

Course Number: 2524B

Released: 05/2002

Delivery Guide

Developing XML Web
Services Using
Microsoft® ASP.NET

Part Number: X08-85030

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001-2002 Microsoft Corporation. All rights reserved.

Microsoft MS-DOS, Windows, Windows NT Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT, and
Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Course Number: 2524B
Part Number: X08-85030
Released: 05/2002

 Developing XML Web Services Using Microsoft® ASP.NET iii

Contents
Introduction
Course Materials ..2
Prerequisites...3
Course Outline ...4
Setup ..8
Microsoft Official Curriculum...9
Microsoft Certified Professional Program ...11
Facilities...13
Module 1: The Need for XML Web Services
Overview..1
Evolution of Distributed Applications ...2
Problems with Traditional Distributed Applications ...4
Introducing XML Web Services ..14
The Web Technology Stack and .NET ..16
The .NET Alternatives to XML Web Services ..18
Common XML Web Service Scenarios...20
Review ...22
Module 2: XML Web Service Architectures
Overview..1
Service-Oriented Architecture ...2
XML Web Services Architectures and Service-Oriented Architecture4
Roles in an XML Web Services Architecture..8
The XML Web Services Programming Model ..16
Review ...18
Module 3: The Underlying Technologies of XML Web Services
Overview..1
HTTP Fundamentals ..2
Using HTTP with the .NET Framework..8
XML Essentials..17
XML Serialization in the .NET Framework ..26
SOAP Fundamentals..29
Using SOAP with the .NET Framework..36
Lab 3.1: Issuing HTTP and SOAP Requests Using the .NET Framework45
Review ...54
Module 4: Consuming XML Web Services
Overview..1
WSDL Documents ...2
XML Web Service Discovery..8
XML Web Service Proxies ..19
Implementing an XML Web Service Consumer Using Visual Studio .NET.........27
Lab 4.1: Implementing an XML Web Service Consumer Using Visual Studio
.NET...34
Review ...43

iv Developing XML Web Services Using Microsoft® ASP.NET

Module 5: Implementing a Simple XML Web Service
Overview... 1
Creating an XML Web Service Project .. 2
Implementing XML Web Service Methods.. 11
Managing State in an ASP.NET XML Web Service .. 33
Debugging XML Web Services .. 42
Lab 5.1: Implementing a Simple XML Web Service.. 61
Review .. 77
Module 6: Publishing and Deploying XML Web Services
Overview... 1
Overview of UDDI.. 2
Publishing an XML Web Service ... 16
Finding an XML Web Service .. 21
Publishing an XML Web Service on an Intranet .. 24
Configuring an XML Web Service ... 26
Lab 6.1: Publishing and Finding Web Services in a UDDI Registry.................... 29
Review .. 39
Module 7: Securing XML Web Services
Overview... 1
Overview of Security .. 2
Built-In Authentication ... 10
Custom Authentication: SOAP Headers ... 18
Authorization: Role-Based Security ... 25
Authentication and Authorization with HttpModules... 34
Authorization: Code Access Security ... 39
Encryption... 46
Lab 7.1: Securing XML Web Services ... 54
Review .. 70
Course Evaluation... 72
Module 8: Designing XML Web Services
Overview... 1
Data Type Constraints... 2
Performance .. 11
Lab 8.1: Implementing Caching in an XML Web Service.................................... 28
Reliability.. 33
Versioning... 37
HTML Screen Scraping XML Web Services ... 39
Aggregating XML Web Services.. 47
Demonstration: Example of an Aggregated XML Web Service........................... 52
Lab 8.2: Implementing an Aggregated XML Web Service 53
Review .. 67
Module 9: Global XML Web Services Architecture
Overview... 1
Introduction to GXA ... 2
Routing and Referral... 8
Security and License ... 16
Review .. 19
Course Evaluation... 20

 Developing XML Web Services Using Microsoft® ASP.NET v

About This Course
This section provides you with a brief description of the course, audience,
suggested prerequisites, and course objectives.

This three-day instructor-led course teaches experienced software developers
how to use XML Web services in solving common problems in the distributed
application domain. This course teaches developers how to build, deploy,
locate, and consume XML Web services.

This course is designed for experienced software developers who have
previously built component-based applications.

This course requires that students meet the requirements listed in the following
knowledge and skills matrix.

Understand
Concepts

Written simple
applications

Written real-
world applications

Prerequisites

Preferred Required Preferred Required Preferred Required

Familiarity with C# �

Programming in C++,
Java, or Microsoft®
Visual Basic®

 �

Familiarity with
Extensible Markup
Language (XML)

 �

After completing this course, the student will be able to:

� Explain how XML Web services emerged as a solution to the problems with
traditional approaches to designing distributed applications.

� Describe the architecture of an XML Web services-based solution.
� Explain how to use the Microsoft .NET Framework to implement XML

Web services.
� Implement an XML Web service consumer by using Microsoft Visual

Studio® .NET.
� Implement a simple XML Web service by using Microsoft Visual Studio

.NET.
� Publish and deploy an XML Web service.
� Secure a XML Web service.
� Evaluate the trade-offs and issues that are involved in designing a real-world

XML Web service.
� Implement nonstandard XML Web services such as Hypertext Markup

Language (HTML) screen scraping and aggregating XML Web services.
� Describe the Global XML Architecture and explain how to design XML

Web services to anticipate the new services.

Description

Audience

Student Prerequisites

Course Objectives

vi Developing XML Web Services Using Microsoft® ASP.NET

Course Timing
The following schedule is an estimate of the course timing. Your timing may
vary.

Day 1
Start End Module

9:00 9:20 Introduction

9:20 10:20 Module 1: The Need for XML Web Services

10:20 10:30 Break

10:30 11:30 Module 2: XML Web Service Architecture

11:30 12:15 Lunch

12:15 2:15 Module 3: The Underlying Technologies of XML Web Services

2:15 2:25 Break

2:25 3:10 Lab 3.1: Issuing HTTP and SOAP Requests Using the .NET
Framework

3:10 5:10 Module 4: Consuming XML Web Services

Day 2
Start End Module

9:00 10:15 Lab 4.1: Implementing an XML Web Service Consumer Using
Visual Studio .NET

10:15 10:25 Break

10:25 12:00 Module 5: Implementing a Simple XML Web Service

12:00 12:45 Lunch

12:45 1:40 Module 5: Implementing a Simple XML Web Service (continued)

1:40 2:30 Lab 5.1: Implementing a Simple XML Web Service

2:30 2:40 Break

2:40 3:05 Lab 5.1: Implementing a Simple XML Web Service (continued)

3:05 4:35 Module 6: Publishing and Deploying XML Web Services

4:35 5:05 Lab 6.1: Publishing and Finding XML Web Services in a UDDI
Registry

 Developing XML Web Services Using Microsoft® ASP.NET vii

Day 3
Start End Module

9:00 9:30 Lab 6.1: Publishing and Finding XML Web Services in a UDDI
Registry (continued)

9:30 10:30 Module 7: Securing XML Web Services

10:30 10:40 Break

10:40 11:40 Module 7: Securing XML Web Services (continued)

11:40 12:25 Lunch

12:25 1:25 Lab 7.1: Securing XML Web Services

1:25 2:25 Module 8: Designing XML Web Services

2:25 2:35 Break

2:35 3:15 Lab 8.1: Implementing Caching in an XML Web Service

3:15 3:45 Module 8: Designing XML Web Services (continued)

3:45 5:15 Lab 8.2: Implementing an Aggregated XML Web Service

5:15 5:45 Module 9: Global XML Web Services Architecture

viii Developing XML Web Services Using Microsoft® ASP.NET

Trainer Materials Compact Disc Contents
The Trainer Materials compact disc contains the following files and folders:

� Autorun.exe. When the compact disc is inserted into the CD-ROM drive, or
when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials or Trainer Materials
compact disc.

� Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

� Default.htm. This file opens the Trainer Materials Web page.
� Readme.txt. This file explains how to install the software for viewing the

Trainer Materials compact disc and its contents and how to open the Trainer
Materials Web page.

� 2524B_ms.doc. This file is the Manual Classroom Setup Guide. It contains
the steps for manually installing the classroom computers.

� 2524B_sg.doc. This file is the Automated Classroom Setup Guide. It
contains a description of classroom requirements, classroom configuration,
instructions for using the automated classroom setup scripts, and the
Classroom Setup Checklist.

� Powerpnt. This folder contains the Microsoft PowerPoint® slides that are
used in this course.

� Pptview. This folder contains the Microsoft PowerPoint Viewer 97, which
can be used to display the PowerPoint slides if Microsoft PowerPoint 2002
is not available. Do not use this version in the classroom.

� Setup. This folder contains the files that install the course and related
software to computers in a classroom setting.

� StudentCD. This folder contains the Web page that provides students with
links to resources pertaining to this course, including additional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

� Tools. This folder contains files and utilities used to complete the setup of
the instructor computer.

� Webfiles. This folder contains the files that are required to view the course
Web page. To open the Web page, open Microsoft Windows® Explorer, and
in the root directory of the compact disc, double-click Default.htm or
Autorun.exe.

 Developing XML Web Services Using Microsoft® ASP.NET ix

Student Materials Compact Disc Contents
The Student Materials compact disc contains the following files and folders:

� Autorun.exe. When the compact disc is inserted into the CD-ROM drive, or
when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials compact disc or install
Internet Explorer.

� Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

� Default.htm. This file opens the Student Materials Web page. It provides
resources pertaining to this course, including additional reading, review and
lab answers, lab files, multimedia presentations, and course-related Web
sites.

� Readme.txt. This file explains how to install the software for viewing the
Student Materials compact disc and its contents and how to open the
Student Materials Web page.

� 2524B_ms.doc. This file is the Manual Classroom Setup Guide. It contains a
description of classroom requirements, classroom setup instructions, and the
classroom configuration.

� Database. This folder contains databases used in the course.
� Democode. This folder contains demonstration code.
� Flash. This folder contains the installer for the Macromedia Flash 5.0

browser plug-in.
� Fonts. This folder contains fonts that are required to view the Microsoft

PowerPoint presentation and Web-based materials.
� Labfiles. This folder contains files that are used in the hands-on labs. These

files may be used to prepare the student computers for the hands-on labs.
� Mplayer. This folder contains the setup file to install Microsoft Windows

Media™ Player.
� UDDI. This folder contains files that are used to initialize the Universal

Description, Discovery, and Integration (UDDI) registry. The folder also
contains files that are used to install the UDDI Services and the UDDI SDK,
and to register the XML Web services that UDDI registry uses in this
course.

� Webfiles. This folder contains the files that are required to view the course
Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

� Wordview. This folder contains the Word Viewer that is used to view any
Word document (.doc) files that are included on the compact disc.

x Developing XML Web Services Using Microsoft® ASP.NET

Document Conventions
The following conventions are used in course materials to distinguish elements
of the text.

Convention Use

Bold Represents commands, command options, and syntax that

must be typed exactly as shown. It also indicates
commands on menus and buttons, dialog box titles and
options, and icon and menu names.

Italic In syntax statements or descriptive text, indicates argument
names or placeholders for variable information. Italic is
also used for introducing new terms, for book titles, and
for emphasis in the text.

Title Capitals Indicate domain names, user names, computer names,
directory names, and folder and file names, except when
specifically referring to case-sensitive names. Unless
otherwise indicated, you can use lowercase letters when
you type a directory name or file name in a dialog box or
at a command prompt.

ALL CAPITALS Indicate the names of keys, key sequences, and key
combinations — for example, ALT+SPACEBAR.

Monospace Represents code samples or examples of screen text.

[] In syntax statements, enclose optional items. For example,
[filename] in command syntax indicates that you can
choose to type a file name with the command. Type only
the information within the brackets, not the brackets
themselves.

{ } In syntax statements, enclose required items. Type only the
information within the braces, not the braces themselves.

| In syntax statements, separates an either/or choice.

� Indicates a procedure with sequential steps.

... In syntax statements, specifies that the preceding item may
be repeated.

.

.

.

Represents an omitted portion of a code sample.

Contents

Introduction 1

Course Materials 2

Prerequisites 3

Course Outline 4

Setup 8

Microsoft Official Curriculum 9

Microsoft Certified Professional Program 11

Facilities 13

Introduction

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Introduction iii

Instructor Notes
The Introduction module provides students with an overview of the course
content, materials, and logistics for Course 2524B, Developing XML Web
Services Using Microsoft® ASP.NET.

To teach this course, you need the following materials:

� Delivery Guide
� Trainer Materials compact disc

To prepare for this course, you must:

� Complete the Course Preparation Checklist that is included with the trainer
course materials.

� Review all contents on the Trainer Materials compact disc.
� Review the Trainer Preparation Presentation on the Trainer Materials

compact disc.
� Read the Trainer Delivery Guide for the course.
� Read the Instructor Notes that precede each module. The Instructor Notes

contain preparation suggestions for each module.
� Read any recommended documents that are mentioned in the Instructor

Notes section for each module.
� Practice using the Microsoft products and tools that are used in this course.
� Practice presenting each module and demonstration.
� Review the Classroom Setup Guide.
� Practice each lab. Anticipate the questions that students may have.
� Identify the key points for each topic, demonstration, and lab.
� Identify how each demonstration and lab supports the module topics and

reinforces the module objectives.
� Identify examples, analogies, demonstrations, and additional delivery

strategies that will help to clarify module topics for students.
� Identify the information that students need to complete each lab

successfully.
� Note any problems that you may encounter during a demonstration or lab

and determine a course of action for resolving them in the classroom.
� Identify additional preparation that is required to ensure the success of each

demonstration and lab.
� Identify ways to customize a demonstration or lab to provide a more

meaningful learning experience for your specific audience.

Presentation:
20 Minutes

Required Materials

Preparation Tasks

iv Introduction

How to Teach This Module
This section contains information that will help you to teach this module.

Welcome students to the course and introduce yourself. Provide a brief
overview of your background to establish credibility.

Ask students to introduce themselves and provide their background, product
experience, and expectations of the course.

Record student expectations on a whiteboard or flip chart that you can reference
later in class.

Tell students that everything they will need for this course is provided at their
desk.

Have students write their names on both sides of the name card.

Describe the contents of the student workbook and the Student Materials
compact disc.

Tell students where they can send comments and feedback on this course.

Demonstrate how to open the Web page that is provided on the Student
Materials compact disc by double-clicking Autorun.exe or Default.htm in the
StudentCD folder on the Trainer Materials compact disc.

Describe the prerequisites for this course. This is an opportunity for you to
identify students who may not have the appropriate background or experience
to attend this course.

Briefly describe each module and what students will learn. Be careful not to go
into too much detail because the course is introduced in detail in Module 1.

Explain how this course will meet students’ expectations by relating the
information that is covered in individual modules to their expectations.

Describe any necessary setup information for the course, including course files
and classroom configuration.

Explain the Microsoft Official Curriculum (MOC) program and present the list
of additional recommended courses.

Refer students to the Microsoft Official Curriculum Web page at
http://www.microsoft.com/traincert/training/ for information about curriculum
paths.

Inform students about the Microsoft Certified Professional (MCP) program, any
certification exams that are related to this course, and the various certification
options.

Explain the class hours, extended building hours for labs, parking, restroom
location, meals, phones, message posting, and where smoking is or is not
allowed.

Let students know if your facility has Internet access that is available for them
to use during class breaks.

Also, make sure that the students are aware of the recycling program if one is
available.

Introduction

Course Materials

Prerequisites

Course Outline

Setup

Microsoft Official
Curriculum

Microsoft Certified
Professional Program

Facilities

 Introduction 1

Introduction

� Name

� Company affiliation

� Title/function

� Job responsibility

� Distributed application/component-based application
development experience

� Expectations for the course

*****************************ILLEGAL FOR NON-TRAINER USE******************************

2 Introduction

Course Materials

� Name card

� Student workbook

� Student Materials compact disc

� Course evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The following materials are included with your kit:

� Name card. Write your name on both sides of the name card.
� Student workbook. The student workbook contains the material covered in

class, in addition to the hands-on lab exercises.
� Student Materials compact disc. The Student Materials compact disc

contains the Web page that provides you with links to resources pertaining
to this course, including additional readings, review and lab answers, lab
files, multimedia presentations, and course-related Web sites.

To open the Web page, insert the Student Materials compact disc into
the CD-ROM drive, and then in the root directory of the compact disc,
double-click Autorun.exe or Default.htm.

� Course evaluation. To provide feedback on the course, training facility, and
instructor, you will have the opportunity to complete an online evaluation
near the end of the course.
To provide additional comments or inquire about the Microsoft® Certified
Professional program, send e-mail to mcphelp@microsoft.com.

Note

 Introduction 3

Prerequisites

�Familiarity with XML

�Programming in
C++, Java, or
Visual Basic

�Familiarity with C# or
Microsoft Visual
Basic®.NET

RequiredPreferredRequiredPreferredRequiredPreferred

Written real-world
applications

Written simple
applications

Understand
Concepts

Prerequisites

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This course requires that you meet the requirements listed in the following
knowledge and skills matrix.

Understand
Concepts

Written simple
applications

Written real-
world applications

Prerequisites

Preferred Required Preferred Required Preferred Required

Familiarity with C# or
Microsoft Visual
Basic® .NET

 �

Programming in C++,
Java, or Microsoft
Visual Basic

 �

Familiarity with
Extensible Markup
Language (XML)

 �

4 Introduction

Course Outline

� Module 1: The Need for XML Web Services

� Module 2: XML Web Service Architectures

� Module 3: The Underlying Technologies of XML Web
Services

� Module 4: Consuming XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 1, “The Need for XML Web Services,” introduces XML Web services,
and discusses the problem space that they address. In this context, the evolution
of distributed applications and the limitations of existing distributed application
architectures are covered. After completing this module, you will be able to
explain how XML Web services emerged as a solution to the problems with
traditional approaches to designing distributed applications.

Module 2, “XML Web Service Architectures,” describes the architecture of an
XML Web services-based solution. Service-oriented architecture is a
conceptual architecture for distributed applications and this module explains
how the XML Web service architecture is a type of service-oriented
architecture. The roles of the various elements in the XML Web service
architecture are also covered. After completing this module, you will be able to
describe the architecture of an XML Web services-based solution.

Module 3, “The Underlying Technologies of XML Web Services,” discusses
the three foundation technologies of XML Web services: Hypertext Transfer
Protocol (HTTP), the Extensible Markup Language (XML), and the Simple
Object Access Protocol (SOAP). This module also discusses the support that
the Microsoft .NET Framework provides for using these technologies. The
module provides hands-on experience with each of these technologies. After
completing this module, you will be able to describe the underlying
technologies of XML Web services and explain how to use the .NET
Framework to communicate with XML Web services using these technologies.

 Introduction 5

Module 4, “Consuming XML Web Services,” is the first of the modules that
discusses the implementation details of an XML Web service-based solution.
This module specifically focuses on how to implement an XML Web service
consumer to consume (use) XML Web services. Web Service consumers are
implemented based on the service description documents of XML Web
services. In this context, this module discusses the structure of a Web Service
Description Language (WSDL) document and how to find XML Web services
and their service descriptions at known endpoints by using Disco.exe. After
completing this module, you will be able to implement an XML Web service
consumer by using Microsoft Visual Studio® .NET.

6 Introduction

Course Outline (continued)

� Module 5: Implementing a Simple XML Web Service

� Module 6: Publishing and Deploying XML Web Services

� Module 7: Securing XML Web Services

� Module 8: Designing XML Web Services

� Module 9: Global XML Web Services Architecture

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 5, “Implementing a Simple XML Web Service,” explains how to
implement a simple XML Web service by using Microsoft ASP.NET. The
module also explains how to manage state in ASP.NET XML Web services.
Some of the techniques for debugging XML Web services are also covered.
After completing this module, you will be able to implement a simple XML
Web service by using Microsoft Visual Studio .NET.

Module 6, “Publishing and Deploying XML Web Services,” explains how to
publish an XML Web service in a Universal Description, Discovery, and
Integration (UDDI) registry to facilitate XML Web services discovery at
unknown endpoints. This module covers both publishing and finding an XML
Web service in a UDDI registry. The options for publishing an XML Web
service on an intranet and the options for modifying the default configuration of
an XML Web service are also discussed. After completing this module, you
will be able to publish and deploy an XML Web service.

Module 7, “Securing XML Web Services,” describes how to secure XML Web
services, specifically, how to provide authentication, authorization, and secure
communication in XML Web services. In the context of authentication, this
module covers the authentication mechanisms in Microsoft Internet Information
Services (IIS) in addition to custom authentication mechanisms that use SOAP
headers. In the context of authorization, the .NET Framework’s support for
role-based security and code access security are covered. In the context of
secure communication, this module covers how to encrypt the communications
between an XML Web service and an XML Web service consumer by using
SOAP extensions. After completing this module, you will be able to secure an
XML Web service.

 Introduction 7

Module 8, “Designing XML Web Services,” examines some of the important
issues that you need to consider when designing a real-world XML Web
service. The issues discussed are related to datatype constraints, performance,
reliability, versioning, deployment in Internet Service Provider (ISP) and
Application Service Provider (ASP) scenarios, and aggregating XML Web
services. The module also discusses Hypertext Markup Language (HTML)
screen scraping as a pseudo-XML Web service. After completing this module,
you will be able to evaluate the trade-offs and issues that are involved in
designing a real-world XML Web Service.

Module 9, “Global XML Web Services Architecture,” describes the limitation
of the current specifications that determine how XML Web services are built.
This module describes some of the Global XML Web services Architecture
(GXA) specifications and how to design XML Web services today that will
anticipate the services that GXA will offer. After completing this module, you
will be able to describe limitations inherent to the specifications with which
today’s XML Web services are built, describe the upcoming GXA
specifications and understand how to design XML Web services that anticipate
and can leverage the features that GXA will offer when released.

8 Introduction

Setup

� Windows XP Professional

� Microsoft Windows .NET Server, Beta 3

� UDDI Services for .NET Server Beta 3

� Visual Studio .NET Enterprise Developer Edition

� Windows Component Update

� SQL Server 2000 Developer Edition

� UDDI SDK version 1.76

� Course Files

� Labs

� Demonstrations and code walkthroughs

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The following software will be used in the classroom:

� Microsoft Windows® XP Professional
� Microsoft Windows .NET Server, Beta 3
� UDDI Services for .NET Server Beta 3
� Microsoft Visual Studio .NET Enterprise Developer Edition
� Microsoft Windows Component Update compact disc set
� Microsoft SQL Server™ 2000 Developer Edition
� Microsoft UDDI SDK version 1.76

There are starter and solution files associated with the labs in this course. The
starter files are located in the <install folder>\Labfiles\
<language>\Lab0x\Starter folder and the solution files are in the
<install folder>\Labfiles\<language>\Lab0x\Solution folder, where Lab0x
reflects the current lab.

The labs in this course are based on a banking services scenario. A
complete working solution of this scenario is located in the <install
folder>\Labfiles\<language>WebServicesSolution folder.

There are code files associated with the demonstrations and code walkthroughs
in this course. These files are located in the <install folder>\
Democode\<language>\Mod0x folder, where Mod0x reflects the current
module.

Labs

Note

Demonstrations and
code walkthroughs

 Introduction 9

Microsoft Official Curriculum

http://www.microsoft.com/traincert/

2524B, Developing XML Web Services Using Microsoft
ASP.NET

2415B, Programming with the Microsoft .NET Framework
(Microsoft Visual Basic .NET)

2349B, Programming with the Microsoft .NET Framework
(Microsoft Visual C# .NET)

oror

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Training and Certification develops Microsoft Official Curriculum
(MOC), including Microsoft MSDN® Training, for computer professionals who
design, develop, support, implement, or manage solutions using Microsoft
products and technologies. These courses provide comprehensive skills-based
training in instructor-led and online formats.

Each course relates in some way to another course. A related course may be a
prerequisite, a follow-up course in a recommended series, or a course that offers
additional training.

In preparation for taking Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET, you can take either of the following courses:

� Course 2349B, Programming with the Microsoft .NET Framework
(Microsoft Visual C#™ .NET)

� Course 2415B, Programming with the Microsoft .NET Framework
(Microsoft Visual Basic .NET)

Introduction

Additional
recommended courses

10 Introduction

Course Title and description

2349B Programming with the Microsoft .NET Framework (Microsoft Visual C#

.NET)
This course provides a hands-on tour of the Microsoft .NET Framework for
C# developers. An overview of key concepts is followed by an in-depth
tutorial on areas including the common type system, base class libraries,
assemblies, delegates, and events, memory management, file and network
I/O, seralization, and remoting. Examples and labs reinforce the knowledge
that is needed to develop, deploy, and version Microsoft .NET
Components.

2415B Programming with the Microsoft .NET Framework (Microsoft Visual Basic
.NET)
This course provides developers with a hands-on tour of the Microsoft
.NET Framework and tutorials about working with assemblies, versioning,
the common type system, memory management, file and network I/O,
serialization, remoting, and XML Web services.

Other related courses may become available in the future, so for up-to-date
information about recommended courses, visit the Training and Certification
Web site.

For more information, visit the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert/.

Microsoft Training and
Certification information

 Introduction 11

Microsoft Certified Professional Program

http://www.microsoft.com/traincert/

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Training and Certification offers a variety of certification credentials
for developers and IT professionals. The Microsoft Certified Professional
program is the leading certification program for validating your experience and
skills, keeping you competitive in today’s changing business environment.

The Microsoft Certified Professional program includes the following
certifications.

� MCSA on Microsoft Windows 2000
The Microsoft Certified Systems Administrator (MCSA) certification is
designed for professionals who implement, manage, and troubleshoot
existing network and system environments based on Microsoft Windows
2000 platforms, including the Windows .NET Server family.
Implementation responsibilities include installing and configuring parts of
the systems. Management responsibilities include administering and
supporting the systems.

� MCSE on Microsoft Windows 2000
The Microsoft Certified Systems Engineer (MCSE) credential is the premier
certification for professionals who analyze the business requirements and
design and implement the infrastructure for business solutions based on the
Microsoft Windows 2000 platform and Microsoft server software, including
the Windows .NET Server family. Implementation responsibilities include
installing, configuring, and troubleshooting network systems.

� MCSD
The Microsoft Certified Solution Developer (MCSD) credential is the
premier certification for professionals who design and develop leading-edge
business solutions with Microsoft development tools, technologies,
platforms, and the Microsoft Windows DNA architecture. The types of
applications MCSDs can develop include desktop applications and multi-
user, Web-based, N-tier, and transaction-based applications. The credential
covers job tasks ranging from analyzing business requirements to
maintaining solutions.

Introduction

Related certification
exams
MCP certifications

12 Introduction

� MCDBA on Microsoft SQL Server 2000
The Microsoft Certified Database Administrator (MCDBA) credential is the
premier certification for professionals who implement and administer
Microsoft SQL Server databases. The certification is appropriate for
individuals who derive physical database designs, develop logical data
models, create physical databases, create data services by using Transact-
SQL, manage and maintain databases, configure and manage security,
monitor and optimize databases, and install and configure SQL Server.

� MCP
The Microsoft Certified Professional (MCP) credential is for individuals
who have the skills to successfully implement a Microsoft product or
technology as part of a business solution in an organization. Hands-on
experience with the product is necessary to successfully achieve
certification.

� MCT
Microsoft Certified Trainers (MCTs) demonstrate the instructional and
technical skills that qualify them to deliver Microsoft Official Curriculum
through Microsoft Certified Technical Education Centers (Microsoft
CTECs).

The certification requirements differ for each certification category and are
specific to the products and job functions addressed by the certification. To
become a Microsoft Certified Professional, you must pass rigorous certification
exams that provide a valid and reliable measure of technical proficiency and
expertise.

See the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert/.

You can also send e-mail to mcphelp@microsoft.com if you have specific
certification questions.

Microsoft Official Curriculum (MOC) and MSDN Training Curriculum can
help you develop the skills that you need to do your job. They also complement
the experience that you gain while working with Microsoft products and
technologies. However, no one-to-one correlation exists between MOC and
MSDN Training courses and MCP exams. Microsoft does not expect or intend
for the courses to be the sole preparation method for passing MCP exams.
Practical product knowledge and experience is also necessary to pass the MCP
exams.

To help prepare for the MCP exams, use the preparation guides that are
available for each exam. Each Exam Preparation Guide contains exam-specific
information, such as a list of the topics on which you will be tested. These
guides are available on the Microsoft Training and Certification Web site at
http://www.microsoft.com/traincert/.

Certification
requirements

For More Information

Acquiring the skills
tested by an MCP exam

 Introduction 13

Facilities

� Class hours
� Building hours
� Parking
� Restrooms
� Meals
� Phones
� Messages
� Smoking
� Recycling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Evolution of Distributed Applications 2

Problems with Traditional Distributed
Applications 4

Introducing XML Web Services 14

The Web Technology Stack and .NET 16

The .NET Alternatives to XML Web Services 18

Common XML Web Service Scenarios 20

Review 22

Module 1: The Need for
XML Web Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 1: The Need for XML Web Services iii

Instructor Notes
This module provides students with an understanding of the problem space that
XML (Extensible Markup Language) Web services address. The module
compares various approaches to implementing distributed applications. XML
Web services are shown to be the natural evolution of distributed application
architectures on the Internet. Because the XML Web services in this course are
implemented by using Microsoft® ASP.NET and the Microsoft .NET
Framework, alternate options for implementing distributed applications by
using the .NET Framework are discussed to better define what kinds of
solutions XML Web services are appropriate for.

After completing this module, students will be able to:

 Describe the evolution of distributed applications.
 Identify the problems with traditional distributed application architectures

and technologies.
 Describe XML Web services and briefly explain how they address the

design problems in traditional distributed applications.
 List the alternate options for distributed application development.
 Identify the kinds of scenarios where XML Web services are an appropriate

solution.

To teach this module, you need the Microsoft PowerPoint® file 2524B_01.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Read the topic “Designing Distributed Applications” in the Microsoft Visual

Studio® .NET documentation in Microsoft MSDN®. Also, read all of the
linked topics.

Presentation:
60 minutes

Lab:
00 minutes

Required materials

Preparation tasks

iv Module 1: The Need for XML Web Services

How to Teach This Module
This section contains information that will help you to teach this module.

 Evolution of Distributed Applications
The students must understand how distributed applications have evolved
from being islands of functionality into being service providers and building
blocks for larger systems. Students also need to understand the importance
of distributed applications.

 Problems with Traditional Distributed Applications
Begin this section by explaining some of the design considerations that are
unique to distributed applications. Compare and contrast the remote
procedure call (RPC) and message-based architectures for building
distributed applications. Acknowledge that there are other distributed
application architectures, but explain that the intent of this section is to
understand the architectural issues, and not the specific pros and cons of
each architectural pattern. Explain how the Web has provided a new
environment in which distributed applications can be developed and define
what some of the benefits and challenges of the Web are.

 Introducing XML Web Services
Briefly describe what XML Web services are. Emphasize the fact that the
underlying technologies for XML Web services are Internet technologies.
Explain how XML Web services are an evolution of existing distributed
application architectures. Avoid an extensive discussion of the features of
XML Web services because this will be covered throughout the rest of this
course.

 The Web Technology Stack and .NET
Explain that the .NET Framework provides classes that map to each level in
the technology stack. Explain the trade-offs in implementing a solution at
various levels of the technology stack. Use the explanation of the trade-offs
to guide the students to the conclusion that only in limited circumstances
should they consider reimplementing higher levels of the technology stack.
Tell the students that in most circumstances, they should take advantage of
the productivity gains and robustness of the infrastructure that the .NET
Framework provides.

 The .NET Alternatives to XML Web Services
Explain that the .NET Framework supports many patterns for building
distributed applications, with XML Web services being just one type. Many
students will be interested in .NET remoting solutions. Be sure to contrast
the tighter coupling of .NET remoting solutions vs. the loose coupling of
XML Web service solutions.

 Common XML Web Service Scenarios
Describe some common scenarios where XML Web services might be an
appropriate solution. You are encouraged to share other scenarios as
appropriate with your students.

 Module 1: The Need for XML Web Services 1

Overview

Evolution of Distributed Applications

Problems with Traditional Distributed Applications

Introducing XML Web Services

The Web Technology Stack and .NET

The .NET Alternatives to XML Web Services

Common XML Web Service Scenarios

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To understand the importance of XML Web services, you need to understand
the problem space that they address. Specifically, you need to be familiar with
the evolution of distributed applications and the limitations of existing
distributed application architectures.

This module begins by examining how the architecture and technologies related
to distributed applications evolved. You will study the problems inherent in
each of the existing distributed application architectures. Next, XML Web
services and the role they play in the context of distributed application
architectures are described. The module then goes on to describe the Web
technology stack and the support that the Microsoft® .NET Framework provides
for each of the technologies in the stack. Also, some of the .NET alternatives to
XML Web services are briefly described. The module concludes with a
discussion about some of the common scenarios in which it is appropriate to
use XML Web services.

After completing this module, you will be able to:

 Describe the evolution of distributed applications.
 Identify the problems with traditional distributed application architectures

and technologies.
 Describe XML Web services and briefly explain how they address the

design problems in traditional distributed applications.
 List the alternate options for distributed application development.
 Identify the kinds of scenarios where XML Web services are an appropriate

solution.

Introduction

Objectives

2 Module 1: The Need for XML Web Services

Evolution of Distributed Applications

What is a distributed application?

Why do we need distributed applications?

Distributed applications as service providers

Distributed applications and the Web

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before the advent of the personal computer, it could be argued that the notion of
distributed applications did not exist. Until that point, using a computer
involved sitting in front of a terminal and interacting with a mainframe.
Although the terminals could be spread across multiple buildings or even
physically located off-site, there was a central computer that performed all of
the processing and stored all of the data.

With the advent of the mini-computer and the personal computer, decentralizing
both processing and data storage became desirable. However, even though the
data processing and storage were no longer centralized, the application logically
could still be a single application, by designing the application as a distributed
application. A distributed application is an application whose processing
requirements may be satisfied by multiple physical computers, and whose data
may be stored in many physical locations, but whose logical function is not
determined by the physical topology that is used to implement the application.

Introduction

What is a distributed
application?

 Module 1: The Need for XML Web Services 3

The driving forces behind the move to decentralize processing and data storage
include:

 Cost of mainframes
One of the primary driving forces was the cost of mainframes. Not only was
the initial investment cost beyond the reach of most companies, but having a
single point of failure was a risk that most companies could not afford.

 Data ownership
An important factor behind decentralization was the politics of data
ownership. Departments, divisions, geographic locations, or sites that
owned the data did not like to delegate the responsibility of managing their
data to some other central location.

 Security
Another important factor was security. For an organization, typically most
of its data needs to be easily accessible. However, sensitive corporate data
still must be secured. Catering to these two competing security requirements
was much easier if the data could be physically segmented.

The preceding factors led to the emergence of a new application design pattern,
which is known as distributed applications.

With the emergence of the design pattern for the distributed application came
the realization that the computer industry had not yet achieved its goal of reuse.
Instead of viewing distributed applications as logically monolithic, it became
useful to view the distributed components of an application as providers of
services to a logical application. The concept of distributing functionality held
the promise of reuse. Developers could use each of the distributed sets of
functionality as a building block for much larger applications. There are
significant problems in achieving this type of reuse. Some of these problems are
covered later in this module, when the various architectures and technologies
that are used to implement distributed applications are explained.

Although the Internet had existed for more than twenty years, it was only in the
mid-1990s that the possibility of the Internet providing significant infrastructure
for building distributed applications was realized. Simple text-based protocols
were developed as a primary means for communicating service requests and
sending data on the Internet. The widespread adoption of such protocols made
the Internet a viable platform for distributed applications. Instead of relying on
competing and often proprietary technologies, Web standards would form the
foundation for distributed applications for the Web.

Why do we need
distributed
applications?

Distributed applications
as service providers

Distributed applications
and the Web

4 Module 1: The Need for XML Web Services

Problems with Traditional Distributed Applications

Design Considerations for Distributed Applications

RPC-Based Architectures

Message-Based Architectures

Web Standards

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The development of distributed applications required new design techniques
and models. They also resulted in new kinds of problems. In this section, you
will look at the issues that you must consider when designing distributed
applications. You will also look at two kinds of architectures that were
developed to enable distributed application development:

 Remote Procedure Call-based (RPC-based) architectures.
 Message-based architectures.

The problems with the preceding architectures will also be discussed. Finally,
you will look at the effect of the Web standards on distributed application
development.

Introduction

 Module 1: The Need for XML Web Services 5

Design Considerations for Distributed Applications

Data types that are not compatible across different
systems

Server failures or loss of server response

Client failures

Retrying a call

Security

Synchronizing clocks between multiple computers

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are several common problems that you need to consider when designing
a distributed application. These problems are not unique to any particular
distributed application design.

Different operating systems support different data types. Sometimes, there is
not a 100 percent compatibility of data types across different operating systems.
Therefore, you must consider how to handle data types that are not compatible
across different systems.

Because components of distributed applications are often remote, there are
more single points of failure. Failure of any one point can cause the entire
distributed application to fail. Therefore, you must consider how to handle
server failures and loss of server response.

If a server is storing state on behalf of a client, and the client fails, then you
must consider how the server will be notified. You also must consider if it is
necessary to reclaim resources on the server that were in use by the client.

If a remote method is called and there is no response from the server, it may not
be acceptable to retry calling the method. For example, if a method is called to
purchase a large order of stock, and if the server received the request to place
the order but the response was lost, then it would not be acceptable to resubmit
the purchase order.

Introduction

Different data types

Server failures

Client failures

Retrying calls

6 Module 1: The Need for XML Web Services

In distributed applications, there are more opportunities for security threats. Not
only must you consider authentication and authorization, but you also must
consider how to secure the communication between a client and a server, and
how to guard against man-in-the-middle attacks, denial-of-service attacks,
replay attacks, and so on.

Many operations rely on time stamping. For example, it is not acceptable for a
server to acknowledge that it received a purchase order before the purchase
order was placed. This kind of a problem can arise if the clocks on the client
and server computers are not synchronized. Therefore, you must decide how
you will ensure the synchronization of the clocks on the various computers that
communicate in a distributed application.

Security

Synchronizing clocks

 Module 1: The Need for XML Web Services 7

RPC-Based Architectures

What is an RPC?

RPCs are calls made to procedures or functions that
reside on a remote system

Synchronous function calls

Problems with RPC-based architectures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

RPC-based architectures were among the first candidates to be considered as a
solution to the design problems of distributed applications.

A remote procedure call (RPC) is a call made to a procedure or function that
resides on a remote system. An RPC looks like an ordinary procedure call or a
function call within the code that uses it. An RPC provides both:

 Location transparency
The programmer does not need to know the physical location of the service
provider.

 A familiar programming model
Most programmers are accustomed to using some form of procedure call.

The RPC infrastructure generates a stub, which acts as a representative of the
remote procedure code and marshals any procedure arguments to a buffer,
which may be transmitted over a network to the RPC server. On the RPC
server, the stub unpacks the arguments in the server process and the arguments
are passed to the actual function being called. Any return value is returned to
the caller in a similar way.

In an RPC model, an application establishes a conversation with an appropriate
RPC server. The RPC function calls look very similar to local procedure calls;
also, the blocking semantics of RPCs are the same as those of local procedure
calls. The fact that the blocking semantics are the same means that calls are
synchronous, that is, the thread of execution is blocked until the function
returns. For most developers, this is a very comfortable programming model.
However, layering a synchronous model on top of a distributed architecture
introduces some problems.

Introduction

What is an RPC?

Synchronous function
calls

8 Module 1: The Need for XML Web Services

The first problem that is inherent in RPC-based architectures is discovery. How
can the application discover the information that is needed to connect to an
endpoint that could supply the required services? The simple solution that is
used in most applications is to hard-code the endpoint information. This is not
an optimal solution because it makes building redundancy and failover
capabilities into an application very difficult.

As an application begins to rely on multiple distributed services, it becomes
more susceptible to the possibility of some critical service being unavailable.
Therefore, the aggregate availability of a distributed application would be
negatively affected by the brittleness of typical implementations. Typical
implementations are brittle because they do no tolerated changes to their
deployment environment very well without failure.

Hard-coding the endpoints in an application results in another problem.
Specifically, there is no simple way for an RPC-based application to do any
form of dynamic load balancing. Neither can the application respond to server
unavailability by dynamically failing over to an alternate server.

Prioritization of requests is almost impossible, because all requests by default
are handled on a first-come, first-serve basis. If a particular server is heavily
loaded, the higher priority clients might be subjected to unacceptable delays.

Consider an investment brokerage house. Most brokerage clients are small
accounts. However, the brokerage would also have a number of large accounts
that require special service because of their transaction volumes. In a volatile
market, large clients must be given precedence over smaller customers. The
brokerage house cannot afford to have the transactions of large clients queued
behind transactions of smaller clients, at the risk of losing business from large
clients.

Another significant problem with RPC-based applications is the inability to
handle load spikes. Load spikes can have the following consequences:

 Temporary server outages due to server failure.
 Failure of an action because a required resource (for example, database

connections) had been exhausted.
 The need for more hardware than is required for typical loads, to handle the

infrequent load spikes.

Building redundancy

Aggregate availability

Load balancing and
failover

Prioritization

Load spikes

 Module 1: The Need for XML Web Services 9

Message-Based Architectures

Asynchronous Messaging

Problems with Message-Based Architectures

Message payload processing

Interoperability

Workflows and message sequencing

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Another candidate architecture that you can use to build distributed applications
is a message-based architecture. Message-Oriented Middleware provides
applications with interprocess communication services by using message
queuing technology as the basis for a guaranteed service level for critical
applications. The queuing technology tracks a message along each leg of its
route, much like delivery services for a commercial package company performs
package tracking. This queuing technology ensures that any problem can be
quickly detected, and possibly even corrected, without user intervention.

Message-based architectures have usually been built around message-queuing
products such as Microsoft Message Queuing (formerly known as MSMQ).

The most evident features of message-based architectures are that they are
asynchronous and that they are based on the exchange of messages rather than
function calls. Both of these features have some advantages, such as:

 Messages can be routed based on load and priority.
 Asynchronous calls allow clients to do productive work while waiting for a

time-consuming operation.

However, these features introduce problems.

Because message-based systems transfer messages, one of the first tasks that
the application programmer is responsible for is adding the functionality for
packing and unpacking of the message contents. After unpacking the message
contents, the application must still validate the contents. As the complexity and
flexibility of the message payload increases, unpacking and validating messages
becomes more difficult.

Introduction

Asynchronous
messaging

Message payload
processing

10 Module 1: The Need for XML Web Services

Most message-based systems are implemented by using proprietary message-
queuing products. Using proprietary message-queuing products has at least two
requirements in implementing interoperable messaging-based systems. All of
the organizations participating in the distributed operation must have:

 Message queuing software.
 Bridging software to operate between the disparate messaging

environments.

Even if the preceding requirements are met, the resulting solution tends to be
difficult to implement and expensive. Therefore, message-based solutions are
not viable as a standard way to implement distributed applications.

Many distributed application scenarios involve workflows that are defined as a
sequence of messages being exchanged between multiple computers. Because
messages are sent asynchronously, it is possible that messages may arrive out of
order. In some scenarios, it would be fatal if messages were processed in an
incorrect sequence. For example, if a stock broker received orders to buy and
sell, out of sequence, this could significantly affect the prices paid in each
transaction. This means that the application developer has the additional burden
of creating a high-level protocol layer on top of the messaging protocol to track
the sequence of messages.

Interoperability

Workflows and message
sequencing

 Module 1: The Need for XML Web Services 11

Web Standards

Problems with binary protocols

Web protocols and data formats

HTML

HTTP

XML

Problems with the Web

Security

Performance

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Both RPC- and message-based architectures have been successfully
implemented by many organizations, but these architectures suffer from a
number of problems. In this topic, you will look at some of the problems
inherent in current and legacy distributed object models, and how the adoption
of Web standards in designing distributed applications alleviates many of these
problems.

Distributed object models such as Distributed Component Object Model
(DCOM), Java Remote Method Invocation (RMI), and Common Object
Request Broker Architecture (CORBA), suffer from the limitation of relying on
binary protocols. Some of the problems inherent in using binary protocols
include:

 Firewalls
The first problem is that binary protocols are point-to-point. As a result, any
communication with an endpoint that is inside a firewall requires firewall
administrators to open up a range of ports to allow communication. For
most organizations, this is an unacceptable security risk.

 Interoperability
Another problem is interoperability between disparate object models. Each
object model uses its own proprietary protocol. It is possible to provide
software to translate the packets that are passed between the different object
models. However, a loss of information always results because of the
translation. The result is that most organizations use a single object model to
implement all of their systems within an organization. Consequently, the
environment of distributed applications is divided into different groups that
are identified by the object model that each group has adopted. If a potential
trading partner chooses a competing object model, this can cause significant
problems.

Introduction

Problems with binary
protocols

12 Module 1: The Need for XML Web Services

 Data formats
Another problem with binary protocols is the encoding of data that is
transmitted by using these protocols. Every protocol encodes data
differently, which places a huge overhead on organizations when they have
to consume data that was encoded in multiple, incompatible ways.
Also, the difficulty in translating data from one format to another leads to
the segregation of organizations based on the data formats that they can
handle.

Because of the problems in using binary protocols, there was a need for a
ubiquitous protocol, and an easily parsable and transformable data encoding. It
turned out that the emergence of the World Wide Web (WWW) provided the
universal solution that everyone could easily use.
Transmission Control Protocol (TCP) and Internet Protocol (IP) were originally
developed to connect different networks that different designers designed into a
network of networks. Ultimately, this network of networks came to be known
as the Internet.

Then, in late 1990, Tim Berners-Lee, a computer scientist at CERN invented
the World Wide Web, which is also known as the Web. The Web is a globally
interconnected network of hypertext documents. Emerging from this effort were
two revolutionary technologies: Hypertext Markup Language (HTML) and
Hypertext Transfer Protocol (HTTP).

HTML is a language that defines how to add markup (in the form of tags) to
text documents to provide information to a Web browser on how to lay out the
text in the document. The documents with HTML tags are known as hypertext
documents.

HTTP is the protocol that is used for requesting and receiving hypertext
documents on the Web. A very important point to be noted about HTTP is that
it is not restricted to work with just HTML documents. An example of this fact

is that XML Web services and their clients can exchange XML documents by
using HTTP.

As the popularity of the Web increased, HTTP as a protocol has been almost
universally adopted. Using HTTP overcomes one of the major obstacles for the
interoperation of distributed object models, specifically the lack of a ubiquitous,
trusted protocol.

Developers soon realized that although HTML allowed a document author to
define presentation structure, it did not provide any way to define the structure
of the data or the relationship between the data in a document. In 1996, this
limitation led to the birth of a language for marking up text to describe the
structure of the data in a document. This language is known as Extensible
Markup Language (XML). Some of the goals of XML documents are that they
must be:

 Easily usable over the Internet.
 Unambiguous.
 Easy to create.
 Easy to parse and process.
 Extensible, platform independent, and able to support localization.

The Internet and the
Web

Advantages of HTTP

XML - A Universal data
format

 Module 1: The Need for XML Web Services 13

The rapid adoption of XML is evidence of its suitability as a universal data
format.

The final contribution (in the context of this topic) of the Web is the Web
server. Web servers typically communicate by using HTTP, which is a trusted,
widely adopted protocol. An equally important aspect of a Web server is its role
as a gateway to an organization. Web servers need not merely serve HTML
content. Through the HTTP extensibility mechanisms, Web servers can also
forward requests to an appropriate request handler. The Web server does not
concern itself with how the handler interprets the payload of an HTTP request.
This is because it is the responsibility of the handler to process the forwarded
request and generate an HTTP response. The Web server sends the response
back to the client.

Web servers can forward requests for any kind of service that an HTTP request
describes and whose results can be packaged in an HTTP response. And all of
this can be done without requiring any reconfiguration or loosening of firewall
policy.
In spite of the benefits that the Web has provided, there are some concerns in
the areas of security and performance.

Because the Internet is a public infrastructure, it also means that any
communication is potentially vulnerable to interception, modification, spoofing
(a technique that is used to gain unauthorized access to a computer), etc.

A discussion of the various security mechanisms that different
technologies use in the distributed applications domain is beyond the scope of
this course. However, in Module 7, “Securing XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET, you will see
how you can secure XML Web services that were built by using the Microsoft
.NET Framework.

The majority of Internet users still only have dial-up access to the Internet. This
introduces significant performance problems and severely constrains the type
and complexity of application that can be delivered over the Web. For example,
some interactive applications require significant interaction with the server. The
bandwidth limitations of dial-up connections severely limit the kinds of
interactivity an application could support.

Performance issues combined with security concerns and reliability problems
(even the largest Web sites are not immune to server outages and service
unavailability) make designing applications for a private network a better
solution, in some scenarios.

Firewall friendly

Problems with the Web

Security

Note

Performance

14 Module 1: The Need for XML Web Services

Introducing XML Web Services

What Are XML Web Services?

URL-addressable set of functionality exposed over a
network

Based on Internet Technologies

Building Blocks

The Future of Distributed Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The problems with existing object models for distributed applications forced
developers to look for alternatives. With the rapid adoption of Web standards, it
is natural that solutions based on Web standards would be considered. This led
to the evolution of XML Web services.

A Web service is an URL addressable set of functionality that is exposed over a
network to serve as a building block for creating distributed applications. An
early example of a Web Service is Microsoft Passport. Passport provides
authentication services and all of its functionality is accessible through HTTP
requests.

In this course, any mention of Web services specifically refers to XML-
based Web services. Although other kinds of Web services are possible (for
example, custom HTTP listeners), it is unlikely that they will be as popular and
highly used as XML-based Web services.

The foundations for XML Web services are HTTP, XML, and Simple Object
Access Protocol (SOAP, a lightweight HTTP- and XML-based protocol that is
used for information exchange). The development of these technologies is
governed by the World Wide Web Consortium (W3C). You will learn about
these technologies in greater detail later in Module 3, “The Underlying
Technologies of XML Web Services,” in Course 2524B, Developing XML Web
Services Using Microsoft ASP.NET.

Like components, XML Web services are black boxes. They encapsulate the
implementation and provide an interface for communicating with the XML
Web service. Therefore, you can use XML Web services as building blocks for
applications.

There is no restriction on the granularity of an XML Web service. It can range
from simple components such as an order-tracking component published by a
shipping company to large applications such as hosted financial applications.
You can apply XML Web services at many different levels of a solution.

Introduction

What Are XML Web
Services?

Note

Foundations for XML
Web Services

Building Blocks

No granularity
restriction

 Module 1: The Need for XML Web Services 15

XML Web services can provide convenient access to a static set of information.
For example, an XML Web service can allow a customer to request
demographic information for a specified city.

Alternatively, developers might use XML Web services to implement highly
interactive applications. For example, a travel Web site might make it possible
to build an entire vacation itinerary online by using multiple XML Web
services. The user can use XML Web services for making hotel and rental car
reservations, planning flight itineraries, and booking flights, etc.

An XML Web service can aggregate other XML Web services to provide a
sophisticated set of services. For example, an XML Web service for a real-
estate agency might make use of an XML Web service for a credit verification
to facilitate approval of online loan applications. In the future, more and more
distributed applications will be built from XML Web services. In such
applications, XML Web services will often be selected at run time based on
different metrics, such as availability, cost, performance, and quality. This level
of choice will be invaluable in designing redundant systems with failover
capabilities.

Aggregating XML Web services are also known as federated XML Web
services.

Why should XML Web services succeed where all other technologies have
failed? Let us look at the key characteristics of XML Web services that can
enable its success.

XML Web services are intended to be invoked by using SOAP. Because SOAP
is platform neutral, developers must no longer figure out how to build bridges
between DCOM, CORBA, and other disparate protocols. Any XML Web
service can interoperate with any other XML Web service.

Also, because XML Web services communicate by using HTTP and XML, any
network node, which supports these technologies, can both host and access
XML Web services.

Developers can write XML Web services in any language. Consequently,
developers need not learn new languages or standardize on a single language to
create or consume XML Web services.

It is very easy to expose existing components and libraries as XML Web
services. Vendors, like Microsoft, provide tools to make the task of exposing
components and libraries even easier. Most companies have a large number of
existing components, libraries, and applications. It may be more cost effective
to reuse the functionality in these software resources than to reimplement them.

All of the major vendors are supporting technologies that are related to XML
Web services, specifically, HTTP, XML, and SOAP. The universal support for
these standards is unprecedented. This kind of support will make it very easy
for heterogeneous systems to communicate. For example, a component that is
written in C# and exported as an XML Web service can easily be used by a
Common Gateway Interface (CGI) application that is written in C++, if that
application were to make a SOAP request and process the result appropriately.

Static resources or
interactive applications

Aggregating XML Web
Services

Note

The future of distributed
applications

Interoperability

Multilanguage support

Reusing existing
applications

Use of industry-
supported standards

16 Module 1: The Need for XML Web Services

The Web Technology Stack and .NET

TCP/IP
Sockets
HTTP

XML or Binary Formats
SOAP

System.Net.Sockets
System.Net.Sockets

System.Net
System.Runtime.Remoting

System.Web.Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you consider implementing distributed applications, the wide array of
implementation options might force you to make some trade-offs. For example,
you might choose to trade ease of implementation for performance, or trade
richness of services for complexity of communication.

The trade-offs involved in implementing a solution that is based on a specific
level in the Web technology stack are outlined in this topic.

This is the lowest level in the technology stack. In this level, you can choose to
allow the distributed elements of an application to communicate by using
TCP/IP. The .NET Framework supports this type of application through the
classes contained in the System.Net.Sockets namespace.

If you want to include session support in your application, then you can use
sockets. The .NET Framework supports this type of application through the
classes in the System.Net.Sockets namespace.

If you want to interact with Web servers or allow communication through
corporate firewalls, then you can use HTTP. The .NET Framework supports
this type of application though the classes in the System.Net namespace.

You can implement a distributed application that is based on an object remoting
solution. However, there are a number of problems related to object identity and
the wire format of the remoted object. The wire format of the remoted object
can be in binary format or perhaps an XML serialization of the object. The
.NET Framework supports this type of application through the classes provided
in the System.Runtime.Remoting namespace.

Introduction

TCP/IP

Sockets

HTTP

XML or binary formats

 Module 1: The Need for XML Web Services 17

If you want to implement distributed services that have a very loose coupling
with the service consumers and are based completely on Web standards, then
you can implement an XML Web service. The protocol of choice for this kind
of application is the Simple Object Access Protocol (SOAP). A discussion on
SOAP is provided in Module 3, “The Underlying Technologies of XML Web
Services,” in Course 2524B, Developing XML Web Services Using Microsoft
ASP.NET.

The .NET Framework supports implementing XML Web services through the
System.Web.Services namespace.

SOAP

18 Module 1: The Need for XML Web Services

The .NET Alternatives to XML Web Services

Stand-alone listeners

Custom protocol handlers

.NET Remoting

.NET remoting vs. XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services fall under the highest level in the technology stack.
Depending upon the level of control that your application needs (for example,
you might not have the option to compromise on performance), you might
decide to implement your application at a lower level in the technology stack.

In theory, implementing a solution at a lower level in the technology stack
increases the performance of the solution. This is because such a solution need
not incur all of the overhead of the other technologies that are higher up in the
stack. However, in practice, most developers do not have the skills to
implement a scalable, robust, and maintainable solution, by using a low-level
technology. Even if the developers have the skills, most of them do not have the
time to implement such a solution.

.NET has several different implementation options, other than XML Web
services, that are available for distributed application development. The
following options are not trivial options. It is advisable to further investigate
these options if you think that they may be a better solution to your
requirements in comparison to XML Web services.

Introduction

 Module 1: The Need for XML Web Services 19

The first alternative to an XML Web service is a stand-alone listener. A stand-
alone listener is an application that monitors a well-known port and responds to
the messages it receives at that port. As a developer, you can implement stand-
alone listeners in different ways:

 You can use a prewritten Internet Server Application Programming
Interface (ISAPI) filter to handle all of the low-level socket communication
and protocol implementation on behalf of your listener. Some examples are
SOAP, Microsoft Active Server Page (ASP), and Microsoft Active
Template Library (ATL) Server filters. You could then implement the
listener functionality in a C++ class or an ASP page.

 You can implement an ISAPI filter that handles requests for documents with
a specific extension and then decodes the contents of an HTTP request.

 You can write a server application that monitors a well-known port. You
will then not be restricted to using HTTP or SOAP protocols. To write such
an application, you can use the classes in the System.Net namespace of the
.NET Framework.

The preceding list is not exhaustive. However, it introduces you to the options
that are available for implementing stand-alone listeners.

If HTTP does not fit your requirements, then you can implement a custom
protocol handler by deriving it from the WebRequest and WebResponse
classes, which are found in the .NET Framework. You can still make use of the
.NET serialization support when using your custom protocol, but the general
object-remoting capabilities are not available.

If you need a remote component infrastructure, but do not need the level of
interoperability that XML Web services provides, then you can use .NET
Remoting. The System.Runtime.Remoting namespace provides classes to
activate remote objects, marshal arguments by value and by reference, and
make asynchronous calls, etc.

On the surface, .NET Remoting and XML Web services appear very similar to
each other. In fact, XML Web services are built on the .NET Remoting
infrastructure. However, it is recommended that you consider the following
when choosing which technology is more appropriate for the problem you are
trying to solve:

 .NET Remoting tends to be more appropriate for applications where the
implementation of the applications at both endpoints is under the control of
the same organization.

 XML Web services are more appropriate for applications where the client
side of the service is likely to be outside the control of a particular
organization (for example, a trading partner).

See Course 2349B: Programming the Microsoft® .NET Framework
(Microsoft Visual C# .NET) and Course 2415B: Programming the Microsoft®
.NET Framework (Microsoft Visual Basic .NET), for a detailed discussion on
.NET Remoting.

Stand-alone listeners

Custom protocol
handlers

.NET Remoting

.NET Remoting vs. XML
Web Services

Note

20 Module 1: The Need for XML Web Services

Common XML Web Service Scenarios

ASP/Hosted applications

Application integration

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are a number of scenarios where XML Web services are an appropriate
solution.

Application Service Providers (ASP) host applications that they then rent to
subscribers. From a subscriber’s perspective, the following are the
characteristics of hosted applications:

 The application that the ASP hosts is viewed as a portal.
 The application that the ASP hosts exists in an isolated environment.
 Each subscriber has their own instance of the application.
 Subscribers do not share data with other subscribers.

From an ASP’s perspective, all hosted applications must meet at least the
following criteria:

 Application instances must be separately configurable for each subscriber,
even on a shared hardware. This includes security settings.

 Applications must have mechanisms for measuring the duration of use of an
application for billing purposes.

It is also useful if both an ASP and an application provide standard interfaces
for mutual interaction.

ASPs do not have to host the applications at their own premises. In such cases,
the physical application host often is the hosting provider. Having the physical
application host act as the hosting provider allows the ASPs the flexibility in
acquiring applications to offer to subscribers.

Considering the requirements that ASPs have for hosted applications, it is
obvious that XML Web services are potentially a good solution for designing
applications that are meant for hosting.

Introduction

Application Service
Providers/Hosted
Applications

 Module 1: The Need for XML Web Services 21

Another potential use of XML Web services is in the area of application
integration. Scenarios for application integration are generally characterized by
a loose coupling with a published communication contract among the various
applications that need to be integrated.

XML Web services provide useful capabilities in both of these aspects. By
design, XML Web services are URL addressable, which provides for very loose
coupling. Also, by using Web Services Description Language (WSDL),
individual XML Web services can provide a contract that describes the XML
Web service interface.

You will learn more about WSDL in Module 4, “Consuming XML Web
Services,” in Course 2524B, Developing XML Web Services Using Microsoft
ASP.NET.

Application integration

Note

22 Module 1: The Need for XML Web Services

Review

Evolution of Distributed Applications

Problems with Traditional Distributed Applications

Introducing XML Web Services

The Web Technology Stack and .NET

The .NET Alternatives to XML Web Services

Common XML Web Service Scenarios

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What were some of the driving forces behind the development of distributed
applications?

• The cost of mainframes

• The issue of data ownership

2. What are some of the problems that are associated with traditional
distributed application architectures?

• Use of binary protocols

• Use of proprietary data formats

• Tightly-coupled solutions

• Complexity of development

 Module 1: The Need for XML Web Services 23

3. What is an XML Web service?
An XML Web service is a URL addressable set of functionality that is
exposed over a network to serve as building blocks for creating
distributed applications.

4. What is the main difference between .NET remoting and XML Web
services?
.NET Remoting provides the infrastructure to support object remoting
solutions, including functionality. XML Web services support only the
transport of data, and not functionality.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Service-Oriented Architecture 2

XML Web Services Architectures and Service-
Oriented Architecture 4

Roles in an XML Web Services Architecture 8

The XML Web Services Programming Model 16

Review 18

Module 2: XML Web
Service Architectures

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 2: XML Web Service Architectures iii

Instructor Notes
This module broadly describes the service-oriented architecture, which is a
conceptual architecture. Then, the module explains how XML Web service
architectures are a type of service-oriented architecture. It also describes the
various roles within the XML Web service architecture.

After completing this module, students will be able to:

 Identify how XML Web service architectures are a type of service-oriented
architecture.

 Describe the elements of an XML Web service architecture and explain
their roles.

 Describe the XML Web service programming model.

To teach this module, you need the Microsoft® PowerPoint® file 2524B_02.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Try out the demonstration.

Presentation:
60 Minutes

Lab:
00 Minutes

Required Materials

Preparation Tasks

iv Module 2: XML Web Service Architectures

Demonstration
This section provides demonstration procedures that are not appropriate for the
student notes.

 To demonstrate the NorthwindClient application

1. Start the application NorthwindClient.exe, which can be found in the folder
<installroot>\Labfiles\CS\Lab08_2\Solution\NorthwindClient\bin\Debug or
<installroot>\Labfiles\VB\Lab08_2\Solution\NorthwindClient\bin.

2. In the From list, click Woodgrove Online Bank.
3. In the To list, click Contoso Micropayments.
4. Click Transfer.
5. Explain that $100 has been transferred from an account at the Woodgrove

Bank to an account at the micropayment service, named Contoso.
6. Explain that the Northwind Traders XML Web service took care of all the

details of managing the transfer, including retrieving routing numbers, and
so on.

 To show the Service Description pages for the Northwind, Woodgrove,
and Contoso XML Web services

1. Open three separate browser windows.
2. In the first browser window, navigate to the following URL:

http://Localhost/Northwind/Traders.asmx
3. In the second browser window, navigate to the following URL:

http://Localhost/Woodgrove/Bank.asmx
4. In the third browser window, navigate to the following URL:

http://Localhost/Contoso/Micropayment.asmx
5. Describe the relationship between the methods that are listed on each of the

Service Description pages. Emphasize that the Northwind XML Web
service is a client of the other two XML Web services.

 To show that money is transferred between the accounts

1. Click the GetAccount link on the Service Description page to open the
Service Method Description page for the GetAccount method of the
Woodgrove XML Web service.

2. In the acctID box, type the account number by using the value of the
AccountID field for the From account in NorthwindClient.exe.

3. Click Invoke.
An XML document that contains the results of the method call is displayed.

4. Point out the value in the balance element in the XML document.
5. Click the Transfer button in the client application, NorthwindClient.exe.
6. Click the Refresh button on the browser window that displays the XML

document.
7. Point out that the balance has been reduced by $100.

An Electronic Funds
Transfer XML Web
Service

 Module 2: XML Web Service Architectures v

Module Strategy
Use the following strategy to present this module:

 Service-Oriented Architecture
Explain what a service-oriented architecture is. This topic is intended to
provide the students with a conceptual framework to be able to understand
the architecture of XML Web service-based solutions.

 XML Web Service Architectures and Service-Oriented Architecture
Explain the relationship between the conceptual service-oriented
architecture and XML Web services architectures. Use the demonstration of
the solution of the final lab in the course to show each of the XML Web
service architectural elements as concrete implementations.

 Roles in an XML Web Service Architecture
This topic examines the specific roles in XML Web service architecture and
explains that the Microsoft .NET Framework can provide assistance in
implementing the functionality for each of the entities that plays a role.

 The XML Web Services Programming Model
Describe the features of the XML Web services programming model.
Emphasize how this model is different than the traditional stateful,
monolithic programming model. However, defer any in-depth discussion on
how the XML Web services programming model affects the design of XML
Web services until Module 8, “Designing XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET.

 Module 2: XML Web Service Architectures 1

Overview

Service-Oriented Architecture

XML Web services architectures and Service-Oriented
Architecture

Roles in an XML Web services architecture

The XML Web services programming model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this module, you will begin by looking at service-oriented architecture as a
conceptual architecture for distributed applications. Next, you will examine
how solution architectures that are based on XML (Extensible Markup
Language) Web services are a type of service-oriented architecture. Then, you
will examine each of the roles in an XML Web service architecture. Finally,
you will look at the kind of programming model that an XML Web service
architecture imposes.

After completing this module, you will be able to:

 Identify how XML Web services architectures are a type of service-oriented
architecture.

 Describe the elements of an XML Web services architecture and explain
their roles.

 Describe the XML Web service programming model.

Introduction

Objectives

2 Module 2: XML Web Service Architectures

Service-Oriented Architecture

Service
Broker

Service
Consumer

Service
Provider

Bind

Pu
blis

h Find

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To build flexible, robust distributed applications, there are a number of
requirements that must be met:

 When integrating software resources, the resources must be loosely coupled;
that is, resources must be distinct and separate.

 Interprogram communication must be compliant with Internet standards.
 The service interfaces of software resources must be published for public

use, and the interface definitions and documentation must be publicly
accessible.

Building applications that meet the preceding requirements can result in the
following advantages:

 You can construct applications by integrating core business processes with
outsourced software services and resources.

 You can create more granular software resources.
 Reusable third-party software resources can provide cost and productivity

benefits.
 The sale of software as services can become widespread. For example, a

company could sell a shared calendar service as a Web accessible service
instead of selling a stand-alone calendar application.

A service-oriented architecture is ideal for implementing such distributed
applications. It is a conceptual architecture for implementing dynamic, loosely
coupled, distributed applications.

Introduction

Elements of a Service-
Oriented Architecture

 Module 2: XML Web Service Architectures 3

Today, most business systems and applications are made up of tightly coupled
applications and subsystems. When applications and subsystems are tightly
coupled, a change to any one subsystem can cause many dependent components
or applications to fail. This brittleness of existing systems is one of the primary
reasons for the high cost of maintaining them; it also limits how easily the
applications can be modified to satisfy changing business requirements.

A service-oriented architecture consists of three primary roles: service provider,
service consumer, and service broker. A diagram of this architecture is shown
on the preceding slide.

A service provider is a node on the network (intranet or Internet) that provides
access to the interface to a software service that performs a specific set of
operations. A service provider node provides access to the services of a
business system, a subsystem, or a component.

A service consumer is a node on the network that binds to a service from a
service provider and uses the service to implement a business solution. In the
service-oriented architecture model, service consumers are not applications, but
nodes. However, for the purpose of this course, we will view a service
consumer as a client application on a node.

A service broker is a node on the network that is a repository of service
descriptions and can be used like an address book to find the location of
services. Service consumers can interrogate a service broker to locate a required
service provider and service. Service brokers will often also act as service
providers in cases where the requested service is service brokering.

The preceding three service-oriented architecture roles interact to perform three
basic operations:

 Publish services
Service providers publish their services to a service broker. The information
published includes the service interface definition, location of service
providers, and possibly other supporting information or documentation.

 Find services
Service consumers find required/desired services by using a service broker.

 Bind to services
Service consumers bind to specific services that are provided by a service
provider. The binding process includes authentication of consumers.

Both finding and binding to services can be done dynamically to allow
applications to configure themselves dynamically. For example, if an
application finds that the response time from a service provider has become
unacceptable, then it might decide to switch to another service provider at run
time.

Service provider

Service consumer

Service broker

Interaction between the
roles

4 Module 2: XML Web Service Architectures

XML Web Services Architectures and Service-Oriented
Architecture

Overview of XML Web Service Architectures

XML Web services as an implementation of a Service-
Oriented Architecture

Demonstration: An Electronic Funds Transfer Web
Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before delving into the details of implementing and using XML Web services,
it is important to understand how an XML Web service architecture is a type of
service-oriented architecture.

First, you will examine XML Web service architectures. Next, you will
examine the mapping between elements of the XML Web service architecture
and elements of the service-oriented architecture. Finally, you will view a
demonstration of a working example of an XML Web service solution,
specifically the components of the solution architecture.

 Module 2: XML Web Service Architectures 5

Overview of XML Web Service Architectures

Pu
bli

sh Find

XML Web Service
Provider

XML Web Service
Consumer

UDDI
(XML Web Service Broker)

Bind

Internet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The basic elements in an XML Web service architecture are:

 The XML Web service provider, which is a network node hosting an XML
Web service.

 The XML Web service consumer, which is a network node hosting any
client that can communicate by using Hypertext Transfer Protocol (HTTP).
The clients include browsers, console applications, and traditional graphical
user interface (GUI) applications.

 The XML Web service broker, which is a network node hosting a global
registry of available XML Web services much like a global address book.

All of these network nodes should be able to communicate with each other
typically through a Transmission Control Protocol/Internet Protocol (TCP/IP)
based network.

The diagram on the slide shows the relationship among the various elements of
an XML Web service architecture. The rest of this module focuses on how the
elements of an XML Web services architecture correspond to service-oriented
architecture and then focuses on the various elements of the architecture.

6 Module 2: XML Web Service Architectures

Web Services As an Implementation of a Service-Oriented
Architecture

UDDI

Any
Client

SOAP

SO
AP

.NET
Web Service

SOAP
IIS

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In a solution based on XML Web services, the three network nodes defined in a
service-oriented architecture correspond to the elements of the XML Web
services solution.

The role of a service broker is primarily fulfilled by a node that hosts a
Universal Description, Discovery, and Integration (UDDI) registry. You will be
introduced to UDDI later in this module. For more complete coverage of
programming XML Web services and XML Web service consumers by using
UDDI, see Module 6, “Publishing and Deploying XML Web Services,” in
Course 2524B, Developing XML Web Services Using Microsoft ASP.NET.

The role of a service provider is fulfilled by nodes that expose XML Web
services through ASP.NET pages with the extension .asmx. For more
information about the implementation details, see Module 5, “Implementing a
Simple XML Web Service,” in Course 2524B, Developing XML Web Services
Using Microsoft ASP.NET.

The entry points to XML Web services that are implemented by using
ASP.NET are Web pages with the extension .asmx.

The role of a service consumer is fulfilled by any node that can communicate
by using Simple Object Access Protocol (SOAP) or HTTP, understands the
service interface that is being used, and can supply the necessary authentication
credentials.

Introduction

The service broker in
XML Web services

The service provider in
XML Web services

Note

The service consumer in
XML Web services

 Module 2: XML Web Service Architectures 7

Demonstration: An Electronic Funds Transfer Web Service

Internet

Web Service Consumer

UDDI
Registry

Contoso Micropayment
Web Service

Firewall

Firewall

Firewall

Woodgrove Bank
Web Service

Northwind Electronic Funds
Transfer Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see an actual implementation of the concepts
that you learned in the previous two topics. The demonstration will focus on
how to create an XML Web services-based solution for a sample electronic
funds transfer. You will build your own version of this solution in the labs for
Course 2524B, Developing XML Web Services Using Microsoft ASP.NET.

8 Module 2: XML Web Service Architectures

Roles in an XML Web Services Architecture

The XML Web service provider

The XML Web service consumer

The XML Web service broker

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Earlier in this module you saw that an XML Web service architecture consists
of the following elements: XML Web service provider, XML Web service
consumer, and XML Web service broker. We will now briefly examine each of
these roles.

 Module 2: XML Web Service Architectures 9

The XML Web Service Provider

Web servers

The .NET Common Language Runtime

Examples of XML Web service providers

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the important roles in an XML Web service architecture is that of the
XML Web service provider. In this topic, you will examine the infrastructure
that an XML Web service provider makes available to support and host XML
Web services.

