
install folder\Labfiles\Lab16\CS\Starter\BenefitsCS folder to the
BenefitsVB or BenefitsCS project.

3. Open the register.aspx Web Form and investigate its content. Which types
of validation controls are used in this Web Form?
requiredFieldValidator, regularExpressionValidator,
CompareValidator, and validationSummary controls.
__

__

4. Open the register.aspx.vb or register.aspx.cs code-behind page. The
code-behind page contains a function named AddEmployee that looks very
similar to the Login function of the login page, but it calls a different stored
procedure, named EmployeeAdd, which adds a new employee to the
Logins table of the Coho database.

5. Locate the following comment in the cmdValidation_Click event
procedure:
TODO Lab 16: Call the AddEmployee function

6. Call the AddEmployee function, passing to it the value in the txtEmail
TextBox and to the value in the txtPassword TextBox. Store the returned
value in the strEmployeeID variable.
Your code should look like the following:
strEmployeeId = _
 AddEmployee(txtEmail.Text, txtPassword.Text)

strEmployeeId =
 AddEmployee(txtEmail.Text, txtPassword.Text);

7. Locate the following comment in the cmdValidation_Click event
procedure:
TODO Lab 16: Login users and generate an auth. cookie

Visual Basic .NET

Visual C#

56 Module 16: Securing a Microsoft ASP.NET Web Application

8. Within the If statement, write the code to authenticate users, create a
temporary (non-persistent) authentication cookie, and then redirect the user
to the default.aspx Web Form.
Your code should look like the following:
FormsAuthentication.SetAuthCookie(_
 strEmployeeId, False)
Response.Redirect("default.aspx")

FormsAuthentication.SetAuthCookie(
 strEmployeeId, false);
Response.Redirect("default.aspx");

9. Why are you using the method SetAuthCookie here and not
RedirectFromLoginPage?
Because you want to redirect users to the default.aspx Web Form.
Usually, the register.aspx Web Form is called from a link in the
login.aspx Web Form. Using RedirectFromLoginPage would redirect a
newly registered and authenticated user to the login.aspx Web Form,
which makes no sense.
__

__

 Save and test

1. Save your changes.
2. Build the BenefitsVB or BenefitsCS project.
3. Open a new browser and browse to http://localhost/BenefitsVB/default.aspx

or to http://localhost/BenefitsCS/default.aspx.
You should promptly be redirected to the login.aspx page because all of the
pages are secured, and, therefore, default.aspx is a secure page.

4. Click Click here! to open the registration.aspx Web Form to register a new
employee.
What do you observe? Why? How should you fix it?
You stay on the login.aspx Web Form because the register.aspx Web
Form is also declared as a secured page in the Web.config file. Access to
non-authenticated employees is denied to all pages. However, access to
the login.aspx Web Form is authorized because it was declared in the
<authentication> section as the login page when you configured
Windows authentication.
To fix the problem of accessing the register.aspx Web Form, you have
to authorize access to the register.aspx Web Form in the Web.config
file.
__

__

Visual Basic .NET

Visual C#

 Module 16: Securing a Microsoft ASP.NET Web Application 57

 Configure the security for the register.aspx page in the Web.config file

1. Open the Web.config file in the BenefitsVB or BenefitsCS project.
2. Enter the configuration information to authorize everyone to access the

register.aspx Web Form. Place this information at the end of the Web.config
file, just after the </appSettings> tag, but before the </configuration> tag.
Your configuration should looks like the following:
<location path="register.aspx">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
</location>

 Save and test

1. Save your changes.

You do not need to rebuild the project because you only changed the
Web.config file.

2. Open a new browser and browse to http://localhost/BenefitsVB/default.aspx
or to http://localhost/BenefitsCS/default.aspx.
You should be redirected to the login.aspx page.

3. Click Click here! to open the registration.aspx Web Form and register a
new employee. Now you should see the register.aspx Web Form.

4. Enter your e-mail address and a password of your choice to add yourself to
the database as a new employee. Click Submit.
You are redirected to the default.aspx page, and are able to browse all of the
pages.

5. Click the Life Insurance link and verify that the life.aspx page opens
without asking for your credentials.

6. Browse to http://localhost/BenefitsVB/SecurityTest.aspx or to
http://localhost/BenefitsCS/SecurityTest.aspx. You should see your
employee ID and that you are authenticated with Forms-based
authentication.

7. Close the browser, open a new browser, and browse to
http://localhost/BenefitsVB/default.aspx or to
http://localhost/BenefitsCS/default.aspx.

8. On the login.aspx page, log on with your new credentials.

Note

58 Module 16: Securing a Microsoft ASP.NET Web Application

 Register yourself as a new employee on your neighbor’s Coho Winery
Web site

1. Open a new browser and browse to
http://Neighbormachinename/BenefitsVB/default.aspx or to
http://Neighbormachinename/BenefitsCS/default.aspx.
You should be redirected to the login.aspx page of your neighbor’s Coho
Winery Web site.

2. Click Click here! to open the registration.aspx Web Form and register a
new employee. Now you should see the register.aspx Web Form.

3. Enter your e-mail address and a password of your choice to add yourself to
the database as a new employee. Click Submit.
Now you should be able to see the all the pages of your neighbor’s Benefits
Web site.

 Module 16: Securing a Microsoft ASP.NET Web Application 59

Exercise 4 (If Time Permits)
Permitting Users to Sign Out

In this exercise, you will add code to the signout.aspx page that allows users to
sign out of the Coho Winery Web site. Signing out can be useful if a user shares
a computer with another user and if that user wants to make sure that the other
user cannot access private information.

 Update the header.ascx user control and add the signout.aspx Web
Form

1. Open the BenefitsVB or BenefitsCS project in the 2310LabApplication
Visual Studio .NET solution.

2. In Solution Explorer, delete the header.ascx user control.
3. Add the header.ascx user control and the signout.aspx Web Form from the

install folder\Labfiles\Lab16\VB\Starter\BenefitsVB or
install folder\Labfiles\Lab16\CS\Starter\BenefitsCS folder to the
BenefitsVB or BenefitsCS project.

4. The updated header.ascx user control contains a new link named Sign out
that opens the signout.aspx Web Form.

5. Open the signout.aspx Web Form. The Web Form contains text notifying
the user that they will be signed out and a Sign Out button.

