
ASP.NET Website Programming,
C# Edition: Problem, Design,
Solution
Marco Bellinaso

Kevin Hoffman

 Wrox Press Ltd.

 Copyright ?2002 Wrox Press

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations embodied
in critical articles or reviews.

 The author and publisher have made every effort in the preparation of this book to ensure the accuracy of the
information. However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors, Wrox Press, nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused either directly or indirectly by this book.

This document is created with the unregistered version of CHM2PDF Pilot

 First Printed in March 2002

 Latest Reprint : November 2002

 Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,
Birmingham, B27 6BH, UK

 Printed in the United States
 ISBN 0764543776

Trademark Acknowledgements

 Wrox has endeavored to provide trademark information about all the companies and products mentioned in this
book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this information.

 Credits

 Authors
 Marco Bellinaso
Kevin Hoffman

 Commissioning Editor
 Dan Kent

 Technical Editors
 Dianne Arrow
David Barnes

 Index
 Andrew Criddle

 Managing Editor
 Viv Emery

 Project Manager
 Helen Cuthill

 Production Coordinator
 Abbie Forletta

 Cover
 Chris Morris

 Technical Reviewers
 Don Lee
Dan Maharry
Christophe Nasarre
Matthew Rabinowitz
Marc H Simkin

 Proof Reader
 Dev Lunsford

 About the Authors

This document is created with the unregistered version of CHM2PDF Pilot

 Marco Bellinaso

 Marco Bellinaso is a freelance software developer. He lives in a small town close to Venice, Italy. He has been
working with VB, C/C++, ASP and other Microsoft tools for several years, specializing in User Interface, API,
ActiveX/COM design and programming. He is now spending all his time on the .NET Framework, using C# and
VB.NET.

 He is particularly interested in e-commerce design and implementation solutions with SQL Server, ASP.NET, and
web services. He is a team member at www.vb2themax.com, for which he writes articles and commercial software,
such as add-ins for MS Visual Studio and other utilities for VB and .NET developers.

 Marco recently co-authored "Beginning C#" from Wrox Press, and is also a contributing editor for two leading Italian
programming magazines: Computer Programming and Visual Basic Journal (Italian licensee for Visual Studio
Magazine). Reach him at mbellinaso@vb2themax.com.

 Acknowledgments

 Writing this book has been a real pleasure to me. It gave me the opportunity to work with ASP.NET on a good
project, and to improve my knowledge of the technology along the way. So it surely has been worth the effort! And
of course, everyone likes to be published writing about what they like to do and how to do it. :-)

 I owe many thanks to Wrox Press for giving me the opportunity to write the book: this is the most English I've ever
written, so I guess the editors and reviewers had some extra work with me, although they were so kind as to never
confess it. Some of these people are Daniel Kent, David Barnes, and Dianne Arrow.

 Other people contributed to this project, in a way or another, now or in the past, and I'd like to mention at least a
few names. First of all a really big thank you goes to Francesco Balena, famous speaker and author, and editor in
chief of the Italian licensee of VBPJ (now Visual Studio Magazine). He reviewed and published an article about VB
subclassing that I wrote some years ago, when I had no editorial experience at all. Since that moment he has
continued to help me by advising how to improve my writing style, pushing me to start writing in English, suggesting
the hottest technology to study, and giving the opportunity to work on some cool software projects as part of the
VB-2-The-Max team. Francesco, all this is greatly appreciated!

 Two other developers I work with for the Italian magazines, who helped me in different ways, are Dino Esposito and
Alberto Falossi.

 Giovanni - Gianni - Artico is the person who initiated me in the programming art, suggesting to start with VB and then
to learn C/C++ as well. Thank you for answering my questions when I was at the beginning, and for still helping me in
some situations.

 A mention goes also to my closest friends. They still remember me after several "sorry, I can't come today" rebuttals,
and have put up with me when I was under pressure and not the nicest person possible.

 Last but not least I have to say thank you to my family, who bought my first computer and a lot of programming
books when I was in high school and couldn't buy all that stuff by myself. They didn't offer much moral support during
the work - mostly because they didn't have a clue of what I was doing! I kept it a secret to almost everybody - I hope
it will be a nice surprise. :-)

 Kevin Hoffman

 Kevin has always loved computers and computer programming. He first got hooked when he received a
Commodore VIC-20 from his grandfather, who had repaired it after finding it in the trash. He then started a prolific
but unprofitable career writing shareware games and utilities for electronic bulletin board systems.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.vb2themax.com

 He started working as a programmer while still in college, writing computer interfaces to solar measurement devices
and various other scientific instruments. Moving to Oregon, he did everything from technical support to tuning Unix
kernels, and eventually working as an ASP programmer for 800.COM, a popular on-line electronics retailer. From
there he moved on to working on large, enterprise ASP applications.

 Then he finally found .NET, which he now spends 100% of his programming and learning efforts on. A big C# fan,
who would use it to do everything including brush my teeth if only he could figure out how, Kevin has been writing on
.NET for Wrox since the middle of Beta 1. He plans to continue until we get tired of him. He's currently in Houston,
Texas sweating a lot and working on web services and other large-scale .NET applications.

 Acknowledgments

 I'd like to dedicate this book to the rest of my "family", without whom I could not have accomplished many of the
things I am proud of today. I would like to thank Gerald for all his support - a best friend in every sense of the word -
and his daughter Keely for making me laugh. I would also like to thank Jen, Jocelyn, and Emily for their support and
being there for me. And as always I want to dedicate my work to my wife, Connie - without her support I would
never have published a single word.

This document is created with the unregistered version of CHM2PDF Pilot

ASP.NET Website Programming, C# Edition: Problem,
Design, Solution
byMarco
BellinasoandKevin Hoffman

ISBN:0764543776

Wrox Press 2002 (538 pages)

This book shows you how to build an interactive website
from design to deployment. Packed with solutions to
website programming problems, it will have you building
well-engineered, extendable ASP.NET websites quickly
and easily.

Ta
ble
of
Co
nte
nts

Ba
ck
Co
ver

Table of Contents
ASP.NET Website Programming, C# Edition: Problem, Design, Solution
Introduction
Ch
apt
er
1

- Building an ASP.NET Website

Ch
apt
er
2

- Foundations

Ch
apt
er
3

- Foundations for Style and Navigation

Ch
apt
er
4

- Maintaining the Site

Ch
apt
er
5

- Users and Authentication

Ch
apt
er
6

- News Management

Ch
apt
er
7

- Advertising

Ch
apt
er
8

- Polls

Ch
apt
er
9

- Mailing Lists

Ch
apt
er
10

- Forums and Online Communities

Ch
apt
er
11

- Deploying the Site

Ch
apt
er
12

- The End

Index

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandKevin
Hoffman
Wrox Press ?2002

Introduction
 Welcome to ASP.NET Website Programming. In this book we will build an interactive, content-based website using
expandable, interchangeable modules. By the end of the book you will have developed your ASP.NET skills for
producing effective, well-engineered, extendable websites.

 ASP.NET is a great tool for building websites. It contains many built-in features that would take thousands of lines of
code in classic ASP. And it does not require admin rights in order to deploy compiled components - your whole site
can be deployed in one folder.

 This book will guide you through the bewildering features available to ASP.NET developers, highlighting the most
useful and exciting.

 The book concentrates on websites that focus on content. It does not show how to produce an e-commerce system,
although a lot of the advice will apply to e-commerce sites. We could add a shopping basket module using the same
foundations, for example.

 This book is different to most Wrox books, because we build a single working website throughout the book.
However, each chapter stands alone and shows how to develop individual modules, which you can adapt for your
own websites. We also suggest a framework that allows us to create modules and slot them in to the website quickly
and easily.

 What Does This Book Cover?
 The chapters in this book follow a problem-design-solution pattern. First we identify what we need to achieve, then
we sketch out how we will achieve it, and finally we will build the software in Visual Studio .NET.

 Most chapters involve building a 3-tier system, with data, business, and presentation layers. We will also see how to
build separate modules so that they integrate well into the whole site.

 looks at the website as a whole. We identify the problem that it is trying to solve, and discuss how we will go about
solving it. We then come up with a solution - which involves building and integrating the modules detailed in the other
chapters.

 builds the foundations of our site. We set coding standards and design our folder and namespace structure. We
create our initial database - although at this stage we have no data to put in it. We also build site-wide error handling
code and base classes for our data and business layer objects.

 extends our foundations to the presentation layer. We will build base classes for the ASP.NET pages in the site, a
custom error page, and site wide navigation, header, and footer controls.

This document is created with the unregistered version of CHM2PDF Pilot

 presents a file management module, which we can use to download and upload source code for the site, and make
changes online. We will also look at Microsoft's Data Manager, which enables us to manage SQL Server databases
through our website.

 covers user accounts. We look at how to create a powerful role-based security system, and integrate it with
ASP.NET's built-in authentication features.

 shows how to provide regularly changing news content through a website. We also build a web service to expose
news headlines to other sites and applications, and a Windows news ticker that uses this web service.

 looks at advertising. We create our advertising system by extending the ASP.NET AdRotator control to provide the
power we need. We look at logging hits and impressions, and providing reports to advertisers.

 covers opinion polls and voting. We look at how to administer questions, log votes, and collate them into useful
reports.

 provides the tools to create e-mail newsletters. We will look at how to create messages in plain text and HTML, and
how to administer lists and set up new ones.

 looks at forums. We create everything you need to post and read messages, and give administrators special
permissions. Along the way, there is some powerful use of the DataList and DataGrid controls. We also look at how
to use regular expressions to provide limited HTML support, without opening our forum to the risk of cross-site
scripting.

 shows how to deploy the site. We will look at the ways Visual Studio .NET allows us to provide source-free
distributable versions of our software, and how to deploy our sites onto hosting services.

 looks to the future. We've only just begun our lives as ASP.NET website developers and here we will look at ways
in which Wrox can support your continued development. In particular this includes the book's P2P list, where you can
work together with fellow readers and benefit from each other's ideas and experience.

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandKevin
Hoffman
Wrox Press ?2002

Who Is This Book For?
 The book is for developers who have a reasonable knowledge of ASP.NET, and want to apply that knowledge to
building websites. You will get the most from this book if you have read a decent amount of Wrox's Beginning
ASP.NET using C#, or Professional ASP.NET and a C# book.

 You should be comfortable using Visual Studio .NET to create ASP.NET projects, and that you know C#.

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandKevin
Hoffman
Wrox Press ?2002

What You Need To Use This Book
 To run the samples in this book you need to have the following:

 Windows 2000 or Windows XP.

 Visual Studio .NET 1.0. We have tested the code for version 1.0, although most of the code should work in
late pre-release versions. Nearly everything will also work in Visual C# .NET Standard.

 SQL Server 2000 - although most of the techniques we use could apply to any database system, including
Access.

 To get the site working you may also need an ASP.NET web host. We will give some guidance on choosing one
towards the end of the book.

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Conventions
 We've used a number of different styles of text and layout in this book to help differentiate between the different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

 Code has several fonts. If it's a word that we're talking about in the text - for example, when discussing a For...Next
loop, it's in this font. If it's a block of code that can be typed as a program and run, then it's also in a gray box:

 <?xml version 1.0?>

 Sometimes we'll see code in a mixture of styles, like this:

 <?xml version 1.0?>

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Customer Support
 We want to hear from you! We want to know what you think about this book: what you liked, what you didn't like,
and what you think we can do better next time. Please send us your comments, either by returning the reply card in
the back of the book, or by e-mailing <feedback@wrox.com>. Please mention the book title in your message.

 We do listen to these comments, and we do take them into account on future books.

 How to Download the Code for the Website
 It is well worth getting the website working on your own machine before reading too much of this book. It will help
you follow the descriptions, because you will be able to see how code snippets relate to the whole application, and
experience the modular approach first hand.

 To get the code, visit www.wrox.com and navigate to ASP.NET Website Programming. Click on Download in the
Code column, or on Download Code on the book's detail page.

 The files are in ZIP format. Windows XP recognizes these automatically, but Windows 2000 requires a
de-compression program such as WinZip or PKUnzip. The archive contains the whole site, plus a readme describing
how to get it up and running.

 Errata
 We've made every effort to make sure that there are no errors in the text or in the code. If you do find an error, such
as a spelling mistake, faulty piece of code, or any inaccuracy, we would appreciate feedback. By sending in errata
you may save another reader hours of frustration, and help us provide even higher quality information.

 E-mail your comments to <support@wrox.com>. Your information will be checked and if correct, posted to the
errata page for that title, and used in subsequent editions of the book.

 To find errata for this title, go to www.wrox.com and locate ASP.NET Website Programming. Click on the Book
Errata link, which is below the cover graphic on the book's detail page.

 E-mail Support
 If you wish to directly query a problem in the book with an expert who knows the book in detail then e-mail <
support@wrox.com>, with the title of the book and the last four numbers of the ISBN in the subject field of the
e-mail. Please include the following things in your e-mail:

 The title of the book, last four digits of the ISBN, and page number of the problem in the Subject field.

 Your name, contact information, and the problem in the body of the message.

 We won't send you junk mail. We need the details to save your time and ours. When you send an e-mail message, it
will go through the following chain of support:

 Customer Support - Your message is delivered to our customer support staff, who are the first people to
read it. They have files on most frequently asked questions and will answer anything general about the book
or the website immediately.

 Editorial - Deeper queries are forwarded to the technical editor responsible for that book. They have
experience with the programming language or particular product, and are able to answer detailed technical
questions on the subject.

 The Authors - If even the editor cannot answer your problem, he or she will forward the request to the
author. We do try to protect the author from any distractions to their writing, but we are happy to forward
specific requests to them. All Wrox authors help with the support on their books. They will e-mail the
customer and the editor with their response, and again all readers should benefit.

 The Wrox Support process can only offer support to issues that directly relate to the content of the book. Support
for questions that fall outside the scope of normal book support, is provided via the community lists of our
http://p2p.wrox.com/ forum.

 p2p.wrox.com
 For author and peer discussion join the P2P mailing lists. Our unique system provides programmer to programmer
? contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one e-mail support system. If you
post a query to P2P, you can be confident that the many Wrox authors and industry experts who use our mailing lists
will examine it. At p2p.wrox.com you will find a number of different lists that will help you, not only while you read
this book, but also as you develop your own applications.

 This book has its own list called aspdotnet_website_programming. Using this, you can talk to other people who are
developing websites using the methods and framework presented here. You can share ideas and code for new and
improved modules, get help with programming headaches, and show off the sites you've written!

 To subscribe to a mailing list just follow these steps:
1.

 Go to http://p2p.wrox.com/.
2.

 Choose the appropriate category from the left menu bar.
3.

 Click on the mailing list you wish to join.
4.

 Follow the instructions to subscribe and fill in your e-mail address and password.
5.

 Reply to the confirmation e-mail you receive.
6.

 Use the subscription manager to join more lists and set your e-mail preferences.

 Why this System Offers the Best Support

 You can choose to join the mailing lists or you can receive them as a weekly digest. If you don't have the time, or
facility, to receive the mailing list, then you can search our online archives. Junk and spam mails are deleted, and the
unique Lyris system protects your e-mail address. Queries about joining or leaving lists, and any other general queries
about lists, should be sent to <listsupport@p2p.wrox.com>.

This document is created with the unregistered version of CHM2PDF Pilot

mailto:feedback@wrox.com
http://www.wrox.com
mailto:support@wrox.com
http://www.wrox.com
mailto:support@wrox.com
http://p2p.wrox.com/
http://p2p.wrox.com/

Chapter 1 - Building an ASP.NET Website

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 1: Building an ASP.NET Website
 Overview
 In this book we are going to build a content-based ASP.NET website. This website will consist of a number of
modules, which will all fit together to produce the finished product.

 We will build each module in a standard order:

 Identify the problem - What do we want to do? What restrictions or other factors do we need to take into
account?

 Produce a design - Decide what features we need to solve the problem. Get a broad idea of how the
solution will work.

 Build the solution - Produce the code, and any other material, that will realize the design.

 This book focuses on programming. When we talk about design, we generally mean designing the software - we will
not be looking at graphic or user interface design.

 Your website will not be solving all of the same problems as ours, but many of the modules we build - and the
programming techniques we use - are very transferable.

 In this chapter we will take a high-level look at the whole site - what it needs to do, and how it will do it.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 1 - Building an ASP.NET Website

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 We will be building a website for DVD and book enthusiasts. In outlining the site's problem, we need to consider the
purpose and audience. In real life this stage would be business-oriented - taking into account things like advertising
demographics, competition, and availability of funding. These processes need to be analyzed rigorously, but we will
leave all that to the managers.

 Our site will cater for lovers of books and DVDs. It will provide useful content and try to build community. Our
visitors will want to read about these things, and contribute their opinions, but each visit will be fairly short - this will
not be a huge database in the style of the Internet Movie Database (www.imdb.com). It will be funded by advertising,
and will rely on repeated (but fairly short) visits from its readers.

 We also need to consider constraints. These are more practical. One of the major constraints that this site faced was
the development team - the members would never meet, because they were on opposite sides of the world. This
meant that the design must allow one developer to work on sections of the site without interfering with other
developers working on different sections. But all of the sections needed to eventually work together smoothly. In most
cases the separation between developers will be less extreme, but giving each developer the ability to work
independently is very useful. We need to design and build methods to enable this.

 Site development never really finishes - sites tend to be tweaked frequently. Another key to successful websites is to
design them in a way that makes modification easy. We will need to find ways to do this.

 We will call our site ThePhile.com, because it is a site for lovers of books (bibliophiles) and DVDs
(DVD-philes). It's also a play on the word 'file', because our website will be a definitive source of
information.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.imdb.com

Chapter 1 - Building an ASP.NET Website

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 We have outlined what our site needs - now let's look at how we can provide it. The main points raised in the
problem section were:

 Enable developers to work from many different locations

 Build a maintainable, extendable site

 Build community

 Provide interesting content

 Provide revenue through advertising

 Encourage frequent visits

 Let's discuss each of these in turn.

 Working From Different Locations
 Our developers need to work on sections of the site with relatively little communication. Our developers are in
different countries so face-to-face meetings are impossible. Telephone conversations can be expensive, and different
time zones cause problems.

 We need to design the system so that developers can work on their own section of the site, knowing that they will
not damage the work of others.

 A good way to solve this is to develop the site as a series of modules, with each module being fairly independent. Of
course there will be shared components, but changes to these will be rare and can be done in a controlled way. In this
book, we work in modules. We also make frequent use of controls. This means that components for a page can be
developed independently, and easily 'dropped in' as needed - changes to the actual pages of the site are kept to a
minimum.

 A Maintainable, Extendable Site
 Most websites have new features added quite frequently. This means that from the start the site needs to be designed
to make that easy.

 Working in modules and using controls already goes some way towards this. Particularly, using controls means that
non-programmers can edit the pages of our site more easily - nearly all they see is HTML code. A control just looks
like another HTML tag.

 Working in modules means that new modules can be added to the site at any time, with minimum disruption. All
modules are fairly independent, so new ones can be added - and changes made - pretty easily.

 Each individual module needs to be easy to change. A good way to do this is to work in layers, or 'tiers'. We will be
using a three-layer design for most modules. We have a data layer, a business layer, and a presentation layer. Data
passes from data layer to business layer, and from business layer to presentation layer, and back again. Each
layer has a job to do. Underneath the data layer is a data source, which it is the data layer's job to access.

 The data layer obtains fairly raw data from the database (for example, "-10"). The business layer turns that data into
information that makes sense from the perspective of business rules (for example, "-10 degrees centigrade"). The
presentation layer turns this into something that makes sense to users (for example, "strewth! It's freezing!").

 It's useful to do this, because each layer can be modified independently. We can modify the business layer, and
provided we continue to accept the same data from the data layer, and provide the same data to the presentation
layer, we don't need to worry about wider implications. We can modify the presentation layer to change the look of
the site without changing the underlying business logic.

 This means we can provide versions of the site for different audiences. We just need new presentation layers that call
the same business objects. For example, providing different languages: "zut alors! Comme il fait froid", "allora, fa
freddo", and so on.

 We need methods to get changes we make onto the live site. This could be through FTP uploads, but in many
circumstances it is better to work through a web interface.

 We will also need tools to administer the other sections - ban problem users, add news articles, and so on. This is all
part of providing a maintainable site.

 Community
 Sites generally benefit from allowing readers to contribute. Because our site is not intended for users to spend hours
looking at, our community features must not require a lot of users' time.

 There are two ways that we will build our community: through polls and forums. Polls give users the opportunity to
give their opinion in a single click - so they require very little time from the user, but can make a site seem far more
alive.

 Forums enable users to discuss topics with other users. Messages remain in the system, and replies are posted.
Readers can leave a post, and then come back later to see if there are replies. This is more appropriate for our
purposes than a chat room, which requires the reader to concentrate on the site for the whole duration of the chat.

 Community can really give a site a life of its own. Over time, strong characters, heroes, and villains emerge. Many
sites depend entirely on community, and become extremely popular - for example www.plastic.com.

 For any of this to work, we need to identify users and provide them with unique logons. So our system will need
some form of user accounts system.

 Interesting Content
 The content most relevant to our users will be movie and book related news and reviews. This content tends to be
highly relevant for a short period of time: after a story has broken, or immediately after a release. Our site will need
tools to manage news in this way.

 Another way to provide interesting content is to get somebody else to provide it! This is part of what we're doing
with our community section. Part of the purpose of building community is to get people contributing content.

 Advertising
 Advertising generates revenue (or in some cases it is used to exchange banners with other sites). We need to display
adverts, and record data about how often each advert has been displayed and clicked on.

 We also need to gather information about what the users of the site like, so we can target our advertising content.
Polls and forums can provide us with useful information when finding products to advertise.

 The biggest sites target individual users based on their demographic and any other information gathered about them
(for example, Yahoo! and Amazon.com target advertising and product recommendations to the demographic and
buying habits of each user). Our site already has a fairly narrow target demographic, and is not particularly big, so we
don't need to do this.

 Frequent Visits
 A good site will make people want to return. If the content is compelling, and there's plenty of discussion going on,
then people visit again and again.

 It's still a good idea to remind users from time to time. We want to draw attention back to the site, even when the
user isn't viewing it. One way we'll be doing this is through an e-mail newsletter, which gives users useful information
and subtly reminds them to visit the site.

 We will also build a Windows application that acts as a news ticker, with automatically updating news headlines.
Users can click a headline to view the full story on the site.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 1 - Building an ASP.NET Website

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 We've seen what we want the site to do, and sketched out some rough ideas of how we might provide it. Now we'll
look at how to build our solution. This really encompasses the whole of the book. Here we'll look at how each
chapter relates to our initial problem and design.

 Working From Different Locations
 In the next two chapters, we will provide a framework for development. This will lay down coding standards, and a
framework for organizing the modules into folders and Visual Studio .NET projects.

 We will decide what namespaces we will use for each module, and all the other things that will make team working
as hassle-free as possible. We will also develop some initial UI features to use across the site, promoting a unified
feel. These include a header, footer, and navigation control, and stylesheets.

 Building A Maintainable, Extendable Site
 3 will also set us on the road to a maintainable site. We will develop base classes, giving each new module a solid
foundation to build on.

 We will develop a web-based file manager in Chapter 4. Through this we can download and upload files, create new
ones, move them, change their attributes, and even edit files online with a built-in, web-based text editor. If you've
ever wanted to provide file upload facilities, offer source code for download, or provide online editing tools then this
is the place to look!

 Most of the modules we develop will have administration features. For these to be useful, we need to identify
administrators. In Chapter 5 we will develop a user accounts system. Using this, we can collect user information and
give different users different privileges. Our final site will support full role-based security, with login details stored in a
SQL Server database.

 Providing Interesting Content
 In Chapter 6 we create a news management system. This will enable our administrators to add and edit news articles,
receive and approve suggested articles from readers, and place new articles in categories. And, of course, it lets users
read the news. We will create a control so that we can easily display headlines on any page that we like.

 The news system will be flexible enough to also cover reviews, which will eventually form the core of our site.

 Managing Adverts
 Advertising will be covered in Chapter 7. We will develop a system to display adverts, and log impressions (when an
ad is displayed) and hits (when an ad is clicked). This will allow us to create reports from this data to give to
advertisers.

 There will be admin facilities to create adverts, select how frequently they should be displayed, and start and end
campaigns.

 Encouraging Community
 Chapter 10. The voting system will allow administrators to create new questions to vote on. Answers will be
recorded and displayed, and an archive of old results maintained - accessible from a standalone Windows
application. We guard against multiple votes from the same user by using cookies and IP number.

 The forums system will let each user choose an avatar image to represent them, and start posting. Discussion will be
organized into categories, and within them there will be various topics. Users can post new topics, and reply to
existing topics. We use regular expressions to allow formatting tags in messages, but prevent images or JavaScript.

 Getting Repeat Visitors
 As well as providing all this great content, we will include two features specifically for getting visitors back to the site.

 The first is covered in Chapter 6 where we look at news. We will develop a web service that exposes our news
headlines. We will then build a Windows client that displays the headlines, updating itself regularly. Clicking a headline
will open a browser on the correct page for the full story.

 The second is covered in Chapter 9. We will create the facility for visitors to subscribe to receive e-mail updates
from us. Once they are subscribed, we send a mail out regularly to encourage repeat visits. This mail will include
highlighted news and features, and links back to the site. We will develop a system that enables administrators to
create plain text and HTML messages. We then develop a mailing list admin module for creating subscription forms
for new mailing lists, administering list members, adding newsletters, and managing subscriptions. Messages can
include custom tags so that each list member receives an e-mail tailored to their own details.

 Deploying the Site
 Although we haven't mentioned it before, we will eventually need to move the site from our production machine to
the live server. This can be a complex task, because we need to separate the files needed for the site to run from the
source code files that we only need for development. We will look at this in Chapter 11, and see how Visual Studio
.NET gives us tools to make the process easy.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 1 - Building an ASP.NET Website

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 We're now ready to look at the site in detail. Before reading the following chapters, it's worth getting hold of the
code download and seeing how the final site fits together. This book does not describe every detail of the website,
and it will be a lot clearer if you look at the final site first.

 The code and database is available from www.wrox.com. Once you've downloaded and unzipped it, look at
the readme file to see how to get it working in Visual Studio .NET. You will get far more from the book if
you look at the project before reading on.

 In the next chapter we will start to build the foundations for the rest of the site.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.wrox.com

Chapter 2 - Foundations

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 2: Foundations
 Overview
 Laying foundations is one of the first steps we need to take when starting any non-trivial programming project.
Foundations include things like code and documentation conventions, and the structure and design of the backend. In
a formal development process, the foundations also typically include a vision statement of some kind, and a project
plan.

 Developers often have opposing views on how much work to do at this stage. Many want to sit in front of a
keyboard and start coding straight away, while others want to spend weeks developing pages of rules and standards.
Somewhere between the two extremes lies a fairly good medium. We don't want to get caught in an endless loop of
designing, but we also don't want to write any code before we've figured out what our architecture and design is going
to be like.

 If we are building a house, and we build the foundations on sand, the house is likely to come tumbling down before
the building is finished. On the other hand, if the ground is too hard then laying the foundations can be a major task in
itself, placing unnecessary restrictions on the rest of the project.

 This chapter will demonstrate a sensible compromise between the two extremes - building a solid but unrestrictive
foundation for an ASP.NET website. First we will discuss the common problems facing an ASP.NET website
architect in building the foundation. Then we will delve into designing a solution to these problems. Finally we'll
implement these designs, and even get to work on some code. This chapter is geared towards both architects and
developers alike. We will cover broad, high-level issues such as design and architecture, and we will also take a look
at the code used to implement a solid foundation for an ASP.NET website.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 2 - Foundations

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 Building a solid foundation can be a daunting task. It requires a good understanding of how the application will
operate before we go into the detailed design of each component. If we build a good foundation, everything else will
seem to fall into place. But if the foundation is poor, the site will take an extraordinary amount of work and time to
complete, if it's completed at all.

 Building the foundation of a website is really a collection of smaller, inter-related tasks. There are many aspects of the
website's development that need to be part of the initial foundation's design. One such aspect is the development
environment - for example team size and working style, and the tools that will be used to build the site. The type of
team that will work on the project is an important factor in developing the foundation, as the latter should be
developed to support the needs of the team. For example, a small team in a single office might work well with a fairly
loose foundation, because they can easily make small changes here and there. But a large, distributed team will benefit
if the foundation is set in stone, since negotiating a change could be a mammoth task. For the website in this book, the
development team consisted of only two people. However, these two people were on opposite sides of the world.
For this reason, the foundation needed to provide a stable basis for plugging in the different modules that each
developer was working on.

 In addition to the development needs, we need to determine the requirements of the website in its deployment
environment. A website can have many different types of requirements, including:

 Physical - the software and hardware environment in which the final website will run. Requirements such as
these typically dictate whether the website needs to be in a certain directory, or on a certain machine, or in a
certain network infrastructure. Physical requirements also dictate the specific type of database to be used to
support the system. We need to plan ahead for what type of system we're going to use to store our back-end
data. Will it be a relational database management system (RDBMS) like Oracle or SQL Server, or are we
pulling information from a mainframe, from a web service, or even from a collection of XML files? While you
can code your data services tier to be as source-agnostic as possible, it isn't an excuse to spend less time on
the definition of your data requirements.

 Architectural - we need to know how we plan on structuring our application. We need to know where the
physical and logical separations are, and we need to consider things like firewalls and networking
considerations. The website may need to be designed to support a certain type of development style, or
modification by authorized third parties.

 Logical - these requirements are those that, for example, dictate that a website will consist of three layers of
servicing components on top of a layer of database stored procedures.

 The deployment environment includes both the server and the client browser. Many websites recommend, or even
require, a particular browser in order to function correctly. Sometimes this is appropriate, but often it isn't. When
laying the foundations of the site, a strategic decision needs to be made about what type and version of browser your
website must support. This will affect the HTML and client-side scripts that your developers can work with, and
hence be part of the coding standard. As far as ThePhile.com is concerned, we will not be dictating the use of any
particular browser. We will try to code the pages so that any recent browser that supports the latest HTML
standards can use them.

 We also need to consider what the purpose of the website is, and who will be the users. Many businesses, ranging
from the small start-up business to the huge worldwide corporation, provide services and applications for their
employees on their intranet. There are many different types of applications that fall into this category, including:

 HR applications - many large corporations provide systems on the web to automate many tasks for dealing
with the employee's day-to-day business, such as time sheets and benefits tracking. These applications
require high security and availability.

 Internal support applications - as well as creating software that is deployed to their customers, companies
have various departments that often have 'in-house' software designed to support their own needs. These
applications require security, reliability, availability, and often a high degree of support from the programming
staff.

 These types of applications have specific deployment issues, which often arise due to a wide disparity in system
configuration and type across the employees requiring the software. Other deployment concerns arise simply due to
the large number of employees that must make use of this software. It is also becoming more common for web
application vendors to create an application, build a deployment program, place it on a CD, and then sell that CD to
customers who then deploy that application throughout their intranet. For example, there are several companies that
provide defect tracking solutions that are essentially websites you install from a CD to support your programming
intranet. The possibilities are extremely wide and varied. You may not know your particular solution for deployment
at the time you are defining your problem, but you should definitely be aware that it must be a core part of the design
of your website foundation.

 Finally, our website wouldn't look very much like a website without a user interface. So we obviously need some
type of UI. Putting some effort into the design of the user interface before a lot of code has been written can have
extremely large payoffs. We will need to take into consideration our audience when we design the look and feel of
our website, as well as the navigation and flow of the site, to make it easy for the target audience to use and traverse.

 Now that we've covered a little bit about the overall problems that face ASP.NET website architects, let's take a
look at the problem statement we came up with for the foundation of our website. We had special needs for ours,
because the developers of our website have never physically been in the same room.

 The Problem Statement
 For our purposes the problem statement includes stating the problem we are attempting to solve, and the constraints
that we must conform to in solving that problem. Our problem statement is divided into two sections: a vision (or
purpose) and a set of requirements. Depending on what particular software development process you use, your
problem statements may vary significantly from the one we will present here. If you are a fan of the Microsoft
Solutions Framework (MSF) then you might already be used to producing a vision statement and a requirements
document.

 We'll present our vision statement and then list the requirements for our product. It is absolutely imperative that you
do not start a single line of code or actual design until you have adequately defined these for your project. In many
iterative processes, you may be satisfied with only partially defining the requirements, because you know you will
revisit the requirements document multiple times throughout the lifetime of your project.

 The Vision

 We are endeavoring to build a complete, content-driven website that illustrates the importance of modular building
and will hopefully illustrate a few ASP.NET 'best practices' along the way. We will develop a solid, scalable
foundation on which to build the modules that will be developed throughout the rest of this book. A secondary goal is
to provide a foundation that can be used by multiple programmers with diverse experience and still produce a
coherent, cohesive solution.

 The Requirements

 It is important that we keep our requirements separate from our purpose. The requirements are the rules to which our
design must conform in order to produce the solution we set out to create. In an iterative process, the requirements
generally change with each iteration. In our small development environment, we won't need an iterative process, so
the following is the list of requirements that we defined for our project:

 Scalability - our solution must be scalable. It must be able to expand to meet increasing performance
demands with a minimum of extra coding required. It's a lofty goal, but it is quite possible with the right
design.

 Flexibility - our solution must be agile. This may be a buzzword, but there is some validity behind it. We
must try to make the foundation of our website agile so that changes that require modification of the
foundation will not drastically impact the rest of the site.

 Reusability - our solution for the core foundation of our website must be designed in such a way that it
promotes code reuse. A strong emphasis should be placed on object hierarchies, inheritance, and reuse,
starting with the foundation and carrying on through all of the modules in the website.

 Separation - our core foundation code should provide a solid foundation for the rest of the website, but it
should not be so closely tied to it that changes to individual modules will have an impact on the core
foundation code.

 Deployment - our application should be coded in such a way that it can be deployed on the Internet for
public use, and also to workstations running Windows 2000 and XP to allow programmers to examine and
learn from the source code.

 Test plan - as experienced programmers we know that developing a large project, even one that may appear
simple on the outside, is going to be a difficult process. As such, we need to make sure that we have an
organized way in which we test our code so that we can be reasonably confident that there are no bugs in it
when it is released to production.

 In summary, the foundation for our website, ThePhile.com, needs to provide a stable, solid, scalable foundation that
will give us the flexibility to make changes throughout the development process and later, as well as providing enough
standardization and convention to allow a team of programmers to build portions of the website separately, allowing
for easy integration of individual modules.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 2 - Foundations

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 Now that we have formally defined the problem of building our application's foundation, we can begin the design
process. Our design should reach a happy medium, providing enough foundation and structure to produce cohesive
results, without getting so bogged down in design that we end up producing nothing.

 Our discussion of the design process is going to look at some of the most common tasks in building the foundation of
a website. Then we'll apply that general concept to our specific application by actually designing the various pieces of
The Phile's foundation. The following list of items illustrates some of the concepts at the core of good foundation
design:

 Naming and coding conventions

 Programming language choice

 Folder structure

 Designing the database(s)

 Building a data services tier

 Building a business services tier

 Providing for effective error handling

 Deployment and maintenance

 User interface design

 Naming and Coding Conventions
 Coding conventions can be unpopular, particularly where they are imposed on a team by a non-programmer and
contain dated or restrictive rules. Every programmer has their own opinion about the usefulness of naming guidelines,
coding conventions, and other code-related rules. The opinions range from those who think that any coding
convention ruins the programmer's creative style, to those who thrive on the structure that conventions and standards
provide.

 Once again, we're faced with finding a compromise that benefits everybody. Standardization not only allows teams of
programmers to produce code that follows the same conventions, making it easier to read and maintain, but it allows
for the same programmer to write consistent code. Far more often than we like to admit, programmers will use one
convention one day, and another convention the next. Without some sense of enforced structure to the programming,
the infamous spaghetti code will rear its ugly head and make life miserable for everyone involved. Another common
practice that ensures solid, standardized code is the use of code reviews. Code reviews are where other
programmers (or managers, depending on skill distribution) review their peers' code for accuracy, efficiency, and
compliance to coding standards and conventions. Some programmers resist this kind of practice, but it can be
extremely valuable and productive.

 The guidelines here tend to match the recommendations that Microsoft issues to its own .NET development teams. If
we haven't pointed out a difference between our standards and Microsoft's, then they're essentially the same. When in
doubt, it is generally a good idea to favor established methods that developers are already familiar with. Change can
often bring with it benefits; but it can also be something that programmers resist strongly.

 Naming Guidelines

 Naming guidelines actually cover two things: naming and casing. The following is a list of generic guidelines that
apply to both naming and casing. Microsoft strongly recommends the use of a capitalization scheme called Pascal
casing. Pascal casing is a scheme where all words in an identifier have the first letter capitalized and there is no
separation character between words. Another type of capitalization scheme is called camel casing. This is where the
first letter of the identifier is lowercased, and thereafter the first letter of each word is capitalized. The following table
is a summary of Microsoft's capitalization suggestions:

Type Case Additional Information

Class PascalCase Examples: MyClass, Utility,
DataHelper

Enum value PascalCase Examples: Colors.Red,
PossibleValues.ValueOff

Enum type PascalCase Examples: Colors, PossibleValues

Event PascalCase Examples: MouseClick,
ButtonDown

Exception class PascalCase Class name ends with Exception
suffix, for example:
MyCustomException,
WebServiceException

Interface PascalCase Interface name is prefixed with the
letter I, for example: ICar,
ISerializable

Method PascalCase Examples: GetItemData,
UpdateModifiedValue

Namespace PascalCase Examples:
Company.NewApplication.DataTie
r

Property PascalCase Examples: ItemValue

Parameter camelCase Examples: itemArray, valueData,
purchasePrice

Private member variable camelCase Microsoft makes no recommendation
on this; however, it is useful to
distinguish private member variables
from other identifiers.

 In addition to the above summary of capitalization rules, the following guidelines apply to naming classes, interfaces,
and namespaces:

 Do not use class names that overlap with namespaces, especially those namespaces that are supplied by
Microsoft. So stay away from naming your classes things like System, UI, Collections, or Forms.

 Do not use the underscore character. Many of us who have been writing C++ code for a long time have
developed the habit of using a preceding underscore to indicate a private member variable within a class. This
practice has fallen from grace, and is now discouraged.

 Do not use identifier names that conflict with keywords. Most languages won't let you anyway!

 Do not use abbreviations in your identifiers. Also, where you use an acronym, treat it as a word - don't use
all uppercase. For example, the .NET Framework has namespaces such as SqlClient (not SQLClient).

 Do follow the casing conventions in brand names. For example, if you place your company name in a
namespace, and your company name has a specifically branded capitalization scheme (for example NeXT or
IBM, both of which have a capitalization scheme that doesn't coincide with the casing recommendations) you
should retain your company's branding. So, you would not reduce IBM in a namespace to Ibm, nor would
you reduce NeXT in a namespace to Next.

 Do use nouns and noun phrases when naming your classes and namespaces. This is highly recommended and
preferred over using verbs. For example, use Parser as a namespace or class name, rather than Parse or
Parsing. Verbs should be used for method names only.

 Do not use Hungarian notation when naming things. For example, in classic VB, controls were often given
names like btnConfirm, which would immediately tell the reader that it was a button. Microsoft's style
guidelines are now recommending that people do not prefix their variable names with anything related to that
variable's data type. Microsoft feels that the development tools (specifically VS .NET) should provide
information pertaining to a given member's data type by such means as intelligent hovering pop-up dialogs. A
better purpose for a variable name is to describe its use rather than its data type. Interestingly enough,
Microsoft does recommend the usage of Hungarian notation prefixes on static member names.

 There are a lot of code conventions to remember, and for some people it is a radical switch in development style.
The important thing is to have guidelines, even if they are different from those given here. If two programmers agree to
follow guidelines, then there is a very good chance that they will produce code that looks similar and is just as easy to
read. You can find all the information you need on Microsoft's recommended design, naming, and coding convention
guidelines in the MSDN documentation that comes with the .NET Framework SDK. Some topic names to look up
include:

 Parameter naming guidelines

 Property naming guidelines

 Event usage guidelines

 Method usage guidelines

 Field usage guidelines

 Static field naming guidelines

 It's a good idea to follow the Microsoft guidelines wherever possible. Microsoft code samples all follow these
guidelines, including those in the .NET documentation. Writing code using this style will make it easier to read other
code in that style.

 Namespace Hierarchy

 If you haven't worked on large projects with .NET, designing the namespace hierarchy may seem alien.
Namespaces in .NET are logical containers for classes, enumerations, and so on. One namespace can span multiple
assemblies and modules.

 An assembly is essentially a container for .NET components. Multiple .NET components can reside in a single
assembly. To keep things familiar and to provide easier backwards compatibility, typical assemblies retain the
familiar DLL extension.

 Modules are collections of components that can be compiled outside an assembly and then merged into an
assembly later. For the most part (especially if you're using Visual Studio .NET) you will be working in a
model that only has one module per assembly.

 Namespaces are conceptually similar to folders. One useful purpose of folders is to distinguish between two files of
the same name - two classes with the same name can be distinguished by their namespace. For example, if we have a
class named Car, and some other vendor has a class named Car, we can distinguish our car from theirs by using a
different namespace.

 However, folders are also useful because they enable us to organize our files. Namespaces allow us to organize our
classes in a logical, memorable way. If all of the developers on the team know the namespace hierarchy, and the
namespace hierarchy is logical and consistent, then any developer sitting down to start working on the application
should have no trouble finding any code they need to get their job done. A well-organized namespace hierarchy can
be a massive help towards building an application that is easy to maintain and enhance.

 Now that we've determined that a well-organized namespace hierarchy is essential to any good core foundation
design, let's design the namespace hierarchy for ThePhile.com.

 Before we actually try to draw out the tree structure, we'll identify the primary areas of our website's functionality.
These areas should give us an idea of what kind of namespaces we will need, and from there we can organize them
into a tree and further subdivide them if needed. One thing to be aware of when building a namespace hierarchy is that
it is very easy to go overboard. Detailing namespaces down to too fine a degree of granularity will actually hinder the
development process rather than enhance it. It is best to find a middle ground where there is enough categorization to
make sense, but not so much that it confuses the programmers.

 The areas of functionality are listed below in no particular order:

 Email newsletter

 News and content system

 Opinion polls (voting)

 Forums

 Users and security (accounting)

 Advertising

 Web site basics (homepage, navigation, headers, footers, etc.)

 Administration (uploading changes to files)

 Microsoft recommends that the namespace hierarchy strategy should always begin with the company name. In our
case, the company name is "Wrox", so we're going to make sure that Wrox is our root namespace. Then, the second
recommendation is that immediately beneath the company name should be the application (or technology) name. In
our case, our application is called "The Phile", so we'll have another namespace underneath Wrox called ThePhile.
Note that we're keeping in line with our naming convention rules and using Pascal casing and no underscores.

 As we mentioned in the requirements listing, our design must allow us to separate the core functionality of the website
(for example the core server controls, navigation, and pages) from the extra modules that we are building into it
(forums, advertising, etc.). This way, we can logically separate each individual module from the core of the website,
creating a plug-in feel for the other modules.

 In order to do this, we'll create another namespace for all of the additional modules being developed for this
application throughout this book. We're going to call this namespace WebModules. We are trying to make sure that
everything we do conforms to the standards and casing conventions we came up with earlier. This namespace will be
underneath the main root of Wrox.

 If we take the above list of features and turn them into namespace names by following our naming convention, we get
the following namespaces:

 MailingLists

 NewsManager

 Polls

 Forums

 Accounts

 AdsManager

 FileManager

 So underneath our root namespace we have the namespace WebModules, beneath which we will have a namespace
for each web module. Within each of these we will have a namespace called Web for our website skeleton. This
namespace will hold each of the code-behind classes. Each of the Web namespaces can have a child namespace
called Controls that will hold all of the user or server controls for that module. The Wrox.ThePhile namespace is
structured in a similar way to an individual web module. There's room for expansion here, too - if we decide to make
room for webservices, we can add another child namespace to the Web namespace and call it Services. It could hold
all the code-behind classes for the web services functionality for a given module.

 Now that we've decided on the names, and we have some idea of where we want everything to flow, let's take a
look at the diagram that our website designers came up with for the namespace hierarchy:

 This diagram only fully expands the namespace for the NewsManager module, but other modules will have a
similar structure.

 The fact that we have three namespaces under each module looking very much like a standard three-tier architecture
(with a presentation, business services tier, and data services tier) is far from coincidence. We also have the
Configuration namespace, which we can use to logically contain any code that is required for the configuration of that
particular module.

 Having this hierarchy laid out early in the development can help with documenting and planning the project. For
example, we can use the namespace hierarchy as a to-do list of things to design, implement, and document.

 The modules we're building in this book are designed to be easily reusable so they can be plugged into other
websites with little or no work and hassle, which will become more evident as we look into each module throughout
this book. That is the main reason why the additional modules have been separated into their own namespaces, so
they have no direct requirement of belonging to any given website.

 Microsoft provides a few guidelines for building a namespace hierarchy. Their general format is
Company.Technology.Product. Therefore, you might see a namespace like Microsoft.Office.Word at some point
in the future.

 Programming Language
 One of the things we need to decide early in our design phase is which programming language to use. With the CLR
and .NET, the choice of programming language has become one of personal preference rather than necessity. With
certain exceptions, most languages running under the CLR will perform similarly, so the choice is less driven by
performance requirements than in previous legacy projects.

 In our case, both of the programmers thoroughly enjoy the C# language, and we've decided to use that as the only
language for the project development. In a real-world environment, however, it is entirely possible that a project team
might choose to use both VB.NET and C#, with the language choice left up to each individual programmer. Most of
the components should cooperate just fine even if their main language is different.

 There will be exceptions to this, if components make use of language features that are not supported by the
CLR, or CLR features not supported by the language. For example, VB.NET does not have support for
operator overloading, while it's an almost natural process in C#.

 Folder Structure
 Just like a poorly organized namespace hierarchy, or a poorly defined set of coding standards, a poorly organized
folder structure can hinder the maintainability of the application.

 The easiest thing to do is take the namespace hierarchy diagram that we produced for the previous step and simply
convert it into a tree of directories, making allowances for a few things like directories for images, stylesheets, XSLT
files, and such like.

 The following directory structure is the result of converting the namespace hierarchy into a directory:

 This doesn't include all of the repetitive subdirectories (Controls and Services) for each of the solutions we'll
be building for the website. Only the NewsManager directory appears in full.

 If you've worked with Visual Studio .NET for creating an ASP.NET application, you will know that any time you
create a web form, the code-behind class is created in the same directory as that form. This will be the case for our
solution too (at least in the version we distribute with source code). As you can tell, the ThePhile directory is the main
application root. Below that, we have a directory that will house the code and .ascx files for our server and user
controls. Also, there is a generic Images directory that is, obviously, designed to house our graphics. Each of the
modules we will be developing throughout the rest of this book will be primarily contained in its own subdirectory in
the Modules directory. There is a Styles directory that will contain any stylesheets we use, and a Transforms directory
for our XSLT files.

 Designing the Database
 When we come to design the core components of the website, we will look at database design - the tables and
relationships that we need to model. Each new module will lead to different demands, so new tables and relationships
will be added as the site progresses.

 At this stage we need to make the decisions that will leave us with an appropriately constructed empty database.
Before we can do this, we need to make important decisions about:

 Hardware - typically this covers the machine and what kind of hardware it sports, such as RAID hardware,
hot-swappable drives, and multiple processors.

 Network topology - this covers considerations such as firewalls, security, backbone bandwidth, and speed
(for example, will your middle tier encounter bandwidth bottlenecks in trying to reach your RDBMS?), and
isolation to prevent various forms of network attacks and intrusions.