Some examples of the infrastructure that an XML Web service provider (a
network node) must provide to an XML Web service are HTTP protocol
handling and authentication services. If an XML Web service provider cannot
offer such infrastructure, then the XML Web service must support this
infrastructure. However, this would make developing XML Web services much
more difficult.

You will examine some of the infrastructure that is provided when using
Microsoft Internet Information Services (IIS) and Microsoft ASP.NET on a
computer running Microsoft Windows® as the XML Web service provider.

At a minimum, an XML Web service provider must include a protocol listener.
For XML Web services that are developed by using the Microsoft .NET
Framework and Microsoft Visual Studio® .NET, the protocol listener must be
an HTTP listener.

Because an XML Web service provider might be hosting multiple XML Web
services, it must also be able to direct the request to an appropriate XML Web
service. This is analogous to the Remote Procedure Call Subsystem (RPCSS)
service that is responsible for handling incoming Distributed Component Object
Model (DCOM) requests and directing them to an appropriate Component
Object Model (COM) server.

Unknown XML Web service consumers can access an XML Web service
provider. Therefore, at a minimum, the Web Server must provide basic security
services at the protocol level.

Introduction

Web servers

10 Module 2: XML Web Service Architectures

Microsoft Internet Information Services (IIS), which is a Web server, provides
all of the services that an XML Web service requires through its features:

 IIS is an HTTP listener.
 IIS can act as a gateway to the implementations of the various XML Web

services that it may host, through its pluggable Internet Server Application
Programming Interface (ISAPI) architecture.

 IIS provides significant security infrastructure.
You will see how to secure XML Web services by using the security
capabilities of IIS in Module 7, “Securing XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET.

A Web server such as IIS can invoke a service on behalf of a client, by using
many different options. A Web server can start a Common Gateway Interface
(CGI) application; run a script interpreter as done in Microsoft Active Server
Pages (ASP), or invoke an ISAPI application.

When IIS works in conjunction with the common language runtime, it uses an
ISAPI filter to intercept requests for pages with the extension .asmx, and then
start a run-time host. The run-time host then executes the code for an XML
Web service that is implemented by using the .NET Framework.

IIS is not restricted to hosting .NET-based XML Web services. It can also host
Microsoft Active Template Library (ATL) Server-based XML Web services.
ATL Server-based XML Web services are beyond the scope of this course.
However, .NET-based XML Web service provides some significant advantages.
One of the most important advantages is the flexible security infrastructure that
the .NET platform provides. For more information, see Module 7, “Securing
XML Web Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

If an organization wants to provide XML Web services, it must be capable of
providing some kind of electronic service. Because almost any piece of
functionality can be classified as a service, it is impossible to enumerate all the
possible kinds of XML Web services. However, two common examples of
XML Web service providers are independent software vendors and general-
purpose business processes.

Independent software vendors own products that perform a variety of tasks.
These products can be exposed as individual XML Web services or
aggregations of XML Web services. For example, a company that sells a
calculation application for personal taxes might want to make that application
accessible as an XML Web service.

General-purpose business processes, which are sufficiently generalized for
adoption by a wide variety of clients, can also be exposed as XML Web
services. For example, a payroll processing service can offer its payroll
management services as an XML Web service.

IIS and XML Web
services

Examples of XML Web
service providers

 Module 2: XML Web Service Architectures 11

The XML Web Service Consumer

Minimum functionality

Service location

Proxies

Asynchronous calls

Examples of XML Web service consumers

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this topic, you will look at the minimum set of functionality required for an
XML Web service consumer to use an XML Web service. You will also look at
how a consumer locates an XML Web service; the role of proxies in
simplifying the implementation of XML Web service consumers; and how to
use proxies to make asynchronous calls to XML Web services.

To consume an XML Web service, an XML Web service consumer must call
the methods of an XML Web service with the appropriate parameters by using
the protocols (for example, SOAP) that the service supports.

It is difficult to correctly format messages before passing them to an XML Web
service, and it is also difficult to handle the details of the protocols that the
XML Web service supports. The .NET Framework provides classes that
encapsulate most of the low-level details. Encapsulating the low-level details
frees the developer from having to implement the infrastructure.

Before an XML Web service can be used, a consumer must be able to locate it.
Locating an XML Web service can be done statically by hard-coding the
endpoint in the XML Web service consumer at design time. Alternately, the
XML Web service consumer can dynamically discover the location of an XML
Web service at run time. This provides an XML Web service consumer with the
flexibility of choosing between equivalent, competing XML Web services
based on criteria such as price or performance.

The standard mechanism for locating appropriate XML Web services, their
service description, and their endpoints is through a UDDI registry. For more
information about how an XML Web service consumer can make use of UDDI
to locate an XML Web service and how to advertise an XML Web service in a
UDDI registry, see Module 6, “Publishing and Deploying XML Web Services,”
in Course 2524B, Developing XML Web Services Using Microsoft ASP.NET.

Introduction

Minimum functionality

Service location

12 Module 2: XML Web Service Architectures

When implementing an XML Web service consumer, developers can spend
their time more productively on other issues, and should not have to concern
themselves with the following tasks:

 Working with the underlying protocols.
 Parsing byte streams to extract data.
 Validating the inbound data streams.
 Constructing the outbound data packets.

However, the developer is often forced to handle the preceding tasks because
there is no pre-built code available to perform these tasks. A typical approach to
handling these tasks is to encapsulate or hide the implementation details in a
wrapper class that acts as a proxy for the XML Web service. Not only can the
proxy classes hide implementation details, but they also provide the developer
with a familiar programming model of calling methods on objects.

The only problem with this technique is that a proxy class must be implemented
for every XML Web service interface that an XML Web service consumer
wants to interact with.

Microsoft provides a tool called Wsdl.exe to implement XML Web service
proxy classes. However, there are some pitfalls inherent in making the
programming interface to an XML Web service look like a local procedure call.
For more information, see Module 4, “Consuming XML Web Services,” and
Module 8, “Designing XML Web Services,” in Course 2524B, Developing
XML Web Services Using Microsoft ASP.NET.

Because an XML Web service interface is defined by using XML, it is also
fairly straightforward to write tools that can automatically generate the proxy
wrapper classes.

Because XML Web services are usually accessed over networks that are not as
reliable or fast as local area networks (LAN), it is often better to implement
XML Web service consumers that make asynchronous calls to XML Web
services. The proxies that are generated by using Wsdl.exe allow the caller to
make asynchronous calls to a Web server. The proxy class in conjunction with
the runtime handles details of thread pool management, the completion of a
callback notification method, and so on. For more information about how to
make asynchronous calls to an XML Web service, see Module 4, “Consuming
XML Web Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

Line-of-business applications will probably be the primary users of XML Web
services, but there a number of types of businesses that could be XML Web
service consumers. Two examples of these types of businesses are online
newspapers and an Application Service Provider (ASP).

An online newspaper might use multiple XML Web service news feeds. The
incoming news feeds could be formatted, filtered, catalogued, and made
searchable according to customer preferences.

An Application Service Provider (ASP) might host XML Web services, re-
brand XML Web services, or do both. Also, an ASP might aggregate multiple
XML Web services and offer the composite XML Web service to its customers.

Proxies

Asynchronous calls

Examples of XML Web
service consumers

 Module 2: XML Web Service Architectures 13

The XML Web Service Broker

Interactions between brokers and providers

Interactions between brokers and consumers

UDDI registries

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Just as a service–oriented architecture needs a service broker, an XML Web
service architecture also needs a service broker. To facilitate interactions,
businesses need a comprehensive solution to publish their information to any
customer or business partner around the world. An XML Web service broker
interacts with both XML Web service providers and XML Web service
consumers to provide this functionality.

A common means of publishing information about business services will make
it possible for organizations to:

 Quickly discover the correct trading partners out of the millions that are
online.

 Define how to conduct business after preferred businesses are discovered.
 Create an industry-wide approach for businesses to quickly and easily

integrate with their customers and partners on the Internet. Organizations
will be able to share information about their products and services, and how
they prefer to be integrated into each other’s systems and business
processes.

Introduction

14 Module 2: XML Web Service Architectures

Brokers specify to providers what kinds of information needs to be made
public, and then publishes this information. The kinds of information published
by a broker include:

 Classification information to allow XML Web services to be categorized.
 Contact information for the XML Web service.
 A textual description of the offered services.
 Links to documents providing information about the XML Web services

that the provider hosts.
 The location of endpoints for XML Web services.

These locations are usually stored as Uniform Resource Locators (URLs)
that denote the location of the advertised XML Web services. Because it is
not feasible to specify all of the information in the broker’s repository, there
may be pointers to URLs or file-based resources that will facilitate further
discovery. For example, service-level guarantees or information regarding
authentication requirements may be discoverable only at an XML Web
service provider’s location.

The primary interaction between XML Web service consumers and the XML
Web service broker is related to searching. Brokers must facilitate the search of
their repository to enable XML Web service consumers to locate the
appropriate XML Web service and then discover the information that is
required to bind to that XML Web service.

There are many approaches to providing the XML Web service brokering
services.

One simple approach is to have all of the potential trading partners
communicate binding information to each other by using a specific method
created for that purpose. In this approach, you specifically do not require a
broker. For example, some organizations using electronic data interchange
(EDI) simply publish the list of required EDI document specifications that the
trading partners must use on a Web site. The problem with this approach is that
there is no easy way to discover which of the external businesses is compatible
with your business.

Another approach is to have all of the businesses publish an XML Web services
description file on their Web site. Then, Web crawlers can automatically access
a registered URL and can index the description files for the XML Web services
that are found at each Web site. An XML Web service broker could then
provide a portal that gives access to the indexes that the Web crawlers build.
Relying on Web crawlers to provide indexes for XML Web services has similar
problems to the problems encountered today with standard Web search engines
and catalogs that we have today. The problem is that there is no mechanism to
ensure consistency in service description formats and for the easy tracking of
changes whenever they occur. Just as Web search engines return many invalid
links, such a mechanism for XML Web services would also result in out-of-date
service descriptions and binding information.

The brokering approach that has been chosen for XML Web services relies on a
distributed registry of businesses and their service descriptions that are
implemented in a common XML format. The solution that implements this
approach to solving the discovery problem is known as Universal Description,
Discovery, and Integration (UDDI).

Interactions between
brokers and providers

Interactions between
brokers and consumers

UDDI registries

 Module 2: XML Web Service Architectures 15

UDDI is a specification for distributed Web-based information registries of
XML Web services. UDDI is also a public set of implementations of the
specification that allow businesses to register information about the XML Web
services that they offer so that other businesses can find them.

The core component of a UDDI-compliant registry is a business registration
element, which is an XML file that describes a business entity and its XML
Web services. Conceptually, the information specified in a business registration
has three parts:

 Business addresses, contact information, known identifiers, and so on.
 Lists of industrial categorizations that are based on standard taxonomies.
 The technical information about the XML Web services that the business

exposes.
This information includes references to XML Web service interface
specifications, and potentially, pointers to various file- and URL-based
discovery mechanisms.

For more information about how to publish an XML Web service in a UDDI-
compliant registry and how to search a UDDI-compliant registry to locate XML
Web services, see Module 6, “Publishing and Deploying XML Web Services,”
in Course 2524B, Developing XML Web Services Using Microsoft ASP.NET.

16 Module 2: XML Web Service Architectures

The XML Web Services Programming Model

Web protocols

Stateless

Loosely coupled

Universal data format

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To successfully implement or consume an XML Web service, it is important to
understand the key features of the XML Web services programming model. It is
also important to understand some of the ramifications of the programming
model.

The first feature of the XML Web services programming model is that the
communications protocol will typically be HTTP. However, HTTP does not
intrinsically support the concept of a method invocation. Because of this
constraint, XML Web service consumers often use the XML-based SOAP over
HTTP for invoking the XML Web service methods. Therefore, it is essential for
a developer to have at least a working knowledge of both HTTP and SOAP. For
more information about HTTP, XML, and SOAP, see Module 3, “The
Underlying Technologies of XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET.

Most developers are familiar with a stateful object model. In other words, an
instance of a class is created and then various operations are performed on the
object. Between each method invocation, the object maintains its state. In a
stateless environment, the object retains no state between calls. Any state that
needs to be persisted between calls can be stored in a database or a cookie.

XML Web services are not objects in the traditional sense. When using
ASP.NET to implement an XML Web service, you can use a C# class to
implement it. This class is referenced by an ASP.NET page with the extension
.asmx. When the page is processed, an instance of this class is created. The
lifetime of the .asmx page binds the lifetime of the resulting object, which
means that a different object instance will handle every method invocation. As a
result, the classes that implement an XML Web service are stateless. Although
designing stateless systems can be initially more difficult, stateless systems can
easily scale-out as the load on the system increases.

Introduction

Web protocols

Stateless

 Module 2: XML Web Service Architectures 17

For more information about how to design stateless XML Web services and
how to manage state in stateless XML Web services, see Module 8, “Designing
XML Web Services,” in Course 2524B, Building Web Services Using Microsoft
ASP.NET.

In a non-distributed application, if any of the required software resources, such
as a function library in a dynamic-link library (DLL), are available when an
application is launched, they will continue to be available for the lifetime of the
application. Usually, they will also be available on each successive use of the
application. For distributed applications, especially distributed applications that
make use of software resources over the Internet, there is an increased
likelihood that the required software resources will not always be available.
Therefore distributed applications that are implemented by using XML Web
services must be more resilient to software resources becoming unavailable,
even at run time.

As a consequence, XML Web service-based solutions must be loosely coupled
so that they can dynamically reconfigure themselves if a resource becomes
unavailable. Loosely coupled applications also have the advantage of allowing
failover because the consumers will not have affinity with any particular
instance of an XML Web service.

For more information about how to design XML Web services to facilitate
loose-coupling, and also learn how to implement loosely coupled XML Web
services, see Module 8, “Designing XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET.

The universal data format that is used in XML Web services is XML. A
complete coverage of XML is beyond the scope of this course, but a working
knowledge of XML is imperative to implement and consume XML Web
services.

The following are a few of the areas where XML is used in XML Web services:

 The SOAP protocol is XML-based.
 XML Web service descriptions are XML documents.
 Data returned from an XML Web service is in an XML document.
 XML Web services are registered with a UDDI registry by using XML

documents that are business service descriptions.
 ASP.NET applications are configured by using XML configuration files.

Loosely coupled

Universal data format

18 Module 2: XML Web Service Architectures

Review

Service-Oriented Architecture

XML Web services architectures and Service-Oriented
Architecture

Roles in an XML Web services architecture

The XML Web services programming model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are the three main components of a service-oriented architecture?

• Service provider

• Service consumer

• Service broker

2. What service-oriented architecture role does a network node with IIS and
the runtime have in an XML Web service architecture?
XML Web service provider

 Module 2: XML Web Service Architectures 19

3. Which wire format is used by an XML Web service and an XML Web
service consumer to communicate with each other?
SOAP

4. Name two of the characteristics of the XML Web services programming
model.
The answers can be any two of the following:

• Use Web protocols

• Are stateless

• Are loosely coupled

• Use XML as the universal data format

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

HTTP Fundamentals 2

Using HTTP with the .NET Framework 8

XML Essentials 17

XML Serialization in the .NET Framework 26

SOAP Fundamentals 29

Using SOAP with the .NET Framework 36

Lab 3.1: Issuing HTTP and SOAP Requests
Using the .NET Framework 45

Review 54

Module 3: The
Underlying
Technologies of XML
Web Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 3: The Underlying Technologies of XML Web Services iii

Instructor Notes
This module provides students with an overview of the technologies that form
the foundation of Extensible Markup Language (XML)-based Web services.

After completing this module, students will be able to:

 Describe the structures of a Hypertext Transfer Protocol (HTTP) request
and response.

 Issue HTTP POST and GET requests and process the responses by using
the Microsoft® .NET Framework.

 Describe data types by using the XML Schema Definition language (XSD).
 Explain how to control the way a .NET Framework object is serialized to

XML.
 Describe the structures of a Simple Object Access Protocol (SOAP) request

and response.
 Issue a SOAP request and process the response by using the .NET

Framework.

To teach this module, you need the Microsoft PowerPoint® file 2524B_03.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Try the walkthroughs and demonstrations in this module.
 Complete the lab.

Presentation:
120 Minutes

Lab:
45 Minutes

Required Materials

Preparation Tasks

iv Module 3: The Underlying Technologies of XML Web Services

Module Strategy
This module is intended to explain the technologies underlying XML Web
services. Throughout this module, you should emphasize to the students the
simplicity of the technologies that are covered.

Use the following strategy to present this module:

 HTTP Fundamentals
This section is intended to provide students with a basic understanding of
the HTTP protocol and explain how to issue HTTP requests by using the
.NET Framework. Explain that HTTP is a simple protocol that is designed
for interoperability and not performance. Emphasize how simple HTTP is to
understand.

 Using HTTP with the .NET Framework
Use the code walkthroughs in this section to show the use of the base
classes that the .NET Framework provides to access data from the Internet.
Emphasize that these classes encapsulate the HTTP-specific operations
when communicating with a Web server, and show how synchronous and
asynchronous operations are supported.

 XML Essentials
Explain that XML is fundamental to XML Web services. Do not spend
much time on the basics of XML. Briefly review the important XML
concepts. Cover the topics on XSD as a progressive tutorial, rather than a
list of concepts.

 XML Serialization in the .NET Framework
Explain how you can modify the default serialization behavior for .NET
Framework data types. Explain the importance of the ability to modify the
default serialization behavior of data types.

 SOAP Fundamentals
This topic is intended to provide students with a basic understanding of the
SOAP protocol and explain how to issue SOAP requests by using the .NET
Framework. Emphasize that SOAP is the preferred wire format for XML
Web services.

 Using SOAP with the .NET Framework
Explain to the students that the .NET Framework handles most of the details
of communication between an XML Web service and an XML Web service
consumer when using SOAP in XML Web services that are implemented by
using the .NET Framework.

 Module 3: The Underlying Technologies of XML Web Services 1

Overview

HTTP Fundamentals

Using HTTP with the .NET Framework

XML Essentials

XML Serialization in the .NET Framework

SOAP Fundamentals

Using SOAP with the .NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services are built on Web technologies. The three core technologies
that form the foundation for XML Web services are the Hypertext Transfer
Protocol (HTTP), the Extensible Markup Language (XML), and the Simple
Object Access Protocol (SOAP). It is important to understand how the three
technologies work and how the Microsoft® .NET Framework provides support
for these three technologies to so that developers can use them in XML Web
services.

After completing this module, you will be able to:

 Describe the structures of an HTTP request and response.
 Issue HTTP POST and GET requests and process the responses by using

the Microsoft .NET Framework.
 Describe data types by using the XML Schema Definition language (XSD).
 Explain how to control the way a .NET Framework object is serialized to

XML.
 Describe the structures of a SOAP request and response.
 Issue a SOAP request and process the response by using the .NET

Framework.

Introduction

Lesson objectives

2 Module 3: The Underlying Technologies of XML Web Services

HTTP Fundamentals

Overview of HTTP

Structures of HTTP Requests and Responses

The GET and POST Methods

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The HTTP is a World Wide Web Consortium (W3C) standard protocol for
transferring documents on the Internet. XML Web services use HTTP for
communication. It is a generic, stateless, protocol, which can be used for many
tasks in addition its original use for hypertext.

 Module 3: The Underlying Technologies of XML Web Services 3

Overview of HTTP

Structure of an URL

Example

Stateless protocol

http://host[:port][path[?querystring]]http://host[:port][path[?querystring]]

http://www.woodgrovebank.com/accts.asp?AccNo=23http://www.woodgrovebank.com/accts.asp?AccNo=23

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A resource location is specified in HTTP through a mechanism known as a
Uniform Resource Locator (URL). Strictly speaking, the mechanism that is
used in HTTP is a Uniform Resource Identifier (URI), but we can also think of
it as a URL.

URIs are a slightly more general scheme for locating resources on the Internet
that focuses more on the resource and less on the location. In theory, a URI
could find the closest copy of a mirrored document or locate a document that
has moved from one site to another. URLs are the set of URI schemes that have
named the resource and contain explicit instructions on how to access the
resource.

The syntax of a URL is as follows:

http://host[:port][path[?querystring]]

The following is an example of a URL:

http://www.woodgrovebank.com/accts.asp?AccNo=23

In the preceding example, www.woodgrovebank.com is the host, accts.asp is the
path and AccNo=23 is the query string. If the port number is not specified (as in
the preceding example), the default port for HTTP, which is port 80, is used.

HTTP is a stateless protocol. This means that whenever the client makes a
request, the connection to the server is closed after the client receives the
response. Therefore, if any state must be maintained between the client and the
server, the server must pass on state information with the response to the client.
This will enable the server to recover this information from the client when it
receives the next request. For example, if you implement a Web site that
displays user-specific content, you would have to implement a mechanism that
retains information about the current user to display personalized content.

Introduction

Structure of an URL

Stateless protocol

4 Module 3: The Underlying Technologies of XML Web Services

Structures of HTTP Requests and Responses

Requests

Responses

POST /TheStockExchange/Trading/GetStockPrice.asp HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

Symbol=MSFT

POST /TheStockExchange/Trading/GetStockPrice.asp HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

Symbol=MSFT

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 75

<?xml version="1.0" encoding="utf-8"?>
<stock symbol="MSFT" Price="71.50" />

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 75

<?xml version="1.0" encoding="utf-8"?>
<stock symbol="MSFT" Price="71.50" />

Note the blank line!

*****************************ILLEGAL FOR NON-TRAINER USE******************************

HTTP requests and responses have a simple structure.

An HTTP request has the following format:

method URL Version
headers
a blank line
message body

The following code shows an example of an HTTP request:

POST /TheStockExchange/Trading/GetStockPrice.asp HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

<?xml version="1.0" encoding="utf-8"?>
<Symbol=MSFT />

The first line in an HTTP request is known as the request line, and the methods
that a request supports are as follows:

 OPTIONS
 GET
 HEAD
 POST
 DELETE
 TRACE
 CONNECT
 extension-method

Structure of an HTTP
request

Example

 Module 3: The Underlying Technologies of XML Web Services 5

An HTTP response has the following format:

Version Status-Code Description
headers
a blank line
message body

The following code shows an example of an HTTP response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 75

<?xml version="1.0" encoding="utf-8"?>
<stock symbol="MSFT" Price="71.50" />

Structure of an HTTP
response

Example

6 Module 3: The Underlying Technologies of XML Web Services

The GET and POST Methods

HTTP-GET

HTTP-POST

GET /Trading/GetStockPrice.asp?Symbol=MSFT HTTP/1.1
Host: localhost

GET /Trading/GetStockPrice.asp?Symbol=MSFT HTTP/1.1
Host: localhost

POST /Trading/GetStockPrice.asp HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

Symbol=MSFT

POST /Trading/GetStockPrice.asp HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

Symbol=MSFT

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The GET and POST request methods are ideal for communicating with an
XML Web service. These methods are designed specifically for submitting data
to a Web server and retrieving a specified resource from a Web server. This
makes it possible to layer a function call model on top of these methods, which
is exactly the model that XML Web services requires.

Consider the following HTTP-GET request:

GET /Trading/GetStockPrice.asp?Symbol=MSFT HTTP/1.1
Host: localhost

The most important feature of the request line is the querystring. The
querystring is the portion of the URI that follows the question mark, and
consists of a set of URL-encoded name/value pairs.

In an HTTP-GET request, there is typically no message body. The response for
an HTTP-GET request is just a standard HTTP response, which is described in
the preceding topic.

Consider the following HTTP-POST request:

POST /Trading/GetStockPrice.asp HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

Symbol=MSFT

Introduction

HTTP-GET request

HTTP-POST request

 Module 3: The Underlying Technologies of XML Web Services 7

In the preceding code, notice that there is no querystring as part of the URI.
This is because the information about the request is contained in the message
body. This feature of an HTTP-POST request makes it a very convenient way
of passing larger sets of data to the server in contrast to an HTTP-GET where
the size of the querystring is restricted to 1024 bytes. Also, transmitting the data
as part of the message body imposes fewer restrictions on the kind of data that
is sent to the server.

In Module 5, “Implementing a Simple XML Web Service,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET, you will see how the
choice of an HTTP request method affects the kinds of interfaces that the XML
Web services can expose.

8 Module 3: The Underlying Technologies of XML Web Services

Using HTTP with the .NET Framework

.NET Classes for working with HTTP

Code walkthrough: issuing a synchronous HTTP
request

Code walkthrough: issuing an asynchronous HTTP
request

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The preceding section described the fundamentals of the HTTP protocol and the
basic request and response model that is used to access data on the Internet.

In this section, you will learn about the specific classes that the .NET
Framework provides to access data by using the HTTP protocol. You will also
learn how to issue synchronous and asynchronous HTTP requests.

 Module 3: The Underlying Technologies of XML Web Services 9

.NET Classes for Working with HTTP

HttpWebRequest and HttpWebResponse

StreamReader and StreamWriter

Support for synchronous and asynchronous operations

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Issuing an HTTP request and receiving a response is easy using the .NET
Framework. The following classes in the .NET Framework provide all of the
required basic functionality:

 HttpWebRequest and HttpWebResponse classes in the System.Web
namespace

 StreamReader and StreamWriter classes in the System.IO namespace

WebRequest and WebResponse are abstract base classes in the .NET
Framework for accessing data from the Internet in a protocol-neutral way. The
HttpWebRequest and HttpWebResponse classes, which are derived from
WebRequest and WebResponse respectively, encapsulate the HTTP-specific
aspects of the communications with a Web server. Most importantly, they
provide easy access to the HTTP headers, and the underlying request and
response streams.

The StreamReader and StreamWriter classes are two utility classes that are
used to read and write streams by using a specific encoding (UTF-8/UTF-16,
etc.).

The HttpWebRequest class supports both synchronous and asynchronous
requests. In the next two topics, you will look at code samples of synchronous
and asynchronous operations.

HttpWebRequest and
HttpWebResponse

StreamReader and
StreamWriter

Support for
synchronous and
asynchronous
operations

10 Module 3: The Underlying Technologies of XML Web Services

Code Walkthrough: Issuing a Synchronous HTTP Request

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this code walkthrough, you will look at how a synchronous HTTP request is
issued by using the .NET Framework.

This topic examines the functionality that the following sample code for a
synchronous request implements. (A C# and a Microsoft Visual Basic® .NET
example are provided.)

 Module 3: The Underlying Technologies of XML Web Services 11

1. HttpWebRequest req = (HttpWebRequest)
 WebRequest.Create(url);

2. req.ContentType=contentType;
3. req.Method = method;
4. req.ContentLength=content.Length;
5. Stream s;
6. s = req.GetRequestStream();
7. StreamWriter sw = new StreamWriter(s,Encoding.ASCII);
8. sw.Write(content);
9. sw.Close();
10.
11. HttpWebResponse res = (HttpWebResponse)

 req.GetResponse();
12. s = res.GetResponseStream();
13.
14. StreamReader sr = new StreamReader(s,Encoding.ASCII);
15. StringBuilder sb = new StringBuilder();
16. char [] data = new char[1024];
17. int nBytes;
18. do {
19. nBytes = sr.Read(data,0,(int)1024);
20. sb.Append(data);
21. } while (nBytes == 1024);

1. Dim req As HttpWebRequest = CType(WebRequest.Create(url),
 HttpWebRequest)

2. req.ContentType = contentType
3. req.Method = method
4. req.ContentLength = content.Length
5. Dim s As Stream
6. s = req.GetRequestStream()
7. Dim sw As New StreamWriter(s, Encoding.ASCII)
8. sw.Write(content)
9. sw.Close()
10.
11. Dim res As HttpWebResponse = CType(req.GetResponse(),

HttpWebResponse)
12. s = res.GetResponseStream()
13.
14. Dim sr As New StreamReader(s, Encoding.ASCII)
15. Dim sb As New StringBuilder()
16. Dim data(1024) As Char
17. Dim nBytes As Integer
18. Do
19. nBytes = sr.Read(data, 0, CInt(1024))
20. sb.Append(data)
21. Loop While nBytes = 1024

C# code example

Visual Basic .NET code
example

12 Module 3: The Underlying Technologies of XML Web Services

The functionality that the preceding code implements is described in the
following list. Please note that each line reference to the code applies to both
the C# and Visual Basic .NET examples.

 In line 1, the return value of the WebRequest.Create call is converted to
HttpWebRequest.
In most cases, the WebRequest and WebResponse classes provide all of
the functionality that you need to perform an HTTP request. However, if
you need to access HTTP-specific features such as HTTP headers, you need
a protocol-specific derived class of WebRequest.

 In lines 2 through 4, HTTP-specific properties are set.
 In lines 6 through 9, the content for the request is written to a stream.

Note in line 7 that the type of encoding is specified for the stream.
 In line 11, the response from the server is retrieved.
 In lines 12 through 21, the content of the response message is read.

Because the response stream is not seekable, the total amount of data to be
read cannot be determined at the start of the content retrieval. As a result,
the content is retrieved in blocks.

Code explanation

 Module 3: The Underlying Technologies of XML Web Services 13

Code Walkthrough: Issuing an Asynchronous HTTP Request

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this code walkthrough, you will look at how an asynchronous HTTP request
is issued by using the .NET Framework.

This topic examines the functionality that the following sample code for an
asynchronous request implements. (A C# and a Visual Basic .NET example are
provided.)

14 Module 3: The Underlying Technologies of XML Web Services

1. Stream s;
2. HttpWebRequest req = (HttpWebRequest)

 WebRequest.Create(url);
3. req.ContentType=contentType;
4. req.Method = method;
5. req.ContentLength=content.Length;
6. s = req.GetRequestStream();
7. StreamWriter sw = new StreamWriter(s);
8. sw.Write(content);
9. sw.Close();
10.
11. Handler h = new Handler();
12. AsyncCallback callback = new

 AsyncCallback(h.Callback)
13. // Pass the request object as the state object
14. req.BeginGetResponse(callback, req);
15.
16. ...
17.
18. public class Handler
19. {
20. public void Callback(IAsyncResult ar) {
21. // Get the WebRequest from RequestState.
22. HttpWebRequest req = (HttpWebRequest)

 ar.AsyncState;
23. // Get the response object associated
24. // with the request.
25. HttpWebResponse res = (HttpWebResponse)

 req.EndGetResponse(ar);
26. // Start reading data from the response stream.
27. Stream s = res.GetResponseStream();
28.
29. StreamReader sr = new

 StreamReader(s,Encoding.ASCII);
30. StringBuilder sb = new StringBuilder();
31. char [] data = new char[1024];
32. int nBytes;
33. do {
34. nBytes = sr.Read(data,0,(int)1024);
35. sb.Append(data);
36. } while (nBytes == 1024);
37. ...
38. // continue processing
39. }
40. }

C# code example

 Module 3: The Underlying Technologies of XML Web Services 15

1. Dim s As Stream
2. Dim req As HttpWebRequest = CType(WebRequest.Create(url),

 HttpWebRequest)
3. req.ContentType = contentType
4. req.Method = method
5. req.ContentLength = content.Length
6. s = req.GetRequestStream()
7. Dim sw As New StreamWriter(s)
8. sw.Write(content)
9. sw.Close()
10.
11. Dim h As New Handler()
12. Dim callback As New AsyncCallback(h.Callback)
13. ' Pass the request object as the state object
14. req.BeginGetResponse(callback, req)
15.
16. ...
17.
18. Public Class Handler
19.
20. Public Sub Callback(ar As IAsyncResult)
21. ' Get the WebRequest from RequestState.
22. Dim req As HttpWebRequest = CType(ar.AsyncState,

 HttpWebRequest)
23. ' Get the response object associated
24. ' with the request.
25. Dim res As HttpWebResponse =

 CType(req.EndGetResponse(ar), HttpWebResponse)
26. ' Start reading data from the response stream.
27. Dim s As Stream = res.GetResponseStream()
28.
29. Dim sr As New StreamReader(s, Encoding.ASCII)
30. Dim sb As New StringBuilder()
31. Dim data(1024) As Char
32. Dim nBytes As Integer
33. Do
34. nBytes = sr.Read(data, 0, CInt(1024))
35. sb.Append(data)
36. Loop While nBytes = 1024
37. ...
38. ' continue processing
39. End Sub 'Callback
40. End Class 'Handler

Visual Basic .NET code
example

16 Module 3: The Underlying Technologies of XML Web Services

The functionality that the preceding code implements is described in the
following list. Please note that each line reference to the code applies to both
the C# and Visual Basic .NET examples.

 In lines 1 through 9, an HTTP request is set up exactly the way it is done in
a synchronous operation.

 In line 11, an instance of a custom class named Handler is created.
This class will be used to handle the asynchronous completion of the HTTP
request.

 In line 12, an instance of a delegate of type AsyncCallback is created, and a
reference to the Callback method of the Handler class is passed to the
constructor of the delegate.

 In line 14, an asynchronous request is initiated for a response by using the
BeginGetResponse method.
A reference to the delegate and a reference to an object that contains any
state that might be needed by the method that handles the completion of the
request are passed as parameters. In line 14, the request object is passed.

 In line 20, the Callback function receives a reference to an IAsyncResult
interface as a parameter.

 In line 26, the asynchronous request is completed.
 In lines 29 through 39, the response content is retrieved exactly in the way it

is done in a synchronous operation.

 Module 3: The Underlying Technologies of XML Web Services 17

XML Essentials

Overview of XML

XSD Fundamentals

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML is used to implement XML Web services in a number of ways. This
includes the use of XML as the wire format between an XML Web service
consumer and the XML Web service, and the use of XML to describe the XML
Web service interface, etc. It is recommended that the XML Web service
developer have a solid understanding of XML.

This topic does not attempt to teach fundamental XML skills. Instead the topic
focuses on how you can describe data types by using XML schemas, and how
you can control XML serialization in the .NET Framework.

18 Module 3: The Underlying Technologies of XML Web Services

Overview of XML

Elements and attributes

Well-formed documents

Schemas

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Considering the central role that XML plays in XML Web services, it is useful
to review some of its important concepts.

After the document prologue, all XML documents have a root element with
child elements. Any of the elements may have attributes that provide further
information about a particular element. A common source of confusion is when
to use elements versus when to use attributes. There are no absolute rules for
this choice. However, the following table summarizes and contrasts some of the
most important characteristics of elements and attributes.

Characteristics Elements Attributes

May have child nodes

Are ordered

May be repeated

May be indexed

May be typed

May have a default value

When describing the data that your XML Web service consumes or returns, it is
important to know the differences between elements and attributes so that you
can use them appropriately in your XML documents.

Elements and attributes

 Module 3: The Underlying Technologies of XML Web Services 19

All XML documents must be well-formed. For a document to be well-formed,
it must adhere to the following rules:

 There must be a single root element.
XML documents are trees, and not forests.

 All elements must be closed, unlike HTML, where many elements
(example:
) are not required to be closed.

 Capitalization of opening and closing tags of elements must be consistent.
Many browsers allow inconsistent casing when using HTML elements
(example: <table>...</TABLE>), but inconsistent casing is not allowed in
XML.

 Elements must be nested correctly.
 Attribute values must be enclosed in quotes. Many browsers allow attribute

values to be unquoted, but unquoted attribute values are not allowed in
XML.

 An attribute cannot be repeated in an element.

Now that you have reviewed some of the important concepts of XML, the
remainder of this topic will focus on how XML is used in XML Web services.

To successfully use an XML Web service, you need to know the operations that
the XML Web service supports and the structure of the documents (or
messages) that each operation consumes and produces. This information is
defined in a document, known as a service description, which describes an
XML Web service. The service description is created by using the Web Service
Description Language (WSDL), which is an XML-based language.

Within the WSDL documents, you define XSD schemas that describe the data
types and document structures that are allowed in XML documents. XSD
schemas validate XML documents in a mechanical way. This frees the
programmer from the error-prone task of correctly parsing and validating a
complex document structure.

You will learn the basics of XSD later in this module. For more information
about WSDL, see Module 4, “Consuming XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET.

Well-formed documents

Schemas

20 Module 3: The Underlying Technologies of XML Web Services

XSD Fundamentals

Simple and complex types

Groups

<account status="active">
<number>1234-5X</number>
<type>CK</type>
<balance>5000.00</balance>

</account>

<xsd:element name="account" type="acct"/>
<xsd:complexType name="acct">

<xsd:sequence>
<xsd:element name="description" type="xsd:string"/>

<xsd:element name="number" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="balance" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="status" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="type" type="acctTypeCode"/>
<xsd:simpleType name="acctTypeCode">

<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:group name="acct">
<xsd:sequence>

<xsd:element name="description" type="xsd:string"/>
<xsd:element name="number" type="xsd:string"/>
<xsd:element name="type" type="acctTypeCode"/>
<xsd:element name="balance" type="xsd:decimal"/>

</xsd:sequence>
</xsd:group>

<xsd:complexType name="checkingAcct">
<xsd:sequence>

<xsd:group ref="acct" />
</xsd:sequence>
<xsd:attribute name="status" type="xsd:string"/>

</xsd:complexType>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the most important activities involved in designing and implementing
XML Web services is specifying data types that are passed to and returned by
an XML Web service. You must define data types unambiguously in the
specifications. The XSD language is best suited for defining such document
specifications. This topic will focus on some of the key features of XSD.

This topic is intended only to provide a brief introduction of some of the
major features of XSD. The complete specifications can be found at
http://www.w3c.org/XML/Schema.

An XML schema can consist of elements that are simple types or complex
types. A complex type can contain child elements in addition to attributes in its
content. A simple type can contain neither child elements nor attributes in its
content.

Consider the following XML code:

<account status="active">
 <number>1234-5X</number>
 <type>CK</type>
 <balance>5000.00</balance>
</account>

Introduction

Note

Simple and complex
types

 Module 3: The Underlying Technologies of XML Web Services 21

The preceding code can be represented as a complex type in an XML schema,
as shown in the following code:

1. <xsd:element name="account" type="acct"/>
2.
3. <xsd:complexType name="acct">
4. <xsd:sequence>
5. <xsd:element name="description" type="xsd:string"/>
6. <xsd:element name="number" type="xsd:string"/>
7. <xsd:element name="type" type="xsd:string"/>
8. <xsd:element name="balance" type="xsd:decimal"/>
9. </xsd:sequence>
10. <xsd:attribute name="status" type="xsd:string"/>
11. </xsd:complexType>

In the preceding example, you can further constrain the element named type to
restrict it to a 2-character code that is made up of only upper-case letters. You
can do this by defining a simple type and redefining the type element as
follows:

1. <xsd:element name="type" type="acctTypeCode"/>
2.
3. <xsd:simpleType name="acctTypeCode">
4. <xsd:restriction base="xsd:string">
5. <xsd:pattern value="[A-Z]{2}"/>
6. </xsd:restriction>
7. </xsd:simpleType>

When designing the structure of a document, it can be useful to define groups
of elements or attributes that can be used in the definition of many different
complex types. For example, you might want to define different types of
accounts such as checking, savings, credit card, etc. It would be inconvenient to
repeatedly list the common elements in each account type in the type definition.
In such situations, XSD groups are useful.

In continuation with the preceding example, you can define a group of common
elements for all types of accounts as follows:

1. <xsd:group name="acct">
2. <xsd:sequence>
3. <xsd:element name="description" type="xsd:string"/>
4. <xsd:element name="number" type="xsd:string"/>
5. <xsd:element name="type" type="acctTypeCode"/>
6. <xsd:element name="balance" type="xsd:decimal"/>
7. </xsd:sequence>
8. </xsd:group>

Groups

22 Module 3: The Underlying Technologies of XML Web Services

You can use the preceding XSD group to define different account types as
shown in the following code:

1. <xsd:complexType name="checkingAcct">
2. <xsd:sequence>
3. <xsd:group ref="acct" />
4. </xsd:sequence>
5. <xsd:attribute name="status" type="xsd:string"/>
6. </xsd:complexType>
7.
8. <xsd:complexType name="savingsAcct">
9. <xsd:sequence>
10. <xsd:group ref="acct" />
11. <xsd:element name="minimumBalance" type="xsd:decimal" />
12. </xsd:sequence>
13. <xsd:attribute name="status" type="xsd:string"/>
14. </xsd:complexType>

 Module 3: The Underlying Technologies of XML Web Services 23

XSD Fundamentals (continued)

Compositors

xsd:sequence

xsd:choice

xsd:all

Derivation

restriction

extension

<xsd:complexType name="customerName">
<xsd:choice>

<xsd:element name="fullname" type="xsd:string" />
<xsd:sequence>

<xsd:element name="firstname" type="xsd:string" />
<xsd:element name="middleinitial"

type="xsd:string" minOccurs="0" />
<xsd:element name="lastname" type="xsd:string" />

</xsd:sequence>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="listOfAccts">
<xsd:all minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="checking" minOccurs="0" />
<xsd:element ref="savings" minOccurs="0" />
<xsd:element ref="creditcard" minOccurs="0" />

</xsd:all>
</xsd:complexType>

<xsd:complexType name="account">
<xsd:sequence>

<xsd:element name="description" type="xsd:string"/>
<xsd:element name="number" type="xsd:string"/>
<xsd:element name="type" type="acctTypeCode"/>
<xsd:element name="balance" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="status" type="xsd:string" />

</xsd:complexType>

<xsd:complexType name="savingsAcct">
<xsd:complexContent>

<xsd:extension base="account" >
<xsd:sequence>

<xsd:element name="minimumBalance“ type="xsd:decimal" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In addition to supporting simple and complex types and groups, XSD also
supports two features: compositors and derivation.

24 Module 3: The Underlying Technologies of XML Web Services

Compositors are an element that specifies a sequential (xsd:sequence),
disjunctive (xsd:choice), or conjunctive (xsd:all) interpretation of the contents
of the compositor. XSD provides the following compositors:

 xsd:sequence
You use the xsd:sequence compositor to define an ordered sequence of
child elements. In the previous example, in the topic Groups, xsd:sequence
defines an ordered sequence of child elements in a complex type.

 xsd:choice
You use the xsd:choice compositor to define a list of choices, which can be
a set of elements, groups, or compositors. You can use the xsd:choice
compositor in a schema to specify that the XML document that the schema
validates can contain one of the choices from a given list.
For example, the xsd:choice compositor in the following schema code
specifies that the XML document that the schema validates can contain
either a fullname element or a sequence of elements that describes a
customer name:

1. <xsd:complexType name="customerName">
2. <xsd:choice>
3. <xsd:element name="fullname" type="xsd:string" />
4. <xsd:sequence>
5. <xsd:element name="firstname" type="xsd:string" />
6. <xsd:element name="middleinitial"
7. type="xsd:string" minOccurs="0" />
8. <xsd:element name="lastname" type="xsd:string" />
9. </xsd:sequence>
10. </xsd:choice>
11. </xsd:complexType>

 xsd:all

The xsd:all compositor defines an unordered list of elements, groups, or
compositors. For example, the xsd:all compositor in the following schema
code specifies that the XML document that the schema validates can contain
the checking, savings, and credit card elements in any order:

1. <xsd:complexType name="listOfAccts">
2. <xsd:all minOccurs="0" maxOccurs="unbounded">
3. <xsd:element ref="checking" minOccurs="0" />
4. <xsd:element ref="savings" minOccurs="0" />
5. <xsd:element ref="creditcard" minOccurs="0" />
6. </xsd:all>
7. </xsd:complexType>

Compositors

 Module 3: The Underlying Technologies of XML Web Services 25

Another powerful feature of XSD is the ability to define new types by
derivation. There are two ways of using derivation to define new types:

 restriction
Defining new types by using restriction involves further constraining
elements and attributes of the base type. For example, numeric values might
be restricted to a smaller range than in the base type.

 extension
Defining new types by using extension involves adding new elements to the
derived type. The derived type now has all of the elements that are added in
the derived type definition in addition to the elements that are defined in the
base type.
In the earlier example on simple types, you saw a new simple type named
accTypeCode that was derived by using restriction. In the following
example, a new type named savingsAcct is derived by extending the
account type:

1. <xsd:complexType name="account">
2. <xsd:sequence>
3. <xsd:element name="description" type="xsd:string"/>
4. <xsd:element name="number" type="xsd:string"/>
5. <xsd:element name="type" type="acctTypeCode"/>
6. <xsd:element name="balance" type="xsd:decimal"/>
7. </xsd:sequence>
8. <xsd:attribute name="status" type="xsd:string" />
9. </xsd:complexType>
10.
11. <xsd:complexType name="savingsAcct">
12. <xsd:complexContent>
13. <xsd:extension base="account" >
14. <xsd:sequence>
15. <xsd:element name="minimumBalance"
16. type="xsd:decimal" />
17. </xsd:sequence>
18. </xsd:extension>
19. </xsd:complexContent>
20. </xsd:complexType>

Derivation

26 Module 3: The Underlying Technologies of XML Web Services

XML Serialization in the .NET Framework

XmlRootAttribute

XmlElementAttribute

XmlAttributeAttribute

XmlArrayAttribute

XmlArrayItemAttribute

Caveats

POST/GET vs. SOAP

Property serialization

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When implementing XML Web services by using Microsoft Visual Studio®
.NET and the .NET Framework, it is convenient to define the service interface
(the methods to be exposed) in terms of the native .NET data types. The native
serialization format for the .NET data types is XML. However, sometimes the
default mapping of objects to elements is not what you require. Therefore you
must instruct the XML serializer on how to convert an object graph into the
XML document structure that you require. The System.Xml.Serialization
namespace in the .NET Framework provides classes that you can use to modify
the way objects are serialized. For more information, see the topic
“XmlSerializer Class” in the .NET Framework Class Library on Microsoft
MSDN®.

When you implement an XML Web service by using ASP.NET, you typically
do not directly control the serialization of your objects. Instead, you rely on the
attribute classes found in the System.Xml.Serialization namespace to control
the way objects are serialized.

Introduction

Code example of
attribute classes

 Module 3: The Underlying Technologies of XML Web Services 27

Consider the following code:

1. [XmlRoot("account")]
2. public class Acct
3. {
4. [XmlElement("description")]
5. public string Description;
6. [XmlElement("number")]
7. public string Number;
8. [XmlElement("type")]
9. public string Type;
10. [XmlElement("balance")]
11. public decimal Balance;
12. [XmlAttribute("status")]
13. public string Status;
14. }
15. ...
16. [return:XmlArray("AccountList")]
17. [return:XmlArrayItem("Account")]
18. public Acct[] GetAllAccounts()
19. ...

The attribute classes that are used in the preceding code are explained in the
following paragraphs.

In the .NET Framework, attribute class names have the format
XXXXAttribute. However using the .NET compilers makes it unnecessary for
developers to use the Attribute suffix in their code. Therefore, the .NET
developer can refer to “the XXXX attribute” instead of the XXXXAttribute class
without ambiguity.

Every XML document must have a single root element. The XmlRoot attribute
allows you to control how the root element is generated by setting certain
properties. For example, you can specify the name of the generated XML
element by setting the ElementName property. You can apply the XmlRoot
attribute to classes only.

You can apply the XmlElement attribute to public fields or public properties to
control the characteristics of XML elements, such as the element name and
namespace.

If you apply the XmlElement attribute to a field or property that returns an
array, the items in the array are generated as a sequence of XML elements.
However, if you do not apply the XmlElement attribute to such a field or
property, the items in the array are generated as a sequence of child elements,
nested under an element, which is named after the field or property.

By default, the XML serializer serializes public fields and properties as XML
elements. When you apply the XmlAttribute attribute to a public field or
property, the XML serializer serializes the member as an XML attribute.

XML attributes can only be simple types. Therefore, you can apply the
XmlAttribute attribute only to public fields or properties that return a primitive
type.

Note

The XmlRootAttribute
class

The
XmlElementAttribute
class

The
XmlAttributeAttribute
class

28 Module 3: The Underlying Technologies of XML Web Services

When you apply the XmlArray attribute class to a class member, the XML
serializer generates a nested sequence of XML elements from that member. For
example, if a class that is to be serialized represents a bank’s customer, then
you can generate an array of accounts that the customer owns by applying the
XmlArray attribute to a public field that returns an array of objects that
represent the accounts. If you apply the XmlArray attribute to a field or
property that returns an array, then by default, the name of the generated XML
element is derived from the member identifier. However, by setting the
ElementName property of the XmlArray attribute, you can change the name
of the generated XML element.

To more precisely control the XML element generation for the members of an
array, you can use the XmlArrayItem class. Using XmlArrayItem also allows
you to ensure that polymorphic arrays (arrays containing derived objects of the
base array type) are correctly serialized. For example, suppose that a class
named account exists and two other classes named checkingAcct and
savingAcct respectively that are derived from account also exist. Further,
suppose that a class named bankCustomer has a field that returns an array of
account objects. To allow the XmlSerializer class to serialize both the
checkingAcct and savingsAcct classes, apply the XmlArrayItem to the field
twice, once for each of the two acceptable types.

There are many other attributes that you can use to control the format of a
serialized object. For more information, see the documentation for the
XmlXXXXAttribute classes in the System.XML namespace.

In the context of XML, the .NET Framework, and XML Web services, there are
a few caveats to keep in mind.

 Use of POST/GET versus SOAP
Currently, when you use [return:XmlArrayItem], the name of the array
item is modified when you use SOAP, but not when you use GET or POST.
Therefore, the generated XML document will be different depending on
whether the XML Web service consumer uses POST/GET or SOAP. The
following code shows how to control the names of the XML elements that
are emitted when an array is serialized:
[return:XmlArrayItem(ElementName="savingsAcct",
 Type=typeof(SavingsAcct))]
[return:XmlArrayItem(ElementName="creditCardAcct",
 Type=typeof(CreditCardAcct))]
[WebMethod]
public Acct[] GetAllAccounts()
{
...

 Property serialization
When an object is serialized, only public read/write properties are serialized.
In other words, there is no way to serialize a read-only property (a property
with only a get accessor).

The XmlArrayAttribute
class

The
XmlArrayItemAttribute
class

Caveats

 Module 3: The Underlying Technologies of XML Web Services 29

SOAP Fundamentals

Overview of SOAP

Structure of SOAP messages

Code Walkthrough: Invoking an XML Web service
method using SOAP

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Simple Object Access Protocol (SOAP) is a lightweight protocol for the
exchange of information in decentralized, distributed environments. It is an
XML-based protocol that consists of two parts:

 An envelope for handling extensibility and modularity.
 An encoding mechanism for representing types within an envelope.

You can potentially use SOAP in combination with a variety of other protocols.
However, the only protocol bindings currently defined are for HTTP and HTTP
Extension Framework (HTTP-EF).

30 Module 3: The Underlying Technologies of XML Web Services

Overview of SOAP

SOAP messages

Parts of a SOAP message

SOAP envelope

SOAP encoding rules

SOAP RPC representation

Protocol bindings for HTTP and HTTP-EF

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Exchanging SOAP messages provides a useful way for communicating with
XML Web services. However, before you can implement and consume XML
Web services that communicate through SOAP, it is important that you
understand the structure of SOAP messages and the basic operation of the
protocol.

SOAP messages are fundamentally one-way transmissions from a sender to a
receiver. SOAP does not define any application semantics such as a
programming model or implementation-specific semantics. However, XML
Web services require a request/response model. A solution is to send SOAP
messages in the body of an HTTP request and response. This solution provides
the required model for XML Web services.

You can optimize SOAP implementations to exploit the unique characteristics
of particular network systems. For example, the HTTP binding provides for
SOAP request messages to be sent out as part of an HTTP request, and the
SOAP response messages to be delivered as HTTP responses, using the same
connection as the outbound request.

Introduction

SOAP messages

 Module 3: The Underlying Technologies of XML Web Services 31

SOAP consists of four parts:

 The SOAP envelope, which defines what is in a message, who should
process the message, and whether the message is optional or mandatory.

 The SOAP encoding rules, which define a serialization mechanism for
exchanging instances of application-defined data types.

 The SOAP RPC representation, which defines a convention for representing
remote procedure calls and responses.

 Protocol bindings that describe how to use SOAP in HTTP either with or
without the HTTP-EF.

As a developer, you should be familiar with the details of a SOAP envelope.
However, you can ignore the encoding and RPC details of the SOAP message
because the .NET Framework handles these details. You will briefly examine
protocol bindings when you look at the .NET Framework support for SOAP
later in this module.

Parts of a SOAP
message

32 Module 3: The Underlying Technologies of XML Web Services

Structure of SOAP Messages

SOAP Envelope

SOAP Header

SOAP Body

SOAP Fault

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<soap:Fault>

<faultcode>123XYZ</faultcode>
<faultstring>Server Error</faultstring>
<detail>

<bank:faultdetails xmlns:bank="urn:OnlineBank">
<message>Your account is overdrawn</message>
<errorcode>1234</errorcode>

</bank:faultdetails>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi=…>
<soap:Header>
<WoodgroveAuthInfo xmlns="http://tempuri.org/">
<Username>string</Username>
<Password>string</Password>

</WoodgroveAuthInfo>
</soap:Header>
<soap:Body>
<GetAccount xmlns="http://tempuri.org/">
<acctID>int</acctID>

</GetAccount>
</soap:Body>

</soap:Envelope>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A SOAP message consists of the Envelope element at the root, which in turn
consists of a mandatory Body element and an optional Header element.

The Envelope element is the root node of an XML document that represents the
SOAP message. It contains the Header and Body elements and is mandatory.

The Header element is the first immediate child element of the SOAP
Envelope element. All immediate child elements of the Header element are
known as header entries.

The Header element provides a generic means for adding features to a SOAP
message in a decentralized manner without prior agreement between the
communicating parties. Headers allow us to provide extended information
about a message. Typical uses of header entries are authentication, transaction
management, payment, etc.

If the SOAP Envelope element does not contain the Header element, then the
Body element must be the first immediate child element of the Envelope. If the
Header element is present, then the Body element must immediately follow the
Header element.

All immediate child elements of the Body element are called body entries and
each body entry is a separate element within the SOAP Body element.

In the context of XML Web services, the Body element comprises the data
specific to the actual method call, such as the XML Web service method name
and parameters and/or return values for the method invocation.

The SOAP Fault element is used to transport error or status information or
both, within a SOAP message. If the SOAP Fault element is present, it must be
a body entry and may not appear more than once within the Body element.

SOAP Envelope

SOAP Header

SOAP Body

SOAP Fault

 Module 3: The Underlying Technologies of XML Web Services 33

The SOAP Fault element defines the following four child elements:

 faultcode
The faultcode element is intended for use by the XML Web service
consumer to identify the fault. This element must be present within the
SOAP Fault element. SOAP defines a small set of SOAP fault codes that
cover the basic SOAP faults.

 faultstring
The purpose of the faultstring element is to provide a human-readable
explanation of the fault. It must be present within the SOAP Fault element
and must provide information explaining the nature of the fault.

 faultactor
The purpose of the faultactor element is to provide information about who
caused the fault to happen within the message path. It indicates the source of
the fault. The value of the faultactor element is a URI that identifies the
source. Applications that are not the ultimate destination of the SOAP
message must include the faultactor element in the SOAP Fault element.

 detail
The detail element is for holding application-specific error information
related to the Body element. It is included if the contents of the Body
element could not be successfully processed. The absence of the detail
element within the Fault element indicates that the fault is not related to
processing of the Body element.

The following example code shows a SOAP fault message that might be
generated when you attempt to withdraw money from a bank account:

1. HTTP/1.0 500 Internal Server Error
2. Content-Length: 460
3. Content-Type: text/xml; charset="utf-8"
4.
5. <soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/”>
6. <soap:Body>
7. <soap:Fault>
8. <faultcode>123XYZ</faultcode>
9. <faultstring>Server Error</faultstring>
10. <detail>
11. <bank:faultdetails xmlns:bank="urn:OnlineBank">
12. <message>Your account is overdrawn</message>
13. <errorcode>1234</errorcode>
14. </bank:faultdetails>
15. </detail>
16. </soap:Fault>
17. </soap:Body>
18. </soap:Envelope>

34 Module 3: The Underlying Technologies of XML Web Services

Code Walkthrough: Invoking an XML Web Service Method Using
SOAP

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this code walkthrough, you will look at how to invoke an XML Web service
method by using SOAP and the .NET Framework.

This topic will examine the functionality that the following sample code
implements for using SOAP to invoke a method named GetAccount.

1. POST /dummy/service1.asmx HTTP/1.1
2. Host: 192.168.0.80
3. Content-Type: text/xml; charset=utf-8
4. Content-Length: 215
5. SOAPAction: "http://woodgrovebank.com/GetAccount"
6.
7. <?xml version="1.0" encoding="utf-8"?>
8. <soap:Envelope xmlns:xsi="http://www.w3.org/2001/
9. XMLSchema-instance"
10. xmlns:xsd="http://www.w3.org/2001/XMLSchema"
11. xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
12. <soap:Body>
13. <GetAccount xmlns="http://woodgrovebank.com">
14. <acctNumber>1234</acctNumber>
15. </GetAccount>
16. </soap:Body>
17. </soap:Envelope>

In the preceding code, the endpoint of the GetAccount method is specified in
the SOAPAction header, and the method and its parameters are contained in
the soap:Body element.

Code example: invoking
the GetAccount method

 Module 3: The Underlying Technologies of XML Web Services 35

The response to the preceding method invocation is returned in an HTTP
response. The response is in the form of an XML document in the soap:Body
element.

1. HTTP/1.1 200 OK
2. Content-Type: text/xml; charset=utf-8
3. Content-Length: 247
4.
5. <?xml version="1.0" encoding="utf-8"?>
6. <soap:Envelope xmlns:xsi="http://www.w3.org/2001/
7. XMLSchema-instance"
8. xmlns:xsd="http://www.w3.org/2001/XMLSchema"
9. xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
10. <soap:Body>
11. <GetAccountResponse xmlns="http://woodgrovebank.com">
12. <savingsAcct>
13. <balance>5250.00</balance>
14. <savingsAcct>
15. </GetAccountResponse>
16. </soap:Body>
17. </soap:Envelope>

Code example: HTTP
response

36 Module 3: The Underlying Technologies of XML Web Services

Using SOAP with the .NET Framework

Controlling the SOAP message format

Code Walkthrough: Issuing a SOAP request using the
.NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you implement an XML Web service by using ASP.NET, a sophisticated
mechanism is available for controlling the format of the SOAP message that is
sent to and returned by the server. As you saw earlier, the contents of the SOAP
messages sent to and from an XML Web service are in XML. However, the
encoding of the XML is not strictly defined.

In this section, you will learn about the encoding definitions for XML Web
services that are part of the SOAP specification. You will also learn about
different encoding styles that you can use to format the parameters to an XML
Web service method.

 Module 3: The Underlying Technologies of XML Web Services 37

Controlling the SOAP Message Format

SOAP encoding definitions

Formatting the SOAP body

Formatting parameters

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides attributes that can control the format of the
XML inside a SOAP message to facilitate working with XML Web services
that expect different encoding styles. It is the responsibility of the XML Web
service consumer to encode the XML appropriately. For more information
about how the consumer can control encoding, see Module 4, “Consuming
XML Web Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

The SOAP specification states two distinct encoding definitions that are related
to XML Web services. You can find these definitions in Section 7 and Section
5 of the SOAP specification (see http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/#_Toc478383512). These definitions outline rules on:

 How the SOAP Body element must be overall formatted.
 How parameters within a method must be encoded.

Both of the preceding encoding rules are optional. Therefore, ASP.NET Web
Services supports SOAP requests and responses that use both of these encoding
rules, along with other variants.

You can format an XML Web service method within the Body element of a
SOAP request or a SOAP response by using either RPC encoding or document
encoding. ASP.NET Web Services support both the RPC and document
encoding styles, with document encoding being the default style.

Introduction

SOAP encoding
definitions

Formatting the SOAP
body

38 Module 3: The Underlying Technologies of XML Web Services

 RPC encoding
The RPC-encoding style formats the Body element according to Section 7
of the SOAP specification. This section explains how to use SOAP for RPC.
In the RPC-encoding style, all parameters are wrapped within a single
element that is named after the XML Web service method and each element
within that element represents a parameter named after its respective
parameter name.

 Document encoding
The document-encoding style formats the Body element as described in an
XSD schema. If you use the document-encoding style, the service
description for the XML Web service defines the XSD schemas for both
SOAP requests and SOAP responses to the XML Web service method.
These schemas are part of WSDL documents, which are explained in detail
in Module 4, “Consuming an XML Web Service,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET.
In the document-encoding style, clients must send an XML document to an
XML Web service exactly in the format specified in the associated XSD
schemas.

Because the parameters to an XML Web service method can make up the bulk
of the data passed in a SOAP request or response, how the parameters are
encoded determines how the XML document will look. There are two encoding
styles for parameters:

 Encoded
This style encodes the parameters by using the SOAP-encoding rules
outlined in Section 5 of the SOAP specification.

 Literal
This style encodes each parameter according to a predefined XSD schema.

You will see how to control encoding of the SOAP document for XML Web
services and the format of parameters in Module 5, “Implementing a Simple
XML Web Service,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

Formatting parameters

 Module 3: The Underlying Technologies of XML Web Services 39

Code Walkthrough: Issuing a SOAP Request Using the .NET
Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this code walkthrough, you will look at how to issue a SOAP request by
using the .NET Framework.

The following code shows a sample XML document, which is used to invoke
an XML Web service method by using the document-encoding style for the
Body element and the Literal-encoding style for the parameters.

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope namespaces omitted for brevity>
 <soap:Body>
 <GetAccount xmlns="http://tempuri.org/">
 <acctID>int</acctID>
 </GetAccount>
 </soap:Body>
</soap:Envelope>

Code example:
Encoding using
Document and Literal
styles

40 Module 3: The Underlying Technologies of XML Web Services

The following code shows how the preceding message can be constructed.

1. public static string BuildSOAPMessage()
2. {
3. MemoryStream st;
4. st = new MemoryStream(1024);
5.
6. XmlTextWriter tr = new XmlTextWriter(st,Encoding.UTF8);
7. tr.WriteStartDocument();
8. tr.WriteStartElement("soap","Envelope",
9. "http://schemas.xmlsoap.org/soap/envelope/");
10. tr.WriteAttributeString("xmlns","xsi",null,
11. "http://www.w3.org/2001/XMLSchema-instance");
12. tr.WriteAttributeString("xmlns","xsd",null,
13. "http://www.w3.org/2001/XMLSchema");
14. tr.WriteAttributeString("xmlns","soap",null,
15. "http://schemas.xmlsoap.org/soap/envelope/");
16.
17. tr.WriteStartElement("Body",
18. "http://schemas.xmlsoap.org/soap/envelope/");
19. tr.WriteStartElement(null,"GetAccount","http://woodgrovebank

.com");
20. tr.WriteElementString("acctNumber","1234");
21. tr.WriteEndElement();
22. tr.WriteEndElement();
23. tr.WriteEndDocument();
24. tr.Flush();
25. ...
26. }

C# example

 Module 3: The Underlying Technologies of XML Web Services 41

1. Public Shared Function BuildSOAPMessage() As String
2.
3. Dim st As MemoryStream
4. st = New MemoryStream(1024)
5.
6.
7. Dim tr As New XmlTextWriter(st, Encoding.UTF8)
8. With tr
9. .WriteStartDocument()
10. .WriteStartElement("soap", "Envelope",

 "http://schemas.xmlsoap.org/soap/envelope/")
11. .WriteAttributeString("xmlns", "xsi", Nothing,

 "http://www.w3.org/2001/XMLSchema-instance")
12. .WriteAttributeString("xmlns", "xsd", Nothing,

"http://www.w3.org/2001/XMLSchema")
13. .WriteAttributeString("xmlns", "soap", Nothing,

 "http://schemas.xmlsoap.org/soap/envelope/")
14.
15. .WriteStartElement("Body",

 "http://schemas.xmlsoap.org/soap/envelope/")
16. .WriteStartElement(Nothing, "GetAccount",

 "http://woodgrovebank.com")
17. .WriteElementString("acctNumber", "1234")
18. .WriteEndElement()
19. .WriteEndElement()
20. .WriteEndDocument()
21. .Flush()
22. End With
23. ...
24. End Function

Visual Basic .NET code
example

42 Module 3: The Underlying Technologies of XML Web Services

The following code shows how you can issue the preceding SOAP request by
using the .NET Framework:

1. public static string GetSOAPData(string url,
 string action,string content)

2. {
3. Stream s;
4. HttpWebRequest req = (HttpWebRequest)
5. WebRequest.Create(url);
6. string hdr = "SOAPAction: \"http://sftsrc.com/"
7. + action + "\"";
8. req.Headers.Add(hdr);
9. req.ContentType="text/xml; charset=utf-8";
10. req.Method = "POST";
11. if (content.Length > 0)
12. {
13. req.ContentLength=content.Length;
14. s = req.GetRequestStream();
15. StreamWriter sw = new StreamWriter(s);
16. sw.Write(content);
17. sw.Close();
18. }
19.
20. ...
21. HttpWebResponse res = (HttpWebResponse)
22. req.GetResponse();
23. return GetResponseAsString(res);
24. ...
25. }

C# code example

 Module 3: The Underlying Technologies of XML Web Services 43

1. Public Shared Function GetSOAPData(ByVal url As String,
 ByVal action As String,
 ByVal content As String) As String

2. Dim s As Stream
3. Dim req As HttpWebRequest =

 CType(WebRequest.Create(url), HttpWebRequest)
4. Dim hdr As String =

 "SOAPAction: \http://localhost/" + action + "\"
5. req.Headers.Add(hdr)
6. req.ContentType = "text/xml; charset=utf-8"
7. req.Method = "POST"
8. If content.Length > 0 Then
9. req.ContentLength = content.Length
10. s = req.GetRequestStream()
11. Dim sw As New StreamWriter(s)
12. sw.Write(content)
13. sw.Close()
14. End If
15.
16. ...
17. Dim res As HttpWebResponse =

 CType(req.GetResponse(), HttpWebResponse)
18. Return GetResponseAsString(res)
19. ...
20. End Function

Visual Basic .NET code
example

44 Module 3: The Underlying Technologies of XML Web Services

The following code shows how you can convert the preceding response
message into a string:

1. public static string GetResponseAsString(
 WebResponse res)

2. {
3. Stream s = res.GetResponseStream();
4. StreamReader sr = new StreamReader(
5. s,Encoding.ASCII);
6. StringBuilder sb = new StringBuilder();
7. char [] data = new char[1024];
8. int nBytes;
9. do
10. {
11. nBytes = sr.Read(data,0,(int)1024);
12. sb.Append(data);
13. } while (nBytes == 1024);
14. return sb.ToString();
15. }

1. Public Shared Function GetResponseAsString(ByVal res As
WebResponse) As String

2.
3. Dim s As Stream = res.GetResponseStream()
4. Dim sr As New StreamReader(s, Encoding.ASCII)
5. Dim sb As New StringBuilder()
6. Dim data(1024) As Char
7. Dim nBytes As Integer = 1024
8. Don
9. nBytes = sr.Read(data, 0, CType(1024, Integer))
10. sb.Append(data)
11. While Bytes = 1024
12. Return sb.ToString()
13. End Function

C# code example

Visual Basic .NET code
example

 Module 3: The Underlying Technologies of XML Web Services 45

Lab 3.1: Issuing HTTP and SOAP Requests Using the
.NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Issue HTTP POST and GET request methods and process the responses by
using the Microsoft .NET Framework.

 Construct a SOAP message by using the .NET Framework.
 Issue a SOAP request and process the response by using the .NET

Framework.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

For each lab exercise in this course, you have the option of coding in either C#
or VB .NET. In order to avoid unnecessary instructions, the following
placeholders will be used throughout the lab exercises:

<install folder> The install folder for the course content. Usually this will be
the folder C:\Program Files\Msdntrain\2524.

<lab root> The folder <installfolder>\Labfiles\CS or
<install folder>\Labfiles\VB, depending of the language
you are using for the lab exercises.

It is recommended that you select only one language for the lab exercises.

Objectives

Note

Lab Setup

46 Module 3: The Underlying Technologies of XML Web Services

There are starter and solution files that are associated with this lab. The starter
files are in the folder <lab root>\Lab03\Starter. The solution files for this lab
are in the folder <lab root>\Lab03\Solution.

In this lab, you will issue HTTP and SOAP requests to an XML Web service
named Woodgrove Online Bank. Specifically, you will be constructing requests
to invoke the GetAccount operation of the XML Web service.

Scenario

Estimated time to
complete this lab: 45
minutes

 Module 3: The Underlying Technologies of XML Web Services 47

Exercise 0
Setting up the Woodgrove XML Web Service

In this exercise, you will create the virtual directory for the Woodgrove XML
Web service. You will use either the Visual Basic.NET or C# Woodgrove XML
Web service depending on you programming language preference.

 Set Up Woodgrove XML Web Service

1. Click Start, click Control Panel, click Performance and Maintenance, click
Administrative Tools, and then double-click Internet Information Services.

2. Click the plus sign and expand the tree to Default Web Site.
3. Right-click Default Web Site, point to New, and then click Virtual

Directory.
4. Complete the Virtual Directory Creation Wizard by using the information

in the following table.
On this wizard page Do this

Welcome to the Virtual Directory
Creation Wizard

Click Next.

Virtual Directory Alias In the Alias box, type Woodgrove and
click Next.

Web Site Content Directory In the Directory box, browse to
<labroot>\WebServicesSolution\Wood
grove and click Next.

Access Permissions Click Next.

You have successfully completed the
Virtual Directory Creation Wizard.

Click Finish.

5. Close Internet Information Services.

48 Module 3: The Underlying Technologies of XML Web Services

Exercise 1
Creating the Base Project

In this exercise, you will create a console application named Technology. You
will also add the required namespace declarations so that you can issue HTTP
and SOAP requests. Finally, you will incorporate a helper function (which has
been provided for you) that will assist in displaying the responses to your
requests.

 Create the Technology console application

1. Open Microsoft Visual Studio .NET.
2. Create a console application project named Technology.

Set the Location of the project to be <lab root>\Lab03.
Your project will be created at <lab root>\Lab03\Technology.

3. Open Solution Explorer.
4. Rename

Visual Basic .NET C#

Module1.vb to Tester.vb Class1.cs to Tester.cs

5. In Solution Explorer, open the renamed file.
6. Rename

Visual Basic .NET C#

Module1 to Tester Class1 to Tester

7. For students completing the lab using Microsoft Visual Basic® .NET,
perform the following steps:
a. In Solution Explorer, right click the project name.
b. Click Properties.
c. In the Startup object combobox, select Sub Main and click OK.

 Add the required namespaces

• Add instructions to import the following namespaces:
System.Net
System.IO
System.Text
System.Xml
System.Collections.Specialized
System.Diagnostics

 Module 3: The Underlying Technologies of XML Web Services 49

 Add the helper function

1. Using Microsoft Windows® Explorer, open <lab
root>\Lab03\Starter\Tracing.txt.

2. Locate the Main method.
3. Copy the code in the Insert 1 section from Tracing.txt into the Main

method.

The remainder of the code that you add to the Main method in this
lab must be added immediately after the code just inserted.

4. Copy the functions in the Insert 2 section from Tracing.txt after the Main
method.

Note

50 Module 3: The Underlying Technologies of XML Web Services

Exercise 2
Implementing a Method to Issue HTTP Requests

In this exercise, implement a method named GetData that will be used to issue
HTTP requests. This method will be used for HTTP-GET, HTTP-POST, and
SOAP requests.

 Implement the GetData method

1. Add a method named GetData. The method must have the following
signature:
Visual Basic .NET C#

Public Sub GetData(ByVal url
As String,
 ByVal contentType As
String,

 ByVal method As String,
 ByVal content As String,
 ByVal ParamArray
headers() As String)

public static void
GetData(string url,
 string contentType,
 string method,
 string content,
 params string[] headers)

2. Create an instance of the HttpWebRequest class by using the
WebRequest.Create method. Use the url parameter.

3. If there are any headers in the headers parameter, then add the headers to
the HttpWebRequest.Headers collection.

4. If the length if the method parameter is greater than zero, then assign it to
the HttpWebRequest.Method property.

5. If the length if the contentType parameter is greater than zero, then assign
it to the HttpWebRequest.ContentType property.