6. Open the signout.aspx.vb or signout.aspx.cs code-behind page and locate
the following comment in the cmdSignout_Click event procedure:
TODO Lab 16: Implement the signout

7. Write the code to sign the users out and redirect them to the login.aspx Web
Form.
Your code should look like the following:
FormsAuthentication.SignOut()
Response.Redirect("login.aspx")

FormsAuthentication.SignOut();
Response.Redirect("login.aspx");

Visual Basic .NET

Visual C#

60 Module 16: Securing a Microsoft ASP.NET Web Application

 Save and test

1. Save your changes.
2. Build the BenefitsVB or BenefitsCS project.
3. Open a new browser and browse to http://localhost/BenefitsVB/default.aspx

or http://localhost/BenefitsCS/default.aspx.
You should be redirected to the login.aspx page.

4. Enter your e-mail address and a password, and then click Sign In Now.
5. Click the Life Insurance link and verify that the life.aspx page opens

without asking for your credentials.
6. Click the signout hyperlink, and then click Sign Out.

You are redirected to the login.aspx page.
7. Without closing the browser, browse again to

http://localhost/BenefitsVB/default.aspx or to
http://localhost/BenefitsCS/default.aspx. Refresh your browser. You should
be returned to the login.aspx page.

Contents

Overview 1

Content Review 2

Lab 17: Review Game 4

Course Evaluation 6

Module 17: Review

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 17: Review iii

Instructor Notes
In this module, students will review the content they learned throughout
Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET. Lab 17 consists of an interactive, self-paced game that
contains 20 questions that will help the students solidify the knowledge they
gained throughout the course.

At any time during the game, the students can easily get the answer to a
question. You should instead encourage the students to use the course materials
as a reference to discover the answer for themselves. The game awards points
for each correctly answered question and it provides a final score when the
game is complete. You can organize a contest among the students to make the
game experience more enjoyable in the classroom.

Remind students that the final assessment game is included on the Student CD,
and that they can run the game on their own computer at any time.

After completing this module, students will be able to:

 Reinforce what they learned throughout Course 2310B, Developing
Microsoft ASP.NET Web Applications Using Visual Studio .NET.

Presentation:
10 minutes

Lab:
30 minutes

 Module 17: Review 1

Overview

Content Review

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Throughout Course 2310B, Developing Microsoft ASP.NET Web Applications
Using Visual Studio .NET, you learned many of the skills that are needed to
develop, secure, test, and deploy a complete Microsoft® ASP.NET Web
application. You also learned how Microsoft Visual Studio® .NET can
significantly reduce Web application development time by simplifying the
development process.

In this module, you will review the main concepts and procedures you have
learned throughout this course. You will also have the opportunity to apply
your new knowledge in Lab 17, which is an interactive review game.

Introduction

2 Module 17: Review

Content Review

Topics covered:

Module 1: Overview of the Microsoft .NET Framework

Module 2: Using Microsoft Visual Studio .NET

Module 3: Using Microsoft .NET-Based Languages

Module 4: Creating a Microsoft ASP.NET Web Form

Module 5: Adding Code to a Microsoft ASP.NET Web Form

Module 6: Tracing in Microsoft ASP.NET Web Applications

Module 7: Validating User Input

Module 8: Creating User Controls

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Throughout Course 2310B, Developing Microsoft ASP.NET Web Applications
Using Visual Studio .NET, you have learned how to develop an ASP.NET Web
application. The knowledge you have gained throughout this course includes
the following:

 In Module 1, “Overview of the Microsoft .NET Framework,” you learned
how the Microsoft .NET Framework works, and how it helps developers
build ASP.NET Web applications.

 In Module 2, “Using Microsoft Visual Studio .NET,” you learned how to
use the primary features of Visual Studio .NET to create ASP.NET Web
applications.

 In Module 3, “Using Microsoft .NET-Based Languages,” you learned how
the .NET Framework supports different development languages. You also
learned about some of the differences between C# and Microsoft
Visual Basic® .NET, and some of the fundamental Visual Basic .NET code
procedures.

 In Module 4, “Creating a Microsoft ASP.NET Web Form,” you learned how
to create and populate a Web Form.

 In Module 5, “Adding Code to a Microsoft ASP.NET Web Form,” you
learned how to add code to a Web Form by using code-behind pages.

 In Module 6, “Tracing in Microsoft ASP.NET Web Applications,” you
learned how to debug and trace through a Web application.

 In Module 7, “Validating User Input,” you learned how to use validation
controls to ensure the correct input from the user.

 In Module 8, “Creating User Controls,” you learned how to build user
controls to provide reusable code and user interface (UI) components that
can be used across a Web application.

Introduction

 Module 17: Review 3

Content Review (continued)

Topics covered:
Modules 9, 10, and 11: Data Access Methods
Module 12: Reading and Writing XML Data

Module 13: Consuming and Creating XML Web Services

Module 14: Managing State

Module 15: Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application

Module 16: Securing a Microsoft ASP.NET Web Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Throughout Course 2310B, Developing Microsoft ASP.NET Web Applications
Using Visual Studio .NET, you have learned how to develop an ASP.NET Web
application. The knowledge you have gained throughout this course includes
the following:

 In Modules 9, “Accessing Relational Data Using Microsoft
Visual Studio .NET,” Module 10, “Accessing Data with Microsoft
ADO.NET,” and Module 11, “Calling Stored Procedures with Microsoft
ADO.NET,” you learned how to use Microsoft ADO.NET to implement
data-handling in a Web application.

 In Module 12, “Reading and Writing XML Data,” you learned how to read,
write, and display Extensible Markup Language (XML) data in a Web
Form.

 In Module 13, “Consuming and Creating XML Web Services,” you learned
how to create and connect to XML Web services.

 In Module 14, “Managing State,” you learned how to maintain state in an
ASP.NET Web application by using session and application variables,
cookies, and cookieless sessions.

 In Module 15, “Configuring, Optimizing, and Deploying a Microsoft
ASP.NET Web Application,” you learned how to configure your Web
application by using Machine.config and Web.config files. In Module 15,
you also learned how to:

• Optimize Web application performance by using caching.