 Database size and growth rate - this is one area that is typically managed by the database administrator
(DBA), but we aren't all fortunate enough to have a DBA around to do this for us. If you are warehousing
data then you need to consider extreme growth rates in your data, whereas if you're serving up a fixed
product catalog and not much else, you don't need to be too worried about database growth and size. In the
past this was a huge concern, but in these modern days where we can simply drop another massive hard drive
into a logical partition, it is becoming less and less of a concern in terms of space. However, there are
performance concerns with data growth that we won't go into here.

 Disaster recovery - every good database needs a backup. There needs to be some kind of plan in place that
will allow for failures in the system so we can restore data to a previous good state. This can be done with full
or differential backups, redundant storage, and other options that might be RDBMS-specific, such as
clustering or managing mirrored tables.

 Database quantity - one decision that often gets overlooked in the design phase is whether or not everything
you're going to need will be in the same physical database. With many modern RDBMSs like Oracle and
SQL Server, each database is handled by a different running process (often referred to as an instance of the
database), offering a potentially very large performance benefit if your web application needs access to two
different stores of data, but not necessarily at the same time (for example, when you don't need to join data
from one source to the other).

 Security - one thing you definitely don't want is people having unauthorized access to your system. Even if
your database is safely tucked away behind a firewall, there are still ways of hijacking trusted resources on
the other side that can 'spoof their way into your database. A good way of preventing this kind of thing is by
securing your database. For example, one really good idea might be to change the default password of the
system administrator accounts for your RDBMS (such as 'sa' for MS SQL Server).

 Now that we've looked at some database creation issues, we'll go over what we did for our particular application. It
is important that third-party hosting companies and home-office Windows 2000 Professional machines can host
ThePhile. This makes MS SQL Server an obvious choice.

 All we need to do is create a database called ThePhile with all of the default options (meaning that it will
automatically grow and automatically truncate the log file when necessary). Later on, as we develop the individual
modules of the application, we'll start creating data structures in the database.

 ThePhile.com uses a single database for the whole site, rather than a different one for each module. This is because
third party application hosts usually provide their customers with only a single database. We'll design our application
modules so that they can easily be configured to run on their own separate databases if those resources are available,
however.

 In order to install and run the application we'll be developing throughout this book, you'll need to have at
least an evaluation copy of SQL Server 7 or SQL Server 2000 installed on your machine. These are
available from the Microsoft website.

 Building the Data Services Tier
 In many applications, programmers will often have a single tier between the presentation logic and the actual
back-end database. They tend to lump both business logic and data access into the same logical tier. This will work,
but it's usually a bad idea. It's better to separate the code that enforces business rules and performs multi-step
business processes from the database access code. This leaves us with a data services tier, giving many benefits,
including:

 Scalability - using a data services tier can make an application far more scalable. Even if the data services tier
isn't hosted in COM+ or MTS, there is still a large added benefit. Let's say we have a data services
component that obtains inventory information by simply querying the database. Because our business logic is
separate from the data component, we can upgrade the data component to use a stored procedure without
changing any of the business code. Now assume we want to upgrade it even further by adding in the summary
of transactions stored in an MSMQ queue; again all we need to do is place the new code into the data
services component and drop it in. The user interface and the business rules are still the same and require no
changes. Distinctly separating your code across tiers also allows you to scale the solution by adding more
hardware to handle increased demand without having to modify existing code.

 Availability - separating the data services from the business services can help an application to be more
fault-tolerant, and so more available to clients. By distinguishing separate units of business and data logic and
placing them in separate components, you further separate your application from the classic "monolithic"
application model (which can tear everything down even if only a small problem occurs in a small subsystem).
If a portion of your application breaks using an n-tier architecture, you will be able to isolate, identify, and
replace the defective component far more easily and with less disruption than if you had been working with a
monolithic application.

 Maintainability - as we mentioned when we talked about scalability, if you need to make a change to your
data back end, all you need do is make the change to the data services tier components that are affected and
you're all set. If coded properly, the business tier and presentation tiers should be entirely unaffected by this
change. For example, if you suddenly decided that your user information needed to come from an Oracle
database, while your purchase history information needed to come from a DB2 database on a Unix
mainframe, you could easily make the changes to the data services components and not have to worry about
crashing the rest of your application. Another benefit in terms of development is the fact that the data source is
literally plug-and-play. You can, for instance, make a minor configuration change and move a test application
to a production database, or a production application to a test database, without significant impact to the
overall application.

 Performance - in classic ASP, three tiers was almost a requirement because of the limitations of VBScript in
the presentation tier (such as not being able to early bind to COM objects). With .NET there really is no
performance benefit from splitting into the third tier, unless we're using COM+. Hosting business and/or data
services components with COM+ allows us to pool our objects and take advantage of services like
just-in-time (JIT) activation and object pooling. COM+ and related concepts are a little out of scope for this
book, as our simple content application is just going to use standard components.

 In the following sections we will look at creating a single base class for every object in a given tier. What this
essentially means is that every data access object will inherit from a common data access object. In addition, every
business class will inherit from a common business class. Typically, when designing a data services tier, there are two
main ideas people adopt: building a single helper class which performs all data access on behalf of all components in
the data tier, or building a data object for every type of entity that needs access to the database. For our purposes,
we're going to go with the latter method. An entire book could be written about all of the different arguments people
have both for and against each of these methods.

 This technique further enhances scalability and maintainability. For example, if we want to change where every single
data services component obtains its connection string, we just make a single change to the base class for the data
services tier.

 For more information on the benefits of creating base classes for related or similar groups of classes, consult a good
object-oriented programming manual. There are many examples of these, including Object-Oriented Analysis and
Design with Applications by Grady Booch (ISBN 0-805353-40-2).

 We will look at creating the base class for our data services tier in the Solution section of this chapter.

 Building the Business Services Tier
 The business services tier provides a layer of abstraction that rests atop the low-level components that comprise the
data services tier. It is often hard to see the purpose in splitting the business logic from the data services tier. But once
it's done, the benefits are massive. Keep in mind that we are talking about layers of abstraction, not actual physical
layers or separations between components and component tiers.

 We've already discussed maintainability as one of the benefits of this split. If the business rules and business logic
rests in a layer above the data services, then the underlying data access mechanisms, code, and even server or server
location can all change without breaking any of the code in the business services tier. As we mentioned earlier, this
ability often produces the useful side effect of being able to 'switch' an application from a live data source to a debug
or test data source with little or no visible consequence to the application itself.

 The other main benefit is for modeling of business processes and rules. By separating your data access from your
business tier, your designers can devote their full attention to determining how the application should function with the
business rules in place. They won't need to concern themselves with whether or not a given field in a database table is
a short or a long integer.

 The bonus is in the modeling and design. The presentation tier is modeled to be close to what the user expects to see,
for example, we have a class for each page the user can see. The data services tier often ends up producing a close
ratio of components to tables. The business services tier generally produces something in the middle, modeling
processes, rules, and logical abstractions rather than data-dependent components.

 This diagram is a typical example of the dispersal of components across a three-tier model. It shows the difference in
design patterns used in developing classes, or components, for each of the tiers:

 As we can see from the above example, a sample user might hit the login page for a simple web application. From
there, an instance of the LoginPage class might invoke the Authenticate method in the business class for a particular
username and password combination. The Security class is a model for the business processes relating to security. It
first requests that an instance of the data services class User validate that a given user exists with that username and
password combination. Again, keep in mind that if we changed where and how we were storing user information, all
we'd have to do is change our User component, leaving the business and presentation tiers unharmed. Then, assuming
we have a fairly robust security scheme, the Security class instance checks to see what roles that user belongs to, and
whether any of those roles has been given permission to log in.

 From all this, the key point is that the presentation logic is modeled to be very close to what the user sees and
interacts with; the business tier is modeled around business processes and rules; and the data services tier is modeled
around finite sets of data.

 Even with these benefits, it might seem tedious to take on this extra work when modeling simple processes.
However, applications grow - sometimes into things we never intended (this is typically where marketing and sales get
involved). With a solid architecture, we have the room to scale our application with the demand of our customers,
consumers, and even our sales department!

 We are building our application in a number of modules. Each module will have its own presentation, business, and
data tiers. This way we can drop a complete module into other web applications. Each chapter that deals with a
specific module will cover the classes for that module.

 Error Handling and Fault Tolerance
 If we have been following good software development practices, then our code has received extensive testing before
we release it to the public or to production. Typically, each individual component receives unit testing that is outlined
in the project plan, and then each component is integration-tested in the larger application as a whole. However, no
matter how good our testing plans are, we can't account for all possible unexpected occurrences. We can't program
to expect hardware failures or other failures caused by effects that weren't part of our testing lab scenario. In these
cases, we rely on the last resort: exception handling.

 Many websites do not handle exceptions well. This results in users seeing low-level error messages, including the line
number within the ASP page that caused the exception. This kind of thing is highly unprofessional, and any time you
see it, you know that someone hasn't done their homework or enough testing.

 If something unexpected happens, then the application should gracefully inform the user. It might also give them a
phone number or e-mail address to send information about the problem. Windows XP, Office XP, and Visual Studio
.NET all have a feature built in that allows users to transmit debug information directly to Microsoft. While we can't all
aspire to this level of fault tolerance, we should take a hint from this and strive for the best we can get out of our web
application.

 When an error does occur, the site should store as much information as it can about the error and inform the user that
something went wrong. This way the user is told politely that an error occurred, without seeing any technical detail.
Meanwhile, the administrators get detailed information that helps to track down and repair the failure.

 In the Solution section we're going to start coding. As part of that, we will look at what kind of information we can
store and how we can store it. We'll also look at how to provide an environment where programmers can track down
bugs, even in a live system that can't be brought down for debugging.

 Deployment and Maintenance
 You might be wondering why you need to consider deployment at the design stage. Isn't deploying the application
done after you've completed all of the code? Well, yes and no. The physical deployment of the application does
indeed take place when an iteration of the development phase has completed.

 However, the choice of development design can radically impact the options available when building the application
itself. There are many things to consider when designing your deployment strategy, such as the target platform,
hardware requirements, software prerequisites (such as requiring the .NET Framework or XML v3.0 on the
destination machine), network deployment, and much, much more. We won't cover all the possible things you can
consider when designing a deployment strategy here, as that could fill a book of its own.

 For our deployment design, we decided to keep it as simple as possible. We are going to allow our application to be
deployed via the Windows Installer to a programmer's machine. In addition, you can use XCopy deployment and
some supplied database scripts to deploy the system to a third party hosting company. We'll discuss all this and
actually show you the solution to our deployment design at the end of the book, in Chapter 11, once we've developed
all of the modules.

 User Interface Design
 We won't go into too much detail here, as we're just building the non-visible core foundation of code for this chapter.
However, in the next chapter we'll take a look at some in-depth design of user interface elements and we'll cover
some ideas for designing reusable interface controls. For now, it's sufficient to include in our design the requirement
that our user interface should be professional and easy to navigate, but not so professional that our site looks like an
accounting application.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 2 - Foundations

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 Now that the foundation has been designed, we can start writing some code. To recap, a few of the things that we
covered in our design were:

 Naming and coding guidelines - we set out the conventions to be used throughout the project

 Programming language choice - we chose C# as our development language

 Folder structure - we designed a namespace hierarchy and a corresponding folder structure for all the
modules of the website

 Designing the database - we chose SQL Server as our core database

 Building the data services tier and the business services tier - we talked about the importance of n-tier design
and architecture, and about the usefulness of creating a base class for each tier

 This next section will cover the code and implementation of each tier's base class, as well as a custom exception class
that we're going to build.

 Of course, the implementation we create here might have unforeseen limitations that we will discover later. We might
find ourselves changing these classes throughout the development. At this point, we have to continue with what we
already know, and build what's best at this point.

 To create the solution for this chapter, we're going to create a new C# Class Library project in Visual Studio .NET,
and name it Core. We're going to make some minor changes to its properties and to the AssemblyInfo.cs file.
Right-click the project and choose Properties. Then make sure that the Assembly Name property is set to
Wrox.WebModules.Core, and the Default Namespace property is set to Wrox.WebModules.

 The next thing we need to do is make sure that our project is strong-named. Since this is the first project in the
entire web application, we get to make our SNK file. The SNK file is a file that contains a digital signature encrypted
using the RSA algorithm. In order to make sure that all of our assemblies appear as though they're coming from the
same vendor, they all need to have the same public key. The only way to accomplish this is to compile each of the
assemblies against the same SNK file.

 To create our digital signature file, we go to the command prompt and type:

 SN-k ThePhile.SNK

 Note that you won't be able to use SN from any directory unless you've launched the Visual Studio .NET
command prompt, which pre-configures your path statement to allow you access to all of the useful .NET
command-line tools.

 The above command creates a new digital signature file. Copy this file to some safe, common location on your hard
drive. All of our samples use \Wrox\Keys\ThePhile.SNK as the location. This way we don't have to worry about the
drive letter, only that the file is in the \Wrox\Keys directory on the same physical drive as the project.

 We can now modify our Assembly Info.cs file to include a full version number and a reference to the digital signature
file, which is required in order to create a strongly named assembly. AssemblyInfo.cs should contain the following (the
comments have been removed to save space, but otherwise this is the complete file):

 [assembly: AssemblyTitle("ThePhile.COM Core")]
 [assembly: AssemblyDescription("Foundation Code for ThePhile.COM")]
 [assembly: AssemblyConfiguration(" ")]
 [assembly: AssemblyCompany("Wrox Press Ltd")]
 [assembly: AssemblyProduct("ThePhile.COM")]
 [assembly: AssemblyCopyright("(C) 2001 Wrox Press Ltd")]
 [assembly: AssemblyTrademark("")]
 [assembly: AssemblyCulture("")]
 [assembly: AssemblyVersion("1.0.0.0")]
 [assembly: AssemblyDelaySign(false)]
 [assembly: AssemblyKeyFile(@"\Wrox\Keys\ThePhile.snk")]
 [assembly: AssemblyKeyName("")]

 As well as the usual description and a title, there is an entry for company, product, and copyright. This is all just
additional information that can be useful, but non-essential. The key components of the strong name are Culture,
Version, and KeyFile. Our assembly isn't language-specific, so we've left the culture blank. An assembly built for the
"en-us" culture is not considered the same as an identically versioned assembly built for the "en-uk" culture. These
two assemblies would have different strong names, and components that reference the assemblies will be able to tell
the difference between the two.

 Each of the next three classes we're going to cover will be in the Wrox.WebModules.Core.DLL assembly that we
just set up.

 The DbObject Class
 The first set of code we're going to produce is a base class for the data services tier. We've already explored the
benefits of using a base class - it enables us to rapidly and easily change an aspect of behavior that is common to all
data services classes, without having to change the code in every single class.

 For our class we are going to provide a couple of support functions, as well as automatic instantiation and
configuration of the SqlConnection object. One of the things we have already mentioned in our design is a preference
for not using in-line SQL, and using stored procedures instead. In addition to speed improvements, the use of stored
procedures allows us to make changes to the SQL and low-level data access code without having to modify any
classes in our core component library. In a situation where in-line SQL queries are not being used, it becomes
apparent that there are two activities that most data services classes will need to do:

 Execute a stored procedure and obtain a number - for inserting, updating, or deleting records. The number
usually represents the number of records modified.

 Execute a stored procedure and obtain a SqlDataReader - for selecting records. This kind of stored
procedure is typically executed with the ExecuteReader method of a SqlCommand instance. We're going to
use a SqlDataReader for our core functions because our data needs are simple. We'll never be returning more
than one related table from any given method, so we can make do with the faster, leaner DataReader object.

 To create this class, remove the default one created with the Class Library project, and add a new one called
DbObject. Let's take a look at the code for our DbObject base class. Inline comments have been removed to save
space. We start by declaring it as an abstract class, which means that this class can act as a basis for other classes,
but that we cannot instantiate it:

 using System;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.Data
 {
 public abstract class DbObject
 {

 In the code below, we create two member variables. The first is to hold our SQL connection. It is protected, which
means that only those classes deriving from this class can access this variable. If a class inherits from this one, it may
provide a method that requires the Connection. The connection string is completely hidden from child classes,
preventing them from too closely relying on any given underlying implementation:

 protected SqlConnection Connection;
 private string connectionString;

 Next we see our constructor. This constructor takes a connection string and instantiates a new connection based on
that string. We don't open the connection at this point. Leaving a connection open for longer than required for the
operation is wasteful and could slow down the application:

 public DbObject(string newConnectionString)
 {
 connectionString = newConnectionString;
 Connection = new SqlConnection(connectionString);
 }
 /// <summary>
 /// Protected property that exposes the connection string
 /// to inheriting classes. Read-Only.
 /// </summary>
 protected string ConnectionString
 {
 get
 {
 return connectionString;
 }
 }

 This next routine, BuildIntCommand, automates the instantiation of a SqlCommand object. It does this by taking the
name of the stored procedure and an array of IDataParameter objects. From there, it builds a SQL command using
those parameters. Then, once those parameters have been added, it creates a new parameter to store the numeric
return value of the stored procedure. The method returns the new command after it has been built:

 private SqlCommand BuildIntCoiranand(string storedProcName,
 IDataParameter[] parameters)
 {
 SqlCommand command = BuildQueryCommand(storedProcName, parameters);

 command.Parameters.Add(new SqlParameter ("ReturnValue",
 SqlDbType.Int, 4, /* Size */
 ParameterDirection.ReturnValue, false, /* is nullable */
 0, /* byte precision */
 0, /* byte scale */
 string.Empty, DataRowVersion.Default, null));

 return command;
 }

 The above method calls BuildQueryCommand to create a new SQL command object. This new command will
typically be used for returning the results of SELECT statements in stored procedures to either a DataSet or a
DataReader. The following is the listing for the BuildQueryCommand method:

 private SqlCommand BuildQueryCommand(string storedProcName,
 IDataParameter[] parameters)
 {
 SqlCommand command =
 new SqlCommand(storedProcName, Connection);
 command.CommandType = CommandType.StoredProcedure;

 foreach (SqlParameter parameter in parameters)
 {
 command.Parameters.Add(parameter);
 }

 return command;

 }

 The method below, RunProcedure, takes as arguments the name of the stored procedure to execute, an array of
parameters, and an out integer parameter. The out parameter will contain the number of rows affected by the stored
procedure after the method completes. This method helps execute Insert, Update, or Delete queries, and returns a
numeric condition code that indicates success or some degree of failure. This method does not interpret these codes,
so the class inheriting from DbObject can use any enumerations for its status codes and not interfere with any other
classes. Calling BuildIntCommand will enable us to do this, as we've just seen. Then, the ExecuteNonQuery method
is invoked, which returns the number of rows affected by the stored procedure. Finally, the method returns the value
in the ReturnValue parameter (we saw that this parameter is added automatically by the BuildIntCommand method).

 protected int RunProcedure(string storedProcName,
 IDataParameter[] parameters,
 out int rowsAffected)
 {
 int result;
 Connection.Open();
 SqlCommand command = BuildIntCommand(storedProcName, parameters);
 rowsAffected = command.ExecuteNonQuery();
 result = (int)command.Parameters["ReturnValue"].Value;
 Connection.Close();

 return result;
 }

 The next code snippet contains an overload of the RunProcedure method. This overload is responsible for creating a
SQL command (using BuildQueryCommand), executing it, and placing the results of the executed stored procedure
into a SqlDataReader. This method will be called by inheriting classes that need fast, high-performance, forward-only
access to data:

 protected SqlDataReader RunProcedure(string storedProcName,
 IDataParameter[] parameters)
 {
 SqlDataReader returnReader;
 Connection.Open();
 SqlCorranand command = BuildQueryCommand(storedProcName, parameters);
 command.CommandType = CommandType.StoredProcedure;

 returnReader = command.ExecuteReader(CommandBehavior.CloseConnection);
 return returnReader;
 }

 The next overload of the RunProcedure method (shown below) takes the usual arguments of the name of the stored
procedure and the IDataParameter array. However, this one also takes the name of a table as an argument. This
method runs the stored procedure, obtains the result set, and then stores that result set in a newly instantiated
DataSet, in a table with the name indicated by the tableName parameter. A DataSet provides a read-write cache of
data in a database, useful for more complex data manipulation. Here is the code:

 protected DataSet RunProcedure(string storedProcName,
 IDataParameter [] parameters,
 string tableName)
 {
 DataSet dataSet = new DataSet();
 Connection.Open();
 SqlDataAdapter sqlDA = new SqlDataAdapter();
 sqlDA.SelectCommand = BuildQueryCommand(storedProcName, parameters);
 sqlDA.Fill(dataSet, tableName);
 Connection.Close();
 return dataSet;
 }

 The fourth and final RunProcedure overload (shown on the following page) is very similar. However, in this case the
code assumes that the DataSet has already been created, and simply adds the result set to a table within the
previously existing DataSet. This allows for incredible flexibility, because an object can fill one table from one source
and another table from another source. Relationships between the different sources can then be established using the
DataSet object's Relations collection. Here is the code:

 protected void RunProcedure(string storedProcName,
 IDataParameter[] parameters,
 DataSet dataSet,
 string tableName)
 {
 Connection.Open();
 SqlDataAdapter sqlDA = new SqlDataAdapter();
 sqlDA.SelectCommand = BuildIntCommand(storedProcName, parameters);
 sqlDA.Fill(dataSet, tableName);
 Connection.Close ();
 }
 }
 }

 So that's the code for our DbObject abstract base class. One thing you might have noticed is that for our data
services base class we didn't do anything with MTS or COM+. This was intentional. One of the design goals of
ThePhile.com is to make it easy to deploy the site onto one of the many third party hosting services that offer .NET
and SQL Server support. If the site depended on COM+ services it would be harder to deploy on those systems.
Most third party .NET hosting companies don't provide any ability to access COM+, so we decided to not
implement it in our solution in order to keep things simple. However, in your own solution you might want to upgrade
to a COM+ solution to gain object pooling, JIT activation, and transaction support.

 If we did want to convert this base class from what we have now into a ServicedComponent class (the base class for
COM+/MTS components), it wouldn't take much effort. The next section will look at how we would do that.

 Converting to a ServicedComponent

 To convert our base class to a COM+/MTS ServicedComponent, we would take the following steps:

 Change the class to inherit from ServicedComponent (found in System.EnterpriseServices)

 Implement the following methods: Construct, Activate, Deactivate

 Remove all code from the standard constructor (DbObject ())

 Let's look at the shell of a COM+ base class called ServicedDbObject that inherits from ServicedComponent:

 using System;
 using System.Data;
 using System.Data.SqlClient;
 using System.EnterpriseServices;

 namespace Wrox.WebModules.Data
 {
 public abstract class ServicedDbObject : ServicedComponent
 {
 protected SqlConnection Connection;
 private string connectionString;
 protected string ConnectionString
 {
 get
 {
 return ConnectionString;
 }
 }

 // place all of the helper methods from DbObject here.

 At this point in the code, we can simply copy and paste the helper methods from the DbObject class into this class,
and everything will still work. You can see below that rather than using the constructor to obtain the connection string,
we're using a COM+ concept called object construction. Essentially, this just means that when an object is
instantiated by COM+, it can be given a string construction argument. In our case, this string will be the connection
string. We'll see how we can use this shortly:

 protected override void Construct(string constructString)
 {
 connectionString = constructString;
 }

 protected override void Activate()
 {
 Connection = new SqlConnection(ConnectionString);
 }

 protected override void Deactivate()
 {
 Connection = null;
 }
 }
 }

 So, the only other difference between the two classes is that classes inheriting from ServicedDbObject need a couple
of extra code attributes in order to function properly. Let's take a look at just the very top of a class definition that
inherits from ServicedDbObject:

 namespace Wrox.WebModules.ServicedSample
 {
 using System;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.SqlClient;
 using System.Data.SqlTypes;

 [Transaction(TransactionOption.Supported)]
 [ConstructionEnabled(Default = "Data Source=localhost; Initial
 Catalog=ThePhile; User id=ThePhile;
 Password=philerl;")]
 sealed public class SampleCOMPlusObject : ServicedDbObject
 {

 The ConstructionEnabled attribute is essential for the ServicedDbObject to be able to configure its connection. The
Transaction attribute is used to indicate what level of transactional support the particular component wants or needs.
We won't need to worry about these attributes for the rest of the code in the book, however. We could spend
another chapter or so going into all of the other considerations when programming for COM+ or MTS, but that's
beyond the scope of this book. The rest of this book will use DbObject. If you feel comfortable with your COM+
skills, you can simply change your own copy of the code to use ServicedDbObject and supply the appropriate
attributes.

 The BizObject Class
 Right now, we're not sure what kind of common functionality we want to supply to the business services tier, so
we're essentially just going to create an empty shell of a base class, called BizObject. It is pretty straightforward at
this point. This base class is, of course, abstract and public, allowing any class from any assembly to inherit from it.

 If we were worried about others potentially abusing our code, then we could place code attributes into our code that
would restrict inheritance of this class to only those assemblies that have a certain public key, and so come from a
specific vendor. This would restrict inheritance of our unsealed classes to classes we write ourselves. Techniques like
this are covered in other books such as Professional .NET Framework (ISBN 1-861005-56-3) and Professional
ADO.NET (ISBN 1-861005-27-X).

 Here's the code for the BizObject class:

 using System;

 namespace Wrox.WebModules.Business
 {
 /// <summary>
 /// The class from which all classes in the business tier inherit.
 /// </summary>
 public class BizObject
 {
 public BizObject()
 { }
 }
 }

 The AppException Class
 Many times, in many different programming languages, error-handling routines have become enormous, cumbersome,
and difficult to maintain. Even in modern languages that support the throwing of exceptions, one problem remains:
how do we make sure that there is a persistent record of every exception the system throws? This is an absolute
necessity for a website on the Internet where the users may not see the problem (it could be something internal that
causes subtle failures, such as rounding problems or bad numbers). Even if the user sees the problem, most will either
log off the website angry, or hit the back button and move on to some other feature of the website. We cannot rely on
users to detect our errors.

 To get around this, we will create our own custom derivative of System.ApplicationException. This custom exception
class will place an entry in the NT/2000 Application Event Log every single time an exception is thrown. This way,
the website administrator and the programmers can find out the details and time of every error that occurs.

 Let's take a look at the code for our custom exception class, AppException:

 using System;
 using System.Diagnostics;

 namespace Wrox.WebModules
 {
 /// <summary>
 /// Default exception to be thrown by the website, it will
 /// automatically log the contents of the exception to the
 /// Windows NT/2000 Application Event Log.
 /// </summary>
 public class AppException: System.ApplicationException
 {

 public AppException()
 {
 LogEvent("An unexpected error occurred.");
 }

 public AppException(string message)
 {
 LogEvent(message);
 }

 In this next overload of the constructor, if an inner (or nested) exception is passed to this exception (this is often
called "bubbling", where exceptions throw exceptions with themselves as the inner exception, allowing the exception
to "bubble" all the way up to an outer error-handler) then the function will actually log the message of the inner
exception as well as the main exception:

 public AppException(string message, Exception innerException)
 {
 LogEvent(message);

 if (innerException != null)
 {
 LogEvent(innerException.Message);
 }
 }

 This next method is the one that actually logs the information to the event log. If there is no event log source called
ThePhile.com then it will create one. After that, it will proceed to write the exception information to the event log with
an entry type of "Error", which appears as a red exclamation point in the Event Viewer on NT/2000/XP.

 If you intend to deploy your own version of this code to a web hosting company, you might not have enough
permission or access to write directly to the event logs. In this case, you might want to consider rewriting this
method to log to a text file somewhere in your private storage area.

 private void LogEvent(string message)
 {
 if (!EventLog.SourceExists("ThePhile.COM"))
 {
 EventLog.CreateEventSource("ThePhile.COM", "Application");
 }

 EventLog.WriteEntry("ThePhile.COM", message,
 EventLogEntryType.Error);

 }
 }
 }

 This custom exception is useful in many respects. The first and foremost is that it allows us to log as an event every
exception thrown using this class. The other is that it allows other code throughout our application to derive its own
custom exceptions from this class - allowing the other modules to inherit the ability to automatically use the event log,
as well as perform other custom tasks that those modules might need.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 2 - Foundations

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 This chapter has introduced the problem of coming up with the core of the website. After creating an initial design for
the website, we went on to create a design for the foundation of our website. This included designing a namespace
layout, a preliminary directory tree, and even specifying some coding standards and naming conventions. Then we
discussed some of the core concepts of building a data services tier and a business logic tier, and the benefits of
splitting functionality into three or more tiers. Finally, we discussed the design concept behind robust error handling
and why it is so important to the success of a production website.

 After designing the solution to our problem, we went ahead and got into the code, producing the assembly
Wrox.WebModules.Core.DLL, which can be used by all facets of our website as the initial foundation from which
much of the rest of our classes will be built. We even included an alternative DbObject, the ServicedDbObject, in
case we want to make some data services components hosted by COM+ services.

 Hopefully you've gained some of the following knowledge after reading this chapter:

 The benefits of a strong and cohesive namespace hierarchy

 The benefits of separating business logic from pure data services

 The benefits and details of robust error handling in a web application

 You should also now know how to implement systems that have these benefits.

 The classes we developed for the core of our solution can be compiled into the Core DLL at this point. However, as
all we've done so far is build the core, we won't actually be putting this code to use until the next chapter, where we
will be making use of the foundation code to help build our user interface elements.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 3: Foundations for Style
and Navigation
 Overview
 Now that we have spent some time discussing many of the issues involved in creating a
web application, and have begun building our core foundation, we can move on to
creating the foundation of our front end, or user interface (UI). In this chapter we will
first identify the initial problem we need to solve relating to our front end. Then we will
move on to designing a solution to this problem. Finally, we'll cover the actual code and
implementation of this solution.

 This chapter will give you a good look at some of the tasks that are typically considered
part of the foundation-building, or setup, phase of website development. These include:

 Identifying and creating reusable interface components

 The purpose and implementation of a 'page inheritance hierarchy'

 The purpose, benefits, and implementation of cascading stylesheets

 Using XML and XSLT to create content that is quick and easy to maintain

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 At some point we will need a front end (user interface) for our website. It would be fairly easy (especially for those
programmers who've already spent a lot of time building classic ASP pages) to just open up a favorite editor and start
cranking out page after page of content. I'm sure many of us have been in this situation before, which is why many of
us remember the pain and suffering involved when we were told to change the layout, the style, or some other
fundamental UI feature after we'd already built dozens of ASP pages from scratch. There's nothing worse than having
to go back and rewrite ASP pages because of a color change or something else that should be equally trivial.

 To avoid this kind of maintenance nightmare we want the UI to be simple to maintain and modify. In order to achieve
this we should build the UI on a solid foundation. Without a solid foundation for the user interface, changes are
incredibly difficult and painstaking to make, and maintenance of the front end can be a laborious task.

 We also want it to be a good UI in terms of user experience. Following good usability and user interface design
principles is absolutely essential to the success of your website. If the users are annoyed with the display on their
screen when they see your site, they won't come back. Likewise, if they find it too difficult to get what they want from
your site because it doesn't flow properly, isn't intuitive, or doesn't have clearly labeled functionality, they will also
avoid your site like the plague. One thing to always keep in mind is that, no matter how good your site is, you will
always have competition on the Internet.

 There are many books on the market today that cover topics such as designing your website to meet the
needs of your users, including User-Centered Web Design by John Cato (ISBN 0-201398-60-5). Something
else you might want to take into consideration are users with accessibility needs who might have difficulty
navigating a website that doesn't make certain interfaces explicitly available to them.

 The Problem Statement and Requirements
 Our problem has two different facets. The first is, of course, to provide a solid, functional foundation on which to
build the rest of our user interface. This is actually the problem statement. The other facet, which we cannot ignore, is
the requirement that our design for our UI fundamentals should strive toward the following common goals:

 Achieve maximum ease-of-use through well-planned UI elements and efficient use of web page 'real estate'.
Real estate is the available space on a web page in which you can display meaningful information to a user.
Examples of poor use of real estate are pages in which important information occurs in such a position as to
force the user to scroll down (or off to the side) in order to see it.

 Provide maximum flexibility by allowing configuration changes of UI elements to take place with minimal or
zero recompilation of code.

 Keeping in mind that a site's look and feel is almost as important as its functionality, we want to make the
website attractive and intuitive to our users.

 So far we've created a design and initial implementation for our core middle-tier foundation. The problem that we are
attempting to solve in this chapter is to build a solid foundation for our front end too. There are several things we can
do to make our front end extremely flexible, to avoid maintenance headaches and to improve usability. In this chapter
we'll cover some of the fairly simple things we can do early on in our development process to make maintenance and
modification of our application easier.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 Now that we've determined that our problem is the lack of a solid UI foundation, we can go about designing the
basics of our user interface, or presentation layer. Anyone with any experience of a full software development life
cycle knows that no matter how much effort you put into an initial design, it probably won't cover every scenario. This
is why many managers opt for the Unified Process, a very common and popular iterative process that makes
allowances for changes in specification and design in the middle of a development project. Other managers, especially
those producing Microsoft-based solutions, prefer the Microsoft Solutions Framework (MSF).

 You can read more about the Unified Process in the book The Unified Software Development Process by
Jacobson, Booch, and Rumbaugh (ISBN 0-201571-69-2). In addition, you can find more information about the
Microsoft Solutions Framework at http://www.microsoft.com/msf.

 While there are management processes that allow us to make room for changes in our design, specification, and
requirements throughout the life cycle of our project, there are some things we can do in terms of code and
infrastructure to make the development of those changes easier as well. Some of the common things we can do to
make our website code more agile are as follows:

 Use cascading stylesheets to 'classify' different types of UI elements, such as headers, footers, tables used for
certain purposes, background colors, and font styles.

 Use an object inheritance hierarchy in our component model to encapsulate functionality, properties, and
visual traits common to related groups of pages and UI elements.

 Use reusable controls (server and user) in order to encapsulate common or frequently displayed UI elements
that may occur on many or all pages, and to provide a code-enforced uniform look and feel.

 We mentioned in the Problem section the desire to create an attractive UI. If you build a website that provides
amazing functionality, but the interface is dull, drab, and uninspired, then you're probably not going to be as successful
as a competitor who provides fewer services with a nicer-looking website. It is a sad, unfortunate fact. The other
thing to keep in mind is that the development process is iterative, and you'll probably go through many iterations of
your user interface design before any customer ever sees your website, so don't grow too attached to any one
particular idea.

 Typically, one of the first steps people take when designing the UI of a website is to create mock-ups or samples of
what they think the website might look like during a typical user session. Remember, the purpose here is not to
provide any functionality, just a foundation on which to build the UI. We did the same thing when we built this
website.

 Being a programmer who learned HTML using Emacs on a Unix machine, I still prefer to do my HTML
design in Notepad, and so the mock-ups we used to create samples of our user interface were done in simple,
static HTML designed in Notepad. However, a lot of people prefer using WYSIWYG editors like FrontPage.

 The following is a screenshot of one of the sample mockups that were used in building the 'look and feel' of the
website. The black and white format doesn't do it justice, but you should be able to gain some useful information from
it:

 We can see that our page will include various types of content (for example news and opinion polls) and that we'd
like to have a welcoming header to make the user feel comfortable with the site. Now that we have some ideas about
what we want our website to look like, we can move on to actually working on some of the other issues relating to
designing our core navigation and UI for the site.

 Cascading Stylesheets
 We cannot stress enough the importance of using cascading stylesheets (CSS). These provide a method by which
the site designers can abstract a set of display properties and information. This allows for commonly displayed types
of information to inherit certain visual display traits.

 For example, if you have a website where you always want to display a product in a table cell, and you want that cell
to have a blue background, you could either do it all by hand (and make that cell blue every time you display a
product), or you can use a stylesheet. To truly illustrate the benefit of a stylesheet, we will show one in action and then
compare it to the 'old' way of doing things. This is, of course, not a chapter intended on teaching you the functionality
of stylesheets, so we'll keep the example brief (there is a detailed example of using CSS in the solution section of this
chapter). You can judge for yourself which method you'd like to use.

 First, here's a fragment of HTML with the display properties embedded:

 <td style="border:lpx; border-style:solid; border-color:#000000;
 border-top:0px; border-left:0px; border-right:0px;"
 bgcolor="#000088">

 <i>This is a Product</i>
 </td>

 Looks pretty ugly, doesn't it? Now imagine having to type that in every single time you want to display a product,
anywhere on your website. Even worse, think about what you'd have to do if your boss came by and said "Actually,
how about using a yellow background for all the product names?"

 Let's now look at a section of HTML that makes use of a class defined in a stylesheet. All the graphical and display
properties that belong to the Product_Cell class are stored somewhere else (typically in a .css file).

 <td class="Product_Cell">
 This is a Product
 </td>

 The CSS file contains a definition for the Product_Cell style, so we don't have to repeat the details every time we
want to use this style, and changes to the style properties need only be made once. Seems pretty straightforward,
doesn't it?

 So, in order to design our stylesheets, what we need to do is attempt to produce a list of common display types, or
classes, that we know we're going to be displaying. We can implement the code for the stylesheet during our actual
development phase. The nice thing about the stylesheet functionality is that it's easy to go back later and add new
classes.

 After looking at our mockup layout for the home page, we can see that we will need quite a few display classes:

 Site Header - the set of display properties associated with the site header. This applies to the top of the page
in our sample home page layout.

 Poll Header - the style class corresponding to the header information for the poll display. In our sample
layout, this is the cell and text within it reading "Opinion Poll".

 Poll (Generic) - the style class corresponding to any unclassified UI element that belongs in the display of an
opinion poll. This would include the results of the poll and list of questions.

 Book News Header - the style class corresponding to the header of the "Book News" section of the display.
In our layout this is a bordered cell with a background and bold, white text.

 Book News (Generic) - the style class corresponding to any unclassified UI element that belongs in the
display of book news.

 Book News Item (Left Side, Date Field) - the style class corresponding to the items that appear on the left
side of the first, third, fifth, etc., row in the display of book news items. In our sample layout this is the text
representing the date of the news item for these rows.

 Book News Item (Right Side, Description Field) - same as above, only this style class applies to the items on
the right side of the row, in other words the text representing the news item.

 Alternating Book News Item (Left Side, Date Field) - same as the Book News Item style class, only this
item represents the second, fourth, sixth, etc., rows in the display.

 Alternating Book News Item (Right Side, Description Field) - same as the above, with the exception that this
style class covers the text displayed on the right side of the news item row display.

 DVD News Header - the style class that represents the header of the DVD News display section.

 DVD News (Generic) - the style class that represents any unclassified UI element that belongs in the display
of DVD News.

 DVD News Item (Left Side) - just like the style class for Book News Item, only this applies to DVD News.

 DVD News Item (Right Side) - same as above, only this applies to the right side of the text displayed in the
news item row.

 Alternating DVD News Item (Left Side) - just like the style class for Alternating Book News Item, only this
applies to DVD News.

 Alternating DVD News Item (Right Side) - same as above, only this applies to the right side of the text
displayed in the news item row.

 Site Footer - the style class that applies to any UI element in the site footer.

 This list of style classes that we plan on implementing for our website should be sufficient for now. Keep in mind that
we will probably discover the need for more UI elements as our development and design progresses and we uncover
new and unexpected common UI display classes or types, such as styles for our navigation menus, etc. In more
complex implementations of CSS, you will see styles cascade, which means that one style inherits visual traits from
another style, and that style might inherit traits from another style. For example, you might have a style called "Error",
which inherits traits from the "Warning" style, which inherits traits from the "Red" font style, etc.

 XSLT
 Another way in which we will serve up dynamic content is through the use of XSLT (Extensible Stylesheet
Language Transformations). You might be wondering, then, what is the difference between a cascading stylesheet
and XSLT? CSS is designed to, at runtime (or display-time), dynamically configure the visual traits of HTML
elements displayed in a browser. XSLT, on the other hand, is far more versatile and has many more uses. One of its
many uses is to take raw XML and convert that XML into static HTML elements.

 The reason why this is important is that instead of using XSLT to convert XML into an incredibly lengthy set of
HTML elements, including font tags, colors, and tables, we can instead use it to convert XML into HTML that utilizes
CSS. For example, if we have the following code:

 <Product Name="A bigger better ball of blue batter" ID="12"/>

 XSLT can be used to convert it into the following HTML that utilizes stylesheets:

 <TD>A bigger better ball of blue
 batter</TD>

 So, as you can see, XSLT and CSS are both used in helping render user interfaces, but they contribute to the user
interface end result in entirely different ways. These can be combined to create an incredibly dynamic and powerful
user interface engine. One enormous benefit of using both XSLT and CSS in the generation of UI elements is that, in
many cases, you won't have to recompile a single line of code to change any of the display options. You can simply
modify the XSLT and CSS files to tweak the user interface as you see fit.

 The Page Base Class
 In classic ASP, when programmers wanted to indicate that certain pages had functionality in common, they would
simply make all of those ASP pages perform a server-side include of the file that contained the common functionality
(using < ! --#include ... -->).

 Now that we are developing with the .NET Framework and ASP.NET, we can incorporate the full power of a true
class inheritance hierarchy in our ASP.NET web pages. If you are using the code-behind functionality of ASP.NET
(which is the default if you're using Visual Studio .NET to build your pages), then you no doubt have noticed that all
of these code-behind pages inherit from a single class, System.Web.UI.Page. This class provides the basic
functionality necessary to drive the most generic ASP.NET web page.

 What we'd like to do is create our own class, which inherits from System.Web.UI.Page, and which will provide all of
our web pages with a common set of functionality related to our application (ThePhile). This is more of a pre-emptive
measure than anything else. At the moment, we can't think of too much functionality that all of our pages are going to
require, but we know that the moment we start developing without this concept of a page base class, we'll find
something and be unprepared for it. One thing that we expect we will need this page base class for is some common
functionality involving user authentication, which we'll be discussing later in the book. We would rather be prepared,
with a nearly empty base class, than unprepared, staring at a mountain of rewrites that we need in order to implement
common functionality.

 Our page class (to start with) will do two things:

 Contain a method that is called before the standard Page_Load event, allowing us to add functionality to
every single page if we need to, simply by modifying this method.

 Provide us with a base on which we can add expanded functionality common to all pages, such as identifying
and authenticating users.

 A Reusable Navigation Control
 My hat goes off to any of you who have succeeded in (or even attempted) implementations of a navigation control
using classic ASP include files. The maintenance of such a system is typically a nightmare and often results in
full-blown rewrites. The reason for this is that often such a system is implemented using server-side include files, which
can be extremely difficult to maintain, as every single page must include the file, and must properly call the function (or
set up an initial state) in order to properly display the navigation interface.

 However, no one can dispute the necessity for users to be able to navigate your website. We discussed in the first
chapter of this book that one goal of your website should be to foster the easiest possible communication between
user and website. This includes making it straightforward and free of frustration for the user to navigate through the
various features of your website.

 Just as the high-functionality website could potentially lose visitors with an unpleasant-looking UI, it could also lose
visitors if there is no easy and clear way to navigate to all of its features. Typically, websites provide some kind of
toolbar implementation, where a section of a page is dedicated to a navigator of some kind that displays a list of
links to the user. Our design calls for this as well.

 When designing our navigation control, we are faced with a few questions:

 Where is the data going to come from that feeds the control?

 How are we going to convert that data into HTML?

 How are we going to implement this control?

 Remembering that one of our goals is to make it so that we can reconfigure much of our website with little or no
recompilation; we decided to use an XML file on disk as the source for the navigation information. This XML file will
be placed in a directory somewhere and will contain a list of links that the user can click. The main factor that led us
to this decision was reliability. If the database goes down, we should still be able to present the user with a menu that
allows them to navigate to the support page where they can e-mail us and complain. If, however, our navigation
entries are stored entirely in the database, then we can't very well present a "Contact Us" link if our database is down.

 To spruce it up a bit and make the control a bit more flexible, we decided to include categories in our navigation
control to make links even easier to find on the control. Each of these categories will also have an icon that will be
displayed next to the category name. Having categories will give us more flexibility to organize more complex
navigation menus and allow us to create a nice user interface experience with the control.

 We will discuss the format of the XML file when we actually get into implementing this control. One other thing we
need to decide is how we're going to convert this XML into HTML. The first thing that comes to mind is to use an
XSL transformation, especially since we know that the classes provided with the .NET framework provide us with
this ability in an easy-to-use XslTransform class.

 As we did when we first started the design process, we can create a mockup, or a sample user interface, to
demonstrate what we'd like our navigation control to look like. Having this on hand when we implement the control
will make the coding easier and more straightforward. Here is a screenshot of this sample navigation control:

 This should give you a good overview of the general idea. We have two categories, with a font style that is obviously
different from that of the links themselves.

 Looking at the mockup, it's apparent that in order to make this navigation control as configurable as possible we
should create a stylesheet for it. This way, if we want to change the background color of the navigation control, we
can simply change the color in the CSS file and not have to worry about recompiling the control itself.

 We can identify the following style elements from the above sample navigation control:

 Main Table - the style class representing the table itself. This will be used to provide the thin black border
that surrounds the control.

 Header Cell - the style class representing the header. This is where the text 'ThePhile.COM' appears in the
sample.

 Category Cell - the style class representing the category cell. This is where each category is displayed in bold
and italics.

 Item Cell - the style class representing the cell for an individual item. This dictates the font and so on for an
individual navigation item.

 Item Link - the style class representing the link to an individual item. This dictates behaviors such as the color
of the link while the mouse is hovering over it, etc.

 Headers and Footers
 Two other extremely common user interface elements that we should provide for in our design are headers and
footers. Essentially, a header is some UI element that sits atop every (or nearly every) page served to the client. The
footer is a UI element that finishes off nearly every page served to the client. There are quite a few uses for these -
we'll discuss a couple of them here and go into more detail about expanding the functionality of the header later in the
book, such as in 7 on users and advertising.

 The most important purpose of the header is for branding. Branding is incredibly important to every website,
regardless of size, purpose, function, or form. Every page that the user sees should be in some way associated with
your brand, which could involve including the company name, logo, or some other identifying mark. If the user forgets
who is providing the web page they're currently viewing, then they probably won't remember where to go if they want
to come back to that site.

 Footers, on the other hand, traditionally have a far more utilitarian purpose. They are typically there to provide
copyright and trademark information, as well as a list of links that might not fit in anywhere else on the site. This might
include links to a list of available jobs, a tech support page, a contact or feedback page, and other miscellaneous
navigation items.

 Another purpose for the header that we'll talk about later in the book is for advertising. Advertising banners need to
be displayed in a prominent place so that users viewing the page will see them. This prominent place is typically right
at the top of the page above all other content.

 Our design is going to call for a header that displays our branding (logo), as well as a customized greeting that
displays a message to the user. This message will greet the user personally if they have logged in. In Chapter 5 we'll
expand this header so that it can provide a link to a login form if the user has not yet authenticated.

 There are also many other users for header controls. In our particular case, we're not going to make use of as many
as we could. For example, if your website provides a search engine that allows users to search through your content,
a quick-search type of control could be placed in the header to allow them quick access to your content database.
Also, e-commerce sites typically have links in the header to the shopping cart and wish-list features.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.microsoft.com/msf

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Error Handling
 When we were building the core foundation of our website, in Chapter 2, we built our own custom exception class,
AppException. We did this in order to have an exception class that we could throw that would guarantee the writing
of an event log entry. We can also extend this class later to add e-mail functionality to our custom errors without
tracking down every single line of code that throws an exception.