6. If the length if the content parameter is greater than zero, then add the
content to the request.
a. Assign the length of the content parameter to the

HttpWebRequest.ContentLength property.
b. Obtain the request stream by using the GetRequestStream method of

HttpWebRequest.
c. Create an instance of StreamWriter class that is associated with the

request stream.
d. Write the content to the stream by using the StreamWriter.
e. Close the StreamWriter.

7. Call the DisplayRequest method that was added in exercise 1. Use the

HttpWebRequest object created in step 2.
8. Use the GetResponse method of HttpWebRequest to issue the request and

retrieve an instance of HttpWebResponse.
9. Call the DisplayResponse method that was added in exercise 1. Use the

HttpWebRequest object retrieved in step 8.

 Module 3: The Underlying Technologies of XML Web Services 51

Exercise 3
Issuing HTTP-GET and HTTP-POST Requests

In this exercise, you will add code to invoke the GetAccount operation of the
XML Web service for the Woodgrove Online Bank by using HTTP-GET and
HTTP-POST requests.

 Issue an HTTP-GET request

1. Locate the Main method.
2. Add a local string variable with the URL that is required to invoke the

GetAccount operation of the XML Web service for the Woodgrove Online
Bank by using the GET method.
The endpoint is http://Localhost/WoodGrove/Bank.asmx/GetAccount and
the querystring is acctID=1.

3. Invoke the GetData method.
a. Use the URL defined in step 2.
b. Specify the GET method.
c. All other parameters must be empty strings.

 Issue an HTTP-POST request

1. Locate the Main method.
2. Add a local string variable with the URL required to invoke the

GetAccount operation of the XML Web service for the Woodgrove Online
Bank by using the POST method.
The endpoint is http://Localhost/WoodGrove/Bank.asmx/GetAccount.

3. Invoke the GetData method.
a. Use the URL defined in step 2.
b. Specify application/x-www-form-urlencoded as the content type.
c. Specify the POST method.
d. Set the content to be the string acctID=1.

52 Module 3: The Underlying Technologies of XML Web Services

Exercise 4
Completing the BuildSOAPMessage Method

In this exercise, you will complete the code for a method named
BuildSOAPMessage.

 Add the function stub

1. Using Windows Explorer, open <lab root>\Lab03\Starter\BuildSOAP.txt.
2. Add the function stub for the BuildSOAPMessage method to.
Visual Basic .NET C#

The Tester module in Technology.vb The Tester class in Technology.cs

a. At the insertion point indicated in the function stub for the
BUILDSOAPMESSAGE method, do the following:

b. Use the WriteStartElement method to add an element named
GetAccount.
The namespace to be used is http://Tempuri.org. There is no namespace
prefix for this element.

3. Use the WriteElementString method to add an element named acctID with
the value 1.

4. Use the WriteEndElement method to close the GetAccount element.

 Module 3: The Underlying Technologies of XML Web Services 53

Exercise 5
Issuing a SOAP Request

In this exercise, you will add code to invoke the GetAccount operation of the
XML Web service for the Woodgrove Online Bank by using a SOAP request.

1. Locate the Main method.
2. Add a local string variable with the URL that is required to invoke the

GetAccount operation of the XML Web service for the Woodgrove Online
Bank by using the POST method.
The endpoint is http://Localhost/WoodGrove/Bank.asmx.

3. Add a local string variable with the required SOAPAction.
The action required is http://tempuri.org/GetAccount.

4. Invoke the GetData method.
a. Use the URL defined in step 2.
b. Specify text/xml; charset=utf-8 as the content type.
c. Specify the POST method.
d. Set the content to be the result of calling BuildSOAPMessage.
e. Provide the SOAPAction header.

 Test the application

1. Build and run the application.
2. Compare the inbound and outbound messages for each of the three request

types.
3. Ensure that each of the different method calls returns the same results.

54 Module 3: The Underlying Technologies of XML Web Services

Review

HTTP Fundamentals

Using HTTP with the .NET Framework

XML Essentials

XML Serialization in the .NET Framework

SOAP Fundamentals

SOAP Using the .NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How can parameter information be passed to a Web server when using the
HTTP-GET protocol?
Parameters can be passed by using the querystring part of the URL.

2. If you need an XML entity that can have a default value, should you use an
element or an attribute?
Attribute

3. Which XSD compositor defines an ordered list of elements?
xsd:sequence

 Module 3: The Underlying Technologies of XML Web Services 55

4. How are errors reported to a client when using the SOAP protocol?
By using SOAP Fault elements

5. Which SOAP parameter encoding style entails the use of an XSD schema to
encode the parameters?
Literal

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

WSDL Documents 2

XML Web Service Discovery 8

XML Web Service Proxies 19

Implementing an XML Web Service

Consumer Using Visual Studio .NET 27

Lab 4.1: Implementing an XML Web

Service Consumer Using

Visual Studio .NET 34

Review 43

Module 4: Consuming
XML Web Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Consuming XML Web Services iii

Instructor Notes
This module teaches students how to implement XML (Extensible Markup
Language) Web service consumers by using Microsoft® Visual Studio® .NET.

After completing this module, students will be able to:

 Explain the structure of a Web Service Description Language (WSDL)
document.

 Explain the XML Web services discovery process.
 Locate service contracts by using Disco.exe.
 Generate XML Web service proxies by using Wsdl.exe.
 Implement an XML Web service consumer by using Visual Studio .NET.
 Invoke an XML Web service synchronously and asynchronously by using

an XML Web service proxy.

To teach this module, you need the Microsoft PowerPoint® file 2524B_04.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Try the demonstrations and study the code examples in this module.
 Complete the lab.

The PowerPoint file for this module contains macros that allow you to switch
the displayed code between C# and Microsoft Visual Basic® .NET. To run the
macros, you must install the full version of PowerPoint.

To switch a single slide to C#, perform the following steps:

1. Open the PowerPoint deck in PowerPoint.
2. On the Slide Show menu, click View Show.
3. Locate the slide that you want to switch to C#.
4. Click C# on the slide.

To switch a single slide to Visual Basic .NET, perform the following steps:

1. Open the PowerPoint deck in PowerPoint.
2. On the Slide Show menu, click View Show.
3. Locate the slide that you want to switch to Visual Basic .NET.
4. Click Visual Basic .NET on the slide.

You can switch a slide to C# or Visual Basic .NET at any time while
displaying the slides. Just click C# or Visual Basic .NET to switch between the
languages.

Presentation:
120 Minutes

Lab:
75 Minutes

Required Materials

Preparation Tasks

Dual-language
PowerPoint macros

Note

iv Module 4: Consuming XML Web Services

Demonstration
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

 To use Disco.exe to locate discovery documents

1. Click the Start menu, point to All Programs, point to Microsoft Visual
Studio .NET, point to Visual Studio .NET Tools, and then click Visual
Studio .NET Command Prompt.

2. At the command prompt, type the following command:
md c:\wsdl

3. At the command prompt, type the following command:
disco.exe/out:c:\wsdl http://localhost/woodgrove/bank.asmx

4. At the command prompt, type the following commands:
c:
cd \wsdl
dir

5. Open the .disco and .wsdl documents in notepad.exe.
6. Show the students the contents of the .disco and .wsdl documents.
7. Close the instances of notepad.exe.
8. Close the console window.

Locating Discovery
Documents Using
Disco.exe

 Module 4: Consuming XML Web Services v

Module Strategy
Use the following strategy to present this module:

 WSDL Documents
You should approach the topics in this section as a progressive development
of an example of a WSDL document. Explain the concepts in the first topic
with a simple XML Web service that has only one operation that returns a
class, (the code is defined in the student notes). Progressively build upon
this example WSDL document when you explain each of the WSDL topics.
The intent of teaching WSDL syntax is not for students to write a WSDL
document without assistance. The intent is for students to be able to describe
the structure of a WSDL document and explain how the definitions in a
WSDL document correspond to the code that they will implement in an
XML Web service.

 XML Web Service Discovery
Explain that this section focuses on how to find WSDL documents and the
endpoints for XML Web services that implement the interfaces that are
defined in the WSDL documents. For completeness, it is important that you
briefly describe Universal Description, Discovery, and Integration (UDDI)
as part of the solution, but defer any in-depth discussion of UDDI until
Module 6, “Publishing and Deploying XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET. Explain
how students can use Disco.exe to generate local copies of WSDL
documents and other discovery documents.

vi Module 4: Consuming XML Web Services

 XML Web Service Proxies
This section is intended to help students understand the benefits of
implementing proxies to XML Web services. Remind the students about the
lab exercises in Module 3, “The Underlying Technologies of XML Web
Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET, to emphasize how manual construction of Hypertext
Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP)
messages is tedious and error-prone. Point out that Module 3 did not cover
the steps that are involved in decoding response messages. Explain that
decoding response messages is essential functionality in an XML Web
service consumer. Explain that this functionality can be encapsulated in an
XML Web service proxy. Discuss the code that is generated for the proxies
from a high level. Discuss the properties of a proxy that you can configure.
Do not spend too much time on this discussion, because students will be
learning about how to implement XML Web service consumers in the next
section.

 Implementing an XML Web Service Consumer Using Visual Studio .NET
This section is intended to familiarize students with the steps that are
required to allow a managed application to consume an XML Web service.
Emphasize that the steps that this section outlines do not apply to
unmanaged applications. Emphasize the similarity between the steps
involved in implementing an XML Web service consumer that is a console
application and an XML Web service consumer that is a Web Forms
application. Also, discuss the importance of asynchronous invocation of
XML Web service methods. Point out the similarity between invoking XML
Web service methods asynchronously and issuing asynchronous HTTP
requests by using the WebRequest class, which is demonstrated in Module
3, “The Underlying Technologies of XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET.

 Module 4: Consuming XML Web Services 1

Overview

WSDL Documents

XML Web Service Discovery

XML Web Service Proxies

Implementing an XML Web Service Consumer Using
Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Developers must understand how an XML (Extensible Markup Language) Web
service will be consumed before implementing it. Also, XML Web service
developers need to implement XML Web service consumers to test the XML
Web services that they implement.

In this module, you will learn how to implement XML Web service consumers
by using Microsoft® Visual Studio® .NET.

After completing this module, you will be able to:

 Explain the structure of a Web Service Description Language (WSDL)
document.

 Explain the XML Web services discovery process.
 Locate service contracts by using Disco.exe.
 Generate XML Web service proxies by using Wsdl.exe.
 Implement an XML Web service consumer by using Visual Studio .NET.
 Invoke an XML Web service synchronously and asynchronously by using

an XML Web service proxy.

Introduction

Objectives

2 Module 4: Consuming XML Web Services

WSDL Documents

What is WSDL?

Structure of a WSDL document

The types element

The message element

The portType element

The binding element

The service element

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To use or consume an XML Web service, you first need to know how to
interact with it.

Web Services Description Language (WSDL) is an XML grammar that is used
for describing an XML Web service in terms of the messages it accepts and
generates. In other words, a WSDL file acts as a contract between an XML
Web service consumer (client) and an XML Web service.

In a WSDL document, you provide abstract definitions of the types that are
used in the operations and the documents that are exchanged for each operation.
Then, you associate these definitions with a network protocol and group them
into messages to define an endpoint.

WSDL can describe endpoints and their operations without specifying the
message formats or the network protocols to which an endpoint is bound. The
only protocol bindings that are examined in this section are Simple Object
Access Protocol (SOAP) 1.1 and HTTP-GET/POST.

As an XML Web service consumer, it is important that you are familiar with
WSDL to understand the contract that is defined in a WSDL document. Also,
when you implement an XML Web service, you might not want to use an
automatically generated WSDL file. Instead, you might choose to generate the
default WSDL file and then modify it. Again, for this purpose you need to
know WSDL.

What is WSDL?

 Module 4: Consuming XML Web Services 3

A WSDL document is just a list of definitions. In a WSDL file, the root element
is named definitions. This element contains five primary child elements that are
used to define the XML Web service. The following five elements appear
within the definitions element in a WSDL file in the order specified:

 The types element defines the various data types that are used to exchange
messages.

 The message element describes the messages to be communicated.
 The portType element identifies a set of operations and the messages that

are involved with each of those operations.
 The binding element specifies the protocol details for various service

operations and describes how to translate the abstract content of these
messages into a concrete format.

 The service element groups a set of related ports together.

The following table describes an XML Web service for which we want to create
a WSDL file.

C# Microsoft Visual Basic .NET

[XmlRoot("account")]
public class Acct
{
 [XmlElement("description")]
 public string Description;
 [XmlElement("number")]
 public string Number;
 [XmlElement("type")]
 public string Type;
 [XmlElement("balance")]
 public decimal Balance;
 [XmlAttribute("status")]
 public string Status;
}

public class TheBank
{
 [WebMethod]
 public Acct
GetAccount(string acctNumber)
 {
 Acct a = new Acct();
 a.Description = "Adam's
savings acct";
 a.Balance=10000.0M;
 a.Number="1234-XX";
 a.Status="active";
 a.Type="SV";
 return a;
 }

}

<XmlRoot("account")> _
Public Class Acct

 <XmlElement("description")>
 Public Description As String
 <XmlElement("number")>
 Public Number As String
 <XmlElement("type")>
 Public Type As String
 <XmlElement("balance")>
 Public Balance As Decimal
 <XmlAttribute("status")>
 Public Status As String
End Class 'Acct

Public Class TheBank

 Public<WebMethod()> _
 Function
GetAccount(acctNumber As
String) As Acct
 Dim a As New Acct()
 a.Description = "Adam's
savings acct"

 a.Balance = 10000D
 a.Number = "1234-XX"
 a.Status = "active"
 a.Type = "SV"
 Return a
 End Function 'GetAccount
End Class 'TheBank

Structure of a WSDL
document

4 Module 4: Consuming XML Web Services

In this section, you will learn how to define a WSDL document that describes
the preceding XML Web service.

First, you define the types that are used in the message exchange. This is mostly
just a matter of defining the types by using XML Schema Definition Language
(XSD). The acctNumber parameter is defined as follows:

...
<types>
...
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="acctNumber" nillable="true"
 type="s:string" />
 </s:sequence>
 </s:complexType>
...
</types>

The type definition for the Acct class, which the GetAccount method returns,
is slightly more complex than the previous definition. The type definition for
this class can be as follows:

<s:complexType name="Acct">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="description" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="number" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="type" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="balance" type="s:decimal" />
 </s:sequence>
 <s:attribute name="status" type="s:string" />
</s:complexType>

The preceding type definition represents an XML document with the following
structure:

<?xml version="1.0" encoding="utf-8"?>
<account status="active">
 <description>Adam's savings acct</description>
 <number>1234-XX</number>
 <type>SV</type>
 <balance>10000</balance>
</account>

Next, we define the structure of the messages that are to be exchanged. In this
example, the method name is GetAccount and we use the following naming
convention:

 The inbound message has the same name as the method.
 The outbound message has the name of the method with the word Response

appended.

The types element

 Module 4: Consuming XML Web Services 5

One way to create the message type definitions is as follows:

<s:element name="GetAccount">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="acctNumber" nillable="true"
 type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="suffix" nillable="true" type="s:string" />
 </s:sequence>
 </s:complexType>
</s:element>
<s:element name="GetAccountResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="account" type="s0:Acct" />
 </s:sequence>
 </s:complexType>
</s:element>

All of these definitions are nested inside the types element.

In addition to defining the data types that are passed back and forth during an
invocation for an XML Web service method, you must also define the XML
Web service request and response messages. Because messages are protocol
independent, you can use a message with HTTP-GET/POST, SOAP, or any
other protocol that an XML Web service provider supports. If you use SOAP,
the message element corresponds to the payload of the SOAP request or
response. It does not include the SOAP Envelope or the SOAP Fault elements.
You can give messages any convenient name because WSDL does not define a
naming convention for messages.

The message element contains zero or more part child elements. A part
element is similar to a parameter or a return value in a function call.

A request message contains all in and inout parameters; and a response
message contains all out and inout parameters, and the return value. Each part
element must have a name and data type that you can match to the data types
that are used in the underlying service implementation. To continue with the
previous example, you can define the request and response messages as
follows:

<message name="GetAccountIn">
 <part name="parameters" element="s0:GetAccount" />
</message>
<message name="GetAccountOut">
 <part name="parameters" element="s0:GetAccountResponse" />
</message>

In the preceding code, the s0:GetAccount and s0:GetAccountResponse
attribute values refer to the top-level types that the types element defines.

The message element

6 Module 4: Consuming XML Web Services

An XML Web service provider (a network node, which is a Web server) may
expose multiple XML Web services. A single XML Web service can support
invocation of its operations by using a variety of protocols. The format of the
data that is exchanged between an XML Web service consumer and an XML
Web service may depend on the protocol that is used to invoke an operation or
a method. Therefore, there must be a way to match the operations to the
endpoints from which they can be accessed. You can do this kind of matching
by using the portType element.

The following XML code shows the GetAccount operation and a portType
with which it is associated:

<portType name="BankService">
 <operation name="GetAccount">
 <input message="s0:GetAccountIn" />
 <output message="s0:GetAccountOut" />
 </operation>
</portType>

In the preceding code, notice that the input and output elements specify the
names of the request and response messages that are to be transmitted.

After defining the logical port, next you define how an XML Web service
consumer can bind to the port on which the GetAccount operation is available.
This involves associating an operation with a protocol and providing any
protocol-specific binding information. To do this, you use the binding element.
The following XML code shows the SOAP binding definition for the
GetAccount operation:

<binding name="BankService" type="s0:BankService">
 <soap:binding transport =
 "http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="GetAccount">b
 <soap:operation soapAction =
 "http://woodgrovebank.com/GetAccount"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
</binding>

The preceding example allows binding by using SOAP. It provides information
for the SOAPAction header. It also specifies that the document-encoding style
is document and not rpc, and that the parameter-encoding style is literal and
not encoded. You can give the binding any convenient name.

To see some examples of bindings that use the HTTP-GET and HTTP-POST
protocols and examine the binding elements, see the file at:
http://Localhost/Woodgrove/Bank.asmx?wsdl.

The portType element

The binding element

 Module 4: Consuming XML Web Services 7

All that remains in creating a WSDL file is defining the endpoints for each of
the protocols that you can use to access an XML Web service. To define the
endpoints, you use the service element.

The following XML code defines a bank service and specifies the ports that can
be used to access the operations of the service:

<service name="BankService">
 <port name="BankService" binding="s0:BankService">
 <soap:address location =
 "http://localhost/woodgrove/Bank.asmx" />
 </port>
</service>

In the preceding code, the binding attribute of the port element specifies the
name of the binding element that is to be used, in this example,
s0:BankService. Also, notice that the endpoint location is specified as a child
element of the port element.

The complete code for the preceding WSDL file is available in
<install folder>\Democode\<language>\Mod04\WoodgroveBank.wsdl.

If you can access an XML Web service by using multiple protocols, then a
WSDL document for the XML Web service will contain multiple port
elements, each referring to a protocol-specific binding element by name. Also,
each of the protocol-specific binding elements will in turn refer to protocol-
specific portType elements. The protocol-specific portType elements will in
turn refer to protocol-specific sets of input and output message elements, which
in turn refer to types that the types element defines.

The service element

Note

8 Module 4: Consuming XML Web Services

XML Web Service Discovery

Introducing Disco

Locating Discovery Documents Using Disco.Exe

Demonstration: Locating Discovery Documents Using
Disco.exe

Programmatic Discovery

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the previous topic, you saw how to write WSDL documents. Because a
WSDL document specifies the format of the messages that an XML Web
service exchanges with its consumers, you must implement the consumer
according to the WSDL document of an XML Web service that you want to
consume. If you do not already have the WSDL document, you must be able to
locate it.

The process by which you locate an XML Web service and its descriptions and
learn how to interact with it is known as XML Web service discovery.

In this section, you will learn how to locate the WSDL documents at a known
endpoint. For more information about how to locate an XML Web service
whose endpoints are unknown, see Module 6, “Publishing and Deploying XML
Web Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

 Module 4: Consuming XML Web Services 9

Introducing Disco

What is Disco?

Static discovery

Dynamic discovery

WS-Inspection

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is unlikely that an XML Web service provider would publish the service
descriptions of all the XML Web services through an XML Web service broker.
Therefore, the developers of the XML Web service consumer must be able to
discover the service descriptions.

Disco is a mechanism for enumerating the XML Web services that are available
at a particular endpoint and locating the service contracts for the enumerated
XML Web services. Disco is a proprietary Microsoft solution to the static
discovery problem. In the future, an industry standard solution will be
supported.

A Web server that provides access to an XML Web service is not
required to support discovery. Either another server can be responsible for
providing the service contracts, or an XML Web service has been created for
only private use with no public mechanism for discovery.

An XML Web service provider can make discovery information available to
developers of XML Web service consumers. It can do this by either statically or
dynamically generating a document that contains a link to the WSDL document
for all of the XML Web services that the provider hosts.

What is Disco?

Note

10 Module 4: Consuming XML Web Services

Static discovery is possible when the location of a discovery document (usually
with the extension .disco) is already known. Static discovery involves retrieving
the discovery document and interpreting its contents. The following code is an
example of a discovery document:

<?xml version="1.0"?>
<discovery xmlns:xsi="http://www.w3.org/2000/10/
 XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema/"
 xmlns="http://schemas.xmlsoap.org/disco/">
 <discoveryRef ref="http://www.contoso.com/MicroPayment
 /MicroPayment.vsdisco"/>
 <discoveryRef ref="http://www.contoso.com/Services/
 AccountMgmt.disco"/>
 <contractRef ref="http://www.contoso.com/Services/
 AcctMgmt.asmx?wsdl"
 docRef="http://www.contoso.com/Services/
 AcctMgmt.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/"/>
</discovery>

The two main elements of a discovery document are:

 discoveryRef, which specifies the location of additional discovery
documents.

 contractRef, which specifies the location of XML Web service contracts.
The contractRef element can also optionally specify the location of a
document that provides the documentation for an XML Web service.

In a discovery document, the URLs that specify the various document locations
can be absolute or relative. If the URLs are relative, then the locations are
assumed to be relative to the location of the discovery document.

The root discovery document along with all the referenced discovery
documents make up the catalog of XML Web services that are available at the
interrogated endpoint. This catalog is effectively static.

Dynamic discovery takes place when all that is known to the consumer is the
endpoint of the XML Web service provider. In this situation, there is no static
list of .disco files at the endpoint. Instead, the list of available XML Web
services and the associated service contracts must be dynamically generated.

The dynamic discovery of XML Web services is disabled by default. You can
enable it by removing the comment for .vsdisco httpHandler in either
machine.config or web.config.

<httpHandlers>
 <!--<add verb="*" path="*.vsdisco"
 type=
 "System.Web.Services.Discovery.DiscoveryRequestHandler,
 System.Web.Services,
 Version=1.0.3300.0,Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" validate="false"
 />-->

Static discovery

Dynamic discovery

 Module 4: Consuming XML Web Services 11

You will also need to place a file named Default.vsdisco at the root of the Web
site that hosts an XML Web service. If you install Visual Studio .NET on a
computer, Default.vsdisco will be placed in the folder containing the root of the
computer’s default Web site. The following code is an example of a .vsdisco
file:

<?xml version="1.0" ?>
<dynamicDiscovery xmlns="urn:schemas-
dynamicdiscovery:disco.2000-03-17">
<exclude path="_vti_cnf" />
<exclude path="_vti_pvt" />
<exclude path="_vti_log" />
<exclude path="_vti_script" />
<exclude path="_vti_txt" />
</dynamicDiscovery>

The preceding .vsdisco document contains a list of subfolders to be excluded in
the search for discovery documents.

For dynamic discovery, the .vsdisco extension is mapped to Aspnet_isapi.dll.
You use the System.Web.Services.Discovery.DiscoveryRequestHandler
class to request a .vsdisco file. The handler searches the folder that contains the
requested .vsdisco file and its subfolders for XML Web services that are created
by using ASP.NET (.asmx), dynamic discovery files (.vsdisco), and static
discovery files (.disco). The search in a folder terminates if an .asmx or .vsdisco
file cannot be found, or if a .disco file is found. It is invalid to place a .vsdisco
file in the same folder as a .disco file.

It is not advisable to allow unknown clients the unrestricted ability to
discover your XML Web services. Therefore, it is recommended that you use
only dynamic discovery on development Web servers. For production
deployment, it is recommended that you create a static discovery file (.disco)
for those XML Web services that you want to enable clients to discover.

WS-Inspection is a proposed standard for discovery. WS-Inspection is a
collaborative effort by Microsoft and IBM. The WS-Inspection specification
defines an XML format to allow a site to be inspected for available services.
The specification also defines a collection of rules for how inspection-related
information should be made available for consumption. The following code is
an example of a simple WS-Inspection document:

<?xml version="1.0"?>
<inspection xmlns=
 "http://schemas.xmlsoap.org/ws/2001/10/inspection/">
 <service>
 <description referencedNamespace=
 "http://schemas.xmlsoap.org/wsdl/"
 location="http://example.com/stockquote.wsdl" />
 </service>
</inspection>

Caution

WS-Inspection

12 Module 4: Consuming XML Web Services

It is not difficult to see the similarity between .disco files and WS-Inspection
documents.

The WS-Inspection specification may be found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsrvspec/html/ws-inspection.asp

Implementations, tools, and samples are available as part of Visual Studio .NET
and may be found at:

http://msdn.microsoft.com/code/default.asp?url=/code/sample.asp?url=/msdn-
files/026/002/541/msdncompositedoc.xml

 Module 4: Consuming XML Web Services 13

Locating Discovery Documents Using Disco.exe

Syntax

Uses for Disco.exe

Example

disco [options] URLdisco [options] URL

disco /out:d:\disco /u:administrator /p:biffle
http://www.woodgrovebank.com/catalog.disco

disco /out:d:\disco /u:administrator /p:biffle
http://www.woodgrovebank.com/catalog.disco

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the Microsoft XML Web services discovery tool, Disco.exe, to
discover the endpoints of XML Web services and save the documents that are
related to each of the XML Web services on a local disk.

The syntax of the command to search for discovery documents (files with the
following extensions: .disco, .wsdl, .xsd, .discomap, .vsdisco) at a given URL is
as follows:

disco [options] URL

The options for the URL argument that the disco command supports are
described in the following table.

Options Description

/d[omain]:domain Specifies the domain name to use when

connecting to a server that requires a
domain name for authentication.

/out:directoryName Specifies the output directory in which to
save the discovered documents. The
default is the current directory.

/u[sername]:username Specifies the username to use when
connecting to a server that requires
authentication.

/p[assword]:password Specifies the password to use when
connecting to a server that requires
authentication.

Syntax

14 Module 4: Consuming XML Web Services

The primary use of Disco.exe is to generate local copies of service contract
documents (.wsdl documents) and static discovery documents (.disco
documents). The tool also produces a file named Results.discomap. This file
can be used as the input to the Wsdl.exe, which you will examine later in this
module.

The Disco tool displays an error message if it cannot find discoverable
resources at the supplied URL.

The following example shows how to use Disco.exe to search a URL for
discovery documents and save them to a local folder:

disco /out:d:\disco /u:administrator /p:biffle
 http://localhost/woodgrove/catalog.disco

In the preceding example, the username and password are supplied to allow the
tool to connect to a server that requires authentication.

Uses for Disco.exe

 Module 4: Consuming XML Web Services 15

Demonstration: Locating Discovery Documents Using Disco.exe

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to locate discovery documents for an
XML Web service by using Disco.exe.

16 Module 4: Consuming XML Web Services

Programmatic Discovery

The System.Web.Services.Discovery namespace

An example

*****************************ILLEGAL FOR NON-TRAINER USE******************************

All of the discovery functionality of Disco.exe is available programmatically
through the classes in the Microsoft .NET Framework.

The System.Web.Services.Discovery namespace in the .NET Framework
contains a set of classes that model the elements of a discovery document. This
namespace also contains classes that you can use to manipulate discovery
documents.

C# and Visual Basic .NET Examples
The following C# and Microsoft Visual Basic® .NET examples simulate the
behavior of Disco.exe.

The
System.Web.Services.
Discovery namespace

 Module 4: Consuming XML Web Services 17

C#

using System.Web.Services.Discovery;
class DiscoverDemo {
 static void Main(string[] args)
 {

 GenerateDiscovery(@"http://localhost/woodgrove/catalog.disc
o",

 @"d:\disco",true);
 }
 public static void GenerateDiscovery(string sourceUri,
 string outputDirectory, bool printToConsole) {
 string outputPath;
 outputPath =
Path.Combine(outputDirectory,"results.discomap");

 DiscoveryClientProtocol client;
 client = new DiscoveryClientProtocol();
 FileInfo fi = new FileInfo(outputPath);
 if (fi.Exists)
 client.ReadAll(outputPath);
 DiscoveryDocument doc = client.DiscoverAny(sourceUri);
 client.ResolveAll();
 foreach (DictionaryEntry entry in client.Documents)
 Console.WriteLine((string) entry.Key);

 DiscoveryClientResultCollection results;
 results =
client.WriteAll(outputDirectory,"results.discomap");

 foreach (DiscoveryClientResult res in results)
 {
 Console.WriteLine(res.Filename + " <- " + res.Url);
 }
 }
}

18 Module 4: Consuming XML Web Services

Visual Basic .NET

Imports System.Web.Services.Discovery
Class DiscoverDemo
 Shared Sub Main(args() As String)
 GenerateDiscovery("http://localhost/catalog.disco",
 "d:\disco",True)
 End Sub 'Main

 Public Shared Sub GenerateDiscovery(sourceUri As String,
 outputDirectory As String, printToConsole As Boolean)
 Dim outputPath As String
 outputPath = Path.Combine(outputDirectory,
"results.discomap")

 Dim client As DiscoveryClientProtocol
 client = New DiscoveryClientProtocol()
 Dim fi As New FileInfo(outputPath)
 If fi.Exists Then
 client.ReadAll(outputPath)
 End If
 Dim doc As DiscoveryDocument =
client.DiscoverAny(sourceUri)

 client.ResolveAll()
 Dim entry As DictionaryEntry
 For Each entry In client.Documents
 Console.WriteLine(CStr(entry.Key))
 Next
 Dim results As DiscoveryClientResultCollection
 results = client.WriteAll(outputDirectory,
"results.discomap")

 Dim res As DiscoveryClientResult
 For Each res In results
 Console.WriteLine((res.Filename + " <- " + res.Url))
 Next
 End Sub 'GenerateDiscovery
End Class 'DiscoverDemo

An in-depth discussion of the System.Web.Services.Discovery
namespace is beyond the scope of this course. For complete information about
using the System.Web.Services.Discovery namespace, refer to the .NET
Framework SDK documentation.

Note

 Module 4: Consuming XML Web Services 19

XML Web Service Proxies

Proxies and WSDL

Generating Proxies Using Wsdl.exe

Configuring Proxies

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An XML Web service consumer must be able to construct the messages that are
to be sent to an XML Web service, and parse the messages that are received
from an XML Web service. Manually writing the code to construct and parse
the messages is time-consuming and error-prone. It is better to encapsulate this
code in a class that you can reuse. We call such a class a proxy class. In this
section, you will see how to generate proxy classes by using Wsdl.exe and
WSDL documents.

20 Module 4: Consuming XML Web Services

Proxies and WSDL

Why are proxies needed?

Using WSDL to generate proxies

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Proxies are entities that act as intermediaries for other entities. For the purpose
of our discussion, you can consider proxies as objects that expose the same
logical interface to an XML Web service consumer as an XML Web service.

Module 3, “The Underlying Technologies of XML Web Services,” in Course
2524B, Developing XML Web Services Using Microsoft ASP.NET explains how
to interact with an XML Web service by manually constructing the messages
and sending them to an XML Web service. However, manual construction of
messages is not an optimal solution.

Also, developers prefer to work with strongly-typed abstractions that model the
logical interface of an entity with which they are interacting. They do not want
to and should not have to manually process text documents that are exchanged
during the invocation of an XML Web service method.

Proxies eliminate the preceding problems by providing a strongly-typed
interface that matches the operations that an XML Web service exposes, and by
hiding the construction and parsing details within the implementation of the
proxy.

Because WSDL documents are XML documents, it is easy to generate
language-specific proxies to XML Web services. It is also easy to match the
types defined in the WSDL document to types that are native to the language of
the consumer that uses the proxy.

Why are Proxies
needed?

Using WSDL to generate
proxies

 Module 4: Consuming XML Web Services 21

Earlier in this module, in the topic on WSDL, you learned how to create the
XSD representation of the following class definition.

C# Visual Basic .NET

public class Acct
{
 public string Description;
 public string Number;
 public string Type;
 public decimal Balance;
 public string Status;
}

Public Class Acct
 Public Description As String
 Public Number As String
 Public Type As String
 Public Balance As Decimal
 Public Status As String
End Class 'Acct

You can easily perform the reverse transformation of generating a class
definition from a WSDL document, and you can automate the process. In the
next topic, you will learn how to generate proxies by using Wsdl.exe and by
using Visual Studio .NET.

For information about how to programmatically manipulate WSDL
documents, you can use the classes in the System.Web.Services.Description
namespace in the .NET Framework.

Note

22 Module 4: Consuming XML Web Services

Generating Proxies Using Wsdl.exe

Syntax for invoking Wsdl.exe

Examples

Proxy class details

wsdl [options] {URL | Path}wsdl [options] {URL | Path}

wsdl http://www.woodgrovebank.com/services/bank.asmx?wsdlwsdl http://www.woodgrovebank.com/services/bank.asmx?wsdl

wsdl /l:VB /protocol:HttpGet /out:Bank.cs
http://www.woodgrovebank.com/services/bank.asmx?wsdl

wsdl /l:VB /protocol:HttpGet /out:Bank.cs
http://www.woodgrovebank.com/services/bank.asmx?wsdl

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft provides Wsdl.exe, which is a tool that you can use to generate the
code for a proxy to an XML Web service. Wsdl.exe uses documents such as
WSDL files, XSD schemas, and .discomap to generate the proxy.

The syntax for the wsdl command that invokes Wsdl.exe is as follows:

wsdl [options] {URL | Path}

In the syntax, the URL is to a WSDL file (.wsdl), XSD schema file (.xsd), or a
discovery document (.disco). Note that you cannot specify a URL to a
.discomap discovery document.

Syntax

 Module 4: Consuming XML Web Services 23

The arguments and options for the path that the wsdl command supports are
described in the following table.

Options Description

 The path to a local .wsdl, .xsd, .disco, or .discomap.

/d[omain]:domain Specifies the domain name to use when connecting to
a server that requires a domain name for
authentication.

/extendednaming Allows the use of extended naming when generating
dataset classes.

/l[anguage]:language Specifies the language to use for the generated proxy
class. You can specify any of the following as the
language argument:

CS for C#, which is the default option

VB for Microsoft Visual Basic .NET

JS for Microsoft JScript®

You can also specify the fully qualified name of a
class that implements the
System.CodeDom.Compiler.CodeDomProvider
class.

/n[amespace]:namespace Specifies the namespace for the generated proxyThe
default namespace is the global namespace.

/out:filename Specifies the file in which to save the generated
proxy code. The tool derives the default file name
from the XML Web service name. The tool saves
generated datasets in different files.

/u[sername]:username Specifies the username to use when connecting to a
server that requires authentication.

/p[assword]:password Specifies the password to use when connecting to a
server that requires authentication.

/protocol:protocol Specifies the protocol to implement. This option
overrides the default protocol. You can specify
SOAP (default option), HttpGet, HttpPost, or a
custom protocol specified in the configuration file
(Web.config).

/server Generates an abstract class for an XML Web service
based on the contracts. The default is to generate
client proxy classes.

24 Module 4: Consuming XML Web Services

The following example generates a proxy by using the default language (C#)
and default protocol (SOAP).

wsdl http://localhost/woodgrove/bank.asmx?wsdl

A common use of Wsdl.exe is to generate a proxy for a specific protocol and
non-default language. The following example generates a proxy that uses the
HTTP-GET protocol and is implemented by using Visual Basic .NET:

wsdl /l:VB /protocol:HttpGet /out:Bank.vb
 http://localhost/woodgrove/bank.asmx?wsdl

A proxy class that Wsdl.exe generates exposes both synchronous and
asynchronous methods for each of the operations in an XML Web service. For
example, if an XML Web service supports an operation named GetAccount,
then a proxy class for this XML Web service will contain the methods
GetAccount, BeginGetAccount, and EndGetAccount. The GetAccount
method is used to invoke the XML Web service synchronously and the
BeginGetAccount/EndGetAccount pair is used to invoke the XML Web
service asynchronously. You will see how to make both synchronous and
asynchronous calls to an XML Web service later in this module.

Each of the methods in a proxy class correctly formats the messages and parses
the responses. These tasks include translating data between XML and the .NET
runtime supported types.

The methods in the proxy class also contain details on the network
communication to be used. By default, the proxy classes use SOAP to invoke
an XML Web service method. The proxy classes use SOAP because SOAP
supports the richest set of data types in comparison with the other two
supported protocols. However, if an XML Web service can only be called by
using HTTP-GET or HTTP-POST protocols, then Wsdl.exe can also generate
proxy classes that support these protocols.

If errors occur during a call to an XML Web service, then the proxy class
throws standard .NET exceptions.

The proxy class is derived from a protocol-specific class, which is derived from
the HttpWebClientProtocol class. For more information about proxy classes,
refer to the .NET Framework SDK documentation.

C# and Visual Basic
.NET Examples

Proxy Class Details

 Module 4: Consuming XML Web Services 25

Configuring Proxies
The Url property

The Credentials property

The Timeout property

The Proxy property

The AllowAutoRedirect
property

Dim theBank As New Bank()
theBank.Url =

“http://eastcoast.woodgrovebank.com/Bank.asmx”
Dim credentials = New

NetworkCredential("Adam","woodgrovebank.com", "ABarr-
user")

theBank.Credentials = credentials
theBank.Timeout = 20000
Dim proxyObject As IWebProxy = New

WebProxy("http://proxyserver:80", True)
theBank.Proxy = proxyObject
theBank.AllowAutoRedirect = True

Dim theBank As New Bank()
theBank.Url =

“http://eastcoast.woodgrovebank.com/Bank.asmx”
Dim credentials = New

NetworkCredential("Adam","woodgrovebank.com", "ABarr-
user")

theBank.Credentials = credentials
theBank.Timeout = 20000
Dim proxyObject As IWebProxy = New

WebProxy("http://proxyserver:80", True)
theBank.Proxy = proxyObject
theBank.AllowAutoRedirect = True

Visual BasicC#
*****************************ILLEGAL FOR NON-TRAINER USE******************************

After generating a proxy class by using Wsdl.exe, you can modify the default
state of the proxy in a number of ways.

Proxy classes that are generated by using Wsdl.exe set a default Url property
for the use of clients or consumers. The default value of the Url property is
determined by the location attribute that is specified in a service description
that the proxy class was generated from.

You can change the Url property to refer to any XML Web service that
implements the same service description that the proxy class was generated
from. You might want to change the Url property to support load-balancing
schemes or fail-over scenarios.

The following example code shows how you can set the Url property.

C# Visual Basic .NET

Bank theBank = new Bank();
theBank.Url =
“http://eastcoast.woodgroveb
ank.com/Bank.asmx”;

Dim theBank As Bank = new
Bank();
theBank.Url =
"http://eastcoast.woodgroveb
ank.com/Bank.asmx"

If an XML Web service consumer must be authenticated by a credentials-based
authentication mechanism, such as Basic, Digest, NTLM, or Kerberos, then you
can supply credentials by using the Credentials property of a proxy class.

The Url Property

The Credentials property

26 Module 4: Consuming XML Web Services

The following example code shows how to supply credential details by using
the Credentials property.

C# Visual Basic .NET

ICredentials credentials =
new
NetworkCredential("Adam",
 “woodgrovebank.com”,”ABarr-
user”);

theBank.Credentials =
credentials;

Dim credentials = New
NetworkCredential("Adam",
 "woodgrovebank.com",
"ABarr-user")

theBank.Credentials =
credentials

You use the Timeout property to modify the default timeout for synchronous
invocations of the XML Web service method. When you modify the Timeout
property, it applies to all subsequent requests made with the same instance of
the proxy class, until it is modified again.

Even though an XML Web service consumer can set the Timeout
property to infinity, a Web server can still force the request to time out on the
server side.

The following example sets the timeout on the client side to 20 seconds.

C# Visual Basic .NET

theBank.Timeout = 20000; theBank.Timeout = 20000

If a client needs to use proxy settings that are different from the default system
settings, then you can use the Proxy property. In the following example, you
use the WebProxy class to set the proxy settings.

C# Visual Basic .NET

// Set the proxy server to
proxyserver,

//port to 80, and specify that
proxy server
//must be bypassed for local
addresses

IWebProxy proxyObject = new
WebProxy("http://proxyserver:8
0", true);

theBank.Proxy = proxyObject;

‘Set the proxy server to
proxyserver,
’port to 80, and specify
that proxy server
’must be bypassed for local
addresses
IWebProxy proxyObject = new
WebProxy("http://proxyserver:8
0", true)

theBank.Proxy = proxyObject

If a client is sending authentication information, such as a user name and
password, typically you would not want to allow the server to redirect the
request to another server for security reasons. By default, the
AllowAutoRedirect property is set to false, but you can override this value as
shown in the following example.

C# Visual Basic .NET

// Allow the server to
automatically

// redirect the request
theBank.AllowAutoRedirect =
true;

‘ Allow the server to
automatically

’ redirect the request
theBank.AllowAutoRedirect =
true

The Timeout property

Note

The Proxy property

The AllowAutoRedirect
property

 Module 4: Consuming XML Web Services 27

Implementing an XML Web Service Consumer Using
Visual Studio .NET

Demonstration: Implementing a Console Client

Demonstration: Implementing a Web Forms Client

Synchronous vs. Asynchronous Clients

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Implementing a basic XML Web service consumer is a simple process. An
XML Web service consumer can be any of the following types of applications:

 Console
 Windows Forms
 Web Forms
 Web Service

The type of application that you implement has very little effect on the
mechanics of consuming an XML Web service.

For all XML Web service consumers, the basic steps involved in consuming an
XML Web service are as follows:

1. Create a proxy class for the XML Web service.
2. Reference the proxy class in the application code.
3. Create an instance of the proxy class in the application code.
4. Invoke an XML Web service method by using the instance of the proxy

class.

In the next two topics, you will see demonstrations on how to implement a
console application client and a Web Forms client.

The XML Web service consumers that you will implement in this course
are .NET applications.

Note

28 Module 4: Consuming XML Web Services

Demonstration: Implementing a Console Client

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to implement a console application
that is a consumer of an XML Web service.

 To create a console application

• In Visual Studio .NET, create a console application. You can use Microsoft
Visual C#™ or Microsoft Visual Basic .NET. Name the application
Mod04Consumer.

 To add a Web reference

After creating the base application, you must generate a proxy class and add a
reference to this class to your project.

1. In Solution Explorer, right-click the References node and click Add Web
Reference.

2. In the Add Web Reference dialog box, enter the address
http://localhost/woodgrove/bank.asmx.
After performing the previous action, the Service Help page is displayed to
you.

3. Add a reference to the XML Web service to your project by clicking Add
Reference.
When you add a Web reference, Visual Studio .NET automatically
generates an XML Web service proxy class.

 Module 4: Consuming XML Web Services 29

4. Expand the Web References node in Solution Explorer.
You will see a child node with the name localhost. This name is used as a
nested namespace name. The name is also used as the name of a folder
under the project folder. This folder contains all the files (including source
files for the XML Web service proxy) that are generated when you added
the Web Reference.

5. Rename the localhost node to Woodgrove.
6. Open Class View to see the generated proxy class.

 To invoke the XML Web service by using the proxy

• Invoke the GetAccount method of the Woodgrove XML Web service.
The following code shows how to invoke the GetAccount method. Notice
the name of the namespace that is used in the following code:

C# Visual Basic .NET

using System;
using Mod04Consumer.Woodgrove;

namespace Mod04Consumer
{
 class TheConsumer {
 static void Main(string[] args) {
 WoodgroveOnlineBank bank =
 new WoodgroveOnlineBank();
 Acct acct;
 acct = bank.GetAccount(1);
 Console.WriteLine("The account
 '{0}' has a balance of
{1:C}",

 acct.description,acct.balance);
 }
 }
}

Imports Mod04Consumer.Woodgrove

Module TheConsumer
 Sub Main()
 Dim bank As New
 WoodgroveOnlineBank()
 Dim acct As Acct
 acct = bank.GetAccount(1)
 Console.WriteLine("The account
'{0}'

 has a balance of {1:C}”,
 acct.description, acct.balance)
 End Sub 'Main
End Module

30 Module 4: Consuming XML Web Services

Demonstration: Implementing a Web Forms Client

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to implement a Web Form application
that is an XML Web service consumer.

At the end of this demonstration, you will see that neither the code that is used
to invoke an XML Web service, nor the steps to add an XML Web service
proxy class to the project, depend on the type of client.

 To create a console application:

• In Visual Studio .NET, create a ASP.NET Web Application application.
You can use Microsoft Visual C#™ or Microsoft Visual Basic .NET. Specify
the location as http://localhost/Mod04Web.

 To add a Web reference

After creating the base application, you must generate a proxy class and add a
reference to this class to your project.

1. In Solution Explorer, right-click the References node and click Add Web
Reference.

2. In the Add Web Reference dialog box, enter the address
http://localhost/woodgrove/bank.asmx.
After performing the previous action, the Service Help page is displayed to
you.

3. Add a reference to the XML Web service to your project by clicking Add
Reference.
When you add a Web reference, Visual Studio .NET automatically
generates an XML Web service proxy class.

 Module 4: Consuming XML Web Services 31

4. Expand the Web References node in Solution Explorer.
You will see a child node with the name localhost. This name is used as a
nested namespace name. The name is also used as the name of a folder
under the project folder. This folder contains all the files (including source
files for the XML Web service proxy) that are generated when you added
the Web Reference.

5. Rename the localhost node to Woodgrove.
6. Open Class View to see the generated proxy class.

 To invoke the XML Web service by using the proxy

• In the Page_Load event, invoke the GetAccount method of the Woodgrove
XML Web service and display the account balance.
The following code shows how to invoke the GetAccount method. Notice
the name of the namespace that is used in the following code:

C# Visual Basic .NET

using System;
using Mod04Web.Woodgrove;

namespace Mod04Web
{
 public class WebForm1 :
System.Web.UI.Page
 {
 …
 private void Page_Load(object
sender,

 System.EventArgs e)
 {
 WoodgroveOnlineBank bank =
 new WoodgroveOnlineBank();
 Acct acct;
 acct = bank.GetAccount(1);
 Response.Write(
 string.Format("Balance :
{1:C}",

 acct.description,acct.balance));
 }
}

Imports Mod04Web.Woodgrove

Public Class WebForm1
 Inherits System.Web.UI.Page
…
 Private Sub Page_Load(ByVal sender
As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 Dim bank As New
WoodgroveOnlineBank()

 Dim acct As Acct
 acct = bank.GetAccount(1)
 Response.Write(_
 String.Format("Balance :
{1:C}", _

 acct.description,
acct.balance))

 End Sub
End Class

32 Module 4: Consuming XML Web Services

Synchronous vs. Asynchronous Clients

Limitations of synchronous calls

Making asynchronous calls using the proxy

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The easiest approach to invoking methods on an XML Web service is to make
synchronous calls. In certain situations, this approach is not appropriate. This
topic examines the situations when synchronous calls are not optimal and how
to use proxies to make asynchronous calls.

For most users, the Internet is a low-bandwidth network. Even for people or
organizations with high-speed access to the Internet, latency on the Internet is
far higher than for local area networks (LANs). As a result, making all of the
calls to an XML Web service synchronously is often unacceptable. An
application must remain responsive to the end user, and cannot afford to
serialize all of its activities. A solution is to make the calls to an XML Web
service asynchronous.

The XML Web service proxies that Visual Studio .NET and Wsdl.exe generate
support asynchronous invocation of XML Web service methods. The
asynchronous behavior is implemented by using delegates.

The following procedure will provide you with an example of how to make
asynchronous calls by using proxies.

1. Create an instance of an AsyncCallback delegate.
2. Invoke a Beginxxxx method of the proxy and pass a reference to the proxy

itself.
The proxy reference is passed so that the Endxxxx method for the
appropriate proxy can be invoked when the callback delegate is invoked.
Invoking the proxy at the same time that the callback delegate is invoked is
necessary because you may have multiple pending calls and might have a
separate delegate object handle the completion of each call.

Limitations of
synchronous calls

Making asynchronous
calls using the proxy

 Module 4: Consuming XML Web Services 33

3. When the callback delegate is invoked, access the proxy reference that is
passed to the Beginxxxx method through the IAsyncResult.AsyncState
property.

4. Use the proxy reference to call the Endxxxx method to complete the
asynchronous call.

The following code shows how to make an asynchronous call to an XML Web
service by using a proxy.

C#

class TheConsumer
{
 static void Callback(IAsyncResult ar)
 {
 OnlineBank bank = (OnlineBank) ar.AsyncState;
 Acct acct = bank.EndGetAccount(ar);
 Console.WriteLine("The account '{0}' has a balance of
{1:C}",

 acct.description,acct.balance);
 }
 static void Main(string[] args)
 {
 OnlineBank bank = new OnlineBank();
 AsyncCallback callback;
 callback = new AsyncCallback(TheConsumer.Callback);
 bank.BeginGetAccount("1234",callback,bank);
 Console.ReadLine();
 }
}

Visual Basic .NET

Class TheConsumer
 Shared Sub Callback(ar As IAsyncResult)
 Dim bank As OnlineBank = CType(ar.AsyncState, OnlineBank)
 Dim acct As Acct = bank.EndGetAccount(ar)
 Console.WriteLine("The account '{0}' has a balance of
{1:C}")

 acct.description,acct.balance);
 End Sub

 Shared Sub Main(args() As String)
 Dim bank As New OnlineBank()
 Dim callback As AsyncCallback
 callback = New AsyncCallback(TheConsumer.Callback) '
 bank.BeginGetAccount("1234", callback, bank)
 Console.ReadLine()
 End Sub 'Main
End Class 'TheConsumer

C# and Visual Basic
.NET examples

34 Module 4: Consuming XML Web Services

Lab 4.1: Implementing an XML Web Service Consumer
Using Visual Studio .NET

Internet

Contoso Micropayment
Web Service

Firewall

Woodgrove Bank
Web Service

Web Service Consumer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Locate XML Web service contracts by using Disco.
 Generate XML Web service proxies by using XML Web service contracts.
 Implement an XML Web service consumer by using Visual Studio .NET.
 Invoke an XML Web service synchronously.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

There are starter and solution files that are associated with this lab. The starter
files are in the folder <lab root>\Lab04\Starter. The solution files for this lab
are in the folder <lab root>\Lab04\Solution.

Objectives

Note

Lab Setup

 Module 4: Consuming XML Web Services 35

In this lab, you are provided with a Microsoft Visual Studio .NET Windows
application as a starting point. The application is named Woodgrove and
Contoso Account Manager. This application is a client to two XML Web
services: the Woodgrove Online Bank XML Web service and the Contoso
Micropayment XML Web service. These XML Web services are described as
follows:

 Woodgrove Online Bank
A bank that provides traditional online services such as account balances.
The bank’s services are made available through an XML Web service.

 Contoso Micropayment Service
A micropayment service (similar to Microsoft Wallet) that manages
accounts for users who do not want to provide their personal financial
information to all of the e-commerce sites at which they shop. The account
management features of this service are also exposed as an XML Web
service.

In this lab, you will modify the Woodgrove and Contoso Account Manager to
access only the Woodgrove Online Bank service. You will add support for the
Contoso Micropayment Service in a subsequent lab.

You will locate the WSDL service contract for the Woodgrove Online Bank
XML Web service by using Visual Studio .NET, and then create an XML Web
service proxy class. You will then modify the client application to use the
following Woodgrove Online Bank XML Web service methods:

 GetAllAccounts
 GetAccount
 GetTransactionHistory

Scenario

Estimated time to
complete this lab: 75
minutes

36 Module 4: Consuming XML Web Services

Exercise 1
Locating a WSDL Service Contract and Generating an XML Web
Service Proxy

In this exercise, you will examine the Woodgrove Online Bank XML Web
service functionality. Then, you will locate the WSDL service contract for the
Woodgrove Online Bank XML Web service and then generate an XML Web
service proxy to use it.

 Examine the Woodgrove Online Bank XML Web service

1. In Microsoft Internet Explorer, open
http://Localhost/Woodgrove/Bank.asmx.
Notice the methods that are implemented in the Woodgrove Online Bank
XML Web service.

2. To test three of the methods:
a. On the GetAllAccounts test page, click Invoke.
b. On the GetAccount test page, type 1 for the acctID, and then click

Invoke.
c. On the GetTransactionHistory test page, test the method with the

following values.
Text boxes Values

accountID 1

startDate 1/1/2001

endDate 1/1/2010

In the following two procedures of this exercise, you will enable the client
application to use the GetAllAccounts, GetAccount, and
GetTransactionHistory methods.

3. Close the browser.

 Examine the client application

1. In Visual Studio .NET, open the Woodgrove and Contoso Account Manager
project, which is located in the folder <lab root>\Lab04\Starter.

2. Open the following files and examine the code.
C# Visual Basic .NET

WebServiceClientForm.cs WebServiceClientForm.vb

The next step is to generate a proxy class and add a reference to this class to
your project.

 Module 4: Consuming XML Web Services 37

 Add a Web reference to the Woodgrove Online Bank XML Web service

1. In Solution Explorer, right-click the References node and click Add Web
Reference.

2. In the Add Web Reference dialog box, enter the URL
http://Localhost/Woodgrove/bank.asmx in the address field and press
ENTER.
You should see the Service Help Page for the Woodgrove XML Web
service.

3. At this point in the discovery process, the Add Reference button becomes
enabled. Click this button to complete adding a Web reference.

 View and use the Woodgrove proxy classes

1. To view the proxy classes, open the Class View (on the View menu, click
Class View). Expand the XML Web service client namespace.
Notice the localhost namespace nested within this namespace. Adding a
Web reference to an XML Web service deployed on your local computer
creates this namespace and the proxy classes within this namespace.

2. Open the Solution Explorer (on the View menu, click Solution Explorer).
3. Rename the localhost namespace to Bank. To do this:

a. Right-click localhost and then click Rename.
b. Type Bank

4. Open the Class View.
5. Expand the Bank namespace and then expand the WoodgroveOnlineBank

class.
Notice the synchronous and asynchronous methods that the
WoodgroveOnlineBank proxy class implements.

6. To allow the WebServiceClient application to use the proxy classes without
requiring the fully qualified class names, open the file
WebServiceClientForm (.cs or .vb) and import the
WebServiceClient.Bank namespace.

38 Module 4: Consuming XML Web Services

Exercise 2
Invoking an XML Web Service Method

In this exercise, you will add code to invoke the GetAllAccounts method of the
WoodgroveOnlineBank proxy class to populate the Account Information list.

 Add code to the GetWoodgroveAccountList method

1. Locate the GetWoodgroveAccountList method in the following file.
C# Visual Basic .NET

WebServiceClientForm.cs WebServiceClientForm.vb

The GetWoodgroveAccountList method is invoked in the Form1_Load
event handler when the main Microsoft Windows® Form loads.

2. Within the try block, do the following:
a. Declare and create an instance of WoodgroveOnlineBank.
b. Declare an array of Acct objects.
C# Visual Basic .NET

Acct [] acct Dim acct() as Acct

c. Invoke the GetAllAccounts method on the WoodgroveOnlineBank
object, and assign the result of the method call to the array of Acct
objects.

d. If Acct objects were returned, iterate over the array of Acct objects and
test that the array of Acct objects that is returned is not null. If the array
is not null, iterate through the Acct objects and add the accountID of
each Acct object to the listBoxAccounts list.

C# Visual Basic .NET

foreach(Acct account in
acct)
{
 listBoxAccounts.Items.Add(
 string.Format("{0}",
 account.accountID));
}

Dim account As Acct
For Each account In acct
 listBoxAccounts.Items.Add(
_

 String.Format("{0}", _
 account.accountID))
Next account

3. Build and run the Woodgrove and Contoso Account Manager application.
The Accounts for Customer list box in the Woodgrove Online Bank
group box will display a list of account IDs.

 Module 4: Consuming XML Web Services 39

Exercise 3
Using an XML Web Service Method That Returns Derived Types

In this exercise, you will add code to invoke the GetAccount method of the
WoodgroveOnlineBank proxy class to fill the Account Information text box.
The GetAccount method returns an object derived from the type Acct.

 Add code to obtain a specific account

1. Locate the GetWoodgroveAccountInfo method in the following file.
C# Visual Basic .NET

WebServiceClientForm.cs WebServiceClientForm.vb

The GetWoodgroveAccountInfo method is invoked in the:

• listBoxAccounts_SelectedIndexChanged event handler when an entry
in the Accounts for Customer list is selected.

• buttonWoodgroveGetAccount_Click event handler when the Update
Account Info button is clicked.

2. Within the try block of the GetWoodgroveAccountInfo method, do the
following:
a. Create a WoodgroveOnlineBank object.
b. Invoke the GetAccount method on the WoodgroveOnlineBank object,

passing the acctID local variable for the acctID parameter.
c. Save the returned Acct object.
d. Create a string by concatenating the name and value of each property of

the Acct object that the GetAccount method returns.
3. In the Class View, expand the WebServiceClient namespace and then

expand the Bank namespace. Notice the Acct, CheckingAcct, and
SavingsAcct classes within this namespace. Expand the CheckingAcct and
SavingsAcct classes – notice that they are derived from the Acct class.

The GetAccount method for the WoodgroveOnlineBank class
returns an Acct object. However, the return value can be an object of the
derived CheckingAcct or SavingsAcct class. The type of the account can
be determined by examining the value of the type data member of the Acct
object.

4. If the type data member has the value SV, then the object is a SavingsAcct
object. Therefore, do the following:
a. Cast the Acct object to a SavingsAcct object.
C# Visual Basic .NET

SavingsAcct acctSV =
 acct as SavingsAcct;

Dim acctSV As SavingsAcct =
acct

b. Use the SavingsAcct object to access the interestRate data member,
and concatenate it with the display string.

Note

40 Module 4: Consuming XML Web Services

5. Likewise, if the type data member has the value CK, then the object is a
CheckingAcct object. Therefore, do the following:
a. Cast the Acct object to a CheckingAcct object.
b. Use the CheckingAcct object to access the MinimumBalance data

member, and concatenate it with the display string.
6. Build and run the Woodgrove and Contoso Account Manager application.
7. In the Accounts for Customer list, select one of the listed account

numbers.
You should see account information similar to the following in the Account
Information text box that is contained in the WoodGrove Online Bank
group box:

 Module 4: Consuming XML Web Services 41

Exercise 4
Using an XML Web Service Method That Returns an ADO .NET
Typed Dataset

In this exercise, you will add code to invoke the GetTransactionHistory
method for the WoodgroveOnlineBank proxy class. This method returns an
ADO.NET typed DataSet, the class TransactionDataSet.

 Add code to obtain transactions

1. Locate the buttonWoodgroveGetTransactions_Click method in the
following file.
C# Visual Basic .NET

WebServiceClientForm.cs WebServiceClientForm.vb

The buttonWoodgroveGetTransactions_Click method is the event
handler for the Woodgrove Online Bank Get Transaction History button
click event.

2. Within the try block of the buttonWoodgroveGetTransactions_Click
method, do the following:
a. Create a WoodgroveOnlineBank object.
b. Invoke the GetTransactionHistory method on the

WoodgroveOnlineBank object, passing the acctID local variable for
the acctID parameter, dtStart as startDate, and DateTime.Now as
endDate.

c. Save the returned TransactionDataSet object in a local variable.
d. Use the TransactionDataSet._GetTransactionLog.Count property to

check if records were returned. If not use MessageBox.Show method to
display an informational message.

e. If records were returned then modify the existing code that uses a
TransactionForm as to call the DataSetToXMLString method to
obtain a string representation of the TransactionDataSet object that was
saved in step c.

42 Module 4: Consuming XML Web Services

 Test the application

1. Build and run the Woodgrove and Contoso Account Manager application.
2. In the Woodgrove Online Bank group box, in the Accounts for Customer

list, select one of the listed account numbers. Click the Get Transaction
History button.
You should see transactions that are similar to the following transactions
that are listed in the TransactionsForm.

 Module 4: Consuming XML Web Services 43

Review

WSDL Documents

XML Web Service Discovery

XML Web Service Proxies

Implementing an XML Web Service Consumer Using
Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are WSDL documents used for?
To describe the types, operations, messages, and protocols that an XML
Web service supports.

2. Which tool can you use to discover WSDL documents at a URL?
Disco.exe

3. Which tool can you use to generate client proxies for XML Web services?
Wsdl.exe or Visual Studio .NET

44 Module 4: Consuming XML Web Services

4. Which tool can use a WSDL document to generate a class implementing the
operations of the XML Web service that are described in the WSDL
document?
Wsdl.exe

5. When you add a Web reference to a client application, how are the types
that are exposed by the XML Web service exposed in the client application?
They are exposed in a nested namespace that is a child of the default
namespace of the client application.

Contents

Overview 1

Creating an XML Web Service Project 2

Implementing XML Web Service Methods 11

Managing State in an ASP.NET XML Web
Service 33

Debugging XML Web Services 42

Lab 5.1: Implementing a Simple XML Web
Service 61

Review 77

Module 5: Implementing
a Simple XML Web
Service

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Implementing a Simple XML Web Service iii

Instructor Notes
This module provides students with the skills that are required to implement an
XML Web service by using Microsoft® Visual Studio® .NET and debug it.
Students will also modify the solution to Lab 4.1, “Implementing an XML Web
Service Consumer Using Visual Studio .NET,” in Course 2524B, Developing
XML Web Services Using Microsoft ASP.NET, to communicate with the XML
Web service that they will create in the lab exercises for this module.

After completing this module, students will be able to:

 Create an XML Web service project.
 Implement XML Web service methods, expose them, and control their

behavior.
 Manage state in a Microsoft ASP.NET-based XML Web service.
 Debug XML Web services.

To teach this module, you need the Microsoft PowerPoint® file 2524B_05.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Try the demonstrations and study the code examples in this module.
 Complete the lab.

Presentation:
150 Minutes

Lab:
75 Minutes

Required Materials

Preparation Tasks

iv Module 5: Implementing a Simple XML Web Service

Demonstration
This section provides demonstration procedures that are not appropriate for the
student notes.

1. Open the following files from the
<install folder>\Democode\<language>\Mod05 folder.

C# Visual Basic .NET

Trace.cs Trace.vb

2. Walk through the code for the TraceExtension class, and point out the
ProcessMessage function and the WriteInput and WriteOutput functions.

3. Walk through the code for the TraceExtensionAttribute and point out the
Filename property, the AttributeUsage attribute, and the ExtensionType
property.

4. Open the following files from the
<install folder>\Democode\<language>\Mod05\ Web
References\Woodgrove folder.
C# Visual Basic .NET

reference.cs reference.vb

5. Show how the TraceExtension attribute is applied to the GetAllAccounts
method.

6. Run the test client and then show the log file contents (c:\Log.txt by
default).

1. Open Visual Studio .NET.
2. On the File menu, point to New, and click Project.
3. Select the language of your choice, then select the ASP.NET Web Service

project template. Set the project location to
http://localhost/FirstWebService. Click OK to begin.

4. Open the Service1.asmx code behind file:
a. In Solution Explorer, right-click Service1.asmx.
b. On the shortcut menu, click View Code.

5. Locate the HelloWorld method.
6. Uncomment the method.
7. Compile and run the XML web service.
8. Click on the HelloWorld link.
9. Click Invoke.
10. Close all Internet Explorer windows.

Performing Tracing
Using the SOAP
Extension Class

Creating an XML Web
Service Project

 Module 5: Implementing a Simple XML Web Service v

Module Strategy
Use the following strategy to present this module:

 Creating an XML Web Service Project
This section provides an overview of the mechanics of implementing a
simple XML Web service by using the ASP.NET Web Service project
template. It also explains the purpose of each of the files that are generated
for the default XML Web service project.

 Implementing XML Web Service Methods
This section is intended to help students understand:

• How the various properties of the WebMethod attribute affect an XML
Web service method.

• How to implement XML Web service methods with parameter lists of
varying complexity.

Do not discuss the tradeoffs between the various options for representing
parameter lists. Defer this discussion until Module 8, “Designing XML Web
Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.
Be sure to practice the Component Designer and XML Designer
demonstrations in this section.

 Managing State in an ASP.NET XML Web Service
This section discusses application and session state management in XML
Web services. It covers the mechanics of using application and session state,
and not the advantages and disadvantages of using these state services. For
students who are familiar with ASP programming, emphasize the similarity
in the mechanics of using the application and session state services. Once
again, defer any in-depth discussion of issues relating to performance or
scaling to Module 8, “Designing XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET.

 Debugging XML Web Services
This topic is intended to familiarize students with various tools and
techniques available for debugging XML Web services. The simplest
debugging tools that this section covers are the Trace and Debug classes.
The use of Simple Object Access Protocol (SOAP) extensions to provide
more sophisticated tracing is also covered. Do not explain all the details of
the TraceExtension implementation. Just cover the concepts of hooking the
serialization process and the mechanics of associating a SOAP extension
with a method through a custom attribute.
The last topic of this section provides a brief overview of application- and
page-level tracing using Trace.axd, an event log, and performance counters.
Focus on the mechanics and not on the issues that are related to
performance, scaling, and deployment.

 Module 5: Implementing a Simple XML Web Service 1

Overview

Creating an XML Web Service Project

Implementing XML Web Service Methods

Managing State in an ASP.NET XML Web Service

Debugging XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can implement XML Web services in several ways by using any
programming language. For example, you can implement an XML Web service
by using Microsoft® Visual C#™, Microsoft Visual Basic®, or Managed
Extensions for C++. You can also implement an XML Web service by using the
Microsoft Active Template Library (ATL) Server.

To implement XML Web services, you must understand the components of a
Microsoft ASP.NET-based XML Web service project and how to expose class
methods as XML Web service operations. You must also understand how state
can be managed in ASP.NET Web Services and some of the issues related to
state management and XML Web services.

Debugging distributed applications is not easy, and XML Web services are not
any different in that respect. Therefore, you must be familiar with some of the
techniques that you can use to debug XML Web services.

After completing this module, you will be able to:

 Create an XML Web service project.
 Implement XML Web service methods, expose them, and control their

behavior.
 Manage state in a Microsoft ASP.NET-based XML Web service.
 Debug XML Web services.

Introduction

Objectives

2 Module 5: Implementing a Simple XML Web Service

Creating an XML Web Service Project

Demonstration: Creating an XML Web Service Project

Examining the Parts of an XML Web Service Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this section, you will look at the first step in implementing an XML Web
service, which is creating the base project. You will also examine the results of
generating a project by using the ASP.NET Web Service project template.

 Module 5: Implementing a Simple XML Web Service 3

Demonstration: Creating an XML Web Service Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to create a Visual Basic .NET and C#-
based ASP.NET XML Web service project in Microsoft Visual Studio® .NET.

4 Module 5: Implementing a Simple XML Web Service

Examining the Parts of an XML Web Service Project
References

System namespace
System.Data namespace
System.Web namespace
System.Web.Services namespace
System.XML namespace

The .asmx file
Service Help page
Service Method Help page
Service Description page

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET XML Web services are ASP.NET applications; therefore, there are
many elements that are common between them. This topic examines the various
parts of the base project for an ASP.NET XML Web service, which include
references and the .asmx file.

By default, references to a list of Microsoft .NET Framework namespaces are
included in the base project. This list of namespaces includes the System¸
System.Data, System.Web, System.Web.Services, and System.XML
namespaces.

The System namespace contains classes that define commonly-used values and
reference data types, events and event handlers, interfaces, attributes, and
processing exceptions.

The System.Data namespace consists primarily of the classes that constitute
the Microsoft ADO.NET architecture. The DataSet class plays a central role in
the ADO.NET architecture. A DataSet is an in-memory cache of data obtained
from many possible data sources, such as databases or Extensible Markup
Language (XML) documents. A DataSet reads and writes data and schema as
XML documents. In this XML format, any application can use DataSets on any
platform that supports XML.

You will learn about DataSets in detail in the next section.

The System.Web namespace supplies classes and interfaces that facilitate
communications between a browser and a server. This namespace includes the
HTTPRequest and HTTPResponse classes that are discussed in Module 3,
“The Underlying Technologies of XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET. System.Web also
includes classes for cookie manipulation, file transfer, exception information,
and output cache control. You will revisit this namespace later in this module
when you look at improving XML Web Service performance by using caching,
and cookie-based and cookieless authentication.

Introduction

References

System namespace

System.Data namespace

System.Web namespace

 Module 5: Implementing a Simple XML Web Service 5

The System.Web.Services namespace consists of classes that help you to build
and use XML Web Services. One of the most important classes in this
namespace is the WebService class. If an XML Web service needs access to
the ASP.NET intrinsic (built-in) objects, then the class which implements the
XML Web Service operations must be derived from the WebService class.

The System.XML namespace exposes the XML classes that provide standards-
based support for processing XML. The supported standards are:

 XML 1.0
The XmlTextReader class provides a parser for documents in XML 1.0.

 XML namespaces
The .NET Framework supports the use of namespaces in both XML streams
and the Document Object Model (DOM).

 XML schemas
The .NET Framework supports schema mapping and XML serialization.
However, it does not support validation by using XSD.

 XML Path Language (XPath) expressions
The XPathNavigator class provides read-only, random access to XML
documents by using XPath expressions.

 Extensible Stylesheet Language Transformations (XSLT)
XSLT allows you to transform XML data by using XSLT style sheets.

 DOM
The XmlDocument class implements the World Wide Web Consortium
(W3C) DOM Level 1 Core and DOM Level 2 Core specifications.

 Simple Object Access Protocol (SOAP) 1.1
You can find the classes that encapsulate SOAP support in the .NET
Framework in the System.Web.Services.Protocols namespace.

The .asmx file is the front-end for an XML Web service that is implemented by
using ASP.NET. The way that you access this file through HTTP determines
the type of response that you receive.

System.Web.Services
namespace

System.XML namespace

The .asmx file

6 Module 5: Implementing a Simple XML Web Service

By default, the .asmx file contains a class that is similar to the following
example class.

C# Visual Basic .NET

public class Service1 :
System.Web.Services.WebService
{

Public Class Service1
Inherits
System.Web.Services.WebServi
ce

The class contains a placeholder WebMethod implementation that is similar to
the following code.

C#

[WebMethod]
public string HelloWorld()
{
 return "Hello World";
}

Visual Basic .NET

<WebMethod()> Public Function HelloWorld() As String
 HelloWorld = "Hello World"
End Function

When you request an .asmx file from a Web browser without supplying a
recognized query string, the file returns an automatically generated Service
Help page for the XML Web service. If you performed an HTTP-GET request
for the .asmx page without supplying a query string, the results would be the
same. A Service Help page provides a list of the XML Web service methods
that can be accessed programmatically. The page contains links for each
method, and each of these links will take you to a Service Method Help page
for the corresponding method.

A Service Help page also contains a link to the corresponding XML Web
service description document as shown in the following illustration.

The Service Help page

 Module 5: Implementing a Simple XML Web Service 7

To access the Service Help page of an XML Web service:

 From your browser, navigate to the base URL for the corresponding XML
Web service, using the following format:
http://servername/projectname/webservicename.asmx

8 Module 5: Implementing a Simple XML Web Service

The following table describes the parts of the preceding URL.

Part Value

servername The server on which the XML Web service resides.

projectname The name of the XML Web service project and any
additional path information that is needed to access
the .asmx file for the XML Web service.

webservicename.asmx The name of the .asmx file for the XML Web
service.

The Service Method Help page of an XML Web service provides additional
information about a specific method of the XML Web service.

The page also allows you to invoke the method if it can be invoked by using the
HTTP-POST protocol.