• Deploy your Web application to a production server.
 In Module 16, “Securing a Microsoft ASP.NET Web Application,” you

learned how to secure your Web application.

Introduction

4 Module 17: Review

Lab 17: Review Game

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lab, you will run an interactive review game to test your understanding
of the concepts and procedures that were presented throughout this course. The
game is self-paced and can be run multiple times.

As you progress through the game, you will find that the questions become
more technical and more difficult, building on previous questions. Therefore, it
is important to fully understand the answer to the current question before
proceeding on to the next.

When you run the game for the first time, you will see a welcome screen in
which you choose whether to play the game in Microsoft Visual Basic® .NET
or C#. After selecting a development language, you will see a graphical
representation of a Microsoft ASP.NET Web application. The illustration
includes icons that represent many of the major components of an ASP.NET
Web application.

The questions are displayed automatically in the bottom left corner of the game.
Each question has three parts to it.

The first part of the question requires you to select the appropriate icon on the
screen, based on the question displayed. After you select the correct icon, a
code window appears.

The code window is the second part of the question. In this code window, you
will add the necessary code to complete the task stated in the question. To enter
code in the code window, click any placeholder (represented by three
dashes, ---), and then type your code. Your code will appear as you type.

When you think you have entered the correct code, click Verify. If you have
any errors, the game engine points to the areas of code that are incorrect.

You can drag the error pointers away from the code so you can read the
code more clearly.

Overview

Running the game

Part 1

Part 2

Tip

 Module 17: Review 5

You will then need to click the incorrect areas and correct the code.

If you do not know the answer, click Answer. The correct code will be
supplied in the code window.

After you have the correct code, click Continue. The third part of the question
is a brief animation that shows which components are affected by the changes
that you made. A pop-up window provides an explanation of the animation.
You can control the animation by using the navigation buttons (Play/Pause,
Forward, Back, and Skip), which are located in the pop-up window.

The game engine then returns to the initial screen and displays a new question
for you to answer.

There are 20 questions in the game.

Every question in Part 1 is worth 5 points; every incorrect guess subtracts1
point from that initial 5 points. If you continue to guess after 5 incorrect
answers, you will not earn any points, but you will not lose any points from
your total score.

Every question in Part 2 has 10 points; every incorrect guess subtracts 2 points
from that initial 10 points. If you continue to guess after 5 incorrect answers,
you will not earn any points, but you will not lose any points from your total
score.

In Parts 1 and 2, if you skip a question or ask for the answer, you will not earn
any points for that question.

Part 3 is an explanation and animation on the picture of what you just changed;
therefore, no points are awarded for this part of the game.

At the end of the game, you receive a Game Over message that displays your
final score.

Tip

Part 3

Scoring

6 Module 17: Review

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

To complete a course evaluation, go to http://www.CourseSurvey.com.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

Appendix A:
Lab Recovery

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix A: Lab Recovery 1

Removing Lab Files
Because of the way that Microsoft® Visual Studio® .NET keeps track of files, it
can be difficult to recover from a broken lab in this course. By using the
following steps, you can remove the parts of your 2310LabApplication solution
that are likely to cause problems during a rebuild. You can then rebuild
the 2310LabApplication solution by beginning with Exercise 0 in any lab
in Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET. In Exercise 0 you will be replacing the deleted files with
solution files that will support the remaining labs.

These steps will permanently delete the files that you have built while
completing the labs in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio .NET. Any modifications to the labs that you
made on your own will be lost.

 To remove the BenefitsVB project

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In Solution Explorer, right-click BenefitsVB and then click Remove.
3. Click OK.
4. Open Windows Explorer.
5. Browse to C:\Inetpub\wwwroot.
6. Right-click the BenefitsVB folder and then choose Properties.
7. Clear the Read-only attribute if it is selected, and then click OK.
8. In the Confirm Attribute Changes dialog box, select Apply changes to

this folder, subfolders, and files, and then click OK.
9. In Windows Explorer, right-click BenefitsVB and then click Delete.
10. Click Yes to confirm deletion.

 To remove the BenefitsListVB project

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In Solution Explorer, right-click BenefitsListVB and then click Remove.
3. Click OK.
4. Open Windows Explorer.
5. Browse to My Documents\Visual Studio Projects\2310LabApplication.
6. Right-click BenefitsListVB and then choose Delete.
7. Click Yes to confirm deletion.

 To remove the DentalServiceVB project

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In Solution Explorer, right-click DentalServiceVB and then click Remove.
3. Click OK.
4. Open Windows Explorer.
5. Browse to C:\Inetpub\wwwroot.

Note

2 Appendix A: Lab Recovery

6. Right-click the DentalServiceVB folder and then choose Properties.
7. Clear the Read-only attribute if it is selected, and then click OK.
8. In the Confirm Attribute Changes dialog, select Apply changes to this

folder, subfolders, and files, and then click OK.
9. In Windows Explorer, right-click DentalServiceVB and then click Delete.
10. Click Yes to confirm deletion.

 To remove the BenefitsCS project

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In Solution Explorer, right-click BenefitsCS and then click Remove.
3. Click OK.
4. Open Windows Explorer.
5. Browse to C:\Inetpub\wwwroot
6. Right-click the BenefitsCS folder and then choose Properties.
7. Clear the Read-only attribute if it is selected, and then click OK.
8. In the Confirm Attribute Changes dialog box, select Apply changes to

this folder, subfolders, and files, and then click OK.
9. In Windows Explorer, right-click BenefitsCS and then click Delete.
10. Click Yes to confirm deletion.

 To remove the BenefitsListCS project

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In Solution Explorer, right-click BenefitsListCS and then click Remove.
3. Click OK.
4. Open Windows Explorer.
5. Browse to My Documents\Visual Studio Projects\2310LabApplication.
6. Right-click BenefitsListCS and then choose Delete.
7. Click Yes to confirm deletion.