 As you've been working with ASP.NET you've probably seen the default exception screen. It isn't exactly pretty and
our application loses control at that point. What this means is that if we don't trap exceptions properly and they
display using ASP.NET's default mechanism, we can't guarantee that any of our code will execute. For this reason,
we want to make sure that we're exerting strict control over the exception handling system. For our design, we would
like to develop an error trapping system where we control the display of the error information to the users. We aren't
quite sure how we're going to accomplish this at this point, but we're certain that we need to implement some form of
error trapping system in the core of our presentation tier, especially if errors are going to 'bubble up' from the business
tier or data services tier at some point.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 This chapter has presented a problem - the need for creating a solid foundation for the presentation tier of our web
application. After identifying the problem, we went on to discuss the concerns involved in designing a solution to this
problem. Now that we have our basic design, and we have a good idea of what we plan on doing to create our
presentation-tier foundation, let's get into the code and create some user interface elements.

 We are going to be working with three projects, all of them within our main VS.NET Solution:

 ThePhile - the solution's default project, containing the site's homepage, and stylesheets. As we develop
modules, it will need to reference to the presentation layer of each module. For now it should reference Core,
Controls, and PhilePageBase.

 Controls - containing site-wide user controls: a header, footer, and navigator.

 PhilePageBase - containing a base class for all pages that we create for the site.

 Let's look first of all at our stylesheets.

 Styles
 As we discussed in the design section, we know that we're going to need a stylesheet that provides user interface
element templates, or classes, for our website. As we discussed earlier, we're going to have one main stylesheet to
aid in providing a consistent look and feel, and then we'll create another stylesheet for our navigator control. To
recap, the list of elements that we decided would need to be classified in our main stylesheet are as follows:

 Site Header, Poll Header, Poll (Generic), Book News Header, Book News (Generic), Book News Item (Left Side,
Date Field), Book News Item (Right Side, Description Field), Alternating Book News Item (Left Side, Date Field),
Alternating Book News Item (Right Side, Description Field), DVD News Header, DVD News (Generic), DVD
News Item (Left Side), DVD News Item (Right Side), Alternating DVD News Item (Left Side), Alternating DVD
News Item (Right Side), and Site Footer.

 The true benefit of these classes is that any time we decide to make a change to any of the user interface elements
(this includes when sales or marketing decide to make this change, too!) all we have to do is modify the entries in the
CSS file, and we don't have to worry about tracking down each and every page that displays the particular UI
element we're modifying.

 Here is the listing for our main stylesheet source file (ThePhile.css - this file should be created in the Styles directory
directly under the main application directory, in other words ThePhile\Styles\ThePhile.css). First we have the style
definition for <BODY> elements:

 BODY {
 background-color: #ffffff;
 font: x-small Verdana, Arial, sans-serif;
 font-size: 10;
 }

 In this next line, we're going to override the default behavior of the <A> element, making the link appear in dark blue
instead of whatever the user has set in their browser configuration (to give the site a consistent look and feel):

 A {
 color: darkblue;
 }

 By providing some style information for the <TD> element, we provide a default font and display size for all
information that appears in table cells. This allows us to avoid filling our HTML output with dozens of redundant
 elements.

 TD
 {
 font: x-small Verdana, Arial, sans-serif;
 font-size: 12;
 line-height: 17px;
 }

 In this next section, we're overriding the hover style of the A class.

 Anytime you work with a pre-defined class (A, TD, etc.) they come with their own default styles that are
defined by the user's browser options and the browser. The styles that begin A: are used to refine the styling
that will be applied to <A> elements when a certain event occurs, such as hovering over such an element with
a mouse pointer.

 By indicating just the standard blue color here, the effect will be a dark blue link that grows slightly brighter when the
mouse hovers over it. It should add a subtle and professional touch to our pages.

 A:hover {
 color: blue;
 }

 We then have further style definitions that we'll be using later on, including those identified in our design section. To
save space we won't show the entire code here, just the list of styles:

 .Button

 .TextBox

 .Site_Header

 .Poll_Header

 .Poll_General

 .Book_News_General

 .Book_News_Header
 .Book_News_Item_Left

 .Book_News_Item_Right

 .Book_News_AlternatingItem_Left

 .Book_News_AlternatingItem_Right

 .DVD_News_General

 .DVD_News_Header

 .DVD_News_Item_Left

 .DVD_News_Item_Right

 .DVD_News_AlternatingItem_Left

 .DVD_News_AlternatingItem_Right

 At this point we're pretty sure that we're going to need some administrative functionality added to this website. Each
of the modules that we develop in this book is going to have its own administration section, which we'll cover in those
modules' respective chapters. However, to provide a consistent look and feel we can include some stylistic templates
here that each individual administrative section can adhere to. Again, the full code for each definition is not listed here,
but can be seen in the ThePhile.css file in the code download. These are the styles we've included:

 .Admin_MenuTable

 .Admin_MenuRow

 A.Admin_MenuItem

 A.Admin_MenuItem:hover

 You will notice that some are sub-styles of a predefined style (for the A tag in this case) but others are style
groupings specific to our application, and don't have any foundation in existing HTML.

 We know we're going to have errors, so it won't hurt to provide a style that we can use for displaying them. At the
moment we're only using red, but at a later date we can always come back and add more style to this class if we want
the error messages to really stand out:

 .ErrorMessage {
 color: red;
 }

 The use of cascading stylesheets should be fairly straightforward. Essentially what we're doing is defining some
reusable display properties for all elements that belong to a certain class or category of display type, such as an
administrative menu item, or the header for the DVD news section, etc.

 Now let's look at the skeleton source for the stylesheet file we're going to use for our navigator control (found in
ThePhile\Styles\Navigator.css, relative to the root of the website). The full style definitions are not shown here, just
the list of styles corresponding to those we identified in the design section:

 .Navigator_Table

 .Navigator_Header_Cell

 .Navigator_Category_Cell

 .Navigator_Item_Cell

 A.Navigator_Item_Link

 A.Navigator_Item_Link:Hover

 The PhilePage Class
 As we mentioned in our design, we want a base class from which all pages on our website will either directly or
indirectly inherit. This will allow us to either restrict or provide functionality to the entire site with minimal code
changes. This kind of functionality might include providing some standard utility methods that we know will be called
by many pages, as well as possibly providing some base code for user identification and authentication. At the
moment we don't have anything in the base class, but once we set up its core structure, it should be fairly easy to add
site-wide functionality to any of our pages.

 To create this class, we add a class library project called PhilePageBase to our main solution. The default namespace
should be Wrox.ThePhile.Web, and the class file is called PhilePage.cs. Let's take a look at the source code for this
class:

 using System;
 using System.Web;
 using System.Web.UI;

 namespace Wrox.ThePhile.Web
 {
 public class PhilePage : System.Web.UI.Page
 {
 protected Wrox.ThePhile.Web.Controls.User.SiteHeader Header;

 public PhilePage()
 {
 }

 OnInit (shown below) is an important method. What we're doing with our override is calling the OnInit method in the
base class (System. Web.UI. Page) and then adding our custom page-load event handler (PhilePage_Load) to the
Load delegate holder:

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 this.Load += new System.EventHandler(this.PhilePage_Load);
 }

 private void PhilePage_Load(object sender, System.EventArgs e)
 {
 // TODO: Place any code that will take place BEFORE the Page_Load
 // event in the regular page, e.g. cache management, authentication
 // verification, etc.
 }
 }
 }

 So, once we have created our core PhilePage class, we can then create code-behind classes that inherit from this
class rather than the default System.Web.Page. The following is a quick example of what an empty page class might
look like that inherits from PhilePage:

 public class _Default : PhilePage
 {
 protected Wrox.ThePhile.Web.Controls.Server.Navigator MenuNav;

 private void Page_Load(object sender, System.EventArgs e)

 // Initialize Page Here.

 }

 This class also contains a protected member declaration for our navigator control, which we're going to discuss next.

 The Navigator Control
 The navigator control is one of those things that takes only a few lines of code, but is actually quite powerful. We're
going to use a server control rather than a user control, as this will allow us greater influence over the class. It will
completely encapsulate the implementation of the navigation system.

 To create our navigator, we first need to decide on a format for the XML file from which the information would be
loaded. We decided that a standard XML file was appropriate (as opposed to storing a DataSet serialization or
something similar), but the beauty of encapsulating the functionality into a control is that if we decide to use something
other than a file later on, then the change should be easy and straightforward.

 Let's take a look at a sample XML file that feeds our navigator. (You can find this file in
ThePhile\Config\NavMenu.xml relative to the web root).

 <?xml version="1.0"?>
 <NavMenu title="ThePhile.COM">
 <Category title="DVDphile" icon="/ThePhile/images/DVDlogo.gif">
 <MenuItem title="Link1" link="/ThePhile/DVD/default.aspx"/>
 </Category>
 <Category title="Bibliophile" icon="/ThePhile/images/Booklogo.gif">
 <MenuItem title="Link2" link="/ThePhile/Books/default.aspx"/>
 </Category>
 </NavMenu>

 We can see that the document element, <NavMenu>, has a single attribute, which is the title of the navigation menu.
Beneath that we have a list of categories, each indicated by a single <Category> node. And finally, at the lowest level
in the tree, each of these categories is comprised of <MenuItem> nodes. This form of maintaining the list of links for
the navigation control is not only incredibly versatile and flexible, but it allows site administrators to make a quick
change to a text file and affect possibly hundreds of pages throughout the site without recompiling anything.

 Now that we know what data we're going to have in our XML file we can decide how we're going to transform that
data into HTML. We discussed earlier that we wanted to use the XslTransform class to do our HTML transformation
for us. The first thing we need to do in that case is actually build an XSLT file.

 Further information on XSLT, including XPath, can be found in several Wrox books, including Professional
XML for .NET Developers (ISBN 1-861005-31-8) and XSLT Programmer's Reference 2nd edition (ISBN
1-861005-06-7).

 The following is the listing of the XSLT file (found in ThePhile\Transforms\NavMenu.xslt, again relative to the web
root). You might notice that instead of embedding all kinds of cell formatting, alignment, font sizing, and coloration
directly into our XSLT file, we are simply referencing the classes defined in the CSS file we just built. This gives us
many advantages. The first and foremost is that if we plan on changing the color scheme for our navigator, we don't
have to change our XSLT file as well. Another is that this file is much easier to read and interpret, because all you're
looking at is the HTML and associated CSS classes, and you don't have to sift through mountains of tags.

 <?xml version="1.0"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="/NavMenu">
 <table width="150" border="0" cellspacing="0" cellpadding="0"
 class="Navigator_Table">
 <tr>
 <td colspan="2" class="Navigator_Header_Cell">
 <xsl:value-of select="@title"/>
 </td>
 </tr>

 After we're done displaying the header for the navigator, we then use the <xsl:for-each> element to iterate through
each <Category> element that we find beneath the <NavMenu> element. This allows us to create a loop of
transformation that is performed on each category:

 <xsl:for-each select="Category">
 <!-- CATEGORY START -->
 <tr>
 <td width="40" align="center">

 Something that often confuses people is the use of the <xsl:attribute> element. This allows you to set the value of a
given attribute to a value obtained dynamically through an XPath select statement in the <xsl:value-of> element. Here,
we're using this to dynamically set the src attribute of the element. Our XPath expression is retrieving the value
of the icon attribute (@ signifies an attribute):

 <xsl:attribute name="src">
 <xsl:value-of select="@icon"/>
 </xsl:attribute>

 </td>
 <td width="110" class="Navigator_Category_Cell">
 <xsl:value-of select="@title"/>
 </td>
 </tr>

 While we're in the master loop (iterating through each <Category> element contained within the <NavMenu>
document element), we will then create a nested loop for each item belonging to each category. This allows us to
iterate through the list of items assigned to each category, giving us the ability to transform each item into its own set of
HTML elements:

 <xsl:for-each select="MenuItem">
 <!-- MENU ITEM START -->
 <tr>
 <td width="40">

 </td>
 <td width="110" class="Navigator_Item_Cell">

 <xsl:attribute name="href">
 <xsl:value-of select="@link"/>
 </xsl:attribute>
 <xsl:value-of select="@title"/>

 </td>
 </tr>
 <!-- MENU ITEM END -->
 </xsl:for-each>
 <!-- CATEGORY END -->
 </xsl:for-each>
 </table>
 </xsl:template>

 </xsl:stylesheet>

 One of the things that many people find they have trouble understanding about XSLT is that it must produce
well-formed XML. Even though the HTML 4.0 specification looks a lot like XML, it is far more lax in its
requirements. For instance, HTML allows you to simply supply a
 tag and be done with it. However, the XML
output from an XSLT transformation must produce a completed pair of tags, either by producing a
 and a </br>
or by producing a
. This is just something to keep in mind when building your XSLT files. As you can see in the
XSLT above, we are producing
 tags rather than
</br> tag pairs.

 Now that we've created not only a sample XML source file, but also a working XSLT transformation file, we're
ready to start writing the server control that we're going to use to make the transformation happen. To create this
server control, we first create a new project (C# Class Library, called Controls) that is part of our main solution that
already contains our Core project and our ThePhile web application project. We then set the default namespace of
this project to Wrox.ThePhile.Web.Controls, and set the output file to Wrox.ThePhile.Web.Controls (Visual Studio
.NET will append the DLL to the filename for you, so you don't have to type that). The code for the Navigator.cs
class begins as follows:

 using System;
 using System.Web;
 using System.Web.UI.HtmlControls;
 using System.Web.UI;
 using System.Xml;
 using System.Xml.XPath;
 using System.Xml.Xsl;

 namespace Wrox.ThePhile.Web.Controls.Server
 {

 In the above code, you'll notice that we're using System.Xml.XPath and System.Xml.Xsl, two namespaces that
provide us with basic XSLT functionality. All server controls inherit from System.Web.UI.Control, and our Navigator
class is no exception:

 public class Navigator: System.Web.UI.Control
 {
 string transformFilePath;
 string sourceFilePath;

 The TransformFile and SourceFile properties (shown below) are properties that we can assign within the navigator's
server-side ASP.NET tag itself when we place it on our web page. These properties indicate the XML source file
path (URL) and the XSLT transformation file path (also a URL).

 public string TransformFile
 {
 get
 {
 return transformFilePath;
 }
 set
 {
 transformFilePath = value;
 }
 }

 public string SourceFile
 {
 get
 {
 return sourceFilePath;
 }
 set
 {
 sourceFilePath = value;
)
 }

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 }

 This next method, Render, is where the actual work of the control takes place. Render is the basic method of a
System.Web.UI.Control that is responsible for producing the HTML that represents the control. For more
information on building ASP.NET controls, see the Wrox book Professional ASP.NET (ISBN 1-861004-88-5).

 The first thing we do is open the source XML file as an XPathDocument. The XPathDocument provides phenomenal
transformation performance, so we've chosen it over a standard XML document. We use Context.Server.MapPath
in order to translate the URL into a physical filename (on the local machine) that we can use for the XPathDocument
constructor. From there, we instantiate an XslTransform object and output the results of the transformation to the
HtmlTextWriter stream.

 protected override void Render(HtmlTextWriter writer)
 {
 XPathDocument xdoc = new XPathDocument(Context.Server.MapPath(
 sourceFilePath));
 XslTransform xslt = new XslTransform();
 xslt.Load(Context.Server.MapPath(transformFilePath));
 xslt.Transform(xdoc, null, writer);
 }
 }
 }

 In the above code, the most important line is the one in which the actual transformation takes place. We call the
Transform method of the XslTransform instance, supplying the XPath document and an HtmlTextWriter onto which
the results of the transformation will be placed:

 xslt.Transform(xdoc, null, writer);

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 This chapter began with an introduction to the problem: the need to provide a clear, consistent, solid, and scalable
foundation for the presentation tier of our web application. We then worked through the design of this foundation,
discussing stylesheets, subclassing the default page class, creating a navigation control, creating headers and footers,
and error handling within ASP.NET. After having read this chapter, you should now be familiar with the following
concepts:

 Identifying and creating reusable interface components by creating user and server controls.

 The purpose and implementation of a page inheritance hierarchy, using a page base class to save time and
promote consistency.

 How to dynamically render HTML using data styled with cascading stylesheets.

 How to use XSLT to transform XML into HTML and other forms of data, and the difference between
XSLT and CSS.

 In the next chapter we'll take the core foundation that we've been building and use it as a platform on which to build
our first module, a module that allows for administration and maintenance of the site's files remotely via the web.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 4 - Maintaining the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 4: Maintaining the Site
 Overview
 Any real website is generally made up of a lot of pages, images, XML/XSL files, stylesheets, databases, and other
types of document. It's very common to have many hundreds or even thousands of files for a single website. During
development of the site these files will usually be modified several times. This will also continue after deployment,
since no application is ever really finished - particularly when we can redeploy to all our users at once. As a result, an
integral part of any development work is having some kind of maintenance system.

 In this chapter we'll explain why it's useful to have an online site management system, and we'll design and build one
that allows us to easily maintain the site's files and directories.

 Our solution will provide file uploads over HTTP connections, a useful technique that is not limited to site
maintenance. For example, web-based e-mail sites use this method to upload attachments, and many community sites
use it to upload images for user profiles.

 We will also build an online text editor, so that we can edit our ASPX files right in the web browser.

 Our tools will really be for administrators or developers to use. But with a simplified, restricted front-end we could
use this technique to build a maintenance system for even the most technically inept client!

 We will also present an existing third party tool, Microsoft's Web Data Administrator. This could save our
developers a great deal of time managing the site's SQL Server database, both before and after deployment.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 4 - Maintaining the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 During the development of our site, we'll need to add, copy, and move files, change the source code of ASP.NET
pages, edit the stylesheets, and generally fix things here and there. Since we're working on a test machine, and as
we're all familiar with doing such common operations, this does not pose any problems. Managing the SQL Server
database is easy as well, because even if we don't have the program installed on our development machine, through
the Enterprise Manager we can do everything we could if we had the SQL Server on our local computer.

 After development will come the time to upload everything and to test the website online. We'll almost certainly need
to make further changes, upload additions, move files around, and perform other file management operations. The
same applies to the database: we'll need to add, edit, or delete records, run and edit stored procedures, and backup
the data. If we had an in-house server, we wouldn't expect to encounter any problems here, as we would just need to
move everything to the production system. Maintaining the site would be as easy as it was on our development
machine. Having an in-house server offers maximum control over the system, and this is important when we need to
install additional software, register COM+ components, change the IIS default settings, and so on - in fact, whenever
we want to configure things according to our needs. However, often we do not require all this power, especially for
small and medium sized sites. Also, with ASP.NET, deployment and configuration has been made much easier and
flexible (take for example the use of web.config to change settings that would previously have required direct access
to an IIS snap-in in ASP). Lastly, in-house or dedicated servers are expensive, and not all companies can and/or
want to afford them, unless their purpose is very unusual.

 Therefore, if we have budget limitations or we simply don't need full control over the system, the common solution for
publishing our website is to a rent a shared server from a hosting company. We decided to choose this solution for
our website, because we don't really need a deep level of system customization - web.config settings are enough for
this. Also, we wanted to present an example that would be useful to the majority of readers, and that means using
shared hosting.

 FTP Versus Online File Management
 Now that we've chosen to use a third party hosting service for our site, we should also consider the additional
implications that this choice has on the ease of site maintenance. Uploading files is not a problem - we need nothing
more than a simple FTP client to upload, download, rename, and perform most of the other necessary operations on
the files. There are lots of them on the market, many available for free. On the other hand, using FTP to update every
changed file can be slow and boring, especially when you need to upload the same very large file several times for
minor changes, perhaps affecting only a single line of code each time. Sometimes FTP can be slow or even
inaccessible when the server is busy (remember that we chose to use a shared server) or because the FTP server is
temporarily down. Imagine another situation: when you're traveling or visiting a client's place without your laptop, you
show the project to your client and are asked to make a quick modification. Something simple that should only take a
few seconds, but how do you do it if you don't have your ASP.NET source code available, and if you don't have an
FTP program to upload your changes? Often company networks have firewalls or proxies that prevent full FTP
access.

 Some of these issues might not seem important and you may be thinking that we could just ignore them. Admittedly,
these situations are not the rule, but they do happen, and having a reserve plan can turn out to be a good precaution.
So, what is this reserve plan? It is having a web application that serves as a file manager for the web site's files and
physical structure (that is, the structure of subdirectories). Such a file manager should allow us to do most of the
operations that we would normally do through the FTP utility, plus something else that FTP can't provide. That extra
something is that, if we have such a tool for our website, we'll be able to explore our files and resources with nothing
more than a web browser and an Internet connection. We'll also be able to edit text files (source code) from the web
browser itself, so small changes can be made instantly without a download and subsequent upload - useful if you've
just uploaded some code, only to realize you missed out one semi-colon!

 In short, a file manager tool is pretty handy for site maintenance in some situations.

 Database Management
 ThePhile.com is a database-driven website that runs against SQL Server 2000. During development we can use the
Enterprise Manager to create tables and stored procedures, add/edit/delete records, and set properties on everything.
We could do everything with T-SQL scripts written by hand but, to be honest, the Enterprise Manager is so handy
that everyone quickly gets used to it and performs most of the required creation and maintenance operations with its
help.

 However, when we deploy a website and replicate the database to the remote server, we can't always continue to
use Enterprise Manager on the shared server. Some hosting plans do not allow webmasters to use Enterprise
Manager, due to security reasons. This implies that we should resort to good old T-SQL to do everything, from
simple operations such as adding records, to the creation and modification of tables and stored procedures, or the
setting of various database options. Although all of this is possible with T-SQL code, it's not as quick as with
Enterprise Manager, not to mention that coding long T-SQL statement is more error-prone. This is especially true for
those commands that you never use because the Enterprise Manager allows you to just select a checkbox or fill a
textbox. Also, you don't see a handy list of all the available tables, columns, stored procedures, and other objects.

 So, it seems that there is space for third party tools here! And, in fact, third party tools for general (or SQL-specific)
database management are not that difficult to find. There are nice tools made up of a set of pages that allow you to
see all the database objects, edit many properties, and in general manage the database in such a way that you won't
miss the Enterprise Manager quite as much.

 Later in the chapter we'll show how to install and use one of the available tools (called the Web Data Administrator),
written in ASP.NET and - guess what - kindly provided by Microsoft for free!

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 4 - Maintaining the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 Now that we're aware of the usefulness of having maintenance tools, let's start designing our file manager module by
writing down the list of features we want to implement. A typical utility of this type includes the following functionality:

 Starting from the web root, the file manager should allow the administrator to see the list of sub directories
and files, and to navigate the structure by clicking a directory name to go one level down, or an arrow at the
top of the list to go one level up.

 It should display information about each file-system item (file or directory) in our application. This will include
a predefined icon that describes the item type, size (of all the subdirectories and files if the item is a directory),
attributes, creation date, and the date of last modification.

 There should be the ability to upload and download files.

 It should offer the ability to create, rename, copy, move, and change the attributes of any directories and
files.

 It should enable us to view and edit the content of text files.

 This list includes most of the basic commands that we would expect from any file manager for Windows. We want to
reproduce them with a web interface running on a browser, which will allow us to perform common operations
without the need for any external tools.

 We want this application to respect a couple of basic requirements:

 It should be easy to integrate the tool into other existing websites

 It should not be possible for an anonymous Internet user to access the file manager; it must have a reliable
authentication/authorization system

 Let's look at some details to better explain the design choices.

 Implementation Design
 Most applications are data-driven and have a set of business rules to respect. In this case, as we said in Chapter 2,
the first concern for a developer would be to decide how to split the application into several layers: data, business,
and user presentation. This application, though, is of a different type - it has no database and the data to be shown is
part of the structure of the file system. The components for working with the file system and performing all the
required I/O operations are already provided by the huge collection of classes within the .NET Framework, so we
don't have to worry about this either. Therefore, what we have to write is only the presentation layer - that is, a set of
ASP.NET pages and custom controls.

 This is the first module we're going to develop for ThePhile.com. By module, we mean a web application that is
site-independent, so we should design it in a way that makes it easy to integrate this module with any other site. This is
a requirement that all the other modules we'll see in the book should also meet. On the other hand, our designers do
want to integrate this module with the rest of the site, so it should have the same color schemes and a similar layout.
For this reason we'll make use of the shared stylesheet that we built in Chapter 2 we also built header and footer user
controls that can be inserted into any page in order to have the same layout without having to manually copy and
paste the common HTML code into each page. However, this module does not need the site-wide header and footer
controls, since it really is an independent and external tool accessed by administrators only, so we'll avoid using these
two shared controls.

 The file manager will comprise only two ASP.NET pages: one for navigating the folder structure, uploading, deleting,
renaming, copying, and moving files and directories. The other is a simple text editor for creating a new file or editing
an existing one.

 Security Design
 Most sites have an administration section that allows us to update a database or perform other operations that normal
users are not allowed to do, and they usually have other parts that are for registered members only. So, securing a
website is often a major task that must be taken very seriously during the design phase. ASP.NET offers several
types of security, each of which should be used in different situations. You should already know something about this
if you've ever developed for the web with .NET, so let's just review them briefly:

 Windows authentication: based on IIS authentication and the NTFS file permissions of Windows 2000. After
a user is authenticated, they access the protected resources under the context of that account, with its rights
and limitations.

 Forms-based authentication: the user logs in via a custom ASP.NET page and their credentials are validated
against the values stored in the web.config file, a database, an XML file, or some other data source.

 Passport authentication: the user is authenticated by an external web service powered by Microsoft at
www.passport.com. This service, born in 1999 but not widely used yet, requires a paid subscription.

 Each of these types of authentication is best suited to particular situations. Forms-based authentication allows a great
deal of customization, and is best suited when you need to add, remove, and manage an unknown number of users
quite frequently, and without touching IIS and Windows settings. This type of authentication will be explained in much
more detail in the next chapter, where we'll build a users module for the management of the site's members and the
administrators of the other modules that we'll present throughout the book.

 On the other hand, Windows authentication requires the server administrator to set up a group and a number of users
from the Computer Management snap-in, and to associate them with the resources to protect. It offers the
opportunity to assign different permissions to different users. It is best suited when we're building a system based on
an intranet, or when we know in advance the number of users for which we should create an account. For the file
manager module, we have a fixed number of administrators that we want to allow to manage the site's resources, so
we can create a few accounts and use Windows authentication. However, with the User Accounts module we build
later, you'll see how we could integrate our system with that.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.passport.com

Chapter 4 - Maintaining the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 Now that we have a clear idea about what we're going to build, we can start creating the project with VS.NET. The
files for the presentation layer are part of the main ThePhile project, and sit in the Modules\FileManager folder.
Unless otherwise stated, all classes for this module should be part of the Wrox.WebModules.FileManager.Web
namespace.

 Classes to Work with Files and Directories
 In the design section of the chapter we mentioned that the .NET Framework provides quite a lot of classes to easily
manipulate and retrieve information about the file system's items. The System.IO namespace contains all the classes
that have to do with the IO operations for any backing store, and some classes that allow us to do advanced stuff
such as monitoring the file system and listening for changes (this was pretty hard to do with the Windows API). Since
we'll use some of these classes throughout the chapter, it's worth giving a brief description of the most used IO
classes:

Class Description

Directory Provides static (shared) methods for enumerating
directories and logical drives, creating/deleting/moving
directories and files, and retrieving/editing things like the
creation date or the last access date.

DirectoryInfo Used to work with a specified directory and its
subdirectories.

File Provides static methods for working with files: this
includes opening or checking the existence of a file, and
appending text data to a file.

FileInfo Used to work with a specific file.

Path Performs operations such as extracting the root or the file
name from the specified path or combining two path
strings.

FileSystemWatcher Monitors the file system and raises events to handle
changes.

Stream Base class used to read from and write a backing store,
such as the file system or network.

StreamReader Used in conjunction with a stream to read characters
from a backing store.

StreamWriter Used in conjunction with a stream to write characters to
a backing store.

TextReader Abstract class used to define methods for reading
characters from any source (backing store, string, and so
on).

TextWriter Abstract class used to define methods for writing
characters to any source (backing store, string, and so
on).

BinaryReader Used to read primitive types such as string, integer, and
boolean from a stream.

BinaryWriter Used to write primitive types such as string, integer, and
boolean to a stream.

FileStream Used to read and write data in the file system.

MemoryStream Used to read and write data in a memory buffer.

 For a more complete listing of the System.IO namespace's classes and their methods, you can refer to Professional
ASP.NET (Wrox Press, ISBN 1-861004-88-5) or Professional C# (Wrox Press, ISBN 1-861004-99-0). We will
look at some of the classes described above in action.

 Header and Footer Controls
 We start our coding with the module-specific controls - in other words the header and the footer. Create a new user
control named Header.ascx, and write the following code in the HTML tab of the IDE:

 <%@ Control Language="c#" AutoEventWireup="false"
 Codebehind="Header.ascx.cs"
 Inherits="Wrox.WebModules.FileManager.Web.Controls.User.Header"%>

 <table class="MenuTable" border="0" width="100%">
 <tr>
 <td>
 <u>FileManager - Wrox WebModule</u>
 </td>
 <td align="right">

 <img Alt="Go to the bottom of the page"
 src="./Images/GoDown.gif" border="0" />

 </td>
 </tr>
 </table>

 This is simply HTML code (no need to use ASP.NET controls if we don't need to dynamically program them) that
creates a title bar and a hyperlink image. This image links to an anchor placed at the bottom of the page, providing a
quick way to scroll the page. Note that we associate the MenuTable style to the HTML table. In Chapter 3 for an
explanation of how cascading styles work. This stylesheet is imported by the page that will use this custom control.

 The only modification we need to make in the code-behind is to change the namespace to
Wrox.WebModules.FileManager.Web.Controls.User, which follows the conventions we discussed in Chapter 2.

 The footer control, similarly, defines a link to jump to the top of the page. It contains an anchor that links from the
icon to the header control. Here's the code for Footer.ascx:

 <%@ Control Language="c#" AutoEventWireup="false"
 Codebehind="Footer.ascx.cs"
 Inherits="Wrox.WebModules.FileManager.Web.Controls.User.Footer"%>
 <div align="right" Width="100%">

 <img src="./Images/GoUp.gif"
 Alt="Go to the top of the page" border="0" />

 </div>

 Also, modify the namespace in the code-behind for Footer.ascx in exactly the same way as we did for the header
control. In this particular module the header and footer controls are not really necessary, since we have only two
pages, but it's a good practice to build them now, as we might want to add new features (and thus other pages) in the
future.

 The File Manager's Main Page
 Before starting to write the code for this page, which is quite long, let's see how the page will look when it is finished.
The screenshot below shows the main page of the finished FileManager while it is browsing the content of the
ThePhile web directory:

 The page lists the directories first and then the files. Clicking the name of an item navigates to that subdirectory or file.
For each item the page shows quite a lot of information, aligned by several columns, and some image buttons that
allow us to rename the item, edit its attributes, edit a file's content, or download a file. The screenshot describes all the
links so you should have no problems understanding how this interface works.

 We can now start writing the page that will actually allow the administrator to navigate the site. We'll develop it piece
by piece, starting from a simple explorer that just shows the directories and files, and progressively adding more and
more information and commands.

 First of all, create a new web form called BrowseFiles.aspx, and add the following code:

 <%@ Page language="c#" Codebehind="BrowseFiles.aspx.cs"
 AutoEventWireup="false"
 Inherits="Wrox.WebModules.FileManager.Web.BrowseFiles" %>
 <%@ Register TagPrefix="FileManager" TagName="Footer" src="Footer.ascx" %>
 <%@ Register TagPrefix="FileManager" TagName="Header" src="Header.ascx" %>
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
 <html>
 <head>
 <title>FileManager: Browse Files</title>
 <link rel="stylesheet" href="/ThePhile/Styles/ThePhile.css"
 type="text/css">
 <meta name="CODE_LANGUAGE" Content="C#">
 </head>
 <body>
 <form id="BrowseFiles" method="post" runat="server">
 <FileManager:Header ID="Title" runat="server" />

 <asp:Table runat="server"
 CssClass="Grid_Header_Thin" Width="100%">
 <asp:TableRow>
 <asp:TableCell Width="36">
 <asp:Image runat="server" Height="32" Width="32"
 ImageUrl="./Images/OpenFolder.gif" />
 </asp:TableCell>
 <asp:TableCell>
 <asp:Label runat="server" ID="FolderDescription"/>
 </asp:TableCell>
 </asp:TableRow>
 </asp:Table>

 <asp:Table ID="FoldersAndFiles" runat="server"
 CssClass="Grid_General" Width="100%">
 <asp:TableRow CssClass="Grid_Header">
 <asp:TableCell Text="Index" />
 </asp:TableRow>
 </asp:Table>

 <asp:Label ID="StatusMessage" runat="server"
 CssClass="StatusMessage" Visible="False" Width="100%" />
 <asp:Label ID="FolderStyle" runat="Server"
 Text="Grid_Item" Visible="false" />
 <asp:Label ID="FileStyle" runat="Server"
 Text="Grid_AlternatingItem" Visible="false" />
 </form>
 <FileManager:Footer ID="Footer" runat="server" />
 </body>
 </html>

 At this point the page does not contain many controls. We'll add others along the way, but it's worth describing each
of them briefly here:

 The table at the top of the page has two columns. The first one shows an icon representing an open folder,
while the cell on the right has a label that will be set dynamically to show the virtual and physical path of the
folder whose content is currently listed on the page.

 The second table, named FoldersAndFiles, is the table where we'll actually show the current folder's
subdirectories and files. At this point it has just one column for the item name (file or directory). Later in the
chapter we'll add more columns for item attributes and command buttons.

 The StatusMessage label is used to display text representing errors and exceptions.

 The FileStyle and FolderStyle controls are two invisible labels. They are only used to store the name of the
style for the rows that will be dynamically created from the code-behind class, to display files or folders
respectively. Instead of hard coding such settings in the compiled assembly, we want to leave them in the
ASPX page (which can be easily modified without the need to recompile anything) and retrieve them later in
the code-behind.

 Listing the Contents of a Folder

 It's time to write the code that shows the contents of the selected folder in the table. Most of the following
code-behind code, BrowseFile.aspx.cs, is auto-generated by VS.NET. The procedure we need to focus on is
Page_Load.

 The virtual path of the folder to scan is passed along with the page URL, as a parameter called Folder. If not
specified, the website root is taken as the default. The procedure gets the parameter value, stores it in a private
variable, folderPath, and shows the virtual and physical path in the description table at the top of the page.

 A second routine, called FillFoldersAndFilesTable, is then executed, and that is the one that finally scans the folder.
Even though at this point the result just shows the folder and file names, with no additional information, the code for
FillFoldersAndFilesTable is quite long, so we've left it out for the time being. Here is the remainder of the class:

 using System;
 using System.Collections;
 using System.ComponentModel;
 using System.Data;
 using System.Drawing;
 using System.Web;
 using System.Web.SessionState;
 using System.Web.UI;
 using System.Web.UI.WebControls;
 using System.Web.UI.HtmlControls;
 using System.IO;

 namespace Wrox.WebModules.FileManager.Web
 {
 public class BrowseFiles : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Table FoldersAndFiles;
 protected System.Web.UI.WebControls.Label FolderDescription;
 protected System.Web.UI.WebControls.Label FolderStyle;
 protected System.Web.UI.WebControls.Label FileStyle;

 protected System.Web.UI.WebControls.Label StatusMessage;
 protected System.Web.UI.WebControls.Table Table1;

 private string folderPath;

 private void Page_Load(object sender, EventArgs e)
 {
 // extract from the querystring the path to scan
 folderPath = Request.Params["Folder"];
 if (folderPath == null || folderPath=="/")
 folderPath = Request.ApplicationPath.ToString();
 // if the folder is not "/" but it ends with "/", remove the last /
 else if (folderPath.EndsWith("/"))
 folderPath = folderPath.Substring(0, folderPath.Length-1);

 // write the physical and virtual path
 FolderDescription.Text = "Virtual folder: " + folderPath +
 "
Physical folder: " + Server.MapPath(folderPath);
 // actually scan the specified folder
 FillFoldersAndFilesTable();
 }

 private void FillFoldersAndFilesTable()
 {
 //to be added next...
 }

 public BrowseFiles()
 {
 Page.Init += new System.EventHandler(Page_Init);
 }

 private void Page_Init(object sender, EventArgs e)
 {
 InitializeComponent();
 }

 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
 }
 }

 Let's now fill in the code for the FillFoldersAndFilesTable procedure, one part at a time. It begins by retrieving the
collection of child files and sub directories for the folder stored in the private folderPath variable:

 private void FillFoldersAndFilesTable()
 {
 string location;

 DirectoryInfo parentDir;
 DirectoryInfo[] childDirs;
 FileInfo[] childFiles;
 try
 {
 parentDir = new DirectoryInfo(Server.MapPath(folderPath));
 // get all the child directories and files
 childDirs = parentDir.GetDirectories();
 childFiles = parentDir.GetFiles();
 }
 catch (Exception exc)
 {
 StatusMessage.Text = exc.Message;
 StatusMessage.Visible = true;
 return;
 }

 The code is protected within a try...catch block, so in cases where the folderPath folder does not exist an error
message is shown and the procedure exits gracefully.

 Next, the procedure checks whether the current folder is the site root. If it is not, the first row in the table must be a
link to the parent folder, whose path is retrieved by removing the part after the last "/" character (remember that we're
working with a virtual path here, so we cannot use Directory.GetParent as we would do with a physical path):

 TableRow rowItem;
 TableCell cellItemLink;
 HyperLink linkItem;

 Style styleFolderRow = new Style();
 styleFolderRow.CssClass = FolderStyle.Text;
 Style styleFileRow = new Style();
 styleFileRow.CssClass = FileStyle.Text;
 Style styleLink = new Style();
 styleLink.CssClass = "GridLink";

 // if the current folder is not the root, add the FolderUp icon and link
 if (folderPath != "/")
 {

 rowItem = new TableRow();
 cellItemLink = new TableCell();
 linkItem = new HyperLink();

 // add the link that points to the parent directory
 linkItem.Text = " ...";
 int lastSlashIndex = folderPath.LastIndexOf("/");
 location = folderPath.Substring(0, lastSlashIndex);
 if (location.Length==0) location="/";
 linkItem.NavigateUrl = "BrowseFiles.aspx?Folder=" + location;
 linkItem.ApplyStyle(styleLink);
 cellItemLink.Controls.Add(linkItem);

 // add the cell to the new row
 rowItem.Cells.Add(cellItemLink);

 // add the row to the table
 rowItem.ApplyStyle(styleFolderRow);
 FoldersAndFiles.Rows.Add(rowItem);
 }

 Now we cycle through the childDirs collection and add the name of all the child directories. The name text links to
BrowseFiles.aspx, with the Folder parameter set to the folderPath plus the name of the childDirs collection's current
folder:

 // add all the child directories first
 foreach (DirectoryInfo childDir in childDirs)
 {

 // create the required cells and controls
 rowItem = new TableRow();
 cellItemLink = new TableCell();
 linkItem = new HyperLink();

 // create the link that points to this sub-directory
 linkItem.Text = childDir.Name;
 location = folderPath;
 if (location.EndsWith("/"))
 location += childDir.Name;
 else
 location += "/" + childDir.Name;
 linkItem.NavigateUrl = "BrowseFiles.aspx?Folder=" + location;
 linkItem.ApplyStyle(styleLink);
 cellItemLink.Controls.Add(linkItem);

 // add the cell to the new row
 rowItem.Cells.Add(cellItemLink);

 // add the new row to the table
 rowItem.ApplyStyle(styleFolderRow);
 FoldersAndFiles.Rows.Add(rowItem);
 }

 Note that, as for the previous piece of code, the dynamically created cell is added to a new row, which is added to
the table's Rows collection.

 The code that cycles through the collection of child files is very similar to the code just shown, except that the link
behind the name of each file opens a new window to display the file (letting the web browser select how to display it):

 // now add each child file
 foreach (FileInfo childFile in childFiles)
 {

 // create the required cells and controls
 rowItem = new TableRow();
 cellItemLink = new TableCell();
 linkItem = new HyperLink();
 int extIndex;

 // create and add the link that points to this file in a new window
 linkItem.Text = childFile.Name;
 location = folderPath;
 if (location.EndsWith("/"))
 location += childFile.Name;
 else
 location += "/" + childFile.Name;
 linkItem.NavigateUrl = location;
 linkItem.Target = "_blank";
 linkItem.ApplyStyle(styleLink);
 cellItemLink.Controls.Add(linkItem);

 // add the cell to the new row
 rowItem.Cells.Add(cellItemLink);

 // add the new row to the table
 rowItem.ApplyStyle(styleFileRow);
 FoldersAndFiles.Rows.Add(rowItem);
 }
 }

 The code that allows the basic navigation functionality is now complete, and we can finally compile the assembly and
run the page. If you set BrowseFiles.aspx as the Start Page (right click on the file in the Solution Explorer and click
the respective command) the project is automatically compiled and the page is run when you press F5. Otherwise
open Internet Explorer and navigate to http://localhost/ThePhile/Modules/FileManager/BrowseFiles.aspx.

 The screenshot below represents what you should see if you use the file manager to navigate to the ThePhile folder:

 Displaying Additional Attributes

 Just displaying the names of the child directories and files is not enough. We want to display much more information:
an icon to describe the type of item, the attributes, size, the date of creation, and date of last modification. The first
thing to do is to create new columns in the FoldersAndFiles table in BrowseFiles.aspx:

 <asp:Table ID="FoldersAndFiles" runat="server"

 CssClass="Grid_General" Width="100%">

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 4 - Maintaining the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 This chapter presented the design and implementation of a web module, called FileManager, which provides
functionality to:

 List and navigate folder contents

 Create directories

 Create and edit text files

 Download files

 Upload files

 Rename files and directories

 Modify file/directory attributes

 Delete files

 Copy and move files

 This tool can help you to effectively manage your site files, resources, and directory structure. For all but very major
updates, we can now rely on this tool without the need for external FTP clients or other tools.

 We also saw how to set up Windows security to protect the FileManager module from unauthorized access.

 Later in the chapter we installed and explored Microsoft's Web Data Administrator tool, which helps in the online
management of SQL Server databases. It's particularly useful when the database serving the website is located on a
remote server.

 Before concluding, here are a few new features that you could add to enhance the FileManager:

 Support for multiple file uploads. This would require the addition of other HtmlInputFile controls, and the use
of the Request.Files collection to handle the uploaded files.

 A sort facility that allows the user to click on the grid's columns to sort the directories and files by name, size,
or creation date.

 Logging the most significant operations, such as file or directory deletion, and adding a page to enable certain
administrators to easily access this information (the logged events, their details, and the responsible users).

 Creating different levels of administrators that each have different permissions. With Windows security you
can create users that cannot, for example, write or list files. But we could push this one step further, and show
or hide the links for creating, deleting, and editing elements according to the current user and the group they
belong to. For some purposes, we might also want to integrate the security for this module with the security
system we will develop in the next chapter.

 In the next chapter we'll look at building a module that allows administrators to manage the site's users and their
roles, granting or denying them access to particular sections and features.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 5 - Users and Authentication

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 5: Users and Authentication
 Overview
 One of the most important aspects of a content-based website, or any website for that matter, is community
building. As we discussed earlier in this book, a website with a strong, enthusiastic community can survive and profit
far longer than other websites that might have greater funding, more development staff, or even a bigger advertising or
marketing budget.

 The first step towards building a thriving community is to give each user an identity. Each website has different needs
in this area, but a few things are fairly common. The first step is to provide users with an account - a
password-protected identity that can be used to represent the user on the website. These accounts allow us to add
personalization, e-commerce facilities, targeted advertising, direct news delivery, and mailing list participation.

 This chapter will first identify some of the issues and problems involved with providing user accounts. Once we've
defined the problems, we will produce an initial design for a solution to this problem. Finally we will write the software
to implement this solution.

 We will also look at how we can secure some of the facilities and pages of our website, and how we can make
provisions for administrators and power users.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 5 - Users and Authentication

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 ThePhile.com provides content to users, and also allows users to contribute to the site in several ways, such as
forums, which will be covered in Chapter 10. We also want our site to be able to serve different content to different
users. All of these features rely on our site being able to identify its users, and determine what features they are
allowed to access. In order to do this, the website must authenticate the user in some way, to prevent another
person from using a particular user's account. For all this to work, user accounts will need to be created and
maintained, and users will need to be correctly identified by their accounts.

 Many features of the site will need to be administered remotely, so we need to allow for administrative users who will
be given particular privileges. For example, some users might be able to remove offensive forum postings. However
we might not want these users to access every administrative feature on the site - only those features required to
moderate the forum. We might want to give another user - the main webmaster, say - access to everything. So this is
more complex than simply differentiating between a set of normal users and a set of super users.

 Another thing that we feel very strongly about, that should be listed as part of our problem, is the concept of
user-friendliness. The authentication and authorization system of a content website should be as unobtrusive as
possible. The users should barely be aware of the fact that the website has recognized them, and the process of
logging into the website should be quick and painless.

 In many other situations, such as an e-commerce website or a secured intranet application, the
authentication system should be very visible, and very, very strong. In our case, however, we want the
authentication system to remain in the background to prevent it from slowing down the site and confusing or
distracting our users.

 Now that we've described what we are trying to build, we can move on to designing a system that meets these
needs.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 5 - Users and Authentication

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 With most desktop or intranet applications we can prevent users from accessing the application until they log in. This
means that the developer can assume that the user of an application can always be identified. Most websites don't
work this way. Many websites don't require the user to supply a password until the very last possible minute. For
example, the user is often recognized through a cookie, goes shopping for a while, and just after they click the Check
Out button, they are prompted for their secure credentials.

 Our site will follow the same policy. It will be completely acceptable for an anonymous user, or a user identified with
a cookie but not authenticated with a password, to browse the site and use many of its features. If the user is
identified with a cookie, some personalization can take place, as long as it doesn't compromise the user's privacy. For
those parts of the site where authentication is required, the user will be forced to authenticate, otherwise they will be
denied access.

 In addition to building several new components that will drive our user authentication and security module, we should
make sure that our design accounts for changes to the existing code. First of all, we're going to want to provide a link
to log in, a page that allows logins, and a customized greeting in the site header that identifies the user by name.

 The following UML use case diagram illustrates the process of authenticating a user. As you can see, at all times, any
user (anonymous or authenticated) can follow a 'normal', or unsecured, link. This simply loads a new page and the
process begins again. However, if the user chooses to authenticate, they can do this by either creating a new user
account or by supplying the password information for an existing account. Finally, you can see from the diagram that it
is possible to recognize a previously authenticated user without forcing them to manually authenticate. We will do this
using the cookie-based system supplied with ASP.NET's forms-based authentication.

 Our site will be using forms-based authentication, which is entirely based on cookies. But there are other ways to
authenticate website users. For example, in order to truly secure the administrative portions of our application, we are
going to use standard NT/2000 domain security (Windows authentication). This has the benefit of adding the
requirement of domain membership (or trust) before the user can even attempt to view the page. Securing the
administrative directories and only giving access to a particular group (as defined by the 'User Administrator for
Domains' program), places the burden of only giving access to appropriate users onto the network administrator. We
will see more about how we are going to implement the security once we've completed our design.

 As with the other elements of our website, we'll design a 3-tiered module, with a presentation layer, business layer,
and data layer. We'll need a database to store information about our users and the permissions available, and will
design stored procedures to assist the interaction between the data layer classes and the database itself. The rest of
this design section will walk you through the design decisions we made in creating our Accounts module.

 The reason why we've chosen to call the module Accounts is that often the 'users' of websites are not
individual users at all but are in fact login accounts assigned to companies, groups, or large organizations.