Sample request and response messages for the protocols that the XML Web
service method supports are provided at the bottom of the Service Method Help
page.

The following illustration shows the Service Method Help page.

The service description for an XML Web service is a Web Services Description
Language (WSDL) document. The Service Help page provides a link to the
service description. You can also access the service description of an XML
Web service from a browser by typing in the base URL for the XML Web
service, similar to the way that you access a Service Help page. However, you
also need to supply the query string WSDL as shown in the following example:

http://servername/projectname/webservicename.asmx?WSDL

The Service Method
Help page

The Service Description
page

 Module 5: Implementing a Simple XML Web Service 9

Examining the Parts of an XML Web Service Project (continued)

Global.asax

Web.config

The .vsdisco file

AssemblyInfo (.cs or .vb)

The /bin folder

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Apart from the list of references and the .asmx file for an XML Web service,
the XML Web service project consists of several other entries.

The Global.asax file is an optional file that contains the code for responding to
application-level events that ASP.NET or the HttpModule class raises. The
Global.asax file resides in the root directory of an ASP.NET application. At run
time, Global.asax is parsed and compiled into a dynamically-generated .NET
Framework class that is derived from the HttpApplication base class. The
Global.asax file itself is configured so that any direct URL request for the file is
automatically rejected. Therefore, external users cannot download or view the
code written within the Global.asax.

When you save changes to a Global.asax file that is in use, the ASP.NET
framework detects that the file has been changed. It completes all of the current
requests for the application, sends the Application_OnEnd event to listeners
(if any), and restarts the application domain. In effect, the previous set of
actions restarts the application, closes all browser sessions, and flushes all state
information from the memory. When a new request arrives from a browser, the
ASP.NET framework re-parses and recompiles the Global.asax file and fires the
Application_OnStart event.

It is essential for XML Web service developers to be able to implement
configuration settings without embedding values into the code, and for Web site
administrators to be able to easily adjust configuration settings of a deployed
XML Web service. ASP.NET XML Web Services provide this capability
through a file named Web.config.

Global.asax

Web.config

10 Module 5: Implementing a Simple XML Web Service

The following list includes the features of Web.config:

 Web.config is an XML-based text file. You can use any standard text editor
or XML parser to create and edit the file.

 Web.config applies configuration settings to the folder in which it resides
and to all of its child folders.
Configuration files in child folders can supply configuration settings, in
addition to the settings that are inherited from parent folders. The
configuration settings for the child folder can override or modify the settings
that are defined in parent directories. A root configuration file named
Machine.config, located at
C:\WINNT\Microsoft.NET\Framework\version\CONFIG, provides
ASP.NET configuration settings for the entire Web server.

 At run time, ASP.NET uses the configuration settings that the Web.config
file provides to compute a collection of configuration settings for an
ASP.NET application. The resulting configuration settings are then cached
for all subsequent requests for a resource.

 ASP.NET detects changes to Web.config and automatically applies the new
settings to the affected resources. The server does not need to be restarted
for the changes to take effect.

 Web.config is extensible. You can define new configuration parameters and
write configuration handlers to process them.

 ASP.NET protects Web.config from external access by configuring
Microsoft Internet Information Services (IIS) to prevent access to
configuration files directly from the browser. HTTP access error 403
(forbidden) is returned to any browser that attempts to directly request a
configuration file.

The .vsdisco file is a dynamic discovery document. When you deploy an XML
Web service into a production environment you should only deploy the .vsdisco
file if you want the XML Web service to be dynamically discoverable. This is
generally not recommended.

AssemblyInfo (.cs or .vb) is a project information file that contains metadata,
such as name, version, and culture information, about the assemblies in a
project. This file is compiled into the XML Web service assembly. For more
information about AssemblyInfo, see Course 2350A, Securing and Deploying
Microsoft .NET Assemblies.

Below your project root folder is a folder named bin. The bin folder contains
the assembly that contains the compiled output of the project. The assembly is
first compiled to Microsoft intermediate language (MSIL) code when an XML
Web service project is compiled, and then the assembly is just-in-time (JIT)-
compiled to native code on demand.

The .vsdisco file

AssemblyInfo (.cs or
.vb)

The /bin folder

 Module 5: Implementing a Simple XML Web Service 11

Implementing XML Web Service Methods

Exposing XML Web Service Methods

Examining Data Types and Parameter Lists

Demonstration: Creating a Typed DataSet Using the
Component Designer

Demonstration: Creating a Typed DataSet Using the
XML Designer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After creating an XML Web service project, the next step in implementing an
XML Web service is to define its operations. In this section, you learn how to
expose methods that you implement as XML Web service operations, how to
control the serialization behavior of a method, and finally examine how to
implement methods with parameter lists and return types of varying
complexity.

12 Module 5: Implementing a Simple XML Web Service

Exposing XML Web Service Methods

Applying the WebMethod attribute

Configuring the WebMethod attribute properties

BufferResponse

CacheDuration

Description

EnableSession

MessageName

TransactionOption

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You expose an XML Web service method by applying the WebMethod
attribute to the method. You can also control the behavior of the method by
configuring the properties of the WebMethod attribute.

To expose a method of an XML Web service, you must do the following:

 Specify that the method is public.
 Apply the WebMethod attribute to the method.

Even if an XML Web service method is specified as public, you still
need to attach the WebMethod attribute to expose it as part of an XML Web
service.

You can control the behavior of an XML Web service method by configuring
the properties of the WebMethod attribute.

The WebMethod attribute has the following properties:

 BufferResponse
 CacheDuration
 Description
 EnableSession
 MessageName
 TransactionOption

Applying the
WebMethod attribute

Note

Configuring the
WebMethod attribute
properties

 Module 5: Implementing a Simple XML Web Service 13

The BufferResponse property of the WebMethod attribute enables buffering
of responses for an XML Web service method. When BufferResponse is set to
true, which is the default setting, ASP.NET buffers the entire response before
sending it to the client. The buffering is very efficient and helps improve
performance by minimizing communication between the worker process and
the IIS process. When BufferResponse is set to false, ASP.NET buffers the
response in 16 KB pieces of data. Typically, you would set this property to
false only if you did not want the entire contents of the response in memory at
the same time. For example, if you are returning a collection whose items are
streamed out of a database to a client, you might not want to wait to send the
first byte to the client until the last byte has been retrieved from the database.

You can set the BufferResponse property as shown in the following example.

C#

[WebMethod(BufferResponse=false)]
public Transactions GetTransactionHistory() {
 //implementation code
}

Visual Basic .NET

Public<WebMethod(BufferResponse := False)> _
Function GetTransactionHistory() As Transactions
 'implementation code
End Function 'GetTransactionHistory

The CacheDuration property enables caching of the results for an XML Web
service method. This is known as output caching. ASP.NET caches the results
for each unique parameter set. A parameter set is a set of values that are
supplied as arguments to an operation. Each unique parameter set is associated
with a cached response. The value of the CacheDuration property specifies the
time duration (in seconds) for which ASP.NET must cache the response. The
default value of zero disables the caching of results. For more information
about output caching, see Module 8, “Designing an XML Web Service,” in
Course 2524B, Developing XML Web Services Using Microsoft ASP.NET.

You can set the CacheDuration property as shown in the following example.

C#

[WebMethod(CacheDuration=60)]
public double ConvertTemperature(double dFahrenheit){
 return ((dFahrenheit - 32) * 5) / 9;
}

Visual Basic .NET

Public<WebMethod(CacheDuration := 60)> _
Function ConvertTemperature(dFahrenheit As Double) As Double
 Return(dFahrenheit - 32) * 5 / 9
End Function 'ConvertTemperature

The Description property supplies a description for an XML Web service
method that will appear on the Service Help page. Unless set otherwise, the
default value for this property is an empty string.

BufferResponse

CacheDuration

Description

14 Module 5: Implementing a Simple XML Web Service

You can set the Description property as shown in the following example.

C#

[WebMethod(Description="This method converts a temperature in
degrees Fahrenheit to a temperature in degrees Celsius.")]

public double ConvertTemperature(double dFahrenheit) {
 return ((dFahrenheit - 32) * 5) / 9;
}

Visual Basic .NET

Public<WebMethod(Description := "This method converts a
temperature in degrees Fahrenheit to a temperature in
degrees Celsius.")> _

Function ConvertTemperature(dFahrenheit As Double) As Double
 Return(dFahrenheit - 32) * 5 / 9
End Function 'ConvertTemperature

The EnableSession property enables session state for an XML Web service
method. If an XML Web service method supports session state, the XML Web
service can access the session state collection directly from the
HttpContext.Current.Session property or with the WebService.Session
property if the method inherits from the WebService base class. The default
value of the EnableSession property is false. You will learn more about session
state management later in this module. For more information about session state
and state management in general from the perspective of performance and
scalability, see Module 8, “Designing XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET.

You can set the EnableSession property as shown in the following example.

C#

[WebMethod(EnableSession=true)]
public double ConvertTemperature(double dFahrenheit) {
 Session("NumberOfConversions") =
Session("NumberOfConversions") + 1;

 return ((dFahrenheit - 32) * 5) / 9;
}
 [WebMethod(EnableSession=true)]
public int GetNumberOfConversions() {
 return Session("NumberOfConversions");
}

Visual Basic .NET

Public<WebMethod(EnableSession := True)> _
Function ConvertTemperature(dFahrenheit As Double) As Double
 Session("NumberOfConversions") =
Session("NumberOfConversions") + 1

 Return(dFahrenheit - 32) * 5 / 9
End Function 'ConvertTemperature

Public<WebMethod(EnableSession := True)> _
Function GetNumberOfConversions() As Integer
 Return Session("NumberOfConversions")
End Function 'GetNumberOfConversions

EnableSession

 Module 5: Implementing a Simple XML Web Service 15

The MessageName property enables the XML Web service to uniquely identify
overloaded methods by using an alias. The default value for this property is the
method name. If you set the MessageName property to a different value, the
resulting SOAP messages will reflect this name instead of the actual method
name.

You can set the MessageName property as shown in the following example.

C#

[WebMethod(MessageName="AddDoubles")]
public double Add(double dValueOne, double dValueTwo) {
 return dValueOne + dValueTwo;
}
[WebMethod(MessageName="AddIntegers")]
public int Add(int iValueOne, int iValueTwo) {
 return iValueOne + iValueTwo;
}

Visual Basic .NET

Public<WebMethod(MessageName := "AddDoubles")> _
Function Add(dValueOne As Double, dValueTwo As Double) As
Double

 Return dValueOne + dValueTwo
End Function 'Add

Public<WebMethod(MessageName := "AddIntegers")> _
Function Add(iValueOne As Integer, iValueTwo As Integer) As
Integer

 Return iValueOne + iValueTwo
End Function 'Add

The AddDoubles SOAP request message for the method that adds two values
that are of type System.Double will resemble the following:

POST /myWebService/Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/AddDoubles"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <AddDoubles xmlns="http://tempuri.org/">
 <dValueOne>double</dValueOne>
 <dValueTwo>double</dValueTwo>
 </AddDoubles>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

MessageName

16 Module 5: Implementing a Simple XML Web Service

In the preceding code, notice that the name of the operation is not Add, but it is
the name specified in the MessageProperty, which is AddDoubles.

The AddDoubles SOAP response message for the method would resemble the
following code:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope namespaces omitted for brevity>
 <soap:Body>
 <AddDoublesResponse xmlns="http://tempuri.org/">
 <AddDoublesResult>double</AddDoublesResult>
 </AddDoublesResponse>
 </soap:Body>
</soap:Envelope>

The TransactionOption property enables an XML Web service method to
participate as the root object of a Microsoft Distributed Transaction Coordinator
(MS DTC) transaction. Even though you can assign the TransactionOption
property with any of the values of the
System.EnterpriseServices.TransactionOption enumeration, an XML Web
service method has only two possible behaviors:

 The method does not participate in a transaction (Disabled, NotSupported,
Supported).

 The method initiates a new transaction (Required, RequiresNew).

The default value for the TransactionOption property is
TransactionOption.Disabled. Before you can use the TransactionOption
property, you must add a reference to System.EnterpriseServices.dll to your
project. This assembly contains the System.EnterpriseServices namespace,
which has methods and properties that expose the distributed transaction model
that you find in Microsoft Component Object Model (COM+) services. The
System.EnterpriseServices.ContextUtil class lets you vote on the outcome of
a transaction by using the SetAbort or SetComplete methods.

In the following procedure, you will learn how to configure an XML Web
service method to initiate a new MS DTC transaction.

TransactionOption

 Module 5: Implementing a Simple XML Web Service 17

To initiate a new DTC transaction:

1. Add a reference to System.EnterpriseServices.dll.
2. Add the System.EnterpriseServices namespace to the XML Web service.
3. Use the TransactionOption property as shown in the following code:

C#

public class Service1 : System.Web.Services.WebService

{

 [WebMethod(TransactionOption=TransactionOption.RequiresNew)]

 public string DoSomethingTransactional()

 {

 // The transaction was successful...

 ContextUtil.SetComplete();

 return ContextUtil.TransactionId;

 }

}

Visual Basic .NET

Public Class Service1

 Inherits System.Web.Services.WebService

Public<WebMethod(TransactionOption := TransactionOption.RequiresNew)> _

 Function DoSomethingTransactional() As String

 ' The transaction was successful...

 ContextUtil.SetComplete()

 Return ContextUtil.TransactionId

 End Function 'DoSomethingTransactional

End Class 'Service1

18 Module 5: Implementing a Simple XML Web Service

Examining Data Types and Parameter Lists

Simple data types

Input and output parameters

Variable length parameter lists

Complex data types

Classes and structures

Arrays

Collections

DataSets

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you implement XML Web service methods, the choice of data typedata
types that are used as parameter and return types can affect the protocols that
can be used. A complete discussion of the implications of the choice of
different data types will be deferred until Module 8 of Course 2524B,
Developing XML Web Services Using Microsoft Visual Studio .NET. This topic
examines how parameter lists of varying complexity can be used in XML Web
service methods.

You can use simple data types such as integers, strings, and floating point
numbers as parameters, or as return values of XML Web service methods. The
parameters are marshaled as XSD intrinsic data types.

For C#, all of the in and ref parameters, and for Visual Basic .NET, all ByVal
and ByRef parameters are defined in a WSDL document as part of the inbound
message for an operation. Similarly, for C# any out and ref parameters, and for
Visual Basic .NET, any ByRef parameters, and the function return value are
defined as part of the outbound message for an operation. The only complexity
that you must address in your code is when you pass object references. We will
discuss this issue in detail later in this module.

XML Web service methods can handle variable length parameter lists. The
parameter lists can be homogeneous (all of the references in a list are of the
same data type) or heterogeneous (not all of the references in a list are of the
same data type).

Implementing an XML Web service method that has a variable length
parameter list is no different from implementing a method on any class that
takes a variable length parameter list.

Simple data types

Input and output
parameters

Variable length
parameter lists

 Module 5: Implementing a Simple XML Web Service 19

The following examples show a method that takes a variable length list of
strings as its argument, and a method that takes a variable length list of objects
as its argument:

C#

[WebMethod]
public int ListOfString(params string [] list)
{ return list.Length; }
[WebMethod]
public int ListOfThings(params object [] list)
{ return list.Length; }

Visual Basic .NET

Public<WebMethod()> _
Function ListOfString(ParamArray list() As String) As Integer
 Return list.Length
End Function 'ListOfString

Public<WebMethod()> _
Function ListOfThings(ParamArray list() As Object) As Integer
 Return list.Length
End Function 'ListOfThings

By default, the XML Web service proxy methods that are generated for these
XML Web service methods will take arrays of string and list respectively. For
example, the proxy method for ListOfThings will resemble the following
code.

C#

public int ListOfThings(object[] list) {
 object[] results = this.Invoke("ListOfThings", new
object[] {list});
 return ((int)(results[0]));
}

Visual Basic .NET

Public Function ListOfThings(ByVal list() As Object) As
Integer
 Dim results() As Object = Me.Invoke("ListOfThings", New
Object() {list})

 Return CType(results(0),Integer)
End Function

Examples

20 Module 5: Implementing a Simple XML Web Service

To call a method with a variable length argument list, you must manually add
the params keyword for C# and the ParamArray keyword for Visual Basic
.NET as shown in the following code.

C#

public int ListOfThings(params object[] list) {
 object[] results = this.Invoke("ListOfThings", new object[]
{list});
 return ((int)(results[0]));
}

Visual Basic .NET

Public Function ListOfThings(ParamArray list() As Object) As
Integer

 Dim results() As Object = Me.Invoke("ListOfThings", New
Object() {list})

 Return CType(results(0),Integer)
End Function

Remember that all of the preceding code is generated code. Therefore, if you
regenerate the proxy, then you must edit the proxy code again. Otherwise, you
can copy the modified code into another file so that it will not be overwritten.

The following is an example of calling an XML Web service method with
varying argument lists.

C#

Fancy f = new Fancy();
Console.WriteLine("I sent {0}",f.ListOfThings ("one","two"));
Console.WriteLine("I sent {0}",f.ListOfThings (2,"one",3.5));

Visual Basic .NET

Dim f As New Fancy()
Console.WriteLine("I sent {0}", f.ListOfThings("one", "two"))
Console.WriteLine("I sent {0}", f.ListOfThings(2, "one", 3.5))

For XML Web services to be widely adopted, it is necessary that XML Web
service methods support complex data types as arguments and return values in
addition to supporting simple data types. This section examines some examples
of XML Web service methods that use complex data types.

Complex data types

 Module 5: Implementing a Simple XML Web Service 21

It is important to remember that XML Web services do not perform object
remoting. In other words, when a proxy class is generated for an XML Web
service, state information is never transmitted to the client. Nor is the object
that implements the XML Web service methods persistent on the server side.
This is because HTTP is stateless. For these reasons, if you specify a class as a
parameter or a return type, you must think of the class as a structure.

When an instance of a class is passed between an XML Web service consumer
and an XML Web service, the state of the object is serialized. The state that is
serialized includes all read/write public properties and all read/write public
fields.

Any class that is used as an argument to an XML Web service method must
also have a default constructor. This is because, internally, the XML Web
services infrastructure must be able to rebuild the object when it is passed into
an XML Web service. Unlike classes, structures always have a default
constructor, and therefore you do not have to define a default constructor to use
a structure as a parameter for an XML Web service method.

Arrays of simple types, structures, and classes require no special treatment.
However, if you pass in or return an array of object references that include
references to derived objects, you must explicitly specify all of the possible
types for objects that can be in the array. The types are specified by using the
XmlInclude attribute. If the types are not specified, then an exception will be
thrown when the array is serialized.

Consider the following class definitions.

C# Visual Basic .NET

public class Acct
{
 public string Description;
 public string Number;
 public string Type;
 public decimal Balance;
 public string Status;
}

public class SavingsAcct :
Acct

{
 public decimal
MinimumBalance;

}
public class CreditCardAcct
: Acct
{
 public int PayPeriod;
}

Public Class Acct
 Public Description As
String
 Public Number As String
 Public Type As String
 Public Balance As Decimal
 Public Status As String
End Class 'Acct

Public Class SavingsAcct
 Inherits Acct
 Public MinimumBalance As
Decimal
End Class 'SavingsAcct

Public Class CreditCardAcct
 Inherits Acct
 Public PayPeriod As Integer
End Class 'CreditCardAcct

Classes and structures

Arrays

C# and Visual Basic
.NET code examples

22 Module 5: Implementing a Simple XML Web Service

The following code is an example of an XML Web service method returning an
array of Acct where the actual elements are derived from Acct.

C#

[WebMethod]
[XmlInclude(typeof(CreditCardAcct))]
[XmlInclude(typeof(SavingsAcct))]
[return:XmlArray("AccountList")]
[return:XmlArrayItem("Account")]
public Acct[] GetAllAccounts()
{
 SavingsAcct a = new SavingsAcct();
 CreditCardAcct cc = new CreditCardAcct();
 // populate the accounts
 Acct [] sa = new Acct[2];
 sa[0] = a;
 sa[1] = cc;
 return sa;
}

Visual Basic .NET

Public<WebMethod(), XmlInclude(GetType(CreditCardAcct)),
XmlInclude(GetType(SavingsAcct)),return:
XmlArray("AccountList")> _

Function GetAllAccounts() As<XmlArrayItem("Account")> Acct()
 Dim a As New SavingsAcct()
 Dim cc As New CreditCardAcct()
 ‘ populate the accounts
 Dim sa(2) As Acct
 sa(0) = a
 sa(1) = cc
 Return sa
End Function 'GetAllAccounts

 Module 5: Implementing a Simple XML Web Service 23

You must treat collections in the same way as arrays of objects. The following
code is an example of an XML Web service method returning an ArrayList of
Acct, where the actual elements are derived from Acct.

C#

[WebMethod]
[XmlInclude(typeof(CreditCardAcct))]
[XmlInclude(typeof(SavingsAcct))]
[return:XmlArray("AccountList")]
[return:XmlArrayItem("Account")]
public ArrayList GetAllAccounts()
 {
 SavingsAcct a = new SavingsAcct();
 CreditCardAcct cc = new CreditCardAcct();
 // populate accounts
 ArrayList listOfAccts = new ArrayList();
 listOfAccts.Add(a);
 listOfAccts.Add(cc);
 return listOfAccts;
}

Visual Basic .NET

Public<WebMethod(), XmlInclude(GetType(CreditCardAcct)),
XmlInclude(GetType(SavingsAcct)),return:
XmlArray("AccountList")> _

Function GetAllAccounts() As<XmlArrayItem("Account")>
ArrayList

 Dim a As New SavingsAcct()
 Dim cc As New CreditCardAcct()
 ' populate accounts
 Dim listOfAccts As New ArrayList()
 listOfAccts.Add(a)
 listOfAccts.Add(cc)
 Return listOfAccts
End Function 'GetAllAccounts

DataSets present no special problems as arguments. DataSets may be either
untyped or typed.

A typed DataSet is a generated DataSet class that is derived from the base
DataSet class. A typed DataSet also uses an XSD schema to define tables,
columns, and so on. When you generate a typed DataSet, the columns of the
underlying query results are exposed as strongly typed properties of the
DataSet.

An untyped DataSet has no built-in schema. As with a typed DataSet, an
untyped DataSet contains tables, columns, and so on. However, they are only
exposed as collections.

Visual Studio .NET provides better support for typed DataSets than untyped
DataSets. Using typed DataSets makes programming with a DataSet easier and
less error-prone. Therefore, it is recommended that you use typed DataSets
whenever possible instead of untyped DataSets.

Collections

C# and Visual Basic
.NET code examples

DataSets

24 Module 5: Implementing a Simple XML Web Service

Visual Studio .NET provides the following tools to generate typed DataSets:

 The Component Designer
 The XML Designer

To select the right tool for your requirements, you must be aware of the
limitations of both of these tools.

The disadvantages of using the Component Designer are:

 Initially, you have no direct control over the schema. You can control a
DataSet definition only by configuring the data adapter from which Visual
Studio .NET generates the schema. After generating the schema, you can
edit it by using the XML Designer.

 You must manually regenerate the schema and its corresponding DataSet
class file after changing a data adapter.
For example, if you change the Structured Query Language (SQL) statement
that is used to fill a DataSet, then you must change the schema of the
DataSet also.

 There are some DataSet functions that you cannot perform by using the
Component Designer, such as defining DataRelation objects. In such cases,
you must use the XML Designer.

The disadvantages of using the XML Designer are:

 The XML Designer offers a slightly lower-level of integration with other
data tools in Visual Studio .NET.

 The .xsd file is not validated against any external data source.
For example, if you use the XML Designer to modify the schema of a
DataSet, then you must also modify any data adapters that interact with the
DataSet.

 A certain level of familiarity with both XML schemas and XML is required
to be able to use the XML Designer.

 Module 5: Implementing a Simple XML Web Service 25

The following example code shows an XML Web service method returning a
typed DataSet.

C#

[WebMethod]
public TransactionHistory GetTransactionHistory(int
accountID,

 DateTime startDate,DateTime endDate)
{
 string connString = (string)
ConfigurationSettings.AppSettings["connectString"];

 SqlConnection conn = new SqlConnection(connString);
 SqlDataAdapter adapter = new SqlDataAdapter();
 adapter.TableMappings.Add("Table", "AnAccount");
 conn.Open();
 string cmdText = string.Format("SELECT * FROM

 TransactionLog WHERE AccountID='{0}' AND

 (TransactionDate >='{1}') AND (TransactionDate
<='{2}')",

 accountID,startDate,endDate);
 SqlCommand cmd= new SqlCommand(cmdText,conn);
 cmd.CommandType = CommandType.Text;

 adapter.SelectCommand = cmd;
 TransactionHistory ds = new TransactionHistory();
 adapter.Fill(ds);
 conn.Close();
 return ds; //return ds.GetXml();
}

C# and Visual Basic
.NET code examples

26 Module 5: Implementing a Simple XML Web Service

Visual Basic .NET

Public<WebMethod()> _
Function GetTransactionHistory(accountID As Integer, startDate
As DateTime, endDate As DateTime) As TransactionHistory

 Dim connString As String =
CStr(ConfigurationSettings.AppSettings("connectString"))

 Dim conn As New SqlConnection(connString)
 Dim adapter As New SqlDataAdapter()
 adapter.TableMappings.Add("Table", "AnAccount")
 conn.Open()
 Dim cmdText As String = String.Format("SELECT * FROM" + _
 “ TransactionLog WHERE AccountID='{0}' AND “ + _

 “(TransactionDate >='{1}') AND (TransactionDate
<='{2}')", _

 accountID,startDate,endDate)

 Dim cmd As New SqlCommand(cmdText, conn)
 cmd.CommandType = CommandType.Text

 adapter.SelectCommand = cmd
 Dim ds As New TransactionHistory()
 adapter.Fill(ds)
 conn.Close()
 Return ds 'return ds.GetXml();
End Function

One important issue that you need to be aware of is that any changes to
the schema of a typed DataSet after it is created may not be passed between an
XML Web service and a client.
For example, if you have a typed DataSet containing typed tables named
Customers and Orders, then if you add a non-typed table named Table1 by
using the DataSet.Tables.Add method-for example,
ds.Tables.Add("Table1")-then Table1 may not be propagated back to the client.

Note

 Module 5: Implementing a Simple XML Web Service 27

Demonstration: Creating a Typed DataSet Using the Component
Designer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to create a typed DataSet by using the
Component Designer, to use it as an argument in your XML Web service
methods, or as a return type of your XML Web service method.

The high-level steps for creating a typed DatsSet are as follows:

1. Generate a SqlDataAdapter.
2. Create a typed DataSet by using the data adaptor that you created in the

previous step.

The SqlDataAdapter is a class in ADO.NET, which represents a set of
commands and a connection to a database. SqlDataAdapter is used to populate
a DataSet.

To add and configure a SqlDataAdapter:

1. Create an ASP.NET Web service.
2. Open the Design view of the .asmx file (by default this file is named

Service1.asmx). In Solution Explorer, double-click Service1.asmx.
3. On the View menu, click Toolbox.
4. In the Toolbox, click the Data tab.

Note

28 Module 5: Implementing a Simple XML Web Service

5. In the Toolbox, drag a SqlDataAdapter object to the Design view of the
.asmx file.
a. Step through the Data Adapter Configuration Wizard.
b. In the Choose Your Data Connection page, click New Connection.
c. In the Datalink dialog box, on the Connection tab, specify the

following values for the various options to connect to a server running
Microsoft SQL Server™.

Options Values

Select the name of your SQL Server. .\MOC (dot followed by MOC)

Use a specific user name and password. User name: sa

Password: Course_2524

Select the database on the server option. Contoso

d. Click Next to continue the wizard configuration.
e. You will be again prompted to type your SQL Server name, Usename,

and Password. Type the same information that you typed previously and
click OK.

f. On the Choose a Query Type page, select Use existing stored
procedures. Click Next.

g. On the Bind Commands to Existing Stored Procedures page, in the
Select list, click _GetAccount. Leave the Insert, Update, and Delete
lists empty. Click Next.
You will be prompted to enter your SQL Server Username and password
again. Type the same information that you typed previously and click
OK.

h. On the View Results page of the wizard, click Finish.
Notice that the controls named sqlDataAdapter1 and sqlConnection1
appear in the Design view of the XML Web service implementation file.

You have now added code to your application that will create a Microsoft SQL
Server™ connection by using a SqlServerConnection object, and then use a
SqlDataAdapter object to invoke the _GetAccount stored procedure.

Next, you need to generate a typed DataSet whose schema is based on the
results of invoking the _GetAccount stored procedure.

 Module 5: Implementing a Simple XML Web Service 29

To generate a typed DataSet:

1. Right-click the sqlDataAdapter1 control and click Generate DataSet on
the shortcut menu.

2. In the Generate Dataset dialog box, select the following:
a. To create a new dataset, ensure that New is selected.
b. Select the default name DataSet1 and type AccountDataSet.
c. Leave the other dialog box elements at the default settings and click OK

to generate the AccountDataSet typed DataSet.
3. Open the Class view of the project, and notice that the AccountDataSet

typed DataSet has been added to the project.

To view the generated DataSet:

1. In Solution Explorer, click Show All Files.
You should see the file AccountDataSet (.cs or .vb) listed under
AccountDataSet.xsd, in Solution Explorer.

2. Double-click AccountDataSet (.cs or .vb).
You will see the generated DataSet.

30 Module 5: Implementing a Simple XML Web Service

Demonstration: Creating a Typed DataSet Using the XML Designer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will learn how to create a typed DataSet by using the
XML Designer.

To add an XML schema to the project:

1. On the Project menu, click Add New Item.
2. In the Add New Item dialog box, double-click the XML Schema icon.

The XML Designer appears. The name of the schema file that is created is
XSDSchema1.xsd. Click OK.

To add an XML simpleType element to the schema:

1. If the schema is not already open, double-click XSDSchema1.xsd to open
the XML Designer.

2. In the Toolbox, on the XML Schema tab, drag a simpleType object onto
the design surface.

3. Click the first text box in the header type stateCode to change the name of
the simple type.

4. In the list in the second cell of the header, click string to set the base type
for the stateCode type.

5. Click in the box directly below the letters ST. A down arrow appears. Click
the down arrow to display a list. Select facet.

6. In the first cell of the first row (below stateCode), select length from the
drop-down list.

 Module 5: Implementing a Simple XML Web Service 31

7. In the second cell of the same row, type 2
This information specifies that the value entered into the stateCode field
must be two characters.
In the Schema view, the stateCode type that you create should look like the
following illustration.

8. Click the XML tab to see the XML code that has been added:
<xsd:simpleType name="stateCode">
 <xsd:restriction base="xsd:string">
 <xsd:length value="2" />
 </xsd:restriction>
</xsd:simpleType>

To add an XML complexType element to the schema:

1. Click the Schema tab of the XML Designer.
2. On the XML Schema tab, on the Toolbox, drag a complexType object

onto the design surface.
3. Select complexType1 and type address to name the type.
4. Click the first cell of the first row, and in the list, click element to add an

XML element to the address type.
5. In the second column of the first row, change the name to street.
6. In the third column of the first row, in the list, click string.
7. Click the first cell of the second row, and in the list, click element to add a

second XML element to the address type.
8. In the second column of the second row, change the name to state.
9. In the third column of the second row, in the list, click stateCode.

In the Schema view, the address type that you created should resemble the
following:

32 Module 5: Implementing a Simple XML Web Service

10. Click the XML tab to see the XML code that has been added to your .xsd
file.
You will see the following code:
<xsd:complexType name="address">
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string" />
 <xsd:element name="state" type="stateCode" />
 </xsd:sequence>
</xsd:complexType>

When you drag an element object from the Toolbox to the design surface, you
are actually adding an element containing an unnamed complexType. Because
the element contains an unnamed complexType, it is treated as a relational
table. You can add additional elements under the complexType to define the
relational fields (or columns).

To add an XML element to the project:

1. Click the Toolbox, and on the XML Schema tab, drag an element object
onto the design surface.

2. In the element header, select element1 and type businessAddress to name
the element.

3. In the second column of the element header, in the list, click address to set
the data type.
In the Schema view, the businessAddress element should resemble the
following illustration.

To generate the typed DataSet class:

1. In Solution Explorer, right-click XSDSchema1.xsd and click Properties.
2. In Solution Explorer, double-click XSDSchema1.xsd.
3. Change the id property to CustomerAddress.
4. Right-click the Schema view and select Generate Dataset.

To view the generated DataSet:

1. In Solution Explorer, click Show All Files.
You should see the file XSDSchema1.cs listed under XSDSchema1.xsd, in
Solution Explorer.

2. Double-click XSDSchema1 (.cs or .vb).
You will see the generated DataSet.

 Module 5: Implementing a Simple XML Web Service 33

Managing State in an ASP.NET XML Web Service

Application State

Session State

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You have already seen that XML Web services are stateless. Therefore, as an
XML Web service developer, if an XML Web service consumer needs to
interact with an XML Web service by invoking a sequence of related operations
of the XML Web service, you must consider where and how to store state.

It is generally not a good idea to have an XML Web service maintain state.
However, if there is an overriding requirement that forces you to do so, then
there are few options for maintaining state in an XML Web service.

Because ASP.NET-based XML Web services are ASP.NET applications, you
can use ASP.NET Application and Session state objects to maintain state in
your XML Web services. You could also use a custom state management
solution. Irrespective of the solution that you choose, you must also consider
how it would affect scalability.

34 Module 5: Implementing a Simple XML Web Service

Application State

ASP.NET support for application state

Using application state

Application state collections

Application state synchronization

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can share global information throughout your XML Web service by using
the HttpApplicationState class. This class exposes a key-value dictionary of
objects that you can use to store both .NET Framework objects and scalar
values that are related to multiple Web requests from multiple clients.

An instance of the HttpApplicationState class is created the first time a client
requests a URL resource from within a specific ASP.NET application’s virtual
directory namespace. Access to this per-application instance is provided
through an HttpContext property named Application. All HTTP modules and
handlers (this includes ASP.NET-based XML Web Services) have access to an
instance of the HTTP context during a given Web request.

ASP.NET provides the following application-state support:

 A state facility that is compatible with earlier versions of ASP, works with
all .NET-supported languages, and is consistent with other .NET
Framework application programming interfaces (APIs).

 A state dictionary that is available to all request handlers invoked within an
application.

 A simple and intuitive synchronization mechanism that enables developers
to easily coordinate concurrent access to global variables that are stored in
the application state.

Introduction

ASP.NET support for
application state

 Module 5: Implementing a Simple XML Web Service 35

Application-state variables are global variables for a given ASP.NET
application. Just like client-side application developers, ASP.NET programmers
should always consider the impact of storing any data globally.

Because of the following considerations, the use of application state is generally
discouraged in an XML Web service that needs to scale. The following issues
are specifically important in the context of XML Web services:

 The memory that is occupied by variables stored in application state is not
released until the value is either removed or replaced.
Storing rarely-used, large DataSets in application state is not an efficient use
of system resources.

 Multiple threads within an application can access values stored in an
application state simultaneously. Therefore, you should always carefully
ensure that access to read/write data that is stored in application state is
always serialized.

For performance reasons, the built-in collections in the .NET
Framework do not contain synchronization support. You must explicitly use
the Lock and Unlock methods that the HttpApplicationState class
provides to avoid problems when you place data in an application state.

 Because locks that protect global resources are themselves global, code
running on multiple threads and accessing global resources could experience
lock contention. Lock contention causes the operating system to block the
worker threads until the lock becomes available.
In high-load server environments, this blocking can cause severe thrashing
in the thread scheduler.

 The .NET application domain or a process hosting a .NET application can
be shut down and destroyed at any moment during application execution as
a result of failures, code updates, scheduled process restarts, and so on.
Because global data stored in application state is not durable, you can
possibly lose the data if the AppDomain host is shut down. If you want to
prevent loss of state information due to these types of failures, then you
should store it in a database or some other durable store.

 Application state is not shared across a Web farm (in which an application is
hosted by multiple servers) or a Web garden (in which an application is
hosted by multiple processes on the same server).
Variables stored in application state in either of these scenarios are global
only to the particular process in which the application is running. Each
application process can have different values. Therefore, you cannot rely on
application state to store unique values or update global counters in
scenarios that use Web farms or Web gardens.

Application scaling means the ability of an application to respond to
increased user load with a constant (or near constant) cost in resources per-user.
Increasing scalability does not mean improving performance. In fact, often
steps taken to improve scalability may decrease the perceived performance for
individual users.

Using application state

Note

Tip

36 Module 5: Implementing a Simple XML Web Service

The HttpApplicationState class exposes two state collections: Contents and
StaticObjects.

The Contents collection exposes all variable items that have been added to the
application-state collection directly through code, as shown in the following
example.

C#

Application["Message"] = "Bar";
Application["AppStartTime"] = DateTime.Now;

Visual Basic .NET

Application("Message") = "Bar"
Application("AppStartTime") = DateTime.Now

For compatibility with earlier versions of ASP, you can also access these
variables through an actual Contents property of the Application object, as in
the following example.

C#

Application.Contents("Message") = "Bar"
Application.Contents("AppStartTime") = DateTime.Now

Visual Basic .NET

Application.Contents("Message") = "Bar"
Application.Contents("AppStartTime") = DateTime.Now

The StaticObjects collection exposes all objects that are defined in
Global.asax, and that have been added to the application state collection
through <Object Runat=Server> tags.

' Global.asax definition.
<Object Runat=Server Scope=Application Id="Myinfo"
 Progid="Mswc.Myinfo">
</Object>

If you attempt to add objects directly through code, the StaticObjects
collection throws a NotSupportedException exception.

Application state
collections

 Module 5: Implementing a Simple XML Web Service 37

Multiple threads within an application can simultaneously access values that are
stored in an application state. The HttpApplicationState class provides two
methods, Lock and Unlock, which serialize access to application state
variables.

The following example code shows the use of locking to guard against race
conditions.

C#

// Protecting shared application state via locking
Application.Lock();
Application["SomeGlobalCounter"] =
(int)Application["SomeGlobalCounter"] + 1;

Application.UnLock();

Visual Basic .NET

' Protecting shared application state via locking
Application.Lock()
Application("SomeGlobalCounter") =
CInt(Application("SomeGlobalCounter")) + 1 '

Application.UnLock()

If you do not explicitly call the Unlock method, the .NET Framework
automatically removes the lock when either the request completes or times out,
or when an unhandled error occurs during request execution and causes the
request to fail. This automatic unlocking prevents the application from
deadlocking.

Application state
synchronization

38 Module 5: Implementing a Simple XML Web Service

Session State

ASP.NET support for session state

Identifying a session

Using session state

Session state collections

Session state configuration

Cookieless sessions

An example of retrieving data from session state

*****************************ILLEGAL FOR NON-TRAINER USE******************************

HTTP is a stateless protocol, and therefore it does not automatically indicate
whether a sequence of requests are all from the same client, or even whether a
single browser instance is continuing to actively view a page or a site. Most
developers, however, are used to a stateful-programming model where objects
maintain state for the lifetime of the object, not for the duration of a method call
as shown in the following code examples.

C#

BankAccount b;
b = new BankAccount();
int balance;
balance = b.GetBalance(); // balance = n
b.Deposit(50);
balance = b.GetBalance(); // balance = n + 50 ???

Visual Basic .NET

Dim b As BankAccount
b = New BankAccount()
Dim balance As Integer
balance = b.GetBalance() ' balance = n
b.Deposit(50)
balance = b.GetBalance() ' balance = n + 50 ???

Most developers would not expect that in the preceding code, the balance that is
retrieved the second time would be unrelated to the balance that was initially
retrieved. Neither would they expect that the Deposit method invocation would
have no effect on the subsequent balance retrieval.

Building XML Web services that must maintain some cross-request state
information can be extremely difficult without assistance from tools.

Introduction

C# and Visual Basic
.NET code examples

 Module 5: Implementing a Simple XML Web Service 39

ASP.NET provides the following support for session state:

 A session-state facility that is easy to use, familiar to ASP developers, and
consistent with other .NET Framework APIs.

 A reliable session-state facility that can survive IIS restarts and worker-
process restarts without losing session data.

 A scalable session-state facility that administrators can use in both Web
farm and Web garden scenarios, and enables administrators to allocate more
processors to a Web application to improve its scalability.

 A session-state facility that works with browsers that do not support HTTP
cookies.

Each active ASP.NET session is identified and tracked by using a 120-bit
SessionID string containing URL-legal ASCII characters. SessionID values are
generated by using an algorithm that guarantees uniqueness so that sessions do
not collide, and randomness so that a malicious user cannot use a new
SessionID to calculate the SessionID of an existing session.

SessionIDs are communicated across client-server requests either by means of
an HTTP cookie or a modified URL, depending on how you set the
application’s configuration settings.

ASP.NET session state is an in-memory cache of object references that live
within the IIS process. However, the .NET state server stores chunks of binary
data, either in memory or in a SQL Server database. ASP.NET worker
processes are then able to take advantage of this simple storage service by
serializing and saving (using .NET serialization services) all objects within a
client’s Session collection at the end of each Web request. When the client
revisits the server, the relevant ASP.NET worker process retrieves these objects
from the state server as binary streams, de-serializes them into live instances,
and places them back into a new Session collection object exposed to the
request handler.

An ASP.NET application can also choose to store session-state in a SQL Server
database. ASP.NET worker processes then store serialized session data in a
temporary table, which an ASP.NET worker process accesses by a combination
of stored procedures in the database and the managed data access components
for SQL Server.

By cleanly separating the storage of session data from its use, ASP.NET
supports several powerful scenarios that were unavailable with earlier versions
of ASP. These include:

 Recovery from application failure, because the memory that session state
uses is not within the ASP.NET worker process.
This means state is not lost if the process crashes due to an access violation,
or is forcibly restarted by the IIS Admin Service in the event of a deadlock
or a memory leakage.

ASP.NET support for
session state

Identifying a session

Using session state

40 Module 5: Implementing a Simple XML Web Service

 Because all state is stored separately from running user code, it is not lost
during the regular preventive restarts of each worker process after a
specified interval.
ASP.NET performs preventive restarts every 20 minutes or 5000 requests to
help prevent problems resulting from memory leakages, handle leakages,
cache irregularities, and so on. This automatic purging process can
dramatically improve the perceived availability and reliability of an
application.

 Because all state is stored separately from worker processes, you can
cleanly partition an application across multiple processes.
Such partitioning can dramatically improve both the availability and the
scalability of an application on multi-processor computers. Moreover,
because it associates each worker process with a single computer, ASP.NET
is able to eliminate cross-processor lock contention, which is one of the
major scalability bottlenecks in the earlier versions of ASP.

 Because all state is stored separately from worker processes, you can
partition an application across multiple worker processes running on
multiple computers.
The model for communicating state between a worker process and a state
service running on different computers is almost the same as that for
processes and servers running on the same computer.

The SessionState class exposes two state collections: Contents and
StaticObjects. The syntax for using these two collections is very similar to the
syntax for their counterparts in the HttpApplicationState class.

The session state module is inserted in the HTTP request. By default it is
inserted at the root of the configuration hierarchy in the Machine.config file.

<httpmodules>
 …
 <add name="Session" type =
 "System.Web.SessionState.SessionStateModule,
 System.Web" />
 …
</httpmodules>

Run-time parameters for the session state service are set as attributes of the
sessionState element.

Using session state no longer requires that the client support cookies. You can
enable cookieless sessions by setting the following attribute of sessionState:

<configuration>
 <system.web>
 <sessionState cookieless=“true”/>
 </system.web>
</configuration>

Session state
collections

Session state
configuration

Cookieless sessions

 Module 5: Implementing a Simple XML Web Service 41

The following example shows how to access existing session-state data in a
read-only manner. In this example, a customer’s current account balances are
stored in session state.

C#

<%@ WebService Language=”C#” EnableSessionState=”true” %>
.....
[WebMethod]
public DataSet GetCurrentBalances(string acctID)
{
 DataSet balances;
 balances = (DataSet) Session[“CurrentBalances”];
 if (balances == null)
 {
 // retrieve current balances from database
 balances = GetCurrentBalancesLive(acctID);
 Session[“CurrentBalances”] = balances;
 }
 return balances;
}

Visual Basic .NET

<%@ WebService Language=”vb” EnableSessionState=”true” %>
.....
Public<WebMethod()> _
Function GetCurrentBalances(acctID As String) As DataSet
 Dim balances As DataSet
 balances = CType(Session("CurrentBalances"), DataSet)
 If balances Is Nothing Then
 ' retrieve current balances from database
 balances = GetCurrentBalancesLive(acctID)
 Session("CurrentBalances") = balances
 End If
 Return balances
End Function 'GetCurrentBalances

C# and Visual Basic
.NET code examples

42 Module 5: Implementing a Simple XML Web Service

Debugging XML Web Services

Debug, Trace, and Switch Classes

Configuring Debug and Trace Settings

SOAP Extensions and Tracing

Demonstration: Performing Trace Using a
SoapExtension

Tools for Debugging Web Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In any complex application, the capability to debug the application is crucial,
and tracing remains one of the most valuable developer debugging tools. In this
section, you will learn how to use tracing to debug XML Web services. First,
you will learn how to use the Trace, Debug, and Switch classes in debugging
XML Web services. Next, you will see an example of how to perform tracing at
the SOAP level by using a SOAP extension. Finally, you will look at other tools
that, although not specific to XML Web services, are useful in debugging XML
Web services.

 Module 5: Implementing a Simple XML Web Service 43

Debug, Trace, and Switch classes
Debug

The Debug class is usually used to display messages in
a debug output window

Trace

The Trace class is used to write trace messages to
some trace output destination

Switches

Control whether or not tracing occurs

Listeners

Collect trace output

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In programming, instrumentation usually refers to the ability of an application
to incorporate the use of debugging, code tracing, performance counters, and
event logs. Like any other applications, you can instrument XML Web services
to facilitate debugging and performance monitoring.

The Systems.Diagnostics namespace includes the Trace and Debug classes.
These two classes (which are essentially identical) include a number of static
methods that you can use to gather information about code-execution paths,
code coverage, and even performance profiling. The difference between these
classes is that the Debug class only produces output with debug builds, while
the Trace class produces output with debug and release builds of applications.

You usually use the Debug class during development to display messages in a
debug output window.

The Trace class is usually used in a deployed application to write trace
messages to a trace output destination.

When using the Debug class during testing, you can place debugging
statements almost anywhere in an application under development. When using
the Trace class, you must take more care about where you write trace output
statements because trace statements are present and execute even in nondebug
code.

If you want to control whether tracing occurs, how extensive the tracing is, and
where the trace output is written, you can place switches in your code. Placing
switches in your code lets you monitor the health of your application based on
its behavior in a production environment. This is especially important in a
business application that uses multiple components running on multiple
computers. You can control how the switches are used after deployment by
updating values in the application configuration file.

Introduction

Debug and trace

Switches

44 Module 5: Implementing a Simple XML Web Service

A trace switch is an object, which is an instance of the Switch class. One type
of Switch class is the BooleanSwitch class, which acts as a toggle switch, by
either enabling or disabling a variety of trace statements. Another type of switch
class is the TraceSwitch class, which allows you to enable a trace switch for a
particular tracing level so that the trace messages specified for that level and all
levels below it will be output. If you disable the switch, the trace messages will
not be output.

Typically, a deployed application is executed with its switches disabled, so that
the users do not find irrelevant trace messages appearing on a screen or filling
up a log file as the application runs. If a problem arises during program
execution, you can stop the application, enable the switches, and restart the
application. Then the tracing messages will be displayed.

A TraceSwitch object has four properties that return Boolean values indicating
whether the switch is set to at least a particular level:

 TraceError
 TraceWarning
 TraceInfo
 TraceVerbose

The TraceSwitch properties indicate the maximum trace level for the
switch. That is, tracing information is written for the level specified and for all
the lower levels under the specified level.

The preceding properties correspond to the values 1 through 4 of the
TraceLevel enumeration.

Objects, called listeners, collect trace output. All the tracing and debugging
output methods send output to the listeners and this output is contained in the
Listeners collection. Tracing information is always written at least to the
default Trace output target, the DefaultTraceListener.

The six Debug and Trace output methods that write tracing information are
listed in the following table. The output from these methods is sent to all
defined listeners.

Method Output

Assert The specified text; or, if none is specified, the call stack

Fail The specified text, written to the default Trace output

Write The specified text

WriteIf The specified text, if the condition specified as an argument
in the WriteIf method is satisfied

WriteLine The specified text and a carriage return

WriteLineIf The specified text and a carriage return, if the condition
specified as an argument in the WriteLineIf methods
satisfied

Trace switches

The TraceSwitch Class

Note

Listeners

 Module 5: Implementing a Simple XML Web Service 45

There are three types of predefined listeners:

 TextWriterTraceListener
A TextWriterTraceListener redirects output to an instance of the
TextWriter class or to anything that is a Stream class. It can also write to a
console or to a file, because these are Stream classes.

 EventLogTraceListener
An EventLogTraceListener redirects output to an event log.

 DefaultTraceListener
A DefaultTraceListener redirects output to the Output window in Visual
Studio .NET, or calls DebugOutputString, a method in Microsoft Win32®
APIs. This is the default behavior, because DefaultTraceListener is
automatically included in every Listeners collection and is the only listener
that is automatically included. If for some reason you have deleted the
DefaultTraceListener without specifying any other listener, you will not
receive any tracing messages.

Debug and Trace share the same Listeners collection, so if you add a listener
object to a Debug.Listeners collection in your application, it is added to the
Trace.Listeners collection also. As a result, any listener in the Listeners
collection receives the same message from the trace output methods.

The following code shows how to add two listeners, one to send debug output
to the console, and the other to send debug output to a text file.

C#

Trace.Listeners.Clear();
Trace.Listeners.Add(new TextWriterTraceListener(Console.Out));
Trace.Listeners.Add(new
TextWriterTraceListener(File.Create("output.txt")));

Visual Basic .NET

Trace.Listeners.Clear()
Trace.Listeners.Add(New TextWriterTraceListener(Console.Out))
Trace.Listeners.Add(New
TextWriterTraceListener(File.Create("output.txt")))

46 Module 5: Implementing a Simple XML Web Service

Configuring Debug and Trace Settings

Interactive debugging

Tracing

Configuring a TraceSwitch

Configuring listeners

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the most common ways to configure trace and debugging settings for an
XML Web service is by using the Web.config file.

The following code illustrates how you can specify that the ASP.NET runtime
must compile ASP.NET pages (in the context of this course, .asmx files) to
retail or debug binaries. If you specify debug="false", you will not be able to
use the Visual Studio Debugger to step into the implementation of an XML
Web service method from an XML Web service consumer.

<configuration>
 <system.web>
...
 <compilation defaultLanguage="c#" debug="true" />
...
 </system.web>
</configuration>

It is recommended that you enable the debug attribute only when you are
debugging an application, because it significantly affects the performance of the
application.

You can also specify the debug attribute in the Machine.config file that is
located in the directory for the .NET common language run-time directory. This
setting will then affect all of the applications that are running on your computer.

Interactive debugging

Note

 Module 5: Implementing a Simple XML Web Service 47

You can enable or disable tracing in your XML Web service by using the trace
element as follows:

<configuration>
 <system.web>
....
 <trace
 enabled="true"
 requestLimit="10"
 pageOutput="false"
 traceMode="SortByTime"
 localOnly="true"
 />
....
 </system.web>
</configuration>

When an application executes the code that creates an instance of a switch for
the first time, it checks the configuration system for trace-level information
about the named switch. The tracing system examines the configuration system
only once for any particular switch, which happens the first time that your
application creates the switch.

In a deployed application, you can control your tracing code by reconfiguring
switch objects between the runs of your application. Typically this involves
turning the switch objects on and off or by changing the tracing levels, and then
restarting your application.

When you create an instance of a switch, you also initialize it by
specifying two arguments: a displayName argument and a description
argument. All switch management techniques identify switches by their display
names.

To set the level of your switch, edit the configuration file that corresponds to
the name of your application. In the following code, entries for two switches
have been added.

<configuration>
...
 <system.diagnostics>
...
 <switches>
 <add name="acctInfo" value="0" />
 <add name="acctUpdates" value="4" />
 </switches>
...
 </system.diagnostics>
...
 </configuration>

To improve performance, you can make Switch members static (Shared)
in your class.

Tracing

Configuring a
TraceSwitch

Note

Note

48 Module 5: Implementing a Simple XML Web Service

The following code shows how to use switches within an application:

C#

TraceSwitch tsInfo = new TraceSwitch("acctInfo","Info
traces”);

TraceSwitch tsUpdate = new TraceSwitch("acctUpdate","Update
traces”);

Trace.WriteLineIf(tsInfo.TraceVerbose,"Writing all acctInfo
traces..");

Trace.WriteLineIf(tsUpdate.TraceVerbose,"Writing all
acctUpdate traces..");

...
tsInfo.Level = TraceLevel.Warning;
Trace.WriteLineIf(tsInfo.TraceWarning,"some warning...");
...
tsInfo.Level = TraceLevel.Error;
Trace.WriteLineIf(tsInfo.TraceWarning,"another warning...");

Visual Basic .NET

Dim tsInfo As New TraceSwitch("acctInfo", "Info traces")
Dim tsUpdate As New TraceSwitch("acctUpdate", "Update traces")
'

Trace.WriteLineIf(tsInfo.TraceVerbose, "Writing all acctInfo
traces..") '

Trace.WriteLineIf(tsUpdate.TraceVerbose, "Writing all
acctUpdate traces..")

…
tsInfo.Level = TraceLevel.Warning
Trace.WriteLineIf(tsInfo.TraceWarning, "some warning...")
…
tsInfo.Level = TraceLevel.Error
Trace.WriteLineIf(tsInfo.TraceWarning, "another warning...")

The level of the tsInfo switch is initialized to 0 (Off) and the level of the
tsUpdate switch is initialized to 4 (Verbose). In the latter part of the preceding
code, the level of the tsInfo switch is programmatically modified.

To set the level of a listener, edit the configuration file that corresponds to the
name of the application. For XML Web services, this is Web.config. Within
this file, you can add a listener, set its type and parameters, remove a listener, or
delete all the listeners that the application previously added. The following
XML is an example of how to configure listeners:

<configuration>
 <system.diagnostics>
 <listeners>
 <add name="myTextListener"
 type="TextWriterTraceListener"
 parameter="c:\myListeners.log" />
 </listeners>
 </system.diagnostics>
 </configuration>

C# and Visual Basic
.NET code examples

Configuring listeners

 Module 5: Implementing a Simple XML Web Service 49

SOAP Extensions and Tracing

SOAP extensions

Tracing using SOAP extensions

1. Implement a class derived from SoapExtension

2. Implement a custom attribute

3. Apply the custom attribute to a Web Service method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET XML Web services provide an extensibility mechanism for calling
XML Web services by using SOAP. The extensibility mechanism revolves
around an extension that is allowed to inspect or modify a message at specific
stages in message processing on either the client or the server.

ASP.NET SOAP extensions derive from the SoapExtension class. The
ProcessMessage method is the most important part of SOAP extensions
because it is called at each stage that is defined in the SoapMessageStage
enumeration. For more detailed information about SOAP extensions, see
Module 7, “Securing XML Web Services,” in Course 2524B, Developing XML
Web Services Using Microsoft ASP.NET.

ASP.NET XML Web services enable applying SOAP extensions to an XML
Web service method by applying an attribute. When a custom extension
attribute is added to an XML Web service method or a proxy class client,
ASP.NET Web services invoke the associated extension at the appropriate time.
An extension attribute is a custom attribute class deriving from the
SoapExtensionAttribute class.

The following code example implements a SOAP extension named
TraceExtension. The example also implements a custom attribute named
TraceExtensionAttribute so that you can apply TraceExtension to an XML
Web service method or an XML Web service proxy class method.

SOAP extensions

Tracing using SOAP
extensions

50 Module 5: Implementing a Simple XML Web Service

1. First, you implement a class that is a derived from SoapExtension.
C#

public class TraceExtension : SoapExtension {

 public override void Initialize(object initializer) {
 filename = (string) initializer;
 }

 public override void ProcessMessage(SoapMessage message)
 {
 switch (message.Stage) {
 case SoapMessageStage.BeforeSerialize:
 break;
 case SoapMessageStage.AfterSerialize:
 WriteOutput(message);
 break;
 case SoapMessageStage.BeforeDeserialize:
 WriteInput(message);
 break;
 case SoapMessageStage.AfterDeserialize:
 break;
 default:
 throw new Exception("invalid stage");
 }
 }

}

Visual Basic .NET

Public Class TraceExtension
 Inherits SoapExtension

 Public Overrides Sub Initialize(initializer As Object)
 filename = CStr(initializer)
 End Sub 'Initialize

 Public Overrides Sub ProcessMessage(message As
SoapMessage)
 Select Case message.Stage
 Case SoapMessageStage.BeforeSerialize
 Case SoapMessageStage.AfterSerialize
 WriteOutput(message)
 Case SoapMessageStage.BeforeDeserialize
 WriteInput(message)
 Case SoapMessageStage.AfterDeserialize
 Case Else
 Throw New Exception("invalid stage")
 End Select
 End Sub 'ProcessMessage

End Class 'TraceExtension

 Module 5: Implementing a Simple XML Web Service 51

2. Next, implement a custom attribute that is derived from
SoapExtensionAttribute. Notice that the ExtensionType property returns
the type of your SOAP extension class.
C#

[AttributeUsage(AttributeTargets.Method)]
public class TraceExtensionAttribute :
SoapExtensionAttribute {
 private string filename = "c:\\log.txt";
 private int priority;

 public override Type ExtensionType {
 get { return typeof(TraceExtension); }
 }

 public override int Priority {
 get { return priority; }
 set { priority = value; }
 }

 public string Filename {
 get {return filename; }
 set { filename = value; }
 }
}

52 Module 5: Implementing a Simple XML Web Service

Visual Basic .NET

<AttributeUsage(AttributeTargets.Method)> _
Public Class TraceExtensionAttribute
 Inherits SoapExtensionAttribute

 Private filename As String = "c:\log.txt"
 Private priority As Integer

 Public Overrides ReadOnly Property ExtensionType() As
Type
 Get
 Return GetType(TraceExtension)
 End Get
 End Property

 Public Overrides Property Priority() As Integer
 Get
 Return priority
 End Get
 Set
 priority = value
 End Set
 End Property

 Public Property Filename() As String
 Get
 Return filename
 End Get
 Set
 filename = value
 End Set
 End Property
End Class 'TraceExtensionAttribute

3. Finally, apply the custom attribute to an XML Web service method.
C#

[WebMethod]
[TraceExtensionAttribute(Filename=@"c:\log.txt")]
public DataSet GetTransactionHistory(�

 DateTime startDate,DateTime endDate)
{
 ...

Visual Basic .NET

Public<WebMethod(), TraceExtensionAttribute(Filename :=
"c:\log.txt")> _

Function GetTransactionHistory(startDate As DateTime,
endDate As DateTime) As DataSet

 Module 5: Implementing a Simple XML Web Service 53

The following is an example of the resulting output. Note that you can see the
complete SOAP request and response:

========================== Request at 7/24/2001 11:53:49 AM
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope namespaces omitted for brevity >
 <soap:Body>
 <GetTransactionHistory xmlns="http://tempuri.org/">
 <startDate>2001-01-01T00:00:00.0000000-08:00</startDate>
 <endDate>2002-01-01T00:00:00.0000000-08:00</endDate>
 </GetTransactionHistory>
 </soap:Body>
</soap:Envelope>

-------------------------- Response at 7/24/2001 11:53:49 AM
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope namespaces omitted for brevity >
 <soap:Body>
 <GetTransactionHistoryResponse
 xmlns="http://tempuri.org/">
 <GetTransactionHistoryResult>
 <xsd:schema id="NewDataSet" ...>
 <xsd:element name="NewDataSet"
 msdata:IsDataSet="true">
 <xsd:complexType>
 omitted for brevity
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <diffgr:diffgram ...>
 <NewDataSet xmlns="">
 <AnAccount diffgr:id="AnAccount1"
 msdata:rowOrder="0">
 <TransactionID>1</TransactionID>
 <TransactionDate>2001-07-19T00:
 00:00.0000000-07:00</TransactionDate>
 <CustomerID>1</CustomerID>
 <Amount>12</Amount>
 <Description>No details available</Description>
 </AnAccount>
 </NewDataSet>
 </diffgr:diffgram>
 </GetTransactionHistoryResult>
 </GetTransactionHistoryResponse>
 </soap:Body>
</soap:Envelope>

54 Module 5: Implementing a Simple XML Web Service

Demonstration: Performing Tracing Using a SoapExtension

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will view how to perform tracing in an XML Web
service by using SOAP extensions.

 Module 5: Implementing a Simple XML Web Service 55

Tools for Debugging Web Applications

Page-level and application-level tracing

Writing to an event log

Performance counters

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET and the .NET Framework provide many useful tools that
assist in debugging and monitoring Web applications. This topic provides
information about some of these tools. For a comprehensive overview of other
tools, see the Visual Studio .NET and .NET Framework SDK documentation.

When implementing XML Web services, it is important to be able to trace all of
the requests that are sent to the XML Web service including the contents of
each request. It is also important to be able to remotely access this trace
information.

The configuration file settings, which you saw earlier when learning about
controlling trace, included an element named trace. The trace element supports
five attributes.

Attribute Description

Enabled Specifies whether tracing is enabled for an application. The value

of true indicates that the tracing is enabled.

requestLimit Specifies the number of trace requests to store on the server. The
default is 10.

pageOutput Specifies whether trace output is rendered at the end of each page.

The value true indicates that trace output is appended to each page.

The value false indicates that trace output is accessible through the
trace utility only. The default is false.

traceMode Indicates how to display trace information.

SortByTime indicates that trace information is displayed in the
order in which it is processed. The default is SortByTime.

SortByCategory indicates that trace information is displayed
alphabetically by user-defined categories.

Page-level tracing

Application-level tracing

56 Module 5: Implementing a Simple XML Web Service

These settings affect the results that are displayed when you use the Trace.axd
utility. Trace.axd is a utility that can be used to retrieve application-level tracing
information. If you type the following URL in a browser address box, tracing
has been enabled, and the localOnly attribute is set to false:

http://servername/applicationname/trace.axd

The details that you see resemble the following:

If you click one of the View Details links, the details that you see resemble the
following:

An important tool for monitoring an application is the Microsoft Windows®
event log. The .NET Framework makes it very easy to write information to
event logs. The following code illustrates how to write a warning to a custom
event log named ContosoLog.

Writing to an Event Log

 Module 5: Implementing a Simple XML Web Service 57

C#

string LogName = "ContosoLog";
string AppName = "ContosoMicropayments";

EventLog Log = new EventLog(LogName);
string Message = string.Format("Invalid account number
{0}",acctNumber);

Log.Source = AppName;
Log.WriteEntry(Message, EventLogEntryType.Warning);

Visual Basic .NET

Dim LogName As String = "ContosoLog"
Dim AppName As String = "ContosoMicropayments"

Dim Log As New EventLog(LogName)
Dim Message As String = String.Format("Invalid account number
{0}", acctNumber)

Log.Source = AppName
Log.WriteEntry(Message, EventLogEntryType.Warning)

It is not a good idea to make frequent calls to the event log because of the
performance implications, but it is recommended that you use the event log if
you want to log exceptions.

Performance counters provide an excellent way to monitor the performance of
your XML Web service at run time. The .NET Framework makes it easy to
access performance counters in addition to creating custom counters
specifically for XML Web services.

Performance counters

58 Module 5: Implementing a Simple XML Web Service

You will now look at how to create a new category and custom performance
counter at design time.

To create custom performance counters:

1. Open Server Explorer and expand the node for the server that you want to
view. The contents on your screen should resemble the following.

 Module 5: Implementing a Simple XML Web Service 59

2. Right-click the Performance Counters node and click Create New
Category.

3. Type the required information.

Before you exit the dialog box, you can select any of the counters in the
Counters list and edit their values, or delete the counters.

The counters and categories that you create in the dialog box are read-write
enabled by default, but your interaction with them through an instance of the
PerformanceCounter component will be restricted to read-only unless you
specify otherwise.

Tip

60 Module 5: Implementing a Simple XML Web Service

The following code sample shows how you can use the performance counter
that you created earlier:

1. Create an instance of the PerformanceCounter class to give users access to
the performance counter. You do this in Global.asax. You can store the
object reference in the Application object for later use.
C#

protected void Application_Start(Object sender, EventArgs
e)
{
 PerformanceCounter perf = new PerformanceCounter(
 "Contoso","NumberOfActiveRequests",
 "Contoso Web Service",false);
 Application.Add("perf",perf);
}

Visual Basic .NET

Protected Sub Application_Start(sender As Object, e As
EventArgs)
 Dim perf As New PerformanceCounter(_
 "Contoso", "NumberOfActiveRequests", _
 "Contoso Web Service", False)
 Application.Add("perf", perf)
End Sub 'Application_Start

2. In a Web method, you can retrieve the object reference and manipulate the
performance counter as shown in the following code.
C#

[WebMethod]
public DataSet GetTransactionHistory(DateTime
startDate,DateTime endDate)

{
 PerformanceCounter perf;
 perf = (PerformanceCounter)Application["perf"];
 perf.IncrementBy(1);
 ...
}

Visual Basic .NET

Public<WebMethod()> _
Function GetTransactionHistory(startDate As DateTime,
endDate As DateTime) As DataSet '
 Dim perf As PerformanceCounter
 perf = CType(Application("perf"), PerformanceCounter)
 perf.IncrementBy(1)
 ...
End Function 'GetTransactionHistory

 Module 5: Implementing a Simple XML Web Service 61

Lab 5.1: Implementing a Simple XML Web Service

Internet

Woodgrove Bank
Web Service

Web Service Consumer

Contoso Micropayment
Web Service

Firewall

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Implement a simple XML Web service by using ASP.NET.
 Use typed DataSet from within an XML Web service.
 Add tracing statements and performance counters to an XML Web service.
 Make use of Application state to store information.

Consume an XML Web service.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations. For instance, this lab does
not comply with the recommendation that you not specify hardcoded values for
authentication information. Also, the lab has you save passwords for database
access in clear text when generating typed datasets.

There are starter and solution files that are associated with this lab. The starter
files are in the folder <labroot>\Lab05\Starter. The solution files for this lab
are in the folder <labroot>\Lab05\Solution.

In this lab, you will create the initial version of the Contoso Micropayment
Service. This is an XML Web service that manages accounts for users who do
not want to provide their personal financial information to all of the e-
commerce sites that they shop at.

In this lab, you will also extend the Woodgrove and Contoso Account Manager
client to use the Contoso Micropayment Service. You will modify the client
application to use the following Contoso XML Web service methods:

 GetAccount
 GetTransactionHistory

Objectives

Note

Lab Setup

Scenario

Estimated time to
complete this lab: 75
minutes

62 Module 5: Implementing a Simple XML Web Service

Exercise 1
Creating the Contoso Micropayment Web Service

In this exercise, you will implement the skeleton code for the Contoso
Micropayment XML Web service by using Visual Studio .NET. You will also
configure an application setting for a SQL Server connection string in the
Web.config file for the XML Web service.

 Create the Contoso XML Web service

1. Open Visual Studio .NET.
2. On the File menu, point to New, and click Project.
3. Select the language of your choice, then select the ASP.NET Web Service

project template. Set the project location to http://localhost/Contoso. Click
OK to begin.

4. Rename the default implementation file.
a. In Solution Explorer, right-click Service1.asmx.
b. On the shortcut menu, click Rename.
c. In the textbox, type Micropayment.asmx.

5. Open the Micropayment.asmx code behind file:
a. In Solution Explorer, right-click Micropayment.asmx.
b. On the shortcut menu, click View Code.

6. Rename the Service1 class to MicroPaymentService.
7. For C# projects only, rename the constructor in the class to

MicroPaymentService.
8. Add a using (for C#) or Imports (for Visual Basic)statement for each of the

following namespaces:

• System.Web.Services.Protocols

• System.Data

• System.Data.SqlClient

• System.Configuration
9. Add a WebService attribute to the MicroPaymentService class. Set the

following attribute properties. Visual Basic .NET programmers will only
need to modify the attribute that was already added.
Properties Values

Name Contoso Micropayment Service

Description Contoso Micropayment Services

 Module 5: Implementing a Simple XML Web Service 63

 Add the skeleton code for the XML Web service methods

• Add the stubs for the GetAccount and GetTransactionHistory methods in
the Contoso Micropayment XML Web service. The stubs are as follows.

C#

[WebMethod]
public AccountDataSet GetAccount()
{
}

[WebMethod]
public TransactionDataSet GetTransactionHistory(DateTime
startDate, DateTime endDate)

{
}

Visual Basic .NET

<WebMethod()> _
Public Function GetAccount() As AccountDataSet
End Function 'GetAccount

<WebMethod()> _
Public Function GetTransactionHistory(startDate As
DateTime, endDate As DateTime) As TransactionDataSet

End Function 'GetTransactionHistory

At this point, you can ignore the undefined types AccountDataSet and
TransactionDataSet. You will define these types in Exercise 2.

 Use temporary authentication information

1. Add the following class definition, before the MicroPaymentService class.
C#

public class ContosoAuthInfo : SoapHeader
{
 public string Username;
 public string Password;
}

Visual Basic .NET

Public Class ContosoAuthInfo
 Inherits SoapHeader
 Public Username As String
 Public Password As String
End Class 'ContosoAuthInfo

2. Add a public data member called authInfo of type ContosoAuthInfo to the
MicroPaymentService class.

64 Module 5: Implementing a Simple XML Web Service

3. In the constructor of the MicroPaymentService class, test the value of the
authInfo field. If the value is null, then:
a. Create an instance of ContosoAuthInfo and set the authInfo data

member to this instance.
b. Set the Username and Password fields to John and password

respectively. This user name and password corresponds to a
preconfigured database user.

In real-world applications, it is recommended that you not specify
hardcoded values for authentication information.

 Add configuration information for the SQL connect string

1. Open Web.config.
2. Create an appSettings element directly following the configuration tag as

follows:
<appSettings>
 <add key="connectStringContoso" value="data
source=.\MOC;

 initial catalog=Contoso;user id=sa;pwd=Course_2524"
/>
</appSettings>

Note

 Module 5: Implementing a Simple XML Web Service 65

Exercise 2
Accessing the Database

In this exercise, you will add functionality to the GetAccount and
GetTransactionHistory methods to call the existing stored procedures in the
SQL Server Contoso database that return account data and transactions,
respectively.

 Add a new database connection to Server Explorer

1. Open Server Explorer.
2. Right-click Data Connections and click Add Connection…
3. Complete the Data Link Properties by using the information in the

following table.
On this wizard page Do this

Connection tab of the Data
Link Properties dialog box

For the numbered fields, type the following
values:

1. The name of your computer\MOC

2. User name: sa
 Password: Course_2524

 Select the Allow saving password check box.

3. Contoso

To verify that the connection information is
correct, click Test Connection.

Microsoft Datalink Click OK.

4. A dialog will be displayed warning that your connection information is not
encrypted. Click OK. In general, this is not a safe practice, but in the
classroom it is convenient.

 Add an AccountDataSet typed dataset

1. In Solution Explorer, right-click the Contoso project and click Add and
then Add New Item on the shortcut menu.

2. From the list of available templates, click DataSet.
3. In the Name field, rename the file to AccountDataSet.xsd.

 Generate a typed AccountDataSet

1. Expand the Stored Procedures node under the newly added connection in
the Server Explorer.

2. Click the _GetAccount stored procedure and drag it to the designer surface
for AccountDataSet.xsd.

66 Module 5: Implementing a Simple XML Web Service

 Complete the GetAccount method

1. Open the code behind file for Micropayment.asmx.
2. Locate the GetAccount method.
3. Add and instantiate local variables for a SqlCommand, SqlConnection and

SqlDataAdapter.
4. Initialize the SqlCommand object as shown in the following example.