 To remove the DentalServiceCS project

1. In Visual Studio .NET, open the 2310LabApplication solution.
2. In Solution Explorer, right-click DentalServiceCS and then click Remove.
3. Click OK.
4. Open Windows Explorer.
5. Browse to C:\Inetpub\wwwroot.
6. Right-click the DentalServiceCS folder and then choose Properties.
7. Clear the Read-only attribute if it is selected, and then click OK.
8. In the Confirm Attribute Changes dialog box, select Apply changes to

this folder, subfolders, and files, and then click OK.
9. In Windows Explorer, right-click DentalServiceCS and then click Delete.
10. Click Yes to confirm deletion.

Appendix B: Debugging
with Microsoft
Visual Studio .NET

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix B: Debugging with Microsoft Visual Studio .NET 1

Lesson: Debugging with Microsoft Visual Studio .NET

What Is Debugging?

Debugging with Visual Studio .NET

Configuring for Debugging

Demonstration: Debugging with Visual Studio .NET

Demonstration: Using the Debug Object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before deploying your Web application, thereby making it available to client
requests, you first must debug it. Debugging your Web application is an
important step in ensuring that the Web application works properly. In this
appendix, you will learn how to debug a Web application by using Microsoft®

Visual Studio® .NET. You will also learn how to perform remote debugging, in
which you can debug, from a client computer, Microsoft ASP.NET Web
applications that are located on a development server.

After completing this lesson, you will be able to:

 Explain how debugging works and why it is important.
 Use the debugging features of Visual Studio .NET.
 Configure debug options in Visual Studio .NET.
 Remotely debug a Web application.

Introduction

Lesson objectives

2 Appendix B: Debugging with Microsoft Visual Studio .NET

What Is Debugging?

Finding design-time errors (not runtime errors)

Finding logic errors

Finding coding errors that are not caught by
Try…Catch…Finally blocks

Viewing variables as their values change

Testing the limits of the Web application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

As you develop Web applications, you may enter code that is not valid or you
may not thoroughly consider the programming logic in a method. Debugging a
Web application allows you to find design-time and logic errors before
publishing the Web application. Debugging also allows you to watch variables
that you have used and see how their values change.

Debugging is the process of searching for and removing errors from your code.
Because you use the same tools to create Web applications as Microsoft
Windows® applications, you can use the powerful built-in debugging tools of
Visual Studio .NET to debug your Web applications.

Debugging a Web application allows you to check for errors before users of the
Web application find them. When you debug a Web application, you catch the
following types of errors:

 Design-time errors. As you code an .aspx page, you may make
typographical mistakes or forget to explicitly declare variables. For
example, if you are using C#, you may have capitalization errors. These
types of design-time errors are caught by the compiler when you build the
project.

 Logic errors. Do you have a For loop that cannot be exited? Do you have
code that can never be reached because of a loop? Perhaps you have an
algorithm that is used for computing when a value is incorrect. You can find
these types of logic errors by running the Web application in debug mode.

 Code errors. You should use Try…Catch…Finally blocks in your code to
catch errors that may be generated when the Web application is run.
However, you may not think of all of the possible places where exceptions
may be thrown, or you may forget to place the code in a Try block.
Debugging helps you to find and solve these errors.

Introduction

What is debugging?

Why debug?

 Appendix B: Debugging with Microsoft Visual Studio .NET 3

Debugging also allows you to do the following:

 View variables. For each variable that you assign in your Web application,
you can track the value of that variable as the Web application runs. This
tracking is a useful way to ensure that variables are changing as you expect,
which would be according to your programming logic.

 Test application limits. While debugging, you can test whether parts of your
Web application work when users enter information that extends beyond
what you would normally expect, or when users try to use the interface in a
non-standard way.

4 Appendix B: Debugging with Microsoft Visual Studio .NET

Debugging with Visual Studio .NET

Visual Studio .NET offers integrated debugging in the
runtime

Debugging an ASP.NET Page

Set breakpoints

Step through code

View values of variables

Change variable values

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For debugging Web applications, Visual Studio .NET offers integrated
debugging in the common language runtime (hereafter referred to as
“runtime”), thereby simplifying the debugging process.

Because debugging is integrated in the runtime, you can debug all of the files in
a solution, regardless of the language in which they were written. You can also
debug components and even XML Web services, as long as they are included as
part of the solution and are running on the same computer as the Web
application.

When you debug an ASP.NET page, you can perform the following procedures:

 Set breakpoints.
You set breakpoints by clicking in the left margin next to the line of code.
When code execution reaches that line of code, execution pauses.

 Step through code.
After execution has paused, control is returned to Visual Studio .NET. From
the Visual Studio .NET IDE you can step through the code one line at a
time.

 View the value of a variable.
The Visual Studio .NET IDE includes a watch window. From the watch
window, you can enter the name of a variable and then watch how the value
of the variable changes as you step through the code. You can also pause the
mouse over a variable name in the code and a tool tip will appear,
displaying the variable’s value.

 Change variable values.
In the watch window, you can change the value that is assigned to a
variable, and you can then watch how the value changes or how the other
variables change as you step through the code.

Introduction

Debugging

 Appendix B: Debugging with Microsoft Visual Studio .NET 5

Configuring for Debugging

Configuring Web.config

Changing build options in Visual Studio .NET

Debug build vs. Release build

<compilation defaultLanguage="vb" debug="true"/><compilation defaultLanguage="vb" debug="true"/>

<compilation defaultLanguage= "c#" debug="true"/><compilation defaultLanguage= "c#" debug="true"/>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When debugging a Web application, you need to configure the Web.config file
for the Web application and change the build options in Visual Studio .NET.

Each ASP.NET Web application has a configuration file named Web.config.
Web.config is an Extensible Markup Language (XML) file that contains
configuration settings for the Web application.

For more information about the Web.config file, see Module 15,
“Configuring, Optimizing, and Deploying a Microsoft ASP.NET Application,”
in Course 2310B, Developing Microsoft ASP.NET Web Applications Using
Visual Studio .NET.

Within the Web.config file, there is a compilation element. This element
includes all of the compilation settings that ASP.NET uses. One attribute of the
compilation element is debug. To enable debugging for a Web application, set
the debug attribute to true, as shown in the following code:

<compilation defaultLanguage="vb" debug="true"/>

<compilation defaultLanguage="c#" debug="true"/>

For more information on the compilation element, see “<compilation>
Element” in the Visual Studio .NET documentation.