 Designing the Database
 Shown overleaf is a diagram representing the database schema for the user accounting module of our sample
website, ThePhile.com. It is fairly straightforward - we have three core data structures: users, permissions, and roles.
A role is a logical grouping of permissions. For example, there might be a role called 'Administrator' that contains a
different, more advanced set of permissions than a role entitled 'New User'. Roles can be associated with permissions
and users, while permissions are associated with permission categories to allow for visible grouping of related
permissions in the user interface. We will prefix every table name with the module name, Accounts, so that there is no
conflict with other database tables.

 We can't stress enough the importance of a good application design when building your database schema.
Because we spent the extra time to make sure that we had thought of as much as possible during the design
phase, the creation of the database schema was fairly quick and painless.

 The following is a brief description of each of the tables and how they relate to the other tables within the database.
As with the other modules in this book, these tables will be added to the main database that we set up in Chapter 2.
However, the module will be designed in such a way that, if the need arises, all of its data can come from an entirely
separate data source. Full details of the columns, datatypes, keys, and nulls will be given in the solution section later in
this chapter.

Table Description

Accounts_Users This table is the core table for storing user information. Its
primary key is the UserID, which is referenced by the
Accounts_UserRoles table. It contains basic user
information including password, e-mail address, and
home contact information.

Accounts_Roles This table is the core table for storing roles. RoleID is its
primary key, which is referenced by the
Accounts_RolePermissions table and the
Accounts_UserRoles table.

Accounts_UserRoles This is a mapping table used for cross-referencing roles
and users. It essentially stores user membership within
roles. Note that, since the combination of the UserID and
RoleID form the primary key, it is possible for a user to
be part of more than one role, allowing for some fairly
advanced security techniques to be utilized.

Accounts_Permissions This is the core table that stores verbose descriptions for
each of the permissions. Note that when the code checks
permissions, it checks them against a hard-coded
enumeration. This table is used for user-friendly listing
and querying of permission names and information. Its
primary key is PermissionID, which is referenced by the
Accounts_RolePermissions table.

Accounts_RolePermissions This is another mapping table much like
Accounts_UserRoles. It is responsible for mapping
membership of permissions within roles. Again, note that,
because of the dual primary key, a given permission can
be granted to more than one role at a time, allowing for
advanced security techniques.

 Stored Procedures

 Stored procedures are an integral part of the back-end data store for any web application. We could have the
software in our data tier access the tables directly. However, it will keep our data tier simpler and easier to maintain,
as well as give higher performance, if we include some procedures within the database.

 Fortunately for us, we're not doing anything overly complex with our stored procedures. Our procedures essentially
mirror the functionality provided by the methods in the data tier components, which we'll look at next. The following is
a summarized list of the stored procedures we'll be using in this solution:

Stored Procedure Name Description

sp_Accounts_CreateRole Creates a new role in the database

sp_Accounts_DeleteRole Deletes an existing role, including removing all
permissions from the role, and unassigning all users from
this role.

sp_Accounts_UpdateRole Updates the description of a given role.

sp_Accounts_GetRoleDetails Executes a SELECT, obtaining all pertinent details for a
given role.

sp_Accounts_GetAllRoles Obtains all roles in the entire system.

sp_Accounts_AddPermissionToRole Adds a given permission to a given role.

sp_Accounts_RemovePermissionFromRole Removes a given permission from a given role.

sp_Accounts_ClearPermissionsFromRole Clears all permissions from a given role.

sp_Accounts_CreateUser Creates a new user. Accepts only encrypted password
arguments.

sp_Accounts_GetStateList Utility function for obtaining list of all states for populating
drop-down list UI control.

sp_Accounts_UpdateUser Updates pertinent details for a given user.

sp_Accounts_ValidateLogin Validates a given e-mail address/encrypted password
combination. If combination is valid, returns the numeric
ID of valid user.

sp_Accounts_TestPassword Tests a given encrypted password against the encrypted
form of the given user ID's password.

sp_Accounts_GetPermissionCategories Obtains a list of all permission categories in the entire
system.

sp_Accounts_GetPermissionCategoryDetails Obtains all detailed information (currently just a
description) of the given category as indicated by the
category ID parameter.

sp_Accounts_AddUserToRole Assigns the given role to the given user.

sp_Accounts_RemoveUserFromRole Removes the given user from the given role.

 The Data Tier
 The following is a summary of the design definitions for each of the data tier classes we think we'll need:

User Class Member Description

Create Creates a new user in the data store. This method
accepts all of the arguments necessary for populating the
appropriate database fields.

Retrieve Retrieves a single user as indicated by the numeric user
ID argument passed to the method. Returns a DataRow
instance. Also has an overload allowing an e-mail
address to be used to retrieve a user.

Update Commits changes to a given user to the database. All
arguments to this method correspond to database fields.

Delete Removes a specific user from the data store as indicated
by the numeric user ID passed to the method.

ValidateLogin Returns a Boolean indicating whether or not a specific
e-mail address and encrypted password is a valid login.

GetUserList Obtains a completely unfiltered list of all users in the
system. This function is intended for administrative
purposes and for performance reasons should never be
called by any UI function. Returns a DataSet.

GetUserRoles Returns an ArrayList indicating the list of roles to which
the supplied user ID belongs.

GetEffectivePermissionList Returns an ArrayList indicating the list of all permissions
that the user has been granted based on their role
membership.

TestPassword Tests whether a supplied encrypted password is the
same encrypted password in the data store for the given
user.

Role Class Member Description

Create Creates a new role in the data store.

Update Updates an existing role in the data store.

Delete

Removes an existing role in the data store. Removal of
the role also causes all role membership records for this
role to be removed, and all role-permission references to
be removed.

Retrieve Retrieves information on a single role in the form of a
DataRow.

GetRoleList Retrieves a list of roles in the system.

AddPermission Adds a permission to the given role.

RemovePermission Removes a permission from the given role.

ClearPermissions Removes all permissions assigned to the role.

Permission Class Member Description

Retrieve Retrieves information on a single permission in the form
of a DataRow.

GetPermissionList Retrieves a list of permissions in the system. Returns a
DataSet with relations providing a parent/child placing of
permissions in categories.

GetPermissionList (role) Retrieves a DataTable with a list of permissions belonging
to a given role.

PermissionCategory Class Member Description

Retrieve Retrieves information on a single PermissionCategory in
the form of a DataRow.

GetPermissionsInCategory Retrieves a list of permissions belonging to a given
category.

GetCategoryList Retrieves a list of all permission categories in the system.

 The Business Tier
 Our business tier contains all the code that encapsulates business logic, workflow, process flow, non-data utility
classes, and more. This next section will go through each of the specific things we will be designing for the
implementation of the business tier of this module.

 We're going to build two main classes as well as two more classes that will allow us to integrate with and extend the
existing security system implemented by the ASP.NET core:

 The User class - we'll use this class to represent a user of the system.

 The Role class - we'll use this class to represent a single role within the system.

 PhilePrincipal and PhileIdentity - these two classes, which we will discuss in greater detail later, will be used
to integrate our custom security system into the existing security system already in place within ASP.NET.

 The User Class

 The User class encapsulates a user as they interact with the web application. This class is used specifically for loading
information about a specific user, as well as creating, updating, and deleting users.

 The User class is not used in authentication schemes - it is used to store general information about the user. We will
use this class when users are logging into the system and either creating a new account or updating information on
their existing account. We will look at the design for handling authentication schemes in the Extending .NET
Framework User Handling section later in this chapter.

 The following is a detailed description of the features and functionality we have designed into our User class:

User Class Member Description

UserID Property indicating the database ID of the given user.

FirstName Property to set or get the first name of the user.

LastName Property to set or get the last name of the user.

Address1 Property to set or get the first line of the user's address.

Address2 Property to set or get the second line of the user's
address.

City Property allowing read/write access to the user's city.

State Property allowing read/write access to the user's state.

ZipCode Property allowing read/write access to the user's zip
code.

Country Property allowing read/write access to the user's country.

EmailAddress Property to set or get the e-mail address of the user.

Create() Method that will translate the set of properties
representing a current user by requesting a new user
creation from the data tier.

Update() Method that will update the user's persisted information
based on the values of the properties of the current user.

User() Default constructor.

User (int) Constructs a new instance of a user based on the numeric
database user ID provided as the sole argument.

User (PhilePrincipal) Creates a new instance of a user based on an instance of
the PhilePrincipal class. So
User((PhilePrincipal)HttpContext.User) will return
information about the currently logged in user.

 The Role Class

 A content-based website is only as good as its content. In a site such as the one we are building, it is extremely
important that we provide new and fresh content. To do this we need to maintain a pool of regular contributors.
These contributors are typically responsible for obtaining, arranging for, or creating content.

 Many of the site's users need to be able to create content. For example, a website that provides video game reviews
needs to allow a team of reviewers to enter in new game reviews. A separate group of people might need to be
allowed to upload screenshots of games not yet on the market, and yet another set of site visitors might need the
ability to upload game previews or interviews with game publishers and developers. However, in each case we might
not want to give all these abilities to all members of staff.

 What this all boils down to is the need for roles. A role is a classification of a responsibility, duty, or job. Giving
administrators the opportunity to create roles, and assign privileges to these roles, we allow for the type of flexibility
we need in order to provide a fully functional content site. This also allows us to support a situation where a single
user might have more than one duty. For example, many game review sites have reviewers who also need to post
screenshots and interviews. However, there might be others who only need to post screenshots. A flexible system of
roles enables this.

 So any user can have a number of roles. To encapsulate a role, we will create a Role class with the following
members:

Role Class Member Description

RoleID Property containing the numeric database identifier for
the given instance of the role.

Description Property containing the verbose (string) description of the
particular instance of a role.

Permissions Property containing the list/array of permissions granted
to the role.

Create() Creates a new role based on the values of the properties
of the current instance.

Delete() Deletes the current role, removing all associated
permissions and unassigning all appropriate users from
the role.

Update() Updates the current role based on the values of the
properties of the current instance.

AddPermission (int) Adds a given numeric permission identifier to the role,
effectively granting that permission to all users who
belong to the role.

RemovePermission (int) Removes a given numeric permission identifier from the
role, effectively removing that permission from all users
who belong to the role.

ClearPermissions() Removes all permissions from the current instance of a
role.

Role() Default constructor. Used when building a new role for
the first time.

Role(int) Constructor. Creates a new instance of a role based on
that role's numeric database identifier.

 Extending .NET Framework User Handling

 One of the hardest aspects of .NET Framework programming is determining whether the Framework already
provides a feature that we need, or whether we need to build it ourselves. If Microsoft already provides features for
what we want to do, we should seriously consider using Microsoft's implementation.

 The harder decisions appear when Microsoft has implemented something similar to what we need. This decision
boils down to deciding whether to create our own implementation, or extend the Framework to suit our needs. It is
worth spending some time looking for candidates to extend before developing our own solution from scratch.

 This is true of our custom security for the website. The built-in user authentication support in ASP.NET is great. It
automatically populates a property called User in the Context object. This property gives us access to all kinds of
information, including whether or not the user has been authenticated, the type of authentication used to verify the
user, and even the name of the user. Whether we use forms-based or Windows authentication, we can still use the
User object in the current HttpContext instance, represented by the Context object.

 The Context.User object provided by the .NET Framework is not the same as the User class described
earlier. Context.User is concerned with authentication, while our User class is concerned with encapsulating
general information about a particular user.

 However, Microsoft's implementation doesn't provide a way to obtain permission levels from a database. Microsoft's
implementation is designed to use whatever role-based security mechanism is available to it. This means using NT
groups when Windows authentication is enabled, etc. But we can extend their system, so that our custom security
does everything we need.

 Before we spend more time discussing how we plan to extend it, we should talk a little about the existing Framework
itself. Security within .NET (not just ASP.NET) is based around the concept of a principal. A principal object is a
representation of the security context of the user on whose behalf the code is running. So, if I am running a program,
then the principal is my security context for the duration of that program. One level lower than the principal is the
identity. The identity represents the user who is executing the code. Therefore, every principal has an identity. This
idea of a common principal and identity is used in forms-based authentication, Windows authentication, and is even
used to pass credentials to websites and remoting hosts in other aspects of .NET programming. We decided that
rather than implement our own security system, we would create our own concept of a principal and identity that
snugly snapped into place within Microsoft's existing security framework. To allow programmers to easily adapt the
existing security system, Microsoft provided the IPrincipal and IIdentity interfaces.

 The object assigned to HttpContext.User must implement the IPrincipal interface. One of the properties defined by
IPrincipal is Identity, which must implement the IIdentity interface. So if we write our own custom classes that
implement these interfaces, we can add any capabilities we need. This is one of the beauties of having an extensive,
inheritable framework - once we get familiar with it then we find that a lot of our work is already done.

 Creating two classes that implement IPrincipal and IIdentity, called PhilePrincipal and PhileIdentity, we can snap our
classes into the existing framework. The following table shows the members of the PhilePrincipal and PhileIdentity
classes. Members defined by the standard interfaces have a gray background, while the new ones that we have
created have their names in bold:

PhilePrincipal Class Members (available through HttpContext.User)

Identity Property that gets the identity of the current principal.
Returns an object implementing the IIdentity interface.

IsInRole Method that returns a Boolean indicating whether or not
the current principal belongs to a given role, specified
with a string. We will be providing our own custom
version of this method that queries our list of custom roles
from our database.

Permissions An array of PermissionIDs that the user has been granted
indirectly through membership in various roles.

Roles An array containing a list of roles to which the current
principal belongs. Note that these roles are roles stored
in our custom database, and are not to be confused with
COM+ roles.

ValidateLogin A method used to validate a specific set of login
credentials, which include an e-mail address and a
password.

HasPermission A method used to query whether or not the principal
belongs to a given role, as indicated by the supplied
RoleID integer.

EncryptPassword A method used to encrypt a plain text string representing
a password.

 The PhilePrincipal class will enable the site to tell what a user is allowed to do. The Identity property will also tell us
who the user is. In normal operation, the Framework itself will determine the identity of the user that owns the security
context. In our situation, we will manually set the identity of the principal by using forms-based authentication in
ASP.NET.

PhileIdentity Class Members (available through HttpContext.User.Identity)

AuthenticationType A string property representing the type of authentication
used to obtain the current identity.

IsAuthenticated Boolean value indicating whether or not the current
identity is an authenticated user.

Name A string property representing the name of the current
identity.

FirstName First name of the user identity; used in various UI
controls for providing personalized user greetings.

LastName Last name of the user identity; used in various UI controls
for providing personalized user greetings.

EmailAddress E-mail address of the user identity.

Password Encrypted, binary form of the user's password.

UserID Integer representing the database ID of the user identity.

TestPassword(string) Method that takes a plain text string representing the
user's password and compares it against the encrypted
form stored in the database. Returns Boolean true if the
password matches, false otherwise.

 In the solution section (where we get to look at the code implementation of the above security classes and their
relationship to the rest of the module), the website itself, and the existing security framework, will become more clear.

 Module Configuration
 One of the main goals of this book is to illustrate the use and integration of multiple modules that provide different,
unique functionality. These modules that we are developing throughout this book are all designed in such a way that
they can either use their own database or share a central database. This is accomplished by allowing the modules to
be configured through the use of XML configuration files and the Web.Config file provided by ASP.NET. These
configuration files also allow us to specify module-specific configuration settings in a way that is easy for us to modify
and maintain.

 Some of this next section may not be all that familiar to you unless you have used XML class serialization and
de-serialization using the .NET Framework. Serialization is the process of converting an instance of a class to a file
on disk, or a stream, in the form of XML. De-serialization is converting an XML stream or file into an instance of a
class. Every one of the modules we're developing has its own configuration. This configuration is stored in a special
XML file for the module itself. In order for the modules to find their own configuration files, they will use the central
site configuration file (Web.Config). In this central configuration file we will store the location of the module-specific
configuration files.

 Let's take a look at what a snippet of the Web.Config file looks like, with the location of our user module file in it (if
you're coding along while reading, you'll want to add the following to your copy of the Web.Config file in your
ThePhile web application):

 <!-- LOCAL APPLICATION SETTINGS -->
 <appSettings>
 <add key="Accounts_SettingsFile" value="/ThePhile/Config/Accounts.Config"/>
 </appSettings>

 This is found at the bottom of our Web.Config file, immediately after the <system.web> node, but still within the
<configuration> node.

 The essential core of our design is that we're going to create two classes. The first class, ModuleConfig, is a helper
class that we'll use to save and retrieve (serialize and de-serialize) instances of our ModuleSettings class. The
ModuleSettings class is nothing more than a serializable container of properties that represent keys in our custom
XML configuration file. These keys are the string keys that are paired with the values in typical name/value pair
fashion.

 The ModuleConfig Class

 As we mentioned above, the ModuleConfig class is a helper class that we use to create instances of the
ModuleSettings class based on our custom XML configuration file, as well as take modified instances of the
ModuleSettings class and save them back to XML, allowing for programmatic and user-driven changes to the
configuration file.

 The following is the design definition of our ModuleConfig class. As we progress throughout the book, you'll see this
concept of the configuration/settings class pair used extensively.

ModuleConfig Class Member Description

GetSettings() Static class method that returns an instance of the
ModuleSettings class, properly de-serialized according to
the values contained in the custom XML configuration
file.

SaveSettings (ModuleSettings) Static class method that takes an instance of the
ModuleSettings class and serializes it into the custom
XML configuration file for our module.

 The ModuleSettings Class

 The ModuleSettings class, as we stated above, is simply a class that exposes public, serializable properties. The
class must be designed so that its state is entirely preserved throughout a serialization and de-serialization. In other
words, there can be no 'one-way' (write-only or read-only) properties, or the class will not function properly.

 Each ModuleSettings class for each module is going to vary in that some modules require more administrative
configuration than others (for example, Forums and Advertising). However, all of the modules are going to require
that at least one setting be maintained. That setting is the database connection string used by the data tier in order to
communicate with the database.

 The following is a sample XML configuration file (/ThePhile/Config/Accounts.Config) defining a single serializable
property for use by the module, ConnectionString. Again, if you're coding along with the chapter, you'll want to create
this file now and populate it with the well-formed XML below. Note that this is simply a supporting data file, and
there is no need to place this file in Visual Studio .NET:

 <?xml version="1.0"?>
 <ModuleSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <ConnectionString>
 server=(local);database=ThePhile;uid=sa;pwd=;
 </ConnectionString>
 </ModuleSettings>

 We'll show how to configure a class for XML serialization in the solution section of this chapter. The following is the
simple definition of our ModuleSettings class:

ModuleSettings Class Description

ConnectionString String property to set or get the value of the database
connection string for the given module.

 You'll have plenty of opportunity to see how the configuration classes are utilized when we cover the source code for
this module (and as you examine the source code for virtually any module developed throughout this book).

 We've now covered pretty much all of the classes that we plan on building for this particular module, so let's move on
to briefly discuss the front-end design.

 Administration
 There isn't all that much to design in terms of the administration of the Accounts module. At a basic level, we will be
providing site administrators with the ability to use a set of web pages to create new roles, update existing roles,
grant/revoke permissions on roles, and grant/revoke roles on users. For security and confidentiality reasons, we've
decided that administrative staff should not have the ability to edit users' personal information. Instead we will allow
users to edit their own information on-line.

 Of course, in a more realistic, real-world situation, the administrative staff of the site should have some kind
of back-end tool that allows them to change e-mail addresses for users. Also, most successful large-scale
websites include a feature that allows a user to have their password e-mailed to them if they have forgotten
it.

 You will see further coverage of how we're planning to administer the security system in the next section, where we
will go through the sample source code for the administration pages.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 5 - Users and Authentication

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 We have spent some time looking at our design, and will now start to build the software. To recap, we are
implementing a traditional three-tier solution with distinct presentation, business logic, and data services tiers.

 We'll start by implementing the database changes, and then work our way up through the data tier and the business
tier to the presentation tier.

 The Database
 We've already looked at the table structure that we'll use for this part of the database. We can choose whether to
construct it using visual tools or SQL scripts. In Chapter 6 we'll look at the Enterprise Manager's visual tools, for now
we'll present the SQL scripts that can be run in the Query Analyzer. The scripts required are as follows:

 CREATE TABLE [dbo].[Accounts_PermissionCategories] (
 [CategoryID] [int] IDENTITY (1, 1) NOT NULL,
 [Description] [varchar] (50) NOT NULL)
 ON [PRIMARY]
 GO

 CREATE TABLE [dbo].[Accounts_Permissions] (
 [PermissionID] [int] NOT NULL,
 [Description] [varchar] (50) NOT NULL,
 [CategoryID] [int] NOT NULL)
 ON [PRIMARY]
 GO
 CREATE TABLE [dbo].[Accounts_RolePermissions] (
 [RoleID] [int] NOT NULL,
 [PermissionID] [int] NOT NULL)
 ON [PRIMARY]
 GO

 CREATE TABLE [dbo].[Accounts_Roles] (
 [RoleID] [int] IDENTITY (1, 1) NOT NULL,
 [Description] [varchar] (50) NOT NULL)
 ON [PRIMARY]
 GO

 CREATE TABLE [dbo].[Accounts_StateCodes] (
 [Description] [varchar] (60) NOT NULL,
 [StateCode] [char] (2) NOT NULL)
 ON [PRIMARY]
 GO

 CREATE TABLE [dbo].[Accounts_UserRoles] (
 [RoleID] [int] NOT NULL,
 [UserID] [int] NOT NULL)
 ON [PRIMARY]
 GO

 CREATE TABLE [dbo].[Accounts_Users] (
 [UserID] [int] IDENTITY (1, 1) NOT NULL,
 [EmailAddress] [varchar] (255) NOT NULL,
 [FirstName] [varchar] (30) NOT NULL,
 [LastName] [varchar] (50) NOT NULL,
 [Address1] [varchar] (80) NOT NULL,
 [Address2] [varchar] (80) NOT NULL,
 [City] [varchar] (40) NOT NULL,
 [State] [char] (2) NOT NULL,
 [ZipCode] [varchar] (10) NOT NULL,
 [HomePhone] [varchar] (14) NOT NULL,
 [Password] [binary] (20) NOT NULL,
 [Country] [varchar] (50) NOT NULL)
 ON [PRIMARY]
 GO

 Stored Procedures

 There are quite a few stored procedures employed in this module. Rather than going through each one, we will look
at two representative examples. The full code for all procedures is included in the website's database available in the
code download.

 The following is the code for creating the sp_Accounts_GetEffectivePermissionList stored procedure. Again, this
script can be run in the Query Analyzer. This stored procedure retrieves the list of all permissions granted to a user by
virtue of their role membership:

 CREATE PROCEDURE sp_Accounts_GetEffectivePermissionList @UserID int
 AS
 SELECT DISTINCT PermissionID
 FROM Accounts_RolePermissions
 WHERE RoleID IN
 (SELECT RoleID FROM Accounts_UserRoles WHERE UserID = @UserID)

 One of the more complex procedures is sp_Accounts_GetPermissionList. This procedure effectively obtains the sum
of all permissions granted to a role. It performs a join (a way of looking up related data from more than one table) in
order to obtain the verbose description of each permission assigned to the given role:

 CREATE PROCEDURE sp_Accounts_GetPermissionList @RoleID int = NULL
 AS
 IF @RoleID IS NULL
 SELECT PermissionID, Description
 FROM Accounts_Permissions
 ORDER BY Description
 ELSE
 SELECT ap.PermissionID, ap.Description
 FROM Accounts_Permissions ap
 INNER JOIN Accounts_RolePermissions apr
 ON ap.PermissionID = apr.PermissionID
 WHERE apr.RoleID = @RoleID
 ORDER BY ap.Description

 Note the use of table name aliases (ap for Accounts_Permissions and apr for Accounts_RolePermissions) to
avoid having to type out the full table names each time we use them.

 The Data Tier
 Now that we've seen an overview of the database implementation, we will look at the classes residing in our data
services tier: User, Role, Permission, PermissionCategory, and a helper class.

 User

 The User class provides the basic CRUD (Create, Retrieve, Update, Delete) functionality required for any data
entity. It does this with methods alone - it has no maintained state - and simply acts as a bridge between the business
tier and the database.

 The following is the source code listing for the User class. The full code is in the User.cs file from the AccountsData
project in the code download. We start by importing namespaces, and declaring that we will extend
Wrox.WebModules.Data.DbObject - our data services base class:

 using System;
 using System.Collections;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.Accounts.Data
 {
 public class User : Wrox.WebModules.Data.DbObject
 {

 We will use the same constructor logic defined in the base class we developed in Chapter 2. So when the User
constructor is called, we simply route the call to the constructor of the base class DbObject:

 public User(string newConnectionString): base(newConnectionString)
 {}

 The following method creates a new user record, based on the supplied parameters. Firstly we create an array of
SqlParameter objects, and construct each element appropriately. Then we assign them the value given by the
corresponding method parameter. We then run the procedure in a try block. If the try fails, we catch the error.

 public int Create(string emailAddress,
 byte[] password,
 string firstName,
 string lastName,
 string address1,
 string address2,
 string city,
 string state,
 string zipCode,
 string homePhone,
 string country)
 {
 int rowsAffected;
 SqlParameter[]
 parameters = {
 new SqlParameter("@EmailAddress", SqlDbType.VarChar, 255),
 new SqlParameter("@Password", SqlDbType.Binary, 20),
 new SqlParameter("@FirstName", SqlDbType.VarChar, 30),
 new SqlParameter("@LastName", SqlDbType.VarChar, 50),
 new SqlParameter("@Address1", SqlDbType.VarChar, 80),
 new SqlParameter("@Address2", SqlDbType.VarChar, 80),
 new SqlParameter("@City", SqlDbType.VarChar, 40),
 new SqlParameter("@State", SqlDbType.VarChar, 2),
 new SqlParameter("@ZipCode", SqlDbType.VarChar, 10),
 new SqlParameter("@HomePhone", SqlDbType.VarChar, 14),
 new SqlParameter("@Country", SqlDbType.VarChar, 50),
 new SqlParameter("@UserID", SqlDbType.Int, 4) };

 parameters[0].Value = emailAddress;
 parameters[1].Value = password;
 parameters[2].Value = firstName;
 parameters[3].Value = lastName;
 parameters[4].Value = address1;
 parameters[5].Value = address2;
 parameters[6].Value = city;
 parameters[7].Value = state;
 parameters[8].Value = zipCode;
 parameters[9].Value = homePhone;
 parameters[10].Value = country;
 parameters[11].Direction = ParameterDirection.Output;

 try
 {
 RunProcedure("sp_Accounts_CreateUser", parameters, out rowsAffected);
 }
 catch (SqlException e)
 {

 If an error occurred we check the procedure's return value - otherwise we pass the exception up the call stack. If the
return value is 2601, it matches our code for "primary key already exists" (in other words we tried to violate a unique
index). We return a value from our enumeration - AccountAlreadyOnFile. This allows our user interface to
intelligently trap a duplicate user entry failure.

 if (e.Number == 2601)
 {
 return (int)Wrox.WebModules.Accounts.ProcResultCodes.AccountAlreadyOnFile;
 }
 else
 {
 throw new
 AppException("An error occurred while executing the
 Accounts_CreateUser stored procedure", e);
 }
 }

 return (int)parameters[10].Value;
 }

 The next method retrieves a record from the database, based on a userID:

 public DataRow Retrieve(int userID)
 {
 SqlParameter[] parameters =
 { new SqlParameter("@UserID", SqlDbType.Int, 4) };
 parameters[0].Value = userID;

 using (DataSet users =
 RunProcedure("sp_Accounts_GetUserDetails", parameters, "Users"))
 {
 return users.Tables[0].Rows[0];
 }
 }

 This illustrates a great C# feature: the using keyword. This allows an entire block of code (enclosed in {} braces) to
execute, and when the block of code is complete, any appropriate objects are automatically disposed of. This serves
to further ease the task of memory programming in C#. Without this we would need to manually dispose of our
information after we made use of it in another tier.

 The next method is an overload of Retrieve that retrieves details based on an e-mail address instead of a userID:

 public DataRow Retrieve(string emailAddress)
 {
 SqlParameter[] parameters =
 { new SqlParameter("@EmailAddress", SqlDbType.VarChar, 255) };
 parameters[0].Value = emailAddress;

 using (DataSet users =
 RunProcedure("sp_Accounts_GetUserDetailsByEmail",
 parameters, "Users"))
 {
 if (users.Tables[0].Rows.Count == 0)
 {
 throw new AppException("No user found on file for email:" +
 emailAddress);
 }
 else
 return users.Tables[0].Rows[0];
 }
 }

 The Update method passes the user's details and updates the database accordingly. The return parameter confirms
that the row was updated:

 public bool Update(int userID,
 string emailAddress,
 byte[] password,
 string firstName,
 string lastName,
 string address1,
 string address2,
 string city,
 string state,
 string zipCode,
 string homePhone,
 string country)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@EmailAddress", SqlDbType.VarChar, 255),
 new SqlParameter("@Password", SqlDbType.Binary, 20),
 new SqlParameter("@FirstName", SqlDbType.VarChar, 30),
 new SqlParameter("@LastName", SqlDbType.VarChar, 50),
 new SqlParameter("@Address1", SqlDbType.VarChar, 80),
 new SqlParameter("@Address2", SqlDbType.VarChar, 80),
 new SqlParameter("@City", SqlDbType.VarChar, 40),
 new SqlParameter("@State", SqlDbType.VarChar, 2),
 new SqlParameter("@ZipCode", SqlDbType.VarChar, 10),
 new SqlParameter("@HomePhone", SqlDbType.VarChar, 14),
 new SqlParameter("@Country", SqlDbType.VarChar, 50),
 new SqlParameter("@UserID", SqlDbType.Int, 4) };
 parameters[0].Value = emailAddress;
 parameters[1].Value = password;
 parameters[2].Value = firstName;
 parameters[3].Value = lastName;
 parameters[4].Value = address1;
 parameters[5].Value = address2;
 parameters[6].Value = city;
 parameters[7].Value = state;
 parameters[8].Value = zipCode;
 parameters[9].Value = homePhone;
 parameters[10].Value = country;
 parameters[11].Value = userID;

 RunProcedure("sp_Accounts_UpdateUser", parameters, out rowsAffected);
 return (rowsAffected == 1);
 }

 The Delete method deletes the specified user, and returns a Boolean indicating whether the operation was useful:

 public bool Delete(int userID)
 {
 SqlParameter[] parameters = { new SqlParameter("@UserID",
 SqlDbType.Int, 4) };
 int rowsAffected;

 parameters[0].Value = userID;

 RunProcedure("sp_Accounts_DeleteUser", parameters, out rowsAffected);
 return (rowsAffected == 1);
 }

 The following method takes an e-mail address and an encrypted password - the password is always encrypted
before it's marshaled across tiers. If the user details are valid, it returns the user's ID:

 public int ValidateLogin(string emailAddress, byte[] encPassword)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@EmailAddress", SqlDbType.VarChar, 255),
 new SqlParameter("@EncryptedPassword", SqlDbType.Binary, 20)};

 parameters[0].Value = emailAddress;
 parameters[1].Value = encPassword;

 return RunProcedure("sp_Accounts_ValidateLogin", parameters,
 out rowsAffected);
 }

 The next method, listed below, takes a specific userID (the numeric identity column in SQL Server) and an
encrypted password. If the password matches the password belonging to the user as indicated by the database, the
method returns a 1, otherwise a 0. This is accomplished by executing the sp_Accounts_TestPassword stored
procedure.

 public int TestPassword(int userID, byte[] encPassword)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@UserID", SqlDbType.Int, 4),
 new SqlParameter("@EncryptedPassword", SqlDbType.Binary, 20) };

 parameters[0].Value = userID;
 parameters[1].Value = encPassword;

 return RunProcedure("sp_Accounts_TestPassword", parameters,
 out rowsAffected);
 }

 The following method executes the sp_Accounts_GetUserRoles stored procedure. It obtains a SqlDataReader
containing the list of all roles assigned to a given user. This SqlDataReader is then converted into an ArrayList and
returned to the calling tier to be utilized in a property of the User class.

 public ArrayList GetUserRoles(int userID)
 {
 ArrayList roles = new ArrayList();
 SqlParameter[] parameters =
 { new SqlParameter("@UserID", SqlDbType.Int, 4) };
 parameters[0].Value = userID;

 SqlDataReader tmpReader = RunProcedure("sp_Accounts_GetUserRoles",
 parameters);
 while (tmpReader.Read())
 {
 roles.Add(tmpReader.GetString(1));
 }
 Connection.Close();
 return roles;
 }

 The method listed below calls the sp_Accounts_GetEffectivePermissionList stored procedure. This stored procedure
returns a SqlDataReader indicating all permissions granted to a user by virtue of their role memberships. This
SqlDataReader is then iterated through, converted into an ArrayList, and returned up to the User class in the business
tier.

 public ArrayList GetEffectivePermissionList(int userID)
 {
 ArrayList permissions = new ArrayList();
 SqlParameter[] parameters =
 { new SqlParameter("@UserID", SqlDbType.Int, 4) };

 parameters[0].Value = userID;

 SqlDataReader tmpReader =
 RunProcedure("sp_Accounts_GetEffectivePermissionList", parameters);
 while (tmpReader.Read())
 {
 permissions.Add(tmpReader.GetInt32(0));
 }
 Connection.Close();
 return permissions;
 }

 The method below returns a list of all users in the database in the form of a DataSet object:

 public DataSet GetUserList()
 {
 return RunProcedure("sp_Accounts_GetUsers",
 new IDataParameter[]{}, "Users");
 }
 }
 }

 Role

 The Role class in the data services tier is responsible for making all changes to the database relating to roles, as well
as retrieving single and multiple roles at a time from the database.

 The following is the source code listing for the Role class, which can be found in the Role.cs file from the
AccountsData project:

 using System;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.Accounts.Data
 {
 public class Role: Wrox.WebModules.Data.DbObject
 {
 public Role(string newConnectionString): base(newConnectionString)
 {}

 The method below takes a description of a new role and creates that role in the database. As usual, all database
access takes place via stored procedures:

 public int Create(string description)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@Description", SqlDbType.VarChar, 50) };
 parameters[0].Value = description;
 return RunProcedure("sp_Accounts_CreateRole", parameters,
 out rowsAffected);
 }

 In this next method, a role is deleted by supplying the numeric ID of the role. This is facilitated by the
sp_Accounts_DeleteRole stored procedure:

 public bool Delete(int roleId)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.Int, 4) };
 parameters[0].Value = roleId;
 RunProcedure("sp_Accounts_DeleteRole", parameters, out rowsAffected);
 return (rowsAffected == 1);
 }

 This next method updates an existing role. We supply the existing role's numeric ID and the new description of the
role, and the sp_Accounts_UpdateRole stored procedure is called to commit the changes to the database:

 public bool Update(int roleId, string description)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.Int, 4),
 new SqlParameter("@Description", SqlDbType.VarChar, 50) };
 parameters[0].Value = roleId;
 parameters[1].Value = description;
 RunProcedure("sp_Accounts_UpdateRole", parameters, out rowsAffected);
 return (rowsAffected == 1);
 }

 The method below retrieves a single role by requesting it from the database using the role's numeric ID. The data for
the role is placed in a single DataRow instance.

 public DataRow Retrieve(int roleId)
 {
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.Int, 4) };

 parameters[0].Value = roleId;
 using (DataSet roles = RunProcedure("sp_Accounts_GetRoleDetails",
 parameters, "Roles"))
 {
 return roles.Tables[0].Rows[0];
 }
 }

 This next method returns a DataSet populated with a list of all the roles in the database. This list is sorted
alphabetically by the sp_Accounts_GetAllRoles stored procedure.

 public DataSet GetRoleList()
 {
 using (DataSet roles = RunProcedure("sp_Accounts_GetAllRoles",
 new IDataParameter[]{}, "Roles"))
 {
 return roles;
 }
 }

 This next method adds a permission to an existing role. By supplying the role identifier and the numeric ID for the
permission, the Accounts_RolePermissions table is modified by calling the sp_Accounts_AddPermissionToRole
stored procedure. If the permission is already part of the role, the method simply does nothing (the stored procedure
exits successfully without making any changes).

 public void AddPermission(int roleId, int permissionId)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.Int, 4),
 new SqlParameter("@PermissionID", SqlDbType.Int, 4) };
 parameters[0].Value = roleId;
 parameters[1].Value = permissionId;
 RunProcedure("sp_Accounts_AddPermissionToRole", parameters,
 out rowsAffected);
 }

 This next method is essentially the opposite of the previous. By supplying a role identifier and a permission identifier,
we effectively remove the permission from the role. If the permission is not currently part of the role, then the method
simply does nothing.

 public void RemovePermission(int roleId, int permissionId)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.Int, 4),
 new SqlParameter("@PermissionID", SqlDbType.Int, 4) };
 parameters[0].Value = roleId;
 parameters[1].Value = permissionId;
 RunProcedure("sp_Accounts_RemovePermissionFromRole", parameters,
 out rowsAffected);
 }

 The following method will completely remove all permissions from a given role by calling the
sp_Accounts_ClearPermissionsFromRole stored procedure:

 public void ClearPermissions(int roleId)
 {
 int rowsAffected;
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.Int, 4), };
 parameters[0].Value = roleId;
 RunProcedure("sp_Accounts_ClearPermissionsFromRole", parameters,
 out rowsAffected);
 }
 }
 }

 Permission

 What each permission does is defined by database administrators and programmers of the website. As such, this
class cannot change the permissions themselves. It provides an overloaded method called GetPermissionList, which
can either obtain an unfiltered list of all permissions in the system, or a list of all permissions belonging to a given role.
Both of these methods return a hierarchical DataSet with a parent-child relationship already defined. This means we
can traverse it in a data bound control.

 The following is the source code listing for the Permission class, found in the Permission.cs file - part of the
AccountsData project:

 using System;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.Accounts.Data
 {
 /// <summary>
 /// Summary description for Permission.
 /// </summary>
 public class Permission: Wrox.WebModules.Data.DbObject
 {
 public Permission(string newConnectionString) : base(newConnectionString)
 { }

 The following method loads a single permission by calling the sp_Accounts_GetPermissionDetails and storing the
results in an instance of the DataRow object:

 public DataRow Retrieve(int permissionId)
 {
 SqlParameter[] parameters = {
 new SqlParameter("@PermissionID", SqlDbType.Int, 4) };

 using (DataSet permissions =
 RunProcedure("sp_Accounts_GetPermissionDetails",
 parameters, "Permissions"))
 {
 if (permissions.Tables[0].Rows.Count == 0)
 {
 throw new AppException("No such permission found on file (" +
 permissionId + ")");
 }
 else
 return permissions.Tables[0].Rows[0];
 }
 }

 The following method loads all permissions in the database into a DataSet instance by calling the
sp_Accounts_GetPermissionCategories stored procedure. The categories are then placed into the permissions
DataSet. Then, the sp_Accounts_GetPermissions stored procedure is called to obtain all permissions in the database.
Once both the permissions and categories are stored in the DataSet, we create a DataRelation to establish a
parent/child relationship between permission categories and permissions.

 public DataSet GetPermissionList()
 {
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.varChar, 4) };
 using (DataSet permissions =
 RunProcedure("sp_Accounts_GetPermissionCategories",
 new IDataParameter[]{}, "Categories"))
 {
 RunProcedure("sp_Accounts_GetPermissionList", parameters, permissions,
 "Permissions");
 DataRelation permissionCategories = new
 DataRelation("PermissionCategories",
 permissions.Tables["Categories"].Columns["CategoryID"],
 permissions.Tables["Permissions"].Columns["CategoryID"]);
 permissions.Relations.Add(permissionCategories);
 return permissions;
 }
 }

 This next method performs the same task as the previous method, but this time the results are filtered to only include
those permissions that belong to a given role:

 public DataSet GetPermissionList(int roleId)
 {
 SqlParameter[] parameters = {
 new SqlParameter("@RoleID", SqlDbType.VarChar, 4) };
 parameters[0].Value = roleId;
 using (DataSet permissions =
 RunProcedure("sp_Accounts_GetPermissionCategories",
 new IDataParameter[]{}, "Categories"))
 {
 RunProcedure("sp_Accounts_GetPermissionList", parameters,
 permissions, "Permissions");
 DataRelation permissionCategories = new
 DataRelation("PermissionCategories",
 permissions.Tables["Categories"].Columns["CategoryID"],
 permissions.Tables["Permissions"].Columns["CategoryID"]);

 permissions.Relations.Add(permissionCategories);
 return permissions;
 }
 }
 }
 }

 PermissionCategory

 Just as with permissions, permission categories do not change. Permission categories are in the database only to
allow for visible grouping of related permissions by the user interface. Beyond that, the permission categories serve no
security-related purpose. The PermissionCategory class provides read access to the list of permission categories in
the database.

 The following is the source code listing for the PermissionCategory class. This can be found in the
PermissionCategory.cs file, also part of the AccountsData project.

 using System;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.Accounts.Data
 {
 /// <summary>
 /// Summary description for PermissionCategory.
 /// </summary>
 public class PermissionCategory : Wrox.WebModules.Data.DbObject
 {
 public PermissionCategory(string newConnectionString) : base(
 newConnectionString)
 { }

 The following method retrieves a single permission category from the database and returns it in the form of a
DataRow instance:

 public DataRow Retrieve(int categoryId)
 {
 SqlParameter[] parameters = {
 new SqlParameter("@CategoryID", SqlDbType.Int, 4) };
 parameters[0].Value = categoryId;

 using (DataSet categories =
 RunProcedure("sp_Accounts_GetCategoryDetails",
 parameters, "Categories"))
 {
 return categories.Tables[0].Rows[0];
 }
 }

 The following method obtains a list of all permissions that belong to a given category, returning the results in the form
of an instance of the DataSet class:

 public DataSet GetPermissionsInCategory(int categoryId)
 {
 SqlParameter[] parameters = {
 new SqlParameter("@CategoryID", SqlDbType.Int, 4) };
 parameters[0].Value = categoryId;
 using (DataSet permissions =
 RunProcedure("sp_Accounts_GetPermissionsInCategory",
 parameters, "Categories"))
 {
 return permissions;
 }
 }

 The following method obtains a list of all of the categories in the database, sorted alphabetically by the
sp_Accounts_GetPermissionCategories stored procedure:

 public DataSet GetCategoryList()
 {
 using (DataSet categories =
 RunProcedure("sp_Accounts_GetPermissionCategories",
 new IDataParameter[]{}, "Categories"))
 {
 return categories;
 }
 }
 }
 }

 AccountsTool

 Occasionally we need to access a set of data, or some configuration information not directly related to any given
model. In these cases, programmers typically employ a tool or helper class. This is the purpose of the AccountsTool
class: for handling the miscellaneous tasks that we don't necessarily need a pure object model to handle.

 Our AccountsTool class in the business layer will provide the following static methods, all returning datasets:

 GetStates - returns a list of states used to populate a drop-down list when the user sets their address.

 GetAllPermissions - returns a list of all permissions in the system.

 GetRoleList - returns a list of all roles in the database.

 The only one of these that does not have its data access needs provided by another data tier class is GetStates, so
Accounts.Data.AccountsTool contains the following method:

 public DataSet GetStateList()
 {
 return RunProcedure("sp_Accounts_GetStateList", new IDataParameter[]{},
 "States");
 }

 This executes a stored procedure in the database, returning all states.

 The Business Tier
 This next section will take you through the source code for the business tier classes, starting with the implementation
of our PhilePrincipal and PhileIdentity classes.

 PhilePrincipal

 The PhilePrincipal class snaps in to the existing ASP.NET forms-based authentication. This class implements the
System.Security.Principal.IPrincipal interface, and adds additional functionality to allow pages aware of our
customizations to query additional security information. But by obeying the standards in the interface, we ensure that
components and pages not aware of our customizations will be able to use our objects.

 Here is the source code listing for the PhilePrincipal class, from the PhilePrincipal.cs file in the AccountsBusiness
project:

 using System;
 using System.Collections;
 using System.Security;
 using System.Security.Cryptography;
 using System.Text;

 using Wrox.WebModules.Accounts;

 namespace Wrox.WebModules.Accounts.Business
 {
 /// <summary>
 /// Summary description for PhilePrincipal.
 /// </summary>
 public class PhilePrincipal : Wrox.WebModules.Business.BizObject,
 System.Security.Principal.IPrincipal
 {

 Here we create some private member variables to hold our internal data. Referring to the requirements of the
IPrincipal interface, we know that we must implement an Identity property that returns an instance of an IIdentity
interface. Knowing this, we also put in a member variable to hold the identity for this instance of IPrincipal:

 protected System.Security.Principal.IIdentity identity;
 protected ArrayList permissionList;
 protected ArrayList roleList;

 // IPrincipal Interface Requirements:
 // property Identity (IIdentity)
 // property IsInRole (boolean)

 public System.Security.Principal.IIdentity Identity
 {
 get
 {
 return identity;
 }
 set
 {
 identity = value;
 }
 }

 public bool IsInRole(string role)
 {
 return roleList.Contains(role);
 }

 This next method, HasPermission, is one of the methods we have added. As long as we typecast properly, we can
always have access to this method even though Microsoft's code is handing around pointers to the IPrincipal instance:

 public bool HasPermission(int permissionID)
 {
 return permissionList.Contains(permissionID);
 }

 public ArrayList Roles
 {
 get
 {
 return roleList;
 }
 }

 public ArrayList Permissions
 {
 get
 {
 return permissionList;
 }
 }

 The following set of constructors initializes an instance of the PhilePrincipal class. There are two ways we can
construct this class - by user ID or e-mail address:

 public PhilePrincipal(int userID)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 identity = new PhileIdentity(userID);
 permissionList = dataUser.GetEffectivePermissionList(userID);
 roleList = dataUser.GetUserRoles(userID);
 }

 public PhilePrincipal(string emailAddress)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 identity = new PhileIdentity(emailAddress);
 permissionList = dataUser.GetEffectivePermissionList(
 ((Business.PhileIdentity)identity).UserID);
 roleList = dataUser.GetUserRoles(
 ((Business.PhileIdentity)identity).UserID);
 }

 In this next method, in order to validate the user's plain text ASCII password without transmitting it across a wire in
that format, we encrypt it first and then pass it to the data services tier for validation against the encrypted password
stored in the database:

 public static PhilePrincipal ValidateLogin(string emailAddress,
 string password)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 int newID;

 byte[] cryptPassword = EncryptPassword(password);

 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);

 In this next if block, we evaluate the result of the ValidateLogin method in the data services user component. If the
result is greater than -1, then we assume that the result was the numeric identity of the user attempting to log in. If the
result was equal to -1, then we assume the login failed and we return null, indicating that the login failed.

 if ((newID = dataUser.ValidateLogin(emailAddress, cryptPassword)) > -1)
 return new PhilePrincipal(newID);
 else
 return null;
 }

 public static byte[] EncryptPassword(string password)
 {
 UnicodeEncoding encoding = new UnicodeEncoding();
 byte[] hashBytes = encoding.GetBytes(password);

 // compute SHA-1 hash.
 SHA1 sha1 = new SHA1CryptoServiceProvider();
 byte[] cryptPassword = sha1.ComputeHash (hashBytes);

 return cryptPassword;
 }
 }
 }

 PhileIdentity

 PhileIdentity implements the System.Security.Principal.IIdentity interface. We use this interface so that our class can
snap in to the existing authentication framework provided by ASP.NET.