C#

cmd.CommandText = "_GetAccount";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Connection = conn;
cmd.Parameters.Add(new SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4,
ParameterDirection.ReturnValue, true, ((System.Byte)(10)), ((System.Byte)(0)), "",
DataRowVersion.Current, null));
cmd.Parameters.Add(new SqlParameter("@userID", SqlDbType.NVarChar, 16,
ParameterDirection.Input, true, ((System.Byte)(10)), ((System.Byte)(0)), "",
DataRowVersion.Current, authInfo.Username));
cmd.Parameters.Add(new SqlParameter("@password", SqlDbType.NVarChar, 16,
ParameterDirection.Input, true, ((System.Byte)(10)), ((System.Byte)(0)), "",
DataRowVersion.Current, authInfo.Password));

Visual Basic .NET

With cmd
 .CommandText = "_GetAccount"
 .CommandType = CommandType.StoredProcedure
 .Connection = conn
 .Parameters.Add(New SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4,
ParameterDirection.ReturnValue, True, CType(10,Byte), CType(0,Byte), "",
DataRowVersion.Current, Nothing))

 .Parameters.Add(New SqlParameter("@userID", SqlDbType.NVarChar, 16,
ParameterDirection.Input, True, CType(0,Byte), CType(0,Byte), "",
DataRowVersion.Current, authInfo.Username))

 .Parameters.Add(New SqlParameter("@password", SqlDbType.NVarChar, 16,
ParameterDirection.Input, True, CType(0,Byte), CType(0,Byte), "",
DataRowVersion.Current, authInfo.Password))

End With

5. Initialize the SqlConnection object as shown in the following example.

C#

conn.ConnectionString =
(string)ConfigurationSettings.AppSettings["connectStringContoso"];
conn.Open();

Visual Basic .NET

conn.ConnectionString = ConfigurationSettings.AppSettings("connectStringContoso")
conn.Open()

6. Initialize the SqlAdapter as shown in the following example.
C# Visual Basic .NET

adapter.SelectCommand = cmd; adapter.SelectCommand = cmd

 Module 5: Implementing a Simple XML Web Service 67

7. Complete the GetAccount method by creating an instance of the
AccountDataSet typed dataset, using the SqlDataAdapter object to fill it
and then return the dataset from the method. The following code is an
example of how to do this.
C#

AccountDataSet ds = new AccountDataSet();
int nRecords = adapter.Fill(ds,"_GetAccount");
conn.Close();
if (nRecords == 0)
 throw new Exception("Account not found");
return ds;

Visual Basic .NET

Dim ds As New AccountDataSet()
Dim nRecords As Integer = adapter.Fill(ds, "_GetAccount")
conn.Close()
If nRecords = 0 Then
 Throw New Exception("Account not found")
End If
Return ds

 Add a TransactionDataSet typed dataset

1. In Solution Explorer, right-click the Contoso project and click Add and
then Add New Item on the shortcut menu.

2. From the list of available templates, click DataSet.
3. In the Name field, rename the file to TransactionDataSet.xsd.

 Generate a typed TransactionDataSet

1. Expand the Stored Procedures node under the newly added connection in
the Server Explorer.

2. Click the _ GetTransactionLog stored procedure and drag it to the designer
surface for TransactionDataSet.xsd.

 Complete the GetTransactionHistory method

1. Open the code behind file for Micropayment.asmx.
2. Locate the GetTransactionHistory method.
3. Add and instantiate local variables for a SqlCommand, SqlConnection,

and SqlDataAdapter.

68 Module 5: Implementing a Simple XML Web Service

4. Initialize the SqlCommand object as shown in the following example.
C#

cmd.CommandText = "_GetTransactionLog";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Connection = conn;
cmd.Parameters.Add(new SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4,
ParameterDirection.ReturnValue, true, ((System.Byte)(10)), ((System.Byte)(0)), "",
DataRowVersion.Current, null));
cmd.Parameters.Add(new SqlParameter("@userID", SqlDbType.NVarChar, 16,
ParameterDirection.Input, true, ((System.Byte)(10)), ((System.Byte)(0)), "",
DataRowVersion.Current, authInfo.Username));
cmd.Parameters.Add(new SqlParameter("@password", SqlDbType.NVarChar, 16,
ParameterDirection.Input, true, ((System.Byte)(10)), ((System.Byte)(0)), "",
DataRowVersion.Current, authInfo.Password)); cmd.Parameters.Add(new
SqlParameter("@startDate", SqlDbType.DateTime, 8, ParameterDirection.Input, true,
((System.Byte)(0)), ((System.Byte)(0)), "", DataRowVersion.Current, startDate));
cmd.Parameters.Add(new SqlParameter("@endDate", SqlDbType.DateTime, 8,
ParameterDirection.Input, true, ((System.Byte)(0)), ((System.Byte)(0)), "",
DataRowVersion.Current, endDate));

Visual Basic .NET

With cmd
 .CommandText = "_GetTransactionLog"
 .CommandType = CommandType.StoredProcedure
 .Connection = conn
 .Parameters.Add(New SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4,
ParameterDirection.ReturnValue, True, CType(10,Byte), CType(0,Byte), "",
DataRowVersion.Current, Nothing))

 .Parameters.Add(New SqlParameter("@userID", SqlDbType.NVarChar, 16,
ParameterDirection.Input, True, CType(0,Byte), CType(0,Byte), "",
DataRowVersion.Current, authInfo.Username))

 .Parameters.Add(New SqlParameter("@password", SqlDbType.NVarChar, 16,
ParameterDirection.Input, True, CType(0,Byte), CType(0,Byte), "",
DataRowVersion.Current, authInfo.Password))

 .Parameters.Add(New SqlParameter("@startDate", SqlDbType.DateTime, 8,
ParameterDirection.Input, True, CType(0,Byte), CType(0,Byte), "",
System.Data.DataRowVersion.Current, startDate))

 .Parameters.Add(New SqlParameter("@endDate", SqlDbType.DateTime, 8,
ParameterDirection.Input, True, CType(0,Byte), CType(0,Byte), "",
System.Data.DataRowVersion.Current, endDate))

End With

5. Initialize the SqlConnection object as shown in the following example.
C#

conn.ConnectionString =
(string)ConfigurationSettings.AppSettings["connectStringContoso"];
conn.Open();

Visual Basic .NET

conn.ConnectionString = ConfigurationSettings.AppSettings("connectStringContoso")
conn.Open()

 Module 5: Implementing a Simple XML Web Service 69

6. Initialize the SqlAdapter as shown in the following example.
C# Visual Basic .NET

adapter.SelectCommand = cmd; adapter.SelectCommand = cmd

7. Complete the GetTransactionHistory method by creating an instance of
the TransactionDataSet typed dataset, using the SqlDataAdapter object to
fill it and then return the dataset from the method. The following code is an
example of how to do this.
C#

TransactionDataSet ds = new TransactionDataSet();
int nRecords = adapter.Fill(ds,"_GetTransactionLog");
conn.Close();
return ds;

Visual Basic .NET

Dim ds As New TransactionDataSet()
Dim nRecords As Integer = adapter.Fill(ds,
"_GetTransactionLog")

conn.Close()
Return ds

 Test the Contoso XML Web service

1. Build the Contoso XML Web service.
2. To invoke the help test page, press F5. Verify that you see the GetAccount

and GetTransactionHistory methods.
3. Click the GetAccount link. Click Invoke. An XML document should be

returned.

70 Module 5: Implementing a Simple XML Web Service

Exercise 3
Using the Contoso XML Web Service in the Woodgrove and
Contoso Account Manager

In this exercise, you will add a Contoso Web reference to the client application
for the Woodgrove and Contoso Account Manager, and add code to invoke the
proxy class methods for the Contoso Micropayment Service.

 Add a Web reference

1. Open the Woodgrove and Contoso Account Manager project that you
worked on in Lab 4.1, Implementing an XML Web Service Consumer
Using Visual Studio .NET, in Module 4, “Consuming XML Web Services”
in Course 2524B, Developing XML Web Services Using Microsoft
ASP.NET.

If you did not start or complete Lab 4.1, use the Woodgrove and
Contoso Account Manager project found in the
<labroot>\Lab05\Starter\Woodgrove and Contoso Account Manager folder.
Otherwise, continue to use the Woodgrove and Contoso Account Manager
project that you worked on in Lab 4.1 (in the <labroot>\Lab04\
Starter\Woodgrove and Contoso Account Manager folder).

2. In Solution Explorer, right-click the References node and click Add Web
Reference.

3. In the Add Web Reference dialog box, enter the URL
http://Localhost/Contoso/Micropayment.asmx in the address field and press
ENTER.
You should see the Service Help Page for the Contoso XML Web service.

4. At this point in the discovery process, the Add Reference button becomes
enabled. Click this button to complete adding a Web reference.

5. Expand the Web References node in the project tree in Solution Explorer.
6. Rename the localhost namespace to Micropayment. To do this, right-click

localhost and then click Rename. Type Micropayment.

Note

 Module 5: Implementing a Simple XML Web Service 71

 Retrieve Contoso account information

1. In WebServiceClientForm(.cs or .vb), add a using (for C#) or Imports (for
Visual Basic) statement to reference the namespace
WebServiceClient.Micropayment.

2. In WebServiceClientForm form, set the Enabled property of the
buttonContosoGetAccount to true.

3. To retrieve the transactions:
a. Locate the GetContosoAccountInfo method.
b. Create an instance of the ContosoMicropaymentService proxy class.
c. Call the GetAccount method of the proxy class. Save the returned

AccountDataSet typed DataSet.
d. Call the DataSetToXMLString helper method to obtain a string

representation of the AccountDataSet.
e. Assign the string that is returned from DataSetToXMLString to the

Text property of the textBoxContosoAccount text box.
4. In the Form1 Load event handler, call the GetContosoAccountInfo

method.

 Retrieve Contoso transactions

1. In the WebServiceClientForm form, set the Enabled property of the
buttonContosoGetTransactions to true.

2. Locate the buttonContosoGetTransactions_Click method.
3. Create an instance of the ContosoMicropaymentService proxy class.
4. Call the GetTransactionHistory method with the dtStart variable as the

startDate parameter and DateTime.Now as the endDate parameter.
The GetTransactionHistory method also returns a typed DataSet, also
named TransactionDataSet.
To distinguish Contoso TransactionDataSet from the Woodgrove
TransactionDataSet, prefix the Contoso TransactionDataSet with the
WebServiceClient.Micropayment namespace.

5. Check the number of transactions. If there are more than 0 transactions,
then:
a. Call the DataSetToXMLString helper method to obtain a string

representation of the TransactionDataSet.
b. Assign the string that is returned from TransactionDataSet to

frm.Transactions.
6. If there are no records then display the message "No transactions for this

user within the past week. ".

72 Module 5: Implementing a Simple XML Web Service

 To test the modified client application

1. Build and run the application.
Notice that the Contoso account information is displayed.

2. Click an account number in the Accounts for Customer list.
3. Click Get Transaction History for the Woodgrove XML Web service.

Existing transactions are displayed.
4. Click Get Transaction History for the Contoso XML Web service.

If there are no recent transactions, a message that indicates that there have
been no recent transactions is displayed. Otherwise, a form that lists the
recent transactions is displayed.

 Module 5: Implementing a Simple XML Web Service 73

Exercise 4
Debugging the Contoso Micropayment Service

In this exercise, you write code to output debug statements and add
performance counters to an XML Web service.

 Write debug information using the Trace class

1. Open the Contoso Micropayment XML Web Service project with Visual
Studio .NET.

2. Open the code behind file for Micropayment.asmx and locate the
GetTransactionHistory method.

3. At the top of the method implementation, output a debug statement by:
a. Creating a string that indicates the beginning of the

GetTransactionHistory method and displays the value of the
authInfo.Username field.

b. Calling the Context.Trace.Write method. Pass the string as the message
parameter.

4. Immediately before the return statement in the method, call the
Context.Trace.Warn method. Set the message parameter to a string that
indicates the record count of the returned DataSet.

5. Build the application.

 Enable tracing in Web.config

1. Open Web.config and locate the <trace> element.
2. Set the enabled attribute to true.

Do not change the default values for the requestLimit, pageOutput,
traceMode, and localOnly attributes.

3. Save Web.config.

 View trace output

1. Run the Woodgrove and Contoso Account Manager.
2. Retrieve the Contoso transaction history several times.
3. To view trace output, in Internet Explorer open

http://Localhost/Contoso/Trace.axd.
Notice that the page displays a line for each request to the
Micropayment.asmx page.

4. Click the associated View Details link for each of the requests.
5. At each Request Details page, locate the SOAPAction header listed in the

Headers Collection table. The value associated with the SOAPAction
specifies the XML Web service that is method invoked for this request.

6. Locate a request for which the SOAPAction shows the value
http://Tempuri.org/GetTransactionHistory.

74 Module 5: Implementing a Simple XML Web Service

7. Locate the Trace Information table on this Request Detail page.
In the Trace Information table, you should see the 2 trace messages that
you output within the GetTransaction method. These messages should
resemble the following:
GetTransactionHistory for John
GetTransactionHistory returns 0 records
The second message should be displayed in red, because it was output by
using the Context.Trace.Warn method.

Tracing impacts performance and therefore it is recommended that
you use it only when debugging. Before deploying an XML Web service,
remember to disable tracing by setting the enabled attribute of the <trace>
element to false in Web.config.

 Add performance counters

1. Open the Contoso Micropayment XML Web Service project with Visual
Studio .NET.

2. Open Server Explorer and expand the node for your server.
3. Right-click the Performance Counters node and click Create New

Category.
4. In the Performance Counter Builder dialog box, set the following

information:
Field Value

Category name Contoso

Category description Contoso Micropayment Web Service

5. Click New to add a new performance counter to the Contoso category. Set
the following information.
Field Value

Name NumberOfActiveRequests

Type NumberOfItems32

Description Number of active GetAccount
requests

6. Click OK.
7. Open the code behind file for Global.asax.
8. C# programmers must import the System.Diagnostics namespace. This is

unnecessary for Visual Basic .NET programmers.

Note

 Module 5: Implementing a Simple XML Web Service 75

9. Within the Application_Start method, create an instance of the
PerformanceCounter class. Store the object reference in the Application
object for later use, using the key perfCtr. Enclose the code in a try/catch
block as shown below.
C#

protected void Application_Start(Object sender, EventArgs
e)

{
 try
 {
 PerformanceCounter perfCtr = new
PerformanceCounter("Contoso",

 "NumberOfActiveRequests", "Contoso Web
Service", false);

 Application.Add("perfCtr", perfCtr);
 }
 catch
 {
 // non critical error do nothing
 }
}

Visual Basic .NET

Protected Sub Application_Start(sender As [Object], e As
EventArgs)

 Try
 Dim perf As PerformanceCounter = New
PerformanceCounter("Contoso", _

 "NumberOfActiveRequests", "Contoso Web
Service", False)

 Application.Add("perfCtr", perf)
 Catch
 'no critical error
 End Try
End Sub 'Application_Start

10. Open the code behind file for Micropayment.asmx.
11. Locate the GetAccount method. At the beginning of this method, declare a

PerformanceCounter variable. Retrieve the PerformanceCounter
reference from the Application object. Cast this reference to the
PerformanceCounter class.

12. If PerformanceCounter variable created in step 11 contains a valid object
reference, then call the Increment method on the performance counter. This
will cause the performance counter to be incremented whenever this method
is invoked.

13. If PerformanceCounter variable created in step 11 contains a valid object
reference, then call the Decrement method on the performance counter
immediately after closing the database connection. This will give a count of
the number of clients that are concurrently executing the GetAccount
method.

14. Build the application.

76 Module 5: Implementing a Simple XML Web Service

 View performance counters

1. To open the Performance utility, on the Start menu, point to Control
Panel, click Performance and Maintenance, click Administrative Tools
and then double-click Performance.

2. In the tree view, click System Monitor.
3. On the toolbar, click the Delete button until there are no more counters

being monitored.
4. On the toolbar, click the Add button to add a performance counter to the

chart.
5. In the Add Counter dialog box, do the following:

a. Click Use local computer counters.
b. In the Performance object list, click Contoso.
c. Click All counters.
d. Click Add.
e. Click Close.

6. Right-click in the graphing window and click Properties. Click on the Data
tab. In the Scale list, click 10.0. Click OK.

7. To chart the NumberOfActiveRequestsCounters counter at a non-zero
value, you must invoke the GetAccount method. To do this:
a. Within the Contoso Micropayment Service project, set a breakpoint in

the GetAccount method.
b. Start the application from within Visual Studio .NET to debug.
c. In the browser, open the GetAccount test page and invoke the method.

Click Invoke.
d. When the application stops at the breakpoint in the GetAccount method,

step beyond the line that increments the performance counter.
8. Switch to the Performance utility.

Notice that the NumberOfActiveRequestsCounters now charts the value
1.

9. Within Visual Studio .NET, press F5 to continue execution.
Notice that the NumberOfActiveRequestsCounters again charts the value
0 because the Decrement method was called at the end of the GetAccount
method.

 Module 5: Implementing a Simple XML Web Service 77

Review

Creating an XML Web Service Project

Implementing XML Web Service Methods

Managing State in an ASP.NET XML Web Service

Debugging XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. If you want to expose a C# method as an XML Web service operation, what
must you do?
Apply the WebMethod attribute to the method, and make sure that the
method is public.

2. If an XML Web service method returns a stream that is 1 megabyte in size,
which property of the WebMethod attribute should you modify to minimize
the amount of time a client would wait for the arrival of the first set of data?
BufferResponse

3. Which properties and fields of a class are serialized when an XML Web
service method returns an instance of a class?
All public, read/write properties and all public, read/write fields.

4. If your XML Web service will be deployed on a Web farm, what kind of
data can be stored appropriately in Application state?
Read-only data that can be restored exactly in the event of an XML
Web service being restarted.

78 Module 5: Implementing a Simple XML Web Service

5. You deploy an XML Web service in production, and want to store trace
information in a disk file on the server hosting the XML Web service.
Which two classes could you use to do this?

• Trace to emit trace output

• TextWriterTraceListener to write the trace output to disk

6. Which .NET Framework class is provided to allow you to hook into various
stages of SOAP message processing?
SoapExtension

Contents

Overview 1

Overview of UDDI 2

Publishing an XML Web Service 16

Finding an XML Web Service 21

Publishing an XML Web Service on an

Intranet 24

Configuring an XML Web Service 26

Lab 6.1: Publishing and Finding Web

Services in a UDDI Registry 29

Review 39

Module 6: Publishing
and Deploying XML
Web Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001−2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 6: Publishing and Deploying XML Web Services iii

Instructor Notes
This module teaches students how to publish XML (Extensible Markup
Language) Web services and locate XML Web services by using the Microsoft
Universal Description, Discovery, and Integration (UDDI) software
development kit (SDK). A local development UDDI registry is used in the
demonstrations and lab for this module, but the mechanics of publishing and
finding XML Web services is no different on the public UDDI registry nodes.

After completing this module, students will be able to:

 Explain the role of UDDI in XML Web services.
 Publish an XML Web service in a UDDI registry by using the Microsoft

UDDI SDK.
 Search a UDDI registry to locate XML Web services by using the UDDI

SDK.
 Explain the various options for publishing an XML Web service on an

intranet.
 Explain some of the options for modifying the default configuration of an

XML Web service.

To teach this module, you need the Microsoft® PowerPoint® file 2524B_06.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Practice all of the demonstrations.
 Review the walkthrough demonstration code in <install

folder>\Democode\<language>\Mod06.
 Complete the lab.

Presentation:
90 Minutes

Lab:
60 Minutes

Required Materials

Preparation Tasks

iv Module 6: Publishing and Deploying XML Web Services

Module Strategy
Use the following strategy to present this module:

 Overview of UDDI
This topic provides an overview of the role of UDDI registries in the
process of XML Web service discovery. The UDDI data structures and
application programming interfaces (APIs) are explained. Ensure that you
cover each of the elements in the UDDI data structure and describe how
they are used. Many students might have difficulty understanding the
tModel element. Explain that the tModel element is deliberately generically
defined because it can be used in multiple ways in UDDI. Explain that using
tModel to represent Web Services Description Language (WSDL)
documents is just one of its uses. Provide only a brief overview of publisher
assertions. Explain the publisher and inquiry APIs. Emphasize that each of
these APIs is an XML Web service operation that can be invoked by using
Simple Object Access Protocol (SOAP). Explain how the UDDI SDK
encapsulates these operations.

 Publishing an XML Web Service
Explain how to publish tModels and business entities. Emphasize that
tModels are not explicitly associated with business entities. Therefore,
before publishing a business service, you must publish the necessary
business entities and tModels. Explain how to publish a binding template
and also explain the importance of binding templates in locating the
endpoints for XML Web services.

 Finding an XML Web Service
Explain how to locate binding information for an XML Web service by
using the UDDI SDK. Emphasize that at the moment there no standards for
how developers should publish XML Web services and how developers
should use the information that is published about an XML Web service to
locate the XML Web service. Explain to the students that they will not be
able to locate endpoints for all XML Web services programmatically.

 Publishing an XML Web Service on an Intranet
Explain the issues that are involved in deploying an XML Web service on
an intranet from the perspective of publishing and finding XML Web
services. This topic explains some of the options that are available for
publishing an XML Web service on an intranet in the absence of a
commercial private UDDI registry.

 Configuring an XML Web Service
This topic focuses on the issues specific to the assemblies that make up an
XML Web service. The topic covers modifying the default discovery
behavior, configuring assembly settings, and security considerations. Use
this topic to introduce students to topics such as localization of assemblies,
and building and deploying satellite assemblies, which are beyond the scope
of this course, and yet applicable to XML Web services.

 Module 6: Publishing and Deploying XML Web Services 1

Overview

Overview of UDDI

Publishing an XML Web Service

Finding an XML Web Service

Publishing an XML Web Service on an Intranet

Configuring an XML Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can locate XML (Extensible Markup Language) Web services at unknown
endpoints by using a public registry of XML Web services. Universal
Description, Discovery, and Integration (UDDI) registries facilitate service
discovery on the Web.

After completing this module, you will be able to:

 Explain the role of UDDI in XML Web services.
 Publish an XML Web service in a UDDI registry by using the Microsoft®

UDDI software development kit (SDK).
 Search a UDDI registry by using the UDDI SDK to locate an XML Web

service that implements a specific service interface.
 Explain the various options for publishing an XML Web service on an

intranet.
 Explain some of the options for modifying the default configuration of an

XML Web service.

Introduction

Objectives

2 Module 6: Publishing and Deploying XML Web Services

Overview of UDDI

What Is UDDI?

UDDI Data Structures

Demonstration: Using UDDI Explorer

UDDI Programmer's API

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The role of an XML Web service broker is essential in XML Web services
architecture to make it possible for potential consumers to easily find an XML
Web service. UDDI registries fulfill the role of an XML Web service broker. In
this section, you will learn about UDDI and the associated specifications.

 Module 6: Publishing and Deploying XML Web Services 3

What Is UDDI?

A collection of specifications

Specifications for distributed Web-based information
registries of XML Web services
- UDDI Programmer’s API Specification
- UDDI Data Structure Specification

UDDI registry implementations

Implementations of the specifications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before learning how to programmatically publish and discover XML Web
services, it is important to understand the functions of UDDI from a
programmer’s perspective.

Universal Description, Discovery, and Integration (UDDI) is a collection of
specifications for distributed Web-based information registries of XML Web
services. These specifications are broken down into a number of categories. The
UDDI Programmer’s API (application programming interface) Specification
and the UDDI Data Structure Specification are of specific interest to an XML
Web service developer. You can find the current versions of these
specifications at http://www.uddi.org.

All of the information about the UDDI Programmer’s API and UDDI
Data Structure Specifications is based on version 2.0 of the specifications.

The UDDI Programmer’s API Specification defines functions that provide a
simple request/response model for accessing UDDI registries. There are two
types of API defined in the API reference:

 A publisher’s API that allows you to publish data in a registry.
 An inquiry API that allows you to read information from a registry.

The Programmers’ API Specification defines approximately 40 Simple Object
Access Protocol (SOAP) messages that are used to query for information and
publish functions in any UDDI-compliant service registry.

The UDDI Data Structure Specification outlines the details of each of the XML
structures that are associated with the messages that the Programmer’s API
Specification defines.

A collection of
specifications

Note

The UDDI Programmer’s
API Specification

The UDDI Data Structure
Specification

4 Module 6: Publishing and Deploying XML Web Services

UDDI is also a set of implementations of the specifications that allow
businesses to register information about the XML Web services that they offer
so that other businesses can find them. These implementations are publicly
accessible. Also, UDDI registries are themselves available as XML Web
services.

At the time of this writing, there are two public implementations of these
specifications. They can be located at http://uddi.microsoft.com and
http://www-3.ibm.com/services/uddi.

UDDI can provide answers to queries such as:

 What XML Web services does a specific business provide?
 What are all the known endpoints for a specific XML Web service?
 What is the current binding information (supported protocols, and so on.)

for a specific XML Web service endpoint?

Other possible queries, such as price comparison of XML Web services or
geographic proximity, are not part of the UDDI specification. Currently, such
additional queries and associated metadata are considered value-added services
that vendors are free to implement and offer.

UDDI registry
implementations

 Module 6: Publishing and Deploying XML Web Services 5

UDDI Data Structures

businessService: Descriptive
information about a particular service

publisherAssertion: Information
about a relationship between two
parties, asserted by both of them

tModel: Descriptions of specifications
for services or taxonomies. Basis for
technical fingerprints

bindingTemplate: Technical
Information about a service entry
point

businessEntity: Information about
the party who publishes information
about a family of services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The UDDI Data Structure Specification defines the XML schema that is used to
describe types in UDDI. The specification defines five data types:

 businessEntity
 businessService
 bindingTemplate
 tModel
 publisherAssertion

The preceding data structures are defined by using the XML Schema Definition
Language (XSD). This topic examines each of the data structures.

The businessEntity element describes a business or an entity that has registered
an XML Web service within UDDI. The businessEntity is the top-level
element that contains descriptive information about a business or an entity. This
element supports standard information such as name, description, and contacts,
in addition to metadata information such as identifiers and categories. The latter
information is used for standard taxonomies of business identifiers (tax
identifiers, D-U-N-S numbers, and so on. D-U-N-S numbers are unique nine-
digit numbers of single business entities) and categories (industry codes,
geography codes, and so on.) Service descriptions and technical information are
related to a businessEntity by using containment.

Introduction

The businessEntity
element

6 Module 6: Publishing and Deploying XML Web Services

The following XML code shows a document that you can use to register a
businessEntity:

<businessEntity
 businessKey="434554F4-6E17-1342-EA4136E642531DA0"
 operator="">
 <name>Contoso Micropayments</name>
 <description xml:lang="en">
 The Contoso Micropayment Service
 </description>
 <contacts>
 <contact>
 <description xml:lang="en">
 Website Administrator
 </description>
 <personName>Jeff Smith</personName>
 <phone>800-555-1212</phone>
 <email>jeff.smith@contoso.com</email>
 <address>
 <addressLine>1 Microsoft Way</addressLine>
 <addressLine>Redmond, WA</addressLine>
 </address>
 </contact>
 </contacts>
</businessEntity>

The businessService element describes an XML Web service that a business
entity exposes. This element supports naming an XML Web service and
associating it with a business entity and binding information. It also supports
the assignment of categories (industry, product, geographic codes, and so on) to
the XML Web service.

The following XML code shows a document that you can use to register a
businessService:

<businessService
 businessKey="434554F4-6E17-1342-EA41-36E642531DA0"
 serviceKey="AEAC8990-2891-3894-DEC1-AEF97501DD1B">
 <name>Business Service example</name>
 <description xml:lang="en">
 description goes here
 </description>
 <bindingTemplates>
 <!-- zero or more binding templates -->
 <bindingTemplate>
 elements go here…
 </bindingTemplates>
</businessService>

The bindingTemplate element describes the technical information that is
necessary for binding to a particular XML Web service. This element supports
naming an XML Web service and associating it with a business entity and
binding information. The binding information is described as either an access
point or a hosting redirector.

The businessService
element

The bindingTemplate
element

 Module 6: Publishing and Deploying XML Web Services 7

The accessPoint element describes a XML Web service entry point. The
accessPoint element has an attribute named URLType, which is used to
specify one of the seven entry point types:

 mailto-the access point is an e-mail address.
 http-the access point is an Hypertext Transfer Protocol (HTTP) compatible

URL.
 https-the access point is an HTTP Secure (HTTPS) compatible URL.
 ftp-the access point is a File Transfer Protocol (FTP) directory address

URL.
 Fax-the access point is a telephone number that is answered by a fax

machine.
 Phone-the access point is a telephone number that is answered by a human

or voice response system.
 Other-the access point is any format other than the preceding ones. When

this URL type is specified, the specification information (in the tModel
element) must suggest a transport type.

Alternatively, you can use the hostRedirectory element in the absence of the
accessPoint element to point to another bindingTemplate for specific binding
information. The hostRedirectory element is also used to provide a mechanism
to allow multiple binding templates to be associated with a single XML Web
service.

The following XML code shows a document that you can use to register a
bindingTemplate:

<bindingTemplate
 bindingKey="FE542889-EE4B-2348-2345-AEFC3901223A"
 serviceKey="AEAC8990-2891-3894-DEC1-AEF97501DD1B">
 <description xml:lang="en">
 Micropayments binding template
 </description>
 <accessPoint URLType="http">
 http://www.contoso.com/micropayments/payments.asmx
 </accessPoint>
 <tModelInstanceDetails>
 <!-- ...zero or more -->
 <tModelInstanceInfo>
 elements go here
 </tModelInstanceDetails>
</bindingTemplate>

A bindingTemplate also contains a tModelInstanceDetails element. The
tModelInstanceDetails element contains an unordered list of tModelKey
references. This list of references forms a unique fingerprint. When a
bindingTemplate is registered within a businessEntity structure, it will
contain one or more references to a specific set of specifications. The
tModelKey values that are provided with the registration imply the identity of
these specifications.

The accessPoint
element

The hostRedirectory
element

The
tModelInstanceDetails
element

8 Module 6: Publishing and Deploying XML Web Services

When a bindingTemplate is registered, the information contained in the
specifications that are referred to, can later be used during an inquiry for a
service to locate a specific bindingTemplate that contains a particular tModel
reference or set of tModel references. By listing a tModelKey reference in a
bindingTemplate, an XML Web service containing this bindingTemplate
claims to be compatible with the specifications that the tModelKey implies.

Within a tModelInstanceDetails element is a list of zero or more
tModelInstanceInfo elements. Each tModelInstanceInfo has an attribute
named tModelKey, which identifies a specific tModel. A tModelInstanceInfo
element also has a description, a reference to an overview document, and
instance parameters. The optional overview document contains a URL for
locating the entry point specification document. The instance parameters
contain either XML or a URL to an XML document that contains parameter
setting information.

The following XML code shows an example of a tModelInstanceInfo element
within a tModelInstanceDetails:

<tModelInstanceInfo
 tModelKey="uuid:E31A569A-AEFF-4468-BA4D-2BF22FE4ACEE">
 <description xml:lang="en">
 Micropayments tModel
 </description>
 <instanceDetails>
 <description xml:lang="en">
 Micropayment instance details description
 </description>
 <overviewDoc>
 <description xml:lang="en">
 Micropayment Service Overview
 </description>
 <overviewURL>
 http://www.contoso.com/
 micropayments/overview.aspx
 </overviewURL>
 </overviewDoc>
 <instanceParms>
 http://www.contoso.com/
 micropayments/params.aspx
 </instanceParms>
 </instanceDetails>
</tModelInstanceInfo>

One of the most important goals of UDDI is to provide a facility to make XML
Web service descriptions complete enough so that developers can easily learn
how to interact with a service that they did not know much about. To
accomplish this goal, there must be a way to attach metadata to a description of
an XML Web service. You can use this metadata in a variety of ways. For
example, the metatdata can define how the XML Web service behaves, what
conventions it follows, or what specifications or standards it is compliant with.
The tModel element provides the ability to describe compliance with a
specification, concept, or even a shared design.

The tModel element

 Module 6: Publishing and Deploying XML Web Services 9

The structure of a tModel element takes the form of metadata with associated
keys. Although a tModel registration can define almost anything, currently
there are two primary ways to use tModel elements:

 To determine if two XML Web services are compatible.
 To provide keyed namespace references.

The information that makes up a tModel is quite simple. There’s a key, a name,
an optional description, and a URL that indicates where you can find more
information about the XML Web service. Also, because many different
business entities can reference tModels, multiple business entities may
implement the same XML Web service interface.

If a tModel represents a Web Services Description Language (WSDL)
document, then the categoryBag element of the tModel structure should
contain a keyedReference element. The keyName attribute of the
keyedReference element should have the value uddi-org:types, and the
keyValue attribute should have the value wsdlSpec. Also the overviewURL
element in the overviewDoc element should contain the location of the WSDL
document.

The following XML code shows a document that you can use to register a
tModel:

<tModel tModelKey="uuid:455655B7-4C43-4f3e-BB0B-695FE2120C53">
 <name>Micropayment TModel</name>
 <description xml:lang="en">
 A TModel for the Micropayment XML Web Service
 </description>
 <overviewDoc>
 <description xml:lang="en">
 The Micropayment XML Web Service tmodel
 </description>
 <overviewURL>
 http://192.168.0.13/ContosoBank/overview.htm
 </overviewURL>
 </overviewDoc>
</tModel>

A single businesEntity may not effectively represent many large organizations,
because there might be many ways to categorize them or the services that they
offer. As a result, such organizations may publish several businessEntity
structures. However, these business entities are still related and at least some of
their relationships should be visible in their UDDI registrations. Therefore, two
related businesses use the set_publisherAssertions message to publish
assertions of business relationships.

To eliminate the possibility that one publisher claims a relationship between
two businesses that is, in fact, not reciprocally recognized, each publisher must
agree that the relationship is valid by publishing their own publisherAssertion.
Both publishers have to publish exactly the same information. When this
happens, the relationship becomes visible.

The publisherAssertion
element

10 Module 6: Publishing and Deploying XML Web Services

In this example, the businessEntity with the businessKey value of “1234-...” is
the parent holding company of the businessEntity with the businessKey value
of “4567-...”.

<publisherAssertion>
 <fromKey>1234-....</fromKey>
 <toKey>4567-....</toKey>
 <keyedReference tModelKey=”uuid:1357...”
 keyName=”Holding Company” keyValue=”parent-child”>
</publisherAssertion>

 Module 6: Publishing and Deploying XML Web Services 11

Demonstration: Using UDDI Explorer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how you can explore and manipulate UDDI
registries by using UDDI Explorer.

UDDI Explorer is one of the sample applications that ship with the UDDI
SDK.

To locate information about a business by using its name:

1. Open UDDI Explorer (UDDIExplorer.exe) from the following folder
<install folder>\Democode\<language>\Mod06.

2. In the URL list, click http://glasgow/uddi/api/inqire.asmx.
3. In the Name box, type Contoso.
4. Click Search.
5. Expand the nodes in the resulting tree.

To locate information about a tModel by using its name:

1. Select the tModels option.
2. In the Name box, type Bank.
3. Click Search.
4. Expand some of the nodes in the resulting tree.

Note

12 Module 6: Publishing and Deploying XML Web Services

UDDI Programmer's API

The Inquiry APIs

The Publisher APIs

The Microsoft UDDI SDK

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The UDDI Programmer’s API Specification documents the SOAP APIs that
provide programmatic access to UDDI registries. These APIs are divided into
two categories: Inquiry APIs and Publisher APIs.

The Inquiry APIs support finding UDDI elements and retrieving detailed
information about the elements. Each element in the UDDI repository has a
key, which is a universally unique identifier (UUID). Inquiry methods return
these keys (example: find a business by name), and the keys are also used as
parameters to inquiry methods (example: finding all XML Web services
exposed by a business entity with a specified businessEntityID).

You can use the Inquiry APIs to browse for UDDI data, retrieve information
about specific elements, and find binding information for an XML Web service.

For browsing the UDDI repository, there are find_xxx methods for each of the
four main UDDI types:

 find_binding
 find_business
 find_service
 find_tModel

The Inquiry APIs

 Module 6: Publishing and Deploying XML Web Services 13

The following is an example of a SOAP message, which is used to search for
the business entity named “Microsoft” by using the find_business method:

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <find_business generic="1.0" xmlns="urn:uddi-org:api">
 <name>Microsoft</name>
 </find_business>
 </Body>
</Envelope>

You use the find_relatedBusinesses method to find business entities that have
a relationship with a specific business entity.

There are get_xxx methods for each of the four main UDDI types. You use
these methods to retrieve more detailed information for a specific element:

 get_bindingDetail
 get_businessDetail
 get_businessDetailExt
 get_serviceDetail
 get_tModelDetail

With the ability to browse for business entities and XML Web services and to
retrieve specific binding information for a particular XML Web service, you
can programmatically bind to any XML Web service whose endpoint is
published.

There are several ways that you might use the get_xxx methods to implement a
rudimentary failure recovery mechanism in a situation where an XML Web
service at a specific endpoint becomes unavailable. An XML Web service
consumer queries a UDDI registry for binding information for an XML Web
service. The consumer caches this information and uses it whenever it needs to
interact with an XML Web service. If the XML Web service becomes
unavailable, the consumer can search the UDDI registry for other business
entities that implement the same XML Web service interface. You can then
retrieve the binding information for a compatible XML Web service.

The Publisher APIs allow authorized access to the UDDI repository in addition
to adding and deleting elements. Both authentication and authorization are
required for modifying information in UDDI. To use the Publisher APIs that
require authorization, you must first acquire an authorization token through the
get_authToken operation. You then use the token as a parameter to subsequent
Publisher API calls. Finally, after you are finished using the Publisher APIs,
you must discard the authorization token by invoking the discard_authToken
operation.

The Publisher APIs

14 Module 6: Publishing and Deploying XML Web Services

For adding or changing elements in UDDI there are save_xxx methods for each
of the core UDDI types:

 save_binding
 save_business
 save_service
 save_tModel

For deleting elements in UDDI, there are delete_xxx methods for each of the
core UDDI types:

 delete_binding
 delete_business
 delete_service
 delete_tModel

You use publisher assertions for specifying relationships between business
entities. The Publisher APIs include four methods for creating and managing
publisher assertions:

 add_publisherAssertions
 get_assertionStatusReport
 get_publisherAssertions
 delete_publisherAssertions

All of the APIs that this topic covers are actually operations that an XML Web
service exposes that may be invoked from UDDI registries by using SOAP.
However, for the application developer, it is much more convenient if the
UDDI APIs can be called as if they were local functions.

To make using UDDI APIs easier, the UDDI SDK from Microsoft provides
managed wrappers for the UDDI data structures and APIs. All of the wrappers
reside within the Microsoft.UDDI namespace. The UDDI data structures are
represented as .NET classes with many properties. Each of the UDDI API
functions is implemented as a managed class with a Send() method.

The Microsoft UDDI SDK

 Module 6: Publishing and Deploying XML Web Services 15

The UDDI SDK contains the following namespaces:

Namespace Description

Microsoft.UDDI Contains classes that map to the UDDI

SOAP APIs

Microsoft.UDDI.Api Contains base classes and utility classes
for the other namespaces

Microsoft.UDDI.Authentication Contains a class to represent an
authentication token in addition to classes
for getting and discarding a token

Microsoft.UDDI.Binding Contains classes that represent binding
template elements

Microsoft.UDDI.Business Contains classes that represent business
entity elements

Microsoft.UDDI.Service Contains classes that represent business
service elements

Microsoft.UDDI.ServiceType Contains classes that represent tModel,
tModelInstanceDetail, and
tModelInstanceCollection elements

16 Module 6: Publishing and Deploying XML Web Services

Publishing an XML Web Service

Getting an authentication token

Publishing a tModel

Publishing a businessEntity

Publishing a businessService

Publishing a bindingTemplate

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You must take a number of steps to successfully register an XML Web service
in a UDDI registry.

To register an XML Web service in UDDI by using the UDDI APIs:

1. Obtain an authentication token by using the get_authToken method.
2. Add a tModel by using save_tModel.
3. Add a businessEntity by using save_business.
4. Add a businessService by using save_service.
5. Add a bindingTemplate by using save_binding.
6. Discard the authentication token by using discard_authToken.

All of the operations that are related to publishing an XML Web service require
an authentication token. You can obtain an authentication token by invoking the
get_authToken operation at the UDDI registry. In the Microsoft UDDI SDK,
the authentication information is provided through static members of the
Publish class as follows:

C#

Publish.Url = strPublishUrl;
Publish.User = strUID;
Publish.Password = strPassword;

Microsoft Visual Basic® .NET

Publish.Url = strPublishUrl
Publish.User = strUID
Publish.Password = strPassword

When any publication action is taken, if an authentication token has not already
been obtained, the wrapper classes automatically make the call to
get_authToken to obtain the authentication token.

Getting an
authentication token

 Module 6: Publishing and Deploying XML Web Services 17

The first step in publishing an XML Web service is to publish the tModels that
the XML Web service supports. The following code provides an example of
publishing a tModel method.

C#

TModel tModel = new TModel();
tModel.Name = "Micropayment TModel";
tModel.Descriptions.Add("TModel for the Micropayment
service”);
tModel.OverviewDoc.OverviewURL =
 "http://www.contoso.com/ContosoBank/overview.htm";
tModel.OverviewDoc.Descriptions.Add("The micropayment XML
 Web Service tmodel");
SaveTModel saveTModel = new SaveTModel();
saveTModel.TModels.Add(tModel);
TModelDetail tmd = saveTModel.Send();

Visual Basic .NET

Dim tModel As New TModel()
tModel.Name = "Micropayment TModel"
tModel.Descriptions.Add("TModel for the Micropayment service")
tModel.OverviewDoc.OverviewURL =
 "http://www.contoso.com/ContosoBank/overview.htm"
tModel.OverviewDoc.Descriptions.Add("The micropayment XML
 Web Service tmodel")
Dim saveTModel As New SaveTModel()
saveTModel.TModels.Add(tModel)
Dim tmd As TModelDetail = saveTModel.Send()

You do not specify the tModelKey when you register a tModel. The
tModelKey is returned as part of the TModelDetail object that is returned from
the Send method.

Before you can publish an XML Web service, you need to publish the
businessEntity with which the service will be associated. The following code
provides an example of how to publish a businessEntity.

C#

Contact contact = new Contact();
contact.PersonName = "Adam Barr";
contact.Emails.Add("Adam@contoso.com");
contact.Phones.Add("(425)555-0101");
contact.Descriptions.Add("en","Web Site Administrator");

BusinessEntity businessEntity = new BusinessEntity();
businessEntity.Name = "ContosoBank";
businessEntity.Descriptions.Add("en","The Contoso
Micropayment Bank");

businessEntity.Contacts.Add(contact);

SaveBusiness saveBusiness = new SaveBusiness();
saveBusiness.BusinessEntities.Add(businessEntity);
BusinessDetail bd = saveBusiness.Send();

Publishing a tModel

Note

Publishing a
businessEntity

18 Module 6: Publishing and Deploying XML Web Services

Visual Basic .NET

Dim contact As New Contact()
contact.PersonName = "Adam Barr"
contact.Emails.Add("Adam@contoso.com")
contact.Phones.Add("(425)555-0101")
contact.Descriptions.Add("en", "Web Site Administrator")

Dim businessEntity As New BusinessEntity()
businessEntity.Name = "ContosoBank"
businessEntity.Descriptions.Add("en", "The Contoso
Micropayment Bank")

businessEntity.Contacts.Add(contact)

Dim saveBusiness As New SaveBusiness()
saveBusiness.BusinessEntities.Add(businessEntity)
Dim bd As BusinessDetail = saveBusiness.Send()

You do not specify the businessKey when you register a business entity.
The businessKey is returned as part of the BusinessDetail object that is
returned from the Send method.

Publishing a businessService allows developers to associate a businessEnity
with an XML Web service. It is possible to separately publish binding
information, but in the following example, the binding information is added
with the rest of the service information.

C#

BindingTemplate bindingTemplate = new BindingTemplate();
...
// add all binding information
...
BusinessService businessService = new BusinessService();
businessService.BusinessKey = businessKey;
businessService.Name = "Micropayments";
businessService.BindingTemplates.Add(bindingTemplate);

SaveService saveService = new SaveService();
saveService.AuthInfo = "udditest";
saveService.BusinessServices.Add(businessService);
saveService.BusinessServices[0].BindingTemplates.Add(
bindingTemplate);

ServiceDetail sd = saveService.Send();

Note

Publishing a
businessService

 Module 6: Publishing and Deploying XML Web Services 19

Visual Basic .NET

Dim bindingTemplate As New BindingTemplate()
...
 ‘ add all binding information
...
Dim businessService As New BusinessService()
businessService.BusinessKey = businessKey
businessService.Name = "Micropayments"
businessService.BindingTemplates.Add(bindingTemplate)

Dim saveService As New SaveService()
saveService.AuthInfo = "udditest"
saveService.BusinessServices.Add(businessService)
saveService.BusinessServices(0).BindingTemplates.Add(bindingTemplate)
'
Dim sd As ServiceDetail = saveService.Send()

You do not specify the serviceKey when you register a business entity.
The serviceKey is returned as part of the ServiceDetail object that is returned
from the Send method.

Note

20 Module 6: Publishing and Deploying XML Web Services

To associate a tModel and a businessService and provide the necessary
binding information, you must publish a bindingTemplate. The following code
provides an example of how to publish a bindingTemplate.

C#

BindingTemplate bindingTemplate = new BindingTemplate();
bindingTemplate.ServiceKey = serviceKey;
bindingTemplate.Descriptions.Add("A binding template");
AccessPoint accessPoint = new AccessPoint(URLTypeEnum.Http,
 "http://www.contoso.com/ContosoBank/PaymentService.asmx");
bindingTemplate.AccessPoint = accessPoint;

TModelInstanceInfo tModelInstanceInfo = new TModelInstanceInfo();
tModelInstanceInfo.TModelKey = tModelKey;
tModelInstanceInfo.Descriptions.Add("TModel instance info");
bindingTemplate.TModelInstanceDetail.TModelInstanceInfos.Add(tModelInstanceInfo);

SaveBinding saveBinding = new SaveBinding();
saveBinding.BindingTemplates.Add(bindingTemplate);
BindingDetail bd = saveBinding.Send();

Visual Basic .NET

Dim bindingTemplate As New BindingTemplate()
bindingTemplate.ServiceKey = serviceKey
bindingTemplate.Descriptions.Add("A binding template")
Dim accessPoint As New AccessPoint(URLTypeEnum.Http,
 "http://www.contoso.com/ContosoBank/PaymentService.asmx")
bindingTemplate.AccessPoint = accessPoint

Dim tModelInstanceInfo As New TModelInstanceInfo()
tModelInstanceInfo.TModelKey = tModelKey
tModelInstanceInfo.Descriptions.Add("TModel instance info")
bindingTemplate.TModelInstanceDetail.TModelInstanceInfos.Add(tModelInstanceInfo)

Dim saveBinding As New SaveBinding()
saveBinding.BindingTemplates.Add(bindingTemplate)
Dim bd As BindingDetail = saveBinding.Send()

Publishing a
bindingTemplate

 Module 6: Publishing and Deploying XML Web Services 21

Finding an XML Web Service

Locate a business

Retrieve binding information

Bind to the XML Web service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the most important activities for an XML Web service consumer is to
locate the endpoint of an XML Web service that implements a specific
interface.

To locate an XML Web service entry point in UDDI by using the UDDI APIs:

1. Locate a business by using the find_business operation (example: search on
name).

2. Obtain the service information for each service that the business entity
supports.

3. Obtain the binding template for a service.
4. Use the binding information to access the XML Web service.

To find a business that meets certain criteria, you need to invoke the
find_business operation. The following code shows how to find a business.

C#

FindBusiness fb = new FindBusiness();
fb.Name = “Northwind EFT Portal”;
BusinessList bl = fb.Send();

Visual Basic .NET

Dim fb As New FindBusiness()
fb.Name = "Northwind EFT Portal"
Dim bl As BusinessList = fb.Send()

The search criterion is not restricted to a simple name. You could also
use a list of business identifiers, category references, discovery URLs, or
tModel references in your search criteria.

Locate a business

Note

22 Module 6: Publishing and Deploying XML Web Services

After obtaining a list of businesses that satisfy your search criteria, you can
navigate the list of services that the business entity supports to retrieve binding
information. When you find the binding template of your choice, you can easily
extract the URL for the XML Web service. The following code demonstrates
how you can extract binding information.

C#

foreach (BusinessInfo bi in bl.BusinessInfos)
{
 foreach(ServiceInfo si in bi.ServiceInfos)
 {
 FindBinding fb = new FindBinding();
 fb.ServiceKey = si.ServiceKey;
 BindingDetail bindDetails = fb.Send();
 foreach (BindingTemplate bt in
bindDetails.BindingTemplates)

 {
 if
(bt.TModelInstanceDetail.TModelInstanceInfos[0].TModelKey ==

 tModelKey)
 {
 strURL = bt.AccessPoint.Text;
 goto found;
 }
 }
}
found:
...

Visual Basic .NET

Dim bi As BusinessInfo
For Each bi In bl.BusinessInfos '
 Dim si As ServiceInfo
 For Each si In bi.ServiceInfos
 Dim fb As New FindBinding()
 fb.ServiceKey = si.ServiceKey
 Dim bindDetails As BindingDetail = fb.Send()
 Dim bt As BindingTemplate
 For Each bt In bindDetails.BindingTemplates
 If
bt.TModelInstanceDetail.TModelInstanceInfos(0).TModelKey =

 tModelKey Then
 strURL = bt.AccessPoint.Text
 GoTo found
 End If
 Next bt
 Next si
Next bi
found:
...

Retrieve binding
information

 Module 6: Publishing and Deploying XML Web Services 23

After you find the binding information, it is easy to set the URL property of the
XML Web service proxy and invoke XML Web service methods. The
following code shows how to do this.

C#

NorthwindEFTService eft = new NorthwindEFTService();
eft.Url = strURL;
XmlNode balances = eft.GetCurrentBalances(“1XF99-S”);

Visual Basic .NET

Dim eft As New NorthwindEFTService()
eft.Url = strURL
Dim balances As XmlNode = eft.GetCurrentBalances("1XF99-S")

Bind to the XML Web
service

24 Module 6: Publishing and Deploying XML Web Services

Publishing an XML Web Service on an Intranet

Private UDDI registries

Custom publish/discover solutions

Implement a UDDI registry

Implement a custom publish/discover mechanism

Hard-coded endpoints

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It will not be uncommon for an XML Web service to be deployed behind a
firewall on an intranet. In this topic, we will focus on the options that are
available for publishing an XML Web service on an intranet.

The simplest solution is to have a private registry. Because UDDI was
envisioned as a public, replicated repository that remained essentially
synchronized, there was no provision made for private registry nodes. As a
result, there are currently no commercial, private UDDI registries. It is possible
to use the private UDDI node that is distributed with the Microsoft UDDI SDK.
However, this UDDI SDK is not a commercial product and is not intended to be
used for any purpose other than development.

There are three options for implementing custom solutions:

 Implement a private UDDI registry
You could make a private implementation of a UDDI registry by using the
UDDI specifications.
The advantage of implementing a private UDDI registry that is compliant
with the UDDI specifications is that when commercial private registries
become available your code will not have to be rewritten. Also, you will
have to learn only one API-the UDDI Inquiry and Publisher APIs.
The disadvantage is that correctly implementing the full UDDI specification
is not a simple task.

Private UDDI registries

Custom
publish/discover
solutions

 Module 6: Publishing and Deploying XML Web Services 25

 Implement a custom publish/discover mechanism
You could implement a private publication and discovery mechanism that
provides just the minimum required functionality. For example, you could
choose to ignore the categories for classification and searching.
The advantage of developing a fully customized solution is that you do not
have to wait for commercial, private UDDI nodes to become available.
Also, you are not constrained by a complex specification that is intended to
fulfill the requirements of almost every industry and organization.
The disadvantage is that you will implement discovery code that will not be
compatible with the industry standards.

 Hard-coded endpoints
Another alternative is to hard code the XML Web service endpoints in your
XML Web service consumers.
This solution has the advantage of being very simple and quick to
implement.
The disadvantage is that the resulting solutions will not be able to handle
changes in the location of an XML Web service.

26 Module 6: Publishing and Deploying XML Web Services

Configuring an XML Web Service

Configuring discovery

Permissions and security policy

Configuring assemblies

Localizing an XML Web service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is unlikely that the environment in which an XML Web service is developed
will exactly match the environment in which it is deployed.

There are a number of scenarios that will either force or encourage you to
modify the default discovery mechanisms that are associated with the
deployment of an XML Web service from Microsoft Visual Studio® .NET.

You might want to disable the dynamic discovery document in the root
directory of your Web site if you want to prevent all of the XML Web services
on your site from automatically exposing themselves. To do this, you would
delete, move, or rename the dynamic discovery document in the root directory
of your Web server; and remove any links to it that exist in the Web server's
default page.

If you want to customize the information that is exposed about an XML Web
service in its discovery document, you must write your own discovery
document.

Assume that the root Web site for a Web server is located in the folder
C:\Inetpub\Wwwroot. If you deploy an XML Web service in a folder that is not
an immediate child of the folder C:\Inetpub\Wwwroot, then the dynamic
discovery infrastructure will not be able to locate your XML Web service. In
this scenario, you must write your own discovery document if you want your
XML Web service to be dynamically discoverable.

If you deploy an XML Web service without using Visual Studio .NET, you
must write your own discovery document.

For details on the structure of discovery documents, see Module 4, “Consuming
XML Web Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

Configuring discovery

Disabling dynamic
discovery

Creating your own
discovery document

 Module 6: Publishing and Deploying XML Web Services 27

A security policy is a configurable set of rules that the .NET common language
runtime follows when determining the permissions to grant to any code. The
runtime examines identifiable characteristics of the code, such as where the
code originates, and what the identity of the current caller is, to determine the
level of access that the code can have to resources. During execution, the
runtime ensures that the code accesses only those resources that it has
permission to access. These permissions determine if an XML Web service can
write to an event log, if an XML Web service can access the file system, and so
on.

An XML Web service developer is typically not responsible for configuring the
security policy on a production Web server. Therefore, it is unlikely that the
security policy in the development environment will match the security policy
in the production environment. Because of this reason, it is a good idea for an
XML Web service developer to explicitly specify which permissions are
required for an XML Web service to correctly function.

By requesting permissions you let the runtime know what your code must be
allowed to do. You can request permissions for an assembly by placing
attributes at the assembly scope of your code. For example, you can request the
file I/O permission by adding the FileIOPermissionAttribute. When you
create an assembly, the language compiler stores the requested permissions in
the assembly manifest. At load time, the runtime examines the permission
requests, and applies security policy rules to determine which permissions to
grant to the assembly. Permission requests can only influence the runtime to
deny permissions to your code and can never influence the runtime to grant
additional permissions to your code. The local administration policy always has
the final control over the maximum permissions that your code is granted.

For more information about some of the security concepts relevant to XML
Web services, see Module 7, “Securing XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET. However, a full
coverage of the details on assembly security and deployment is beyond the
scope of this course. For more information on these topics, see Course 2350A,
Securing and Deploying Microsoft .NET Assemblies.

To successfully deploy an XML Web service, you must understand how the
common language runtime locates and binds to the assemblies that make up
your service. By default, the runtime attempts to bind with the exact version of
an assembly with which a service is built. Configuration file settings can
override this default behavior.

The common language runtime performs a number of steps when attempting to
locate an assembly and resolve an assembly reference. The term probing is
often used when describing how the runtime locates assemblies. Probing is the
set of heuristics that are used to locate an assembly based on its name, version,
and culture.

You can configure assembly-binding behavior at different levels based on three
XML-based files:

 The application configuration file.
 The publisher policy configuration file.
 The machine configuration file.

Permissions and
security policy

Assembly permissions

Configuring assemblies

28 Module 6: Publishing and Deploying XML Web Services

All of the preceding files follow the same syntax and provide information such
as binding redirects, the location of the assemblies, and binding modes for
specific assemblies. Each configuration file can contain elements that redirect
the binding process.

For complete coverage of configuring assemblies, see Course 2350A, Securing
and Deploying Microsoft .NET Assemblies.

It is possible that you may need to localize an XML Web service. Localizing an
XML Web service is typically done by separating out the culture-specific
resources into separate resource-only assemblies, which are known as satellite
assemblies. Each satellite assembly contains the resources for a single culture,
but does not contain any code. There are several advantages to this model:

 You can incrementally add resources for new cultures after you have
deployed an application.
Because development of culture-specific resources can require a significant
amount of time, adding resources for a new culture after application
deployment allows you to deploy your XML Web service for the primary
culture that you want to support, and then deliver other culture-specific
resources at a later date.

 You can update and replace the satellite assemblies of an XML Web service
without recompiling the XML Web service.

 At run time, an XML Web service only needs to load the satellite
assemblies that contain the resources that are required for a specific culture.
This can significantly reduce the use of system resources.

For more information about localizations and building and deploying satellite
assemblies, see Course 2350A, Securing and Deploying Microsoft .NET
Assemblies.

Localizing an XML Web
service

 Module 6: Publishing and Deploying XML Web Services 29

Lab 6.1: Publishing and Finding Web Services in a UDDI
Registry

Internet

Web Service Consumer

Contoso Micropayment
Web Service

Firewall

Woodgrove Bank
Web Service

UDDI
Registry

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Register an XML Web service in a UDDI registry by using the Microsoft
UDDI SDK.

 Find WSDL documents in a UDDI registry by using the UDDI SDK.
Find tModels by name, by using the UDDI SDK.

This lab focuses on the concepts in this module and as a result may
not comply with Microsoft security recommendations.

There are starter and solution files that are associated with this lab. The starter
files are in the folder <labroot>\Lab06\Starter. The solution files for this lab are
in the folder <labroot>\Lab06\Solution.

In Lab 5.1, Implementing a Simple XML Web Service, in Module 5,
“Implementing a Simple XML Web Service,” in Course 2524B, Developing
XML Web Services Using Microsoft ASP.NET, you implemented the Contoso
XML Web service. As an XML Web service provider, you might want to
publish this XML Web service. As an XML Web service consumer, you might
want to find the WSDL document and the endpoint for this XML Web service.

In this lab, you will implement a simple application to register both the Contoso
and Woodgrove XML Web services and implement a simple application to find
these XML Web services.

Objectives

Note

Lab Setup

Scenario

Estimated time to
complete this lab: 60
minutes

30 Module 6: Publishing and Deploying XML Web Services

Exercise 1
Implementing the RegisterWebServices Application

In this exercise, you will implement the functionality that is required to register
a business entity, business service, and binding template in a UDDI registry.
The starter application project is provided to you in the folder
<labroot>\Lab06\Starter\RegisterWebServices.

 Add references to required assemblies and import required namespaces

1. Add a reference to the System.Web.Services.dll assembly.
2. Open the following file:

C# Visual Basic .NET

Register.cs Register.vb

3. Import the System.Net namespace.

 Implement the PublishBusiness method

1. Locate the PublishBusiness method.
2. Set the following the properties for the Publish class (which is in the

Microsoft.Uddi assembly):
a. Set the Publish.Url property to comboUrl.SelectedItem. C#

programmers will need to cast comboUrl.SelectedItem to a string.
b. Set the Publish.AuthenticationMode property to

AuthenticationMode.UddiAuthentication.
c. Create a new instance of the class NetworkCredential. Pass the

following values to the constructor:
Parameter Value

Username txtUser.Text

Password txtPwd.Text

Domain GLASGOW

d. Assign the instance of NetworkCredential to the
Publish.HttpClient.Credentials property.

3. Create a BusinessEntity object.
4. Populate the BusinessEntity object.

a. Set the Name property to the value of the name parameter.
b. Add a description to the Descriptions collection. Use the description

parameter as the description and specify "en" as the language code.
c. Add the contact parameter to the Contacts collection.

5. Create a SaveBusiness object.
6. Add the business entity that was created in step 3 to the

SaveBusiness.BusinessEntities collection.

 Module 6: Publishing and Deploying XML Web Services 31

7. Call the Send method of the SaveBusiness object.
8. Return the BusinessDetail object that the Send method returns.

 Implement the btnWoodgroveBusiness_Click method

1. Locate the btnWoodgroveBusiness_Click method.
2. Create a Contact object.
3. Populate the Contact object.

a. Set the PersonName property to "John Chen".
b. Add "someone@example.com" to the Emails collection.
c. Add a description to the Descriptions collection. Use the "Web Site

Administrator" as the description and specify "en" as the language
code.

4. Call the PublishBusiness method for the business entity of the XML
Woodgrove XML Web Service.
a. Pass "Woodgrove Online Bank" as the name parameter.
b. Pass "The Woodgrove Bank (Online)" as the description parameter.
c. Pass the Contact object as the contact parameter.

5. Disable the button by setting the Enabled property to false.

 Implement the btnContosoBusiness_Click method

1. Locate the btnContosoBusiness_Click method.
2. Create a Contact object.
3. Set the Contact object properties similar to the way that you did for the

btnWoodgroveBusiness_Click method. Use the same values.
4. Call the PublishBusiness method for the business entity of the Contoso

XML Web service.
a. Pass "Contoso Micropayments" as the name parameter.
b. Pass "The Contoso Micropayments Service" as the description

parameter.
c. Pass the Contact object as the contact parameter.

5. Disable the button by setting the Enabled property to false.

32 Module 6: Publishing and Deploying XML Web Services

 Implement the PublishService method

1. Locate the PublishService method.
2. Set the following the properties for the Publish class (which is in the

Microsoft.Uddi assembly):
a. Set the Publish.Url property to comboUrl.SelectedItem. C#

programmers will need to cast comboUrl.SelectedItem to a string.
b. Set the Publish.AuthenticationMode property to

AuthenticationMode.UddiAuthentication.
c. Create a new instance of the class NetworkCredential. Pass the

following values to the constructor:
Parameter Value

Username txtUser.Text

Password txtPwd.Text

Domain GLASGOW

d. Assign the instance of NetworkCredential to the
Publish.HttpClient.Credentials property.

3. Create a BindingTemplate object.
4. Populate the BindingTemplate object.

• Add a description to the Descriptions collection by using the
bindingDescription parameter.

5. Create a new AccessPoint object.
6. Populate the AccessPoint object.

a. Set the URLType property to the value URLTypeEnum.Http.
b. Set the Text property to the value of the urlAccess parameter.

7. Assign the AccessPoint object to the BindingTemplate.AccessPoint
property.

8. Create a TModelInstanceInfo object.
9. Populate the TModelInstanceInfo object.

a. Set the TModelKey property to the value of the tModelKey parameter.
b. Add a description to the Descriptions collection by using the

tModelDescription parameter.
10. Add the TModelInstanceInfo object to the

BindingTemplate.TModelInstanceDetail.TModelInstanceInfos collection.
11. Create a BusinessService object.
12. Populate the BusinessService object.

a. Set the BusinessKey property to the value of the businessKey parameter.
b. Set the Name property to the value of the serviceName parameter.

13. Add the BindingTemplate object to the BusinessService.BindingTemplates
collection.

 Module 6: Publishing and Deploying XML Web Services 33

14. Create a SaveService object.
15. Add the BusinessService object to the BusinessServices collection of the

SaveService object.
16. Call the Send method of the SaveService object.
17. Return the ServiceDetail object that the Send method returns.

 Implement the btnWoodgroveService_Click method

1. Locate the btnWoodgroveService_Click method.
2. Call the PublishService method for the business entity of the Woodgrove

XML Web service.
a. Pass "Online Bank Web Service" as the serviceName parameter.
b. Pass the bdWoodgrove.BusinessEntities(0).BusinessKey field as the

businessKey parameter.
c. Pass tModelKeyWoodgrove as the tModelKey parameter.
d. Pass the URL that specifies the endpoint of the Web service as the

urlAccess parameter. The URL should have the following format:
http://machinename/woodgrove/bank.asmx

You can use the Environment.MachineName property to retrieve the
name of your computer.

e. Pass "ASP.NET web access" as the bindingDescription parameter.
f. Pass "Woodgrove Style Web Service" as the tModelDescription

parameter.
3. Disable the button by setting the Enabled property to false.

Tip

34 Module 6: Publishing and Deploying XML Web Services

 Implement the btnContosoService_Click method

1. Locate the btnContosoService_Click method.
2. Call the PublishService method for the business entity of the Contoso XML

Web Service.
a. Pass "Micropayment Web Service" as the serviceName parameter.
b. Pass the bdContoso.BusinessEntities(0).BusinessKey field as the

businessKey parameter.
c. Pass tModelKeyContoso as the tModelKey parameter.
d. Pass the URL that specifies the endpoint of the Web service as the

urlAccess parameter. The URL should have the following format:
http://machinename/contoso/micropayment.asmx

You can use the Environment.MachineName property to retrieve the
name of your computer.

e. Pass "ASP.NET web access" as the bindingDescription parameter.
f. Pass "Contoso Style Web Service" as the tModelDescription

parameter.
3. Disable the button by setting the Enabled property to false.

 Test the application

1. Build and run the application.

It might take a few seconds for the registration code to execute. During
this time the user interface will be disabled.

2. Click Register Business in the Contoso group box.
3. Click Register Service in the Contoso group box.
4. Click Register Business in the Woodgrove group box.
5. Click Register Service in the Woodgrove group box.
6. Click Exit.

Tip

Tip

 Module 6: Publishing and Deploying XML Web Services 35

Exercise 2
Implementing the FindWebServices Application

In this exercise, you will implement the functionality that is required to locate a
WSDL document that is associated with a tModel, and the functionality that is
required to locate the endpoint of an XML Web service. The starter application
project is provided to you in the folder
<labroot>\Lab06\Starter\FindWebServices.

 Add references to required assemblies and import required namespaces

1. Add a reference to the System.Web.Services.dll assembly.
2. Open the following file:

C# Visual Basic .NET

Find.cs Find.vb

3. Import the System.Net namespace.

 Implement the btnTName_Click method

1. Locate the btnTName_Click method.
2. In the Inquire class (which is in the Microsoft.Uddi assembly), set the

following properties:
a. Set the Inquire.Url property to http://glasgow/uddi/api/inquire.asmx.
b. Set the Inquire.AuthenticationMode property to

AuthenticationMode.UddiAuthentication.
c. Create a new instance of the class NetworkCredential. Pass the

following values to the constructor:
Parameter Value

Username MOCUser

Password MOC$Pwd

Domain GLASGOW

d. Assign the instance of NetworkCredential to the
Inquire.HttpClient.Credentials property.

3. Create a FindTModel object.
4. Set the Name property of the FindTModel object to txtTModel.Text.
5. Call the Send method of the FindTModel object and store the returned

TModelList object.
6. Clear the multiline txtResults edit control.
7. Clear the Items collection property of the lstAccess list control.

36 Module 6: Publishing and Deploying XML Web Services

8. For each TModelInfo object in the TModelInfos collection of the
TModelList object, do the following:
a. Append the string representation of the TModelInfo to txtResults.Text.
b. Create a GetTModelDetail object.
c. Add a tModelKey to the TModelKeys collection of the

GetTModelDetail object by using the TModelInfo.TModelKey
property.

d. Call the Send method of the GetTModelDetail object.
e. Store the returned TModelDetail object.
f. For each TModel object in the TModels collection of the TModelDetail

object, do the following:
i. Create a TModelItem object using the

TModel.OverviewDoc.OverviewURL property and the
TModelInfo.TModelKey property.

ii. Add the TModelItem object to the lstAccess.Items collection.

 Implement the btnBKey_Click method

1. Locate the btnBKey_Click method.
2. In the Inquire class (which is in the Microsoft.Uddi assembly), set the

following properties:
a. Set the Inquire.Url property to http://glasgow/uddi/api/inquire.asmx.
b. Set the Inquire.AuthenticationMode property to

AuthenticationMode.UddiAuthentication.
c. Create a new instance of the class NetworkCredential. Pass the

following values to the constructor:
Parameter Value

Username MOCUser

Password MOC$Pwd

Domain GLASGOW

d. Assign the instance of NetworkCredential to the
Inquire.HttpClient.Credentials property.

3. Create a FindBusiness object.
4. Add a tModelKey to the TModelKeys collection of the FindBusiness

object by using txtBusiness.Text.
5. Call the Send method of the FindBusiness object.
6. Store the returned BusinessList object.
7. Clear the multiline txtResults edit control.

 Module 6: Publishing and Deploying XML Web Services 37

8. For each BusinessInfo object in the BusinessList.BusinessInfos collection,
loop through the ServiceInfos collection. For each ServiceInfo object in
this collection, do the following:
a. Create a FindBinding object.
b. Set the ServiceKey property to the value of the ServiceKey property of

the ServiceInfo object.
c. Add a tModelKey to the FindBinding.TModelKeys collection by using

txtBusiness.Text.
The txtBusiness.Text property is populated when the end user double-
clicks an item in the lstAccess list.

d. Call the Send method of the FindBinding object.
e. Store the returned BindingDetail object.
f. Loop through the BindingDetail.BindingTemplates collection to

append the BindingTemplate.AccessPoint.Text property to the
txtResults edit control.

 Implement the btnBName_Click method

1. Locate the btnBName_Click method.
2. In the Inquire class (which is in the Microsoft.Uddi assembly), set the

following properties:
a. Set the Inquire.Url property to http://glasgow/uddi/api/inquire.asmx.
b. Set the Inquire.AuthenticationMode property to

AuthenticationMode.UddiAuthentication.
c. Create a new instance of the class NetworkCredential. Pass the

following values to the constructor:
Parameter Value

Username MOCUser

Password MOC$Pwd

Domain GLASGOW

d. Assign the instance of NetworkCredential to the
Inquire.HttpClient.Credentials property.

3. Create a FindBusiness object.
4. Set the FindBusiness.Name property to the value of txtBusiness.Text.
5. Call the Send method of the FindBusiness object.
6. Store the returned BusinessList object.
7. Clear the multiline txtResults edit control.
8. Loop through the BusinessList.BusinessInfos collection to append the

string representation of each BusinessInfo object to the multiline txtResults
edit control.

38 Module 6: Publishing and Deploying XML Web Services

 Test the application

1. Build and run the application.
2. To find the tModel of the Woodgrove XML Web service:

a. In the Find tModel by… box, type Bank TModel.
b. Click Name.
c. Verify that the Access Points list contains an entry that resembles the

following:
http://computername/woodgrove/bank.asmx?WSDL

d. Verify that the Results box contains an XML description of the tModel
of the Woodgrove XML Web service.

3. To find the tModel of the Contoso XML Web service, repeat step 2 and

provide Micropayment TModel as the name of the tModel.
4. To find the business entity of the Woodgrove XML Web service:

a. In the Find business by… box, type Woodgrove Online Bank.
b. Click Name.
c. Verify that the Results box contains an XML description of the business

entity of the Woodgrove XML Web service.
5. To find the business entity of the Contoso XML Web service, repeat step 4

and provide Contoso Micropayments as the name of the business.
6. To find the business entity of the Woodgrove XML Web Service:

a. In the Find business by… box, type the value of the tModel key
(including the uuid: prefix) for the Woodgrove XML Web Service.

This value can be found in the tModelKeyWoodgrove field in the
frmMain class of the RegisterWebServices project that you completed in
Exercise 1.
or
If you search for a tModel as outlined in steps 2 and 3, you can double-click
on the tModel in the lstAccess listbox. This will populate the txtBusiness
edit control with the associated key.

b. Click TModelKey.
c. Verify that the Results box contains the following:

http://computername/woodgrove/bank.asmx
7. To find the business entity of the Contoso XML Web Service:

a. In the Find business by… box, type the value of the tModel key
(including the uuid: prefix) for the Contoso XML Web Service. This
value can be found in the tModelKeyContoso field in the frmMain
class.

b. Click TModelKey.
c. Verify that the Results box contains the following:

http://computername/contoso/micropayment.asmx
8. Click Exit.