Introduction

Configuring Web.config

Note

Visual Basic .NET

C#

Note

6 Appendix B: Debugging with Microsoft Visual Studio .NET

Within Visual Studio .NET, you can build Web applications in either debug
mode or release mode. Debug mode adds more processing requirements to the
Web application, thereby reducing performance, but it does allow you to use the
features of the Visual Studio .NET debugger. Release mode builds a more
streamlined version of the Web application, but it does not allow for debugging.
You set the build mode from the tool bar, as shown in the following illustration.

You can also choose to run the Web application in debug or release mode from
the Debug menu. To run a Web application in debug mode, you must first
select a Startup Project and Startup Page from Solution Explorer. In Solution
Explorer, right-click on a project, choose Set as Startup Project, and then
right-click a page and choose Set as Start Page.

In the Debug menu, you have two choices for running the Web application:
Start or Start Without Debugging. These options are shown in the following
illustration.

To debug a Web application, you need to build in debug mode and then choose
Start from the Debug menu or from the toolbar. When you choose to Build
and Browse or View in Browser from Solution Explorer, you will not be
running the Web application in debug mode.

Visual Studio .NET build
options

 Appendix B: Debugging with Microsoft Visual Studio .NET 7

Demonstration: Debugging with Visual Studio .NET

Set breakpoints

Step through code

View the values of the variables

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Visual Studio .NET
debugger.

 To run the demonstration

1. Open the 2310Demos solution.
2. Set the CallClassVB or the CallClassCS project as the startup project and

the CallClassLibraries.aspx page as the Start Page.
3. Set a breakpoint in the cmdUseVB_Click event procedure in the

CallClassLibraries.aspx.vb or CallClassLibraries.aspx.cs page by clicking in
the left-hand margin next to the following line of code:
Dim x As New VBClassLibrary.Class1()

VBClassLibrary.Class1 x = new VBClassLibrary.Class1();

4. Run the Web application in debug mode by clicking Start on the Debug
menu, or by clicking Start on the toolbar.

5. Enter a price in the Price field and then click VB .NET Shipping Cost.
Visual Studio .NET enters the debugger at the breakpoint in the
cmdUseVB_Click event procedure.
Notice the information that is displayed in the following windows:

• The Call Stack window displays the names of functions on the call stack.

• The Autos window displays the names and values of variables in the
current and previous statements.

• The Locals window displays the names and values of all local variables
in the current scope.

6. Pause the mouse on the variable x to show its current value.
7. Click Step Into. There is no constructor for the VBClassLibrary

component, so the context does not change.

Visual Basic .NET

C#

8 Appendix B: Debugging with Microsoft Visual Studio .NET

8. Click Step Into again. The next line of code calls the ComputeShipping
method of the component and changes the view in the debugger to the
VBClassLibrary.
Notice how the information in the Call Stack window and the Locals
window has changed.

9. Step through the ComputeShipping method to follow the logic and return
to the calling function.

10. After you have stepped through all of the statements in the
cmdUseVB_Click event procedure, the browser window becomes active
again, waiting for more user input.

11. In Visual Studio .NET, set another breakpoint on the cmdUseWS_Click
event procedure.

You are adding this breakpoint while the debugger is running.

12. In the ShippingCS or ShippingVB project, set another breakpoint in the
ComputeShipping XML Web service method in the Service1.asmx.vb or the
Service1.asmx.cs page by clicking in the left margin, next to the following
line of code:
If sngPrice > 15 Then

if (sngPrice > 15)

13. In the browser, click Web Service Shipping Cost.
Visual Studio .NET enters the debugger at the breakpoint in the
cmdUseWS_Click event procedure.

14. Step through the cmdUseWS_Click event procedure.
This time the Visual Studio .NET debugger will step into the Service1.asmx
Web service.
Notice that the information in the Call Stack and Locals windows has
changed.

15. Click Continue to run the rest of the Web service and to return to the
calling page.

16. End the debugging session by clicking Stop Debugging.
17. Disable the breakpoints by right-clicking on them and clicking Disable

Breakpoint. This action keeps the breakpoint, but the debugger will not
stop on them.

18. Show how you can disable, clear, and enable all breakpoints from the
Debug menu.

Note

Visual Basic .NET

C#

 Appendix B: Debugging with Microsoft Visual Studio .NET 9

Demonstration: Using the Debug Object

Add Debug statements

Run in Debug mode

Run in Release mode

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the Debug object in a Web
application.

 To run the demonstration

1. Open the 2310Demos solution.
2. Ensure that CallClassVB or CallClassCS is set to the startup project and

CallClassLibraries.aspx is set to the start page.
3. In the CallClassLibraries.aspx.vb or the CallClassLibraries.aspx.cs page,

add a debug message to the cmdUseVB_Click event as shown in the
following code:
Debug.Write("UseVB", "price = " & CStr(TextBox1.Text))

Debug.Write("UseVB", "price = " +
(TextBox1.Text).ToString());

4. In the CallClassLibraries.aspx.vb or the CallClassLibraries.aspx.cs page,
add an Imports statement to import the System.Diagnostics namespace, as
shown in the following code:
Imports System.Diagnostics

using System.Diagnostics;

Visual Basic .NET

C#

Visual Basic .NET

C#

10 Appendix B: Debugging with Microsoft Visual Studio .NET

5. Run the Web application in debug mode by clicking Start on the toolbar.
6. In the browser, enter a price and then click VB .NET Shipping Cost.

The debug message is displayed in the Output window of the debugger.
7. Stop debugging the Web application.
8. Run the Web application again, this time without debugging, by either

right-clicking the CallClassLibraries.aspx page and clicking View in
Browser, or by clicking Start Without Debugging on the Debug menu.

9. In the browser, enter a price and then click VB .NET Shipping Cost.
The debug message is not displayed.

Appendix C: Using
Templates with List-
Bound Controls

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix C: Using Templates with List-Bound Controls 1

Lesson: Using Templates with List-Bound Controls

Displaying Data in the Repeater and DataList Controls

Using Templates

Demonstration: Using a DataList Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Unlike the DataGrid control, the DataList and Repeater list-bound controls
do not have a built-in user interface (UI). However, you can easily customize
the appearance of these list-bound controls in Microsoft® ASP.NET by using
templates. In this lesson, you will learn how to apply templates to the DataList
and Repeater list-bound controls.