 The following is the source code listing for the PhileIdentity class, which you can find in the PhileIdentity.cs file in the
AccountsBusiness project:

 using System;
 using System.Data;
 using System.Text;
 using System.Collections;
 using System.Security.Cryptography;

 using Wrox.WebModules.Accounts;

 namespace Wrox.WebModules.Accounts.Business
 {
 /// <summary>
 /// Summary description for PhileIdentity.
 /// </summary>
 public class PhileIdentity:Wrox.WebModules.Business.BizObject,
 System.Security.Principal.IIdentity
 {
 private string firstName;
 private string lastName;
 private string emailAddress;
 private byte[] password;
 private int userID;

 // IIdentity interface requirements:
 // property AuthenticationType (string)
 // property IsAuthenticated (bool)
 // property Name (string)

 public string AuthenticationType
 {
 get
 {
 return "Custom Authentication";
 }
 set
 {
 // do nothing
 }
 }

 public bool IsAuthenticated
 {
 get
 {
 // assumption: all instances of a PhileIdentity have already
 // been authenticated.
 return true;
 }
 }

 public string Name
 {
 get
 {
 return firstName + " " + lastName;
 }
 }

 // Constructors:

 Like PhilePrincipal, PhileIdentity also has two constructors - one for e-mail address and one for user ID:

 public PhileIdentity(string currentEmailAddress)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 DataRow userRow = dataUser.Retrieve(currentEmailAddress);

 firstName = (string)userRow["FirstName"];
 lastName = (string)userRow["LastName"];
 emailAddress = currentEmailAddress;
 userID = (int)userRow["UserID"];
 password = (byte[])userRow["Password"];
 }

 public PhileIdentity(int currentUserID)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 DataRow userRow = dataUser.Retrieve(currentUserID);

 firstName = (string)userRow["FirstName"];
 lastName = (string)userRow["LastName"];
 emailAddress = (string)userRow["EmailAddress"];
 userID = currentUserID;
 password = (byte[])userRow["Password"];
 }

 // Properties and methods added on to existing interface implementation.

 public int TestPassword(string password)
 {
 // At some point, we may have a more complex way of encrypting or
 // storing the passwords so by supplying this procedure, we can simply
 // replace its contents to move password comparison to the database (as
 // we've done below) or somewhere else (e.g. another web service, etc).

 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 UnicodeEncoding encoding = new UnicodeEncoding();
 byte[] hashBytes = encoding.GetBytes(password);

 SHA1 sha1 = new SHA1CryptoServiceProvider();
 byte[] cryptPassword = sha1.ComputeHash(hashBytes);

 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 return dataUser.TestPassword(userID, cryptPassword);
 }

 public string FirstName
 {
 get
 {
 return firstName;
 }
 }

 public string LastName
 {
 get
 {
 return lastName;
 }
 }
 }
 }

 Again, we've removed a couple of the property definitions from the code listing because it gets a bit redundant when
the definitions are merely simple set/get pairs.

 User

 Of course, in a module that provides user authentication and account storage, the User class is going to be the main
class in the module. This class provides a model that represents a single user, and can be used to create or update a
single user. Do not confuse the User class with either the PhilePrincipal or PhileIdentity classes, as they represent two
distinct sets of functionality. The latter two classes are for integrating with ASP.NET security.

 The following is a partial source code listing for the User class. The full version is available in User.cs in the
AccountsBusiness project:

 using System;
 using System.Data;

 namespace Wrox.WebModules.Accounts.Business
 {
 /// <summary>
 /// Summary description for User.
 /// </summary>
 public sealed class User : Wrox.WebModules.Business.BizObject
 {
 private Configuration.ModuleSettings moduleSettings;
 private int userID;
 private string firstName;
 private string lastName;
 private string address1;
 private string address2;
 private string city;
 private string state;
 private string zipCode;
 private string homePhone;
 private string emailAddress;
 private byte[] password;
 private string country;

 public User()
 {
 moduleSettings = Configuration.ModuleConfig.GetSettings();
 }

 private void LoadFromID()
 {
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 DataRow userRow = dataUser.Retrieve(userID);

 FirstName = (string)userRow["FirstName"];
 lastName = (string)userRow["LastName"];
 address1 = (string)userRow["Address1"];
 address2 = (string)userRow["Address2"];
 city = (string)userRow["City"];
 state = (string)userRow["State"];
 zipCode = (string)userRow["ZipCode"];
 homePhone = (string)userRow["HomePhone"];
 emailAddress = (string)userRow["EmailAddress"];
 password = (byte[])userRow["Password"];
 country = (string)userRow["Country"];
 }

 public User(int existingUserID)
 {
 moduleSettings = Configuration.ModuleConfig.GetSettings();
 userID = existingUserID;
 LoadFromID();
 }

 The method listed below provides a handy way of converting an existing Principal into a User object. The usefulness
of this might not be immediately obvious, but you will see the source code that utilizes this method later. Essentially, it
provides us with an extremely handy shortcut of creating a new instance of a User class based on the currently
logged-in user account as detected by ASP.NET:

 public User(PhilePrincipal existingPrincipal)
 {
 moduleSettings = Configuration.ModuleConfig.GetSettings();
 userID = ((PhileIdentity)existingPrincipal.Identity).UserID;
 LoadFromID();
 }

 public int Create()
 {
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 userID = dataUser.Create(emailAddress, password, firstName, lastName,
 address1, address2, city, state, zipCode,
 homePhone, country);

 return userID;
 }

 public bool Update()
 {
 Data.User dataUser = new Data.User(moduleSettings.ConnectionString);
 return dataUser.Update(userID, emailAddress, password, firstName,
 lastName, address1, address2, city, state,
 zipCode, homePhone, country);
 }

 // PROPERTIES DEFINED BELOW

 public int UserID
 {
 get
 {
 return userID;
 }
 set
 {
 userID = value;
 }
 }

 // Other properties cut out of code listing for clarity...

 }
 }

 The code continues to define get/set properties for each private member variable declared above. By now this syntax
should be second nature, so we won't include it here. The properties removed from the listing to keep the chapter
length manageable are all simple get/set accessors for the first name, last name, address, and so forth.

 Role

 The Role class in the business tier is for administration. All of the information about the permissions and roles granted
to a logged-in user is contained in the identity/principal pair. This class is used to create and update roles, as well as
grant/revoke permissions on the role.

 The following is the source code listing for the Role class, which is in Role.cs, part of the AccountsBusiness project:

 using System;
 using System.Data;
 using Wrox.WebModules.Accounts;

 namespace Wrox.WebModules.Accounts.Business
 {

 /// <summary>
 /// Summary description for Role.
 /// </summary>
 public class Role: Wrox.WebModules.Business.BizObject
 {
 private int roleId;
 private string description;

 public Role()
 { }

 This next method will instantiate a Role object based on the ID of an existing role:

 public Role(int currentRoleId)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);
 DataRow roleRow;

 roleRow = dataRole.Retrieve(currentRoleId);
 roleId = currentRoleId;
 description = (string)roleRow["Description"];
 }

 This next method will create a new role and commit the changes to the database by way of the data services tier
component:

 public int Create()
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);

 roleId = dataRole.Create(description);
 return roleId;
 }

 The method shown below will save the current role's state (managed by private member variables exposed as
properties) in the database:

 public bool Update()
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);

 return dataRole.Update(roleId, description);
 }

 This next method will delete the role indicated by the current RoleID as stored in the object instance:

 public bool Delete()
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);

 return dataRole.Delete (roleId);
 }

 This next method adds a given permission to the currently instantiated role:

 public void AddPermission(int permissionId)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);

 dataRole.AddPermission(roleId, permissionId);
 }

 This next method removes a given permission from the currently instantiated role:

 public void RemovePermission(int permissionId)
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);

 dataRole.RemovePermission(roleId, permissionId);
 }

 This next method removes all permissions currently associated with the current role instance:

 public void ClearPermissions()
 {
 Configuration.ModuleSettings moduleSettings =
 Configuration.ModuleConfig.GetSettings();
 Data.Role dataRole = new Data.Role(moduleSettings.ConnectionString);

 dataRole.ClearPermissions(roleId);
 }

 public int RoleID
 {
 get
 {
 return roleId;
 }
 }

 public string Description
 {
 get
 {
 return description;
 }
 set
 {
 description = value;
 }
 }
 }
 }

 AccountsTool

 The following is the source code listing for the AccountsTool class, a utility class that allows us to obtain lists that do
not fit into the object model. This class is in the AccountsTool.cs file in the AccountsBusiness project:

 using System;
 using System.Data;
 namespace Wrox.WebModules.Accounts.Business
 {
 /// <summary>
 /// Summary description for AccountsTool.
 /// </summary>
 public class AccountsTool: Wrox.WebModules.Business.BizObject
 {
 public static DataSet GetStates()
 {
 Data.AccountsTool tool = new Data.AccountsTool(
 Configuration.ModuleConfig.GetSettings().ConnectionString);
 return tool.GetStateList();
 }

 public static DataSet GetAllPermissions()
 {
 Data.Permission dataPermission = new Data.Permission(
 Configuration.ModuleConfig.GetSettings().ConnectionString);
 return dataPermission.GetPermissionList();
 }

 public static DataSet GetRoleList()
 {
 Data.Role dataRole = new Data.Role(
 Configuration.ModuleConfig.GetSettings().ConnectionString);
 return dataRole.GetRoleList();
 }
 }
 }

 Modifying the UI to Support Authentication
 If you remember back to Chapter 3 where we built the core foundation of the user interface, we created several
standardized UI elements for use in our ThePhile web application project. Two of these elements were a base class
for pages and a user control to display a site header at the top of every page. Both of these were implemented
assuming that some kind of authentication would be taking place, but without knowing the exact implementation.

 In this section we will change the PhilePage class and the SiteHeader user control in order to take full advantage of
our authentication system. These changes are going to make use of the PhileIdentity and PhilePrincipal classes, which
we discussed earlier.

 Modifying the PhilePage Class

 In order to simplify the use of the customized PhileIdentity and PhilePrincipal classes for the rest of the website,
including all of the other modules being developed for this book, we decided to make a slight change to the PhilePage
class by enhancing its PhilePage_Load method. Here is the new version of that method, in the PhilePage.cs file in the
main ThePhile project:

 private void PhilePage_Load(object sender, System.EventArgs e)
 {
 if (Context.User.Identity.IsAuthenticated)
 {
 if (!(Context.User is PhilePrincipal))
 {
 // ASP.NET's regular forms authentication picked up our cookie, but we
 // haven't replaced the default context user with our own. Let's do that
 // now. We know that the previous User.Identity.Name is the e-mail
 // address (because we force it to be as such in the login.aspx page)
 PhilePrincipal newUser = new PhilePrincipal(Context.User.Identity.Name);
 Context.User = newUser;
 }
 }
 }

 Essentially, this is the "load profile" portion of the user authentication flow diagram that we saw earlier in the chapter.
At the very beginning of the load process of the page a check is made to see if the user is authenticated. If the
authenticated user is not already one of our custom PhilePrincipal instances, then we simply create a new instance of
the PhilePrincipal class based on the current user identity name (we're using the e-mail address as the 'name'). Once
the new instance is created, we assign that instance back to the Context.User property. This loads a complete user
profile into the authentication framework provided by ASP.NET.

 Modifying the SiteHeader Control

 Another facet of our website that will become a bit more robust with our user authentication solution is our site
header control.

 One thing we know about user controls is that they each have their own Page_Load event, since ASP.NET
considers them almost as 'micro pages'. We know that the parent page, if it inherits from PhilePage, will have already
created an appropriate PhilePrincipal in the Context.User property. Therefore, to obtain a more user-friendly
greeting, all we have to do is modify the site header control (/ThePhile/Controls/SiteHeader.ascx.cs file in the
ThePhile project) in the following way:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 Greeting.Text = "Welcome, ";
 if (Context.User.Identity.IsAuthenticated)
 {
 // superceded to make more user-friendly since the user's ID is just
 // an e-mail address:
 // Greeting.Text += Context.User.Identity.Name + ".";
 PhileIdentity id = (PhileIdentity)Context.User.Identity;
 Greeting.Text += "" + id.FirstName + " " + id.LastName + "";
 UserLink.Text = "My Account";
 UserLink.NavigateUrl = "/ThePhile/Modules/Users/MyAccount.aspx";
 }
 else
 {
 Greeting.Text += "Guest User.";
 UserLink.Text = "Click to Login";
 UserLink.NavigateUrl = "/ThePhile/Modules/Users/Login.aspx";
 }
 }

 This not only provides a user-friendly greeting, but it intelligently decides which link to display to the user. If they have
already logged in, then they are given a link to the "My Account" page, which allows them to make changes to their
personal information and preferences. If they have not logged in (no authentication cookie was found), then they are
given a link to the login page.

 The Login, Registration, and User Details Pages

 The following is a screenshot of the new login page, the code for which is available as
/ThePhile/Modules/Users/Login.aspx. The top of the page shows the modified SiteHeader control, which has
recognized the user and is displaying that user's first and last names. As we just saw, we do this by instantiating a User
object from the business tier and obtaining the FirstName and LastName properties.

 Finally, let's take a look at a screenshot of the user profile page. This is the page that the user sees when they want to
modify their own personal information. A very similar version of this page is displayed when the user is first registering
as a new account:

 This form is accomplished using some fairly standard and simple ASP.NET data binding techniques. For
demonstration purposes, it is sometimes helpful to show how to do things both ways, so in the code for this form
(which you can find in /ThePhile/Modules/Users/MyAccount.aspx.cs) we've shown how to manually set the value of
the textboxes rather than use data binding. In the administration section (discussed later) we use some more complex
data binding to show you the difference in code size and readability.

 The following is the Page_Load event for the page displayed above:

 private void Page_Load(object sender, System.EventArgs e)
 {
 {
 // Put user code to initialize the page here
 RoleList.Visible = false;
 SaveMessage.Visible = false;
 if (!Page.IsPostBack)
 {
 DataSet states;
 if (Context.User.Identity.IsAuthenticated)
 {
 Wrox.WebModules.Accounts.Business.User currentUser =
 new Wrox.WebModules.Accounts.Business.User(
 (Wrox.WebModules.Accounts.Business.PhilePrincipal)Context.User);

 FirstName.Text = currentUser.FirstName;
 EmailAddress.Text = currentUser.EmailAddress;
 LastName.Text = currentUser.LastName;
 Address1.Text = currentUser.Address1;
 Address2.Text = currentUser.Address2;
 ZipCode.Text = currentUser.ZipCode;
 City.Text = currentUser.City;
 HomePhone.Text = currentUser.HomePhone;

 The previous few lines of codes set the text property of the page's TextBox controls. The following code block uses
data binding to bind a DropDownList control to the list of states available. This list includes a 'blank' state for those
people logging in from outside the US:

 states = AccountsTool.GetStates();
 StateDropDown.DataSource = states;
 StateDropDown.DataTextField = "Description";
 StateDropDown.DataValueField = "StateCode";
 StateDropDown.DataBind();
 StateDropDown.SelectedIndex =
 StateDropDown.Items.IndexOf(StateDropDown.Items.FindByValue(
 currentUser.State));

 }
 else
 {
 mainPanel.Visible = false;
 }
 }

 This is another example of where our architecture of expanding on the existing security system is going to pay off.
Here, we simply ask the Context.User object if it has any roles assigned to it. If it does, then we will iterate through
them, building an HTML unordered list to display those roles.

 if (((PhilePrincipal)Context.User).Roles.Count > 0)
 {
 RoleList.Visible = true;
 ArrayList roles = ((PhilePrincipal)Context.User).Roles;
 RoleList.Text = "You are have been granted the following roles:";
 for(int i=0; i<roles.Count; i++)
 {
 RoleList.Text += "" + roles[i] + "";
 }
 RoleList.Text += "";
 }
 }

 Administering Roles and Accounts
 The administration of the roles and accounts system is fairly straightforward. The Admin directory of the User module
has been secured by NTFS, which allows us to ensure that nobody without the specific permissions defined on that
directory will be able to access those files. If someone attempts to access this directory without the appropriate
account, the browser will simply report that it cannot access the files.

 If you have downloaded the sample code, then more than likely your Admin directory will not be secured. For
testing purposes, that's fine. However, to secure it, simply right-click it in your file explorer and administer
the permissions as you would any other directory. Consult your Windows 2000 or XP manual or reference
guide for more information on NTFS permissions.

 The Accounts administration module provides a role editor. This role editor will allow administrative users to create
new roles, as well as edit existing ones. The following screenshot shows a sample of the administration screen that
administrative users are greeted with when they first open up the page (they'll have to type in the URL manually, as
there are no links to this page):

 The following is the listing for the Page_Load event from the above page (found in
/ThePhile/Modules/Users/Admin/Roles.aspx.cs, again, still in our ThePhile application):

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 PhilePrincipal currentPrincipal = (PhilePrincipal)Context.User;
 if (!currentPrincipal.HasPermission((int)AccountsPermissions.CreateRoles))
 {
 NewRoleButton.Visible = false;
 NewRoleDescription.Visible = false;
 }
 else
 {
 NewRoleButton.Visible = true;
 NewRoleDescription.Visible = true;
 }
 roles = AccountsTool.GetRoleList();
 RoleList.DataSource = roles.Tables["Roles"];
 RoleList.DataBind();
 }

 As you can see, we are controlling the visibility of the Create Role button based on whether or not the currently
logged-in user has the AccountsPermissions.CreateRoles permission. Beyond that, we simply bind our DataList
control, RoleList, to the Roles table returned from the GetRoleList method.

 As shown in the above screenshot, it is a pretty simple interface. Selecting an existing role presents an interactive
screen similar to the one shown below. The core of this particular UI is the side-by-side listboxes. By clicking on a
category in the left listbox, the child list of permissions is filled into the listbox on the right. Then, by clicking on the
entry for a permission item, the option to remove that permission automatically becomes available. There is also the
option to delete the current role:

 Let's examine the source code for the code-behind for this page. In order to get all of this to work, the ListBox that
contains the permission categories must automatically post back any time an event on it triggers. This allows us to
respond to the event on the server-side and obtain more data from the data source to populate the second ListBox
for the permissions themselves.

 public class EditRole : Wrox.ThePhile.Web.PhilePage
 {
 protected System.Web.UI.WebControls.Label RoleLabel;
 protected System.Web.UI.WebControls.ListBox CategoryList;
 protected System.Web.UI.WebControls.ListBox PermissionList;
 protected Wrox.ThePhile.Web.Controls.Server.Navigator MenuNav;
 protected System.Web.UI.WebControls.Button RemovePermissionButton;
 protected System.Web.UI.WebControls.Button AddPermissionButton;
 protected System.Web.UI.WebControls.DropDownList PermissionDropList;
 protected System.Web.UI.WebControls.Button RemoveRoleButton;
 protected System.Web.UI.WebControls.LinkButton ManageAssignmentsLink;

 private Role currentRole;

 We knew in advance that there would be several different occasions when we were going to need to configure the
data binding properties of this page (each time an event fires that causes a server postback, we need to make sure
that our data is returned to the appropriate state after responding to the event). So we placed all of that code into a
separate function to be called by any event that needs to. We called this function DoInitialDataBind:

 private void DoInitialDataBind()
 {
 currentRole = new Role(Convert.ToInt32(Request["RoleID"]));
 RoleLabel.Text = "Current Role: " + currentRole.Description;
 PermissionList.Items.Clear();
 RemovePermissionButton.Visible = false;
 CategoryList.DataSource = currentRole.Permissions.Tables["Categories"];
 CategoryList.DataTextField = "Description";
 CategoryList.DataValueField = "CategoryID";
 CategoryList.DataBind();

 DataSet allPermissions = AccountsTool.GetAllPermissions();
 PermissionDropList.DataSource = allPermissions.Tables["Permissions"];
 PermissionDropList.DataTextField = "Description";
 PermissionDropList.DataValueField = "PermissionID";
 PermissionDropList.DataBind();
 }

 Here is the Page_Load event handler. First, we test to see if the user has the right permissions to be viewing this
page. If they don't, we simply stop the process and end the Response. Otherwise, we test to see if this is the first time
the page has been loaded. If so, then we must perform the initial data binding. If it is a postback, then we know that
each control is having its state rebuilt by the ASP.NET server process automatically, so there is no need to rebind:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 PhilePrincipal currentPrincipal = (PhilePrincipal)Context.User;
 if (!currentPrincipal.HasPermission((int)AccountsPermissions.UpdateRoles))
 {
 Response.Write("You don't have sufficient permission to be using this
 page.");
 Response.End();
 }

 if (!Page.IsPostBack)
 {
 DoInitialDataBind();
 }
 }

 This next method, which was built automatically by the ASP.NET Forms Designer, sets up the event handlers. We
are responding to a click on the Manage Assignments link, a change in the selected index of the permission category
DropDownList, a change in the selected index of the permission DropDownList, a click on the Remove Permission
button, a click on the Add Permission button, and finally a click on the Remove Role button, as well as the standard
Load event:

 private void InitializeComponent()
 {
 this.ManageAssignmentsLink.Click +=
 new System.EventHandler(this.ManageAssignmentsLink_Click);
 this.CategoryList.SelectedIndexChanged +=
 new System.EventHandler(this.CategoryList_SelectedIndexChanged);
 this.PermissionList.SelectedIndexChanged +=
 new System.EventHandler(this.PermissionList_SelectedIndexChanged);
 this.RemovePermissionButton.Click +=
 new System.EventHandler(this.RemovePermissionButton_Click);
 this.AddPermissionButton.Click +=
 new System.EventHandler(this.AddPermissionButton_Click);
 this.RemoveRoleButton.Click +=
 new System.EventHandler(this.RemoveRoleButton_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion

 In order for our web form to appear as though its state is being properly maintained we need to respond to events.
One task we perform over and over again is selecting the category. This method is designed to select a given category
as well as populate the permissions DropDownList accordingly:

 private void SelectCategory(int categoryId, bool forceSelection)
 {
 if (forceSelection)
 {
 CategoryList.SelectedIndex = CategoryList.Items.IndexOf (
 CategoryList.Items.FindByValue(categoryId.ToString()));
 }
 currentRole = new Role(Convert.Tolnt32(Request["RoleID"]));
 DataTable categories = currentRole.Permissions.Tables["Categories"];

 DataRow currentCategory = categories.Rows.Find(categoryId);
 if (currentCategory != null)
 {
 DataRow[] permissions =
 currentCategory.GetChildRows("PermissionCategories");
 PermissionList.Items.Clear();
 foreach (DataRow currentRow in permissions)
 {
 PermissionList.Items.Add(
 new ListItem((string)currentRow["Description"],
 Convert.ToString(currentRow["PermissionID"])));
 }
 }
 }

 private void CategoryList_SelectedIndexChanged(object sender,
 System.EventArgs e)
 {
 SelectCategory(Convert.ToInt32(CategoryList.SelectedItem.Value), false);
 }

 We have set up an event to handle the Remove Permission button click, for when we want to remove a permission
item from our DropDownList of permissions. This works fine, but the category list loses its state - because its state is
populated in the initial binding, which we don't need to do in a postback. To account for this, we use the
SelectCategory method, forcing a selection of the current category after a permission has been removed:

 private void RemovePermissionButton_Click(object sender, System.EventArgs e)
 {
 int currentRole = Convert.ToInt32(Request["RoleID"]);
 Role bizRole = new Role(currentRole);
 bizRole.RemovePermission(
 Convert.ToInt32(PermissionList.SelectedItem.Value));
 DoInitialDataBind();
 SelectCategory(Convert.ToInt32(Request["CategoryList"]), true);
 }

 By default, the Remove Permission button is invisible. To reveal the button after a permission is selected in the
appropriate ListBox, we respond to the SelectedIndexChanged event by making the Remove Permission button
visible:

 private void PermissionList_SelectedIndexChanged(object sender,
 System.EventArgs e)
 {
 RemovePermissionButton.Visible = true;
 }

 This next event handler responds to the Add Permission button's Click event. This will add the currently selected
permission to the role currently being edited. While it is physically possible for us to use purely client-side methods to
accomplish this same thing visibly, we're going to avoid that. Instead, we're going to use the event model that
ASP.NET provides us. The main reason for this is that server-side code is guaranteed to work on all browsers. If we
round-trip for this action, we don't care about the client support for JavaScript (ever seen a DHTML page try to run
on a WebTV box or a Sega Dreamcast web browser?). By doing all the work on the serverside, we take an initial
latency penalty, but since all of the data is already available to the web page to begin with, the performance loss we
suffer is negligible and our gains in browser compatibility are well worth it.

 private void AddPermissionButton_Click(object sender, System.EventArgs e)
 {
 int currentRole = Convert.ToInt32(Request["RoleID"]);
 Role bizRole = new Role(currentRole);
 bizRole.AddPermission(
 Convert.ToInt32(PermissionDropList.SelectedItem.Value));
 DoInitialDataBind();
 SelectCategory(Convert.ToInt32(Request["CategoryList"]), true);
 }

 This next event handler will delete the current role (the stored procedure will also remove all data dependent on that
role) and then transfer control to the Roles.aspx page, as the current role will no longer exist.

 private void RemoveRoleButton_Click(object sender, System.EventArgs e)
 {
 int currentRole = Convert.ToInt32(Request["RoleID"]);
 Role bizRole = new Role(currentRole);
 bizRole.Delete();
 Server.Transfer("Roles.aspx");
 }

 private void ManageAssignmentsLink_Click(object sender, System.EventArgs e)
 {
 Server.Transfer("RoleAssignments.aspx?RoleID="+Request["RoleID"]);
 }
 }
 }

 And finally, as the last part of our user accounting administration section, let's take a look at the source code of the
page that manages the user memberships of given roles. Here is a screenshot of this page in action:

 This page works in a fairly straightforward manner. The user of the page, who would typically be a system
administrator, supplies an e-mail address and can then either click the Assign User to Role button or the Remove
User from Role button. If the user is already in the role when being added, no error is displayed. If the user is not in
the role when being removed from the role, then no error message is displayed. The reason for not displaying any
messages is that if your desired state is already the way you intend it, then we shouldn't have to report that the code
did nothing to get you to that state. If you want to remove a user who isn't there, why bother telling you we didn't
remove a user that wasn't there? Obviously, we could make the administration system more user-friendly by giving
more verbose reports, but that's typically something we would work on after the system is fully functional.

 Let's take a look at the code-behind for this page (/ThePhile/Modules/Users/Admin/RoleAssignments.aspx.cs).
Instead of listing the entire source code, we'll just include the important method definitions and web form designer
code:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 if (!Page.IsPostBack)
 {
 Role currentRole = new Role(Convert.ToInt32(Request["RoleID"]));
 CurrentRoleLabel.Text = "Current Role: " + currentRole.Description;
 }
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 base.OnInit(e);
 InitializeComponent();
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.AssignUserButton.Click += new
 System.EventHandler(this.AssignUserButton_Click);
 this.RemoveUserButton.Click += new
 System.EventHandler(this.RemoveUserButton_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion

 This next event handler is executed in response to clicking the Assign User to Role button. First, we obtain a
PhilePrincipal instance by instantiating the PhilePrincipal class with an e-mail address as an argument to the
constructor. Then we obtain an instance of a User class by passing in the instance of PhilePrincipal we just created.
Once this is done then we can invoke the AddToRole method on that object. Finally, we set the text of a Label
control to inform the administrative user of what just took place:

 private void AssignUserButton_Click(object sender, System.EventArgs e)
 {
 PhilePrincipal tempPrincipal = new PhilePrincipal(EmailAddress.Text);
 Business.User tempUser = new Business.User(tempPrincipal);
 tempUser.AddToRole(Convert.ToInt32(Request["RoleID"]));
 StatusLabel.Text = "User " + EmailAddress.Text + " Granted Role.
";
 StatusLabel.Visible = true;
 }

 Just as we did in the last event handler, we obtain an instance of a PhilePrincipal class by supplying the e-mail
address contained in the form. Once we've accomplished this we can instantiate a User object by passing the new
PhilePrincipal instance to the User constructor. Once we have an instance of the User class, we can simply call
RemoveRole on that instance and we're done.

 private void RemoveUserButton_Click(object sender, System.EventArgs e)
 {
 PhilePrincipal tempPrincipal = new PhilePrincipal(EmailAddress.Text);
 Business.User tempUser = new Business.User(tempPrincipal);
 tempUser.RemoveRole(Convert.ToInt32(Request["RoleID"]));
 StatusLabel.Text = "User " + EmailAddress.Text + " Removed from Role.
";
 StatusLabel.Visible = true;
)

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 5 - Users and Authentication

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 This chapter started off by presenting a problem that many websites today are faced with: that of identifying,
authenticating, remembering, and persisting user accounts. We then went through a design for a solution to this
problem. Finally, we looked at the extensive source code for an expandable, powerful implementation.

 In this chapter we covered quite a few topics and took a look at a fair amount of code. We covered some important
concepts, such as the uses and benefits of role-based security, and the importance of integrating into existing systems
rather than creating entirely new infrastructures. We covered a complex system of assigning permissions to roles, and
assigning users to those roles, and showed how we can create a fully functioning authentication system around this
concept.

 Hopefully, you have found this chapter useful, and you will understand the following important concepts that you can
use in your own projects and sample applications:

 The issues surrounding user identification

 Issues involved in user authentication

 Issues involved in securing all or some of a web application

 Provisions for administrative or 'power' users

 Now that we have our Accounts module we can move on and implement other modules that rely on it for user
identification and authentication. In the next chapter we'll begin to look at modules relating to the content of our site,
beginning with one to manage news articles.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 6 - News Management

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 6: News Management
 The site we're building is basically a content site focused on DVDs and books. Content can be in the form of news,
articles, reports of special events, reviews, and so on. In this chapter we're going to point out some of the
content-related problems that should be considered for sites of this type. We'll then design and develop an online
news manager to enable complete management of our site's content - acquiring news, adding, activating, and
removing news, sharing news with others, and so on. While we will focus on managing news, many of these
techniques will be relevant when dealing with other types of content.

 The Problem
 There are several ways to gather information and news for our site's content: we might hunt for news ourselves, get
news directly from the users (a great example of this is the Add Your News link at www.aspwire.com), or rely upon
a company, such as Reuters, whose business it is to gather and organize news and distribute it to third party sites.
Another common technique is to keep an eye on other news sites, and scrape articles together from information
available on the Internet. Many sites (for example www.wired.com) also provide links to suggested stories elsewhere.
It doesn't matter which methods we use, we still need fresh and updated content if our site is to be successful and
entice users to return. No user will come regularly to a site if they never, or very seldom, find some new content.

 Once we have our news sources, a second problem arises: how to add news and articles to our site. We can
immediately rule out manually updating or adding static HTML pages - if we have to add news several times a day, or
even just every week, creating and uploading pages and editing all the links is not practical in most cases. In cases
where it is practical, we don't need to write a new management system!

 For our site, we need a much more flexible system, one that allows the site administrators to easily publish news
without requiring special HTML tools or a knowledge of HTML. We want it to have many features, such as enabling
us to organize news in categories and show abstracts, and allowing the site users to post their own news. We'll see
the complete list of features we're going to implement in the Design section. For now it's sufficient to say that we must
be able to manage the content online, without any other tool. Think about what this implies: you can add or edit news
as soon as it is available, in a few minutes, even if you're not in your office and even if you don't have access to your
own computer; all you need is a connection to the Internet and a browser. And this can work the same way for your
news contributors and partners. They won't need to e-mail the news to you and then wait for you to publish it - they
can submit and publish content without your intervention (although in our case we will give the administrator the option
to approve or edit the content before publication). A good example of this is www.codeproject.com, which provides
article categories plus an "unedited section" for the user-submitted articles that have not been edited yet.

 For small content sites, or for sites where news and articles are not the main business, simply showing news and
other resources is sufficient. But others may want to take this one step further, and decide to offer the news they have
gathered/written and organized to other sites. Such sites might not want to spend time finding and formatting articles,
may not have people who look after a news management system, but might want to fuel their site with some fresh
content automatically updated on a regular basis. In many cases, paying a fee for such a service can be relatively
cheap and very easy, since the site administrator doesn't have to worry at all about the content, and they'll be able to
focus on the site's main business (commerce of goods related to the published news, for example). Therefore the
designers of ThePhile.com decided to find a way to offer their news to other companies. They also wanted this data
to be available not only for web browsers, but for Windows client applications too.

 The last problem is the implementation of security. We want to give full control to one or more administrators, allow
a specific group of users to submit news, and allow normal users to just read the news. We could even prevent them
from reading the content if they have not registered with the site.

 So, to summarize the problem, we need:

 A source of news and articles

 An online tool for managing news content

 A method of allowing other sites to use our content

 A system that allows various users different levels of access to the site's content

This document is created with the unregistered version of CHM2PDF Pilot

http://www.aspwire.com
http://www.codeproject.com

Chapter 6 - News Management

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 In this section we're going to work on the design of our online tool for acquiring, managing, and sharing the news
content of our site. Specifically we will:

 Provide a full list of the features we want to implement

 Design the database tables for this module

 Write down a list and a description of the stored procedures that provide access to the database

 Describe the object models of the data and business layers

 Describe the user interface services specific to news management, such as the site pages, reusable user
controls, and web services

 Explain how we will ensure security for the administration section and for other access-restricted pages

 Features to Implement
 Let's start our discussion by writing down a list of the features that the news manager module should provide in order
to be flexible and powerful, but still easy to use. We might decide to add more features later, but these are the things
we definitely need to implement:

 A news item can be added to the database at any time, with the option not to publish it until a specified
release date. In addition, the person submitting the news must be able to specify an expiration date, after
which the news will be retired. If these dates are not specified then the news should be immediately published
and remain active indefinitely.

 News items or articles can have an approved status. If it is the administrator who submits the news item, it
should be approved directly. If we allow other people, such as staff or users of the site, to post their own
news, then it should be added to the database in a "pending" state. The site administrator will then take care
of controlling this content, applying any required modifications, and finally approving the news for publishing
once it is considered suitable.

 The system should track who originally submitted an article or news item. This is important as it provides
information on whether a contributor is active, who is responsible for incorrect content, who to contact for
further details if the news is particularly interesting, and so on.

 There should be multiple categories, allowing all news items and articles to be organized in different virtual
folders.

 The user should have a page with the available categories as a menu. Each category should be linked to a
page that shows a short abstract for each news item. The administrator will use a protected page to define the
length of the abstracts. By clicking on the abstract the user can read the whole text.

 We want to expose the news through a web service, so that we can offer content to external sites, and
provide a Windows client that downloads the news or links to the respective online pages.

 Above all, the news manager must be integrated with the existing site. In our case this means that the pages
must tie in with the current layout, and that we must take advantage of the current authentication/authorization
system to protect each section and to identify the author of the submitted content.

 Having this list of features is very important when designing the database tables, as we now know what information
we need to store, and the information that we should retrieve from existing tables.

 Database Design
 As we saw in Chapter 2, we are using a single database for all the modules of this site. So, we need to use
module-specific prefixes for the tables, stored procedures, and the other objects of our modules. The prefix for the
news manager module is News_.

 We have only two tables, one for the categories and the other for the actual news content. The following diagram
shows how they are linked to each other and to the Accounts_Users table that we created in Chapter 5:

 Let's start describing these tables and their relationship in more detail.

 The News_Categories Table

 Unsurprisingly, the News_Categories table stores the name, a description, and an image for each category:

Column Name Type Size Allow Null Description

CategoryID int - Identity primary
key

4 No The unique ID for the
category.

Name varchar 50 No The name of the
category.

Description varchar 250 Yes The description of the
category.

ImageUrl varchar 100 Yes The URL of an image
that graphically
describes the
category. It might be
used in menus, for
example.

 This system supports a single level category, meaning that we cannot have subcategories. Enhancing the system to
support subcategories is left as an exercise to the reader but, as a suggestion, the DB would only require an additional
ParentCategoryID column containing the ID of the parent category.

 The News_News Table

 This table contains the content and all further information for all the news items in all categories. It is structured as
follows:

Column Name Type Size Allow Null Description

NewsID int - Identity Primary
key

4 No The unique ID for the
news item.

CategoryID int - Foreign key 4 No The ID of the
category to which the
news item belongs.

Title varchar 250 No The title of the news
item.

Body text Yes The body of the news
item, in HTML
format.

ReleaseDate datetime 8 No The date that the
news can be released.
We use datetime
instead of
smalldatetime, to
provide compatibility
with ASP 3.

ExpireDate datetime 8 No The date that the
news will expire.

AddedDate datetime 8 No The date that the
news was added.

Approved bit 1 No The approved status
of the news item. If
false, the administrator
has to approve the
news before it is
actually published and
available to readers.

UserID int - Foreign key 4 Yes The ID of the user
who submitted or
added this news. It
should match an ID in
the Accounts_Users
table of the Accounts
module.

 As noted, the UserID field refers to a table of the Accounts module. Although this would be possible even if the
Accounts_Users table were in a separate database, having all these tables in the same database allows easier
integration between modules.

 Stored Procedures

 To manage the database we will build a set of stored procedures, which we'll run later in the data layer classes to do
everything from the addition of categories and news, to the update of single fields. The stored procedures we need,
and their parameters, are listed here (we'll be writing the code later in the chapter in the Solution section):

Stored Procedure Parameters Description

sp_News_GetCategories Returns the entire content of the
News_Categories table.

sp_News_GetCategoryDetails @CategoryID int Returns the complete row identified
by the specified ID.

sp_News_InsertCategory @Name varchar (50), @Description
varchar (250), @ImageUrl varchar
(250), @CategoryID int OUTPUT

Inserts a new category. If the
specified Name already exists then
the output parameter @CategoryID
will be set to -1, otherwise it will be
set to the new category ID.

sp_News_DeleteCategory @CategoryID int Deletes the category identified by
CategoryID.

sp_News_UpdateCategory @CategoryID int, @Name varchar
(50), @Description varchar(250),
@ImageUrl varchar(100)

Updates all the fields of the category
specified by CategoryID.

sp_News_GetNews @CategoryID int,
@CurrentApproved Only bit = 0,
@AbstractLength int = -1

Returns all news items for the
specified category. If
@CurrentApprovedOnly is true it
returns only the news items whose
Approved field is 1 (true), and for
which the current date is between
ReleaseDate and ExpireDate. The
last parameter is the length for the
partial body content that is returned.
If @AbstractLength is -1 the whole
of the Body is returned.

sp_News_GetNewsDetails @NewsID int Returns the complete row for the
specified news item. This also
includes the whole Body field content.

sp_News_GetHeadlines @CategoryID int Returns only the NewsID, Title, and
ReleaseDate for the current and
approved news items of the specified
category.

sp_News_InsertNews @CategoryID int, @Title
varchar(250), @Body text,
@ReleaseDate datetime,
@ExpireDate datetime, @Approved
bit, @UserID int, @NewsID int
OUTPUT

Inserts a news item. If there is already
a row with the specified CategoryID,
Title, ReleaseDate, and ExpireDate
then the output parameter @NewsID
is set to -1, and no changes are
made. Otherwise it is set to the added
news ID.

sp_News_DeleteNews @NewsID int Deletes the news item identified by
the specified ID.

sp_News_UpdateNews @NewsID int, @Title varchar(250),
@Body text, @ReleaseDate
datetime, @ExpireDate datetime,
@Approved bit

Updates all the fields of the specified
news item.

sp_News_SetNewsApproved @NewsID int, @Approved bit Changes the value of the Approved
field for the specified news item.

 Most of these stored procedures are pretty standard - procedures to insert, update, return, and delete rows.
However, it's worth noting some design decisions that will impact on the performance of the site:

 The sp_News_GetNews procedure has a parameter that allows us to specify the length of the Body text we
want to retrieve. Instead of storing the news abstracts in a separate field, we retrieve an abstract by returning
the first @AbstractLength characters of the Body field. The Body field is of type text, thus it can contain very
long articles. As we only need to list the available news items, it would be a tremendous waste of time and
traffic to retrieve the body text for all the news items. It's therefore a good idea to completely avoid retrieving
the body, or, as we did, add a parameter to specify how many characters to retrieve. Also, we included the
option to retrieve all the news from the specified table, or only the current and approved news. We'll need to
retrieve all the news in cases such as the administration section, where we must be able to see and edit any
news. In the pages for the end user we'll only be interested in the active news.

 It's worth noting that the method we employ to retrieve the news abstracts assumes that the
beginning of each piece of news contains useful information, or at least something that allows the user
to understand what the news is about. If we needed to publish long news articles, and couldn't be sure
of useful information appearing at the beginning of the text, we could use a separate abstract field
instead. This way we can organize the news text any way we like. This chapter does not show how to
implement this alternative method, but implementing it would not be difficult.

 The sp_News_GetNewsDetails procedure returns all the details (fields) of the specified news item. This
includes the whole Body text, and so the procedure is used when we need to display the whole news item in
its own dynamically filled page.

 The sp_News_GetHeadlines procedure returns only selected information about the current and approved
news item, such as the title, ID, and the release date. This information will be useful for a headlines box that
we might want to show on the home page, for example. The ID is enough for us to provide a link to the full
article.

 Designing the Data Layer
 Now that we have a clear idea of what the database tables store, and how we retrieve data through the stored
procedures, we can design the data services. We will simply create classes with methods that wrap the calls to the
stored procedures one by one.

 These classes will be part of an assembly of their own, called Wrox.WebModules.NewsManager.Data, and they will
all be grouped by this namespace. In Chapter 2 we created a database class in the Wrox.WebModules.Core
module. We'll use this DbObject class as the base for all data classes in this module, as DbObject provides methods
for creating a connection, and running stored procedures using just a few lines of code. We'll see how easy it is to
develop the data classes by inheriting from the DbObject base in the Solution section later in the chapter.

 Before we look at each of the classes in turn, here is a UML diagram that shows the classes we need in the data
layer:

 The CategoryDetails Class

 This class has no methods, just four public properties that map the fields of the News_Categories table. It does
nothing by itself - the properties will be set by the calling functions that use this class simply as a data type to return
from the Categories class. Doing this will make our business layer simpler.

 The Categories Class

 This class wraps the calls to the stored procedures that manage the categories. It has only methods, no properties,
and it returns an instance of CategoryDetails to return the details of a specific category. Since there are no
relationships with other classes (except one method that returns an instance of CategoryDetails), at this point it's easy
to provide a list of the methods and their definitions:

Method Name Description

public Categories (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetCategories () Returns a DataSet containing the names of all the
categories.

public CategoryDetails GetDetails (int categoryID) Returns an instance of CategoryDetails that describes the
specified category.

public DataRow GetDetailsRow(int categoryID) Returns the DataRow of the category identified by the
specified ID.

public int Add (string name, string description, string
imageUrl)

Adds a new category, and returns the ID of the new
record. Returns -1 if the record was already present, and
does not change the database.

public bool Update (int categoryID, string name, string
description, string imageUrl)

Updates all the fields of the specified category.

public bool Delete (int categoryID) Deletes the specified category.

 The NewsDetalls Class

 This class is basically the same as CategoryDetails but for the News_News table instead of the News_Categories
table. It has only public properties such as NewsID, CategoryID, Title, and Body, which map all the table fields. All
are set by external code, this class only serves as the data type for a function we're going to see in a moment.

 The News Class

 This class wraps the calls to all the stored procedures that manage the news items and their attributes. Like the
Categories class, this class has a GetDetails method that returns an instance of NewsDetails containing everything
from the specified news record. Here is a complete list of the methods to implement:

Method Name Description

public News (string newConnectionString) Class constructor taking the connection string as a
parameter.

public Dataset GetNews (int categoryID, bool
currentApprovedOnly, int abstractLength)

Returns the news item for the specified category. The
other two parameters are the same as we defined for the
sp_News_GetNews stored procedure.

public Dataset GetHeadlines (int categoryID) Returns the NewsID, Title, and ReleaseDate for the
current and approved news items of the specified
category.

public NewsDetails GetDetails (int newsID) Returns an instance of NewsDetails that describes the
specified news item.

public DataRow GetDetailsRow (int newsID) Returns the DataRow of the news item identified by the
specified ID.

public int Add (int categoryID, string title, string body,
DateTime releaseDate, DateTime expireDate, bool
approved, int userID)

Adds a news item, and returns the ID of the new record.
Returns -1 if the record was already present. See the
description of sp_News_InsertNews for more details.

public bool Update (int newsID, string title, string body,
DateTime releaseDate, DateTime expireDate, bool
approved)

Updates all the fields of the specified news record.

public bool SetApproved(int newsID, bool approved) Changes the Approved status of the specified news item.

public bool Delete (int newsID) Deletes the specified news item.

 Designing the Business Layer
 The data layer is made up of two classes with methods that call the stored procedures, but they don't represent an
entity in a real object-oriented way. This is done by the classes of the business layer, which use the data layer classes
to access the database, and represents the data as useful objects. These classes will be part of an assembly,
Wrox.WebModules.NewsManager.Business, and will inherit from the BizObject class, as decided in Chapter 2. This
means that we can add methods to every business object in the application in one go, by modifying BizObject. We'll
look at each of our classes in turn. But first, here is the UML diagram that describes the classes. To save space, some
method overloads are not included:

 The Category Class

 This class has properties that fully describe a news category, with methods to create, update, or delete one category,
or add news child items. The following table shows the declaration and description of each member:

Member Name Description

public int ID Read-only property: the category's ID.

public string Name Gets/sets the name of the category.

public string Description Gets/sets the description of the category.

public string ImageUrl Gets/sets the image URL of the category.

public Category() Class constructor with no parameters. Resets property
values.

public Category(int existingCategoryID) Class constructor that sets the properties to the category
identified by the input ID.

public Category(Category existingCategory) Class constructor that sets the properties to describe the
category identified by an existing Category object.

private void LoadFromID() Loads the properties of the category identified by a
private ID variable. This method is called by the
constructors or when the data has to be refreshed.

private void ResetProperties() Resets the properties.

public int LoadFromID(int existingCategoryID) Loads all the properties of the category identified by the
input ID. This method allows us to load a different
category after the object has been created, or to load the
properties if we created an object but didn't specify an
ID for the constructor.

public int Create(string categoryName, string
categoryDescription, string categoryImageUrl)

Creates a new category, and sets the properties of the
object to represent the new record.

public bool Update() Updates the current category with the new values of the
public properties.

public bool Delete() Deletes the category.

public static DataSet GetCategories() Static method that returns all the categories.

public DataSet GetNews() Returns all the child news items.

public DataSet GetNews (bool currentApprovedOnly) Overloaded method that can return only the approved
child news items.

public DataSet GetHeadlines() Returns the NewsID, Title, and ReleaseDate for the
current and approved news items in the category, plus
the full URL of the whole news page.

public News AddNews (string newsTitle, string
newsBody, DateTime newsReleaseDate, DateTime
newsExpireDate, bool newsApproved, int newsUserID)

Adds a child news item.

 You might be wondering why the Create method requires all the properties for the new category as input, instead of
retrieving them from the public variables. This is because in other classes we might require values that are exposed as
read-only properties, so we would need to get them through input parameters. So for consistency with future classes,
we require all the values as parameters, and then set the properties accordingly. Also note that the AddNews method
returns an object of type News, which is described in the next section.

 The most notable method here is GetHeadlines. It not only calls the homonymous method of the data layer, but it also
adds a column to the table of the returned DataSet. The value of this column is the complete URL of the page where
the user can read the whole news, and not just its abstract. The complete path is made up of a base path of the
ASPX page, plus the NewsID attribute as a parameter. For example, say that the page is ShowNews.aspx, and that
the base path is localhost/ThePhile/Modules/NewsManager/ShowNews.aspx, then the URL for a news item would
be something like localhost/ThePhile/Modules/NewsManager/ShowNews.aspx?NewsID=4.

 Adding this column is really important for providing the ability to share headlines with external sites and to browse the
news with programs other than a web browser. What we're going to do later in the chapter, in fact, is to build a
Windows application that shows the current headlines, and that opens a browser and loads the whole news item
when a headline is clicked. The client application does not have to do anything to find the URL to which it must
redirect, as it is given along with the other data in the table, and the client developer is not required to know the path
of the ShowNews.aspx page in advance. In addition to being easier for the client developer, this also means that if the
webmaster moves the page or changes its name, the client application will continue to work fine as soon as it
downloads an updated DataSet, without requiring any modification to the code.