Tip

 Module 6: Publishing and Deploying XML Web Services 39

Review

Overview of UDDI

Publishing an XML Web Service

Finding an XML Web Service

Publishing an XML Web Service on an Intranet

Configuring an XML Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Which specification defines the operations that a UDDI registry supports?
The UDDI Programmer’s API Specification

2. Which UDDI data structure is used to store the endpoint for an XML Web
service?
bindingTemplate

3. How can you use UDDI to determine if two XML Web services are
compatible?
You can compare the tModelKey lists for each of the XML Web
services. If the lists are identical, then the XML Web services are
compatible.

4. What is the disadvantage of hard-coded XML Web service endpoints?
XML Web service consumers will not be able to handle a change in the
location of an XML Web service.

5. How can you localize your XML Web service?
By using resource-only satellite assemblies.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Overview of Security 2

Built-In Authentication 10

Custom Authentication: SOAP Headers 18

Authorization: Role-Based Security 25

Authentication and Authorization with
HttpModules 34

Authorization: Code Access Security 39

Encryption 46

Lab 7.1: Securing XML Web Services 54

Review 70

Course Evaluation 72

Module 7: Securing
XML Web Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001-2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 7: Securing XML Web Services iii

Instructor Notes
This module teaches students how to use the security services of the Microsoft®
Windows® operating system, Microsoft Internet Information Services (IIS), and
the Microsoft .NET Framework and common language runtime to secure XML
(Extensible Markup Language) Web services.

After completing this module, students will be able to:

 Identify the differences between authentication and authorization.
 Explain how to use the security mechanisms that IIS and Windows provide

for authentication.
 Use Simple Object Access Protocol (SOAP) headers for authentication in an

XML Web service.
 Use role-based security and code access security for authorization in an

XML Web service.
 Encrypt the communication between an XML Web service consumer and an

XML Web service.

To teach this module, you need the Microsoft PowerPoint® file 2524B_07.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Practice all of the demonstrations.
 Review the walkthrough code files in the <install folder>\

Democode\<language>\Mod07.
 Complete the lab.

Presentation:
120 Minutes

Lab:
60 Minutes

Required Materials

Preparation Tasks

iv Module 7: Securing XML Web Services

The PowerPoint file for this module contains macros that allow you to switch
the displayed code between C# and Microsoft Visual Basic® .NET. To run the
macros, you must install the full version of PowerPoint.

To switch a single slide to C#, perform the following steps:

1. Open the PowerPoint deck in PowerPoint.
2. On the Slide Show menu, click View Show.
3. Locate the slide that you want to switch to C#.
4. Click C# on the slide.

To switch a single slide to Visual Basic .NET, perform the following steps:

1. Open the PowerPoint deck in PowerPoint.
2. On the Slide Show menu, click View Show.
3. Locate the slide that you want to switch to Visual Basic .NET.
4. Click Visual Basic .NET on the slide.

You can switch a slide to C# or Visual Basic .NET at any time while
displaying the slides. Just click C# or Visual Basic .NET to switch between the
languages.

Dual-language
PowerPoint macros

Note

 Module 7: Securing XML Web Services v

Module Strategy
Use the following strategy to present this module:

 Overview of Security
Ensure that students understand the difference between authentication and
authorization. Also, explain why encryption might be necessary even with
authenticated clients. Explain that the .NET Framework can assist with
authorization and authentication. Explain the limitations of using Windows
authentication and the IIS-supported authentication mechanisms.

 Built-In Authentication
Explain the authentication support that is built into the Windows operating
system and IIS. Explain the scenarios where Windows authentication is
appropriate and where it is inappropriate for XML Web services.

 Custom Authentication: SOAP Headers
Explain how students can use SOAP headers to send authentication
information to an XML Web service. Explain the mechanics of using SOAP
headers. Be sure to explain how students can use SOAP headers to
communicate information from a client to an XML Web service or from an
XML Web service to a client. Also, point out that students can make a
SOAP header optional for an XML Web service method.

 Authorization: Role-Based Security
In this module you will explain how to implement a custom role-based
authorization mechanism. You need to explain why Windows discretionary
access control list (DACL) based authorization is often not appropriate in
XML Web service scenarios. Focus on how students can use
GenericPrincipal and GenericIdentity objects to implement custom
authorization mechanism and how this would be useful in the context of
XML Web services.

 Authorization: Code Access Security
Explain why code access security is required and how students can use it in
the context of XML Web services. Ensure that you explain how permissions
are verified at load time and run time. Emphasize how the deployment
environment for an XML Web service can affect the permissions that are
granted to it.

 Encryption
Explain why encryption of the communication between an XML Web
service and a consumer of the XML Web service might be necessary.
Briefly discuss Secure Socket Layer (SSL), describing the performance
impact. Explain how to use SOAP extensions to encrypt various parts of a
SOAP message. In this context, explain the changes that students need to
make to the XML Web service proxy. Emphasize that because the proxies
are generated, any editing of the proxy class will be lost if the class is
regenerated.

 Module 7: Securing XML Web Services 1

Overview

Overview of Security

Built-In Authentication

Custom Authentication: SOAP Headers

Authorization: Role-Based Security

Authorization: Code Access Security

Encryption

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Just like any Web-based application, you must make XML (Extensible Markup
Language) Web services secure from accidental or deliberate misuse. There are
three aspects of security that this module addresses in the context of XML Web
service—authentication, authorization, and secure communication.

To adequately secure an XML Web service you must understand how to use the
Microsoft® Windows® operating system and Microsoft Internet Information
Services (IIS) to authenticate XML Web service consumers, how the Microsoft
.NET Framework and common language runtime can assist in the task of
authorization, and techniques for securing the messages that are exchanged
between the XML Web service and a consumer by encrypting all or part of the
messages.

After completing this module, you will be able to:

 Identify the differences between authentication and authorization.
 Explain how to use the security mechanisms that IIS and Windows provide

for authentication.
 Use SOAP headers for authentication in an XML Web service.
 Use role-based security and code access security for authorization in an

XML Web service.
 Encrypt the communication between an XML Web service consumer and an

XML Web service.

Introduction

Objectives

2 Module 7: Securing XML Web Services

Overview of Security

Authentication vs. Authorization

Types of Authentication

Types of Authorization

Methods of Encryption

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before looking at how to implement authentication, authorization, and
encryption in an XML Web service, you must understand some of the concepts
and terminology that are related to security. Also, you will look at some of the
options that are available for providing authentication, authorization, and
encryption in Microsoft ASP.NET Web Service applications.

 Module 7: Securing XML Web Services 3

Authentication vs. Authorization

Authentication

Process of finding and verifying the identity of a user

Performed against an authentication authority

Authorization

Process of determining if a user’s request to perform
some action is allowed to proceed

Occurs after authentication

Based on user’s identity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you can secure an XML Web service, you must understand the
differences between authentication and authorization.

Authentication is the process of discovering and verifying the identity of a user
by examining the user’s credentials and then validating those credentials against
some authentication authority. Currently, applications use a variety of
authentication mechanisms, and you can use some of these mechanisms with
the .NET Framework role-based security. Examples of commonly used
mechanisms include the authentication mechanisms of the operating system
(specific examples include NTLM and Kerberos version 5 authentications),
Microsoft Passport, and application-defined mechanisms.

Authorization is the process of determining whether a user is allowed to
perform a requested action. Authorization occurs after authentication and uses
information about a user’s identity and roles to determine the resources that a
user can access. You can use .NET Framework role-based security to
implement authorization.

Authentication

Authorization

4 Module 7: Securing XML Web Services

Types of Authentication

IIS authentication

ASP.NET authentication

Forms authentication

Passport authentication

Custom SOAP header authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The first step in implementing security in any application is to authenticate
users. Implementing a robust authentication mechanism is not easy, and if
possible it is recommended that you use the authentication services that the
platform provides. In this case, the platform you are looking at consists of the
Windows operating system, IIS, and the .NET Framework and common
language runtime.

IIS offers the following three mechanisms for authentication:

 Basic authentication
 Digest authentication
 Integrated Windows authentication

You will learn the details of these authentication mechanisms and how to use
them to secure an XML Web service later in this module.

ASP.NET supports two new authentication mechanisms, which ASP did not
support:

 Forms authentication
 Passport authentication

Forms authentication is a mechanism by which unauthenticated requests are
redirected to a Hypertext Markup Language (HTML) form using Hypertext
Transfer Protocol (HTTP) client-side redirection. A user provides credentials in
the form and submits it. If the Web application authenticates the request, the
system issues a form, usually to a browser, which contains the credentials or a
key for reacquiring the identity of the user. Subsequent requests are issued with
the form in the request headers. An ASP.NET handler authenticates and
authorizes these requests by using the validation method that the application
developer specifies.

Introduction

IIS authentication

ASP.NET authentication

Forms authentication

 Module 7: Securing XML Web Services 5

Passport is a centralized authentication service that Microsoft provides and that
offers a single logon feature and core profile services for member Web sites.

Both Forms authentication and Passport authentication are mentioned for the
sake of completeness. You cannot easily use either of these mechanisms within
an XML Web service. Both of these mechanisms present a logon screen that
requires interaction with an end user, and both support logon timing out. But an
XML Web service consumer cannot programmatically process the logon screen
or handle a timed-out logon condition.

Because it is not recommended that you use Forms and Passport authentication
within XML Web services, this module does not cover these authentications in
any further detail. It may become possible to use Passport for XML Web
service authentication in the future.

If you do not want to use built-in authentication mechanisms, then you can
implement a custom authentication mechanism instead. You might not want to
pass user credentials as part of the parameter list for every method in your XML
Web service. In such a situation, you would need another way to pass the
credentials. Simple Object Access Protocol (SOAP) headers are a convenient
way to accomplish this task. An XML Web service consumer can add user
credentials to the SOAP header. The XML Web service can then retrieve this
information to perform custom authentication.

Passport authentication

Custom SOAP header
authentication

6 Module 7: Securing XML Web Services

Types of Authorization

Windows NT security

Role-based security

Code access security

Configuring authorization in an ASP.NET application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ASP.NET environment, the .NET Framework, and the Windows platform
provide several techniques for authorizing access to a system resource. The
resources that can be accessed are the intersection of resources that are
authorized to:

 A user by the Microsoft Windows NT® security system.
 The assembly by code access security.
 Optionally, the user’s role by role-based security.

The folder that contains the root of an ASP.NET application is the root of a
logical Universal Resource Identifier (URI) namespace. You can configure an
ASP.NET application to further restrict access to the application’s URI
namespace based on user identity or role. For example, you could restrict access
to subfolders below your application root.

This topic examines each of these authorization techniques in more detail.

Microsoft Windows NT provides security features that are based on user
identity, and that prevent unauthorized access to system resources. These
features are user authentication and object-based access control. It is important
to note that with Windows security, after a user is authenticated, most code that
that user runs has access to all of the resources that he or she can access.

Windows administrators can create discretionary access control lists (DACL)
that control access to resources or objects on a network. Administrators can
assign security descriptors that contain DACLs that list the users and groups
that are granted access to objects such as a files, printers, or services.

Role-based security is a security model where the specific identity of the user is
not important. What is important are the logical roles that a user can assume.
Role-based security uses the roles that are associated with a user to make
decisions about security authorizations.

Introduction

Windows NT security

Role-based security

 Module 7: Securing XML Web Services 7

Code access security is a security mechanism that you can use to prevent code
from accessing protected resources. Just like role-based security, code access
security requires that the user first be authenticated before code access security
can operate.

You can further control authorization to parts of an ASP.NET application’s URI
namespace with the <authorization> section of an ASP.NET application
configuration file (Web.config). To use ASP.NET authorization, you place
either a list of users or roles, or both, in the allow or deny elements of the
<authorization> section of Web.config.

To define the conditions for accessing a particular folder, place a Web.config
file that contains an <authorization> section in that folder. The conditions set
for that folder also apply to its subdirectories, unless configuration files in a
subdirectory override them. The syntax for the <authorization> section is as
follows:

<[allow|deny] [users] [roles] [verbs] />

For an allow or deny element, you must specify either the users or the roles
attribute. You can include both attributes, but both are not required together in
an allow or deny element. The verbs attribute is optional.

The allow and deny elements grant and revoke access, respectively. Each of
these elements support three attributes, which are defined in the following table.

Attribute Description

Roles Identifies a targeted role for this element.

Users Identifies the targeted identities for this element.

Verbs Defines the HTTP verbs to which the action applies, such as
GET, HEAD, or POST.

The following example grants access to Mary, while denying it to Adam and all
anonymous users (“?” indicates anonymous users):

<configuration>
 <system.web>
 <authorization>
 <allow users="CONTOSO\Mary"/>
 <deny users="CONTOSO\Adam" />
 <deny users="?" />
 </authorization>
...

Code access security

Configuring
authorization in an
ASP.NET application

8 Module 7: Securing XML Web Services

Methods of Encryption

Choosing what to encrypt

Entire message,

Only body or header of message

Only selected messages

Partitioning

Some encryption options

SSL

Custom SOAP extensions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although authentication and authorization together prevent unauthorized users
from accessing system resources, neither prevents the interception of the data
that is exchanged between the XML Web service consumer and the XML Web
service. You use encryption to ensure the secure transfer of data.

Encryption is expensive and therefore you must take care in choosing the
communication that must be encrypted. There are a number of options that you
can consider:

 Encrypt the whole message
Although this is relatively easy to do, it provides very poor performance
because it is unlikely that every communication requires absolute privacy.

 Encrypt only the body of messages
This is less computationally expensive than encrypting everything, but may
still be more than what is required.

 Encrypt only the headers of messages
In XML Web services, authentication information is often provided in
SOAP headers. You would not want this information to be visible except to
the intended recipient, so encrypting the headers is a relatively cheap
solution.

 Encrypt only selected messages
This requires the most work from the developer, but generally provides a
well-tailored tradeoff between security and performance.

Choosing what to
encrypt

 Module 7: Securing XML Web Services 9

 No encryption
If the communicated data is not sensitive, you should not incur a
performance penalty by encrypting any part of the communication.

 Partition your XML Web service
The idea here is to factor the service interface into groups of messages that
require encryption and those that do not. You can then implement the
interface by using two XML Web services, one for the methods that require
encryption and one for the methods that do not. Using two XML Web
services allows you to easily secure only the methods that require
encryption, and avoid a performance penalty for those methods that do not.

There are many different options for encrypting communications, two of which
are: Secure Socket Layer (SSL) and custom SOAP extensions.

 Secure Socket Layer
Using SSL is a simple way to encrypt the entire communication between an
XML Web service consumer and an XML Web service.

 Custom SOAP extensions
If you need more detailed control, you can implement a custom SOAP
extension to encrypt only sensitive data. You can transfer data that is not
sensitive unencrypted, therefore providing better performance than SSL.

Some encryption
options

10 Module 7: Securing XML Web Services

Built-In Authentication

Basic and Digest Authentication

Integrated Windows Authentication

Using IIS Authentication on a Web Server

*****************************ILLEGAL FOR NON-TRAINER USE******************************

IIS provides a number of built-in authentication mechanisms that XML Web
services can use. To use any of the IIS authentication mechanisms, you must
configure IIS and set the correct authentication mode in the Web.config file of
an ASP.NET Web Service. For an XML Web service to authenticate its client,
the client must programmatically provide the required user name and password
credentials.

In this section, you will examine Basic, Digest, and Integrated Windows
authentication.

 Module 7: Securing XML Web Services 11

Basic and Digest Authentication

Basic authentication

IIS prompts for a valid Windows user name/password

Credentials sent via clear-text – not secure!

Basic authentication with SSL hides password

Digest authentication

Credentials hashed

Supported by HTTP 1.1 clients only

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you learn how to use Basic and Digest authentication to secure an XML
Web service, it is important to understand how these authentication
mechanisms work.

The Basic authentication mechanism is a widely used, industry-standard
method for collecting user name and password information. Basic
authentication works in the following manner:

1. A Web browser on a client computer displays a dialog box where users can
enter their previously assigned Windows 2000 account user names and
passwords.

2. The browser then attempts to establish a connection with a Web server by
using the supplied credentials. (The password is Base64 encoded before it is
sent over the network.)

3. If the server rejects the credentials, the browser repeatedly displays the
dialog box until the user either enters a valid user name and password, or
closes the dialog box.

4. After the server verifies that the user name and password correspond to a
valid Windows user account, a connection is established.

The advantage of Basic authentication is that it is part of the HTTP
specification, and most browsers support it. The disadvantage is that Web
browsers using Basic authentication transmit passwords in an unencrypted
form. By monitoring communications on your network, someone could easily
intercept and decipher these passwords by using publicly available tools.
Therefore, Basic authentication is not recommended unless used in conjunction
with Secure Socket Layer (SSL) or the connection between the client and the
Web server is secure, such as a direct cable connection or a dedicated line.

Basic authentication

12 Module 7: Securing XML Web Services

Not

Integrated Windows authentication takes precedence over Basic
authentication. The browser will choose Integrated Windows authentication and
will attempt to use the current Windows logon information before prompting
the user for a user name and password.

The most recent industry standard development in Web security is the Digest
authentication specification. Digest authentication is slated to be a replacement
for the Basic authentication. The World Wide Web Consortium (W3C)
endorsed Digest authentication to fix the security gaps in the Basic
authentication mechanism.

Digest authentication uses a hashing algorithm to form a hexadecimal
representation of a combination of user name, password, the requested resource,
the HTTP method, and a randomly-generated value that the server returns.

Hashing is a one-way process of passing authentication credentials. The result
of this process is called a hash, or message digest, and it is not feasible to
decrypt it. That is, the original text cannot be deciphered from the hash.

Digest authentication is not as secure as Kerberos or a client-side key
implementation, but it does represent a stronger form of security than Basic
authentication.

Digest authentication is an HTTP 1.1 specification, which requires that a client
be compliant with this specification. Because a hashing function must encrypt
the user name and password, the browser must perform the hashing prior to
submitting it to the server. If an IIS 5.0 virtual directory has Digest
authentication enabled, a request from a browser that is not HTTP 1.1-
compliant will generate an error in the client request. Microsoft Internet
Explorer 4.0 was the first HTTP 1.1-compliant browser available from
Microsoft.

Note

Digest authentication

 Module 7: Securing XML Web Services 13

Integrated Windows Authentication

Characteristics
Previously called NTLM or Windows NT
Challenge/Response authentication
Secure form of authentication because the user name
and password are not sent across the network

Limitations
Not all XML Web service clients support this
authentication method
Integrated Windows authentication does not work over
HTTP proxy connections
Additional TCP ports have to be opened in the firewall

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Many of the XML Web services that are created may not be publicly accessible.
For such XML Web services, it is viable to use Integrated Windows
authentication to secure the XML Web service.

Integrated Windows authentication was previously known as NTLM or
Windows NT Challenge/Response authentication. Integrated Windows
authentication is a secure form of authentication because the user name and
password are not sent across the network. When you enable Integrated
Windows authentication, the client browser proves its identity by sending a
hash of its credentials to the server.

Integrated Windows authentication can use both the Kerberos version 5 (v5)
authentication protocol and its own challenge/response authentication protocol.
If Active Directory® directory service is installed on the server, and the browser
is compatible with the Kerberos v5 authentication protocol, both the Kerberos
v5 protocol and the challenge/response protocol are used; otherwise only the
challenge/response protocol is used.

The Kerberos v5 protocol is a network authentication protocol. It is
designed to provide strong authentication for client/server applications by using
secret-key cryptography. A free implementation of this protocol is available
from the Massachusetts Institute of Technology. Kerberos protocol is also
available in many commercial products, including Microsoft Windows 2000.

For Kerberos v5 authentication to be successful, both the client and server must
have a trusted connection to a Key Distribution Center (KDC) and be Directory
Services compatible. For more information about the Kerberos protocol, see the
Windows 2000 documentation.

Characteristics

Note

14 Module 7: Securing XML Web Services

Although integrated Windows authentication is secure, it has its limitations too.

 Not all XML Web service clients support integrated Windows
authentication. However, XML Web service consumers using
SoapHttpClientProtocol-derived proxy classes (this includes proxy classes
created with Wsdl.exe or Microsoft Visual Studio® .NET) support integrated
Windows authentication.

 Integrated Windows authentication does not work over HTTP proxy
connections.

 Additional TCP ports have to be opened in the firewall, because Integrated
Windows authentication does not use port 80.

For these reasons, integrated Windows authentication is best suited for an
intranet environment, where both client (user) and Web server computers are in
the same domain, and where administrators can ensure that all clients will be
compliant.

Limitations

 Module 7: Securing XML Web Services 15

Using IIS Authentication on a Web Server

Configuring authentication in IIS

Configuring an ASP.NET XML Web service

Accessing user identity in an XML Web service

Providing credentials

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To use IIS authentication to secure an ASP.NET XML Web Service, you must
configure IIS in addition to the XML Web service.

When securing an XML Web service, you can use any of the built-in IIS
authentication mechanisms. The following illustration shows the dialog box in
the Internet Service Manager from where you can select the authentication
mechanism that you want to use:

Configuring
authentication in IIS

16 Module 7: Securing XML Web Services

If you select Basic authentication, you must ensure that the accounts that can
access an XML Web service are granted permission to log on to the Web server
that is hosting the service. This is necessary because Basic authentication
impersonates a local user, and by default, domain accounts do not have
permission to log on to a Web server.

If you select Digest authentication, the Windows account that you configure
must be an account in a domain. The domain controller must also have a plain
text copy of the password that is used because it must perform a hashing
operation and compare the results with the hash that the browser sends.

If you select Integrated Windows authentication, the user will not be prompted
for credentials unless the authentication fails. Remember that Integrated
Windows authentication does not work across proxy servers or other firewall
applications.

To use Windows (Basic, Digest, or Integrated Windows) authentication with an
XML Web service, the authentication mode in the Web.config file must be set
to Windows, as shown in the following code:

<configuration>
 <system.web>
 <authentication mode = “Windows”/>
...

Code in XML Web service methods can access identity information about an
authenticated user by accessing the Context.User.Identity property. The
following sample code shows how to access the authenticated user’s name in an
XML Web service method.

C#

[WebMethod]
public string HelloWorld()
{
 return “Hello” + Context.User.Identity.Name;
}

Microsoft Visual Basic® .NET

Public<WebMethod()> _
Function HelloWorld() As String
 Return "Hello" + Context.User.Identity.Name
End Function 'HelloWorld

Proxy classes that are created by using the Web Services Description Language
(WSDL) tool (Wsdl.exe), or created when adding a Web reference in Visual
Studio .NET, derive from the SoapHttpClientProtocol class. These classes
have a Credentials property, which can be used to obtain or set security
credentials for XML Web service client authentication.

To use the Credentials property, an XML Web service client must create an
instance of a class implementing the ICredentials interface, such as the
NetworkCredential class. Then the client must set credentials that are specific
to the authentication mechanism before making a call to an XML Web service
method.

Configuring an ASP.NET
XML Web service

Accessing user identity
in an XML Web service

Providing credentials

 Module 7: Securing XML Web Services 17

You can use the NetworkCredential class to set authentication credentials by
using the Basic, Digest, or Integrated Windows authentication mechanisms. If
authentication fails, the call to the XML Web service method will throw an
exception of type System.Net.WebException.

The following code sample shows how to authenticate from a client application.

1. HelloService service = new HelloService();
2. //Create a NetworkCredential object
3. ICredentials credentials = new

NetworkCredential("Administrator", "password",
"woodgrovebank.com”);

4. //Set the client-side credentials using the Credentials
property

5. service.Credentials = credentials;
6. //Invoke the XML Web service method
7. string s;
8. try {
9. s = service.HelloWorld();
10. } catch
11. Console.WriteLine(“Authentication failed”);
12. }

1. Dim service As New HelloService()
2. 'Create a NetworkCredential object
3. Dim credentials = New NetworkCredential("Administrator",

"password", "woodgrovebank.com”);")
4. 'Set the client-side credentials using the Credentials

property
5. service.Credentials = credentials '
6. 'Invoke the XML Web service method
7. Dim s As String
8. Try
9. s = service.HelloWorld()
10. Catch
11. Console.WriteLine(“Authentication failed”)
12. End Try

The functionality of the preceding code can be described as follows:

 In line 1, an instance of an XML Web service proxy class is created.
 In line 3, a NetworkCredentials object is created and a user name,

password, and domain information are supplied.
 In line 5, the credentials object is assigned to the Credentials property of

the XML Web service proxy.
 In lines 8 through 12, the call to an XML Web service method is enclosed in

a try block, so that if authentication fails, the System.Net.WebException
exception can be caught.

C#

Visual Basic .NET

18 Module 7: Securing XML Web Services

Custom Authentication: SOAP Headers

Using a SOAP Header in an XML Web Service

Using a SOAP Header in an XML Web Service
Consumer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Windows authentication works well for intranet scenarios in which you are
authenticating a user in your own domain. If your XML Web service has
Windows authentication mode set in Web.config, then you must create a local
or domain account for each user. This is not a practical solution for applications
with large numbers of users, and it is impossible for applications on the
Internet.

For the Internet, you probably want to perform custom authentication and
authorization, perhaps against a Structured Query Language (SQL) database. In
that case, you should pass custom credentials (such as the user name and
password) to your XML Web service and let it handle the authentication and
authorization.

A convenient way to pass extra information along with a request to an XML
Web service is a SOAP header. The XML Web service consumer adds user ID
and password information to the SOAP header. The XML Web service methods
retrieve this information and use it to perform custom authentication.

The only significant issue that you must resolve when using SOAP headers to
transfer credentials is security. You can resolve this issue by strongly
encrypting the identity information in the SOAP header.

 Module 7: Securing XML Web Services 19

Using a SOAP Header in an XML Web Service

Derive a class from SoapHeader

Add a public field of the SoapHeader-derived type

Apply the SoapHeader attribute

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This topic examines how you can define a SOAP header for an XML Web
service and use that header in the XML Web service method. The following
code sample demonstrates this functionality.

1. using System.Web.Services;
2. using System.Web.Services.Protocols;
3.
4. public class AuthHeader : SoapHeader
5. {
6. public string Username;
7. public string Password;
8. }
9. public class AccountService : WebService
10. {
11. public AuthHeader sHeader;
12. [WebMethod]
13. [SoapHeader("sHeader",Required=false)]
14. public decimal GetAcctBalance(string acctID) {
15. ...
16. }
17. }

C#

20 Module 7: Securing XML Web Services

1. Imports System.Web.Services
2. Imports System.Web.Services.Protocols
3.
4. Public Class AuthHeader
5. Inherits SoapHeader
6. Public Username As String
7. Public Password As String
8. End Class 'AuthHeader
9. Public Class AccountService
10. Inherits WebService
11. Public sHeader As AuthHeader
12. <WebMethod(), _
13. SoapHeader("sHeader", Required := False)> _
14. Public Function GetAcctBalance(acctID As String) As Decimal
15. '…
16. End Function 'GetAcctBalance '
17. End Class 'AccountService

The functionality that the preceding code implements can be described as
follows:

 In lines 4 through 8, a class named AuthHeader, which inherits from
SoapHeader, is defined.

 In line 11, a field of type AuthHeader is added to the class that implements
an XML Web service.

 In line 13, the SoapHeader attribute is applied to the XML Web service
method.
Note that the name provided to the attribute constructor is the name of the
field that was added in line 11.

XML Web services set the value of a header field for input headers before a
method is called, and retrieve the value for output headers when the method
returns.

To implement a custom authentication scheme by using SOAP headers, you
must also disable other authentication types in the Web.config file for your
XML Web service, as shown in the following code:

<configuration>
 <system.web>
 <authentication mode = “None”/>
 ...
 </system.web>
 ...
</configuration>

Visual Basic .NET

Code explanation

Disabling other
authentication types

 Module 7: Securing XML Web Services 21

Using a SOAP Header in an XML Web Service Consumer

SOAP headers in WSDL

XML Web service proxies and SOAP headers

Using SOAP headers when calling XML Web services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the previous topic, you learned how to define a SOAP header and use it in an
XML Web service method. In this topic, you will learn how a client can
populate a SOAP header.

The SOAP header elements that an XML Web service requires are specified in
the WSDL contract for the XML Web service. These elements are made
available to a client when a proxy class is created from WSDL.exe or created by
adding a Web reference within Visual Studio .NET.

The following partial code listing shows how a SOAP header is defined in a
WSDL file:

SOAP headers in WSDL

22 Module 7: Securing XML Web Services

1. <?xml version="1.0" encoding="utf-8" ?>
2. <definitions namespaces deleted for brevity >
3. ...
4. - <types>
5. ...
6. <s:element name="WoodgroveAuthInfo"
7. type="s0:WoodgroveAuthInfo" />
8. - <s:complexType name="WoodgroveAuthInfo">
9. - <s:sequence>
10. <s:element minOccurs="1" maxOccurs="1" name="Username"
11. nillable="true" type="s:string" />
12. <s:element minOccurs="1" maxOccurs="1" name="Password"
13. nillable="true" type="s:string" />
14. </s:sequence>
15. </s:complexType>
16. - <s:element name="GetAccount">
17. ...
18. </s:element>
19. - <s:element name="GetAccountResponse">
20. ...
21. </s:element>
22. ...
23. </types>
24. - <message name="GetAccountSoapIn">
25. <part name="parameters" element="s0:GetAccount" />
26. </message>
27. - <message name="GetAccountSoapOut">
28. <part name="parameters" element="s0:GetAccountResponse" />
29. </message>
30. - <message name="GetAccountWoodgroveAuthInfo">
31. <part name="WoodgroveAuthInfo"
32. element="s0:WoodgroveAuthInfo" />
33. </message>
34. ...
35. - <portType name="Woodgrove Online BankSoap">
36. ...
37. - <operation name="GetAccount">
38. <input message="s0:GetAccountSoapIn" />
39. <output message="s0:GetAccountSoapOut" />
40. </operation>
41. ...
42. </portType>
43. - <binding name="Woodgrove Online BankSoap"
44. type="s0:Woodgrove Online BankSoap">
45. <soap:binding
46. transport="http://schemas.xmlsoap.org/soap/http"
47. style="document" />
48. ...
49. - <operation name="GetAccount">
50. <soap:operation soapAction="http://tempuri.org/GetAccount"
51. style="document" />
52. - <input>
53. <soap:body use="literal" />
54. <soap:header message="s0:GetAccountWoodgroveAuthInfo"
55. part="WoodgroveAuthInfo" use="literal" />
56. </input>

 Module 7: Securing XML Web Services 23

(continued)
57.
58. - <output>
59. <soap:body use="literal" />
60. </output>
61. </operation>
62. ...
63. </binding>
64. - <service name="Woodgrove Online Bank">
65. <documentation>Woodgrove banking services</documentation>
66. - <port name="Woodgrove Online BankSoap"
67. binding="s0:Woodgrove Online BankSoap">
68. <soap:address location="http://www.woodgrovebank.com/
69. woodgrove/bank.asmx" />
70. </port>
71. ...
72. </service>
73. </definitions>

The definitions that the preceding code implements can be described as follows:

 In lines 8 through 15, a complex type named WoodgroveAuthInfo is
defined. The type has two child elements, named Username and Password.

 In lines 6 through 7, an element named WoodgroveAuthInfo is of type
WoodgroveAuthInfo.

 In lines 30 through 33, a message named GetAccountWoodgroveAuthInfo
is defined.

 In lines 54 through 55, a SOAP header whose message is the
GetAccountWoodgroveAuthInfo is added to the input communication of
the GetAccount operation.

The following code shows part of the resulting proxy code that is generated for
the previous WSDL file.

C#

[SoapHeaderAttribute("WoodgroveAuthInfoValue",
Required=false)]
//...other attributes omitted for brevity...
public Acct GetAccount(int acctID) {
...

Visual Basic

<SoapHeaderAttribute("WoodgroveAuthInfoValue", Required :=
False)> _

//...other attributes omitted for brevity...
Public Function GetAccount(int acctID) As Acct
...

In the preceding code, an attribute of type SoapHeaderAttribute is applied to
the proxy method. Because the Required property is false (False for Visual
Basic .NET), the SOAP header is optional. If the Required parameter is not
specified, or has the value true (True for Visual Basic .NET), then the header
is required to call this method.

XML Web service
proxies and SOAP
headers

24 Module 7: Securing XML Web Services

After the proxy is generated, the consumer then directly sets the header for the
proxy class before making a method call that requires it. The following example
shows how the header is populated with credential details.

C#

WoodgroveOnlineBank bank = new WoodgroveOnlineBank();
WoodgroveAuthInfo authInfo = new WoodgroveAuthInfo ();
authInfo.Username = "Adam";
authInfo.Password = "password";
bank.WoodgroveAuthInfoValue = authInfo;
Acct acct = bank.GetAccount(1);

Visual Basic .NET

Dim bank As New WoodgroveOnlineBank()
Dim authInfo As New WoodgroveAuthInfo()
authInfo.Username = "Adam"
authInfo.Password = "password"
bank.WoodgroveAuthInfoValue = authInfo
Dim acct As Acct = bank.GetAccount(1)

Using SOAP headers
when invoking XML Web
services

 Module 7: Securing XML Web Services 25

Authorization: Role-Based Security

Identities

Principals

Using WindowsIdentity and WindowsPrincipal Objects

Using GenericIdentity and GenericPrincipal Objects

Authentication and Authorization with HttpModules

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are many different ways in which you can perform authorization. The
.NET Framework and the common language runtime support two security
models: role-based security and code access security. In this section, you will
examine the role-based security model and how you can use it in XML Web
services to implement authorization.

Microsoft Component Object Model (COM+) services introduced the concept
of role-based security. COM+ services allow application developers to define
roles which are meaningful within an application. In COM+ services role-based
security, Windows accounts are added to roles. Adding or removing accounts to
roles is done when configuring a COM+ application and this involves no code
modifications. You use roles to control access to application functionality. For
example, a human resources application can define the roles Manager and
Employee. Users in the Managers role might have access to a
GetEmployeeSalary() method, whereas users in the Employee role might not.

The .NET Framework extends the idea of role-based security by using two
concepts extensively: principals and identities. This section introduces the
Principal and Identity classes and explains how to use these classes in an
XML Web service to verify the role of a user and provide access to resources
that are based on that role.

You can use role–based security in conjunction with built-in authentication
mechanisms like IIS Basic or Digest authentication, or in conjunction with a
custom authentication mechanism. For example, you may want to authenticate a
user by querying a database.

26 Module 7: Securing XML Web Services

Identities

Windows identity

Generic identity

Custom identity

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An identity object encapsulates information about a user or an entity that has
been validated. Some examples of the encapsulated information are the user
name and authentication type. The .NET Framework provides four identity
types:

 FormsIdentity
 GenericIdentity
 PassportIdentity
 WindowsIdentity

Currently, you can use only GenericIdentity and WindowsIdentity in
ASP.NET Web Services. You can also implement your own identity types.

The WindowsIdentity class represents the identity of a user that is based on a
method of authentication that Windows supports. A Windows identity provides
the ability to impersonate a user other than one who is associated with the
thread that is currently executing, so that resources can be accessed on behalf of
that user.

The GenericIdentity class represents the identity of a user based on a custom
authentication method, which an application defines. For example, an
application can perform a database lookup to authenticate a user.

The GenericIdenity class can only store an authenticated user’s name. If you
decide that you need an identity that can hold custom-user information, you can
create a class that implements the IIdentity interface. This kind of class is
known as a custom identity.

Introduction

Windows identity

Generic identity

Custom identity

 Module 7: Securing XML Web Services 27

Principals

Principal represents the security context under which
code is running
What are roles?

Named set of principals that have the same privileges
with respect to security

Windows principal
Generic principal
Custom principal
Principals and call context

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A principal object represents the security context under which code is running.
This includes the identity of the user as represented by an associated identity
object, and the roles associated with the user. A principal can be a member of
one or more roles. Therefore, applications can use role membership to
determine whether a principal is authorized to perform a requested action.

A role is a named set of principals that have the same privileges with respect to
security (such as a teller or a manager). A role defines a group of related users
of an application. For example, a banking application might impose limits on
the withdrawal amounts that can be transacted, based on a role. In this scenario,
tellers might be authorized to process withdrawals that are less than a specified
amount, while only managers are allowed to process withdrawals in excess of
that amount.

Role-based security in the .NET Framework supports two principal types:

 WindowsPrincipal
 GenericPrincipal

You can also define your own principal types.

The WindowsPrincipal class represents Windows users and their roles. The
roles are the Windows groups that a user is a member of.

The GenericPrincipal class represents users and roles that exist independent of
Windows users and their roles. Essentially, the generic principal provides a
simple way for an application to perform custom authentication and
authorization.

A GenericPrincipal stores an identity and a list of roles to which the identity
belongs. If you need to store application-specific role information, you can
create a class that implements the IPrincipal interface. Any user-defined class
that implements the IPrincipal interface is known as a custom principal.

Introduction

What are roles?

Windows principal

Generic principal

Custom principal

28 Module 7: Securing XML Web Services

All .NET Framework applications are hosted in an application domain. Each
application domain has an object of type CallContext created for it.

A principal object is bound to a call context. When a new thread is created, the
call context will flow to the new thread. This means that the principal object
reference is automatically copied to the new thread’s call context. As a result,
there is always a principal and identity available on whichever thread is the
current thread to allow you to perform application-level authentication and
authorization.

In role-based security, you can base the identity (and the principal it
helps to define) on either a Windows account or the identity can be a custom
identity unrelated to a Windows account. .NET applications can make
authorization decisions based on a principal's identity or role membership, or
both.

Principals and call
context

Note

 Module 7: Securing XML Web Services 29

Using WindowsIdentity and WindowsPrincipal Objects

Using the Name property of the Identity object to control
access to code based on Windows account

Using the IsInRole method to control access to code

if (User.Identity.Name == “CONTOSO\\fred")
// Permit access to some code.

if (User.Identity.Name == “CONTOSO\\fred")
// Permit access to some code.

if (User.IsInRole(“CONTOSO\\Administrators"))
// Permit access to some code.

if (User.IsInRole(“CONTOSO\\Administrators"))
// Permit access to some code.

Visual BasicC#
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can control access to code based on the name of a user’s identity, as shown
in the first example on the slide. When an XML Web service uses Windows
authentication, the authentication module attaches a WindowsPrincipal object
to the application context. Also, the authentication module assigns a
WindowsPrincipal object to the User property of the HttpContext class. The
Identity property of this WindowsPrincipal references a WindowsIdentity
object that represents a user’s logon name and the user’s domain.

For WindowsPrincipal objects, a role maps to a Windows group, including the
domain. When checking for role membership in built-in Windows groups, you
can use the WindowsBuiltInRole enumeration.

The following example uses a hard-coded string in the call to determine if a
user is a member of the built-in Administrators role.

C#

if (User.IsInRole(“BUILTIN\\Administrators”)) {
// only administrators can do this
}

Visual Basic .NET

If User.IsInRole("BUILTIN\Administrators") Then
 ' only administrators can do this
End If

Introduction

C# and Visual Basic
.NET code examples

30 Module 7: Securing XML Web Services

You can also verify the role membership of a principal object by calling the
IsInRole method on that object, as shown in the preceding code. The preceding
code works, but it cannot be easily localized. The following example uses the
WindowsBuiltInRole enumeration instead, and can be more easily localized.

C#

if (User.IsInRole(WindowsBuiltInRole.Administrator)
{
// only administrators can do this
}

Visual Basic .NET

If User.IsInRole(WindowsBuiltInRole.Administrator) Then
 ' only administrators can do this
End If

The following XML Web service method returns identity and role information
about an authenticated user.

C#

using System.Security.Principals;
// Required for role-based security
...
[WebMethod]
public string HelloWorld()
{
 // not required, but just to show the User property is an
Identity

 IIdentity identity = Context.User.Identity;
 string name = User.Identity.Name;
 bool isAuth = User.Identity.IsAuthenticated;
 string identType = User.Identity.AuthenticationType;
 bool isAdmin = User.IsInRole.(“Domain\\Administrators”);

 StringBuilder s;
 s.Append("Hello " + name + ", ");
 s.Append(isAuth ? "authenticated" : "not authenticated");
 s.Append(" using " + identType + “, “);
 s.Append(“you are ”);
 s.Append(isAdmin ? “an admin" : “not an admin");
 return s.ToString();
}

 Module 7: Securing XML Web Services 31

Visual Basic .NET

Imports System.Security.Principals
' Required for role-based security
'
'<WebMethod> _
Public Function HelloWorld() As String '
 ' Not required, but just to show the User property is an
Identity
 Dim identity As IIdentity = Context.User.Identity
 Dim name As String = User.Identity.Name
 Dim isAuth As Boolean = User.Identity.IsAuthenticated
 Dim identType As String = User.Identity.AuthenticationType
 Dim isAdmin As Boolean =
User.IsInRole.__unknown("Domain\Administrators") '

 Dim s As StringBuilder
 s.Append("Hello " & name & ", ")
 If isAuth Then
 s.Append("authenticated")
 Else
 s.Append("not authenticated")
 End If
 s.Append(" using " & identType & ", ")
 s.Append("you are ")
 If isAdmin Then
 s.Append("an admin")
 Else
 s.Append("not an admin")
 End If
 Return s.ToString()
End Function 'HelloWorld

32 Module 7: Securing XML Web Services

Using GenericIdentity and GenericPrincipal Objects

Creating and initializing a GenericIdentity object

Creating and initializing a GenericPrincipal object

Saving the current principal

Dim MyIdentity As GenericIdentity MyIdentity =
New GenericIdentity("User1")

Dim MyIdentity As GenericIdentity MyIdentity =
New GenericIdentity("User1")

Dim MyStringArray As String() = {"Manager", "Teller"}
Dim MyPrincipal As

New GenericPrincipal(MyIdentity,
MyStringArray)

Dim MyStringArray As String() = {"Manager", "Teller"}
Dim MyPrincipal As

New GenericPrincipal(MyIdentity,
MyStringArray)

Dim save As GenericPrincipal = Thread.CurrentPrincipalDim save As GenericPrincipal = Thread.CurrentPrincipal

Visual BasicC#
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the GenericIdentity class in conjunction with the
GenericPrincipal class to implement role-based security that is independent of
the Windows security system. For example, you can use method parameters
representing a user’s name and password, verify them against a database entry,
and then create identity and principal objects that are based on the values in the
database.

Typically, applications that use GenericPrincipal objects attach the created
GenericPrincipal to the current thread by setting the
Thread.CurrentPrincipal property. This makes the principal object readily
available to the application for subsequent role-based security checks, and
provides access to this object to any other assemblies that the application might
call on the thread. Attaching the principal object also allows your code to use
declarative role-based security checks and security checks using
PrincipalPermission objects.

However, in ASP.NET Web Services, a single thread is shared by many Web
sessions, and consequently by many different users, each with a unique identity.
Therefore, in the case of XML Web services, it only makes sense to attach a
single GenericPrincipal object to the thread for the duration of the exposed
method call. The scenario in which it becomes important to do this is when
your XML Web service method calls into an assembly which expects the
Thread.CurrentPrincipal property to contain current principal information to
do role-based security checks.

Further, the Thread.CurrentPrincipal property should be reset to its original
value before the method returns, to prevent the code, which subsequently uses
the thread, from having access to the generic principal identity.

Introduction

Using the
GenericPrincipal class
in XML Web services

 Module 7: Securing XML Web Services 33

The following procedure outlines the steps to implement role-based security
within an XML Web service method by using GenericIdentity and
GenericPrincipal objects.

To implement role-based security in an XML Web service method by using the
GenericIdentity and GenericPrincipal objects:

1. Create a new instance of the GenericIdentity class and initialize it with a
name that you want it to hold.

2. Create a new instance of the GenericPrincipal class and initialize it with
the GenericIdentity object that is created in the preceding step, and an
array of strings that represent the roles that you want to associate with this
principal.

3. Save the principal that is attached to the current thread.
4. Attach the principal that you created in step 2 to the current thread.
5. Execute code that requires a current principal context.
6. Reset the principal to the original value.

Implementing role-based
security in an XML Web
service

34 Module 7: Securing XML Web Services

Authentication and Authorization with HttpModules

HttpApplication events and HttpModules

Authentication using HttpModules

Authorization after authentication

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For every ASP.NET application, an instance of a class of type HttpApplication
is created. The HttpApplication class exposes a number of events. This topic
will focus on the AuthenticateRequest event.

You can handle the AuthenticateRequest event in Global.asax. However, this
would mean that each XML Web service that you implement would have to
reimplement the authentication code in Global.asax.

A better method is to use the HttpModule class. An HttpModule class
implements the IHttpModule interface. You can configure HttpModules to
receive HttpApplication events. As a result, you can implement all of your
custom authentication code in an HttpModule and reuse the HttpModule in
whichever ASP.NET application that you desire.

Introduction

HttpApplication events
and HttpModules

 Module 7: Securing XML Web Services 35

To perform authentication in an HttpModule, the HttpModule must subscribe
to the AuthenticateRequest event. The following code shows how to do this.

C#

public sealed class CustomAuthenticationModule : IHttpModule
{
 public void Init(HttpApplication app)
 {
 app.AuthenticateRequest += new
EventHandler(this.OnAuthenticate);

 // Other initialization
}

Visual Basic .NET

Public NotInheritable Class CustomAuthenticationModule
 Implements IHttpModule

 Sub Init(ByVal app As HttpApplication) Implements
IHttpModule.Init

 AddHandler app.AuthenticateRequest, AddressOf
Me.OnAuthenicate

 ' other initialization
 End Sub

To invoke your HttpModule for your XML Web service, the Web.config file
must contain the correct configuration information. The following is an
example of the required entries in Web.config.

<configuration>
 <system.web>
 <httpModules>
 <add name="CustomAuthn"
 type="WSHttpModule.CustomAuthenticationModule, WSHttpModule"
 />
 </httpModules>
 </system.web>
</configuration>

Authentication using
HttpModules

36 Module 7: Securing XML Web Services

Finally you must handle the AuthenticateRequest event to set the principal for
the current Web operation invocation. The following code gives an example of
how this can be done.

C#

public void OnAuthenticate(Object src, EventArgs e)
{
 HttpApplication app = (HttpApplication)src;
 HttpContext ctx = app.Context;
 string soapUser;
 string soapPassword;
 XmlDocument dom = new XmlDocument();
 Stream httpStream = context.Request.InputStream;
 // Save the current position of stream.
 long posStream = httpStream.Position;
 try
 {
 dom.Load(httpStream);
 httpStream.Seek(posStream,System.IO.SeekOrigin.Begin);
 dom.Save(httpStream);
 // Bind to the Authentication header.
 soapUser =
dom.GetElementsByTagName("User").Item(0).InnerText;

 soapPassword =
dom.GetElementsByTagName("Password").Item(0).InnerText;

 // perform check for roles
 string [] roles;
 roles = GetRolesForUser(soapUser,soapPassword);
 ctx.User = new GenericPrincipal(new
GenericIdentity(soapUser,

 "MyAuthType"), roles);
 }
 catch (Exception e)
 {
 // Reset the position of stream.
 httpStream.Position = posStream;
 // Throw a SOAP exception.
 XmlQualifiedName name = new XmlQualifiedName("Load");
 SoapException soapException = new SoapException(
 "Unable to read SOAP request", name, e);
 throw soapException;
 }
}

 Module 7: Securing XML Web Services 37

Visual Basic .NET

Public Sub OnAuthenticate(src As Object, e As EventArgs)
 Dim app As HttpApplication = CType(src, HttpApplication)
 Dim ctx As HttpContext = app.Context
 Dim soapUser As String
 Dim soapPassword As String
 Dim dom As New XmlDocument()
 Dim httpStream As Stream = context.Request.InputStream
 ' Save the current position of stream.
 Dim posStream As Long = httpStream.Position
 Try
 dom.Load(httpStream)
 httpStream.Seek(posStream, System.IO.SeekOrigin.Begin)
 dom.Save(httpStream)
 ' Bind to the Authentication header.
 soapUser =
dom.GetElementsByTagName("User").Item(0).InnerText

 soapPassword =
dom.GetElementsByTagName("Password").Item(0).InnerText

 ' perform check for roles
 Dim roles() As String
 roles = GetRolesForUser(soapUser, soapPassword)
 ctx.User = New GenericPrincipal(New
GenericIdentity(soapUser,

 "MyAuthType"), roles)
 Catch e As Exception
 ' Reset the position of stream.
 httpStream.Position = posStream
 ' Throw a SOAP exception.
 Dim name As New XmlQualifiedName("Load")
 Dim soapException As New SoapException("Unable to read
SOAP request", _

 name, e)
 Throw soapException
 End Try
End Sub 'OnAuthenticate

38 Module 7: Securing XML Web Services

After HttpModule has performed authentication, you can use .NET role-based
security within the implementation of your XML Web service methods. The
following code is an example of how this can be done.

C#

[WebMethod]
[SoapHeader("authentication", Required=false)]
public string ValidUser()
{
 if (!User.Identity.IsAuthenticated)
 {
 XmlQualifiedName name = new
XmlQualifiedName("AuthError");

 SoapException soapException = new SoapException(
 "Request denied", name);
 throw soapException;
 }
 if (User.IsInRole("Customer"))
 return string.Format("{0} is a
customer",User.Identity.Name);

 if (User.IsInRole("Admin"))
 return string.Format("{0} is an
administrator",User.Identity.Name);

 return string.Format("{0} is a valid
user",User.Identity.Name);

}

Visual Basic .NET

Public<WebMethod(), SoapHeader("authentication", Required :=
False)> _
Function ValidUser() As String
 If Not User.Identity.IsAuthenticated Then
 Dim name As New XmlQualifiedName("AuthError")
 Dim soapException As New SoapException("Request denied",
name)

 Throw soapException
 End If
 If User.IsInRole("Customer") Then
 Return String.Format("{0} is a customer",
User.Identity.Name)

 End If
 If User.IsInRole("Admin") Then
 Return String.Format("{0} is an administrator",
User.Identity.Name)

 End If
 Return String.Format("{0} is a valid user",
User.Identity.Name)

End Function 'ValidUser

Authorization after
authentication

 Module 7: Securing XML Web Services 39

Authorization: Code Access Security

Code Access Security Fundamentals

Code Access Security in ASP.NET XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The common language runtime includes an extensible code access security
model. The goal of code access security is to prevent code from accessing
protected resources that it has no right to access (such as undesired access to
files or the registry). To fulfill this goal, the policy system for code access
security grants code-specific permissions based on evidence, that is,
characteristics of the code. The code access security model evaluates evidence
and grants permissions at assembly level, and not at an application level.

This section introduces you to the concepts of code access security. Also, you
will look at how the code access security mechanism determines what
permissions to grant an assembly. You will review two scenarios where code
access security affects XML Web service deployment.

40 Module 7: Securing XML Web Services

Code Access Security Fundamentals

Evidence-based security

Code access permissions

Code groups

Policy levels

Named permission sets

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Traditional authorization mechanisms authorize users based on their logon
credentials (usually a password) and restrict resources (often folders and files)
that a user is allowed to access. Code that executes on behalf of a user has the
same permissions as that of the user. However, this approach to security is
insufficient because it requires that every piece of code must be completely
trusted before it is permitted to run.

There are many reasons why a code should not be trusted. A code might have
bugs or vulnerabilities that can be exploited by another code that is malicious
(example: a virus). A code might perform actions that a user is unaware of. As a
result, computer systems can be damaged and private data can be compromised
if users run malicious or buggy software.

The solution to these security problems is to provide a mechanism that allows
trusted users to safely execute untrusted code, and to prevent trusted code from
accidentally or intentionally compromising security. Code access security is one
solution to these security problems.

Rights to access resources are known as permissions. These permissions are
typically organized into named permission sets. The named permission sets are
associated with a code access group.

Before code is allowed to execute, the assembly in which the code resides is
verified for membership in a specific code group. If the membership criterion is
met, then the permissions associated with the code access group are granted to
the assembly.

Introduction

How does code access
security work?

 Module 7: Securing XML Web Services 41

Evidence is a set of information about the identity and origin of an assembly.
Evidence might include any of the following:

 The assembly’s strong name, consisting of a unique public key, a simple
name, and a version.

 The assembly’s publisher, which is obtained from the Microsoft
Authenticode® signature.

 The zone from which the assembly originates, such as a local computer,
intranet, or Internet zones.

 The location from which the assembly originates, which can be in the form
of a URL, universal naming convention (UNC) path, or a local computer
folder.

 The cryptographic hash of the assembly.

When a run-time host loads an assembly, it gathers evidence about the
assembly and presents it to the code access security system. The code access
security system uses this evidence about the assembly to determine the
permissions to grant it based upon an existing security policy. When generating
an assembly, you can include custom evidence with it. This evidence is
evaluated only if you configure a security policy to use it.

Code access permissions represent rights to access certain computing resources.
Some examples of actions that permissions can restrict are reading and writing
of files on the file system, accessing environment variables, and making calls to
ADO.NET for database access.

The .NET Framework has many built-in code access permission classes that are
designed to control access to system resources. For example, the
EnvironmentPermission class controls access to environment variables; the
FileIOPermission class controls access to files and folders on the file system;
and the PerformanceCounterPermission class controls access to performance
counters.

In addition to the built-in permission classes, you can add new permissions to
the code access security system by implementing custom permissions.

A code group consists of a membership condition (for example, a membership
condition can be code from the Microsoft Web site), and a set of permissions
that an assembly might be granted if it meets the membership condition. The
runtime evaluates the membership condition that is specified in a code group
against the evidence about an assembly. If the assembly meets the condition, it
is eligible to receive the permission set that is associated with the code group.

When an assembly meets the membership condition for a code group, it
is said to be a member of that code group.

A membership condition for a code group can specify that the publisher of an
assembly is Microsoft. Therefore, only an assembly that provides evidence that
it is published by Microsoft will satisfy the membership condition and be
eligible to receive the permission set that is associated with the code group. For
this example, the permission set might represent the right to access the C:\Temp
directory and the USERNAME environment variable.

Evidence-based security

Code access
permissions

Code groups

Note

42 Module 7: Securing XML Web Services

The membership conditions closely match the evidence available for
assemblies, as shown in the preceding example.

Security policy is organized into different policy levels. Each policy level
contains a hierarchy of code groups that determine the conditions for
permission grants. There are four policy levels:

 Enterprise-level policy. The network administrator specifies the enterprise-
level policy. This policy contains a code group hierarchy that applies to all
of the managed code on the entire network.

 Machine-level policy. The administrator of a local computer specifies the
machine-level policy. This policy contains a code group hierarchy that
applies to all managed code on the computer.

 User-level policy. The administrator or a user of a local computer specifies
the user-level policy. This policy contains a code group hierarchy that
applies to all managed code that a specific user runs.

 Application domain-level policy. An application domain host can specify
security policy to be applied to a code within an application domain,
provided that that host has been granted permission from the
SecurityPermission class. You can set application domain-level policy only
once for any application domain. After an application domain policy is set,
further attempts to set this policy fail.

In each security policy level, code groups are organized hierarchically. The root
of the hierarchy is a code group that matches all of the code. This root code
group has child code groups, and in turn those code groups can have children,
and so on. When an assembly is loaded, the common language runtime checks
the membership condition for a code group. If the evidence that the assembly
provides satisfies the membership condition of a parent code group, then each
child code group of that parent will be evaluated against the assembly to see if
their membership conditions satisfy the assembly. However, if an assembly
does not meet the membership condition for a parent code group, the conditions
of the descendants of that group will not be checked. Therefore, each level of
children in the hierarchy implies an AND condition with its parent in the
hierarchy.

When an assembly is loaded, the membership conditions for each code group
within each policy level are verified against the evidence of an assembly. For
most code groups, the union of the permission sets for the code groups that
have their conditions met is computed. This union of permission sets represents
the assembly’s permission set for that policy level. The intersection of these
permission sets across all the policy levels determines the final permission set
that an assembly receives.

An administrator can associate a set of permissions with a code group by using
a named permission set. A named permission set must consist of at least one
permission; must have a name; and must have a description. You can associate
more than one code group with a named permission set.

The common language runtime provides the following built-in named
permission sets: Nothing, Execution, Internet, LocalIntranet, Everything,
and FullTrust. You can also create custom-named permission sets.

Note

Policy levels

Named permission sets

 Module 7: Securing XML Web Services 43

Code Access Security in ASP.NET XML Web Services

Local deployment vs. ISP deployment

Identifying permissions required by your code

Requesting permissions in your code

RequestMinimum

RequestOptional

RequestRefused

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Having looked at the concepts of code access security, this topic will examine
how you can use it in ASP.NET Web Services.

ASP.NET Web Service assemblies execute as local applications. When the
code access security system interrogates an ASP.NET Web Service assembly, it
presents the evidence that Zone is equal to My Computer. With the default
.NET Framework installation, this evidence matches the membership condition
of the built-in code group named My_Computer_Zone. The
My_Computer_Zone code group receives the built-in permission set named
FullTrust. The FullTrust permission set provides full access to all of the
resources that the permissions protect.

If your XML Web service has been granted the FullTrust permission, the code
access security system cannot impose any security restrictions when the default
security policy is in use. It is unlikely that your XML Web service will be
granted the FullTrust permission except in a development environment, or if
the XML Web service is deployed in an environment where you have full
control over administering the security policy.

However, you might create XML Web services that are deployed at locations,
such as an ISP, where you do not have control over administering the security
policy. An ISP might implement a more restrictive security policy, which could
be problematic for your XML Web services. Most importantly, you must
understand the permissions that your XML Web service code requires.

You can identify the permissions that your code requires by using several
different approaches.

The .NET Framework SDK documentation lists the permissions that are
required to use each of the .NET Framework classes. By referring to the
documentation for the classes that are used in your XML Web service, you can
have a good idea of the permissions that your XML Web service code will
need.

Local deployment vs.
ISP deployment

Identifying permissions
required by your code

44 Module 7: Securing XML Web Services

Also, a familiarity with the built-in permission classes will help in determining
the permissions that your code requires. For example, if you know that a
MessageQueue permission exists, you can predict that your code will need this
permission to use the Microsoft Message Queue libraries.

Another means of determining the permissions that your code will need is to
test it with a limited set, such as the Internet permission set, and see the
security exceptions that the code throws.

After determining the permissions that your assembly needs, you can negotiate
with ISP administrators for a more liberal security policy specifically for your
assembly.

It is possible to specify permission requests for your assembly by using the
SecurityPermission attribute. This attribute is stored in the metadata of your
assembly. The assembly permission requests are examined when an assembly is
loaded. The .NET Framework proceeds based on the kind of permission request
the assembly makes. The three kinds of permission requests are:

 Minimum permissions (RequestMinimum)
The permissions in these requests represent the minimum set of permissions
that an assembly needs to work effectively. If these permissions are not
available to an assembly when it is loaded, the .NET Framework will not
execute the code in that assembly and returns an exception to the caller. A
minimum permission request for an assembly documents the required
permissions for that assembly. Not making a minimum permission request
for an assembly is the equivalent of making a minimum permission request
of Nothing.

 Optional permissions (RequestOptional)
The permissions in these requests represent permissions that an assembly
can use, but the assembly can still run effectively without these permissions.
These permissions are granted to an assembly if they are available to that
assembly, but if they are not available, the assembly is still allowed to run.
Not making an optional permission request for an assembly is the equivalent
of making an optional permission request of FullTrust.

 Refused permissions (RequestRefused)
The permissions in these requests represent permissions that an assembly
can never be granted, even if a security policy allows these permissions to
be granted. Not making a refused permission request is the equivalent of
making a refused permission request of Nothing.

You can request permissions by adding assembly-level attributes to your code.
For example, to request a minimum permission set that grants your assembly
the ability to execute unmanaged code, you can add the following attribute to
your assembly.

C#

[assembly:SecurityPermissionAttribute(SecurityAction.RequestMinimum,
 UnmangedCode = true)]

Visual Basic .NET

<assembly:
SecurityPermissionAttribute(SecurityAction.RequestMinimum,
 UnmangedCode := True)>

Requesting permissions
in your code

 Module 7: Securing XML Web Services 45

Typically, you add the preceding code to the AssemblyInfo file in your XML
Web service project.

By using reflection, an administrator can view the permission set that an
assembly minimally requires and set the security policies accordingly.

It is a good practice to annotate your assembly by setting the
SecurityPermission attribute to a minimum permission set. This can be
particularly helpful if you deploy your assembly on a system where you do not
have any control over setting the security policy.

46 Module 7: Securing XML Web Services

Encryption

Using SSL

Using Custom SOAP Extensions

Code Walkthrough: Implementing a SOAP Extension

Code Walkthrough: Implementing a Custom Attribute

Code Walkthrough: Using a Custom Attribute

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Apart from securing XML Web services through authentication and
authorization, you also must secure the messages that are exchanged between
an XML Web service and its consumer. You can secure messages by encrypting
them before they are sent.

In this section, you will look at the advantages and disadvantages of using
Secure Socket Layer (SSL) for XML Web service encryption versus using
custom SOAP extensions to perform encryption. Also, you will look at the
process of enabling connections through SSL. Then, you will examine the
mechanics of using encryption to provide secure communication between an
XML Web service and its client.

 Module 7: Securing XML Web Services 47

Using SSL

What are X.509 certificates?

How to enable SSL on a Web server

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To enable IIS to support Secure Socket Layer (SSL) connections, you must
obtain an X.509 certificate and install it on the Web server running IIS.

A certificate is a structure that contains information about its subject, issuer’s
name, validity period, and other characteristics. Each certificate is related to a
pair of private and public keys that are used in SSL encryption. SSL always
uses X.509 certificates to authenticate a Web server.

You obtain a certificate by making a request to a Certificate Authority (CA).
When a CA issues a certificate to a subject (an entity that made the request), it
verifies that the subject is who it claims to be and signs the new certificate with
its private key.

What are X.509
certificates?

48 Module 7: Securing XML Web Services

After you obtain a certificate, if you want to enable SSL on you Web server,
you must install the certificate. You install the certificate from the Directory
Security tab in the Properties dialog box for a Web site or a virtual directory,
as shown in the illustration:

Typically, the activities of obtaining a certificate and configuring the Web
server for SSL are the responsibility of the network administrator, and not the
developer. For this reason, we will not discuss this administrative function
further. For more information, see the Knowledge Base article with the title
“How to Import a Server Certificate for Use in Internet Information Services
5.0” on Microsoft MSDN®.

How to enable SSL on a
Web server

 Module 7: Securing XML Web Services 49

Using Custom SOAP Extensions

The DESCryptoServiceProvider class

The CryptoStream class

Encryption using SOAP extensions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Both HTTP and SOAP are text-based protocols. This makes it easy for an
unauthorized entity to see the contents of the messages that are exchanged
between an XML Web service consumer and an XML Web service.

The problem with SSL is that any communication is always encrypted. Using a
SOAP extension is a viable option, if you want to:

 Encrypt only some of the requests or responses.
 Encrypt only some parts of a request or response.
 Use a solution that does not have node affinity.
 Control the encryption mechanism that is used.

Before using a SOAP extension for encryption, you must be familiar with some
of the .NET Framework classes that will help in implementing such an
extension.

The DESCryptoServiceProvider class provides access to the Cryptographic
Service Provider (CSP) version of the Data Encryption Standard (DES)
algorithm. Using this encryption service provider, you can create an encryptor,
given a key and an initialization vector (IV).

encryptor = des.CreateEncryptor(key, IV)

You can also create a decrytpor by using DESCryptoServiceProvider.

decryptor = des.CreateDecryptor(key, IV)

The DESCryptoServiceProvider is just one encryption service provider
class within the .NET Cryptographic Services.

Introduction

The
DESCryptoServiceProvider
class

Note

50 Module 7: Securing XML Web Services

A CryptoStream is a stream that links data streams to cryptographic
transformations. By simply writing or reading to this stream, you can encrypt or
decrypt data. You can create a CryptoStream object after you have an
encryptor or decryptor object. The following code shows how to do this.

C#

ICryptoTransform encryptor;
ICryptoTransform decryptor;
encryptor = des.CreateEncryptor(key, IV);
decryptor = des.CreateDecryptor(key, IV);

CryptoStream cs;
cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write);
…
cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read);

Visual Basic .NET

Dim encryptor As IcryptoTransform
Dim decryptor As ICryptoTransform
encryptor = des.CreateEncryptor(key, IV)
decryptor = des.CreateDecryptor(key, IV)

Dim cs As CryptoStream
cs = New CryptoStream(ms, encryptor, CryptoStreamMode.Write)
…
cs = New CryptoStream(ms, decryptor, CryptoStreamMode.Read)

The .NET Framework makes it possible to hook into the serializing and
deserializing process for SOAP messages. You hook into these processes by
implementing:

 A class derived from the SoapExtension class, which is found in the
System.Web.Services.Protocols namespace.

 A custom attribute that references the custom SOAP extension class.

To encrypt and decrypt messages by using SOAP extensions, you must apply
the custom attribute that references the SOAP extension to the appropriate
XML Web service methods.

If you are implementing an XML Web service consumer by using the
.NET Framework, then you can also apply the custom attribute to the proxy
class methods that correspond to the XML Web service methods that have the
custom attribute applied.

The CryptoStream Class

Encryption using SOAP
Extensions

Note

 Module 7: Securing XML Web Services 51

Code Walkthrough: Implementing a SOAP Extension

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this walkthrough, you will learn how to implement a SOAP extension named
EncryptExtension. This SOAP extension will encrypt SOAP headers before
they are serialized, and decrypt them after they have deserialized.

You can find the code that is used for this walkthrough in the file <install
folder>\Democode\<language>\Mod07\EncryptionExtension (.cs or .vb).

Note

52 Module 7: Securing XML Web Services

Code Walkthrough: Implementing a Custom Attribute

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this walkthrough, you will learn how to implement a custom attribute that is
derived from the SoapExtensionAttribute. You will use this custom attribute
to associate a custom SOAP extension with the methods in an XML Web
service and an XML Web service proxy in the next code walkthrough.

You can find the code that is used for this walkthrough in the file <install
folder>\Democode\<language>\Mod07\EncryptionExtensionAttribute (.cs or
.vb).

Note

 Module 7: Securing XML Web Services 53

Code Walkthrough: Using a Custom Attribute

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this walkthrough, you will learn how to apply the custom attribute that was
created in the previous walkthrough to the methods of an XML Web service
and the corresponding methods of an XML Web service proxy class.

You can find the code that is used for this walkthrough in the file <install
folder>\Democode\<language>\Mod07\UseEncryptAttribute.txt.

Note

54 Module 7: Securing XML Web Services

Lab 7.1: Securing XML Web Services

Internet

Woodgrove Bank
Web Service

UDDI
Registry

Web Service Consumer

Contoso Micropayment
Web Service

Firewall

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

 Explain and use role-based security in an XML Web service.
 Use SOAP headers for authentication in an XML Web service.

Encrypt the communication between a Web Service consumer and a Web Service.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations. For instance, this lab does
not comply with the recommendation that you do not use weak passwords or
that you do not hard code passwords into an application.

There are starter and solution files that are associated with this lab. The starter
files are in the folder <labroot>\Lab07\Starter. The solution files are in the
folder <labroot>\Lab07\Solution.

If you completed Lab 5.1, Implementing a Simple XML Web Service, in
Module 5, “Implementing a Simple XML Web Service,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET, skip the following
procedures in this section.

 Set up Contoso XML Web Service solution, if you did not complete Lab
5.1

• Copy the <labroot>\Lab05\Solution\Contoso folder to
C:\Inetpub\Wwwroot folder, and overwrite the Contoso project that you
created in Lab 5.1.

Objectives

Note

Lab Setup

 Module 7: Securing XML Web Services 55

 Set up Contoso Web Service solution, if you did not start Lab 5.1

1. Copy the <labroot>\Lab05\Solution\Contoso folder to the
C:\Inetpub\Wwwroot folder.

2. Create the virtual directory for the Contoso XML Web Service:
a. Click Start, point to Programs, point to Administrative Tools, and

then click Internet Services Manager.
b. Click the plus sign to expand the tree.
c. Right-click Default Web Site, point to New, and then click Virtual

Directory.
d. Complete the Virtual Directory Creation Wizard by using the

information in the following table.
On this wizard page Do this

Welcome to the Virtual Directory
Creation Wizard

Click Next.

Virtual Directory Alias In the Alias box, type Contoso and click
Next.

Web Site Content Directory In the Directory box, type
C:\inetpub\wwwroot\Contoso and click
Next.

Access Permissions Select Browse, and click Next.

You have successfully completed the
Virtual Directory Creation Wizard.

Click Finish.

In this lab, you will modify the Contoso Micropayment Service to use SOAP
headers to contain authentication information. You will also modify the
Contoso XML Web service to encrypt these headers by using a SOAP
Extension that is provided to you.

You will also modify the Woodgrove and Contoso Account Manager
application to add encrypted SOAP headers to XML Web service method calls
to both the Contoso Micropayment Service and the Woodgrove Online Bank
XML Web service.

Scenario

Estimated time to
complete this lab: 60
minutes

56 Module 7: Securing XML Web Services

Exercise 1
Authenticating Using SOAP Headers

In this exercise, you will add the SoapHeader attribute to Contoso
Micropayment XML Web service methods to include authentication
information in a SOAP header. You will also modify the Woodgrove and
Contoso Account Manager to add authentication information to SOAP headers
for the Woodgrove and Contoso XML Web service methods.

 Add the SoapHeader attribute to Contoso XML Web service methods

1. In Visual Studio .NET, open the Contoso project that you created in Lab
5.1.

If you did not start or complete Lab 5.1, refer to the Lab Setup
section at the beginning of this lab for additional instructions.

2. Open the code behind file for Micropayment.asmx.
3. Locate the GetAccount method:
4. Add the following attribute to the method, after the WebMethod attribute.

C# Visual Basic .NET

[SoapHeader("authInfo", Required=false)] <SoapHeader("authInfo", Required :=

False)>

Notice that the SoapHeader attribute refers to the authInfo data member of
the Micropayment class. The authInfo data member is of type
ContosoAuthInfo. The ContosoAuthInfo data type is defined as follows.

C# Visual Basic .NET

public class ContosoAuthInfo :
SoapHeader
{
 public string Username;
 public string Password;
}

Public Class ContosoAuthInfo
 Inherits SoapHeader
 Public Username As String
 Public Password As String
End Class 'ContosoAuthInfo

Also, notice that the SoapHeader attribute Required property is set to
indicate that the SOAP header is optional.

Defining the SOAP header as optional aids testing, because if the
header is not required in an XML Web service method, then the method can
support the HTTP GET protocol. If the method supports the HTTP GET
protocol, then you will be able to use the built-in test page. However, in a
real-world scenario, you would want to require that the SOAP header be
present to perform authentication.

5. Locate the GetTransactionHistory method. Add the same SoapHeader
authentication information to this method.

6. Build the Contoso Micropayment Service.

Important

Tip

 Module 7: Securing XML Web Services 57

 Add SOAP headers to XML Web service method calls in the
Woodgrove and Contoso Account Manager application

1. In Visual Studio .NET, open the Woodgrove and Contoso Account Manager
project that you worked on in Lab 5.1.

If you did not start or complete Lab 5.1, then use the Woodgrove
and Contoso Account Manager project found in the folder
<labroot>\Lab07\Starter. Otherwise, continue to use the Woodgrove and
Contoso Account Manager project that you worked on in Lab 5.1.

2. Open the following file and examine the code.
C# Visual Basic .NET

WebServiceClientForm.cs WebServiceClientForm.vb

3. In Solution Explorer, under the Web References category, right-click
Micropayment Web reference.

4. On the shortcut menu, click Update Web Reference to rebuild the Contoso
client proxy class.

The Web reference must be updated. This allows the proxy class
generator to detect that the XML Web service methods GetAccount and
GetTransactionHistory now support a SOAP header. The proxy class
GetAccount and GetTransactionHistory will be recreated to also support
SOAP headers.

5. Open the Class View and expand the WebServiceClient.Micropayment
namespace.
Notice that the updated proxy namespace contains a definition for the
ContosoAuthInfo class, which is the class that is referenced by the
SoapHeader attribute that you applied to the GetAccount and
GetTransactionHistory XML Web service methods.