After completing this lesson, you will be able to:

 Display data in a Repeater or DataList control.
 Use a template to customize the appearance of a Repeater or DataList

control.

Introduction

Lesson objectives

2 Appendix C: Using Templates with List-Bound Controls

Displaying Data in the Repeater and DataList Controls

<asp:Repeater id="repList" runat="server">
<ItemTemplate>
<%#DataBinder.Eval(Container.DataItem, "au_lname")%>

</ItemTemplate>
</asp:Repeater>

<asp:Repeater id="repList" runat="server">
<ItemTemplate>
<%#DataBinder.Eval(Container.DataItem, "au_lname")%>

</ItemTemplate>
</asp:Repeater>

Create the control and bind it to a DataSet

Set custom properties

Autoformat

Columns (horizontal vs. vertical columns)

Display data in templates

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataList and Repeater controls are list-bound controls that do not have a
specific, predefined appearance. When you use these list-bound controls, you
get greater flexibility in presenting data on your ASP.NET Web Form.

There are three basic steps to using a Repeater or DataList control. First, you
bind the control to a DataSet. You then set custom properties, and finally, you
associate the control with a template. The templates then determine how the
data is displayed on the Web Form.

To use a DataList or Repeater control, the first step is to bind the control to a
DataSet by setting the DataSource and DataMember properties in the
Properties window. Then, in an event on the page, you need to call the
DataBind method of the control, as shown in the following code:

repeater.DataBind()

repeater.DataBind();

The second step in using a Repeater or DataList control is to define custom
properties. The DataList control has the following custom properties, which
determine the way that the list will be displayed:

 RepeatColumns. This property sets the number of columns that will be
displayed in the DataList.

 RepeatDirection. This property determines whether the data in the
DataList control is displayed horizontally (as rows) or vertically (as
columns).

 RepeatLayout. This property sets whether the data in the DataList control
is displayed as a table or in FlowLayout.

In addition, like the DataGrid control, the DataList control has an AutoFormat
option, which adds formatting to the otherwise unformatted control.

Introduction

Using the DataList and
Repeater controls

Visual Basic .NET

C#

Custom properties

 Appendix C: Using Templates with List-Bound Controls 3

The third step in using a Repeater or DataList control is the binding of the
data that is held in the Repeater or DataList control to templates that describe
how to display the data. For example, to display a list of authors’ last names,
use the following binding syntax in an ItemTemplate template:

<asp:Repeater id="repeater" runat="server">
 <ItemTemplate>
 <%# DataBinder.Eval(Container.DataItem, "au_lname") %>

 </ItemTemplate>
</asp:Repeater>

In the preceding code, the <% %> is the syntax that is used for inline
server-side code and # is the binding expression. The Container object refers to
the current record of the Repeater control, and the DataItem method refers to a
field in that record.

Displaying the data

4 Appendix C: Using Templates with List-Bound Controls

Using Templates

FooterTemplateFooterTemplate

HeaderTemplateHeaderTemplate

ItemTemplateItemTemplate

SeparatorTemplateSeparatorTemplate

AlternatingItem
Template
AlternatingItem
Template

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Most ASP.NET controls have a standard appearance, but there are times when
you may require a different appearance for your controls. ASP.NET allows you
to customize the appearance of some controls by using templates. When a
control supports a template, you add the ASP.NET template elements. Then,
within the template, you insert the elements and controls that you want to
display.

List-bound controls support five types of templates. The Repeater and
DataList controls can use these templates directly. The DataGrid control can
use these templates only if they are bound to a column. The following table
describes the five template types.

Template Use

HeaderTemplate Contains elements that are displayed once before any

data-bound rows are displayed. A typical use is to create
the header row of a table.

ItemTemplate Contains elements that are rendered once for each row in
the data source.

AlternatingItemTemplate Contains elements that are displayed as every other row in
the Repeater control.

SeparatorTemplate Contains elements that display between each row. These
are typically line breaks (
 tags) and lines (<HR/>
tags).

FooterTemplate Contains elements that are displayed once when all
data-bound rows have been rendered. A typical use is to
close an element that was opened in the HeaderTemplate
item (with a tag such as </TABLE>).

Introduction

Template types

 Appendix C: Using Templates with List-Bound Controls 5

The following sample code uses templates, combined with data in a DataList
control named DataList1, to display the first name, last name, and telephone
number fields in the data. The DataList uses the ItemTemplate and the
SeparatorTemplate template types:

<asp:DataList id="DataList1" runat="server">
<ItemTemplate>

 <p align="center">

 <%# DataBinder.Eval(Container.DataItem, "au_fname") %>
 <%# DataBinder.Eval(Container.DataItem, "au_lname") %>

 <%# DataBinder.Eval(Container.DataItem, "phone") %>
 </p>

</ItemTemplate>
<SeparatorTemplate>
 <hr color="#3300ff" size="1">
</SeparatorTemplate>
</asp:DataList>

The following illustration shows the list that was created by the preceding code.

Using a template with a
DataList control

6 Appendix C: Using Templates with List-Bound Controls

The DataList and Repeater controls can use templates directly. The following
code is an example of using the AlternatingItemTemplate with a DataList
control. The AlternatingItemTemplate changes the color and the data in
alternate lines:

<AlternatingItemTemplate>

 <p align="center">
 <%# DataBinder.Eval(Container.DataItem, "au_fname") %>
 <%# DataBinder.Eval(Container.DataItem, "au_lname") %>
 </p>

</AlternatingItemTemplate>

The following illustration shows the table with the AlternatingItemTemplate.

Using the
AlternatingItemTemplate
with a DataList control

 Appendix C: Using Templates with List-Bound Controls 7

Demonstration: Using a DataList Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how to use the DataList control to display
data.

 To run the demonstration

1. Build and browse the DataList.aspx page in the Mod09VB or Mod09CS
project in the 2310Demos solution.
Notice that different data is shown for the alternating rows of the DataList
control.
Click the option buttons to change the layout of the DataList control.

2. View the page in Microsoft Visual Studio® .NET.
There is a SqlConnection, a SqlDataAdapter, and a DataSet for the
authors table in the Pubs database.