 We could have returned only the NewsID from the business layer, and had the presentation layer objects construct a
URL link themselves. This would be a more pure way of building an n-tier system, but would require slightly more
code. So in this case it's best to compromise our n-tier architecture a little.

 The News Class

 This class describes and manipulates a news record, using the following properties and methods:

Member Name Description

public int ID Read-only property that returns the ID of the news item
represented by the object.

public int CategoryID Read-only property that returns the ID of the parent
category.

public Business.Category Category Returns the parent category.

public string Title Gets/sets the title of the news item.

public string Body Gets/sets the body of the news item.

public bool Approved Gets/sets the Approved status.

public DateTime ReleaseDate Gets/sets the release date.

public DateTime ExpireDate Gets/sets the expiry date.

public DateTime AddedDate Read-only property that returns the date when the news
item was added to the database.

public int UserID Read-only property that returns the ID of the user who
submitted the news item.

public string UserName Read-only property that returns the name of the user who
submitted the news.

public string UserEmail Read-only property that returns the e-mail address of the
user who submitted the news.

public News() Class constructor with no parameters. It only resets the
properties.

public News(int existingNewsID) Class constructor that sets the properties to describe the
news item identified by the input ID.

public News(News existingNews) Class constructor that sets the properties to describe the
news item identified by an existing news object.

private void LoadFromID() Loads the properties of the news item identified by a
private ID variable. This method is called by the
constructors, or when the data has to be refreshed.

private void ResetProperties() Resets the properties.

public int LoadFromID(int existingNewsID) Loads all the properties of the news item identified by the
input ID. This method allows us to load a different news
item after the object has been created, or to load the
properties if we created an object but didn't specify an
ID for the constructor.

public int Create (int newsCategoryID, string newsTitle,
string newsBody,

 DateTime newsReleaseDate, DateTime
newsExpireDate, bool newsApproved, int newsUserID)

Creates a news item, and sets the properties of the
object to represent the new record.

public bool Update() Updates the current news item with the new values of the
public properties.

public bool Delete() Deletes the news item.

 It's worth noting that here the Create method requires input values such as the parent category and the user ID.
These values are exposed by read-only variables, so we need to pass them as parameters. As mentioned above, we
decided to pass all the necessary parameters to the Create method of other classes as well, to avoid confusion.

 Storing and Retrieving Settings
 In addition to categories and news, our module also has some settings to store, such as the database connection
string. In the previous chapter we discussed the advantages of storing the settings as an XML file produced by
serializing a class. We've seen how to de-serialize the content of that same file to create a class instance with the state
it had in the previous session. With this module we're going to use exactly the same method. We have a
Wrox.WebModules.NewsManager.Configuration.dll assembly and a namespace with the same name. It will include
two classes. ModuleConfig gets and sets the settings, by de-serializing the file to an object or serializing an object to a
file. ModuleSettings exposes the settings as public properties, and whose state will be serialized or de-serialized. The
ModuleSettings class has three properties:

 ConnectionString: the connection string that all the data classes use to access the database.

 NewsUrl: the URL of the ShowNews.aspx page, necessary to build the full links from the headlines to the
whole news.

 AbstractLength: the number of characters that make up an abstract by truncating the news item's Body.

 Here is the UML diagram that represents this component:

 Designing the Presentation Layer
 The design of the ASP.NET pages is nothing really special, so there's not much to discuss. We have a set of pages,
some for the administrators and some for the end-users, which allow us to manage news, and navigate through
categories and read news, respectively.

 The main consideration is that we must integrate these module-specific pages into the rest of the site, but this is easily
possible by adding the site-wide header and footer controls to our pages, and by using a common CSS file.

 Let's focus on some of the more news-specific needs: plugging headlines into other parts of the site, and providing
headlines as a Web service.

 Plug-in Headlines

 The first new issue here is that we need a way to quickly add the headlines to any page we want. It's not enough to
just have entirely new pages - we want to plug the headlines into existing pages. A user control is the best solution in
this case, because it will allow us to add news and customize appearance with a single line in an ASPX page.

 Our headlines control must expose properties that select the headlines we want to show, and define the style and size
of the control on the page. We could add many more graphical properties, but these are enough for a fully working
and useful control.

 The control will connect to the database with a connection string that is automatically retrieved. The webmaster will
only need to know the appearance they want to assign to the control, and the ID of news category they want to
display. This way, we can insert the control into a page with just a couple of lines of code, and without knowledge of
the underlying object model.

 The Headlines Web Service

 We said earlier that we want to allow other sites to use our headlines, and also build non-browser applications (such
as a Windows client) to show the headlines. If we were planning to distribute the whole of the news item, we would
probably want to make some money from it, but we will take a different approach. Instead of giving away the whole
news item, we will share only the headlines. Any external site and program can get them for free, with a link to our
own site for the full story. This page with the full news text is only available on our site. What this means is that if we
allow everybody to insert our headlines into their sites, and if a lot of sites take up this opportunity, we're going to
have lots of advertising and new traffic for free! Whenever a user clicks on a title they will be redirected to
ThePhile.com, and they will probably end up generating page views (which can lead to revenue if we're selling
advertisement space). They may visit some other sections of the site, or buy something if we're selling products or
services. And, if nothing else, our site will gain a better reputation and a larger audience.

 Later, if this service is successful, we could push things further and offer an extended service that allows external sites
to insert the whole news item into their own pages. But this time for a fee!

 However, for this book's scope the first type of service is enough, so let's go ahead and see what it should provide.
This web service only needs a couple of methods for what we plan to do:

Method Name Description

DataSet GetCategories() Returns all the available categories.

DataSet GetHeadlines (int categoryID) Returns ID, title, and URL for all published news from
the specified category.

 Providing such a service is really easy in VS.NET (and also with the .NET Framework without the help of the
VS.NET's wizards): a web service takes care of all the details, and plumbing code deals with the communication
protocols and SOAP messages. Thus, designing a simple web service is very simple and similar to designing a class.
There are many differences between web services and classes, of course, such as the fact that they can be called
remotely, and they are stateless, but essentially a web service is still a class that exposes some public methods.

 We remember that the data classes accept the connection string as input in the constructor method, and then use it in
all the other methods. Here we can't do this, due to the fact that the web service is stateless and can't store the
connection string with a private variable. The easy solution is to get the connection string every time a method is
called. We have only two methods, so there isn't much work, and the connection string is cached (we'll show how to
do this in the implementation of the Settings assembly), so there is no overhead.

 The Need for Security
 The news manager module divides into two basic parts:

 The administration section, which allows the webmaster or someone else to add, delete, or edit the
categories, publish news, and change the module's settings

 The end-user section, which has pages to navigate through the categories and read the news, or see the
headlines on the homepage

 The division is made more complex because of the page where users can post their own news. The administrator can
decide to allow any user to access this page, or select a group of trusted people and block access to everybody else.
So this page could be for end-users, or for administrators.

 In the previous chapter we developed a very flexible module that allows us to administer the registered users, read or
edit their profile, and dynamically assign permissions for certain operations. For the news manager we'll have a
NewsManagerPermissions enumeration, with the following three permissions that we can assign to users:

 AdministerNews: the user has full power over the news system. They can add, edit, or delete categories,
approve and publish news items, and change the settings. Only one person (or at least very few people)
should have this permission.

 SubmitNews: the user can submit their own news items, but these won't be published until the administrator
approves them. We could give this permission to any user, if we want to gather as much news as possible, or
a selected group of people otherwise.

 PublishNews: the user can submit their own news items, and these will be immediately published. There is no
need for any intervention by the administrator. Only a selected group of trusted people should have this
permission, because everything they send will be available straight away. You must be pretty sure that they
won't send incorrect content and that what they write won't require any editing.

 Enforcing these security rules is a simple task with the help of the Users module, which also provides a GUI tool for
changing the permissions of users. We can integrate it in the solution and then allow the general administrator to
choose trusted people and give them the appropriate rights.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 6 - News Management

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 We've discussed just about every aspect of the design, and we are now ready to produce the solution. We'll follow
the same pattern as in the Design section: from the creation of database tables and stored procedures to the
implementation of security, passing through the data access and user interface services coding.

 Working on the Database
 Creating the database tables is straightforward, using the Enterprise Manager, so we won't cover it here. The best
way to set up the database is to use the backed up version in the code download.

 Now let's look at how to create the relationships between the tables and write some stored procedures, although
these already exist in the backup.

 Relationships Between the Tables

 We create a new diagram in the Enterprise Manager, and by following the wizard we add the News_Categories,
News_News, and Accounts_Users tables. As soon as the three tables are added to the underlying window, the
Enterprise Manager should recognize a relationship between News_Categories and News_News and automatically
add a connection with the correct properties. However, if it does not, click on the News_News table's CategoryID
field and drag and drop the icon that appears over the News_Categories table. Once you release the button, a dialog
with the relationship's properties appears. You should set the options as shown in the screenshot below:

 The Cascade Update Related Fields option ensures that if we change the CategoryID primary key in the
News_Categories table, this change is propagated to the foreign keys in the News_News table.

 The primary key should never be changed, since it is used for identification. The administration pages won't
allow us to change it, but it's a good idea to select this option anyway.

 The Cascade Delete Related Records option ensures that if we delete a category, all the related news items are
deleted as well. This option is very important and must be checked, because otherwise we'll end up with a database
filled with unreachable news (since the parent category will no longer exist).

 Now we have to create a relationship between News_News and Acounts_Users, based on the UserID field of both
tables. As before, click the News_News table's UserID field, drag and drop the icon over the Accounts_Users table,
and complete the Properties dialog as follows:

 Things are a bit tricky with this relationship and, as you might have noticed, the settings are different from before: we
don't select the Enforce relationship for INSERTs and UPDATEs option. In the first relationship we built, we wanted
all dependent news items to be deleted whenever a category was deleted. Here, when we delete a user we don't
want to delete all their news items too. That user might be a former employee of our company, or they might have
unregistered from the site, but we want to keep their news in the database.

 If we select the Enforce relationship for INSERTs and UPDATEs option but not the Cascade Delete Related
Records option, if we try to delete a user then we'll get an error. This is because we would have a constraint
that ensures that the foreign key can't point to a non-existent row in the referenced table. If we don't select
the former option we still have the foreign key, but we can also delete a user without automatically deleting
the respective news.

 We're not finished yet. We can't leave a foreign key to a row that no longer exists, because if we change another
user's ID or add a new user with the same ID as the deleted user, the news will end up referencing not a non-existent
user, but the wrong user. We simply need to "reset" (set to null) the UserID field in the News_News table for the
news whose author has been deleted from the Accounts_Users table. This issue can be easily resolved with a
trigger, which we're going to see in the next section.

 A Trigger for the UserID Foreign Key

 To create the trigger that sets the UserID foreign key to null when a user is deleted, go back to the Enterprise
Manager main window (save the diagram before closing the designer), right-click the Accounts_Users table, and click
All Tasks | Manage Triggers. A dialog pops up with the textbox for the trigger text, which is as follows:

 CREATE TRIGGER SetNewsAuthorToNull ON [dbo].[Accounts_Users]
 FOR DELETE
 AS

 UPDATE News_News
 SET UserID = NULL
 WHERE UserID = (SELECT UserID FROM Deleted)

 This code creates a trigger named SetNewsAuthorToNull, which is raised when a record in the Accounts_Users
table is deleted. It sets the rows in News_News that were linked to the deleted row to null.

 Creating the Stored Procedures

 In this section we'll show the code for some of the stored procedures. We won't cover all of them, since the code is
actually very similar regardless of whether we are adding, editing, or deleting a category or a news item. The stored
procedures that work with the news items are more elaborate than the respective procedures that manage the
categories, because they have to join two tables and usually have more parameters, so these are the ones we'll look
at.

 sp_News_GetNews

 Here's the code to create the procedure that returns the news item:

 CREATE PROCEDURE sp_News_GetNews
 @CategoryID int,
 @CurrentApprovedOnly bit,
 @AbstractLength int
 AS

 -- if @AbstractLength is not -1 return the first @AbstractLength
 -- chars of the Body field, otherwise return the whole news body
 IF @AbstractLength <> -1
 BEGIN
 IF @CurrentApprovedOnly = 1
 BEGIN
 SELECT NewsID, Title,
 LEFT(CAST(Body AS varchar(1000)), @AbstractLength) +
 '...' AS Abstract,
 ReleaseDate, ExpireDate, AddedDate, Approved,
 News_News.UserID, (FirstName + ' ' + LastName) AS UserName,
 EmailAddress AS UserEmail
 FROM News_News LEFT JOIN Accounts_Users
 ON News_News.UserID = Accounts_Users.UserID
 WHERE CategoryID = @CategoryID AND Approved = 1 AND
 ReleaseDate <= GETDATE() AND ExpireDate >= GETDATE()
 END
 ELSE
 BEGIN
 SELECT NewsID, Title,
 LEFT(CAST(Body AS varchar(1000)), @AbstractLength) +
 '...' AS Abstract,
 ReleaseDate, ExpireDate, AddedDate, Approved,
 News_News.UserID, (FirstName + ' ' + LastName) AS UserName,
 EmailAddress AS UserEmail
 FROM News_News LEFT JOIN Accounts_Users
 ON News_News.UserID = Accounts_Users.UserID
 WHERE CategoryID = @CategoryID
 END
 END
 ELSE
 BEGIN
 IF @CurrentApprovedOnly = 1
 BEGIN
 SELECT NewsID, Title, Body AS Abstract, ReleaseDate, ExpireDate,
 AddedDate, Approved, News_News.UserID,
 (FirstName + ' ' + LastName) AS UserName,
 EmailAddress AS UserEmail
 FROM News_News LEFT JOIN Accounts_Users
 ON News_News.UserID = Accounts_Users.UserID
 WHERE CategoryID = @CategoryID AND Approved = 1 AND
 ReleaseDate <= GETDATE() AND ExpireDate >= GETDATE()
 END
 ELSE
 BEGIN
 SELECT NewsID, Title, Body AS Abstract, ReleaseDate, ExpireDate,
 AddedDate, Approved, News_News.UserID,
 (FirstName + ' ' + LastName) AS UserName,
 EmailAddress AS UserEmail
 FROM News_News LEFT JOIN Accounts_Users
 ON News_News.UserID = Accounts_Users.UserID
 WHERE CategoryID = @CategoryID
 END
 END
 GO

 Although the procedure is quite long, it is really very simple. It executes different SELECT queries according to the
passed parameters. If we want to retrieve only the current and approved news items then one query is run, if we want
all the news items then a less restrictive query is run instead. And the same applies for the abstract length: if it is not -1
we must truncate the Body field after the specified characters, otherwise we simply return the whole content (aliased
as Abstract).

 sp_News_GetNewsDetails

 This procedure is simpler, since it has no parameters except for the NewsID, and it returns the whole row:

 CREATE PROCEDURE sp_News_GetNewsDetails
 @NewsID int
 AS

 SELECT NewsID, CategoryID, Title, Body, ReleaseDate, ExpireDate, AddedDate,
 Approved, News_News.UserID,
 (FirstName + ' ' + LastName) AS UserName, EmailAddress AS UserEmail
 FROM News_News LEFT JOIN Accounts_Users
 ON News_News.UserID = Accounts_Users.UserID
 WHERE NewsID = @NewsID
 GO

 sp_News_GetHeadlines

 This procedure returns a few fields for the active news only, so this is very short and easily understandable:

 CREATE PROCEDURE sp_News_GetHeadlines
 @CategoryID int
 AS

 SELECT NewsID, Title, ReleaseDate
 FROM News_News
 WHERE CategoryID = @CategoryID AND Approved = 1 AND
 ReleaseDate <= GETDATE() AND ExpireDate >= GETDATE()
 ORDER BY ReleaseDate DESC
 GO

 sp_News_InsertNews

 The following code inserts a new row in the News_News table, and returns the ID of the added row as the output
parameter. If a news record with that ID exist, the procedure does nothing:

 CREATE PROCEDURE sp_News_InsertNews
 @CategoryID int,
 @Title varchar(250),
 @Body text,
 @ReleaseDate datetime,
 @ExpireDate datetime,
 @Approved bit,
 @UserID int,
 @NewsID int OUTPUT
 AS

 DECLARE @CurrID int

 -- see if the news already exists
 SELECT @CurrID = NewsID
 FROM News_News
 WHERE CategoryID = @CategoryID AND Title = @Title AND
 ReleaseDate = @ReleaseDate AND ExpireDate = @ExpireDate

 -- if not, add it
 IF @CurrID IS NULL
 BEGIN

 INSERT INTO News_News
 (CategoryID, Title, Body, ReleaseDate, ExpireDate,
 AddedDate, Approved, UserID)
 VALUES (@CategoryID, @Title, @Body, @ReleaseDate, @ExpireDate,
 GETDATE(), @Approved, @UserID)

 SET @NewsID = @@IDENTITY

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Insert of News failed', 16, 1)
 RETURN 99
 END
 END
 ELSE
 BEGIN
 SET @NewsID = -1
 END
 GO

 sp_News_UpdateNews

 This procedure updates all the fields of a row, except for the ID of course. It runs within a transaction, so that the
changes can be rolled back if an error occurs:

 CREATE PROCEDURE sp_News_UpdateNews
 @NewsID int,
 @Title varchar(250),
 @Body text,
 @ReleaseDate datetime,
 @ExpireDate datetime,
 @Approved bit
 AS

 BEGIN TRANSACTION UpdateNews

 UPDATE News_News
 SET
 Title = @Title,
 Body = @Body,
 ReleaseDate = @ReleaseDate,
 ExpireDate = @ExpireDate,
 Approved = @Approved
 WHERE NewsID = @NewsID

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Update of News failed', 16, 1)
 ROLLBACK TRANSACTION UpdateNews
 RETURN 99
 END

 COMMIT TRANSACTION UpdateNews
 GO

 Running the SQL commands within a transaction ensures that the data is updated correctly, and that atomicity is
maintained. A transaction is atomic if all statements must complete, or all fail. Say that we need to execute three
UPDATEs, and that the last one generates an error and does not complete correctly. If you run all the three
statements within a transaction you'll be able to rollback the transaction, returning the data to its original state. If all
statements run fine, we can commit the transaction to persist the changes.

 Transactions are a complex topic, beyond the scope of this book. To find out more about this subject, you can refer
to Professional SQL Server 2000 (ISBN 1-861004-48-6).

 sp_News_SetNewsApproved

 This procedure works in a similar way to the procedure above, but with the difference that only the Approved field is
updated. This is useful when the administrator only needs to approve a currently inactive news item, or to disapprove
a news item already published, without having to supply the current values for all the other fields to the procedure, as
was the case above:

 CREATE PROCEDURE sp_News_SetNewsApproved
 @NewsID int,
 @Approved bit
 AS

 BEGIN TRANSACTION UpdateNews

 -- update the news item's approved state
 UPDATE News_News
 SET Approved = @Approved
 WHERE NewsID = @NewsID

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Update of News failed', 16, 1)
 ROLLBACK TRANSACTION UpdateNews
 RETURN 99
 END

 COMMIT TRANSACTION UpdateNews
 GO

 sp_News_DeleteNews

 This is the easiest procedure. It deletes the row with the specified ID:

 CREATE PROCEDURE sp_News_DeleteNews
 @NewsID int
 AS

 DELETE FROM News_News
 WHERE NewsID = @NewsID
 GO

 Implementing the Data Access Assembly
 Now that the database is complete, let's go ahead and start writing the .NET code for the data access component.
We create a Class Library project within the ThePhile solution, with the assembly name and the default namespace
Wrox.WebModules.NewsManager.Data. The AssemblyInfo.cs file needs editing as follows:

 using System.Reflection;
 using System.Runtime.CompilerServices;

 [assembly: AssemblyTitle("NewsManager Module - Data component")]
 [assembly: AssemblyDescription("NewsManager Module - Data component")]
 [assembly: AssemblyConfiguration("")]
 [assembly: AssemblyCompany("Wrox Press Ltd")]
 [assembly: AssemblyProduct("Wrox.WebModules")]
 [assembly: AssemblyCopyright("(C) 2001 Wrox Press Ltd")]
 [assembly: AssemblyTrademark("")]
 [assembly: AssemblyCulture("")]
 [assembly: AssemblyVersion("1.0.0.0")]
 [assembly: AssemblyDelaySign(false)]
 [assembly: AssemblyKeyFile(@"\Wrox\Keys\ThePhile.snk")]
 [assembly: AssemblyKeyName("")]

 We need a reference to the assembly of the Core project, and to the System.Data.Dll assembly, in order to use the
DBObject base class developed in Chapter 2, and the ADO.NET classes, respectively.

 The project consists of two class files, Categories.cs and News.cs. We will only look at News.cs here, because
Categories.cs is very similar - there's no point in going over both. It's easy to complete the code for the other class,
and the complete code is available in the code download.

 The News Class

 This simple class provides methods that closely map all the available stored procedures that manage news. We'll look
at each method in turn. The class's file name is News.cs and the namespace must be
Wrox.WebModules.NewsManager.Data. The name should already be correct if the default namespace is set in the
project properties.

 We need a using directive in order to use the types in the System.Data and SystemData.SqlClient namespaces
without having to specify the namespaces. We're going to be using classes and enumerations of these namespaces
very often in the code for this class, and it's quicker to write only the class name and not the full namespace as the
prefix.

 The News class must inherit from the DbObject class of the Core assembly, and the constructor method must the
base constructor. So a skeleton of our class would be:

 using System;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.NewsManager.Data
 {
 public class News : Wrox.WebModules.Data.DbObject
 {
 public News(string newConnectionString) : base(newConnectionString)
 { }
 }
 }

 Now let's take a look at the methods.

 The GetNews Method

 This method wraps the call to the stored procedure sp_News_GetNews. It accepts as input exactly the same
parameters as the stored procedure. It creates an array of SqlParameter objects (one for each input parameter), calls
the RunProcedure function to execute the stored procedure, and returns the resulting DataSet:

 public DataSet GetNews(int categoryID, bool currentApprovedOnly,
 int abstractLength)
 {
 // create the parameters
 SqlParameter[] parameters = {
 new SqlParameter("@CategoryID", SqlDbType.Int, 4),
 new SqlParameter("@CurrentApprovedOnly", SqlDbType.Bit, 1),
 new SqlParameter("@AbstractLength", SqlDbType.Int, 4)
 };

 // set the values
 parameters[0].Value = categoryID;
 parameters[1].Value = currentApprovedOnly;
 parameters[2].Value = abstractLength;

 return RunProcedure("sp_News_GetNews", parameters, "News");
 }

 The DbObject class is very useful, and spares us having to manually create and use a SqlDataAdapter. The
RunProcedure function also uses the SqlConnection it has instantiated in the base constructor, so we don't need to
create and store our own instance. All of this allows us to speed up the code development for methods like this and
the following ones, and the resulting code is also more readable.

 The GetHeadlines Method

 This method simply retrieves all the headlines (ID, ReleaseDate, and Title of the active news) by calling the
sp_News_GetHeadlines stored procedure:

 public DataSet GetHeadlines(int categoryID)
 {
 // create the parameter
 SqlParameter[] parameters = {
 new SqlParameter("@CategoryID", SqlDbType.Int, 4)
 };
 parameters[0].Value = categoryID;

 return RunProcedure("sp_News_GetHeadlines", parameters, "Headlines");
 }

 The GetDetails Method

 This method retrieves only the row for the specified ID, and returns an instance of a custom NewsDetails class. As
previously said, this class only exposes a set of public fields, and is used as a return type. Here is the class, which is
located in the same file, just below the namespace declaration and before we declare the News class:

 public class NewsDetails
 {
 public int NewsID;
 public int CategoryID;
 public string Title;
 public string Body;
 public DateTime ReleaseDate;
 public DateTime ExpireDate;
 public DateTime AddedDate;
 public bool Approved;
 public int UserID;
 public string UserName;
 public string UserEmail;
 }

 We could have used public properties here, but we don't need any processing or checks of validity before modifying
state, so public fields are sufficient in this case.

 Here is the code that gets the specified news record, creates an instance of NewsDetails, and returns it:

 public NewsDetails GetDetails(int newsID)
 {
 // create the parameter
 SqlParameter[] parameters = {
 new SqlParameter("@NewsID", SqlDbType.Int, 4)
 };
 parameters[0].value = newsID;
 using(DataSet news = RunProcedure("sp_News_GetNewsDetails",
 parameters, "News"))
 {
 NewsDetails details = new NewsDetails();
 // if the record was found, set the properties of the class instance
 if (news.Tables[0].Rows.Count > 0)
 {
 DataRow rowNews = news.Tables[0].Rows[0];
 details.NewsID = (int)rowNews["NewsID"];
 details.CategoryID = (int)rowNews["CategoryID"];
 details.Title = rowNews["Title"].ToString();
 details.Body = rowNews["Body"].ToString();
 details.ReleaseDate = Convert.ToDateTime(rowNews["ReleaseDate"]);
 details.ExpireDate = Convert.ToDateTime(rowNews["ExpireDate"]);
 details.AddedDate = Convert.ToDateTime(rowNews["AddedDate"]);
 details.Approved = Convert.ToBoolean(rowNews["Approved"]);
 details.UserID = (rowNews["UserID"]==DBNull.Value ? -1 :
 (int)rowNews["UserID"]);
 details.UserName = rowNews["UserName"].ToString();
 details.UserEmail = rowNews["UserEmail"].ToString();
 }
 else
 details.NewsID = -1;

 return details;
 }
 }

 You can see that the DataSet returned by RunProcedure is defined within the scope of a using statement. This way
the DataSet variable will be disposed of as soon as the using's scope ends. The code then creates an instance of
NewsDetails, but sets its fields only if the DataSet variable contains a row. Otherwise it means that there is no news
with the specified ID and so we set the NewsID field to -1, as an indication for the code that called the method. Each
DataRow field is converted to the type of the respective NewsDetails field.

 We remember that the UserID field may be null (if the user has been deleted) and if it is null it can't be converted to
an int value. We must check if the field is null and in that case we set the NewsDetails field to -1. We write a single
line to set the field in both cases, by taking advantage of the ?: operator.

 The GetDetailsRow Method

 This method is a simpler version of the previous method. It obtains the details of the specified news item, without any
processing, by returning the respective DataRow:

 public DataRow GetDetailsRow(int newsID)
 {
 // create the parameter
 SqlParameter[] parameters = {
 new SqlParameter("@NewsID", SqlDbType.Int, 4)
 };
 parameters[0].Value = newsID;
 using(DataSet news = RunProcedure("sp_News_GetNewsDetails",
 parameters, "News"))
 {
 return news.Tables[0].Rows[0];
 }
 }

 Although not used in this module, this method will be useful if we want to add this row to a custom table. Later, in
Chapter 8, we'll see why and how to use a method like this in an effective way.

 The Add Method

 This method passes all the input parameters to the sp_News_InsertNews stored procedure, and returns the ID of the
added news item. This value is returned by the last parameter, which is declared as an output parameter by setting its
Direction property to ParameterDirection.Output:

 public int Add(int categoryID, string title, string body,
 DateTime releaseDate, DateTime expireDate, bool approved, int userID)
 {
 int numAffected;

 // create the parameters
 SqlParameter[] parameters = {
 new SqlParameter("@CategoryID", SqlDbType.Int, 4),
 new SqlParameter("@Title", SqlDbType.VarChar, 50),
 new SqlParameter("@Body", SqlDbType.Text),
 new SqlParameter("@ReleaseDate", SqlDbType.DateTime),
 new SqlParameter("@ExpireDate", SqlDbType.DateTime),
 new SqlParameter("@Approved", SqlDbType.Bit, 1),
 new SqlParameter("@UserID", SqlDbType.Int, 4),
 new SqlParameter("@NewsID", SqlDbType.Int, 4)
 };

 // set the values
 parameters[0].Value = categoryID;
 parameters[1].Value = title.Trim();
 parameters[2].Value = body.Trim();
 parameters[3].Value = releaseDate;
 parameters[4].Value = expireDate;
 parameters[5].Value = approved;
 parameters[6].Value = userID;
 parameters[7].Direction = ParameterDirection.Output;

 RunProcedure("sp_News_InsertNews", parameters, out numAffected);

 return (int)parameters[7].Value;
 }

 It's worth noting that although we use RunProcedure as before, this is actually an overloaded version that executes a
non-query command (a command that does not return a set of rows). The last parameter, numAffected, is an output
parameter that we can use to determine the number of rows affected by the command. In this method the value is not
used, because we always add one at a time. It will be in the next method, as we'll see in a moment.

 The Update Method

 The code of this method is very similar to the code above, except that here we also specify the ID of the news item
to update, and the method returns a Boolean value to indicate whether the command was successfully executed. This
will be true when at least one record is affected by the query:

 public bool Update(int newsID, string title, string body,
 DateTime releaseDate, DateTime expireDate, bool approved)
 {
 int numAffected;

 // create the parameters
 SqlParameter[] parameters = {
 new SqlParameter("@NewsID", SqlDbType.Int, 4),
 new SqlParameter("@Title", SqlDbType.VarChar, 50),
 new SqlParameter("@Body", SqlDbType.Text),
 new SqlParameter("@ReleaseDate", SqlDbType.DateTime),
 new SqlParameter("@ExpireDate", SqlDbType.DateTime),
 new SqlParameter("@Approved", SqlDbType.Bit, 1)
 };

 // set the values
 parameters[0].Value = newsID;
 parameters[1].Value = title.Trim();
 parameters[2].Value = body.Trim();
 parameters[3].Value = releaseDate;
 parameters[4].Value = expireDate;
 parameters[5].Value = approved;

 RunProcedure("sp_News_UpdateNews", parameters, out numAffected);

 return (numAffected == 1);
 }

 The SetApproved Method

 This is basically a wrapper procedure for the sp_News_SetNewsApproved stored procedure, and has nothing in
particular that needs further explanation. Here is the code:

 public bool SetApproved(int newsID, bool approved)
 {
 int numAffected;

 // create the parameters
 SqlParameter[] parameters = {
 new SqlParameter("@NewsID", SqlDbType.Int, 4),
 new SqlParameter("@Approved", SqlDbType.Bit, 1)
 };

 // set the values
 parameters[0].Value = newsID;
 parameters [1].Value = approved;
 RunProcedure("sp_News_SetNewsApproved", parameters, out numAffected);

 return (numAffected == 1);
 }

 The Delete Method

 Similar to the method above, this just wraps a call to sp_News_DeleteNews:

 public bool Delete(int newsID)
 {
 int numAffected;

 // create the parameter
 SqlParameter[] parameters = {
 new SqlParameter("@NewsID", SqlDbType.Int, 4)
 };
 parameters[0].Value = newsID;

 RunProcedure("sp_News_DeleteNews", parameters, out numAffected);

 return (numAffected == 1);
 }

 This is all we need to do for the News and NewsDetails classes. Category and CategoryDetails are very similar to
this, so we won't go over them here - they can be found in the code download.

 The Configuration Assembly
 The next step in the development of the news manager module should be the implementation of its business layer.
However, the business layer needs a configuration component to retrieve the connection string and the other settings
(we want the business classes to get the required settings by themselves, instead of passing them as parameters when
the object is created), so we'll examine the configuration assembly first. We've already seen how to create this
assembly for another module in Chapter 5, so we will be fairly brief here. For the ModuleConfig class the code is
almost the same, while the ModuleSetting class will contain new properties specific to this module.

 We use a new Class Library project, with the namespace and assembly name
Wrox.WebModules.NewsManager.Configuration. The AssemblyInfo.cs file is the same as for the data assembly.
Now let's look at the code.

 The ModuleSettlngs Class

 In the design section we've already discussed what settings we're going to store and use for this module. They are
ConnectionString, AbstractLength, and the ShowNews.aspx path. We give these properties the XmlElement
attribute, so that they are serialized to XML elements. Here is the class:

 public class ModuleSettings
 {
 private string connectionString;
 private string newsUrl;
 private int abstractLength;

 [XmlElement]
 public string ConnectionString
 {
 get { return ConnectionString; }
 set { ConnectionString = value; }
 }

 [XmlElement]
 public string NewsUrl
 {
 get { return newsUrl; }
 set { newsUrl = value; }
 }

 [XmlElement]
 public int AbstractLength
 {
 get { return abstractLength; }
 set { abstractLength = value; }
 }
 }

 The ModuleConfig Class

 As we said earlier, this class is very similar to the ModuleConfig class in the previous chapter. What's different here is
the name of the settings file, and the entry name used to store a ModuleSettings instance in the cache. The following
code highlights the lines that differ:

 public class ModuleConfig

 {

 public static ModuleSettings GetSettings()

 {

 HttpContext context = HttpContext.Current;

 ModuleSettings data = (ModuleSettings)context.Cache[
 "NewsManager_Settings"];

 if (data == null)

 {

 XmlSerializer serializer = new XmlSerializer(typeof(ModuleSettings));

 try

 {

 string fileName = HttpContext.Current.Server.MapPath(

 GetSettingsFile());

 FileStream fs = new FileStream(fileName, FileMode.Open);

 data = (ModuleSettings)serializer.Deserialize(fs);

 fs.Close();

 context.Cache.Insert("NewsManager_Settings",
 data, new CacheDependency(fileName));
 }

 catch (System.IO.FileNotFoundException)

 {

 data = new ModuleSettings();

 }

 }

 return data;

 }

 public static void SaveSettings(ModuleSettings data)

 {

 string fileName = HttpContext.Current.Server.MapPath(GetSettingsFile());

 XmlSerializer serializer = new XmlSerializer (typeof(ModuleSettings));

 FileStream fs = new FileStream(fileName, FileMode.Create);

 serializer.Serialize(fs, data);

 fs.Close();

 }

 private static string GetSettingsFile()

 {

 HttpContext context = HttpContext.Current;

 string filePath = (string)context.Cache["NewsManager_SettingsFile"];
 if (filePath == null)

 {

 filePath=ConfigurationSettings.AppSettings[
 "NewsManager_SettingsFile"];
 context.Cache["NewsManager_SettingsFile"] = filePath;
 }

 return filePath;

 }

 }

 The Settings File

 If the settings file is not present then the module automatically builds it. However, since the connection string is
needed to access the database and it is stored in the settings file, we must have it before testing the pages we'll be
building. Here is a typical example - the connection string and server name (in NewsUrl) will be different on some
machines:

 <?xml version="1.0"?>
 <ModuleSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <ConnectionString>
 server=(local);database=ThePhile;uid=sa;pwd=;
 </ConnectionString>
 <NewsUrl>
 http://localhost/thephile/modules/newsmanager/shownews.aspx
 </NewsUrl>
 <AbstractLength>100</AbstractLength>
 </ModuleSettings>

 This file is called NewsManager.Config under /ThePhile/Config. We can store this file anywhere we like, provided
we specify it in Web.Config as follows:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <appSettings>
 <add key = "NewsManager_SettingsFile"
 value="/ThePhile/Config/NewsManager.Config" />
 </appSettings>
 ...
 </configuration>

 Implementing the Business Classes
 In this section we'll be building the Business classes for this module. These will get data from the data layer we've just
looked at and give it to the presentation layer in an object-oriented, business-centered way. Again we have a Class
Library project within our ThePhile solution, with all the usual settings and modifications to the AssemblyInfo.cs file.
We need to reference Core, NewsManager.Data, and NewsManager.Configuration projects. The News and
Categories business layers are similar - we will focus on News again.

 The News class is located in the News.cs file, while Category is in Category.cs. We also have a class named News
in a file called News.cs in the data access project. This is not a problem because the files are placed in different
folders and have different namespaces.

 The News Class

 To start off, we declare the News class and define its private, and public read/write or read-only properties. There's
no point in looking at all of them - here are a few representative declarations:

 using System;
 using System.Data;
 using System.Data.SqlClient;

 namespace Wrox.WebModules.NewsManager.Business
 {
 public sealed class News : Wrox.WebModules.Business.BizObject
 {
 private Configuration.ModuleSettings settings;
 private int newsID;
 private int categoryID;
 private string title;
 public News()
 {
 // we'll fill this in in a moment...
 }

 public int CategoryID
 {
 get { return categoryID; }
 }
 public Business.Category Category
 {
 get { return new Category(categoryID); }
 }

 public int ID
 {
 get { return newsID; }
 }

 // Other property declarations

 }
 }

 It's worth noting that the class is defined as sealed, meaning it can't be inherited. We can do this since we know we
won't need to create derived classes.

 The Constructors

 We have three different constructors for this class: one with no parameters that just resets the properties to their
default values, one that takes the news ID as input and loads the corresponding news item, and one that takes an
existing News object and initializes itself based on the passed news item's ID. Here's the code:

 public News()
 {
 settings = Configuration.ModuleConfig.GetSettings();
 ResetProperties();
 }

 public News(int existingNewsID)
 {
 settings = Configuration.ModuleConfig.GetSettings();
 newsID = existingNewsID;
 LoadFromID();
 }

 public News(News existingNews)
 {
 settings = Configuration.ModuleConfig.GetSettings();
 newsID = existingNews.ID;
 LoadFromID();
 }

 Each one of these constructors retrieves the settings through the Configuration assembly, and saves the
ModuleSettings instance to the private variable.

 Loading and Resetting the Properties

 The constructors also set the object properties with the attributes of the specified news item or, in the case of the
parameter-less constructor, reset them. Here's the code of the LoadFromID and ResetProperties private methods:

 private void LoadFromID()
 {
 Data.News news = new Data.News(settings.ConnectionString);
 Data.NewsDetails details = news.GetDetails(newsID);

 newsID = details.NewsID;
 categoryID = details.CategoryID;
 title = details.Title;
 body = details.Body;
 releaseDate = details.ReleaseDate;
 expireDate = details.ExpireDate;
 addedDate = details.AddedDate;
 approved = details.Approved;
 userID = details.UserID;
 userName = details.UserName;
 userEmail = details.UserEmail;
 }

 private void ResetProperties()
 {
 newsID = -1;
 categoryID = -1;
 title = "" ;
 body = "";
 releaseDate = new DateTime();
 expireDate = new DateTime();
 addedDate = new DateTime();
 approved = false;
 // -1 means "no valid record" ... it does not affect
 // the primary key in the database
 userID = -1;
 userName = "" ;
 userEmail = "";
 }

 It's worth noting that the LoadFromID method also reads the NewsID field of the NewsDetails object returned by
Data.News.GetDetails, and stores the value in the private newsID variable. Why is this required? We already had the
newsID, in fact we used it to retrieve all the other properties! The reason is that the ID passed to the class constructor
might not be present in the database (because the news has been deleted, or simply because the caller specified an
invalid ID value). In this case, we don't want to have all the properties reset, and the NewsID property returns a
wrong ID. Thus, we also reset the newsID variable: if a record was found, its value remains valid, otherwise it is set to
-1.

 We also have a public LoadFromID method that takes as input the ID of the news item we want to load, and which
can be used instead of the constructor to specify the ID:

 public int LoadFromID(int existingNewsID)
 {
 newsID = existingNewsID;
 LoadFromID();
 return newsID;
 }

 Create, Update, and Delete a News Item

 Finally, we have three methods to manipulate the news. Firstly the Create method:

 public int Create(int newsCategoryID, string newsTitle, string newsBody,
 DateTime newsReleaseDate, DateTime newsExpireDate,
 bool newsApproved, int newsUserID)
 {
 Data.News news = new Data.News(settings.ConnectionString);
 newsID = news.Add(newsCategoryID, newsTitle, newsBody,
 newsReleaseDate, newsExpireDate, newsApproved, newsUserID);
 LoadFromID();
 return newsID;
 }

 This method calls the Data.News.Add method to create the new record, and then calls LoadFromID to refresh the
properties and refresh the news item just created. If for some reason the news item is not added, for example because
it is duplicated, the Add method returns -1, and the properties are reset.

 The Update method simply takes the current values of the object properties, and passes them to Data.News.Update:

 public bool Update()
 {
 Data.News news = new Data.News(settings.ConnectionString);
 return news.Update(newsID, title, body, releaseDate, expireDate,
 approved);
 }

 The Delete method works in the same way:

 public bool Delete()
 {
 Data.News news = new Data.News(settings.ConnectionString);
 bool ret = news.Delete(newsID);
 ResetProperties();
 return ret;
 }

 The Category Class

 This class (saved in Category.cs) has methods for loading, creating, updating, and deleting a category, just like the
News class. But it also has some other methods to create a child news item, return all the child headlines or news
items, and return all the available categories. We'll briefly look at these new methods here.

 The GetCategories Method

 There's nothing special about this method expect that it is declared as static. This is because it applies to all
categories (the entire category class, not a category object):

 public static DataSet GetCategories()
 {
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 Data.Categories categories = new Data.Categories(
 settings.ConnectionString);
 return categories.GetCategories();
 }

 It's worth noting that since this is a static method, the settings are not retrieved in the class constructor when it is
called, so we must get them from inside this function.

 Adding and Returning Child News Items

 To return the child news items, we use the Data.News.GetNews method. Below we see the small amount of code
required, and also an overloaded version of the function. This passes false as the default parameter to the first version,
meaning that we want to retrieve all the news, and not just the current and active news:

 public DataSet GetNews(bool currentApprovedOnly)
 {
 Data.News news = new Data.News(settings.ConnectionString);
 return news.GetNews(categoryID, currentApprovedOnly,
 settings.AbstractLength);
 }

 public DataSet GetNews()
 {
 return GetNews(false);
 }

 To add a child news item we don't have to directly access the data layer. We create a new Business.News instance
and use its Create method:

 public News AddNews(string newsTitle, string newsBody,
 DateTime newsReleaseDate, DateTime newsExpireDate,
 bool newsApproved, int newsUserID)
 {
 Business.News news = new Business.News();
 news.Create(categoryID, newsTitle, newsBody, newsReleaseDate.,
 newsExpireDate, newsApproved, newsUserID);
 return news;
 }

 The GetHeadlines Method

 This method calls the GetHeadlines method of the data layer, but it also adds a new custom field to the table - the full
URL of the page showing the whole news story. The field value is made up of the base page URL retrieved from the
settings, plus the NewsID as a parameter appended to this URL:

 public DataSet GetHeadlines()
 {
 Data.News news = new Data.News(settings.ConnectionString);
 DataSet headlines = news.GetHeadlines(categoryID);
 // add the NewsUrl column that is a link to the page that
 // shows the entire news body
 headlines.Tables[0].Columns.Add("NewsUrl",
 System.Type.GetType("System.String"),
 "'" + settings.NewsUrl + "?NewsID=' + newsID");
 return headlines;
 }

 It's worth noting that the new column is named NewsUrl, and the pages or programs that will call this method will use
the value of this column to show the whole news item in a web browser when the headline's title is clicked.

 The User Interface
 The database, data access, business, and configuration classes are complete, and so much of the work is done. We'll
now look at the user interface, which will sit on top of our business layer, and complete the application.

 Administration

 We'll start by looking at the administration system. Then we can use it to populate the database with some stories,
and look at how we display that to readers. But before looking at the ASP.NET and C# code for the pages, let's see
a small part of the result we want to achieve:

 The page shown above is part of the administration console, and allows the administrator to see the available
categories, create, delete, or edit a category, and jump to other pages in the application.

 The table displays all the categories that it gets from the database, shows their properties, and gives the opportunity
to sort them by their ID, Name, or Description. The icons on the left and right of the grid are hyperlinks to other
pages to do something else related to the category of that row. Specifically, the icon on the far left representing a
pencil puts the grid into edit mode (we'll see what this means shortly), the recycle bin deletes a record, and the group
of sheets on the far right is used to jump directly to the page to manage the news for the category. The grid, the menu
bar, and the other controls are plugged into the site layout, with the title bar at the top and the menu box on the right.

 Let's look at the code now. In the main ThePhile project, we create a new folder under /ThePhile/Modules/ called
NewsManager. We need to add a reference to NewsManager.Business, and NewsManager.Configuration. We don't
need to reference NewsManager.Data, since the presentation layer never directly accesses the data layer.

 Creating the Header and Footer User Controls

 In the previous chapters we've already talked about the advantages of having reusable user controls for the interface,
so we won't do it again here. With regard to a shared site-wide layout, in Chapter 2 we saw our site-wide header and
footer user controls. These can be inserted into any page in order to have the same layout without having to manually
copy and paste the common HTML code onto each page. This module follows exactly the same design pattern, and
additionally has its own two private controls. The trick to easily plug the module into the existing layout is to insert the
site-wide header at the top of the module-specific header, and the site-wide footer at the bottom of the
module-specific footer. The following picture illustrates the various pieces that form the final page:

 This way, with a few lines we'll get our module to fit into the existing website structure. If the site layout changes later,
we won't need to do anything to the module, as it will just continue to load the updated site header and footer.

 For this module, we want to have different header and footer controls for the administration section and for the
end-user section, because we want the administration section's header to show the menu bar with links to the
protected pages.

 Admin Header

 Let's start with the administration section's header: add a new User Control to the NewsManager project and name it
AdminHeader.ascx. This control renders the site-wide title bar at the very top of the page, and then the module's title
and menu. Let's look at the complete HTML code first, and then we'll discuss it:

 <%@ Control Language="c#" AutoEventWireup="false"
 Codebehind="AdminHeader.ascx.cs"
 Inherits="Wrox.WebModules.NewsManager.Web.Controls.User.AdminHeader"%>
 <%@ Register TagPrefix="WroxUser" TagName="SiteHeader"
 Src="/ThePhile/Controls/SiteHeader.ascx" %>
 <WroxUser:SiteHeader id="Header" runat="server" />

 <table width="100%" border="0" cellspacing="4" cellpadding="2">
 <tr>
 <td width="100%" valign="top">
 <script language="JavaScriptl.2">
 function SetStatusBarText(text)
 {
 StatusBar.innerHTML = text;
 }
 </script>

 <table class="MenuTable" border="0" width="100%">
 <tr>
 <td>
 <table class="MenuTable" border="0" width="100%">
 <tr>
 <td>
 <u>NewsManager - Wrox WebModule</u>
 </td>
 <td align="right">
 <img Alt="Go to the bottom of the page"
 src="./Images/GoDown.gif" border="0" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table border="0" width="100%">
 <tr>
 <td>
 <a class="MenuItem"
 onMouseOver="SetStatusBarText('Manage the categories');"
 onMouseOut="SetStatusBarText('');" href="Categories.aspx">
 Categories

 </td>

 Similar table entries follow, providing links to News.aspx and Settings.aspx. There's no point in repeating them here.
Here's the final section:

 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td width="100%">
 <div align="left" id="StatusBar">
 </td>
 <td>

 </td>
 </tr>
 </table>

 This is just plain HTML (except for the site-wide header at the beginning). There is no need to use ASP.NET
controls if we want to produce static and non-programmable content, and plain HTML is faster to process. The code
is pretty simple and shouldn't require much explanation. We create a table - the first row shows the title, the second
row contains a further table with columns for each menu item and separator. The last row has a container (an HTML
<div> element). Each hyperlink of the menu points to another ASPX page, and calls the SetStatusBarText method
when the mouse enters or leaves its area. SetStatusBarText sets the content of our HTML <div> element to the
specified string.