6. Locate the buttonContosoGetTransactions_Click method.
7. Create an instance of the ContosoAuthInfo class.

Notice that the Form1 class defines the following private data members.
C# Visual Basic .NET

private string contosoUserID = “John”;
private string contosoPassword =
“password”;

private string woodgroveUserID = “John”;
private string woodgrovePassword =
“password”;

Private contosoUserID As String = "John"
Private contosoPassword As String =
"password"

Private woodgroveUserID As String =
"John"

Private woodgrovePassword As String =
"password"

The code for steps 7 through 10 must be inserted before the
GetTransactionHistory method call.

8. Assign the ContosoAuthInfo.Username property the value of
contosoUserID.

Important

Note

Important

58 Module 7: Securing XML Web Services

9. Assign the ContosoAuthInfo.Password property the value of
contosoPassword.

10. Assign the ContosoAuthInfo object to the
ContosoMicropaymentService.ContosoAuthInfoValue property.

11. Repeat steps 7 through 10 in the GetContosoAccountInfo method. Ensure
that you insert the code for steps 6 through 9 before the invocation of the
GetAccount method.

12. Locate the buttonWoodgroveGetTransactions_Click method.
13. Create an instance of the WoodgroveAuthInfo class.

The code for steps 13 through 16 must be inserted before the
GetTransactionHistory method call.

14. Assign the WoodgroveAuthInfo.Username property the value of
woodgroveUserID.

15. Assign the WoodgroveAuthInfo.Password property the value of
woodgrovePassword.

16. Assign the woodgrovePassword object to the
WoodgroveOnlineBank.WoodgroveAuthInfoValue property.

17. Repeat steps 13 through 16 in the GetWoodgroveAccountInfo method.
Ensure that you insert the code for these steps before the invocation of the
GetAccount method.

18. Repeat steps 13 through 16 in the GetWoodgroveAccountList method.
Ensure that you insert the code for these steps before the invocation of the
GetAllAccounts method.

 Enable logon in the Woodgrove and Contoso Account Manager
application

1. Assign the menuItem1.Enabled property the following value.
C# Visual Basic .NET

true True

This enables the Set Woodgrove Logon and Set Contoso Logon menu
items on the Logon menu, allowing a user to select different Woodgrove
and Contoso accounts to test the authentication logic.
The implementations of the menuItemWoodgroveLogon_Click and
menuItemContosoLogon_Click event handlers are already provided to
you.

Important

 Module 7: Securing XML Web Services 59

2. Modify the existing code to prompt the user for Woodgrove and Contoso
authentication information. To do this:
a. Remove the following lines of code at the beginning of the

Form1_Load event handler method.
C# Visual Basic .NET

 this.GetWoodgroveAccountList();
 this.GetContosoAccountInfo();

Me.GetWoodgroveAccountList()
Me.GetContosoAccountInfo()

b. Remove the comments from the following code in the Form1_Load
event handler code.

C#

if (GetLogonInfo("Woodgrove", ref woodgroveUserID, ref woodgrovePassword))
{
 this.GetWoodgroveAccountList();
}

if (GetLogonInfo("Contoso", ref contosoUserID, ref contosoPassword))
{
 this.GetContosoAccountInfo();
}

Visual Basic .NET

If GetLogonInfo("Woodgrove", woodgroveUserID, woodgrovePassword) Then
 Me.GetWoodgroveAccountList()
End If

If GetLogonInfo("Contoso", contosoUserID, contosoPassword) Then
 Me.GetContosoAccountInfo()
End If

3. Build the application.

60 Module 7: Securing XML Web Services

 Test the SOAP header authentication

1. Enter different Contoso and Woodgrove account authentication information
when prompted by the LogonForm dialog box when the application loads.
Or, reset the Woodgrove or Contoso authentication information from the
Logon menu.
a. Use the following valid Woodgrove user IDs to verify that the Web

method authentication takes place.
UserID Password

John Password

Jane Password

b. Similarly, use the following valid Contoso user IDs to verify that
authentication takes place.

UserID Password

John Password

Jane Password

c. To invoke the Woodgrove and Contoso XML Web service methods
that use SOAP header authentication, click Contoso Update Account
Info and Get Transaction History.

d. Enter invalid user IDs or passwords for both Woodgrove and Contoso.
The XML Web service methods will cause an exception to be thrown.

 Module 7: Securing XML Web Services 61

Exercise 2
Encrypting Using the SOAP Encryption Extension

In this exercise, you will add functionality to encrypt SOAP authentication
headers that are sent from the client to the Contoso XML Web service and
decrypt the headers that the XML Web service receives.

 Encrypt SOAP headers sent from the Woodgrove and Contoso Account
Manager to the Contoso XML Web service

1. Open the Woodgrove and Contoso Account Manager project.
2. Add a reference to the provided EncryptionExtension assembly.

a. On the Project menu, click Add Reference.
b. In the Add Reference dialog box, on the .NET tab, click Browse.
c. Browse to <labroot>\Lab07\Starter\EncryptionExtension\Bin\Debug.
d. Click EncryptionExtension.dll.
e. Click OK to add the reference.

3. Import the EncryptionExtension namespace.
4. Open Class View.
5. Expand the ContosoMicropaymentService class in the

WebServiceClient.Micropayment namespace.
6. Double-click the GetAccount method to open the proxy class

implementation for this method.
7. Add the following method attribute.

C#

[EncryptionExtension(Encrypt=EncryptMode.Request,
SOAPTarget=Target.Header)]

Visual Basic .NET

<EncryptionExtension(Encrypt := EncryptMode.Request,
SOAPTarget := Target.Header)> _

The Encrypt and Target properties specify that the encryption target is the
SOAP header, which must be encrypted when an XML Web service method
request is sent.
Note that the EncryptionExtension attribute must be applied after the
WebMethod attribute. For example, the following code shows the
EncryptionExtension attribute that is applied after the WebMethod
attribute to the GetAccount XML Web service method.
C#

[WebMethod]
[SoapHeader("authInfo", Required=false)]
[EncryptionExtension(Decrypt=DecryptMode.Request,
SOAPTarget=Target.Header)]

public AccountDataSet GetAccount()

62 Module 7: Securing XML Web Services

Visual Basic .NET

<WebMethod(), _
SoapHeader("authInfo", Required := False), _
EncryptionExtension(Decrypt := DecryptMode.Request,
SOAPTarget := Target.Header)> _

Public Function GetAccount() As AccountDataSet '

8. Add the same attribute to the GetTransactionHistory method of the
ContosoMicropaymentService proxy class.

9. Build the application.

 Decrypt the SOAP headers that the Contoso XML Web service receives

1. Open the Contoso Micropayment XML Web service project.
2. Add a reference to the provided EncryptionExtension assembly.

a. On the Project menu, click Add Reference.
b. In the Add Reference dialog box, on the .NET tab, click Browse.
c. Browse to <labroot>\Lab07\Starter\EncryptionExtension\Bin\Debug.
d. Click EncryptionExtension.dll.
e. Click Open.
f. Click OK to add the reference.

3. Open the code behind file for Micropayment.asmx.
4. Add the following method attribute to the GetAccount and

GetTransactionHistory XML Web service methods:
C#

[EncryptionExtension(Decrypt=DecryptMode.Request,
SOAPTarget=Target.Header)]

Visual Basic .NET

<EncryptionExtension(Dencrypt := DencryptMode.Request,
SOAPTarget := Target.Header)> _

The Decrypt and Target properties specify that the decryption target is the
SOAP header, which must be decrypted when an XML Web service method
request is received.

5. Build the application.
6. Run the Woodgrove and Contoso Account Manager application.
7. To test the Contoso Micropayment Service functionality, click Contoso

Update Account Info and Get Transaction History.

 Module 7: Securing XML Web Services 63

Exercise 3
Using Role-Based Security

In this exercise, you will add a new method named DeleteAccount to the
Contoso Micropayment Service. Only Woodgrove administrators will be
authorized to delete a user account by using this method. The DeleteAccount
method will authenticate against the database and use role-based security to
authorize access to the code that deletes the account.

The DeleteAccount method will call the _AuthenticateAdmin stored
procedure to authenticate an administrator against a table in the Contoso
database. This stored procedure returns a set of application-defined roles that
are associated with the authenticated administrator. You will use these roles to
create a GenericPrincipal object and implement role-based security. You will
then associate this GenericPrincipal object with the current thread and call a
method in an external assembly, named ContosoAdminDB.dll, to actually
delete the account. The method in the external assembly will test that the user
associated with the current thread has the correct role membership authorized to
delete an account.

The ContosoAdminDB.dll provided as a part of the starter files will not
actually delete the accounts.
\

 Add the DeleteAccount method

1. Open the Contoso Micropayment Service project.
2. Add a reference to the assembly at <labroot>\Lab07\Starter\

ContosoAdminDB\Bin\Debug\ContosoAdminDB.dll.
3. Open the code behind file for Micropayment.asmx.
4. Add an XML Web service method with the following signature to delete an

account.
C#

public bool DeleteAccount(string AdminUserName, string
Password, int AccountID)

Visual Basic .NET

Public Function DeleteAccount(AdminUserName As String,
Password As String, _

 AccountID As Integer) As Boolean

Note that this method must not include a SOAP header or encryption
attribute. Remember to expose this method by adding the WebMethod
attribute.

Note

64 Module 7: Securing XML Web Services

 Add a new database connection to Server Explorer

1. Open Server Explorer.
2. Right-click Data Connections and click Add Connection.
3. Complete the Data Link Properties by using the information in the

following table.
On this wizard page Do this

Connection tab of the Data
Link Properties Dialog box

For the numbered fields, type the following
values:

1. The name of your computer\MOC

2. User name: sa
 Password: Course_2524

 Select the Allow saving password check box.

3. Contoso

To verify that the connection information is
correct, click Test Connection.

Microsoft Datalink Click OK.

4. A dialog box will be displayed warning that your connection information is
not encrypted. Click OK. Generally, this is not a safe practice, but in the
classroom it is convenient.

 Add a RolesDataSet typed dataset

1. In Solution Explorer, right-click the Contoso project and click Add and
then Add New Item on the shortcut menu.

2. From the list of available templates, click Data Set.
3. In the Name field, rename the file to RolesDataSet.xsd.

 Generate a typed RolesDataSet

1. Expand the Stored Procedures node under the newly added connection in
the Server Explorer.

2. Click the _AuthenticateAdmin stored procedure and drag it to the designer
surface for RolesDataSet.xsd.

 Complete the DeleteAccount method

1. Open the code behind file for Micropayment.asmx.
2. Locate the DeleteAccount method.
3. Add and instantiate local variables for a SqlCommand, SqlConnection,

and SqlDataAdapter.

 Module 7: Securing XML Web Services 65

4. Initialize the SqlCommand object as shown in the following example.
C#

cmd.CommandText = "_ AuthenticateAdmin ";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Connection = conn;
cmd.Parameters.Add(new SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4,
ParameterDirection.ReturnValue, true, ((Byte)(10)), ((Byte)(0)), "",
DataRowVersion.Current, null));
cmd.Parameters.Add(new SqlParameter("@AdminUserName", SqlDbType.NVarChar, 16,
ParameterDirection.Input, true, ((Byte)(10)), ((Byte)(0)), "",
DataRowVersion.Current, AdminUserName));
cmd.Parameters.Add(new SqlParameter("@AdminPassword ", SqlDbType.NVarChar, 16,
ParameterDirection.Input, true, ((Byte)(10)), ((Byte)(0)), "",
DataRowVersion.Current,Password));

Visual Basic .NET

With cmd
 .CommandText = "_AuthenticateAdmin "
 .CommandType = CommandType.StoredProcedure
 .Connection = conn
 .Parameters.Add(New SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4,
ParameterDirection.ReturnValue, True, CType(10,Byte), CType(0,Byte), "",
DataRowVersion.Current, Nothing))

 .Parameters.Add(New SqlParameter("@AdminUserName", SqlDbType.NVarChar, 16,
ParameterDirection.Input, True, CType(10,Byte), CType(0,Byte), "",

DataRowVersion.Current, AdminUserName))
 .Parameters.Add(New SqlParameter("@AdminPassword", SqlDbType.NVarChar, 16,
ParameterDirection.Input, True, CType(10, System.Byte), CType(0, System.Byte), "",
DataRowVersion.Current, Password))

End With

5. Initialize the SqlConnection object as shown in the following example.
C#

conn.ConnectionString =
(string)ConfigurationSettings.AppSettings["connectStringContoso"];

conn.Open();

Visual Basic .NET

conn.ConnectionString = ConfigurationSettings.AppSettings("connectStringContoso")
conn.Open()

6. Initialize the SqlAdapter as shown in the following example.

C# Visual Basic .NET

adapter.SelectCommand = cmd; adapter.SelectCommand = cmd

66 Module 7: Securing XML Web Services

7. Create an instance of the RolesDataSet typed dataset, using the
SqlDataAdapter object to fill it. The following code is an example of how
to do this.
C#

RolesDataSet ds = new RolesDataSet ();
int nRecords = adapter.Fill(ds,"_AuthenticateAdmin ");
conn.Close();
if (nRecords == 0)
 return false;
return ds;

Visual Basic .NET

Dim ds As New RolesDataSet ()
Dim nRecords As Integer = adapter.Fill(ds,
"_AuthenticateAdmin ")

conn.Close()
If nRecords = 0 Then
 Return False
End If
Return ds

8. If the returned dataset contains records, allocate an array of strings that is
the length of the numbers of records.

9. Loop through the RolesDataSet and add an element in the string array for
each role in the RolesDataSet.
The role is specified by the Role property of the item in the
RolesDataSet.AuthenticateAdmin collection. The following code is an
example of how to store the list of roles in a string array
C#

// Create array of string with roles
string [] roles;
roles = new string[nRecords];
for (int i = 0; i < nRecords; i++)
{
 roles[i] = ds._AuthenticateAdmin[i].Role;
}

Visual Basic .NET

' Create array of string with roles
Dim roles() as String
roles = New String(nRecords-1){}
Dim i As Integer
For i = 0 To nRecords - 1
 roles(i) = ds._AuthenticateAdmin(i).Role
Next i

 Module 7: Securing XML Web Services 67

 Use role-based security

1. Import the System.Security.Principal namespace. This namespace defines
the GenericIdentity and GenericPrincipal objects.

2. Create a GenericIdentity object by passing the AdminUserName parameter
to the GenericIdentity constructor.

3. Create a GenericPrincipal object by passing the GenericIdentity object and
the string array of roles to the GenericPrincipal constructor.

4. Save the current thread principal to a temporary IPrincipal reference.
5. Set the current thread principal to the GenericPrincipal object.
6. Call the static method AdminUtil.DeleteAccount from the

ContosoAdminDB.dll assembly passing a string representation of
AccountID.

7. The AdminUtil.DeleteAccount method requires the caller to be a member of
the application-defined Supervisor role. If the caller is not a member of this
role, an exception is thrown.

8. Enclose the code added in steps 5 and 6 in a try-catch block.
9. Catch any exceptions that the AdminUtil.DeleteAccount method throws. If

an exception is caught, return the following value.
C# Visual Basic .NET

false False

10. If there is no exception, return the following value.

C# Visual Basic .NET

true True

68 Module 7: Securing XML Web Services

11. Add a finally clause that restores the current thread principal to the saved
reference.
The following code is an example of how to perform these steps.

C#

GenericIdentity ident = new GenericIdentity(AdminUserName);
GenericPrincipal principal = new GenericPrincipal(ident,
roles);

IPrincipal principalSave =
System.Threading.Thread.CurrentPrincipal;

try
{
 System.Threading.Thread.CurrentPrincipal = principal;
 AdminUtil.DeleteAccount(AccountID.ToString());
 return true;
}
catch(Exception e)
{
 return false;
}
finally
{
 System.Threading.Thread.CurrentPrincipal =
principalSave;
}

Visual Basic .NET

Dim ident As New GenericIdentity(AdminUserName)
Dim principal As New GenericPrincipal(ident, roles)

Dim principalSave As IPrincipal =
System.Threading.Thread.CurrentPrincipal

Try
 System.Threading.Thread.CurrentPrincipal = principal
 AdminUtil.DeleteAccount(AccountID.ToString())
 Return True
Catch e As Exception
 Return False
Finally
 System.Threading.Thread.CurrentPrincipal = principalSave
End Try

12. Build the Contoso Micropayment Service.

 Module 7: Securing XML Web Services 69

 Test the DeleteAccount method

1. Open the test page http://localhost/Contoso/Micropayment.asmx.
2. Click the DeleteAccount method to navigate to the DeleteAccount Service

Method Help page.
The following table shows the administrators and roles included in the
Contoso database.
Administrator User
Name

Password Role(s)

Kelly password Supervisor, SuperUser,

ServiceRep

Sue password ServiceRep

Bob password ServiceRep

3. Invoke DeleteAccount for Kelly, setting the AccountID parameter to 1.
Verify that the XML Web service method returns true because Kelly is a
member of the Supervisor role.

4. Invoke DeleteAccount for Bob or Sue, setting the AccountID parameter to
1.
Verify that the XML Web service method returns false because these
administrators are not members of the Supervisor role.

70 Module 7: Securing XML Web Services

Review

Overview of Security

Built-In Authentication

Custom Authentication: SOAP Headers

Authorization: Role-Based Security

Authorization: Code Access Security

Encryption

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Which one of the following occurs first: authentication or authorization?

authentication

2. What are the three authentication mechanisms that IIS provides?
Basic, Digest, and Integrated Windows authentication

3. If the users of your XML Web service do not have Windows accounts, how
can you provide authentication information to the XML Web service?
By defining a SOAP header representing the required information and
requiring that a SOAP header be used in your XML Web service.

4. When implementing role-based security, which type of object stores a list of
roles for an authenticated user?
Principal

 Module 7: Securing XML Web Services 71

5. Which attribute should you use to request permissions for the assemblies in
your XML Web service?
SecurityPermission

6. Which class does the .NET Framework provide to allow the developer to
hook into the SOAP serialization/deserialization process?
SoapExtension

72 Module 7: Securing XML Web Services

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

At a convenient time between now and the end of the course, please complete a
course evaluation, which is available at
http://www.metricsthatmatter.com/survey.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Data Type Constraints 2

Performance 11

Lab 8.1: Implementing Caching in an XML
Web Service 28

Reliability 33

Versioning 37

HTML Screen Scraping XML Web Services 39

Aggregating XML Web Services 47

Demonstration: Example of an Aggregated
XML Web Service 52

Lab 8.2: Implementing an Aggregated XML
Web Service 53

Review 67

Module 8: Designing
XML Web Services

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001-2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 8: Designing XML Web Services iii

Instructor Notes
This module teaches students which design issues to consider when designing
real-world XML Web services. The issues discussed are related to data type
constraints, performance, reliability, versioning, deployment in Internet Service
Provider (ISP) and Application Service Provider (ASP) scenarios, and
aggregating XML Web services. The module also discusses HTML screen
scraping as a pseudo XML Web service.

After completing this module, you will be able to:

 Identify the restrictions that the various XML Web services protocols
impose on data types.

 Explain how the use of Application and Session state can affect the
performance and scaling of XML Web services.

 Explain how to use output and data caching to improve XML Web service
performance.

 Explain how to implement asynchronous Web methods.
 Explain the need for instrumenting XML Web services.
 Identify the components of an XML Web service that can be versioned.
 Explain how to implement a virtual XML Web service by using screen

scraping.
 Implement an XML Web service that uses multiple XML Web services.
 Identify the tradeoffs in the techniques that are used for exposing aggregated

XML Web services.

To teach this module, you need the Microsoft® PowerPoint® file 2524B_08.ppt.

To prepare for this module:

 Read all of the materials for this module.
 Practice all of the demonstrations.
 Review the walkthrough code files in the <install

folder>\Democode\<language>\Mod08.
 Complete the labs.

Presentation:
60 Minutes

Lab:
45 Minutes

Required Materials

Preparation Tasks

iv Module 8: Designing XML Web Services

This section provides demonstration procedures that are not appropriate for the
student notes.

 Setting up the demonstration

1. Create a virtual directory with the alias Scrape and a directory of
<installroot>\Democode\<language>\Mod08\Scrape\VDir.

2. Show the file sales.htm in the browser.

 Explain the structure of the WSDL document

1. Open the file sales.wsdl in the browser.
2. Explain the output element in the document.

 Demonstrate the use of screen scraping

1. Open the solution, Scrape.sln in the folder
<installroot>\Democode\<language>\Mod08\Scrape.

2. Open the salesclient (.cs or .vb) file.
3. Explain the existing code.
4. Add a Web Reference using the URL http://localhost/scrape/sales.wsdl.
5. Rename the reference from localhost to Scrape.
6. Import the ScreenScrape.Scrape namespace.
7. Execute the application and discuss the output.

 Demonstrate the NorthwindClient application

1. Start the application NorthwindClient.exe, which can be found in the folder
<install folder>\Labfiles\CS\Lab08_2\Solution\NorthwindClient\bin\Debug
or <install folder>\Labfiles\VB\Lab08_2\Solution\NorthwindClient\bin.

2. In the From list, click the last Woodgrove Online Bank entry. In the status
bar the URL for this entry will be displayed. It should be
http://instructor/woodgrove/bank.asmx. If the correct URL is not displayed
systematically check each Woodgrove Online Bank entry until the URL
for the instructor computer is located.

3. In the To list, click Contoso Micropayments entry. In the status bar the
URL for this entry will be displayed. It should be
http://instructor/contoso/Micropayment.asmx. If the correct URL is not
displayed systematically check each Contoso Micropayments entry until
the URL for the instructor computer is located.

4. Click Transfer.
5. Explain that $100 has been transferred from an account at the Woodgrove

bank to an account at the micropayment service, named Contoso.
6. Explain that the Northwind Traders XML Web service addressed all of the

details of managing the transfer, including retrieving routing numbers, and
so on.

HTML Screen Scraping

Example of an
Aggregated XML Web
Service

 Module 8: Designing XML Web Services v

 Explain the Northwind Traders XML Web service implementation

1. In Microsoft Visual Studio® .NET, open the <install folder>\
WebServicesSolution\Northwind\Northwind project.

2. Open Traders.asmx.cs.
3. Explain the implementation of GetTModelEndPoints, GetTransferSinks

and GetTransferSources methods.
4. Explain the EFTTransfer method.

a. Describe how the Northwind Traders XML Web service interacts with
the Contoso and Woodgrove XML Web services.

b. Explain how to use the binding information.

 Explain the implementation of the CreditAccount method in the
Contoso XML Web service

1. Open the <install
folder>\Labfiles\<language>\WebServicesSolution\Contoso\
Contoso project.

2. Open the code behind file for Micropayment.asmx.
3. Explain the implementation of the CreditAccount method.

a. Explain routing information. (It is information required by a financial
institution for electronically transferring funds to an account at another
financial institution).

b. Explain that the Contoso XML Web service is a consumer of the
Woodgrove XML Web service.

 Explain the implementation of the AuthorizeFundsTransfer method in
the Woodgrove XML Web service

1. Open the <install
folder>\Labfiles\<language>\WebServicesSolution\Woodgrove\
Woodgrove project.

2. Open the code behind file for Bank.asmx.
3. Explain the implementation of the AuthorizeFundsTransfer method.

• Explain the information that is contained in the EFTBindingInfo class.

 Show that money is transferred between the accounts

1. Run <install folder>\Labfiles\<language>\Lab07\Solution\Woodgrove and
Contoso Account Manager\bin\Debug\WebServiceClient.exe.
Leave the default accounts selected and note the account balance.

2. Switch to the NorthwindClient.exe application.
3. Transfer funds from the Woodgrove Online Bank to the Contoso

Micropayment Service.
4. Switch to the WebServiceClient.exe application.
5. Click Update Account Info.
6. Point out that the balance has been reduced by $100.

vi Module 8: Designing XML Web Services

Module Strategy
Use the following strategy to present this module:

 Data Type Constraints
Explain that even though Microsoft ASP.NET XML Web services support a
rich set of data types, not all of the Microsoft .NET Framework data types
are appropriate for XML Web services. Tell the students that Simple Object
Access Protocol (SOAP) is the preferred protocol for XML Web services.
Explain how using Hypertext Transfer Protocol (HTTP)-GET and POST
methods limit the types of data a XML Web service can support. Teach the
module as a set of tradeoffs. Explain to the students that circumstances may
dictate different choices in different scenarios.

 Performance
Start out by discussing general performance considerations. Then, examine
the issues that the students must consider when implementing XML Web
services by using Microsoft ASP.NET. Finally, discuss the ASP.NET output
and data caching capabilities and how they can be used in XML Web
services.

 Reliability
In this topic, discuss how the .NET common language runtime enables
better application reliability without compromising on performance. Also,
explain how the ASP.NET process recovery model enhances reliability by
supporting automatic restart of applications if the Aspnet_wp.exe worker
process fails, and by allowing scheduled restarts to reclaim leaked
resources. Also, emphasize the importance of having the ability to monitor
the health of a running XML Web service to support early detection of
impending application failure.

 Versioning
Explain that all developers of XML Web services will have to address
issues with versioning. Emphasize that XML Web Services Description
Language (WSDL) documents should not be versioned for production XML
Web services. Discuss strategies for handling evolving interfaces by using
generic Extensible Markup Language (XML) fragments. Do not get into an
in-depth discussion on assembly versioning. Rather, refer the students to
Course 2350A, Securing and Deploying Microsoft .NET Assemblies.

 Module 8: Designing XML Web Services vii

 HTML Screen Scraping XML Web Services
For many students, the concept of a virtual XML Web service will not be
intuitive. Explain that this section is important because it is unlikely that
owners of most of the data on the Internet will ever provide access to their
data through XML Web services. However, making this data accessible to
clients through an XML Web service is a useful paradigm. Because
consumers interact with an XML Web service through a proxy class, if the
proxy class simply retrieves the raw data and the parses the data locally, the
consumer need not be aware that the processing takes place on the client and
not on the server. A detail that you should emphasize is that screen scraping
XML Web service proxies can only communicate by using the HTTP-GET
protocol.

 Aggregating XML Web Services
Explain that XML Web services can be viewed as sets of functionality.
There is no reason why these sets of functionality should not be aggregated
to provide richer functionality. The module discusses a number of models
for aggregating XML Web services. Analyze each model and discuss its
areas of application. You must teach this section by basing it on the final lab
scenario.

 Module 8: Designing XML Web Services 1

Overview

Data Type Constraints

Performance

Reliability

Versioning

HTML Screen Scraping XML Web Services

Aggregating XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is relatively easy to implement a simple XML (Extensible Markup Language)
Web service. However, if you implement an XML Web service that must be
interoperable, scalable, reliable, and able to perform well, then there are a
number of issues that you must consider when designing your XML Web
service.

In this module, you will examine some of the important issues that you must
consider when designing a real-world XML Web service.

After completing this module, you will be able to:

 Identify the restrictions imposed on data types by the various XML Web
services protocols.

 Explain how the use of Application and Session state can affect the
performance and scaling of XML Web services.

 Explain how output and data caching can be used to improve XML Web
service performance.

 Explain how to implement asynchronous web methods.
 Explain the need for instrumenting XML Web services.
 Identify the components of an XML Web service that can be versioned.
 Explain how to implement a virtual XML Web service by using screen

scraping.
 Implement an XML Web service that uses multiple XML Web services.
 Identify the tradeoffs in the techniques used for exposing aggregated XML

Web services.

Introduction

Objectives

2 Module 8: Designing XML Web Services

Data Type Constraints

Protocol constraints

Structures vs. classes

Typed vs. untyped datasets

Arrays vs. collections

Exceptions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although the Microsoft® .NET Framework supports a rich set of data types, not
all data types can or should be used as part of the interface of an XML Web
service. In this topic, you will first look at how the choice of protocol for your
XML Web service can limit the data types that you can use in the service. You
will then look at some guidelines for choosing between similar data types, such
as, structures and classes. Finally, you will look at how XML Web services
expose exceptions, and the results of throwing custom exception types.

Although Microsoft ASP.NET XML Web services automatically support
Hypertext Transfer Protocol (HTTP)-GET/POST and Simple Object Access
Protocol (SOAP), these protocols are not equally capable when it comes to the
data types that they support. The following table summarizes the data types that
you can use for each of the protocols that XML Web services support.

Introduction

Protocol constraints

 Module 8: Designing XML Web Services 3

Type Description SOAP POST GET

Primitive types Standard primitive types,

which are as follows:

String, Int32, Byte,
Boolean, Int16, Int64,
Single, Double, Decimal,
DateTime, and
XmlQualifiedName

Enumeration
types

Enumeration
types and arrays
of primitives

Classes and
structures

Class and structure types
with public fields or
properties. The public
properties and fields are
serialized.

Arrays of
classes and
structures

XmlNode Represents an XML node
in an XML document.

Arrays of
XmlNode

The key points to remember when choosing the protocol for your XML Web
service are:

 GET and POST support only primitive data types (int, string, and so on),
enumerations, and arrays of primitives.
These data types are passed as name/value pairs.

 SOAP supports rich data types by packaging data in XML and standardizing
the call format.

 SOAP provides for a rich extensibility mechanism.

It might seem obvious that it is best to choose SOAP as the protocol for your
XML Web service, but there are a few other issues to consider:

 HTTP-GET and HTTP-POST are much more widely used than SOAP, and
therefore, you are limiting the clients that can use your XML Web service.

 SOAP requests use a lot more bytes to transmit data than HTTP-GET or
HTTP-POST requests.

 By default, ASP.NET-based XML Web services support all of the three
protocols as long as you restrict the XML Web service methods to use only
simple data types.

4 Module 8: Designing XML Web Services

If you want to restrict the protocols that your XML Web service will support,
you can make an entry in Web.config. The following code shows how to
remove HTTP-GET and HTTP-POST protocols, so that the XML Web service
will support only SOAP.

<configuration>
 <system.web>
 <webServices>
 <protocols>
 <remove name="HttpGet" />
 <remove name="HttpPost" />
 </protocols>
 </webServices>
 </system.web>
</configuration>

If you remove the HTTP-GET protocol, you will not be able to test your
XML Web service methods by using the Web Service Method Description page
provided for an XML Web service project in Microsoft Visual Studio® .NET.

It is very important to remember that XML Web services are not about object
remoting. When an XML Web service method returns an object, the public
fields and properties of the object are remoted. None of the functionality of the
class is remoted. As a result, from an XML Web service consumer’s
perspective, classes and structures are superficially indistinguishable.

The following code demonstrates how the XML Schema Definition Language
(XSD) allows you to define derived data types.

C#

public class Acct
{
 public string description;
 public string number;
 public string type;
 public decimal balance;
 public string status;
}

public class CreditCardAcct : Acct
{
 public int payPeriod;
}

Note

Structures vs. classes

 Module 8: Designing XML Web Services 5

Visual Basic .NET

Public Class Acct
 Public description As String
 Public number As String
 Public type As String
 Public balance As Decimal
 Public status As String
End Class 'Acct

Public Class CreditCardAcct
 Inherits Acct
 Public payPeriod As Integer
End Class 'CreditCardAcct

You can represent the preceding class in XSD as follows:

<s:complexType name="Acct">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="description" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="number" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="type" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1"
 name="balance" type="s:decimal" />
 </s:sequence>
 <s:attribute name="status" type="s:string" />
</s:complexType>

<s:complexType name="CreditCardAcct">
 <s:complexContent mixed="false">
 <s:extension base="s0:Acct">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="payperiod" type="s:int" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>

Even though you can define derived types by using XSD in the .NET
environment, you may not derive a new type from a structure. Because a class
and a structure are so similar, and structures have additional restrictions, classes
are generally preferred to structures as data types in XML Web service
methods.

Datasets can be typed or untyped. A typed dataset is a dataset that is derived
from a base DataSet class and has an XML schema file (an .xsd file) that
defines the tables and fields that the dataset encapsulates. You typically use the
schema when generating a typed dataset to define strongly-typed accessors for
the tables and fields that the dataset encapsulates.

Typed vs. untyped
datasets

6 Module 8: Designing XML Web Services

Because a typed DataSet class inherits from a base DataSet class, the typed
class inherits all of the functionality of the base class and can be used with
methods that take a dataset as a parameter.

In contrast, an untyped dataset has no corresponding built-in schema. Similar to
a typed dataset, an untyped dataset contains tables, columns, and so on, but
these are exposed only as collections.

You can use either typed or untyped datasets in your XML Web service.
However, using typed datasets makes programming with datasets easier and
less error-prone.

The class for a typed dataset has an object model in which its tables and
columns become first-class objects in the object model. For example, if you are
working with a typed dataset, you can refer to a column in a table contained in
the dataset, using code similar to the following.

C#

string s;
s = dsCustomersOrders.Customers[0].CustomerID;

Visual Basic .NET

Dim s As String
s = dsCustomersOrders.Customers(0).CustomerID

In contrast, if you are working with an untyped dataset, the equivalent code is
the following.

C#

string s;
s =
(string)dsCustomersOrders.Tables["Customers"].Rows[0]["CustomerID"];

Visual Basic .NET

string s;
s =
CStr(dsCustomersOrders.Tables("Customers").Rows(0)("CustomerID"))

Using a typed dataset has the following advantages:

 Code is easier to read.
 Microsoft IntelliSense® fully supports typed datasets in the Visual Studio

Code Editor.
 The syntax for the typed dataset provides type checking at compile time.

Accessing tables and columns in a typed dataset is also slightly faster at run
time because the access path is determined at compile time. This eliminates the
need to look up tables and columns in collections at run time.

Data access using typed
vs. untyped datasets

Advantages of typed
datasets

 Module 8: Designing XML Web Services 7

Even though typed datasets have many advantages, there are a variety of
circumstances in which an untyped dataset is useful. Some of these
circumstances are when:

 There is no schema available for the dataset.
There may not be an available schema if you are using a third-party
component that returns a dataset.

 The data you are working with does not have a static, predictable structure.
 A dataset might be created dynamically and you do not want to define a

schema.

The .NET Framework provides a number of collection classes like HashTable,
ArrayList, and so on. A collection is just an unordered set of object references.
When you return an instance of a collection class to an XML Web service
consumer, it is no different than returning object[].

In general, it is preferable to make your XML Web service interface as strongly
typed as possible. If you decide to use a collection in your XML Web service, it
is still very easy to return an array of the stored type.

The following code returns strongly-typed arrays of type Acct instead of type
object.

C#

[WebMethod]
[XmlInclude(typeof(CreditCardAcct))]
[XmlInclude(typeof(SavingsAcct))]
[return:XmlArray("AccountList")]
[return:XmlArrayItem("Account")]
public Acct[] GetAllAccounts()
{
 SavingsAcct a = new SavingsAcct();
 CreditCardAcct cc = new CreditCardAcct();

 ArrayList listOfAccts = new ArrayList();
 listOfAccts.Add(a);
 listOfAccts.Add(cc);

 return (Acct[])listOfAccts.ToArray(typeof(Acct));
}

When to use untyped
datasets

Arrays vs. collections

8 Module 8: Designing XML Web Services

Visual Basic .NET

Public<WebMethod(), XmlInclude(GetType(CreditCardAcct)), _
XmlInclude(GetType(SavingsAcct)),return:
XmlArray("AccountList")> _

Function GetAllAccounts() As<XmlArrayItem("Account")> Acct()
 Dim a As New SavingsAcct()
 Dim cc As New CreditCardAcct()
 …
 Dim listOfAccts As New ArrayList()
 listOfAccts.Add(a)
 listOfAccts.Add(cc)

 Return CType(listOfAccts.ToArray(GetType(Acct)), Acct())
End Function 'GetAllAccounts

Almost the only time there is a need to return collections or arrays of type
object is when a collection contains a heterogeneous list of objects. However,
this is not a very common design pattern and in such cases, the returned
collection can be an instance of a class or structure.

When implementing an XML Web service method, if an error occurs, you can
either return an error code or throw an exception. Depending on the error
handling method that you choose, there are certain advantages and
disadvantages.

If you simply return error codes, the code values will be reliably returned, but
developers often fail to check return codes.

On the other hand, if you throw an exception, and the protocol that is used to
access the XML Web service is not SOAP, the XML Web service consumer
will just receive an HTTP error with the error code value of 500.

If an XML Web service consumer invokes a method by using SOAP, the
exception is caught on the server and wrapped inside a new object of a type
SoapException. A SoapException can either be thrown by the common
language runtime or by an XML Web service method. The common language
runtime can throw a SoapException if a response to a request is not formatted
correctly. XML Web service methods can generate a SoapException by simply
throwing an exception within the method. The following code shows an XML
Web service method that throws a custom exception.

Exceptions

 Module 8: Designing XML Web Services 9

C#

[WebMethod]
public double LoanPayments(double loanAmount, double
annualInterestRate,

 int numberOfYears, int numberOfPaymentsPerYear)
{
 int numberOfMonths;
 if (numberOfPaymentsPerYear == 0)
 throw new ContosoException("You cannot specify 0 for the
number” +

 “ of payments per year.");

 int nPeriods = numberOfYears*numberOfPaymentsPerYear;
 Excel.Application xl = new Excel.Application();
 double amt = xl.WorksheetFunction.Pmt(

 annualInterestRate/numberOfPaymentsPerYear,
 nPeriods,loanAmount,0,0);
 return amt;
}

Visual Basic .NET

Public<WebMethod()> _
Function LoanPayments(loanAmount As Double, annualInterestRate
As Double, _
 numberOfYears As Integer, numberOfPaymentsPerYear As
Integer) As Double

 Dim numberOfMonths As Integer
 If numberOfPaymentsPerYear = 0 Then
 Throw New ContosoException("You cannot specify 0 for
the number" & _
 " of payments per year.")
 End If
 Dim nPeriods As Integer = numberOfYears *
numberOfPaymentsPerYear

 Dim xl As New Excel.Application()
 Dim amt As Double = xl.WorksheetFunction.Pmt(_
 annualInterestRate / numberOfPaymentsPerYear, nPeriods,
loanAmount, 0, 0)

 Return amt
End Function 'LoanPayments

10 Module 8: Designing XML Web Services

The following code shows an XML Web service consumer that catches the
exception. Note that the exception is a SoapException and is not a
ContosoException.

C#

ContosoBank.PaymentService ps;
ps = new ContosoBank.PaymentService();
try {
 double amt = ps.LoanPayments(205000.0, 0.0712, 30, 0);
 Console.Writeline(“Monthly payments are {0}”,amt);
 } catch (SoapException se) {
 MessageBox.Show(se.Message,"LoanPayment Exception");
 }

Visual Basic .NET

Dim ps As ContosoBank.PaymentService
ps = New ContosoBank.PaymentService()
Try
 Dim amt As Double = ps.LoanPayments(205000.0, 0.0712, 30,
0)

 Console.Writeline("Monthly payments are {0}", amt)
Catch se As SoapException
 MessageBox.Show(se.Message, "LoanPayment Exception")
End Try

Also, note that the exception that the XML Web service throws is not lost. The
Message property of the custom exception is propagated as part of the Message
property of the SoapException.

 Module 8: Designing XML Web Services 11

Performance

General Considerations

.NET-Specific Considerations

Caching in XML Web Services

Asynchronous Server-Side Methods

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this section, you will begin by looking at a few universally applicable
performance considerations, and then you will examine some of the ways in
which you can use the capabilities of the .NET Framework to improve the
performance of your XML Web service. Specifically, you will learn about
caching and state management for XML Web services.

12 Module 8: Designing XML Web Services

General Considerations

Caching

Locking

Making asynchronous calls

Measuring performance and behavior

Unnecessary code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are a number of performance-related principles that you can apply to
almost any situation where high performance is required.

You can use software caching in many scenarios. For example, if performing
calculations that are either time consuming or CPU intensive, or both, you may
choose to store the calculated result for future use instead of recalculating each
time a request for the result is received.

Here are a few guidelines on caching:

 If you cache the wrong data, then you waste memory.
 If you cache too much data, then you have less memory for other operations.
 If you cache too little data, then the cache will be ineffective because you

will have to reprocess the data that was not cached.
 If you cache time-sensitive data for too long, then it will become outdated.

With servers, you typically care more about speed of processing than
storage, and therefore caching is done more aggressively on servers than
desktop systems. This can lead to stale caches if you do not have good
algorithms for detecting stale data.

 If you do not periodically invalidate and flush unused cache entries, then
you will be making unnecessary demands on system memory. This could
affect the performance of the Web server or other applications that are
hosted on the same computer.

Locking is not usually a problem in XML Web services unless you are using
the Application object to store updateable state. The locks that are acquired on
resources, such as database tables, will probably cause more problems.

Caching

Locking

 Module 8: Designing XML Web Services 13

The easiest way to protect read/write data is to use a single lock for all of the
data that you need to protect. This is a simple approach, but results in
serialization problems. Every thread that attempts to manipulate the data will
have to wait in line to acquire the lock. If a thread is blocked on a lock, it is not
doing useful work. If a server is underutilized, multiple threads that are blocked
on a lock are seldom a problem, because only one thread is likely to acquire the
lock at a time. If a server is under a heavy load, a high-contention lock can
become a huge problem.

There are several techniques that can reduce lock contention:

 Do not be overprotective of your data, that is, do not lock data when it is not
required. Hold locks for the duration necessary, and no longer. It is
important not to hold locks unnecessarily for large sections of code or
frequently executed sections of code.

 Partition your data so that you can use a disjoint set of locks to protect the
partitioned data. For example, you could partition a customer list on the first
letter of the customer’s company name, and you could use a separate lock to
protect each partition.

 Use the Interlocked class in the System.Threading namespace to
atomically modify data without acquiring a lock.

 Use multireader/single-writer locks when the data is not modified often.
Using this strategy, you can achieve better concurrency, though the lock
operations will be more expensive and you risk starving writers.

If you must execute an operation that takes a significant amount of time, then
use asynchronous calls to execute the operation. For example, if your XML
Web service calls another XML Web service in a method named
GetAccountHistory, then you should use the Beginxxxx/Endxxxx methods of
the proxy for the second XML Web service. If the GetAccountHistory method
does not immediately require the data from the second XML Web service, then
you could call the Beginxxxx method at the start of the GetAccountHistory
method, and then call the Endxxxx method at the point that you require the data.

The following code demonstrates how an asynchronous call to an XML Web
service method can be made from within another XML Web service method.

C#

Contoso.PaymentService ps = new Contoso.PaymentService();
IAsyncResult res = ps.BeginGetAccountInfo(1234,callback,null);
Account acct;

if (res.IsCompleted)
 acct = ps.EndGetAccountInfo(res);

Visual Basic .NET

Dim ps As New Contoso.PaymentService()
Dim res As IAsyncResult = ps.BeginGetAccountInfo(1234,
callback, Nothing)

Dim acct As Account

If res.IsCompleted Then
 acct = ps.EndGetAccountInfo(res)
End If

Making asynchronous
calls

14 Module 8: Designing XML Web Services

Without measurements, you do not understand your application's behavior. The
.NET Framework provides a number of tools for measuring the performance
and behavior of your XML Web service.

Measurement encompasses black-box measurement and profiling. Black-box
measurement is gathering the numbers that are exposed by external testing tools
(throughput, response times) and performance counters (memory usage, context
switches, CPU utilization). Many of the metrics that are measured are external
to your code, but it is a good practice to instrument your code to allow for
performance measurement, even when your XML Web service is deployed.

When you consider how much instrumentation to build into your XML Web
service, there are a number of tradeoffs. It is true that instrumenting your code
will result in some performance degradation. However, the possibility of
performance degradation must be balanced with an evaluation of the risk
inherent in not instrumenting your code. Instrumentation in code is not just a
feature of debug builds of applications. Even after your XML Web service is
deployed into production, you will need to monitor the performance of the
XML Web service.

It is common for developers to not revisit code that has been written if it
functions correctly. However, this often means that unnecessary code and
inefficient code is left in the application. The following code contrasts two
functionally equivalent calls to the Trace.Write method. In the second call, the
WriteIf function is called whether or not the message is written. In this
example, the code that tests the switch before making the call to Trace.Write is
preferred.

C#

if (mySwitch.TraceVerbose) Trace.Write(“Deposit failed”)
Trace.WriteIf(mySwitch.TraceVerbose,“Deposit failed”)

Visual Basic .NET

If mySwitch.TraceVerbose Then
 Trace.Write("Deposit failed")
End If
Trace.WriteIf(mySwitch.TraceVerbose, "Deposit failed")

Measuring performance
and behavior

Unnecessary code

 Module 8: Designing XML Web Services 15

.NET-Specific Considerations

Disable session state

Choose an appropriate state provider

Avoid exceptions

Use native database providers

Stored procedures vs. ad-hoc queries

Use ASP.NET Web gardening

Disable debug mode

*****************************ILLEGAL FOR NON-TRAINER USE******************************

If you are not careful with the use of Session state object, then you might
introduce scaling or performance problems. In spite of this risk, many
developers still prefer to use the session state management facilities of
ASP.NET.

The following guidelines list specific techniques that you can use to avoid
performance and scaling problems.

Disable session state when you are not using it. To disable session state for a
page, set the EnableSessionState attribute in the @Page directive to false.

<%@ Page EnableSessionState="false" %>.

If only read-only access to session state is required, set the
EnableSessionState attribute in the @Page directive to ReadOnly.

You can also disable session state for each XML Web service method. To
disable session state for an application, set the mode attribute to off in the
sessionstate configuration section in the application’s Web.config file.

<sessionstate mode="off" />.

Introduction

Disable session state

Note

16 Module 8: Designing XML Web Services

Choose your session state provider carefully.

ASP.NET provides three distinct ways to store session data for your
application:

 In-process session state.
 Out-of-process session state as a Microsoft Windows® service.
 Out-of-process session state in a Microsoft SQL Server™ database.

If you need your XML Web service to scale out across multiple processors,
multiple computers, or when you cannot lose data if a server or a process is
restarted, then you must not use the in-process session state provider.
Instead, you should use one of the out-of-process session state providers.

Because exceptions cause significant performance degradations, you should
never use them as a way to control normal program flow. If it is possible to
detect a condition that would cause an exception in your code, then you should
do that instead of waiting to catch the exception itself before handling that
condition.

The .NET Framework provides two data providers: the OLE DB data provider
and the SQL) data provider. The SQL data provider is recommended for
building high-performance Web applications.

When using the managed Microsoft SQL Server provider, you can receive an
additional performance boost by using compiled stored procedures instead of
ad-hoc queries. For information about using SQL Server stored procedures, see
Course 2389B, Programming with ADO.NET.

Use the SqlDataReader class for a fast forward-only data cursor. The
SqlDataReader class provides a means to read a forward-only data stream that
is retrieved from a SQL Server database. While creating an ASP.NET XML
Web service, you might encounter situations that allow you to use
SqlDataReader. The SqlDataReader class offers higher performance than the
DataSet class. This is because SqlDataReader uses the Tabular Data Stream
(TDS) protocol to read data directly from a database connection.

The ASP.NET process recovery model enables scalability on multiprocessor
computers by distributing work to several processes, one per CPU, each with
processor affinity set to its CPU. This technique is called Web gardening, and
can dramatically improve the performance of certain applications.

Always remember to disable debug mode before deploying a production
application or conducting any performance measurements. The following
example code shows how to disable the debug mode:

<configuration>
 <system.web>
 <compilation defaultLanguage="c#" debug="false" />
 </system.web>
</configuration>

Choose an appropriate
state provider

Avoid exceptions

Use native database
providers

Stored procedures vs.
ad-hoc queries

Use ASP.NET Web
gardening

Disable debug mode

 Module 8: Designing XML Web Services 17

Caching in XML Web Services

Output caching

Data caching

Controlling caching

File and key-based dependencies

Expiration policies

Item priorities

Removal notification

Scenarios

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ASP.NET provides two types of caching that you can use to create high-
performance XML Web services:

 Output caching allows you to store responses that are generated by an XML
Web service method. On subsequent requests, rather than re-executing the
method, the cached output is used to service the request.

 Data caching programmatically stores arbitrary objects in memory, so that
your application can save the time and resources that it takes to re-create
them.

Both of these forms of caching are available to an XML Web service developer.

Output caching of an entire .asmx page does not make sense, because the .asmx
page is just a convenient entry point to the XML Web service. In the context of
XML Web services, output caching is done on a per-XML Web service method
basis.

Output caching for an XML Web service method is enabled by adding the
CacheDuration property to the WebMethod attribute. The following code
shows how to cache the results of a method call for 60 seconds.

C# Visual Basic .NET

[WebMethod(CacheDuration=60)]
public Acct[]
GetAccounts(int acctID)
{

Public<WebMethod(CacheDuration
:= 60)> _
Function GetAccounts(acctID
As Integer) _
 As Acct()

In output caching, note that each unique set of input parameters results in a
unique cached result.

Introduction

Output caching

18 Module 8: Designing XML Web Services

Data caching is implemented by the Cache class in the System.Web.Caching
namespace. Each ASP.NET application has an instance of the Cache class that
is private to that application, and whose lifetime is bounded by the lifetime of
the application. When an application is restarted, the instance of its Cache
object is re-created.

You can place items in a cache and later retrieve them by using key-value pairs.
In an XML Web service, the Cache object can be accessed through the Context
object. The following code example demonstrates this functionality.

C#

Context.Cache[“ListOfSources”] = dsSources;

Visual Basic .NET

Context.Cache("ListOfSources") = dsSources

Although the Cache class offers a simple interface for you to customize cache
settings, it also offers powerful features that allow you to customize how items
are cached and how long they are cached.

For example, when system memory becomes scarce, the cache automatically
removes seldom used or unimportant items to free memory for processing
requests. This technique is called scavenging. It is one of the ways by which the
cache ensures that data that is not frequently used does not waste valuable
server resources.

A cache has no information about the contents of the items that it
contains. It merely holds a reference to those objects. A caching system can also
provide a way to track the dependencies of those objects and set expiration
policies.

You can define the validity of a cached item based on an external file, a
directory (file dependencies), or another cached item (key dependencies). If a
dependency changes, the cached item is invalidated and removed from a cache.
You can use this technique to remove items from the cache when their data
source changes. For example, if you store the list of current employees in an
XML file for a Human Resources application, you can store a reference to an
XmlDocument object that represents the XML file in the cache. When the
source file is updated, the reference is removed from the cache. When required,
the application reads the XML file and a new version of the XML document is
inserted into the cache.

You can add an item to a cache by passing an instance of the
CacheDependency class to the Add or Insert method. The following example
demonstrates how to use the Insert method to add an item to the cache with a
dependency on an XML file.

Data caching

Controlling caching

Note

File and key-based
dependencies

 Module 8: Designing XML Web Services 19

C#

XmlDocument doc = new XmlDocument();
Doc.Load(Server.MapPath(“employees.xml”);
CacheDependency depend = new
CacheDependency(Server.MapPath(“employees.xml”));
Context.Cache.Insert("Employees", doc, depend);

Visual Basic .NET

Dim doc As New XmlDocument()
Doc.Load(Server.MapPath("employees.xml")) '
Dim depend As New
CacheDependency(Server.MapPath("employees.xml"))
Context.Cache.Insert("Employees", doc, depend)

The CacheDependency class also allows you to monitor arrays of files and
directories, cache keys, or both.

You can add an item to the cache and include an expiration time. You can set
absolute time-out periods or timeouts relative to the last access of the cached
item. The following code uses the Insert method to add an item to the cache
with an absolute expiration of two minutes from the time of insertion into the
cache.

C#

Cache.Insert("Employees", doc, null,
DateTime.Now.AddMinutes(2),

 NoSlidingExpiration);

Visual Basic .NET

Cache.Insert("Employees", doc, Nothing,
DateTime.Now.AddMinutes(2), _

 NoSlidingExpiration)

The following code uses the Insert method to add an item to the cache with a
sliding expiration of 30 seconds.

C#

Cache.Insert("Employees", doc, null, NoAbsoluteExpiration,
 TimeSpan.FromSeconds(30));

Visual Basic .NET

Cache.Insert("Employees", doc, Nothing, NoAbsoluteExpiration,
_

 TimeSpan.FromSeconds(30))

You can either define an absolute expiration or a sliding expiration, but
not both.

Whichever expiration parameter you use, you must set the other parameter to
zero. The Cache class defines two fields that do this automatically:
NoAbsoluteExpiration and NoSlidingExpiration. When you define an
absolute or a sliding expiration, set the appropriate parameter to its
corresponding field value.

Expiration policies

Note

20 Module 8: Designing XML Web Services

All items in the cache will eventually be removed from the cache. This may
happen because the specified duration for the lifetime of an object in the cache
has exceeded, or because of memory shortage. If items must be removed from
the cache because of memory shortage, the common language runtime uses a
least-recently used (LRU) algorithm to decide which items must be removed
first. If you think that that not all of the items in the cache are of equal
importance, then you might prefer to have the less important cached items
removed first from the cache during a memory shortage. You can accomplish
this by assigning priority values (from the CacheItemPriority enumeration) to
the items when they are cached. As a result, the lower priority items are
released first from the cache.

The following example uses the Add method to add an item to the cache with a
priority value of High.

C#

Context.Cache.Add("Employee", doc,

 null, NoAbsoluteExpiration,

 TimeSpan.FromSeconds(30),

 CacheItemPriority.High,

 null);

Visual Basic .NET

Context.Cache.Add("Employee", doc, _
 Nothing, NoAbsoluteExpiration, _
 TimeSpan.FromSeconds(30), _
 CacheItemPriority.High, _
 Nothing)

An item may be removed from the cache for any of the following reasons:

 The item’s timeout expired.
 An object that the cached item was dependent on changed.
 The item was explicitly removed by using the Remove method of the

Cache class.
 The common language runtime was scavenging for memory and the item

became eligible for removal.

When an item expires, it is removed from the cache. Attempts to retrieve its
value will return null unless the item has been added to the cache again. When
an item is removed from the cache, a specified function can execute. The reason
for removal is provided as an argument to this function, and in this function,
you can perform some appropriate action. For example, you might want to
update the data that was cached and re-cache it.

Using removal notification in XML Web services requires a little additional
work. Because the object that encapsulates your XML Web service might be
recycled at the end of each XML Web service method, the callback function
will not necessarily be invoked on a thread that is in the middle of responding
to a request. Therefore, the callback function cannot be an instance method.
Instead, it must be a static method. However, the Context object, which gives
you access to the Cache object, is only available in instance methods. As a
result, you cannot re-cache items in the callback function, unless you find a way
to pass a reference to the Cache object into the callback function.

Item priorities

Removal notification

 Module 8: Designing XML Web Services 21

The following code shows how you might implement removal notification. All
of the following code would be part of the class implementing an XML Web
service.

1. internal class CacheData {
2. internal XmlDocument doc;
3. internal string path;
4. }
5. private static CacheItemRemovedCallback onRemove = null;
6.
7. public static void RemovedCallback(string key, Object v,
8. CacheItemRemovedReason r) {
9. CacheData cd = (CacheData) v;
10. cd.doc.Load(cd.path);
11. HttpRuntime.Cache.Insert(key, cd,
12. new CacheDependency(cd.path),
13. Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
14. CacheItemPriority.Default,
15. new CacheItemRemovedCallback(
16. Service1.RemovedCallback));
17. }
18.
19. [WebMethod]
20. public string GetEmployees()
21. {
22. CacheData cd = (CacheData)Context.Cache["Employees"];
23. return cd.doc.DocumentElement.OuterXml;
24. }

22 Module 8: Designing XML Web Services

1. Friend Class CacheData
2. Friend doc As XmlDocument
3. Friend path As String
4. End Class 'CacheData
5.
6. Private Shared onRemove As CacheItemRemovedCallback = Nothing
7.
8. Public Shared Sub RemovedCallback(key As String, v As

[Object], r As CacheItemRemovedReason)
9. Dim cd As CacheData = CType(v, CacheData)
10. cd.doc.Load(cd.path)
11. HttpRuntime.Cache.Insert(key, cd, _
12. New CacheDependency(cd.path), _
13. Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration, _
14. CacheItemPriority.Default, _
15. New CacheItemRemovedCallback(_
16. AddressOf Service1.RemovedCallback))
17. End Sub 'RemovedCallback
18.
19. Public<WebMethod()> _
20. Function GetEmployees() As String
21. Dim cd As CacheData = CType(Context.Cache("Employees"),

CacheData)
22. Return cd.doc.DocumentElement.OuterXml
23. End Function 'GetEmployees

The functionality of the preceding code can be described as follows:

 In lines 1 through 4, a class named CacheData is defined. In this example, a
reference to an XML document is cached, but the class also has a field
named path that will store the path to the document that is being cached.

 In line 6, a static reference to a delegate of type
CacheItemRemovedCallback is defined.

 In lines 8 through 17, a function named RemovedCallback is defined. This
function will be called when the item is removed from the cache.

 In line 9, the CacheData object is recovered.
 In line 10, the modified XML document is reloaded.
 In line 11 through 16, the updated CacheData object is stored back in the

cache by using the same key when it was first stored.
 In line 22, the CacheData object that was cached is retrieved.

 Module 8: Designing XML Web Services 23

The following code provides an example of how to intialize the cache when the
application starts. The event handler is found in Global.asax.

1. protected void Application_Start(Object sender, EventArgs e) {
2. XmlDocument doc = new XmlDocument();
3. CacheData cd = new CacheData();
4. cd.c = Context.Cache;
5. cd.path = Server.MapPath("employees.xml");
6. doc.Load(cd.path);
7. cd.doc = doc;
8. onRemove = new CacheItemRemovedCallback(
9. Service1.RemovedCallback);
10. Context.Cache.Insert("Employees", cd,
11. new CacheDependency(cd.path),
12. Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
13. CacheItemPriority.Default,

 CacheItemPriorityDecay.Never,
14. onRemove);
15. }

1. Protected Sub Application_Start(sender As [Object], e As
EventArgs)

2. Dim doc As New XmlDocument()
3. Dim cd As New CacheData()
4. cd.c = Context.Cache
5. cd.path = Server.MapPath("employees.xml")
6. doc.Load(cd.path)
7. cd.doc = doc
8. onRemove = New CacheItemRemovedCallback(_
9. AddressOf Service1.RemovedCallback)
10. Context.Cache.Insert("Employees", cd, _
11. New CacheDependency(cd.path), _
12. Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration, _
13. CacheItemPriority.Default, CacheItemPriorityDecay.Never,

_
14. onRemove)
15. End Sub 'Application_Start

The functionality of the preceding code can be described as follows:

 In lines 4 through 7, the CacheData object is initialized.
 In lines 8 through 9, the delegate reference onRemove is initialized. Note

that the callback function is the method named RemovedCallback.
 In lines 10 through 14, the CacheData object is inserted into the cache.

Note that the onRemove delegate is supplied, so that the callback function
is called when the item is removed from the cache.

C# code example

Visual Basic .NET code
example

24 Module 8: Designing XML Web Services

Not all data is suitable for caching. Typically, it is recommended that you only
cache data that changes relatively infrequently. For example, the list of your
organization’s customers, organized by region, might be a relatively slow-
changing list, and therefore would make a good candidate for caching.

XML Web service methods, whose results depend on specific input parameters,
and where the possible range of values for the parameters is not restricted, are
not suitable for caching. For example, if you implemented a method to add two
numbers and return the result, it would not be a good idea to cache the result.

Scenarios

 Module 8: Designing XML Web Services 25

Asynchronous Server-Side Methods

Implementing asynchronous WebMethods

C# implementation

Visual Basic .NET implementation

Appropriate uses

*****************************ILLEGAL FOR NON-TRAINER USE******************************

We have seen that XML Web service client proxies expose asynchronous
versions of the XML Web service methods via a pair of Begin/End methods. It
is also possible to implement asynchronous XML Web service methods by
using a similar pattern to the client proxy pattern.

Implementing an XML Web service method asynchronously requires that the
synchronous version of the method be split into two methods. The two methods
must be named Beginxxx and Endxxx.

The Beginxxx method signature includes all the in and ref parameters plus two
additional parameters. The additional parameters are of type AsyncCallback
and object. The method returns an object of type IAsyncResult.

The Endxxx method signature includes all of the ref and out parameters plus an
additional parameter of type IAsyncResult. The method returns the same type
that the synchronous version of the method returned.

Implementing
asynchronous
WebMethods

C# Implementation

26 Module 8: Designing XML Web Services

C#

[WebMethod]
IAsyncResult BeginGetAccounts(AsyncCallback callback, object
asyncState)
{
 WoodgroveOnlineBank bank = new WoodgroveOnlineBank();
 asyncState = bank;
 IAsyncResult ar =
bank.BeginGetAllAccounts(callback,asyncState);

 return ar;
}

Acct[] EndGetAccounts(IAsyncResult result)
{
 WoodgroveOnlineBank bank =
(WoodgroveOnlineBank)result.AsyncState;

 return bank.EndGetAllAccounts(result);
}

The Beginxxx method signature includes all the ByVal and ByRef parameters
plus two additional parameters. The additional parameters are of type
AsyncCallback and Object. The method returns an object of type
IAsyncResult.

The Endxxx method signature includes all the ByRef parameters plus an
additional parameter of type IAsyncResult. The method returns the same type
that the synchronous version of the method returned.

Visual Basic .NET

<WebMethod()> _
Function BeginGetAccounts(callback As AsyncCallback,
asyncState As Object) As IAsyncResult

 Dim bank As New WoodgroveOnlineBank()
 asyncState = bank
 Dim ar As IAsyncResult = bank.BeginGetAllAccounts(callback,
asyncState)

 Return ar
End Function 'BeginGetAccounts

Function EndGetAccounts(result As IAsyncResult) As Acct()
 Dim bank As WoodgroveOnlineBank = CType(result.AsyncState,
WoodgroveOnlineBank)

 Return bank.EndGetAllAccounts(result)
End Function 'EndGetAccounts

Microsoft Visual Basic®
.NET Implementation

 Module 8: Designing XML Web Services 27

It is recommended that you consider using an asynchronous implementation of
an XML Web service method in the following situations:

 The XML Web service method will be invoking another XML Web service.
 The XML Web service method will be performing file input/output (I/O).
 The XML Web service is performing any I/O that could take a long time

and is based on Microsoft Win32® kernel object handles (for example,
socket I/O).

Even if you implement an XML Web service method as a pair of
asynchronous functions, the method is still exposed as a single XML Web
service operation.

Appropriate uses

Note

28 Module 8: Designing XML Web Services

Lab 8.1: Implementing Caching in an XML Web Service

Internet

Woodgrove Bank
Web Service

UDDI
Registry

Web Service Consumer

Contoso Micropayment
Web Service

Firewall

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to implement caching in an XML
Web service.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations

There are starter and solution files that are associated with this lab. The starter
files are in the folder <labroot>\Labfiles\Lab08_1\Starter. The solution files for
this lab are in the folder <labroot>\Labfiles\Lab08_1\Solution.

If you did not complete Lab 7.1, Securing XML Web Services, in Module 7,
“Securing XML Web Services,” in Course 2524B, Developing XML Web
Services Using Microsoft ASP.NET, copy the
<labfolder>\Lab07\Solution\Contoso project to the C:\Inetpub\Wwwroot
folder, overwriting your existing Contoso project.

In this lab, you will implement a method on the Contoso XML Web service that
returns an XML document with information about the different memebership
levels that the Contoso Micropayment service supports. The XML document
containing the information will be cached by using the .NET Framework
caching infrastructure. If the underlying XML document is modified, the cache
will be invalidated and the XML document must be recached.

You will test the solution to this lab by using the Service Help page for the
Contoso XML Web service.

Objective

Note

Lab Setup

Scenario

Estimated time to
complete this lab: 40
minutes

 Module 8: Designing XML Web Services 29

Exercise 1
Extending the Contoso Micropayment XML Web Service

In this exercise, you will add a Web method named
GetMembershipInformation to the Contoso Micropayment XML Web
service. This method will retrieve a cached XML document and return its
contents to the client. You will also add code to Global.asax to initialize the
cache and refresh it when the underlying XML document is modified.

 Initialize the cache

1. Open the Contoso project in Microsoft Visual Studio® .NET.

If you did not complete the modifications to the Contoso project
in Lab 7.1, refer to the Lab Setup section at the beginning of this lab for
additional instructions.

2. Open the code behind file for Global.asax.
3. Import the System.Xml and System.Web.Caching namespaces.
4. Add the following class definition above the class Global.

C# Visual Basic .NET

internal class CacheData {
 internal XmlDocument doc;
 internal string path;
}

Friend Class CacheData
 Friend doc As XmlDocument
 Friend path As String
End Class 'CacheData

5. Add an object of type CacheItemRemovedCallback to the Global class.
The following code shows how to do this.
C#

private static CacheItemRemovedCallback onRemove = null;

Visual Basic .NET

Private Shared onRemove As CacheItemRemovedCallback =
Nothing

6. Add code to the Application_Start method to load the XML document
named memberships.xml from the XML Web service folder. The following
code shows how to do this.
C#

XmlDocument doc = new XmlDocument();
doc.Load(Server.MapPath(“memberships.xml”));

Visual Basic .NET

Dim doc As XmlDocument = New XmlDocument()
doc.Load(Server.MapPath(“memberships.xml”))

Important

30 Module 8: Designing XML Web Services

7. Initialize an instance of the CacheData class named cd with the XML
document object and the path to the XML document. The following code
shows how to do this.
C#

CacheData cd = new CacheData();
cd.path = Server.MapPath("memberships.xml");
cd.doc = doc;

Visual Basic .NET

Dim cd As New CacheData()
cd.path = Server.MapPath("memberships.xml")
cd.doc = doc

8. Add the CacheData object to the cache. The following code shows how to

do this.
C#

onRemove = new CacheItemRemovedCallback(
 Global.RemovedCallback);
Context.Cache.Insert("MembershipTypes", cd,

 new CacheDependency(cd.path),

 Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
 CacheItemPriority.Default,
 onRemove);

Visual Basic .NET

onRemove = New CacheItemRemovedCallback(_
 AddressOf Global.RemovedCallback)
Context.Cache.Insert("MembershipTypes", cd, _
 New CacheDependency(cd.path), _
 Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
_

 CacheItemPriority.Default, _
 onRemove)

 Implement the removal notification function

1. Add a method named RemovedCallback to the class Global.
a. In the method, cast the object that has been removed to an object of type

CacheData.
b. Reload the XML document by using the path that is stored in the cached

object.
c. Reinsert the cached object into the cache.

The following code shows how to do this.

 Module 8: Designing XML Web Services 31

C#

public static void RemovedCallback(string key, Object v,
 CacheItemRemovedReason r)
{
 CacheData cd = (CacheData) v;
 cd.doc.Load(cd.path);
 HttpRuntime.Cache.Insert(key, cd,
 new CacheDependency(cd.path),
 Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
 CacheItemPriority.Default,
 new CacheItemRemovedCallback(Global.RemovedCallback));
}

Visual Basic .NET

Public Shared Sub RemovedCallback(key As String, v As
[Object], r As CacheItemRemovedReason)
 Dim cd As CacheData = CType(v, CacheData)
 cd.doc.Load(cd.path)
 HttpRuntime.Cache.Insert(key, cd, _
 New CacheDependency(cd.path), _
 Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
_

 CacheItemPriority.Default, _
 New CacheItemRemovedCallback(_
 AddressOf Global.RemovedCallback))
End Sub 'RemovedCallback

 Add the GetMembershipInformation method

1. Open the code behind file for Micropayment.asmx.
2. Import the System.Xml and System.Web.Caching namespaces.
3. Add a method named GetMembershipInformation to the

MicroPaymentService class. This method accepts no arguments and
returns an XmlNode.

4. Add a WebMethod attribute to the method.
5. In the method, use the HttpRuntime class to retrieve the cached data, and

return the cached XML document to the client. The following code shows
how to do this.
C#

CacheData cd =
(CacheData)HttpRuntime.Cache["MembershipTypes"];
return cd.doc.DocumentElement;

Visual Basic .NET

Dim cd As CacheData =
CType(HttpRuntime.Cache("MembershipTypes"), CacheData)
Return cd.doc.DocumentElement

32 Module 8: Designing XML Web Services

 Test the caching behavior

1. Copy the file memberships.xml from <labroot>\Lab08_1\Starter to the
folder c:\Inetpub\wwwroot\Contoso.

2. Open the code behind file for Global.asax.
3. Set a breakpoint in the RemovedCallback method.
4. Run the XML Web service in debug mode.
5. When the Service Help page is displayed, click

GetMembershipInformation.
6. On the Service Help page, click Invoke.

You will see the membership information displayed.
7. Open the file memberships.xml in the folder c:\Inetpub\wwwroot\Contoso

by using Notepad.exe.
8. Change the cost attribute for the Gold membership to 3500 and save the file.

The debugger should break at the breakpoint set in the
GetMembershipInformation method.

9. Press the F5 key.

Switch back to the Service Help Page and click Invoke. You will see the
updated membership information displayed.

 Module 8: Designing XML Web Services 33

Reliability
Availability

Process isolation

Process recovery model

Measurement

Performance counters

WMI

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Developing reliable applications is a difficult task. For example, small memory
leaks may go undetected in a testing environment, but they accumulate over
time. Also, your application might maintain a linked list that continues growing.
The memory leaks and the growing linked list might result in performance
degradation over time, which is unacceptable. As performance degrades, and
your XML Web service is frequently unavailable, clients will perceive the
application as unreliable.

Your XML Web services might become unavailable for the following reasons:

 Individual processes might fail.
 A significant number of XML Web services fail frequently if you are

running a Web farm.

The common language runtime helps you address the preceding issues in a
number of ways.

Most developers implement applications with little or no regard for the other
applications that run on the same computer. This can lead to unintended
interactions. One way to reduce the risk of unintended interactions is to isolate
all applications in separate processes. However, this solution makes more
demands on system resources than when applications share processes. As a
result, there is a tradeoff between reliability and performance.

With application domains in common language runtime, you are able to achieve
both reliability and performance in your XML Web service. Application
domains provide application isolation within the same process boundary.
Because of this feature, it is often a good idea to migrate any unmanaged code
that your XML Web service uses to the managed environment. Migrating
unmanaged code will reduce the performance penalty incurred when your XML
Web service calls a component outside of the application domain.

Introduction

Availability

Process isolation

34 Module 8: Designing XML Web Services

All ASP.NET code runs in an external worker process named aspnet_wp.exe.
This process can automatically restart your application domain if it fails. Any
memory is reclaimed during the garbage collection for the common language
runtime, and if a deadlock is detected, the runtime performs deadlock recovery.

You can also configure the worker process to proactively reset itself based on a
timer or on-demand. Proactively resetting the process is a useful preventive
measure because it minimizes the chances of your application experiencing a
slowdown because of resource depletion, or experiencing problems with
counter roll-overs, and so on.

Earlier, you learned about a few general considerations for measuring
performance and behavior of an application. This section examines the .NET
Framework support for instrumenting XML Web services.

Windows performance counters allow your applications and components to
publish, capture, and analyze the performance data that applications, services,
and drivers provide. You can use this information to determine system
bottlenecks, and fine-tune system and application performance. For example,
you might use a performance counter to track the amount of time that is
required to process an order, or query a database. The decision about how to
instrument your XML Web service is a tradeoff between the performance
impact that writing to performance counters imposes and the utility gained by
instrumenting the XML Web service. If your XML Web service will be
deployed by an Internet Service Provider (ISP) or an Application Service
Provider (ASP), it is vital that you instrument the XML Web service.

You can use the PerformanceCounter class for both reading predefined or
custom counters and writing performance data to custom counters.

To read from a performance counter:

1. Create an instance of the PerformanceCounter class.
2. Set the CategoryName, CounterName, and, optionally, the InstanceName

or MachineName properties.
3. Call the NextValue method to get the reading.

Windows Management Instrumentation (WMI) provides a rich set of system
management services that are built into the Microsoft Windows operating
system. A broad spectrum of applications, services, and devices are available
that use WMI to provide extensive management features for information
technology (IT) operations and product support organizations. The use of WMI-
based management systems leads to more robust computing environments and
greater system reliability, which allows savings for corporations.

Process recovery model

Measurement

Performance counters

WMI

 Module 8: Designing XML Web Services 35

WMI provides extensive instrumentation to accomplish almost any
management task for many high-end applications, such as Microsoft Exchange
Server, Microsoft SQL Server, and Microsoft Internet Information Services
(IIS). An administrator can perform the following tasks:

 Monitor the health of the applications.
 Detect bottlenecks or failures.
 Manage and configure applications.
 Query application data (use the traversal and querying of object

relationships).
 Perform seamless local or remote management operations.