3. View the Hypertext Markup Language (HTML) for the page.
There are ItemTemplate and AlternatingItemTemplate tags that are set
up for the DataList control.

4. View the code for the page.
In the Page_Load event, the DataList control is bound to the DataSet.
In the SelectedIndexChanged events for the two sets of radio buttons, the
RepeatColumns and RepeatDirection properties of the DataList control
are set.

Introduction

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix D: XML Web
Service Responses

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places, or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, ActiveX, BizTalk, Hotmail,
IntelliSense, JScript, MSN, MSDN, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#,
Visual J#, Visual Studio, Win32, and Windows Media are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix D: XML Web Service Responses iii

Instructor Notes
This appendix is an optional lesson for Module 13, “Consuming and Creating
XML Web Services,” in Course 2310B, Developing Microsoft ASP.NET Web
Applications Using Visual Studio® .NET.

In this lesson, students will learn how XML Web service responses are
formatted and how they can custom format these responses.

After completing this appendix, students will be able to:

 Describe the response formatting options that are available for XML Web
services.

 Describe the default Extensible Markup Language (XML) formatting of
complex data that is created by an XML Web service.

 Reshape the response XML that comes from an XML Web service.

To teach this appendix, you need the Microsoft® PowerPoint® file
2310B_XD.ppt.

To prepare for this appendix:

 Read all of the materials for this appendix.
 Practice the steps for the demonstration.

Presentation:
20minutes

Lab:
0 minutes

Required materials

Preparation tasks

iv Appendix D: XML Web Service Responses

How to Teach This Appendix
This section contains information that will help you to teach this appendix.

Lesson: XML Web Service Responses
This is an animated slide that shows both the data array that is inside the XML
Web service, and the resulting output in XML.

Default Formatted XML
Web Service Responses

 Appendix D: XML Web Service Responses 1

Lesson: XML Web Service Responses

XML Web Service Responses

Default Formatted XML Web Service Responses

Reshaping XML Web Service Responses

Demonstration: Reshaping XML Web Service
Responses

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services respond to calls with formatted Extensible Markup
Language (XML). In this appendix, you will learn how XML Web service
responses are formatted and how you can reshape these responses.

After completing this lesson, you will be able to:

 Describe the response format options that are available for XML Web
services.

 Describe the default XML formatting of complex data that is created by an
XML Web service.

 Reshape the XML response of an XML Web service.

Introduction

Lesson objectives

2 Appendix D: XML Web Service Responses

XML Web Service Responses

Web services respond to direct HTTP-GET calls with
simple XML documents

Web services respond to application-to-application
calls with SOAP envelopes

Envelope definition

Encoding rules

RPC representation

Protocol bindings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services support three request protocols: HTTP-GET, HTTP-POST,
and Simple Object Access Protocol (SOAP). Replies to HTTP-GET and HTTP-
POST requests are sent as simple XML documents. Replies to SOAP requests
are sent as SOAP envelopes that contain the XML documents.

When you access an XML Web service directly from a browser by using the
HTTP-GET protocol, the Web server that hosts the XML Web service will
generate a description page for the requested XML Web service. This
description page lists all of the available XML Web service methods and their
parameters. When you then call an XML Web service method from this page,
you receive the response in simple XML.

You could also use the HTTP-POST protocol to access the XML Web service
without the default access page. The response from the XML Web service
would be identical to an HTTP-GET request.

The following XML shows the response to an HTTP-GET or an HTTP-POST
call to the default XML Web service method that was created by using
Microsoft® Visual Studio® .NET:

<?xml version="1.0" encoding="utf-8"?>
 <string xmlns="http://tempuri.org/">Hello World</string>

When you access a Microsoft ASP.NET Web service by using a proxy from
another Web application, both the request and the response are in SOAP.

SOAP is a simple, lightweight, XML-based protocol that is used for exchanging
structured and type information over the Internet. SOAP defines a messaging
framework that contains no application or transport semantics. As a result, the
protocol is modular and extensible.

Introduction

HTTP-GET and HTTP-
POST calls

Application–to-
application calls

 Appendix D: XML Web Service Responses 3

A SOAP response from an XML Web service may include the following
sections:

 Envelope definition
The SOAP envelope defines a SOAP message and it is the basic unit of
exchange between SOAP message processors.

 Encoding rules
The encoding rules define the data encoding that is used to represent the
application-defined data types and the directed graphs.

 RPC representation
The RPC representation defines the (request/response) message exchange
pattern.

 Protocol bindings
Protocol bindings define the binding between SOAP and Hypertext Transfer
Protocol (HTTP). You can use SOAP in combination with any transport
protocol or mechanism, including Simple Mail Transfer Protocol (SMTP),
File Transfer Protocol (FTP), or even a floppy disk that is able to transport
the SOAP envelope.

4 Appendix D: XML Web Service Responses

Default Formatted XML Web Service Responses

<?xml version="1.0" encoding="utf-8" ?>
<ArrayOfContact>

<Contact>
<name>Janet</name>
<address>Seattle, WA</address>

</Contact>
<Contact>

<name>Joe</name>
<address>Attleboro, MA</address>

</Contact>
</ArrayOfContact>

<?xml version="1.0" encoding="utf-8" ?>
<ArrayOfContact>

<Contact>
<name>Janet</name>
<address>Seattle, WA</address>

</Contact>
<Contact>

<name>Joe</name>
<address>Attleboro, MA</address>

</Contact>
</ArrayOfContact>

XML Web service code for an array

Resulting XML data
Public Structure Contact

Public name As String
Public address As String

End Structure

<WebMethod()>Public Function _
GetContacts() As Contact()
Dim x(1) As Contact
x(0).name = "Janet"
x(0).address = "Seattle, WA"
x(1).name = "Joe"
x(1).address = "Attleboro, MA"
Return x

End Function

Public Structure Contact
Public name As String
Public address As String

End Structure

<WebMethod()>Public Function _
GetContacts() As Contact()
Dim x(1) As Contact
x(0).name = "Janet"
x(0).address = "Seattle, WA"
x(1).name = "Joe"
x(1).address = "Attleboro, MA"
Return x

End Function

public struct Contact
{

public string name;
public string address;

}

[WebMethod()]public Contact[]
GetContacts()

{
Contact[] x;
x = new Contact[2];
x[0].name = "Janet";
x[0].address = "Seattle, WA";
x[1].name = "Joe";
x[1].address = "Attleboro, MA";
return x;

}

public struct Contact
{

public string name;
public string address;

}

[WebMethod()]public Contact[]
GetContacts()

{
Contact[] x;
x = new Contact[2];
x[0].name = "Janet";
x[0].address = "Seattle, WA";
x[1].name = "Joe";
x[1].address = "Attleboro, MA";
return x;

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services use SOAP to communicate with other Web applications.
The default SOAP XML data formatting can handle multiple data structures,
but you need to be aware of how the default format treats complex data
structures, such as arrays.