 Admin Footer

 The footer user control is called AdminFooter.ascx (a new Web User Control in VS.NET) and is composed of only
a few lines of code:

 <%@ Control Language="c#" AutoEventWireup="false"
 Codebehind="AdminFooter.ascx.cs"
 Inherits="Wrox.WebModules.NewsManager.Web.Controls.User.AdminFooter"%>
 <%@ Register TagPrefix="Wrox" Namespace="Wrox.ThePhile.Web.Controls.Server"
 Assembly="Wrox.ThePhile.Web.Controls" %>
 <%@ Register TagPrefix="WroxUser" TagName="SiteFooter"
 Src="/ThePhile/Controls/SiteFooter.ascx" %>

 <div align="right" Width="100%">
 <img src="./Images/GoUp.gif" Alt="Go to the top of the
 page" border="0">

 </div>

 </td>
 <td align="right" valign="top">
 <Wrox:Navigator id="MenuNav" SourceFile="/ThePhile/Config/NavMenu.xml"
 TransformFile="/ThePhile/Transforms/NavMenu.xslt" runat="server" />
 </td>
 </tr></table>
 <WroxUser:SiteFooter id="Footer" runat="server" />

 Here we add a new column to the table opened in the header to create the page layout, insert the site menu, and
finally close that table and insert the site-wide footer.

 We change the namespace to Wrox.WebModules.NewsManager.Web.Controls.User, according to our conventions
from Chapter 2.

 The Categories Manager Page

 The previous screenshot shows how the categories management page appears when it is loaded. The display
changes, however, according to the action we want to perform. For example, this is what you get when you press the
pencil icon at the far left to edit a category:

 The current Name, Description, and ImageUrl of the category are displayed inside three textboxes. The administrator
can change these values and click the green tick icon to update the values in the database, or click the X to abort the
operation. The ID column is not editable, because the ID is a counter column whose value cannot be changed. By
default the categories are sorted by ID. Sorting is done by clicking on the header of the column you want to sort by.

 To add a new category the administrator clicks the Create button at the top-left of the main page, and this is the
result:

 Three empty textboxes are shown, and the administrator fills them with the name, description, and path of an image
for the category to be created. The action can be confirmed or canceled by clicking on one of the two icons on the
left side. In both cases, and this is true for editing too, the textboxes are hidden and the display returns to how it was.
While this effect is done almost automatically when we click the icon to edit a new row, we need to handle the events
of the controls and show or hide the textboxes by ourselves when adding a new row. However, this process is much
simpler than it might seem at first glance - only a few lines of code are needed, which we'll see in just a minute.

 The Categories.aspx Page

 This is the ASP.NET page where the user interface is defined. The source code of the page is too long to be shown
all at once, so we'll look at it piece by piece.

 The page starts with the declaration of the code-behind file and the <head> section. There's nothing new here, so
let's go in at the <body> element:

 <body>
 <form method="post" runat="server" ID="Categories">
 <!-- Insert the menu user control -->
 <NewsManager:AdminHeader ID="Menu" runat="server" />

 First we open a new form, and add our AdminHeader control. Moving on, we reach a table with four columns and a
Create button. When this button is pressed, two textboxes and the icons for confirming or canceling the operation
appear, as shown previously, while the rest of the display remains the same. All these controls are defined in the page,
but only the button is visible at the beginning - the rest have Visible set to false:

 <asp:Table id="TableNewCategory" runat="server" CssClass="Grid_General"
 Width="100%">
 <asp:TableRow CssClass="Grid_Header">
 <asp:TableCell Width="85px" Text="Add New" />
 <asp:TableCell Width="150px" Text="Name" />
 <asp:TableCell Text="Description" />
 <asp:TableCell Width="170px" Text="Image Url" />
 </asp:TableRow>
 <asp:TableRow ID="CreateNewRow">
 <asp:TableCell HorizontalAlign="Center">
 <asp:Button runat="server" Text="Create" ID="Create"
 CssClass="Button" OnClick="Create_Click" Width="80px" />
 </asp:TableCell>
 <asp:TableCell ID="AddNewResultCell" ColumnSpan="3">
 <asp:Label runat="server" CssClass="Error" ID="AddNewError"
 Text="This item was already present" Visible="false" />
 </asp:TableCell>
 </asp:TableRow>
 <asp:TableRow ID="AddNewControlsRow" Visible="false">
 <asp:TableCell VerticalAlign="Top">
 <asp:Image ImageURL="./Images/Spacer.gif" Width="15px"
 Height="1px" runat="server" ID="Imagel" />
 <asp:LinkButton ID="AddNew" runat="server"
 Text=""
 OnClick="AddNew_Click" />
 <asp:Image ImageURL="./Images/Spacer.gif" Width="15px"
 Height="lpx" runat="server" ID="Image2" />
 <asp:LinkButton ID="CancelAddNew" runat="server"
 CausesValidation="false"
 Text="<img border=0 src=./Images/Cancel.gif Alt='Cancel
 editing mode'>" OnClick="CancelAddNew_Click" />
 </asp:TableCell>
 <asp:TableCell VerticalAlign="Top">
 <asp:TextBox runat="server" CssClass="TextBox"
 ID="NewCatName" Width="150px" />
 <asp:RequiredFieldValidator Id="ValidateNewName" runat="server"
 ControlToValidate="NewCatName" Display="dynamic">

* Name is required
 </asp:RequiredFieldValidator>
 </asp:TableCell>
 <asp:TableCell VerticalAlign="Top">
 <asp:TextBox runat="server" CssClass="TextBox"
 ID="NewCatDescr" Width="100%" />
 </asp:TableCell>
 <asp:TableCell VerticalAlign="Top">
 <asp:TextBox runat="server" CssClass="TextBox"
 ID="NewCatImageUrl" Width="100%" />
 </asp:TableCell>
 </asp:TableRow>
 </asp:Table>

 Note that all the server controls that will need to be accessed programmatically have an ID attribute, and that all the
code is placed within a server-side form. Also note that the name of the category is required when a new category is
created, and this is ensured by a RequiredFieldValidator control. The meaning of the ControlToValidate property is
clear, and the Display property, set to dynamic, specifies that the space to show the error message will be created
dynamically.

 We use a DataGrid control to display the categories. This is one of the most useful ASP.NET controls. If you haven't
used it before then it's well worth investigating - see the .NET Framework documentation, or Professional ASP.NET
1.0 from Wrox (ISBN 1-861007-03-5) for more information.

 Here is the declaration for the DataGrid in our page:

 <asp:DataGrid id="CatGrid" runat="server"
 Width="100%"
 CssClass="Grid_General"
 HeaderStyle-CssClass="Grid_Header"
 ItemStyle-CssClass="Grid_Item"
 AlternatingItemStyle-CssClass="Grid_AlternatingItem"
 AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyField="CategoryID"
 OnEditCommand="CatGrid_Edit"
 OnCancelCommand="CatGrid_CancelEdit"
 OnUpdateCommand="CatGrid_Update"
 OnDeleteCommand="CatGrid_Delete"
 OnSortCommand="CatGrid_Sort">

 The DataGrid does a lot of the work for us. After setting its appearance, we set AllowSorting to True. That's all we
need to do to let the user sort the table any way they like - a big job in ASP 3!

 To enable DataGrid editing, we need to specify the primary key of the data in the grid - that way the DataGrid can
communicate which row to edit/update back to the server. We use the DataKeyField property for this. The last lines
define the event procedures that are called to handle the operations of the grid. We'll see how to write these event
procedures shortly, when looking at the code-behind class.

 Back to our ASPX - we need to manually declare how each column has to be rendered. We need the following
columns:

 A clickable image to edit the row

 A clickable image to delete the row

 A column to display the category's name

 A column to display the category's description

 A column to display the category's image when the grid is in normal display mode, or the URL of the image
during editing

 A clickable image to jump to the page that shows the news items for the category of the current row

 Here's the code needed for the first two columns:

 <Columns>
 <asp:EditCommandColumn
 ItemStyle-Width="25px"
 EditText=""
 CancelText=""
 UpdateText=""
 />
 <asp:ButtonColumn
 ItemStyle-Width="25px"
 Text=""
 CommandName="delete"
 />

 The EditCommandColumn is a specific column with a link to begin the editing, while ButtonColumn creates normal
buttons or links whose Click event must be handled to perform any operation you need. Note that we render the
graphical buttons by including an tag in the Text property of the column. If we write a normal string instead of
the HTML, we get a standard button with that string as its caption.

 Here is the code for the columns that display the list's ID, name, description, and image:

 <asp:BoundColumn HeaderText="ID"
 ItemStyle-Width="30px" DataField="CategoryID"
 ReadOnly="True" SortExpression="CategoryID"
 />
 <asp:TemplateColumn HeaderText="Name"
 SortExpression="Name" ItemStyle-Width="150px">
 <ItemTemplate>
 <asp:Label runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "Name") %>'
 />
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox ID="EditCatName" runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "Name") %>'
 CssClass="TextBox" Width="150px"
 />
 <asp:RequiredFieldValidator Id="ValidateEditName"
 runat="server" ControlToValidate="EditCatName"
 Display="dynamic">* Name is required
 </asp:RequiredFieldValidator>
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Description"
 SortExpression="Description">
 <ItemTemplate>
 <asp:Label runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "Description") %>'
 />
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox ID="EditCatDescr" runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "Description") %>'
 CssClass="TextBox" Width="100%"
 />
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Image"
 ItemStyle-Width="150px" ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <asp:Label runat="server" Text='<%# GetImage(
 DataBinder.Eval(Container.DataItem, "ImageUrl")) %>'
 />
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox ID="EditCatImageUrl" runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "ImageUrl") %>'
 CssClass="TextBox" Width="100%"
 />

 </EditItemTemplate>
 </asp:TemplateColumn>

 The first column is defined as a normal, non-editable column and there isn't much to say about it. The other three are
more interesting because they show how to create a templated column that uses a label to show the value, or a
textbox to edit it. The proper view is automatically set when we enter or exit the editing mode for a row. Note that the
text of the label and textboxes is handled by the DataBinder.Eval method, which returns the value of a column for the
row being read, and that the list's name is required, as shown earlier in the table to add a new category.

 Of even more interest is the final column, which shows an image when in normal mode, and its path in a textbox when
in editing mode. Since the ImageUrl can be null, we call the external function GetImage. This accepts the field value
and returns an empty string or a complete tag, depending on whether the field is null or not.

 The last column on the far right shows the icon to jump to the details page:

 <asp:HyperLinkColumn ItemStyle-Width="20px"
 DataNavigateUrlField="CategoryID"
 DataNavigateUrlFormatString="News.aspx?CategoryID={0}"
 DataTextFormatString="<img border=0 Alt='Show news'
 src=./Images/Group.gif>"
 DataTextField="CategoryID"
 />
 </Columns>

 It is a non-editable hyperlink rendered as an image, and the URL which it points to is built with a string template
defined in the DataNavigateUrlFormatString: the ID of each row will replace the {0} marker.

 The page ends with the closing tag for the DataGrid control, the footer control, and the closing tag for the form:

 </asp:DataGrid>
 <!-- Insert the footer -->
 <NewsManager:AdminFooter ID="Footer" runat="server" />
 </form>
 </body>
 </html>

 The Code-behind for Categories.aspx

 Finally we can start looking at the code that handles the execution of the page. The code-behind file
(Categories.aspx.cs) was automatically created by VS.NET together with the page itself. Again, we'll examine it one
section at a time.

 After the namespace declaration (which we change to Wrox.WebModules.NewsManager.Web and the controls
declaration, we come to where the page functionality is implemented. Here is the handler that it runs when the page is
loaded:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // bind the page's controls
 BindGrid();
 }
 }

 Then there is the BindGrid method, called by the above routine, which fills the grid with the categories:

 protected void BindGrid()
 {
 // get all the categories
 DataView myDV = Business.Category.GetCategories().Tables[0].Defaultview;

 // sort the data according to the SortExpression value
 if (CatGrid.Attributes["SortExpression"] != null)
 myDV.Sort = CatGrid.Attributes["SortExpression"];

 CatGrid.DataSource = myDV;
 CatGrid.DataBind();
 }

 The function is only called if the page's IsPostBack property is false: when the page is loaded for the first time or
manually refreshed by the user with the browser's Refresh/Reload command. It is not called when the page is
reloaded because the user posted some data to the form. In fact, when that page is posted back, the state of the
controls is stored in a hidden HTML control (named _VIEWSTATE) and then automatically restored, avoiding the
need for re-executing a query on the database. The content of this hidden field is passed back and forth between the
client to the server, which can cause a significant overhead in case of big grids or lots of controls that must maintain
their state.

 BindGrid is the core function of this page, because it gets the data from the database and displays the records
through the DataGrid. The first line gets a DataView with all the available categories, by calling the GetCategories
static method of Business.Category. The DataView is then sorted according to a DataGrid attribute, which is a
custom attribute set by our code later: the first time the function is called this attribute is null and the DataView is not
sorted. The last two lines associate the DataView to the DataSource property, and call the DataBind method to
display the rows.

 Talking about data binding, we remember that a column in the DataGrid calls a GetImage method to create an
tag and show the category's image, if the ImageUrl field is not null. The code is really simple - the only important point
is that the function must be declared as public:

 public string GetImage(object imageUrl)
 {
 if (imageUrl.ToString().Length > 0)
 return "";
 else
 return "";
 }

 Sorting the Categories

 When a column header is clicked, the CatGrid_Sort function is called on the server, which looks like this:

 protected void CatGrid_Sort(Object sender, DataGridSortCommandEventArgs e)
 {
 AddNewError.Visible = false;
 ShowAddNewControls(false);
 CatGrid.EditItemIndex = -1;
 // set the SortExpression attribute that will be used to actually sort
 // the data in the BindGrid method
 CatGrid.Attributes["SortExpression"] = e.SortExpression.ToString();
 BindGrid();
 }

 The function first of all hides the controls for adding a new category, or displaying an error message. Then it disables
the editing mode of a row, if enabled. Finally it gets from the input parameter the sort expression to use to actually
sort the data, and refreshes the DataGrid's content by calling BindGrid.

 Editing Updating Categories

 Now we will implement the methods that deal with the editing and updating of rows. The first puts the relevant row in
edit mode, the second cancels the current edit:

 protected void CatGrid_Edit(object sender, DataGridCommandEventArgs e)
 {
 AddNewError.Visible = false;
 ShowAddNewControls(false);
 // start editing
 CatGrid.EditItemIndex = (int)e.Item.ItemIndex;
 BindGrid();
 }

 protected void CatGrid_CancelEdit(object sender, DataGridCommandEventArgs e)
 {
 CatGrid.EditItemIndex = -1;
 BindGrid();
)

 CatGrid_Edit hides the controls for adding a row, and sets the EditItemIndex property to the index of the row to
edit: this value is retrieved from the Item object which is exposed as a property of the object e passed as a parameter
to the function. Finally, BindGrid is called again to bind the data for that row to the three textboxes. When the X icon
is pressed, the EditItemIndex is simply set to -1 and the grid is refreshed.

 Now let's look at CatGrid_Update, which does most of the work:

 protected void CatGrid_Update(object sender, DataGridCommandEventArgs e)
 {
 if (Page.IsValid)
 {
 // get the new values from the textboxes
 string catName = ((TextBox)e.Item.FindControl("EditCatName")).Text;
 string catDescr = ((TextBox)e.Item.FindControl("EditCatDescr")).Text;
 string catImageUrl = ((TextBox)e.Item.FindControl(
 "EditCatImageUrl")).Text;
 int categoryID = (int)CatGrid.DataKeys[e.Item.ItemIndex];

 // update the values
 Business.Category category = new Business.Category(categoryID);
 category.Name = catName;
 category.Description = catDescr;
 category.ImageUrl = catImageUrl;
 category.Update();

 CatGrid.EditItemIndex = -1;
 BindGrid();
 }
 }

 Firstly, note that the code is executed only if the page is valid, that is when the rules of the validator controls are
observed. In this case the Name textbox must be filled with a valid (not null) name. If this check succeeds, the
execution goes ahead and gets the current values of the three textboxes. The reference to each textbox control is
returned by the FindControl method of Item, and then the content is read from the Text property. Note that that the
generic Control object returned by FindControl does not have a Text property, so we need to manually cast the
returned object to a TextBox. The last parameter we need is the ID of the row to update, which is very easy to get
because this column was set as the primary key for the DataGrid, so our work is reduced to reading in a property
value. Finally, we create a Business.Category object for the selected category, set its properties, and call the Update
method to persist the changes to the database. As a last step we refresh the DataGrid to reflect the changes.

 Deleting a Category

 The procedure for the CatGrid_Delete event follows exactly the same structure as the previous ones, although it is
simpler. We create a Business.Category object for the category identified by the category ID returned by the
DataKeys enumerator property, and then call its Delete method:

 protected void CatGrid_Delete(object sender, DataGridCommandEventArgs e)
 {
 AddNewError.Visible = false;
 ShowAddNewControls(false);
 CatGrid.EditItemIndex = -1;
 // get the ID of this record and delete it
 Business.Category category = new Business.Category(
 (int)CatGrid.DataKeys[e.Item.ItemIndex]);
 category.Delete();
 // re-bind
 BindGrid();
 }

 Creating a Category

 The last task is adding a new row. When the Create button is pressed, three textboxes and the respective icons for
confirming or canceling the operation are shown, while the Create button is made invisible. The DataGrid's
EditItemIndex property is also set to -1, to stop any editing operation from taking place. Here is the code for this
event, and for the function that shows or hides the controls according to the passed Boolean parameter:

 protected void Create_Click(object sender, EventArgs e)
 {
 // show the textboxes and buttons for adding a new record
 AddNewError.Visible = false;
 ShowAddNewControls(true);
 CatGrid.EditItemIndex = -1;
 BindGrid();
 }

 protected void ShowAddNewControls(bool ShowControls)
 {
 // show/hide the controls for adding a new record
 NewCatName.Text="";
 NewCatDescr.Text="";
 NewCatImageUrl.Text="";

 AddNewControlsRow.Visible = ShowControls;
 CreateNewRow.Visible = !ShowControls;
 }

 The method is called when the user confirms the new row, by clicking the tick icon:

 protected void AddNew_Click(object sender, EventArgs e)
 {
 if (Page.IsValid)
 {
 Business.Category category = new Business.Category();
 // add the new record
 if (category.Create(NewCatName.Text, NewCatDescr.Text,
 NewCatImageUrl.Text) < 0)
 {
 // if Add returned -1, the category was already present
 AddNewError.Visible = true;
 }
 ShowAddNewControls(false);
 BindGrid();
 }
 }

 If the data is valid (it obeys the rules enforced by the validators declared in the Categories.aspx page), the code gets
the content of the three textboxes and passes these strings to the Create method of a Business.Category object. In
this case the code is simpler because we can directly reference the two textboxes, since they are uniquely identified by
name. If the Category.Create method returns -1 it means that a category with the same name was already present in
the database and it can't be added twice. Therefore we show the AddNewError label on Categories.aspx, with the
Text property set to an error message that explains the problem.

 The icon for canceling the addition is a ButtonLink control, which when clicked restores the grid to the default
display. Here's the code for its Click event:

 protected void CancelAddNew_Click(object sender, EventArgs e)
 {
 ShowAddNewControls(false);
 }

 There is one important point to note here. When a button is pressed it causes the page to be posted back. The
control for the category's name is validated when a page is posted back, which would cause the posting to be
stopped if the new category's name were missing. Since we are canceling, and don't care what the user has typed, we
set the button's CausesValidation property to false.

 The code for the categories management page is now complete. This page particularly shows how much better
ASP.NET is than classic ASP - to build a grid like this in ASP 3 would take hundreds, perhaps thousands, of lines of
code.

 Managing the News

 The page for managing the news in each category has a very similar structure to the page just analyzed, but it also has
some additions that we're going to highlight. The image below shows the page while adding a news item. The
administrator has attempted to add a news item but has specified an invalid release date in the From textbox, so the
validator controls tell the user why the form can't be submitted and the news added:

 The News.aspx Page

 The above screenshot shows how this page differs from the previous one. We have a different number of columns
and grid content, a drop down list where we can select a category to view its news, and radio button controls so that
the administrator can filter the news.

 The ASPX is fairly similar to Categories.aspx. We will only look at the notable differences. The first major
differences are the DropDownList control for the categories, and the set of controls to filter the grid rows:

 <asp:table Width="100%" ID="TableNews" runat="server"
 CssClass="Grid_General">
 <asp:TableRow>
 <asp:TableCell Width="85px" HorizontalAlign="Center"
 VerticalAlign="Top" Font-Bold="True" Text="Category:" />
 <asp:TableCel1>
 <asp:DropDownList runat="server" ID="CatDropDown" Width="300px"
 DataTextField="Name" DataValueField="CategoryID"
 CssClass="TextBox" AutoPostBack="True"
 OnSelectedIndexChanged="CatDropDown_IndexChanged"
 />

 Filter by status:

 <asp:RadioButton runat="server" ID="ShowAll"
 GroupName="ShowByStatus" Text="All"
 Checked="True" AutoPostBack="True"
 OnCheckedChanged="ShowNews_CheckedChanged"
 />
 <asp:RadioButton runat="server" ID="ShowApproved"
 GroupName="ShowByStatus" Text="Approved"
 Checked="False" AutoPostBack="True"
 OnCheckedChanged="ShowNews_CheckedChanged"
 />
 <asp:RadioButton runat="server" ID="ShowPending"
 GroupName="ShowByStatus" Text="Not yet approved"
 Checked="False" AutoPostBack="True"
 OnCheckedChanged="ShowNews_CheckedChanged"
 />

 Filter by validity:

 ...the other RadioButtons go here...
 </asp:TableCell>
 </asp:TableRow>
 </asp:table>

 The main thing to note is that the dropdown list has the AutoPostBack property set to true, which causes the form to
be posted back every time the user changes the selected item. This event raises the OnSelectedIndexChanged event
and so calls the CatDropDown_IndexChanged procedure. Also, the RadioButtons set this property to true, and they
all use the same ShowNews_CheckedChanged procedure to handle the event.

 The rest of the page is similar to what we have seen before, but the DataGrid's columns are used more fully than for
the previous page. Let's look at the extra or updated lines of the DataGrid declaration:

 <asp:DataGrid ID="NewsGrid" runat="server"
 DataKeyField="NewsID"
 OnEditCommand="NewsGrid_Edit"
 OnCancelCommand="NewsGrid_CancelEdit"
 OnUpdateCommand="NewsGrid_Update"
 OnDeleteCommand="NewsGrid_Delete"
 OnSortCommand="NewsGrid_Sort"
 AllowPaging="True"
 PageSize="20"
 PagerStyle-HorizontalAlign="Right"
 PagerStyle-PageButtonCount="20"
 PagerStyle-Mode="NumericPages"
 OnPageIndexChanged="NewsGrid_PageChanged"
 OnSelectedlndexChanged="NewsGrid_SelectionChanged"
 SelectedItemStyle-CssClass="Grid_SelectedItem"

 The new lines say that the data will be displayed in pages of twenty rows each, and that the user will be able to
navigate the pages through the page numbers on the bottom right side. An event procedure to handle the page
changing is defined. The last two lines define an event handler and the style for the selected item. We're going to add
an icon on the far right side of the grid that, when clicked, will highlight the row and show the whole news text in a
label at the bottom of the page.

 Let's also look at the declaration of some of the columns, as there are a few new bits. The following code adds the
column for the news title and abstract:

 <asp:TemplateColumn HeaderText="News" SortExpression="Title">
 <ItemTemplate>
 <asp:Label runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "Title") %>'
 Font-Bold="True" />

 <asp:Label runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "Abstract") %>' />
 </ItemTemplate>
 <EditItemTemplate>
 Title:

 <asp:TextBox runat="server" CssClass="TextBox"
 Text='<%# DataBinder.Eval(Container.DataItem, "Title") %>'
 ID="EditTitle" Width="100%" />
 <asp:RequiredFieldValidator runat="server"
 ControlToValidate="EditTitle" Display="dynamic">
 * Title is required
 </asp:RequiredFieldValidator>

 Body:

 <asp:TextBox runat="server" CssClass="TextBox"
 TextMode="MultiLine" Rows="5" Text='<%#
 GetNewsText(int.Parse(DataBinder.Eval(
 Container.DataItem, "NewsID") .ToString())) %>'
 ID="EditBody" Width="100%" />
 </EditItemTemplate>
 </asp:TemplateColumn>

 The first thing we note is that we can add all the controls to the same column, but this is not a special feature. The
important point here is that in normal display mode the column shows the news abstract by binding to the Abstract
field (which is, as you might remember, dynamically created by the stored procedures by truncating the Body field),
whereas in editing mode we use a custom GetNewsText function to retrieve the whole news text. We've already said
that we get the whole text only when it is strictly necessary, while that field is not returned by the standard procedure
because it would be slow.

 Next, we add the columns for the release and expiry dates:

 <asp:TemplateColumn HeaderText="Validity"
 SortExpression="ReleaseDate" ItemStyle-Width="100px">
 <ItemTemplate>
 From:

 <asp:Label runat="server" Text='<%# DataBinder.Eval(
 Container.DataItem, "ReleaseDate", "{0:MM/dd/yyyy)") %>' />

 To:

 <asp:Label runat="server" Text='<%# DataBinder.Eval(
 Container.DataItem, "ExpireDate", "{0:MM/dd/yyyy}") %>' />
 </ItemTemplate>
 <EditItemTemplate>
 From:

 <asp:TextBox runat="server" CssClass="TextBox" Text='<%#
 DataBinder.Eval(Container.DataItem, "ReleaseDate",
 "{0:MM/dd/yyyy}") %>' ID="EditReleaseDate" Width="100%" />
 <asp:CompareValidator runat="server"
 ControlToValidate="EditReleaseDate" Type="Date"
 Operator="DataTypeCheck" Display="dynamic">
 * Invalid format
 </asp:CompareValidator>
 <asp:CompareValidator runat="server" ControlToValidate="EditReleaseDate"
 ControlToCompare="EditExpireDate" Type="Date"
 Operator="LessThanEqual" Display="dynamic">
 * Invalid value
 </asp:CompareValidator>

 To:

 <asp:TextBox runat="server" CssClass="TextBox" Text='<%#
 DataBinder.Eval(Container.DataItem, "ExpireDate",
 "{0:MM/dd/yyyy}") %>' ID="EditExpireDate" Width="100%" />
 <asp:CompareValidator runat="server"
 ControlToValidate="EditExpireDate" Type="Date"
 Operator="DataTypeCheck" Display="dynamic">
 * Invalid format
 </asp:CompareValidator>
 </EditItemTemplate>
 </asp:TemplateColumn>

 This column's code isn't of particular interest except for the validator controls that ensure the dates are in a valid
format, and that the expire date is after the release date. The dates aren't required, and if not specified we'll insert
default values; if they are supplied they can't contain invalid characters.

 Now we have the column that shows and allows editing of the Approved field. This is a bit special because it uses a
read-only CheckBox in normal display mode, and a writeable CheckBox in edit mode:

 <asp:TemplateColumn HeaderText="Appr." SortExpression="Approved"
 ItemStyle-Width="30px" HeaderStyle-HorizontalAlign="Center"
 ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <asp:CheckBox runat="server" Enabled="false"
 Checked='<%# Convert.ToBoolean(
 DataBinder.Eval(Container.DataItem, "Approved")) %>'
 />
 </ItemTemplate>
 <EditItemTemplate>
 <asp:CheckBox ID="EditApproved" runat="server"
 Checked='<%# Convert.ToBoolean(
 DataBinder.Eval(Container.DataItem, "Approved")) %>'
 />
 </EditItemTemplate>
 </asp:TemplateColumn>

 To determine whether the control has to be checked, we convert the field value to a Boolean value by using the
ToBoolean shared method of the Convert class.

 We'll skip the Added column as it really has nothing new to be shown. Let's move straight to the User column, which
shows a hyperlink that opens the default program to send an e-mail to the writer's e-mail address. Here is its
declaration:

 <asp:TemplateColumn HeaderText="User"
 SortExpression="UserName" ItemStyle-Width="100px">
 <ItemTemplate>
 <asp:HyperLink runat="server" NavigateUrl='<%#
 "mailto:" + DataBinder.Eval(Container.DataItem, "UserEmail") %>'
 Text='<%# DataBinder.Eval(Container.DataItem, "UserName") %>'
 CssClass="GridLink"
 />
 </ItemTemplate>
 </asp:TemplateColumn>

 The code above creates a HyperLink control and sets its NavigateUrl and Text properties to the user's e-mail
address and user's full name, respectively.

 Lastly, we have the column that, when clicked, highlights the row and shows the whole news text at the bottom:

 <asp:ButtonColumn CommandName="Select" ItemStyle-Width="20px"
 Text=""
 />

 Its CommandName property is set to Select, and this means that when it is clicked it raises the
OnSelectedIndexChanged event.

 The Codebehind for News.aspx

 The structure of the codebehind for the News page is the same as for the Categories page. There are a few more
lines of code to handle the new controls added. Here's the code that executes when the page loads:

 protected void Page_Load(object sender, EventArgs e)
 {
 // get the CategoryID from the QueryString
 string categoryID = Request.Params["CategoryID"];
 NewsGrid.Attributes["CategoryID"] = categoryID;

 if (!Page.IsPostBack)
 {
 // load all the available lists in the DropDown control
 DataView myDV = Business.Category.GetCategories().Tables[0].DefaultView;
 CatDropDown.DataSource = myDV;
 CatDropDown.DataBind();

 if (categoryID!=null)
 {
 // select the DropDown element according to the CategoryID
 CatDropDown.SelectedIndex = CatDropDown.Items.IndexOf(
 CatDropDown.Items.FindByValue(categoryID));
 }

 // (re)bind the page's controls
 BindGrid();
 }
 }

 On the Categories. aspx page, the right side of each grid's row contained a button that passed the user to the News.
aspx page to see the news for that category. To do this, the button pointed to the News. aspx page and added the
category's ID as a parameter in the query string. This value is retrieved from the query string and saved as an attribute
of the DataGrid control, because it is used to create a Business.Category object, needed to get its child news items.

 In addition to the usual BindGrid call, this time there is also a drop-down list to fill with the available categories. This
is done directly within Page_Load by calling the GetCategories static method of the Business. Category class and
assigning the resulting table to the DataSource for the drop-down. Then we use the ID in the page's querystring to
select the correct item in the drop-down.

 The BindGrid method for this page has code to read the category's ID for which we want to retrieve the news, and
also filters the results as specified by the RadioButtons at the top of the page:

 protected void BindGrid()
 {
 int categoryID;

 // get the CategoryID value from the Grid's attributes
 if (NewsGrid.Attributes["CategoryID"] != null)
 categoryID = int.Parse(NewsGrid.Attributes["CategoryID"]);
 else
 categoryID = int.Parse(CatDropDown.SelectedItem.Value);

 // get all the news in this category
 DataView myDV = new Business.Category(
 categoryID).GetNews(false).Tables[0].DefaultView;

 // sort the records according to the SortExpression
 // value in the Grid's attributes
 if (NewsGrid.Attributes["SortExpression"]!="")
 myDV.Sort = NewsGrid.Attributes["SortExpression"];

 // show only the approved/pending news, as specified in the options
 if (ShowApproved.Checked)
 myDV.RowFilter = "Approved = 1";
 else if (ShowPending.Checked)
 myDV.RowFilter = "Approved = 0";
 else
 myDV.RowFilter = "1 = 1";
 // show only the past/current/future news, if specified in the options
 if (ShowPast.Checked)
 myDV.RowFilter += " AND ExpireDate < '" + DateTime.Today + " ' " ;
 else if (ShowCurrent.Checked)
 myDV.RowFilter += " AND ReleaseDate <= '" + DateTime.Today + "' AND
 ExpireDate >= '" + DateTime.Today + "'";
 else if (ShowFuture.Checked)
 myDV.RowFilter += " AND ReleaseDate > '" + DateTime.Today + "'";

 NewsGrid.DataSource = myDV;
 NewsGrid.DataBind();

 }

 The records are filtered as specified by the user, by appending conditional expressions to the RowFilter property of
the DataView. The BindGrid function is called every time a RadioButton is selected, so that the records are
immediately filtered accordingly:

 protected void ShowNews_CheckedChanged(object sender, EventArgs e)
 {
 UnselectGridItem();
 BindGrid ();
 }

 The following function handles the selection of an item in the drop-down list:

 protected void CatDropDown_IndexChanged(object sender, EventArgs e)
 {
 Response.Redirect("News.aspx?CategoryID=" +
 CatDropDown.SelectedItem.Value);
 }

 This redirects the browser to the same page, but with the ID of the selected item, in order to load the correct
subscribers the next time BindGrid is called.

 When the user navigates to another of the grid's pages, we need to cancel editing mode - which means that before
rebinding the grid we have to hide the controls for adding a new row, and hide the error message that would be
shown when the news we want to add is already present in the category. And of course we have to set the
CurrentPageIndex property to the new value to actually change the current page:

 protected void NewsGrid_PageChanged(Object sender,
 DataGridPageChangedEventArgs e)
 {
 UnselectGridItem();
 AddNewError.Visible = false;
 ShowAddNewControls(false);
 // change the current page
 NewsGrid.CurrentPageIndex = e.NewPageIndex;
 BindGrid();
 }

 Next we have the procedure that executes when we select an item:

 protected void NewsGrid_SelectionChanged(object sender, EventArgs e)
 {
 ShowAddNewControls(false);

 // get the ID of the selected row
 int newsID = int.Parse(
 NewsGrid.DataKeys[NewsGrid.SelectedIndex].ToString());
 // show the Body text in the Preview label
 NewsPreview.Text = new Business.News(newsID).Body;
 NewsPreview.Visible = true;

 NewsGrid.EditItemIndex = -1;
 BindGrid();
 }

 This gets the ID of the clicked row, retrieves the whole body of the news, and shows it in a label. If the news body is
in HTML format, it will be shown in HTML format, so there is no limitation to what we can store and show. By the
way, the GetNewsText method does almost the same thing, but it is used in the ASP.NET page to show the full text
for editing mode. Here we see a highlighted row, with the corresponding label at the bottom of the page:

 The methods for deleting, updating, and adding a row are very similar to the ones we've seen earlier for the
Categories.aspx page. However, there are some additions, especially to the method for adding news items, which
we'll look at now:

 protected void AddNew_Click(object sender, EventArgs e)
 {
 if (Page.IsValid)
 {
 int categoryID = int.Parse(CatDropDown.SelectedItem.Value);
 string title = NewTitle.Text;
 string body = NewBody.Text;
 bool approved = NewApproved.Checked;

 // set predefined release/expire dates, in case they are not specified
 DateTime releaseDate = DateTime.Today;
 DateTime expireDate = new DateTime(3000,1,1);

 // if dates are supplied, take them, otherwise keep the predefined ones
 if (NewReleaseDate.Text.Trim().Length > 0)
 releaseDate = DateTime.Parse(NewReleaseDate.Text);
 if (NewExpireDate.Text.Trim().Length > 0)
 expireDate = DateTime.Parse(NewExpireDate.Text);

 // add the news
 Business.Category category = new Business.Category(categoryID);
 SiteIdentity currUser = (SiteIdentity)Context.User.Identity;
 if (category.AddNews(title, body, releaseDate, expireDate, approved,
 currUser.UserID).ID < 0)
 {
 // if the call to the Add method returned -1, it means that this news
 // was already present, so show the label that tells this
 AddNewError.Visible = true;
 }

 // hide the controls for adding a news
 ShowAddNewControls(false);
 BindGrid();
 }
 }

 You may remember that the release and expiry date are not required when adding a news item, but they are required
in the database. If we don't specify a release date, we want to have the current date as the default. If we don't specify
an expiry date then we'll take 1/1/3000 as the default, which practically means forever. We set the variables to these
default values first, and then replace them if the dates are supplied.

 The other very important point is that the last parameter of the AddNews method is the ID of the user currently
logged in. We don't need to retrieve a name or e-mail address, only the ID, as the other information is already present
in the Accounts_Users table. Retrieving the current user's ID is a simple task, thanks to the Business component of
the Accounts module we developed in the previous chapter. To use it, we have to add a reference to that project,
and we also reference the namespace at the top of the file, with the following line of code:

 using Wrox.WebModules.Accounts.Business;

 At this point we can cast the Context. User. Identity object to the SiteIdentity type, and save a reference to it, as
follows:

 SiteIdentity currUser = (SiteIdentity)Context.User.Identity;

 The value currUser.UserID is the ID we were looking for, and we can pass it to the AddNews method.

 Modifying the Settings Online

 So far we've used some of the values stored in the NewsManager. Config XML file as we set them when we created
the file. But if the administrator wants to change some values, then a web page is needed to enable the online
modification of these settings, to avoid having to sit down at the web server and manually update the file. The page is
represented below:

 The Settings.aspx Page

 The ASRNET page is formed by a set of controls that show and allow the editing of the respective settings contained
in the XML file. The values are not directly bound in a declarative method in the ASPX page, as they were in the
previous pages. Here we have three textboxes identified by unique names, and we can easily set their Text property
from the code-behind in the Page_Load event. There's very little that's new in the ASPX file, except the validator we
use on the Abstract Length field:

 <asp:TextBox runat="server" Width="100%"
 ID="AbstractLength" CssClass="TextBox" />
 <asp:CompareValidator runat="server"
 ControlToValidate="AbstractLength" Type="Integer"
 Operator="DataTypeCheck" Display="dynamic">

* Invalid format</asp:CompareValidator>

 Here we ensure that the value supplied is a number. If other characters are inserted we allow the form to be
submitted. We used this same control in the News.aspx page to validate the dates, the difference here is that the Type
property is set to Integer.

 Now let's move straight onto the codebehind.

 The Codebehind for Settings.aspx

 The codebehind for Settings. aspx is composed of two procedures: Page_Load and Update_Click.

 Page_Load retrieves the settings from the XML file (or from the cache if this is not the first time we have requested
them) using the ModuleConfig and ModuleSettings classes in the Configuration assembly. Let's start by looking at the
code that sets the textboxes to the current values when the page loads:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 // load all the settings
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 ConnectionString.Text = settings.ConnectionString;
 NewsURL.Text = settings.NewsUrl;
 AbstractLength.Text = settings.AbstractLength.ToString();
 }
 }

 The second procedure is Update_Click. It gets the new settings from the controls, sets the properties of a new
ModuleSettings object, and finally calls ModuleConfig.SaveSettings to serialize the settings object to the XML file:

 protected void Update_Click(object sender, EventArgs e)
 {
 Configuration.ModuleSettings settings =
 new Configuration.ModuleSettings();
 // set the new properties values and update everything
 settings.ConnectionString = ConnectionString.Text.Trim();
 settings.NewsUrl = NewsURL.Text.Trim();
 // if no abstract length is specified (textbox empty),
 // set to -1 (whole news body)
 if (AbstractLength.Text.Trim().Length > 0)
 settings.AbstractLength = int.Parse(AbstractLength.Text);
 else
 {
 AbstractLength.Text = "-1";
 settings.AbstractLength = -1;
 }
 // save the new settings
 Configuration.ModuleConfig.SaveSettings(settings);
 }

 As explained in the comments, if the AbstractLength is not supplied it is set to -1, and -1 is also shown in the textbox
(remember that we didn't create a validator control that requires us to specify this setting).

 Summary of the Administration Console

 The administration section is complete and fully functional. We now have facilities to:

 View, add, delete, and edit categories of news. The data is shown through a grid that also shows the
category's image when in view mode, or its path during editing. The grid also has a link for each row, allowing
the administrator to jump directly to the page showing the news items for the selected category.

 View, add, delete, and edit the news articles. The user can filter the articles on whether they are released,
and whether they have been approved. In addition to the news item's title, the grid shows the abstract for
each news item, made up from the specified number of characters from the article.

 Change the application's settings, such as the DB connection string. Using this page, the administrator need
not manually edit the configuration file and re-upload it to the server.

 Now let's look at how we display the news to users.

 Showing News to the User
 We can now add news content to the database, but now we need a way for the users to read it. In this section we're
going to build a small set of pages that will allow the user to navigate through the available categories, and read
abstracts or entire news articles. Later we'll also see how to build a user control to plug the headlines into any page
we want.

 These pages use another set of header/footer controls, named Header.ascx and Footer.ascx: their content is the
same as the admin controls, except that here the header does not show the menu bar. We want to keep them
separate so that future changes to the admin header or footer do not affect the user end of the site. We won't show
the code here, because they are so similar to the admin controls.

 Showing the Categories

 First of all we write the page that lists the categories, called ShowCategories.aspx. The interface is made up of a
single control: a DataList that shows the categories in two columns, together with their image and description. Here's
the ASPX code for the datalist:

 <asp:DataList id="CategoriesList" runat="server">
 <ItemTemplate>
 <table cellpadding="2" width="100%">
 <tr>
 <td valign="top" width="20px">
 <asp:Label runat="server" Text='<%# GetImage(
 DataBinder.Eval(Container.DataItem, "ImageUrl")) %>'
 />
 </td>
 <td valign="top">
 <asp:HyperLink runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "Name") %>'
 NavigateUrl='<%# "ShowAbstracts.aspx?CategoryID=" +
 DataBinder.Eval(Container.DataItem, "CategoryID") %>'
 Font-Bold="True" Font-Size="12" CssClass="GridLink"
 />

 <asp:Label runat="server" Text='<%# DataBinder.Eval(
 Container.DataItem, "Description") %>' />
 </td>
 </tr>
 </table>
 </ItemTemplate>
 </asp:DataList>

 As in the DataGrid, the ItemTemplate section gets repeated for each record in the bound table. The difference is that
here it's up to us to create all the HTML code, whereas the strength of the DataGrid is that it creates all of the HTML
required for the grid structure.

 The codebehind for this page only binds the categories returned by the GetCategories static method of the Business.
Category class to the DataList. It's nothing new, so we won't show it here - you can find the full code listings in the
download.

 Here are the results you should get if you run this new page:

 There is something to consider, though. The content of this page won't change frequently, new categories are rarely
added, so why query the database every time if we know that we'll likely get the same results every time? We could
create a static HTML page, but this would make the admin systems useless. The Premier and Enterprise Architect
versions of ASP.NET offer a new feature called dynamic output caching that allows us to store a page in the cache
for a certain amount of time, if certain conditions are met (such as the client browser or URL of the page being the
same, for example). This means that the first time the page is requested we access the database and create the HTML
to send to the client. This HTML is then stored in the server cache, and sent as a response to subsequent requests,
saving processing time and cycles.

 Of course, this feature is applicable when we know that the content for the page does not change for some time,
which is exactly the case for this page. To add this feature to our existing page, just add the following line at the top of
the page:

 <%@ OutputCache Duration="600" VaryByParam="none" %>

 Setting the Duration parameter to 600 specifies that the page will be cached for ten minutes. Setting VaryByParam to
none means that the cached page does not depend on the URL's parameters (in cases like this one, where any
parameters provided are ignored).

 If you'd like to show a box with the news categories in more than one page, or maybe plug a box directly
into the shared site layout, you could move the code of this page to a custom control. The code that binds
the data to the DataList, and the DataList declaration, would be exactly the same.

 Showing the Abstracts

 We now write the ShowAbstracts.aspx page, called by ShowCategories.aspx when the user clicks a category name.
This page is as simple as the previous one; let's look at the main code:

 <%@ OutputCache Duration="600" VaryByParam="*" %>

 The opening tags for the page, such as <html>, <head>, <body>, <form>, and the header control go here - we have
seen them many times, so let's jump straight to the datagrid:

 <asp:DataGrid ID="NewsGrid" runat="server"
 BorderWidth="0" Width="100%" PagerStyle-CssClass="Grid_Item"
 PageSize="20" AllowPaging="True" PagerStyle-HorizontalAlign="Right"
 PagerStyle-PageButtonCount="20" PagerStyle-Mode="NumericPages"
 AutoGenerateColumns="False" OnPageIndexChanged="NewsGrid_PageChanged">
 <Columns>
 <asp:TemplateColumn>
 <ItemTemplate>

 <asp:HyperLink runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "Title") %>'
 NavigateUrl='<%# "ShowNews.aspx?NewsID=" +
 DataBinder.Eval(Container.DataItem, "NewsID") %>'
 CssClass="GridLink"
 />
 <asp:Label runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "ReleaseDate",
 "{0:MM/dd/yy}") %>' ForeColor="DarkBlue" Font-Size="8" />

 <asp:Label runat="server" Text='<%#
 DataBinder.Eval(Container.DataItem, "Abstract") %>' />

 <hr>
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>
 </asp:DataGrid>
 // Add footer control and close the page here.

 The abstracts are shown in a read-only DataGrid, with links that point to the ShowNews.aspx page - the same way
that ShowCategories.aspx links to ShowAbstract.aspx.

 The VaryByParam parameter of the @ OutputCache is now set to '*'. This means that the page is processed if a
parameter in the URL changes. This is what we want, because we need to get the abstracts directly from the
database if the CategoryID parameter is not the same as the value in a previous call to the page. The ASP.NET
cache feature is smart enough to detect when the parameters on the URL change, and hold a different cache entry for
different parameters.

 The HTML output is cached on the server, which could lead to a memory overhead that can impact on the server's
performance. This can happen when:

 We try to cache hundreds of different ASP.NET pages

 We cache a few ASP.NET pages, but that can each have many different parameter values. Each different
value is like having a completely different page, and the full HTML text is cached.

 In our case we have a few pages, with one or no parameters at all, so it's not a big issue. It's just a question of
balancing the cost of hitting the database more often with the cost of occupying more memory. The right decision will
vary from site to site.

 In the following screenshot you can see the result you should get in your browser when you click a category name.
The current and approved news items are displayed from the newest to the oldest:

 Showing the Whole News Item

 The ShowNews.aspx page shows the whole text of the specified news item, and of course the title and release date.
It is probably the simplest page we've built so far. Let's just look at the code for the body:

 <asp:Label runat="server" ID="Title" ForeColor="Navy"
 Font-Bold="True" Font-Size="15" />
 <asp:Label runat="server" ID="ReleaseDate"
 ForeColor="DarkBlue" Font-Size="8" />

 <asp:Label runat="server" ID="Body" Width="100%" />

 Go back

 In the code-behind we create an instance of Business. News by passing to the constructor the ID specified, along
with the URL, and we set the labels to the respective values. Here is the finished page:

 User-Submitted News
 We've already discussed why we might want to allow the users (or maybe our external contributors who have no
access to the administration section) to post their own news. We need to build a form for users to submit news to the
server.

 This page, called SubmitNews. aspx, does almost the same as the administration News.aspx but is only for adding
new articles. It also hides the Approved value passed to the AddNews method of the Business. Category class. If the
current user has permission to publish a news item, it will be added to the database with the Approved status set to
true, otherwise it will be false. We'll come back and show how to do this shortly, while discussing the implementation
of security. But the rest of the code is exactly the same so we won't show it here (it is available in the code
download). You can see the result in the following screenshot:

 The Headlines User Control
 The administration section is complete, and the users can browse the news in each category. Now what? Well,
currently the news items are only shown in their own page. We also want a user control that will allow us to easily
plug a headlines grid into any page we want with just a couple of lines of code. It seems that we've got something new
to do, finally!

 Although user controls are a powerful feature of ASP.NET, they are as easy to develop as ASP.NET pages. There's
not much difference between a control and a page, except that they use a @Control directive instead of @Page, and
they should almost never contain a web form or the <body> tag, because these are present in the page that hosts the
control.

 Headlines. ascx, part of the NewsManager project, has the following code:

 <%@ OutputCache Duration="300" VaryByParam="none" %>
 <asp:Label ID="HeadlinesHeader" runat="server" />
 <asp:DataGrid ID="HeadlinesGrid" runat="server"
 ShowHeader="False" AutoGenerateColumns="False">
 <Columns>
 <asp:TemplateColumn ItemStyle-Width="100px">
 <ItemTemplate>
 <asp:Label runat="server" Font-Bold="True" Text='<%#
 DataBinder.Eval(Container.DataItem,
 "ReleaseDate", "{0:MM/dd/yy)") %>'
 />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:Templatecolumn>
 <ItemTemplate>
 <asp:HyperLink runat="server" NavigateUrl='<%#
 DataBinder.Eval(Container.DataItem, "NewsUrl") %>'
 Text='<%# DataBinder.Eval(Container.DataItem, "Title") %>'
 />
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>
 </asp:DataGrid>

 There is really nothing new to explain here. There is a DataGrid that displays the release date and title of the news
article, and when clicked it redirects to the page with the whole article.