The WMI architecture consists of the following three tiers:

 Clients. Software components that perform operations by using WMI (for
example, reading management details, configuring systems, and subscribing
to events).

 Object manager. A broker between providers and clients that provides some
key services, such as standard event publication and subscription, event
filtering, query engine, and so on.

 Providers. Software components that capture and return live data to the
client applications, process method invocations from the clients, and link the
client to the infrastructure that is managed.

The provision of data and events, and the ability to configure systems are
provided seamlessly to clients and applications through a well-defined schema.
In the .NET Framework, the System.Management namespace provides
common classes to traverse the WMI schema.

The following code shows how to define a WMI Instance class.

C#

[InstrumentationClass(InstrumentationType.Abstract)]
public class AbstractClass : Instance {
 public string Property_Name;
}

[InstrumentationClass(InstrumentationType.Instance)]
public class InstanceClass : AbstractClass {
 public int Sample_Number;
}

...
 InstanceClass instClass = new InstanceClass();
 instClass.Property_Name = "Hello";
 instClass.Sample_Number = 888;
 instClass.Published = true;

36 Module 8: Designing XML Web Services

Visual Basic .NET

<InstrumentationClass(InstrumentationType.Abstract)> _
Public Class AbstractClass
 Inherits Instance
 Public Property_Name As String
End Class 'AbstractClass
<InstrumentationClass(InstrumentationType.Instance)> _

Public Class InstanceClass
 Inherits AbstractClass
 Public Sample_Number As Integer
End Class 'InstanceClass
…
Dim instClass As New InstanceClass()
instClass.Property_Name = "Hello"
instClass.Sample_Number = 888
instClass.Published = True

 Module 8: Designing XML Web Services 37

Versioning

Versioning assemblies

Versioning WSDL documents

Versioning request or response payload

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Any code deployed into production is likely to evolve through multiple
versions. XML Web services are not any different. As a developer of an
ASP.NET XML Web service, you must consider a number of issues that are
specific to XML Web services.

You manage versioning in the .NET Framework at the assembly level and use it
only when locating strong-named assemblies. By default, the common language
runtime loads the assembly whose version number matches the version number
in the metadata of the calling assembly. However, you can instruct the runtime
to load a different version of an assembly by using version policy.

Version policy is the set of rules that specify which version of a dependent
assembly to bind to. Version policy is defined in the policy configuration files.
When used in conjunction with the global assembly cache (GAC), versioning
and version policy make side-by-side deployment and execution of assemblies
much easier.

From the perspective of XML Web services, the fact that you can have side-by-
side deployment of different versions of an assembly means that you can deploy
different versions of an XML Web service.

For more information about assembly versioning, see Course 2350A, Securing
and Deploying Microsoft .NET Assemblies.

You define the interface to your XML Web service by using Web Services
Description Language (WSDL). If you decide to modify the interface to your
XML Web service, it is recommended that you modify any registration
information in Universal Description, Discovery, and Integration (UDDI) to
indicate that your business service no longer supports the tModel that is
associated with the previous version of the WSDL document. It is vital that you
do not simply modify the WSDL document associated with a previously
registered tModel, because existing consumers of your XML Web service may
no longer function correctly with the modified interface.

Versioning assemblies

Versioning WSDL
documents

38 Module 8: Designing XML Web Services

If any parameter to an XML Web service method or the return value of a
method changes its structure over time, then you can handle the versioning
issues by defining the parameter or return type to be of the type XmlElement or
XmlNode. You can then apply the XmlAnyElement or XmlAnyAttribute to
the parameter or the field. These attributes instruct the common language
runtime to capture all elements and attributes that are found in an XML
document. The following code shows how to do this.

C#

[WebMethod]
public class Company
{
 [return:XmlAnyElement]
 XmlNode GetOrganizationStructure() {
 …
 }
}

Visual Basic .NET

<WebMethod()> _
Public Class Company
 …
 Function GetOrganizationStructure() As<XmlAnyElement()>
XmlNode

 …
 End Function 'GetOrganizationStructure
End Class 'Company

Versioning request or
response payload

 Module 8: Designing XML Web Services 39

HTML Screen Scraping XML Web Services

Regular Expressions in the .NET Framework

Using Regular Expressions in WSDL Documents

Demonstration: Screen Scraping an HTML Document

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is not always realistic to expect that data will be conveniently parsed and
stored in a database for easy retrieval. Often, data is dumped to flat files. If you
want to use a portion of this data, then you must retrieve the document and
parse it to extract the information of interest.

Writing code to parse data is a tedious and error-prone process if the data is not
organized into well-defined fields. A useful way to reduce the effort that is
involved is to use an engine that can support regular expressions, which you can
use to parse data.

Microsoft has combined regular expression parsing technology with Web
Service Description Language (WSDL) and the .NET XML Web service proxy
technology to enable you to build virtual XML Web services on top of static
documents. When applied to Web pages, this technique is known as screen
scraping.

40 Module 8: Designing XML Web Services

Regular Expressions in the .NET Framework

The Regex class

The Match class

The MatchCollection class

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Regular expressions provide a powerful, flexible, and efficient method for
processing text. The extensive pattern-matching notation of regular expressions
allows you to:

 Quickly parse large amounts of text to find specific character patterns.
 Extract, edit, replace, or delete text substrings.
 Add the extracted strings to a collection to generate a report.

Regular expressions are an indispensable tool for many applications that
manipulate strings, such as HTML processing, log file parsing, and HTTP
header parsing.

The regular expressions of the Microsoft .NET Framework are designed to be
compatible with Perl 5.0 regular expressions. You can find the regular
expression classes for the .NET Framework in the
System.Text.RegularExpressions namespace.

The Regex class represents a read-only regular expression. The following
example creates an instance of the Regex class and defines a simple regular
expression when the object is initialized.

C# Visual Basic .NET

Regex r;
r = new Regex(@"\s2000");

Regex r;
r = new Regex("\s2000");

Introduction

The Regex class

 Module 8: Designing XML Web Services 41

The Match class represents the results of a regular expression match. The
following example uses the Match method of the Regex class to return an
object of type Match to find the first match in the input string. The example
uses the Success property of the Match class to find out if a match was found.

 Regex r = new Regex("abc");
 Match m = r.Match("123abc456");
 if (m.Success)
 {
 Console.WriteLine("Found match at position " + m.Index);
 }

Most of the important regular expression language operators are unescaped
single characters. The escape character “\” (a single backslash) notifies the
regular expression parser that the character following the backslash is not an
operator. The following table lists the character escapes that are recognized in
regular expressions.

Escaped character Meaning

ordinary characters Characters other than ., $, ^, {, [, (, |,), *, +, ?, and \
match themselves.

\a Matches a bell alarm (\u0007).

\b Matches backspace (\u0008) if in [] character classes;
otherwise, in a regular expression, \b denotes a word
boundary (between \w and \W characters)

\t Matches a tab (\u0009).

\r Matches a carriage return (\u000D).

\v Matches a vertical tab (\u000B).

\f Matches a form feed (\u000C).

\n Matches a new line (\u000A).

\e Matches an escape (\u001B).

\040 Matches an ASCII character as octal (up to three digits).
For example, \040 represents a space.

\x20 Matches an ASCII character by using hexadecimal
representation (exactly two digits).

\cC Matches an ASCII control character; for example, \cC is
CTRL+C.

\u0020 Matches a Unicode character by using hexadecimal
representation (exactly four digits).

\ When followed by a character that is not recognized as
an escaped character, matches that character. For
example, * is the same as \x2A.

The Match class

Escaped characters

42 Module 8: Designing XML Web Services

Character classes are the set of characters that define which substring to match.
The following table summarizes character matching syntax.

Character class Meaning

. Matches any character except \n unless modified by the
Singleline option.

[aeiou] Matches a single character included in the specified set
of characters.

[^aeiou] Matches any single character that is not in the specified
set of characters.

[0-9a-fA-F] Matches any character in the specified ranges.
\w Matches any word character. Same as [a-zA-Z_0-9].
\W Matches any nonword character. Same as [^a-zA-Z_0-

9].
\s Matches any white space character. Same as [\f\n\r\t\v].

\S Matches any nonwhite space character. Same as
[^\f\n\r\t\v].

\d Decimal digit. Same as [0-9].
\D Nondigit. Same as [^0-9].

For more information, see the topic “Regular Expression Language Elements”
in the .NET Framework SDK documentation.

The MatchCollection class represents a sequence of successful nonoverlapping
matches when applying a regular expression to an input string. The
Regex.Matches property returns instances of MatchCollection.

The following example uses the Matches method of the Regex class to fill an
instance of the MatchCollection class with all of the matches that are found in
the input string. The following example code copies the match collection to a
string array that holds all of the matches and an integer array that indicates the
position of each match.

C#

MatchCollection mc;
string[] results = new String[20];
int[] matchposition = new int[20];

Regex r = new Regex("abc");
mc = r.Matches("123abc4abcd");
for (int i = 0; i < mc.Count; i++)
{
 results[i] = mc[i].Value;
 matchposition[i] = mc[i].Index;
}

Character classes

The MatchCollection
Class

 Module 8: Designing XML Web Services 43

Visual Basic .NET

Dim mc As MatchCollection
Dim results() As String = New [String](20) {}
Dim matchposition(20) As Integer

Dim r As New Regex("abc")
mc = r.Matches("123abc4abcd")
Dim i As Integer
For i = 0 To mc.Count - 1
 results(i) = mc(i).Value
 matchposition(i) = mc(i).Index
Next i

44 Module 8: Designing XML Web Services

Using Regular Expressions in WSDL Documents

Create a WSDL document manually

Specify the output message format in the output
element within the binding element

Example
<urt:text>

<urt:match name="LineItem"
pattern="<tr>(.*)?</tr>"
repeats="*"/>

</urt:match>
</urt:text>

<urt:text>
<urt:match name="LineItem"

pattern="<tr>(.*)?</tr>"
repeats="*"/>

</urt:match>
</urt:text>

<urt:text>
<urt:match name="nameOfElement"

pattern="regular expression ..."/>
....

</urt:text>

<urt:text>
<urt:match name="nameOfElement"

pattern="regular expression ..."/>
....

</urt:text>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

If you want to consume a flat file as if it were an XML Web service by creating
an XML Web service proxy, you need a service description. In the case of flat
files screen scraping, no WSDL can be generated automatically. Therefore, you
have to construct the WSDL document manually.

The interesting part of a manually created WSDL document is the format of the
output, which is specified in the binding element. The output is simply an
XML document with the following structure:

<urt:text>
 <urt:match name="nameOfElement"
 pattern="regular expression ...">

</urt:text>

The pattern attribute of the match element is a Perl 5.0 compatible regular
expression. The match elements can also have nested match elements to
perform pattern matching within a match.

Consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<family>
 <parents>
 <mother>Clair</mother>
 <father>Peter</father>
 </parents>
 <children>
 <child>John</child>
 <child>Robert</child>
 <child>Jim</child>
 <child>Amy</child>
 </children>
</family>

Introduction

Example

 Module 8: Designing XML Web Services 45

To mimic an XML Web service that can provide a list of parents and a list of
children, you can have the following WSDL document:

<?xml version="1.0"?>
<definitions standard namespaces omitted for brevity
 xmlns:urt=
 "http://microsoft.com/wsdl/mime/textMatching/">
 <types/>
 <message name="GetFamilyInfoHttpGetIn"/>
 <message name="GetFamilyInfoHttpGetOut"/>
 <portType name="FamilyHttpGet">
 <operation name="GetFamilyInfo">
 <input message="s0:GetFamilyInfoHttpGetIn"/>
 <output message="s0:GetFamilyInfoHttpGetOut"/>
 </operation>
 </portType>
 <binding name="FamilyHttpGet" type="s0:FamilyHttpGet">
 <http:binding verb="GET"/>
 <operation name="GetFamilyInfo">
 <http:operation location=""/>
 <input>
 <http:urlEncoded/>
 </input>
 <output>
 <urt:text>
 <urt:match name="listOfChildren"
 pattern="(<children>(.*)?</children>)"
 ignoreCase="1">
 <urt:match name="children"
 pattern="<child>(.*)?</child>"
 repeats="*"/>
 </urt:match>
 </urt:text>
 </output>
 </operation>
 </binding>
 <service name="Family">
 <port name="FamilyHttpGet" binding="s0:FamilyHttpGet">
 <http:address
 location="http://www.cpandl.com/Scrape/family.xml"/>
 </port>
 </service>
</definitions>

You can process this WSDL document by using Wsdl.exe to produce a proxy
class. You can use this proxy class like any other proxy to an XML Web
service.

46 Module 8: Designing XML Web Services

Demonstration: Screen Scraping an HTML Document

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see how data can be extracted from an HTML
page and presented to the client as if it were an XML Web service that was
providing the data.

 Module 8: Designing XML Web Services 47

Aggregating XML Web Services

Aggregated XML Web Service Scenarios

Designing an XML Web Service for Aggregation

Demonstration: Example of an Aggregated XML Web
Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Developers are constantly looking for ways to reuse code. XML Web services
present another opportunity for code reuse. The reuse model is different than
code libraries because of the loose coupling between XML Web services and
their consumers. The reuse scenarios for XML Web services encompass
interorganization workflows and service aggregation. Although a detailed
discussion of workflow applications is beyond the scope of this course, it is
useful to examine service aggregation as a way of reusing XML Web services.

48 Module 8: Designing XML Web Services

Aggregated XML Web Service Scenarios

Gateways to XML Web services

Simple interfaces to complex XML Web services

Portals to XML Web services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are many possible ways that the services that an aggregated XML Web
service provides can be made available to consumers.

An organization has an internal XML Web service behind a corporate firewall.
The XML Web service uses integrated Windows authentication. A corporate
decision is made to allow external clients (for example trading partners) to use
the XML Web service. The external clients must be authenticated by using a
different authentication mechanism because they may be traversing a proxy
server before accessing the XML Web service.

A simple solution for this scenario is to implement the XML Web service with
exactly the same interface as the internal XML Web service, and place the new
XML Web service outside the firewall. The new XML Web service would
provide a secure gateway to the XML Web service behind the firewall by
authenticating all requests and then forwarding them to the internal XML Web
service.

Some XML Web services may expose very rich functionality. The interface to
the XML Web service may be very complex. For example, the Microsoft
TerraServer .NET XML Web service is able to return photographic images,
topographic maps, and relief maps by using IDs to entities called tiles. The tiles
can be located by latitude and longitude. Suppose you wanted to retrieve an
image of the city of Portland, Oregon, in the United States. You would first
have to find the latitude and longitude information, determine the tile ID, and
then retrieve the image. However, the TerraServer XML Web service does not
currently provide the capability of determining the latitude and longitude of a
city based on its name. It would be useful to have an XML Web service that
had an operation that took a city, state or province, and country as arguments
and returned the image of the appropriate tile. The XML Web service would
retrieve the latitude and longitude from one XML Web service and use the
information to find the tile ID and then image at the TerraServer XML Web
service.

Gateway to XML Web
services

Simple interfaces to
complex XML Web
services

 Module 8: Designing XML Web Services 49

In lab 8.2 associated with this module, you will implement an XML Web
service, named Northwind Traders, that performs an electronic funds transfer. It
does this transfer by acting as a proxy for the consumer and handles the details
of obtaining routing information, and initiating the electronic funds transfer.
The XML Web service communicates with two other XML Web services that
act as the source and recipient of the funds being transferred. The only thing
that a client of the Northwind Traders XML Web service must do is select the
source and destination financial institution, and supply the amount for the
transfer and security credentials for the source financial institution. This is
considerably simpler than having to request routing information from one
financial institution and deliver that information to another financial institution
manually.

The previous scenario is an example of how an XML Web service that
aggregates other XML Web services can provide additional value to the
consumer. Instead of the consumer having to interact with multiple XML Web
services, the aggregating XML Web service can act as a portal to other XML
Web services.

Portals to XML Web
services

50 Module 8: Designing XML Web Services

Designing an XML Web Service for Aggregation

Protocol considerations

Handling non-interactive clients

Designing for ISPs

Designing for ASPs

Monitoring and metering

Self-repair and remote repair

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the biggest sources of problems for Application Service Providers
(ASPs) is that very little third-party software is designed for Internet delivery.
You need to consider what kinds of design constraints will be imposed by the
environment where you expect your XML Web service to be deployed. In this
topic, you will examine some of these issues as a guide to designing an XML
Web service that you can use in a variety of scenarios.

The choice of protocol affects what data types your XML Web service methods
can use. It is recommended that you select SOAP as your protocol of choice.
Not only does SOAP support a very rich set of data types, but also, SOAP is not
tied to HTTP as an underlying protocol. In fact SOAP will soon be usable over
File Transfer Protocol (FTP) and Simple Mail Transfer Protocol (SMTP).

If your XML Web service is designed to expect interactive clients, then it will
probably not perform well in a scenario where other XML Web services are
aggregating your XML Web service.

Many organizations are outsourcing the physical hosting of their Web sites to
Internet Service Providers (ISPs). The challenge for the XML Web service
developer is that the hardware on which the XML Web service is deployed will
probably be shared with other customers also. Consequently, there will most
likely be much stricter security policies in place to ensure that applications for
different customers do not accidentally or deliberately interfere with each other.
XML Web service developers must ensure that all of the required permissions
are requested so that the ISP can correctly configure the security policy for the
XML Web service.

Another issue that you must address is that the physical location of the XML
Web service will be inaccessible to you. Therefore, if the XML Web service
must be configurable after it is deployed to the ISPs infrastructure, you must
provide a secure administrative interface to your XML Web service.

ASPs sell subscriptions to software. They can only charge customers for service
usage that can be tracked.

Protocol considerations

Handling noninteractive
clients

Designing for ISPs

Designing for ASPs

 Module 8: Designing XML Web Services 51

ASPs want the capability to isolate and monitor individual transactions within
the application. They want the ability to configure what aspects of an
application will be monitored. The capability to closely monitor many system
metrics makes it easier for the ASP to correctly determine which clients are
using which services and the exact actions that are being performed. This is the
basis for application usage metering.

Another desirable attribute of an application from the ASP perspective is the
ability of applications to automatically generate alerts to notify key personnel.
You can implement much of the required eventing and monitoring
infrastructure by using the WMI support in the
System.Management.Instrumentation namespace and by using the
Performance Counter classes to write to the Windows eventlLogs.

It is recommended that applications also take some measures to perform self-
repair if problems are diagnosed. For example, if an XML Web service is a
client of a second XML Web service and it detects that the second XML Web
service is unavailable, it should attempt to locate a backup service provider.

If your application cannot perform self-diagnosis and repair, you should also
provide an administrative interface that will allow you to configure settings like
database connection strings in Web.config.

Monitoring and metering

Self-repair and remote
repair

52 Module 8: Designing XML Web Services

Demonstration: Example of an Aggregated XML Web
Service

Internet

Web Service Consumer

UDDI
Registry

Contoso Micropayment
Web Service

Firewall

Firewall

Firewall

Woodgrove Bank
Web Service

Northwind Electronic Funds
Transfer Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will see an example of an XML Web service named
Northwind that aggregates two other XML Web services (Contoso and
Woodgrove) to implement an electronic funds transfer portal. This
demonstration illustrates the solution to the lab associated with this module.

 Module 8: Designing XML Web Services 53

Lab 8.2: Implementing an Aggregated XML Web Service

Internet

Web Service Consumer

UDDI
Registry

Contoso Micropayment
Web Service

Firewall

Firewall

Firewall

Woodgrove Bank
Web Service

Northwind Electronic Funds
Transfer Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to implement an aggregating XML
Web service that uses multiple XML Web services.

This lab focuses on the concepts in this module and, as a result, may not
comply with Microsoft security recommendations.

There are starter and solution files that are associated with this lab. The starter
files are in the folder <labroot>\Labfiles\Lab08_2\Starter. The solution files for
this lab are in the folder <labroot>\Labfiles\Lab08_2\Solution.

If you did not complete Lab 8.1, Implementing Caching in an XML Web
Service, in Module 8, “Designing XML Web Services,” in Course 2524B,
Developing XML Web Services Using Microsoft ASP.NET, copy the
<labfolder>\Lab08_1\Solution\Contoso project to the C:\Inetpub\Wwwroot
folder, overwriting your existing Contoso project.

In this lab, you will implement an aggregating XML Web service named
Northwind Traders and a client to consume this service. The Northwind Traders
XML Web service will be a portal to facilitate electronic funds transfers
between financial institutions. It will locate XML Web services for financial
institutions that can be either a source or a destination of the funds transfers. It
will allow a funds transfer between any of the located financial institutions.

You will also implement a client that uses the Northwind Trader XML Web
service.

Objective

Note

Lab Setup

Scenario

Estimated time to
complete this lab: 90
minutes

54 Module 8: Designing XML Web Services

Exercise 1
Extending the Contoso Micropayment XML Web Service

In this exercise, you will add a CreditAccount method to the Contoso
Micropayment XML Web service. This method will invoke the Woodgrove
Online Bank TransferFunds method, which transfers funds from a Woodgrove
account to a Contoso account.

 Add the CreditAccount method

1. Open the Contoso project in Microsoft Visual Studio .NET.

If you did not complete the modifications to the Contoso project
in Lab 7.1, refer to the Lab Setup section at the beginning of this lab for
additional instructions.

2. Open the code behind file for Micropayment.asmx.
3. To provide information to allow Contoso XML Web service to bind to the

Woodgrove XML Web service, add the following structure.
C# Visual Basic .NET

public struct EFTBindingInfo
{
 public string token;
 public string endPoint;
}

Public Structure
EFTBindingInfo
 Public token As String
 Public endPoint As String
End Structure
'EFTBindingInfo

The endPoint string provides the URL that the CreditAccount method will
use to call the Woodgrove TransferFunds method. The token string
provides an encrypted string that the Woodgrove AuthorizeFundsTransfer
method returns. The TransferFunds method uses this token to verify that
the transfer has been authorized, and that the authorization has not expired.

4. Begin creating the CreditAccount method by adding the following method
signature to the MicroPaymentService class.
C#

public void CreditAccount(EFTBindingInfo bindingInfo,
decimal amount)

Visual Basic .NET

Public Sub CreditAccount(bindingInfo As EFTBindingInfo,
amount As Decimal)

5. In the CreditAccount method, add attributes that do the following:
a. Expose the method as an XML Web service method.
b. Use a SoapHeader that uses the authInfo data member in the header.
c. Decrypt the request header.

Important

 Module 8: Designing XML Web Services 55

 Call the Woodgrove TransferFunds method in CreditAccount

1. Add a Web Reference to the Woodgrove Online Banking XML Web
service.

2. Rename the localhost namespace to Bank.
3. Add code to import the Contoso.Bank namespace.
4. To invoke the Woodgrove TransferFunds method, within the

CreditAccount method, create a WoodgroveOnlineBank proxy class
object.

5. Set the Url data member of the proxy class to the endPoint string that the
EFTBindingInfo parameter provides.

6. Open the Class View.
7. Expand the Contoso.Bank namespace.
8. Expand the WoodgroveOnlineBank class.
9. Notice that the TransferFunds method takes an EFTRoutingInfo object.

The EFTRoutingInfo class provides routing information for the Contoso
Micropayment financial institution and the Contoso target account that the
Woodgrove bank requires to complete a transfer.

10. Create an EFTRoutingInfo object.
11. Set the EFTRoutingInfo data members as follows.

Data Member Value

ABA_RoutingNo “12345”

AccountName “Contoso Micropayments”

AccountNumber “12345678”

SubAccountName Name of the Contoso account holder

SubAccountNumber The Contoso account number

To obtain the SubAccountName and SubAccountNumber, invoke the
Contoso GetAccount method. Although this method is exposed as an XML
Web service method, it can also be invoked locally.
Recall that GetAccount returns an AccountDataSet. The
_GetAccount[0].Name (_GetAccount(0).Name for Visual Basic
programmers) data member provides the SubAccountName. The
_GetAccount[0].AccountID (_GetAccount(0).AccountID for Visual
Basic programmers) data member provides the SubAccountNumber.

12. Invoke the Woodgrove proxy class TransferFunds method. Use the
bindingInfo.token property as the token parameter and use the
EFTRoutingInfo object created in step 10 as the ri parameter.

13. Save the EFTConfirmation object that is returned.
Lastly, add a credit transaction to the TransactionLog table of the Contoso
database. The _CreateTransaction stored procedure is provided to do this.
Note that, unlike the other stored procedures that you have used in the
Contoso XML Web service, _CreateTransaction does not return a dataset.

56 Module 8: Designing XML Web Services

 Record the Contoso transaction in the database

1. Create a SqlConnection object. Initialize its ConnectionString property by
using ConfigurationSettings.AppSettings to retrieve the value of the
connectStringContoso application setting.

2. Create a SqlCommand object.
a. Initialize its CommandText property to "_CreateTransaction".
b. Initialize its CommandType property to

System.Data.CommandType.StoredProcedure.
c. Initialize its Connection to the connection created in step 1.

3. For each of the parameters of the _CreateTransaction stored procedure,
add a SqlParameter object to the SqlCommand object.
_CreateTransaction(@userID AS nvarchar(16), @password AS
nvarchar(16), @transDate AS datetime, @amount AS money,
@desc AS nvarchar(50), @type AS char(2), @transactionID AS
int OUTPUT)

You can assign most of the parameters for the constructor of the
SqlParameter class default values. The following table specifies the
parameters and the default values that SqlParameter should use.
Parameter name Value

ParameterDirection System.Data.ParameterDirection.In

put

IsNullable True

Precision 0

Scale 0

SourceColumn “”

DataRowVersion System.Data.DataRowVersion.Curre
nt

The following table lists the parameters to be added and values that are
specific to each parameter.
Name Type Size Value

@userID NvarChar 16 authInfo.Username

@password NvarChar 16 authInfo.Password

@transdate DateTime 8 DateTime.Now

@amount Money 8 the amount
parameter

@desc NvarChar 50 a string that contains
the transactionID
member of the
EFTConfirmation
object

@type Char 2 “CR”

@transactionID Int 4 null/Nothing

For the @transactionID parameter, you must set the associated
ParameterDirection to System.Data.ParameterDirection.Output.

 Module 8: Designing XML Web Services 57

4. Open a connection object.
5. Call SqlCommand.ExecuteNonQuery to invoke the stored procedure.
6. Close the connection.
7. Build and run the XML Web service. The CreditAccount method will be

displayed on the Service Help page, but you will not be able to invoke the
method since the method uses data types that are incompatible with the
HTTP GET protocol.

58 Module 8: Designing XML Web Services

Exercise 2
Creating the Northwind Trader XML Web Service

In this exercise, you will implement the Northwind Traders EFT portal. The
Northwind Traders XML Web service will aggregate the Contoso and
Woodgrove XML Web services (and any XML Web service that is compatible
with these XML Web services). The Northwind Traders XML Web service will
allow clients to specify a source and destination financial institution and then
initiate an electronic fund transfer between the two financial institutions. To
support this functionality, this XML Web service provides operations to
retrieve lists of compatible source and destination financial institutions. It also
brokers the communication between the client and the two aggregated XML
Web services.

 Create the Northwind Trader XML Web service

1. In Visual Studio .NET, on the File menu, point to New, and then click
Project.

2. Select the ASP.NET Web Service project template for the language of your
choice.

3. Name the project Northwind and create it in the default location.
4. Click OK to begin.
5. Rename Service1.asmx to Traders.asmx.
6. To open Traders.asmx, right-click Traders.asmx, and click View Code on

the shortcut menu.
7. Import the System.Web.Services.Protocols, System.Xml,

System.Xml.Serialization, and System.Net namespaces.
8. To allow a method in the Northwind Traders XML Web service to use

SOAP header authentication, add a SoapHeader-derived class to the
Northwind namespace. The class should look as follows.
C# Visual Basic .NET

public class AuthToken :
SoapHeader
{
 public string srcUserName;
 public string srcPassword;
 public string
destUserName;
 public string
destPassword;
}

Public Class AuthToken
 Inherits SoapHeader
 Public srcUserName As
String

 Public srcPassword As
String

 Public destUserName As
String

 Public destPassword As
String

End Class 'AuthToken

This SoapHeader class encapsulates the user name and password
information that you will use when invoking the methods in both the
Woodgrove and Contoso XML Web services.

 Module 8: Designing XML Web Services 59

9. Rename the Service1 class to Traders.
10. For C# programmers, rename the Service1() constructor to Traders().
11. Add a public instance of AuthToken class, named authInfo, to the Traders

class.

 Add Web references to Contoso and Woodgrove

1. Add a Web reference to the Woodgrove Online Banking XML Web service.
2. To rename the localhost namespace to Source, in Solution Explorer,

expand Web References. Right-click localhost and click Rename from the
shortcut menu, and then type Source.

3. Add a Web reference to the Contoso XML Web service.
4. Rename the localhost namespace containing the Contoso proxy classes to

Sink.
5. Import the Northwind.Sink and Northwind.Source namespaces.

 Add the EncryptionExtension attribute to the methods in the Contoso
XML Web service proxy class

1. Open Class View.
2. Expand the Northwind.Sink namespace.
3. Double-click the ContosoMicropaymentService class.
4. Add the EncryptionExtension attribute to the GetAccount,

GetTransactionHistory, and CreditAccount methods in the proxy class.
C#

[EncryptionExtension(Encrypt=EncryptMode.Request,
SOAPTarget=Target.Header)]

Visual Basic .NET

<EncryptionExtension(Encrypt := EncryptMode.Request,
SOAPTarget := Target.Header)>

 Add references to the encryption extension and UDDI assemblies

1. Add a reference to the provided EncryptionExtension.dll assembly that can
be found in the folder <labroot>\WebServicesSolution\Utils.

2. Add a reference to the Microsoft.Uddi.Sdk.dll assembly.
3. Import the following namespaces into the code behind file for Traders.asmx.

Microsoft.Uddi
Microsoft.Uddi.Api
Microsoft.Uddi.Authentication
Microsoft.Uddi.Binding
Microsoft.Uddi.Business
Microsoft.Uddi.Service
Microsoft.Uddi.ServiceType

60 Module 8: Designing XML Web Services

 Add the AccessPoint structure

• Within the Traders class, define the following structure.

C#

public struct AccessPoint
{
 public string businessName;
 public string endPoint;
}

Visual Basic .NET

Public Structure AccessPoint
 Public businessName As String
 Public endPoint As String
End Structure 'AccessPoint

 Find XML Web services with UDDI

1. Locate the AccessPoint structure definition within the Traders class.
You will use arrays of the AccessPoint structure definition to return
endpoint information for XML Web services that are compatible with the
Woodgrove and Contoso XML Web services.

2. Add the following static data members to the Traders class.
C#

static string tModelKeyWoodgrove = "uuid:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx";

static string tModelKeyContoso ="uuid:yyyyyyyy-yyyy-yyyy-
yyyy-yyyyyyyyyyyy";

Visual Basic .NET

Public tModelKeyWoodgrove As String = "uuid:xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx"

Public tModelKeyContoso As String = "uuid:yyyyyyyy-yyyy-
yyyy-yyyy-yyyyyyyyyyyy"

Replace the placeholders in the preceding code with values of the
tModelKey that you used to register the Woodgrove and Contoso XML
Web services in Lab 6.1, Publishing and Finding XML Web Services in a
UDDI Registry, in Module 6, “Publishing and Deploying XML Web
Services,” in Course 2524B, Developing XML Web Services Using
Microsoft ASP.NET.

3. Add a private method with the following signature.
C#

private AccessPoint[] GetTModelEndPoints(string tModelKey)

Visual Basic .NET

Private Function GetTModelEndPoints(ByVal tModelKey As
String) As AccessPoint()

Note

 Module 8: Designing XML Web Services 61

4. Within this method, create an ArrayList object.
5. Within a try/Try block:

a. Set the Inquire.Url property to http://glasgow/uddi/api/inquire.asmx.
b. Set the Inquire.AuthenticationMode property to

AuthenticationMode.UddiAuthentication.
c. Create a new instance of the class NetworkCredential. Pass the

following values to the constructor:
Parameter Value

Username MOCUser

Password MOC$Pwd

Domain GLASGOW

d. Assign the instance of NetworkCredential to the
Inquire.HttpClient.Credentials property.

6. Create a FindBusiness object.
7. Add a tModelKey to the FindBusiness.TModelKeys collection by using

the tModelKey parameter.
8. Call the Send method of the FindBusiness object.
9. Store the returned BusinessList object.
10. For each BusinessInfo object in the BusinessList.BusinessInfos collection,

loop through the ServiceInfos collection. For each ServiceInfo object in
this collection, do the following:
a. Create a FindBinding object.
b. Set the ServiceKey property to the value of the ServiceInfo.ServiceKey

property.
c. Add a tModelKey to the FindBinding.TModelKeys collection by using

the tModelKey method parameter.
d. Call the Send method of the FindBinding object.
e. Store the returned BindingDetail object.
f. Loop through the BindingDetail.BindingTemplates collection.
g. Create an AccessPoint object. Set the AccessPoint.businessName

property to the BindingTemplate.Name property. Set the
AccessPoint.endPoint property to the
BindingTemplate.AccessPoint.Text property.

h. Add the AccessPoint object to the ArrayList object.

62 Module 8: Designing XML Web Services

11. Return the ArrayList object as an AccessPoint[] object, using the ToArray
method, as shown in the following code:
C#

return
(AccessPoint[])accessPoints.ToArray(typeof(AccessPoint));

Visual Basic .NET

Return accessPoints.ToArray(GetType(AccessPoint))

12. Add a catch/Catch block.
13. Leave the catch/Catch block empty. After the catch/Catch block, return

null for C# programmers and Nothing for Visual Basic .NET programmers.

 Implement methods that retrieve source and sink (destination)
endpoints

1. Add a method with the following signature to the Traders class:
C#

[WebMethod]
[return:XmlArray("Sources")]
public AccessPoint[] GetTransferSources()

Visual Basic .NET

<WebMethod()> _
Public Function GetTransferSources()
As<XmlArray("Sources")> AccessPoint()

This method will return all fund transfer sources (Woodgrove
implementations) registered with the UDDI directory.

2. Within the GetTransferSources method, call the GetTModelEndPoints
method with the tModelKey identifier corresponding with Woodgrove.
Return the results of the method call.

3. Add a method with the following signature to the Traders class.
C#

[WebMethod]
[return:XmlArray("Sinks")]
public AccessPoint[] GetTransferSinks()

Visual Basic .NET

<WebMethod()> _
Public Function GetTransferSinks() As<XmlArray("Sinks")>
AccessPoint()

This method will return all fund transfer targets (Contoso implementations)
registered with the UDDI directory.

4. Within the GetTransferSinks method, call GetTModelEndPoints with the
tModelKey identifier corresponding with Contoso. Return the results of the
method call.

 Module 8: Designing XML Web Services 63

 Implement a method to initiate a funds transfer

1. Add the following class declaration to the Northwind namespace.
C# Visual Basic .NET

public class BankInfo
{
 public string uri;
 public int acctID;
}

Public Class BankInfo
 Public uri As String
 Public acctID As Integer
End Class 'BankInfo

You will use this class to return endpoint information to clients.
2. Add a method with the following signature to the Traders class.

C#

[WebMethod]
[SoapHeader("authInfo",Required=true)]
public string EFTTransfer(BankInfo src, BankInfo snk,
decimal amt)

Visual Basic .NET

<WebMethod(), SoapHeader("authInfo", Required := True)> _
Public Function EFTTransfer(src As BankInfo, snk As
BankInfo, amt As Decimal) As String

3. Within the EFTTransfer method, create a WoodgroveOnlineBank proxy
class object.

4. Create a WoodgroveAuthInfo class object. Set its Username and
Password methods to the srcUserName and srcPassword data members of
the authInfo object.

5. Set the WoodgroveAuthInfoValue property of the
WoodgroveOnlineBank proxy to the WoodgroveAuthInfo object.

6. Set the Url property of the WoodgroveOnlineBank proxy to the uri data
member of the src parameter.

7. Create a ContosoMicropaymentService proxy class object.
8. Create a ContosoAuthInfo class object. Set its Username and Password

methods to the destUserName and destPassword data members of the
authInfo object.

64 Module 8: Designing XML Web Services

9. Set the ContosoAuthInfoValue property of the
ContosoMicropaymentService proxy to the ContosoAuthInfo object.

10. Set the Url property of the ContosoMicropaymentService proxy to the uri
data member of the snk parameter.

11. Invoke the AuthorizeFundsTransfer method of the Woodgrove proxy.
a. Set the acctID parameter to the acctID data member of the src

parameter.
b. Set the amount parameter to this method’s amt parameter.
c. Save the returned Northwind.Source.EFTBindingInfo object.

When you declare the EFTBindingInfo instance, you must fully
qualify EFTBindingInfo with the Northwind.Source namespace because
the Northwind.Sink namespace also defines a structure of this same type.

12. Create a Northwind.Sink.EFTBindingInfo object.
13. Copy the endPoint and token data member from the returned

Northwind.Source.EFTBindingInfo object to the
Northwind.Sink.EFTBindingInfo object.

14. Invoke the Contoso proxy CreditAccount method.
a. Set the bindingInfo parameter to the Northwind.Sink.EFTBindingInfo

object.
b. Set the amount parameter to this method’s amt parameter.

15. Return the string “Transaction succeeded”.
16. Enclose the code that you added in steps 3 through 14 within a try/Try

block.
17. Add a catch/Catch block to catch any errors. In the event that an error is

thrown, return the string “Transaction failed”.

 Test the application

1. Build the application.
2. Press F5 to invoke the Help page.
3. Using the Help pages, invoke GetTransferSources.

You should see the Woodgrove implementation that you registered in Lab
6.1.

4. Using the Help pages, invoke GetTransferSinks.
You should see the Contoso implementation that you registered in Lab 6.1.

Note

 Module 8: Designing XML Web Services 65

Exercise 3
Using the Northwind Trader XML Web Service

In this exercise, you will extend the Northwind client that is provided to you to
use the Northwind Trader XML Web service. The starter application project
can be found at <labroot>\Lab08_2\Starter\NorthwindClient.

 Add a Web reference to the Northwind XML Web service

1. Add a Web reference to the Northwind XML Web service.
2. Rename the localhost namespace to Northwind.
3. Open the following file.

C# Visual Basic .NET

NorthwindClient.cs NorthwindClient.vb

4. Import the NorthwindClient.Northwind namespace.

 Populate the To and From list boxes

1. Locate the constructor for the form.
2. Create a Traders object after the existing code within this method.
3. Call the GetTransferSources method of the Traders object.
4. Store the returned AccessPoint array object.
5. Loop through each AccessPoint object in the array. For each object in the

array, do the following:
a. Create a new ListItem object.

The ListItem class is defined within NorthwindClient (.cs or .vb)
file. It is used to store information about financial institutions in the list
boxes.

b. Pass the AccessPoint.businessName and AccessPoint.endPoint
members as parameters to the constructor.

c. Add the ListItem object to the lstFrom list.
6. Repeat steps 3 through 5, and call GetTransferSinks instead of

GetTransferSources. Add ListItem objects to the lstTo list.

 Transfer funds

1. Locate the btnTransfer_Click method.
2. Create BankInfo objects for the source financial institution.

a. Set the BankInfo.acctID property to the value stored in the
txtAcctIDFrom textbox.

b. Set the BankInfo.uri property to the ListItem.Url property of the
ListItem selected in the lstFrom listbox.

Note

66 Module 8: Designing XML Web Services

3. Create BankInfo objects for the destination financial institution.
a. Set the BankInfo.acctID property to the value stored in the

txtAcctIDTo textbox.
b. Set the BankInfo.uri property to the ListItem.Url property of the

ListItem selected in the lstTo listbox.
4. Create a Northwind Traders XML Web service proxy class object.
5. Create a SoapHeader authentication object.
6. Populate the SoapHeader authentication object with the values found in

txtUserFrom, txtUserTo, txtPasswordFrom, and txtPasswordTo boxes.
7. Set the Cursor property of the form to Cursors.WaitCursor to indicate

that the application is processing.
8. Set the statusBar.Text property to "Processing…".
9. Transfer the funds by calling the EFTransfer method on the Northwind

Traders XML Web service proxy with the source and destination BankInfo
objects, and the amount specified by the Text property of the txtAmt
object.

10. Display the results of the EFTTransfer call in a messagebox.
11. Set the Cursor property of the form to Cursors.Default to indicate that the

application is processing.
12. Reset the statusBar.Text property to "Ready...".

 Test the client application

1. Build and run the application.
2. Do not modify the default values in the text boxes.
3. In the From list, click a Woodgrove Online Bank entry. In the status bar

the URL for this entry will be displayed. Systematically click on each
Woodgrove Online Bank entry until the URL for your computer is
displayed. The URL will be http://computername/woodgrove/bank.asmx.

4. In the To list, click a Contoso Micropayments entry. In the status bar the
URL for this entry will be displayed. Systematically check each Contoso
Micropayments entry until the URL for your computer is displayed. The
URL will be http://computername/contoso/Micropayment.asmx.

5. Click Transfer.
6. Open the Woodgrove and Contoso Account Manager application. Log on as

the user shown in the NorthwindClient application.
7. Retrieve the transaction history for the Woodgrove bank.

Verify that there is a new debit transaction.
8. Retrieve the transaction history for the Contoso micropayment service.

Verify that there is a new credit transaction.

 Module 8: Designing XML Web Services 67

Review

Data Type Constraints

Performance

Reliability

Versioning

HTML Screen Scraping XML Web Services

Aggregating XML Web Services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Which protocol that XML Web services use supports the richest set of data
types?
SOAP

2. Name the two forms of caching that the .NET Framework provides and that
you can use in XML Web services.
Output and data caching

3. Name two technologies that you can use to instrument an XML Web service
that has been deployed in production.
WMI and Performance Counters

4. Which element of an XML Web service should not be versioned?
The WSDL document

68 Module 8: Designing XML Web Services

5. Which protocol should you use if you do not want your XML Web service
to be tied to the HTTP protocol?
SOAP

6. When should you consider implementing asynchronous Web methods?
Whenever the method implementation will perform I/O that is based on
Win32 kernel handles.

Contents

Overview 1

Introduction to GXA 2

Routing and Referral 8

Security and License 16

Review 19

Course Evaluation 20

Module 9: Global XML
Web Services
Architecture

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001-2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, Authenticode, IntelliSense,
FrontPage, Jscript, MSDN, PowerPoint, Visual C#, Visual Studio, Visual Basic, Windows NT,
and Win32 are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 9: Global XML Web Services Architecture iii

Instructor Notes
This module teaches students how to use the security services of the Microsoft®
Windows® operating system, Microsoft Internet Information Services (IIS), and
the Microsoft .NET Framework and common language runtime to secure XML
Web services.

After completing this module, students will be able to:

 Describe limitations inherent to the specifications with which today’s XML
Web services are built.

 Describe the design principles and specifications of Global XML Web
services Architecture (GXA).

 Describe XML Web service application scenarios that Web Services
Routing Protocol (WS-Routing) and Web Services Referral Protocol (WS-
Referral) make possible.

 Explain how to use Web Services Security Language (WS-Security) and
Web Services License Language (WS-License) to perform authentication
and authorization for XML Web services.

 Design XML Web services that anticipate and can leverage the features that
GXA will offer when released.

To teach this module, you need the Microsoft PowerPoint® file 2524B_09.ppt.

To prepare for this module, read all of the materials for this module.

Presentation:
30 Minutes

Lab:
0 Minutes

Required Materials

Preparation Tasks

iv Module 9: Global XML Web Services Architecture

Module Strategy
Use the following strategy to present this module:

 Introduction to GXA
Ensure that students understand that GXA provides principles,
specifications, and guidelines for advancing the protocols of today's XML
Web services standards to address more complex and sophisticated tasks in
standard ways. Do not imply that it is impossible to implement sophisticated
XML Web services by using the current standards.

 Routing and Referral
Explain that as Simple Object Access Protocol (SOAP) has become more
widely used as a messaging infrastructure, WS-Referral and WS-Routing
have been developed to address some of the issues related to reliable
messaging and message routing. Emphasize that these specifications are
intended to be building blocks — they are not intended to be complete
messaging specifications.

 Security and Licensing
Describe the limitation in the current XML Web services security
infrastructure. Explain that XML Signature and XML Encryption make it
possible to ensure message integrity and message privacy, but that there is
no industry-standard process in place. Explain that WS-Security builds on
these standards to specify how to sign and encrypt SOAP messages that are
being communicated between an XML Web service and its clients.
Explain that WS-License is an extension to WS-Security that addresses how
to represent current license formats and include them in SOAP messages
that have been secured according to the WS-Security specification.

 Module 9: Global XML Web Services Architecture 1

Overview

Introduction to GXA

Routing and Referral

Security and Licensing

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML Web services have become the fundamental building blocks for
integrating applications as organizations have begun to use distributed
computing on the Internet. XML Web services are successful for two reasons:
They are based on open standards that make them interoperable, and the
technology that is used to implement them is ubiquitous.

The Simple Object Access Protocol (SOAP), the Web Services Description
Language (WSDL), and the Universal Description, Discovery, and Integration
(UDDI) specifications constitute a set of baseline specifications that provide the
foundation for integrating and aggregating applications. But, as organizations
develop XML Web services, their solutions have become more complex and
their need for standards beyond this baseline has increased. Higher-level
functionality such as security, routing, reliable messaging, and transactions in
proprietary and often non-interoperable ways becomes increasingly important.

The Microsoft® Global XML Web services Architecture (GXA) provides
principles, specifications, and guidelines for advancing the protocols of today's
XML Web services standards to address more complex and sophisticated tasks
in standard ways.

After completing this module, you will be able to:

 Describe limitations inherent to the specifications with which today’s XML
Web services are built.

 Describe the design principles and specifications of (GXA).
 Describe XML Web service application scenarios that Web Services

Routing Protocol (WS-Routing) and Web Services Referral Protocol (WS-
Referral) make possible.

 Explain how to use Web Services Security Language (WS-Security) and
Web Services License Language (WS-License) to perform authentication
and authorization for XML Web services.

 Design XML Web services that anticipate and can leverage the features that
GXA will offer when released.

Introduction

Objectives

2 Module 9: Global XML Web Services Architecture

Introduction to GXA

Limitations of XML Web Services

Overview of Global XML Web Services Architecture

Global XML Web Services Architecture

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This section will review some of the limitations of the baseline specifications
(SOAP, WSDL, and UDDI) and the limitations of XML Web services that are
implemented with them, before presenting an overview of GXA.

 Module 9: Global XML Web Services Architecture 3

Limitations of XML Web Services

XML Web services are used today to
Integrate enterprise applications
Interoperate with key partners

Tomorrow’s XML Web services need to
Interoperate across multiple organizations

Problems that baseline standards (SOAP, WSDL, UDDI) do not
solve

How do you generically secure an XML Web service?
How do you dynamically add or remove a message path?
How do you provide reliability over HTTP while supporting long-
running XML Web service requests in a scalable way?
How do you conduct long-running transactions?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Solutions for XML Web services are being developed to support increasingly
sophisticated business processes. The development of XML Web services
consists of three tiers:

 Tier 1: Enterprise Application Integration
Organizations initially use XML Web services to integrate internal
applications. XML Web services allow them to expose legacy applications
to business applications in heterogeneous environments without having to
rewrite significant amounts of code.

 Tier 2: Interoperability with Key Partners
The next step for most organizations is to integrate one or two key partners
outside of the organization.

 Tier 3: Interoperability across Multiple Organizations
As XML Web services solutions become more global in reach and capacity
— and therefore more sophisticated — it becomes increasingly important to
provide additional capabilities to ensure global availability, reliability, and
security.

Tiers 1 and 2 are available today, but tier 3 is dependent on technology and
specifications that are still emerging.

Introduction

4 Module 9: Global XML Web Services Architecture

Using XML Web services, organizations can extend the benefits of integrating
systems within organizations outward to partners and customers. However, the
lack of broadly-adopted specifications for security, routing, and other necessary
capabilities limits integration to those scenarios where bilateral, out-of-band
agreements can be negotiated and maintained. To ensure secure, reliable cross-
organization interoperability, developers are forced to implement a series of
solutions that are specific to the situation. For example, you may have to
configure a custom authentication solution that adds a user name and password
to SOAP headers and then uses a SOAP extension to encrypt and decrypt this
sensitive information. This solution requires that the encryption extension
assembly or, minimally, the encryption algorithm be distributed to all clients of
the XML Web service. Although this solution is adequate, clearly it is not
optimally secure and requires close cooperation between the XML Web service
implementer and client developers.

As the business requirements that drive XML Web services become more
complex, developers require additional capabilities that current XML Web
services standards do not address. These capabilities include the following:

 Security. Developers need a straight-forward, end-to-end security
architecture to implement across organizations and trust boundaries.

 Routing. Developers need a way of specifying messaging paths and the
ability to configure those message paths dynamically to ensure scalability
and fault-tolerance.

 Reliable Messaging. Developers need an end-to-end guarantee of message
delivery across a range of semantics such as, at-least-once, at-most-once,
and exactly once.

 Transactions. Developers need flexible process and compensation-based
transaction schemes to execute transactions across organizations.

If an organization does not use these capabilities, it can be exposed to risks and
the value of its XML Web services will degrade. Currently, in the absence of
these capabilities in XML Web services, developers must creating specific
solutions for each situation, which is time consuming and expensive. In
addition, specific solutions encroach upon a central value area of XML Web
services — cross-organizational interoperability.

Limitations

 Module 9: Global XML Web Services Architecture 5

Overview of Global XML Web Services Architecture

Design tenets of GXA

Standards-basedFederated
ModularGeneral-purpose

Released specifications (October 2001)

WS-LicenseWS-Security
WS-ReferralWS-Routing

Future
TransactionsReliability

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft and IBM presented an architectural sketch for the evolution of XML
Web services at the World Wide Web Consortium (W3C) Workshop on Web
Services in April 2001. This sketch was the forerunner of GXA. GXA provides
principles, specifications, and guidelines for advancing the protocols of today's
XML Web services standards to address more complex and sophisticated tasks
in standard ways.

GXA is based on four design tenets:

 General Purpose. GXA is designed for a wide range of XML Web services
scenarios, ranging from business-to-business and Enterprise Application
Integration (EAI) solutions to peer-to-peer applications and business-to-
consumer services.

 Modular. GXA uses the extensibility of the SOAP specification to deliver a
set of composable modules that you can combine as needed to deliver end-
to-end capabilities. As your system requires new capabilities, you can create
new modular elements.

 Federated. GXA is fully distributed and designed to support XML Web
services that cross organizational and trust boundaries and requires no
centralized servers or administrative functions.

 Standards-Based. Similar to previous XML Web services specifications,
GXA protocols will be submitted to the appropriate standards bodies.

This section describes a set of the new Global XML Web services
specifications that were made available in October 2001. These specifications
represent a significant step toward a comprehensive Global XML Web services
Architecture.

 WS-Routing is a simple, stateless SOAP extension for sending SOAP
messages in an asynchronous manner over a variety of communication
transports such as Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), and Hypertext Transfer Protocol (HTTP).

Introduction

Design tenets of GXA

Released specifications

6 Module 9: Global XML Web Services Architecture

 WS-Referral is a simple SOAP extension that enables the routing between
SOAP nodes on a message path to be dynamically configured.

 WS-Security provides a security language for XML Web services. WS-
Security describes enhancements to SOAP messaging, providing three
capabilities: credential exchange, message integrity, and message
confidentiality. Message integrity is provided by taking advantage of XML
Signature and licenses to ensure that messages are transmitted without
modifications. Similarly, message confidentiality takes advantage of XML
Encryption and licenses to keep portions of SOAP messages confidential.

 WS-License describes how to use several common license formats,
including X.509 certificates and Kerberos tickets, as WS-Security
credentials. WS-License includes extensibility mechanisms that enable new
license formats to be easily incorporated into the specification.

Interactions across organizations have many opportunities for failure ranging
from transmission errors to incompatible or unavailable business processes. The
following future protocols will allow the builders of XML Web services to
manage the scope and effect of failures.

 Reliable messaging
XML Web services need to operate reliably over intranets and the public
Internet, and over transport protocols that are not completely reliable. For
example, HTTP, the most commonly used XML Web service transport
protocol, provides no mechanisms to ensure that a request was received or
that the client received a response. Although lower network-level protocols
can alert a client in case of common catastrophic failures like resource not
found, a SOAP-level reliable messaging protocol can provide delivery
guarantees. Using a protocol that provides delivery guarantees isolates
application processes from the detailed handling of transmission failure and
its recovery, allowing a developer to concentrate on automating a process
with a much-simplified error handling model. In the exchange of messages,
individually or as part of a long-running process, communicating parties
will be able to obtain end-to-end delivery guarantees so that messages will
not be lost, duplicated, or delivered in the wrong order.

 Transactions
Transactions address the possibility of a business-level inability to complete
a process. Transactions allow multiple parties that are involved in a process
to arrive at a consistent final outcome (or discover that this is not possible).
Although existing two-phase commit protocols are appropriate in some
circumstances, developers also need more loosely-coupled techniques, such
as exceptions and compensation, which enable a broader range of
transactions to be automated across trust boundaries. Developers will have
powerful process-modeling languages to express the patterns of messages
that are exchanged between XML Web services, the interactions of those
messages, and the business processes that they reflect, including both
normal and exceptional conditions.

Future protocols

 Module 9: Global XML Web Services Architecture 7

Global XML Web Services Architecture

Directory

Inspection

Description

Referral

Routing License

Security

…

Reliable Messaging

Transactions

…

HTTP/SMTPHTTP/SMTPXMLXMLTCP/IPTCP/IP
The InternetThe Internet

SOAPSOAP

SOAP ModulesSOAP Modules

Infrastructure ProtocolsInfrastructure Protocols

DiscoveryDiscovery

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This graphic gives an overview of the Global XML Web services Architecture.

Primarily, SOAP defines a framework for message structure and a message
processing model. SOAP provides the foundation for a wide range of
composable modules and protocols running over a variety of underlying
protocols such as HTTP. SOAP modules take advantage of this extensibility to
provide composable building blocks that are suitable for building the higher-
level capabilities. Because the WS-Security, WS-License, WS-Routing, and
WS-Referral SOAP modules are modular, you can use them together. For
example, WS-Security describes how to digitally sign SOAP messages that use
a WS-Routing header. Each of these specifications provides extension and
composition mechanisms that enable future specifications for the Global XML
Web services Architecture to be incorporated into a complete solution.

The generality, breadth, and uniformity of SOAP modules allow a wide range
of services to take advantage of the XML Web services-enabled network
infrastructure, which includes routers, switches, proxies, caches, and firewalls.

The reliable infrastructure protocols for messaging and transactions build on
SOAP modules to provide end-to-end functionality. Protocols at this layer tend
to have semantically-rich finite state machines as part of their definition. They
maintain state across a sequence of messages and may aggregate the effect of
many messages to achieve a higher-level result.

SOAP and SOAP
modules

Infrastructure protocols

8 Module 9: Global XML Web Services Architecture

Routing and Referral

WS-Routing and WS-Referral

Routing Scenario

Referral Scenario

*****************************ILLEGAL FOR NON-TRAINER USE******************************

As SOAP messaging evolves into a general-purpose Global XML Web services
Architecture, there must be a means of addressing and transmitting SOAP
messages over various types of communications systems. Using several types
of communications systems enables a wide range of communication patterns
such as peer-to-peer or store-and-forward networking. It also allows messages
to be efficiently routed to distributed processing nodes. The WS-Routing and
WS-Referral specifications support these features.

This section explains the key features of these specifications and gives two
scenarios demonstrating how to use these specifications.

In this section, you will learn about application architectures for XML Web
services that WS-Routing and WS-Referral make possible.

 Module 9: Global XML Web Services Architecture 9

WS-Routing and WS-Referral

SOAP message processing model
SOAP provides a distributed processing mechanism via SOAP:actor
Does not define a message path

WS-Routing
Routes messages across intermediate SOAP nodes to enable
asynchronous messaging via a message path
Provides transport and route flexibility

Supports message forwarding, resolution, and reverse path routing
WS-Referral

Enables route configuration to provide configuration of SOAP routers
Describe a referral
Query a SOAP router for a referral
Insert, delete, and exchange referrals

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Intermediaries are central to the SOAP message model. SOAP provides a
distributed processing mechanism in which you can use the SOAP SOAP:actor
attribute to indicate which part of a message is intended for a given SOAP
receiver.

Despite the implied SOAP message model, SOAP does not define a mechanism
for indicating the SOAP senders and receivers along the SOAP message path or
the order in which the senders and receivers are composed. In short, SOAP does
not define a message path.

To provide the semantics for actually exchanging messages, you can bind
SOAP to other application layer protocols, such as HTTP and Simple Mail
Transfer Protocol (SMTP). However, these protocols define their own message
path models and message exchange patterns, which differ from the general
SOAP model. As a result, it is not possible to use these protocol bindings alone
to describe an exchange of a SOAP message from point A to point B.

WS-Routing, on the other hand, defines a message path model that is fully
compatible with the SOAP message processing model. In other words, WS-
Routing makes it possible to describe the complete exchange of a SOAP
message from point A to point B and to describe which parts of a SOAP
message are intended for which SOAP receiver in the message path.

WS-Referral builds on a simple model of a SOAP router being able to delegate
a Uniform Resource Identifier (URI) space or a part thereof to another SOAP
router by manipulating its routing entries. By changing its configuration, a
SOAP router can learn about other SOAP routers and as a result affect the
message path of any given SOAP message passing through it. By controlling
the amount of information that a given SOAP router has, it is possible to build a
variety of routing configurations that can support scenarios.

With WS-Routing, you can describe the entire message path for a SOAP
message (in addition to its return path) directly within the SOAP envelope. WS-
Routing supports one-way messaging, two-way messaging, such as
request/response and peer-to-peer conversations, and long-running dialogs.

Introduction

The SOAP message
processing model

WS-Routing and WS-
Referral and the SOAP
message processing
model

WS-Routing

10 Module 9: Global XML Web Services Architecture

The purpose of WS-Routing is to define the mechanisms that are needed to
describe messages that are being exchanged along the following two message
paths:

 A forward message path where messages travel from the initial sender
through zero or more intermediaries to the ultimate receiver.

 An optional reverse message path where messages travel in the direction
from the ultimate receiver through zero or more intermediaries to the initial
sender.

In addition, being able to identify a message and to correlate that message with
other messages is essential to WS-Routing. The correlation can for example be
between multiple messages flowing in the same direction on either the forward
or the reverse message path or it can be between messages on different message
paths. An example of a correlation is between a WS-Routing fault message and
the faulty message. WS-Routing defines a correlation mechanism.

WS-Routing defines a single new SOAP header and associated processing
model. To illustrate this, consider a SOAP processor A that wishes to send a
SOAP message to an ultimate receiver D via B and then via C.

To express such routes, WS-Routing defines a new SOAP header named path,
and, within that header, defines:

 A <from> element for the message originator (A).
 A <to> element for the ultimate receiver (D).
 A <fwd> element to contain the forward message path.
 A <rev> element to contain the reverse message path.

WS-Routing defines the <rev> element to enable two-way messaging
exchange. Both <fwd> and <rev> contain <via> elements to describe each
intermediary (B and C). Other elements are defined for message identification,
correlation, and intent.

Note that there is no requirement that A knows the complete path in advance;
the path may be discovered dynamically.

As a message moves along a path, each hop along the way moves its
corresponding <via> element from the fwd path to the rev path, dynamically
constructing a path back to the sender. Other processing details cover gateways
and routing-specific SOAP faults.

WS-Referral is complementary to WS-Routing in that WS-Referral provides a
way to configure how SOAP routers will build a message path, whereas WS-
Routing provides a mechanism for describing the actual path of a message.

WS-Referral aids in the configuration of message paths, which in turn enables a
variety of services. In addition to relay services such as high performance
overlay message delivery or corporate firewall services, SOAP routers can
provide XML Web services like load-balancing, mirroring, caching, and client
authentication services. As an example, an XML Web service may delegate
responsibility for some aspects of its service to third parties in a manner that is
transparent to users of that service. The goal of WS-Referral is to provide the
mechanisms that are needed to enable SOAP applications to insert, delete, and
query routing entries in a SOAP router through the exchange of referral
information.

WS-Routing
mechanisms

WS-Routing elements

WS-Referral

 Module 9: Global XML Web Services Architecture 11

The basic unit in WS-Referral is the referral statement. Referral statements are
exchanged via three mechanisms:

 Register messages. This SOAP message instructs the receiver to utilize the
enclosed referral statement. The recipient explicitly accepts or rejects the
registration.

 Query messages. A SOAP router can be queried for referrals with query
messages. You may extend this message to allow complex queries.

 Referrals header. You can augment any SOAP message with a referrals
SOAP header containing referral statements. A referrals header allows a
mechanism to attach referrals on existing message exchange streams.

An administrator typically uses register and query messages to configure a set
of SOAP routers on a path. Register provides a push method of updating the
SOAP level routing tables in a router. Query methods provide a pull method,
which a router may use to learn about message paths.

You typically use the referrals SOAP header in dynamic environments, where
updates to message paths are cached. As part of an existing message exchange,
a SOAP router would include a referrals SOAP header to indicate to a sender a
better path to reach a desired SOAP actor.

The referral statement has five elements:

 <for>
Indicates the URIs (also called SOAP actors) for which the referral is
intended.

 <if>
This element is a set of conditions that the recipient of the referral must
understand to use the referral.

 <go>
If a SOAP message is headed for a SOAP actor (for which this referral is
intended) and the set of conditions are fulfilled, then you send the message
via one of the SOAP routers listed in the <go> element.

 <desc>
Additional information that the recipient does not need to understand to use
the referral, but may find useful.

 <refId>
A unique identifier for a referral so that it is possible to identify a specific
representation of a referral.

While occasionally grouped for convenience, you can evaluate each referral
statement independently of any other referral.

When interpreting a referral statement, the <for> element gives the list of
SOAP actors for which this referral applies. Consider the <if> clause as the set
of conditions to satisfy when applicable. If satisfied, then go (re-route) to one of
the SOAP routers listed in the <go> element.

Referral mechanisms

WS-Referral elements

12 Module 9: Global XML Web Services Architecture

Routing Scenario

A

SN1

B

Schedule
Package Pickup

Pickup
Scheduled

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This topic illustrates using WS-Routing to send a SOAP message from A to B
via the intermediary SOAP node SN1. The <rev> element is present in the
message, so the reverse message path is built dynamically when the message
travels along the forward message path.

The following example shows the SOAP message leaving initial WS-Routing
sender A in forward direction towards B with a reverse path. In the following
code sample, notice the bolded code where the <path> header gives the
destination B in the <to> element and the source A in the <from> element,
indicating with the <fwd> element that SN1 must be used as an intermediary.

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>
 <p:path xmlns:p="http://schemas.xmlsoap.org/rp/">
 <p:action>http://example.org/alert</p:action>
 <p:to>soap://serverB.com/B</p:to>
 <p:fwd>
 <p:via>soap://SN1.com</p:via>
 </p:fwd>
 <rev>
 <p:via>soap://serverA.com/A</p:from>
 </rev>
 <p:from>soap://serverA.com/A</p:from>
 <p:id>uuid:12dfs83476-4asd-s234-s3df-d25656adssf4</p:id>
 </p:path>
 </S:Header>
 <S:Body>…
 </S:Body>
</S:Envelope>

Introduction

STEP 1: From A to SN1

 Module 9: Global XML Web Services Architecture 13

The following code example shows the SOAP message leaving intermediary
SN1 in a forward direction towards B with a reverse path. Notice in the bolded
code that SN1 has removed itself (in the <via> element) from the <fwd>
element, and added itself to the reverse path that is given by the <rev> element
to specify the reverse path. The <to> and <from> elements are not modified.

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>
 <p:path xmlns:p="http://schemas.xmlsoap.org/rp/">
 <p:action>http://example.org/alert</p:action>
 <p:to>soap://serverB.com/B</p:to>
 <p:fwd>
 </p:fwd>
 <rev>
 <p:via>soap://SN1.com</p:via>
 <p:via>soap://serverA.com/A</p:via>
 </rev>
 <p:from>soap://serverA.com/A</p:from>
 <p:id>uuid:12dfs83476-4asd-s234-s3df-d25656adssf4</p:id>
 </p:path>
 </S:Header>
 <S:Body>…
 </S:Body>
</S:Envelope>

The following code example shows the SOAP message leaving B towards
intermediary SN1. Notice in the bolded code that the <fwd> element gives the
reverse path.

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>
 <p:path xmlns:p="http://schemas.xmlsoap.org/rp/">
 <p:action>http://example.org/alert</p:action>
 <p:fwd>
 <p:via>soap://SN1.com</p:via>
 <p:via>soap://serverA.com/A</p:from>
 </p:fwd>
 <p:from>soap://serverB.com/B</p:from>
 <p:id>uuid:74583476-45gd-sg6g-sf54-dfgsgfgdssf4</p:id>
 </p:path>
 </S:Header>
 <S:Body>
 <m:alert xmlns:m="http://example.org/alert">
 <m:msg>Pickup scheduled</m:msg>
 </m:alert>
 </S:Body>
</S:Envelope>

STEP 2: From SN1 to B

STEP 3: From B to SN1

14 Module 9: Global XML Web Services Architecture

The following code example shows the SOAP message leaving intermediary
SN1 towards A. Notice in the bolded code that the <fwd> element gives the
remainder of the reverse path.

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>
 <p:path xmlns:p="http://schemas.xmlsoap.org/rp/">
 <p:action>http://example.org/alert</p:action>
 <p:fwd>
 <p:via>soap://serverA.com/A</p:from>
 </p:fwd>
 <p:from>soap://serverB.com/B</p:from>
 <p:id>uuid:74583476-45gd-sg6g-sf54-dfgsgfgdssf4</p:id>
 </p:path>
 </S:Header>
 <S:Body>
 <m:alert xmlns:m="http://example.org/alert">
 <m:msg>Pickup scheduled</m:msg>
 </m:alert>
 </S:Body>
</S:Envelope>

You are not required to specify a reverse path or every intermediary in the
reverse path if the underlying protocol is bidirectional. In this case it is assumed
that the underlying protocol provides a bidirectional communication channel.

STEP 4: From SN1 to A

 Module 9: Global XML Web Services Architecture 15

Referral Scenario

A

SN

B

Schedule
Package Pickup

Who told A about SN?Who told A about SN?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The interaction between WS-Referral and WS-Routing provides a straight-
forward example of how to use WS-Referral. Notice in the following code
example for a referral registration that the bolded code would cause the sender
of a WS-Routing message bound for the soap://ServerB.com service to add an
additional forward path <via> element to soap://SN1.com.

<S:Envelope xmlns:S="http://www.w3.org/2001/09/soap-envelope">
 <S:Header>
 <m:path xmlns:m="http://schemas.xmlsoap.org/rp/">
 …
 </m:path>
 </S:Header>
 <S:Body>
 <r:register
xmlns:r="http://schemas.xmlsoap.org/ws/2001/10/referral">

 <r:ref>
 <r:for>
 <r:exact>soap://serverB.com/B</r:exact>
 </r:for>
 <r:if>
 <r:ttl>43200000</r:ttl>
 </r:if>
 <r:go>
 <r:via>soap://SN1.com</r:via>
 </r:go>
 <r:refId>uuid:09233523-345b-4351-b623-
5dsf35sgs5d6</r:refId>

 </r:ref>
 </r:register>
 </S:Body>
</S:Envelope>

Note that the <ttl> element is a required if condition — it gives a time-to-live
or lifespan of the referral request.

Introduction

16 Module 9: Global XML Web Services Architecture

Security and License

WS-Security and WS-License

Security Factoring and Authorization Scenario

*****************************ILLEGAL FOR NON-TRAINER USE******************************

WS-Security describes how to use the existing W3C security specifications,
XML Signature and XML Encryption, to ensure the integrity and
confidentiality of SOAP messages. And together with WS-License, it describes
how to securely associate existing digital credentials and their associated trust
semantics with SOAP messages. Together, these specifications form the bottom
layer of a comprehensive, modular, security architecture for XML Web
services. Future security specifications will build on these basic capabilities to
provide mechanisms for credential exchange, trust management, revocation,
and other higher-level capabilities.

In this section, you will learn how to use WS-Security and WS-License to
perform authentication and authorization for XML Web services.

 Module 9: Global XML Web Services Architecture 17

WS-Security and WS-License

WS-Security

Credential exchange, message integrity, and message
confidentiality to enable secure XML Web services that
authenticate and authorize incoming requests
- Support existing industry-standard identity and rights

management systems
- Work across trust domains

WS-License

Defines encoding for common license formats with modular and
extensible structures
- Examples include: X.509, Kerberos, SAML, XrML
- Extension to WS-Security

*****************************ILLEGAL FOR NON-TRAINER USE******************************

WS-Security and WS-License are two specifications that be used together to
specify how to transmit data transmitted between clients in a secure manner.
They also specify how to ensure that data remains confidential and that
sensitive information is not compromised during transfer.

WS-Security provides a language to secure XML Web services. WS-Security
describes enhancements to SOAP messaging consisting of three capabilities:
credential transfer, message integrity, and message confidentiality. These
capabilities by themselves do not provide a complete security solution; WS-
Security is a building block that you can use in conjunction with other XML
Web service protocols to address a wide variety of application security
requirements.

WS-Security provides a general-purpose mechanism for associating licenses
(credentials that are signed assertions, for example, X.509 certificates or
Kerberos tickets) with messages, although no specific format is required.

Message integrity is provided by using XML Signature and licenses to ensure
that messages have originated from the appropriate sender and were not
modified in transit. Similarly, message confidentiality takes advantage of XML
Encryption and licenses to keep portions of a SOAP message confidential.

WS-License describes a set of commonly used license types (credentials that
are signed assertions) and describes how they can be placed within the WS-
Security <credentials> tag. Specifically, the WS-License specification describes
how to encode X.509 certificates and Kerberos tickets. The WS-License
specification also supports the Security Assertion Markup Language (SAML),
and the eXtensible rights Markup Language (XrML).In addition to how to
include opaque encrypted keys. WS-License includes extensibility mechanisms
that you can use to further describe the characteristics of the licenses that are
included with a message.

Introduction

WS-Security

WS-License

18 Module 9: Global XML Web Services Architecture

Security Factoring and Authorization Scenario

1. Get Kerberos
license from
Passport For
License Service

2. Get XrML license
from License
service to access
Status service

3. Call Status using
XrML license

Subsequent calls to Status service do not require presentation of Passport licenses

License
Service

Passport

Client

CreditCheck

Policy
Engine

Incoming
Licenses

Required
Rights

Authorized?

4. Authorize client request

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This graphic provides a scenario that uses the WS-Security and WS-License
specifications to perform authentication and authorization.

1. The client obtains a Kerberos license from Microsoft Passport for the
License XML Web service.

2. The client uses the Kerberos license to obtain an XrML (Extensible Rights
Markup Language) license from the License XML Web service to access
the Status service.

3. The client calls Status XML Web service by using the XrML license.
4. The Status XML Web service uses the XrML license embedded in the

SOAP header to authorize the client CreditCheck request against its own
policy engine. If the request is authorized, the CreditCheck resource is
accessed.

Introduction

Detailed steps for
performing
authentication

 Module 9: Global XML Web Services Architecture 19

Review

Introduction to GXA

Routing and Referral

Security and Licensing

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are some of the design characteristics of GXA?
General-purpose, modular, federated, and standards-based

2. What does WS-Referral enable?
A way to configure how SOAP routers will build a message path.

3. What does WS-Routing add to the existing XML Web service
infrastructure?
A mechanism for describing an actual path of a message.

4. What aspects of security does the WS-Security specification address?
Credential exchange, message integrity, and message confidentiality

20 Module 9: Global XML Web Services Architecture

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

To complete a course evaluation, go to
http://www.microsoft.com/traincert/coursesurvey.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