The following code example shows a data array that is used inside an XML
Web service:

Public Structure Contact
 Public name As String
 Public address As String
End Structure

<WebMethod()>Public Function GetContacts() _
 As Contact()
 Dim x(1) As Contact
 x(0).name = "Janet"
 x(0).address = "Seattle, WA"
 x(1).name = "Joe"
 x(1).address = "Attleboro, MA"
 Return x
End Function

Introduction

XML Web service code

Microsoft Visual Basic®
.NET

 Appendix D: XML Web Service Responses 5

public struct Contact
{
 public string name;
 public string address;
}

[WebMethod()]public Contact[] GetContacts()
{
 Contact[] x;
 X = new Contact[2];
 x[0].name = "Janet";
 x[0].address = "Seattle, WA";
 x[1].name = "Joe";
 x[1].address = "Attleboro, MA";
 return x;
}

When the XML Web service receives a request from another Web application,
it responds with data that is formatted according to the SOAP protocol.

The following XML shows the default formatted XML data that was created
from the preceding array:

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfContact>
 <Contact>
 <name>Janet</name>
 <address>Seattle, WA</address>
 </Contact>
 <Contact>
 <name>Joe</name>
 <address>Attleboro, MA</address>
 </Contact>
</ArrayOfContact>

C#

Default SOAP response

6 Appendix D: XML Web Service Responses

Reshaping XML Web Service Responses

XML Web service revised code

Resulting XML response

<XmlType("MyContact")>Public Structure Contact
<XmlAttributeAttribute("ContactName")> _

Public name As String
<XmlAttributeAttribute("ContactAddress")> _

Public address As String
End Structure

<XmlType("MyContact")>Public Structure Contact
<XmlAttributeAttribute("ContactName")> _

Public name As String
<XmlAttributeAttribute("ContactAddress")> _

Public address As String
End Structure

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfMyContact>

<MyContact ContactName="Janet"
ContactAddress="Seattle, WA" />

<MyContact ContactName ="Joe"
ContactAddress="Attleboro, MA" />

</ArrayOfMyContact>

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfMyContact>

<MyContact ContactName="Janet"
ContactAddress="Seattle, WA" />

<MyContact ContactName ="Joe"
ContactAddress="Attleboro, MA" />

</ArrayOfMyContact>

[XmlType("MyContact")]public struct Contact{
[XmlAttributeAttribute("ContactName")]

public string name;
[XmlAttributeAttribute("ContactAddress")]

public String address;
}

[XmlType("MyContact")]public struct Contact{
[XmlAttributeAttribute("ContactName")]

public string name;
[XmlAttributeAttribute("ContactAddress")]

public String address;
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An indented list of XML tags and items is not the appropriate input format for
all applications. If you have an application that requires a unique input
structure, you then need to shape your XML Web service response. You adjust
the shape of the XML Web service output by specifying XML attributes.

In the following example, the item MyContact has the sub-attributes
ContactName and ContactAddress:

<XmlType("MyContact")>Public Structure Contact
 <XmlAttributeAttribute("ContactName")> _
 Public name As String
 <XmlAttributeAttribute("ContactAddress")> _
 Public address As String
End Structure

[XmlType("MyContact")]public struct Contact
{
 [XmlAttributeAttribute("ContactName")]
 public string name;
 [XmlAttributeAttribute("ContactAddress")]
 public String address;
}

Introduction

XML Web service code

Visual Basic .NET

C#

 Appendix D: XML Web Service Responses 7

The following XML shows the formatting that results from the preceding XML
Web service:

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfMyContact>
 <MyContact ContactName="Janet"
 ContactAddress="Seattle, WA" />
 <MyContact ContactName ="Joe"
 ContactAddress="Attleboro, MA" />
</ArrayOfMyContact>

For more information on how to implement an XML Web service that
supports complex data types, see Module 5, “Implementing a Simple XML
Web Service,” in Course 2524, Developing XML Web Services Using
Microsoft ASP.NET

XML response

Note

8 Appendix D: XML Web Service Responses

Demonstration: Reshaping XML Web Service Responses

Add a Web method that returns a list of
contacts (structure)

Reshape the returned XML

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to create and return complex data.

The files GetContacts.txt and XMLReshaping.txt are in the
install folder/Democode/Mod13VB or install folder/Democode/Mod13CS
folder, and the Service1.asmx.vb or Service1.asmx.cs file is in the project called
StocksVB or StocksCS. This XML Web service was created in the Instructor-
Led Practice, “Creating an XML Web Service,” in Module 13, “Consuming and
Creating XML Web Services,” in Course 2310B, Developing Microsoft
ASP.NET Web Applications Using Visual Studio .NET.

 To run this demonstration

1. Copy the contents of the GetContacts.txt file into the Service1.asmx.vb or
Service1.asmx.cs file. Place the contents after the WebMethod attribute
GetRating of the XML Web service.

2. Save the file.
3. Build and browse Service1.asmx.
4. Invoke the GetContacts method and view the result in XML.
5. Add the following import code at the beginning of the Service1.asmx.vb or

Service1.asmx.cs file:
Imports System.Xml.Serialization

using System.Xml.Serialization;

6. Copy the content of the XMLReshaping.txt file and paste it over the existing
Contact structure in the Service1.asmx.vb or Service1.asmx.cs file.

7. Build and browse Service1.asmx.
8. Invoke the GetContacts method and show the new shape of the XML

response.

Add a Web method

Reshape the returned
XML
Visual Basic .NET

C#