 Let's look at the codebehind file. This class should be in the Wrox.WebModules.NewsManager.Web.Controls.User
namespace:

 public abstract class NewsHeadlines : System.Web.UI.UserControl
 {
 protected System.Web.UI.WebControls.DataGrid HeadlinesGrid;
 protected System.Web.UI.WebControls.Label HeadlinesHeader;

 private int categoryID;

 There are several properties exposed here. They simply provide access to member variables, or properties of
HeadlinesGrid. Let's move on to the methods:

 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 DataBind();
 }

 public override void DataBind()
 {
 // get the row describing this category
 Business.Category category = new Business.Category(categoryID);
 // set the image and the category name
 HeadlinesHeader.Text = new Categories().GetImage(category.ImageUrl);
 HeadlinesHeader.Text += category.Name;
 // show all the headlines of this category
 DataView myDV = category.GetHeadlines().Tables[0].Defaultview;
 HeadlinesGrid.DataSource = myDV;
 HeadlinesGrid.DataBind();
 }

 // ...auto generated code...
 }

 The core procedure is DataBind, which overrides the implementation of the base class and binds the headlines table
to the grid. There is also the Page_Load event that calls DataBind if the page that hosts the control is not posted
back. We could avoid implementing the Page_Load event, and leave the host page with the task of calling the
control's BindData method, as we've done for controls in the previous pages. However, this is a special control
because it gets the records and sets the DataGrid's properties on its own, so it makes sense that it also binds the data
to the grid without any external intervention.

 Testing the Control

 To test the control we create a ShowHeadlines. aspx file with an external text editor. We don't want to create a new
page in VS.NET because it would be added to the project and its code-behind compiled into the assembly, which is
not what we want since this is just a test page and not a class to compile and reuse. Here is the content for the page:

 <%@ Page Inherits="Wrox.ThePhile.Web.PhilePage" %>
 <%@ Register TagPrefix="NewsManager" TagName="Headlines"
 src="Headlines.ascx" %>
 <%@ Register TagPrefix="NewsManager" TagName="Header" src="Header.ascx" %>
 <%@ Register TagPrefix="NewsManager" TagName="Footer" src="Footer.ascx" %>

 <html>
 <head>
 <title>NewsManager: NewsHeadlines</title>
 <link rel="stylesheet" HREF="/ThePhile/Styles/ThePhile.css" />
 <link href="/ThePhile/Styles/Navigator.css" rel="stylesheet">
 <meta name="CODE_LANGUAGE" Content="C#">
 </head>

 <body>
 <!-- Insert the menu user control -->
 <NewsManager:Header ID="Menu" runat="server" />

 <!-- Insert the headlines boxes -->
 <NewsManager:Headlines
 ID="DVD"
 runat="server"
 CssClass="DVD_News_General"
 HeaderStyle="DVD_News_Header"
 ItemStyle="DVD_News_Item"
 AlternatingItemStyle="DVD_News_AlternatingItem"
 Width="100%"
 CategoryID="1"
 />

 <NewsManager:Headlines
 ID="Books"
 runat="server"
 CssClass="Book_News_General"
 HeaderStyle="Book_News_Header"
 ItemStyle="Book_News_Item"
 AlternatingItemStyle="Book_News_AlternatingItem"
 Width="500px"
 CategoryID="2" />
 />

 <!-- Insert the footer -->
 <NewsManager:Footer ID="Footer" runat="server" />

 </body>
 </html>

 We declare two Headlines controls, set the properties for the style (the two controls have different header and item
styles, and a different width), and select a different category for each. Here is the result:

 The user interface section is now functionally complete - we just need to develop the security system. After that, we
will look at how to provide our news content to other sites and applications.

 Securing the Module
 Now that the administration console and the user side of things are complete, but before going ahead with the web
service and the Windows client, we should think about the implementation of security. In the design section we
discussed the three permissions we need, so now we only have to define the enumeration that contains them, and
perform the proper checks when the pages are loaded. We need to add these to the Enums.cs file of the Core
module, as we did for the Accounts permissions in Chapter 5:

 namespace Wrox.WebModules .NewsManager
 {
 public enum NewsManagerPermissions
 {
 AdministerNews = 200,
 PublishNews = 201,
 SubmitNews = 202}
 };
 }

 Now, when any administration page loads, we must ensure that the current user has the AdministerNews permission.
To do this, add the following code to the Page_Load event of those pages (Categories.aspx, News.aspx, and
Settings.aspx):

 protected void Page_Load(object sender, EventArgs e)
 {
 // check if the current user is allowed to administer the news
 if (!Context.User.Identity.IsAuthenticated ||
 !((SitePrincipal)Context.User).HasPermission(
 (int)NewsManagerPermissions.AdministerNews))
 {
 // if not, redirect to the Login page
 Response.Redirect(
 "/ThePhile/Modules/Users/Login.aspx?ShowError=true", true);
 }

 if (!Page.IsPostBack)
 {
 ...
 }
 }

 We cast the Context.User object to SitePrincipal, which exposes the HasPermission method. This code uses the
short-circuiting feature of C# to check if the current user has the right permission only if the first condition is met,
namely if the current user is authenticated. This is necessary because if we tried to access the page before logging in,
the page would generate an exception, because it could not cast Context.User object to SitePrincipal. If either
condition of the if block returns false, the user is redirected to the login page, where an error message will inform them
that they don't have permission to view the page.

 The code above has to be pasted into all of the administration pages. For the SubmitNews. aspx page we instead
want to grant access to anyone who has any of the three possible permissions:

 SitePrincipal currentPrincipal = (SitePrincipal)Context.User;
 if (
 !currentPrincipal.HasPermission((int)NewsManagerPermissions.AdministerNews) &&
 !currentPrincipal.HasPermission((int)NewsManagerPermissions.PublishNews)
 && !currentPrincipal.HasPermission((int)NewsManagerPermissions.SubmitNews))
 {
 Response.Redirect(
 "/ThePhile/Modules/Users/Login.aspx?ShowError=true", true);
 }

 Then, when the news is added to the database, if the user has the AdministerNews or PublishNews permissions the
news will be approved immediately, otherwise it will be added in the pending state, with Approved = false:

 SitePrincipal currPrincipal = (SitePrincipal)Context.User;
 SiteIdentity currUser = (SiteIdentity)Context.User.Identity;
 // add the news
 Business.Category category = new
 Business.Category(int.Parse(CatDropDown.SelectedItem.Value));
 if (category.AddNews(NewTitle.Text, NewBody.Text, releaseDate, expireDate,
 (currPrincipal.HasPermission((int)NewsManagerPermissions.PublishNews) ||
 currPrincipal.HasPermission((int)NewsManagerPermissions.AdministerNews)),
 currUser.UserID).ID < 0)
 StatusMessage.Text = "Your news was not added, because already present";
 else
 StatusMessage.Text = "Thank you for submitting your news!";

 And that's all! Pretty simple, isn't it? Now you can test the module with different users, or try removing and adding
permissions to your user account through the Accounts administration module developed in the previous chapter.
(Remember that you have to manually add the new permissions to the database first.)

 The Headlines Web Service
 The last thing we have to implement for this module is the web service that will allow us to share the headlines with
any other website or program that can send and receive XML/SOAP packages.

 We have a new web service called Headlines. asmx. There is nothing in the ASMX file, just the declaration of the
codebehind file, whose incredibly short content is listed here in its entirety:

 using System;
 using System.Data;
 using System.Data.SqlClient;
 using System.Web.Services;

 namespace Wrox.WebModules.NewsManager.Web.Services
 {
 public class Headlines: WebService
 {
 [WebMethod(Description="Returns the headlines for the current
 and approved News of the specified category")]
 public DataSet GetHeadlines(int categoryID)
 {
 return new Business.Category(categoryID).GetHeadlines();
 }

 [WebMethod(Description="Returns all the categories")]
 public DataSet GetCategories()
 {
 return Business.Category.GetCategories();
 }
 }
 }

 We've changed the namespace to Wrox.WebModules.NewsManager.Web.Services, following the guidelines given
in Chapter 2. The Headlines class inherits from System.Web.Services.WebService, and although it has the same
name as the class for the Headlines user control, the two classes don't clash because they are located in different
namespaces. The web service exposes two methods, GetHeadlines and GetCategories, which simply return the result
of the calls to the methods in the Business.Category class. The small detail that turns two normal methods into web
accessible methods is the [WebMethod] attribute, which also has a parameter to specify a description.

 Testing the Web Service

 It's easy to test web services. Just jump to the Headlines. asmx file with your browser, you'll get the following:

 You can see the two web methods listed on the page, together with their description. Click on a link to test that
method. For example, click the GetHeadlines link and you'll get this page:

 The method is detected to require a parameter, so the page provides a textbox where you can enter the ID of a
category. Press Invoke and you'll finally execute the method. This is the result produced for a categoryID of 2:

 We get a page with XML/SOAP output that represents a DataSet. The DataSet includes one table containing the
headlines. The web service seems to work very well, so we can now go ahead and build the client.

 The News Ticker Application

 We can build different types of clients that consume the web service, such as a web page or a desktop program. To
show how to access web services, we'll build a small Windows application for browsing the headlines by category,
and opening a browser window with the whole news body by double-clicking on a headline. We could offer this
program to our site's visitors, so that they can check if there are new headlines without typing the URL in the browser
and manually refreshing the page.

 We add a new C# Windows Forms project to the solution (we could create this application anywhere we wanted,
it's just convenient to keep all our code together).

 We then add a reference to the web service using the Project | Add Web Reference... menu option. We specify the
full URL of the web service file, and clicking Add Reference VS.NET automatically creates a proxy class to access
the web service. Note that in the Solution Explorer a new entry has been added under Web References, called
localhost, and underneath it you can see the WSDL and the discovery files created. We renamed localhost to
ThePhile, but it isn't really important, it is just the name we'll use to access the proxy class.

 The form contains a DropDownList for listing the categories, a DataGrid to show the headlines, a button to refresh
the headlines, and a timer to automatically refresh the headlines after a certain amount of time. You should place the
controls as shown in the following screenshot:

 Explaining how to create Windows Forms in detail is beyond the scope of this book, but we'll quickly look at the
code piece by piece:

 public class Viewer : System.Windows.Forms.Form
 {
 // ...controls declaration here...

 private DataSet dsHeadlines;
 private DataSet dsCategories;
 private bool categoriesLoaded;

 // ...other auto generated code here...

 private void Viewer_Load(object sender, System.EventArgs e)
 {

 // get the categories and the headlines for the first category
 ThePhile.Headlines headlines = new ThePhile.Headlines();
 dsCategories = headlines.GetCategories();
 // bind dsCategories to the ComboBox, display the Name and
 // keep the CategoryID as value for each item
 Categories.DataSource = dsCategories.Tables[0].DefaultView;
 Categories.DisplayMember = "Name";
 Categories.ValueMember = "CategoryID";
 categoriesLoaded = true;

 // fill the grid with the headlines
 FillHeadlinesGrid();
 }

 In the Viewer_Load event (which corresponds to Page_Load in ASP.NET pages) we retrieve the categories and
save them to a private DataSet variable. We then bind them to the DropDownList, and call another routine to get the
headlines and fill the grid:

 private void FillHeadlinesGrid()
 {
 // if the categories have not been loaded yet,
 // or if there is no category in the ComboBox --> exit now
 if (!categoriesLoaded || Categories.Items.Count == 0) return;

 // get the headlines for the selected category
 ThePhile.Headlines headlines = new ThePhile.Headlines();
 dsHeadlines = headlines.GetHeadlines((int)Categories.SelectedValue);

 // remove the current grid columns (if any)
 Headlines.TableStyles.Clear();

 // bind dsHeadlines to the Grid, and show the ReleaseDate and
 // Headline titles in two custom columns
 Headlines.SetDataBinding(dsHeadlines, "Headlines");
 DataGridTableStyle ts = new DataGridTableStyle();
 ts.MappingName = "Headlines";
 ts.AlternatingBackColor = Color.LightGray;

 // Add the ReleaseDate column
 DataGridColumnStyle TextCol = new DataGridTextBoxColumn ();
 TextCol.MappingName = "ReleaseDate";
 TextCol.HeaderText = "Release Date";
 TextCol.Width = 80;
 ts.GridColumnStyles.Add(TextCol);

 // Add the headline's title column
 DataGridColumnStyle TitleCol = new DataGridTextBoxColumn();
 TitleCol.MappingName = "Title";
 TitleCol.HeaderText = "Headline";
 TitleCol.Width = 400;
 ts.GridColumnStyles.Add(TitleCol);

 // Add the (hidden) NewsUrl column
 DataGridColumnStyle UrlCol = new DataGridTextBoxColumn();
 UrlCol.MappingName = "NewsUrl";
 UrlCol.Width = 0;
 ts.GridColumnStyles.Add(UrlCol);

 // finally add the table to the grid
 Headlines.TableStyles.Add(ts);
 }

 The code above creates a new column for each column of the data table, and binds these columns to the respective
fields. When the user clicks a row header of the grid, we want to open the default browser and redirect to the page
that shows the whole news story. The URL of the news item is one of the columns in the data table, and opening the
default browser is done with a single line, thanks to the System. Diagnostic.Process class. The following code checks
if the user double-clicks on a row header and in that case loads the news page within the browser:

 private void NewsGrid_DoubleClick(object sender, System.EventArgs e)
 {
 // get the current cursor position relative to the Headlines
 Point pt = Headlines.PointToClient(Cursor.Position);
 // navigate to the link only if the user clicked on the row header
 //if (navigateLink)
 if (Headlines.HitTest(pt.X, pt.Y).Type ==
 DataGrid.HitTestType.RowHeader)
 {
 BindingManagerBase bmGrid;
 bmGrid = BindingContext[dsHeadlines, "Headlines"];
 // open the default browser and navigate to the Url
 // of the currently selected row
 System.Diagnostics.Process.Start (
 ((DataRowView)bmGrid.Current) ["NewsUrl"] .ToString()
);
 }
 }

 The last three procedures are called, respectively, at the timer's interval, when the user selects another category, or
when the user presses the Refresh button. All of them simply call the FillHeadlinesGrid procedure to refresh the grid:

 private void RefreshTimer_Tick(object sender, System.EventArgs e)
 {
 FillHeadlinesGrid();
 }

 private void Categories_SelectedIndexChanged(object sender,
 System.EventArgs e)
 {
 FillHeadlinesGrid();
 }

 private void RefreshButton_Click(object sender, System.EventArgs e)
 {
 FillHeadlinesGrid();
 }
 }

 All the code is finally complete, and if you run the application you'll get the following form:

 You might also want to test this application in detail, by adding some news through the NewsManager administration
section, and then waiting a few minutes to see if the grid is automatically refreshed (or manually refill it by clicking
Refresh).

 If you want to know more about Windows Forms programming in C#, you can refer to Professional C#,
ISBN 1-861004-99-0, or Professional Windows Forms, ISBN 1-861005-54-7, both from Wrox Press. For
more about web services, try Professional ASP.NET Web Services, ISBN 1-861005-45-8, or Professional
C# Web Services, ISBN 1-861004-39-7, also from Wrox Press.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 6 - News Management

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 In this long chapter we have seen how to build a complex and feature-rich module to completely manage the site's
news and articles. We've provided numerous features through the chapter:

 A tool for managing the database.

 Pages for browsing the published content.

 Integration with the Accounts module to secure the module and track the authors of the news items.

 A user control for showing the headlines on the homepage or in any other page.

 A web service that can share the headlines with any site or program that can use and understand
XML/SOAP messages.

 A Windows client program that uses the web service to show the headlines of all the available categories,
and that opens a browser and shows the whole news item when a title is clicked.

 This system should be flexible enough to be successfully plugged into many real world applications. When customized
to fit a particular site's needs, it could become very powerful.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 7 - Advertising

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 7: Advertising
 Overview
 No matter how wonderful the website, how amazing the look, how talented the programmers, or how useful the
service - a site will not last long without a consistent source of funding. Some sites are maintained by volunteers who
donate their own time and money, and others get subscription fees from readers. Many of these sites try to
supplement their revenue with advertising, and other sites rely on it entirely.

 Many sites use banner advertisement-style features even when they don't sell advertising space. For example, some
sites exchange links with other sites. Others (for example www.play.com) use banner advertising to provide links to
areas of their product catalogue that the viewer would not necessarily go looking for.

 In this chapter we will present an overview of the problems involved with advertising and some common design
patterns in overcoming those problems. We'll develop a reusable advertising module that we'll plug into our website
and that we can easily adapt to our future needs.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 7 - Advertising

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 There are two main concepts you need to be familiar with to provide advertising on a website: impressions and hits.

 Impressions
 An impression occurs when a particular advertisement is displayed on a web page to a single user. Website owners,
administrators, and marketing managers should consider impressions a commodity - chips to bargain with when
obtaining lucrative advertising contracts.

 Consider this scenario: a popular content website receives over a million impressions a day. For the sake of example,
imagine that it is a fan club website dedicated to a popular video game. Its audience consists of a wide range of
browsers from older adults to young teenagers and pre-teens. An impression on this site would be considered an
extremely valuable commodity to a video game manufacturer. However, a manufacturer of a popular brand of craft
glue would probably not find those impressions particularly valuable.

 Impressions are yours to sell, and you should look for a buyer for your impressions that would be most interested in
your target audience. Therefore, you must know the audience of your website in order to market your impressions to
the right audience.

 Typically, impressions are sold in bulk. A typical advertising contract will consist of the advertising buyer paying for a
mathematical or statistical guarantee that a certain number of impressions of a given ad will be displayed in a given
time period (usually measured in weeks or months).

 Hits
 While impressions are yours to sell, hits are to be considered rewards or prizes. An impression occurs and an
advertisement appears on the user's page. If the user is particularly interested in what the advertisement has to offer,
then the user will click the advertisement. This is called a hit. Just to confuse things more, virtually every dotcom
company has a different term for hits, including clicks, click-throughs, scores, buy-ins, and more. No matter what
term is used, it all boils down to the simple act of the user clicking on the advertisement.

 This is where advertising gets more profitable. Hits are worth more than impressions. Advertising contracts typically
pay percentages of sales resulting from banner advertisement hits, or they pay a flat rate per hit.

 When designing an advertising system we need to keep track of the following:

 Impression counts

 Hit counts

 Community demographics - who is using your web site, what they do and don't have in common, their
interests, etc.

 Earlier in the book we discussed community building and mentioned that opinion polls provide a fun way for users to
interact with your site. They also provide an easy way for you to obtain valuable demographics that you might be able
to use to land that advertising contract you might not have otherwise been able to get. For example, if you put up a
poll asking users what their favorite DVD is, and 75% of them say that their favorite DVD is Star Wars: Episode I,
then chances are you could use that information to strike a pretty lucrative advertising deal with a DVD on-line
retailer.

 Requirements
 There are many things that we need to cover in the design of our advertising module. We want to make sure that it
takes care of all of our needs and solves our problem - which is that we need to generate revenue, so we need
impression/hit data to attract advertisers, and a way of putting adverts in our pages. In addition, we want to make it
flexible and scalable enough so that if our advertising needs increase in the future, it should be easy enough to create
more code and functionality to deal with this.

 In short, our design is going to need to take care of the following issues for us:

 Database design - we need to make sure that we have a database that can track all necessary information,
and provide the reporting capabilities we know we're going to need.

 Layout and display - we need to make sure that we have a good place to put our advertisement and a
layout in mind that won't intrude on or interfere with the existing interface.

 Auditing - we need to track as much information as possible about the advertisements, and make that
information available in such a way that we can obtain useful reports whenever we need them.

 Administration - our website administrators, who may not necessarily be located in the office, need to be
able to log in to some administration console to make changes and additions to the advertising data.

 Administrative users should be able to perform the following tasks:

 Create new advertisements

 Edit/view existing advertisements

 Add details of new advertising companies

 View all current advertisements

 Generate reports to show advertising activity

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 7 - Advertising

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Design
 Now that we have specified the broad requirements of our advertising system, let's lay down a design for it. Once
again ASP.NET provides a component that almost does what we want - the AdRotator. So before we look at the
components we are going to build, let's look at how the AdRotator works and what impact using it will have on the
rest of our design.

 Using the AdRotator
 The AdRotator handles a lot of the work associated with displaying an advert. It will save us time overall if we use it,
but it has its own foibles that we need to overcome.

 We would like to store all data for our application in the database, but AdRotator only supports an XML file. So we
will need to find a way to work around this. Information required by the AdRotator will go in the XML file, while
related data will go in the database. We will need a way to tell which entry in the database relates to which entry in
the XML file.

 Another limitation is that the AdRotator doesn't come with the ability to record hits or impressions. It doesn't expose
a click event that we could use ourselves to record hits, so we'll have to implement this functionality ourselves.
However, it does fire an event every time an ad is displayed - so we can use this to record an impression.

 The XML file for an AdRotator stores the following details:

Property Description

ImageUrl Absolute or relative URL to an image to be displayed as
the banner advertisement.

NavigateUrl The URL of the page to go to if a user clicks the ad.

AlternateText Text to display in the images ALT attribute.

Keyword An optional keyword for the advertisement, to allow
filtering. We won't be using this feature here, consult the
MSDN documentation for more information on this
property.

Impressions This number indicates the relative importance of this
advertisement with respect to all other ads in the rotators
XML file. The larger this number, the more frequently the
ad will be displayed. This number will typically be
adjusted based on how much the advertiser is paying.

 So, we will store this information in the XML file, and anything else in the database. Heres an example of a single ad
in the XML file. Note that the properties listed above have all been serialized as XML elements.

 <Advertisements>
 <Ad>
 <ImageUrl>http://localhost/thephile/images/wroxbanner.jpg</ImageUrl>
 <NavigateUrl>/ThePhile/Modules/AdsManager/PassThrough.aspx?AD=9
 </NavigateUrl>
 <AlternateText>Wrox Press</AlternateText>
 <Keyword>wrox</Keyword>
 <Impressions>1</Impressions>
 </Ad>
 <!-- more advertisements here, each with the Ad element. -->
 </Advertisements>

 For more information on the AdRotator control, consult the MSDN .NET Framework SDK Developer's
Guide entry for AdRotator. Its available at
http://msdn.microsoft.com/library/default.asp?urh/library/en-us/cpgenref/html/cpconadrotatorwebcontrol.asp.

 The Database
 One of the first steps in any database design, from the smallest to the largest, is an entity list. Before figuring out
what kind of columns we need, what data types we need, etc., we need to know the basic list of the things we need
to keep track of. The following is a list of the entities that we need in order to maintain an effective advertising
database:

 Advertisements

 Companies

 Impressions

 Hits

 We need to store some basic descriptive information about the advertisement in the database. Because we know a
little bit about how ASP.NET's AdRotator control works, we know we're not going to need to store things like image
file names and relative importance in the database.

 As for other modules in this book, all tables will be given a unique prefix (AdsManager_). The database will use the
following schema:

 The AdsManager_Advertisements table is pretty straightforward. It has AdvertisementID as the main primary
key/identity field. From there we get to the AdsManager_Impressions and AdsManager_Clicks tables. Each of these
uses as a primary key the combination of the AdvertisementID, the AdMonth, and the AdYear fields. The AdYear
and AdMonth fields are simple number fields that contain the month and year during which the click count or
impression count was accumulated. This allows monthly summaries to be generated without bogging the database
down with slow and complex date calculations.

 The interesting thing about this design is that we are doing a little bit of warehousing in the way weare storing our
data. It would be inefficient to add a row to the database every time someone sees or clicks a banner ad. So we have
taken inspiration from data warehousing, and we just store summary information. Data warehousing is basically the
storage of summary (or otherwise calculated) data separately from the live (also called transactional) data. We store
monthly totals of both clicks and impressions for a given advertisement. As opposed to storing each click in its own
row with a pinpoint time/date stamp, like this:

 2/02/2002 05:34 1

 2/02/2002 05:36 2

 we instead store the total sum of all the clicks for February 2002 as follows:

02 2002 85

 This way, to retrieve all clicks for February, we retrieve one row, without calculation, saving us an immense amount
of effort. Because each advertisement belongs to a single company, it becomes very easy to obtain reports of monthly
activity for all the advertisements for the same company or group of companies.

 In addition to the database tables, our database will also contain several stored procedures. These will make the
system slightly more efficient, and simplify our data layer.

Stored Procedure Description

sp_AdsManager_CreateAdvertisement Creates a new advertisement in the database. This only
creates the in-database portion of the advertisement. The
XML stored in the AdRotators config file is handled by
the data services component itself.

sp_AdsManager_CreateCompany Creates a new company profile in the database.
Currently we only store the company's name, but the
module can be adapted to store more information.

sp_AdsManager_GetAdList Retrieves a full list of all advertisements in the database.
Used for administration.

sp_AdsManager_GetAdvertDetails Obtains all of the available details concerning a given
advertisement.

sp_AdsManager_GetCompanyList Obtains an alphabetically sorted list of all companies in
the database.

sp_AdsManager_GetCompanyReport Data is formatted and retrieved to provide a company
with all the relevant information as to the progress and
history of their advertising campaigns. Can be used to
support a billing process by being fed into a reporting
tool such as Crystal Reports.

sp_AdsManager_RecordClick Records the event in which a user clicks on an ad
banner.

sp_AdsManager_RecordImpression Records the event in which a user sees an ad banner.

sp_AdsManager_UpdateAdvertisement Updates the pertinent information about a given
advertisement.

 The Data Services Layer
 As with other modules, our data services layer will consist of stateless classes that provide access to the data source.
However, because we are using the AdRotator, we have two data stores - the database and the XML file. We want
to keep this complication hidden from the business layer, so our data services objects will need to aggregate the
information from the different sources.

 We will use two classes in the data layer:

 AdMaster - deals with data requests that do not refer to a single advert: manipulating companies, or returning
a list of all ads in the database.

 Advertisement - deals with data requests referring to a particular advert: creating, updating, and retrieving
ads, and recording click-throughs and impressions.

 The Business Layer
 With a solid data layer, the business layer can safely ignore the complication of having two data sources.

 The AdMaster class in the business tier will simply call methods in the data tier, which in turn call stored procedures
in the database. Like the AdMaster data class, it is stateless.

 The Advertisement class in the business tier provides an abstraction of a single advert. When we instantiate it, we can
provide an ID to identify a given advert. We then have methods and properties to manipulate that advert. This class
does maintain state during the lifetime of its instantiation.

 Alternatively we can instantiate a new advert and save it. The data layer will create a new database record and XML
entry.

 The Presentation Layer
 We now have all the data and logic that we need to make the advertisement system work, and can move on to
looking at the presentation layer. The presentation layer needs to do two things:

 Display the advertisement and record an impression

 Handle a hit (click) - record it, and pass the user to the appropriate site

 We will display the advert using the AdRotator, which will automatically select an advert based on a weighting.
However, the AdRotator does not record impressions. To do that, we can catch the AdCreated event, and use that
to record the impression.

 The AdRotator control simply provides a link - it does not expose a click event. So if we link directly to the target
site, we will not know when a user has clicked the advert. To record hits, we will use a pass-through page. This is a
page on our own site that uses the business components to record which advertisement was clicked, and then
forwards the browser on to the eventual target. The AdRotator link points to the pass-through page, not the target
site.

 Advertising Administration

 Also in the presentation layer is our administration system. Our design is fairly straightforward. We will provide
administrators with a web interface for administering the banner ads and their related properties. We also want to
have a stored procedure for feeding a reporting tool, such as Crystal Reports, for supplying data to advertisers in a
professional, easy-to-read format.

 Configuration
 As with the previous modules described in this book, there are two configuration classes used to abstract access to
and from a configuration file: ModuleConfig and ModuleSettings. ModuleConfig is a utility class designed to
de-serialize an instance of ModuleSettings from the appropriate file and serialize that same class back into the file if
changes are necessary.

This document is created with the unregistered version of CHM2PDF Pilot

http://msdn.microsoft.com/library/default.asp?urh/library/en-us/cpgenref/html/cpconadrotatorwebcontrol.asp

Chapter 7 - Advertising

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 As with any project, we hope that by the time we are ready to code we have created a good, solid, effective design.
In our design we covered the data services and business layer classes that we would need to create. We also
discussed the fact that we would be using the AdRotator control.

 This is actually a very simple control to use, and is the core of our advertising solution. You just put the AdRotator
control onto your ASP.NET page and indicate where it can find the advertisement files - it then handles everything
else. In this section we'll show you how we use this control to record impressions and hits, two things that it doesn't
have built-in support for recording. We'll also show you how we have implemented the rest of our design to support
the advertising solution.

 The Database Tables
 Before building our database, we need to decide on the details of the tables. Here is a fuller schema, which we will
use to build the database.

 AdsManager_Advertisements Table

Column Name Data Type Description

AdvertisementID int - Identity

 primary key

Unique ID for the advertisement.

Description varchar Description of the advertisement.

CompanyID int foreign key ID of company owning the
advertisement.

Active bit Boolean flag indicating whether the
advertisement is active.

TrueNavigateUrl varchar URL where the user will be
redirected from the pass-through
page.

 AdsManager_Companies Table

Column Name Data Type Description

CompanyID int - Identity

 primary key

Unique ID for the company.

Description varchar Description of the company.

 AdsManager_Impressions Table

Column Name Data Type Description

AdvertisementID int Advertisement ID for the given
impression count.

AdMonth int Month for the given impression count.

AdYear int Year for the given impression count.

ImpressionCount int Actual impression count for an
ad/year/month.

 AdsManager_Clicks Table

Column Name Data Type Description

AdvertisementID int Advertisement ID for the given click
count.

AdMonth int Month for the given click count.

AdYear int Year for the given click count.

ClickCount int Actual click count for a given
month/year/ad ID.

 Stored Procedures

 The scripting source for all the stored procedures is in the code download. We don't have the space to list the source
code for all of the stored procedures, so we've selected a few samples that represent some of the most frequently
performed tasks.

 sp__AdsManager_CreateAdvertisement

 The sp_AdsManager_CreateAdvertisement stored procedure takes a few simple arguments and returns as an output
parameter the ID of the created advertisement:

 CREATE PROCEDURE sp_AdsManager_CreateAdvertisement
 @CompanyID int,
 @Description varchar(255),
 @TrueNavigateUrl varchar(255),
 @AdvertisementID int output
 AS
 INSERT INTO AdsManager_Advertisements(CompanyID, Description,
 TrueNavigateUrl)
 VALUES(@CompanyID, @Description, @TrueNavigateUrl)

 SET @AdvertisementID = @@IDENTITY
 GO

 sp_AdsManager_GetAdLlst

 The sp_AdsManager_GetAdList stored procedure obtains a list of all advertisements in the database. It uses an
inner join to combine details of the ad with details of the company:

 CREATE PROCEDURE sp_AdsManager_GetAdList
 AS
 SELECT ad.AdvertisementID,
 ad.Description,
 ad.CompanyID,
 cp.Description as CompanyName
 FROM AdsManager_Advertisements ad
 INNER JOIN AdsManager_Companies cp ON ad.CompanyID = cp.CompanyID
 ORDER BY CompanyName ASC, ad.Description ASC
 GO

 sp_AdsManager_GetCompanyReport

 The sp_AdsManager_GetCompanyReport stored procedure queries the database to provide a history of all of the
advertising campaigns for a given company during a certain time period. Clicks and impressions are stored as a
month-by-month count, rather than by creating a new record for each click or impression:

 CREATE PROCEDURE sp_AdsManager_GetCompanyReport
 @CompanyID int,
 @StartMonth int,
 @StartYear int,
 @EndMonth int,
 @EndYear int
 AS
 SELECT adimp.AdvertisementID, adimp.ImpressionCount, adimp.AdMonth,
 adimp.AdYear, adclick.ClickCount, ad.Description
 FROM AdsManager_Impressions adimp
 INNER JOIN AdsManager_Advertisements ad
 ON adimp.AdvertisementID = ad.AdvertisementID
 LEFT JOIN AdsManager_Clicks adclick
 ON adimp.AdvertisementID = adclick.AdvertisementID
 WHERE ad.CompanyID = @CompanyID AND
 (adclick.AdYear >= @StartYear AND
 adclick.AdYear <= @EndYear AND
 adimp.AdYear >= @StartYear AND
 adimp.AdYear <= @EndYear) AND
 (adclick.AdMonth >= @StartMonth AND
 adclick.AdMonth <= @EndMonth AND
 adimp.AdMonth >= @StartMonth AND
 adimp.AdMonth <= @EndMonth)

 ORDER BY adimp.adYear ASC, adimp.adMonth ASC
 GO

 This stored procedure facilitates reporting but we have not implemented a user interface for it. This user interface can
easily be implemented in a reporting tool such as Crystal Reports or by a program written for an advertising manager.
The following is the output summarizing a brand new company's ad campaign history:

 The data shows each company's advertising campaigns. Each campaign will have a single row for each month during
the time specified by the stored procedure. This makes it incredibly easy to create a grouping in a reporting tool that
allows sub-reports and other interactive features, or in an ASP.NET web page. As you can see, the above ad
campaign had ten impressions and one click during January 2002. If this campaign had been created during
December 2001, there would be another row for that month, also summarizing that month's activity.

 The Data Services Layer
 Now that we've taken a look at the format of our data in SQL Server and we've seen what stored procedures we're
going to be working with, it will be fairly easy to turn that into a set of methods that the data services layer requires.

 Let's take a look at the source code for each of the required classes. We'll also examine some of the decisions that
went into choosing a particular code style or algorithm. To get started, we'll create a new Class Library project (in
C#) and call it AdsManagerData. We'll make sure that the default namespace for this project is
Wrox.WebModules.AdsManager.Data, as well as making sure that the output filename is
Wrox.WebModules.AdsManager.Data. One last thing before we start looking at the source code for the classes is to
add a reference to the Core project.

 The AdMaster Class

 The AdMaster class is pretty straightforward. It provides a front-end to the stored procedures in the database for
performing operations that don't belong to the Advertisement class. As with all the other data services classes in this
book, this class inherits from Wrox.WebModules.Data.DbObject, which we looked at in Chapter 2:

 using System;
 using System.Data;
 using System.Data.SqlClient;
 using Wrox.WebModules.Data;

 namespace Wrox.WebModules.AdsManager.Data
 {
 /// <summary>
 /// Summary description for AdMaster.
 /// </summary>
 public class AdMaster : Wrox.WebModules.Data.DbObject
 {
 public AdMaster(string newConnectionString): base(newConnectionString)
 { }

 The method below will retrieve a list of companies from the database by using the
sp_AdsManager_GetCompanyList stored procedure, and will store the results in a DataSet:

 public DataSet GetCompanyList()
 {
 DataSet companies = RunProcedure("sp_AdsManager_GetCompanyList",
 new SqlParameter[]{}, "Users");
 return companies;
 }

 This next method retrieves the master list of all advertisements in the database into a DataSet:

 public DataSet GetAdList ()
 {
 DataSet ads = RunProcedure("sp_AdsManager_GetAdList",
 new SqlParameter[]{}, "Advertisements");
 return ads;
 }

 The following method uses a stored procedure to create a new company in the database given the name of the
company as an argument:

 public void CreateCompany(string companyName)
 {
 int rowsAffected;

 SqlParameter[] parameters =
 { new SqlParameter("@CompanyName", SqlDbType.VarChar, 255) };
 parameters[0].Value = companyName;
 RunProcedure("sp_AdsManager_CreateCompany", parameters,
 out rowsAffected);
 }
 }
 }

 The Advertisement Class

 Now we add a class called Advertisement to the AdsManagerData project we created earlier. This class has a bit
more functionality than the previous class. It is responsible for loading the details for a single advertisement, updating
the details for an advertisement, creating a new advertisement, and recording clicks and impressions for an existing
advertisement. The tricky part of this class comes in completely abstracting the source of the data. As you'll see, the
data for a single "advertisement" entity is split between both a database and an XML file. The business layer above,
however, has no idea that this split exists. This allows us flexibility in upgrading the class to obtain more information
from more sources. In pure OOP terms, this concept is called information aggregation or information hiding.

 Note that the Retrieve method in the business object accesses the XML file directly. Strictly speaking, if we
wanted to be true to the tier separation model, even though we're only accessing a text file, we should still do
all data access (regardless of the storage medium) in the data services tier. So the data layer Retrieve method
could integrate data from the XML file, and we could add columns to the row that the data object returns
programmatically, so it will appear to the business tier that it all came from one database. We won't take this
approach here but bear in mind that it is an option.

 The Advertisement class has no properties and provides the following methods:

 Create - creates a new advertisement in the database, as well as populating the AdRotator XML file with
the appropriate data. Invokes the sp_AdsManager_CreateAdvertisement procedure.

 RecordClick - records in the summary tables that a click occurred on a given advertisement. Invokes the
procedure sp_AdsManager_RecordClick.

 RecordImpression - records in the summary tables that an impression occurred on a given advertisement.
Invokes the procedure sp_AdsManager_RecordImpression.

 RetrieveAd - obtains all the relevant details for a given advertisement. Pulls information from the database
via the sp_AdsManager_GetAdvertDetails stored procedure.

 Update - saves changes to an existing advertisement by calling the sp_AdsManager_UpdateAdvertisement
stored procedure and by modifying the XML configuration file.

 Let's take a look at the source for Advertisement.cs (found in the project for the
Wrox.WebModules.AdsManager.Data namespace, which is in the AdsManagerData class library we've been
working with up to this point):

 using System;
 using System.Data;
 using System.Data.SqlClient;
 using Wrox.WebModules.Data;
 using Wrox.WebModules.AdsManager;
 using System.Xml;

 namespace Wrox.WebModules.AdsManager.Data
 {
 /// <summary>
 /// Summary description for Advertisement.
 /// </summary>
 public class Advertisement: Wrox.WebModules.Data.DbObject
 {
 public Advertisement(string newConnectionString):base(newConnectionString)
 { }

 public DataRow RetrieveAd(int advertisementId)
 {
 SqlParameter[] parameters = { new SqlParameter("@AdvertisementID",
 SqlDbType.Int, 4) };
 parameters[0].Value = advertisementId;

 using (DataSet ads = RunProcedure("sp_AdsManager_GetAdvertDetails",
 parameters, "Advertisements"))
 {
 return ads.Tables[0].Rows[0];
 }
 }

 /// <summary>
 /// Records an impression for a given advertisement. An impression is a
 /// single display of an advertisement to a viewer's browser.
 /// </summary>
 /// <param name="advertisementId">advertisementId for which to record the
 /// Impression.</param>
 public void RecordImpression(int advertisementId)
 {
 int rowsAffected;
 SqlParameter[] parameters =
 { new SqlParameter("@AdvertisementID", SqlDbType.Int, 4) };
 parameters[0].Value = advertisementId;

 RunProcedure("sp_AdsManager_RecordImpression", parameters,
 out rowsAffected);
 }

 public void RecordClick(int advertisementId)
 {
 int rowsAffected;
 SqlParameter[] parameters =
 { new SqlParameter("@AdvertisementId", SqlDbType.Int, 4) };
 parameters[0].Value = advertisementId;

 RunProcedure("sp_AdsManager_RecordClick", parameters, out rowsAffected);
 }

 public void Create(string imageUrl, string trueNavigateUrl,
 string alternateText, string keyword, int companyId,
 string description, string rotatorFile)
 {
 int rowsAffected;
 SqlParameter[] parameters =
 { new SqlParameter("@CompanyID", SqlDbType.Int, 4),
 new SqlParameter("@Description", SqlDbType.VarChar, 255),
 new SqlParameter("@TrueNavigateUrl", SqlDbType.VarChar, 255),
 new SqlParameter("@AdvertisementID", SqlDbType.Int, 4)};
 parameters[0].Value = companyId;
 parameters[1].Value = description;
 parameters[2].Value = trueNavigateUrl;
 parameters[3].Direction = ParameterDirection.Output;
 RunProcedure("sp_AdsManager_CreateAdvertisement", parameters,
 out rowsAffected);

 This next section of code is where things get a bit fancy. We have seen that the AdRotator gets its data from an
XML file. We want to keep this, as much as possible, secret from the business layer. So, when the business layer
issues a call to create an advert, we need to synchronize entries between the database and the XML file.

 We also want the link taken when the user clicks an ad to be to the pass-through page. There we need to retrieve the
true destination, and forward the user to it. These are issues for the presentation layer, but it does mean that when we
create an ad entry we need to enter the link to the pass-through, and not the true target, into the AdRotator's XML
file. The link to the pass-through needs to provide all the information we need to record the click and pass the user on
to the correct site.

 So the link we use as NavigateUrl in the XML file will include the ad ID as a parameter, which the pass-through
page can use to obtain full details from the database.

 Below, we're going to use some standard XML code to create the appropriate elements and save them in the
AdRotator's XML file. The location of this XML file is stored in our config file (AdsManager.Config) and retrieved
using the standard configuration classes. When we add the advert to the database, the stored procedure returns the
new ad's ID. We use that in the XML file's NavigateUrl:

 // now that the new ad is in the DB, put the rest of the
 // details in the Rotator's XML file.
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();

 XmlDocument rotatorDom = new XmlDocument();
 rotatorDom.Load(rotatorFile);
 XmlElement temp;
 XmlElement newAd = rotatorDom.CreateElement("Ad");

 temp = rotatorDom.CreateElement("ImageUrl");
 temp.InnerText = imageUrl;
 newAd.AppendChild(temp);

 temp = rotatorDom.CreateElement("NavigateUrl");
 temp.InnerText = settings.PassThroughPage + "?AD=" +
 parameters[3].Value.ToString();
 newAd.AppendChild(temp);
 temp = rotatorDom.CreateElement("AlternateText");
 temp.InnerText = alternateText;
 newAd.AppendChild(temp);

 temp = rotatorDom.CreateElement("Keyword");
 temp.InnerText = keyword;
 newAd.AppendChild(temp);

 temp = rotatorDom.CreateElement("Impressions");
 temp.InnerText = "1";
 newAd.AppendChild(temp);

 rotatorDom.DocumentElement.AppendChild(newAd);
 rotatorDom.Save(rotatorFile);
 }

 public void Update(int advertisementId, string imageUrl,
 string trueNavigateUrl, string alternateText,
 string keyword, string description, int impressions,
 bool active, string rotatorFile)
 {
 int rowsAffected;
 SqlParameter[] parameters =
 { new SqlParameter("@AdvertisementID", SqlDbType.Int, 4),
 new SqlParameter("@TrueNavigateUrl", SqlDbType.VarChar, 255),
 new SqlParameter("@Description", SqlDbType.VarChar, 255),
 new SqlParameter("@Active", SqlDbType.Bit) };

 parameters[0].Value = advertisementId;
 parameters[1].Value = trueNavigateUrl;
 parameters[2].Value = description;
 parameters[3].Value = active;

 RunProcedure("sp_AdsManager_UpdateAdvertisement", parameters,
 out rowsAffected);
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();

 In this next section of this method, we update the information contained in the AdRotator's XML file. This is a bit
trickier than creating the original <Ad> element in the Create method. In order to update a single element in a
database or file, we need to locate the item we're updating. In an RDBMS we do this by supplying a key, or some
information about the row that is entirely unique to that row only.

 The AdRotator XML file doesn't contain any support for numeric identifiers. We didn't want to modify the format of
the AdRotator XML file - that would negate the purpose of reusing an existing control. However, we do know that
the database ID of an advertisement is stored in the NavigateUrl element. Therefore, we're going to use the
NavigateUrl element as our unique key and we'll use a little XPath to find the appropriate element:

 XmlDocument rotatorDom = new XmlDocument();
 rotatorDom.Load(rotatorFile);
 string xPathFind = "//Ad[NavigateUrl=\"" + settings.PassThroughPage +
 "?AD=" + advertisementId.ToString() +"\"]";

 XmlElement currentAd =
 (XmlElement)rotatorDom.DocumentElement.SelectSingleNode(xPathFind);
 XmlElement temp;
 temp = (XmlElement)currentAd.SelectSingleNode("ImageUrl");
 temp.InnerText = imageUrl;

 temp = (XmlElement)currentAd.SelectSingleNode("AlternateText");
 temp.InnerText = alternateText;

 temp = (XmlElement)currentAd.SelectSingleNode("Keyword");
 temp.InnerText = keyword;

 temp = (XmlElement)currentAd.SelectSingleNode("Impressions");
 temp.InnerText = impressions.ToString();

 rotatorDom.Save(rotatorFile);
 }
 }
 }

 The Business Layer
 The advertising module only deals with keeping track of advertisements, and as such shouldn't have an overly
complex object model. Our business tier is also a small one, consisting of only two main classes: AdMaster and
Advertisement. The following sections give a detailed description and source listing of each of the classes in our
business layer. But before we get into the source code for the classes in this project, let's actually create the project.
To do this, we create a new Class Library and add it to the current solution (ThePhile). Then, we set the default
namespace and output file to Wrox.WebModules.AdsManager.Business.

 The AdMaster Class

 The AdMaster class in the business layer is a layer of abstraction on top of the AdMaster class in the data services
tier. It implements four methods:

 Default constructor.

 GetCompanyList - this method obtains a list of all companies in the system. It is sorted alphabetically. It is
a simple forwarded call to the data tier to populate a DataSet.

 GetAdList - this method obtains a list of all advertisements in the system. It is a forwarded call to the data
tier to populate a DataSet.

 CreateCompany - a method with no return value that creates a new company in the database by
forwarding the call to the data tier.

 using System;
 using System.Data;
 using Wrox.WebModules.AdsManager;

 namespace Wrox.WebModules.AdsManager.Business
 {
 /// <summary>
 /// Summary description for AdMaster.
 /// </summary>
 public class AdMaster
 {
 public AdMaster()
 { }

 public DataSet GetCompanyList ()
 {
 AdsManager.Data.AdMaster admaster = new AdsManager.Data.AdMaster(
 Configuration.ModuleConfig.GetSettings().ConnectionString);
 return admaster.GetCompanyList();
 }

 public DataSet GetAdList()
 {
 AdsManager.Data.AdMaster admaster = new AdsManager.Data.AdMaster(
 Configuration.ModuleConfig.GetSettings().ConnectionString);
 return admaster.GetAdList();
 }

 public void CreateCompany(string companyName)
 {
 AdsManager.Data.AdMaster admaster = new AdsManager.Data.AdMaster(
 Configuration.ModuleConfig.GetSettings().ConnectionString);
 admaster.CreateCompany(companyName);
 }
 }
 }

 The Advertisement Class

 The Advertisement class is the core component in our business tier. It is added as a new class in our
AdsManagerBusiness project. It is responsible for handling all of the activities that can take place with regard to an
advertisement, such as creation, deletion, updating, and recording clicks and impressions. Most calls are forwards to
the data tier, though some logic often takes place before the call to the data services component:

 using System;
 using System.Web;
 using System.Data;
 using System.Xml;
 using Wrox.WebModules.Business;

 namespace Wrox.WebModules.AdsManager.Business
 {
 public class Advertisement: Wrox.WebModules.Business.BizObject
 {
 private string imageUrl;
 private string navigateUrl;
 private string alternateText;
 private string keyword;
 private int impressions;
 private string trueNavigateUrl;
 private int advertisementId;
 private int companyId;
 private bool isActive;
 private string description;

 public Advertisement()
 {
 // constructor used when creating an empty instance.
 }

 public Advertisement(int advertId)
 {
 HttpContext context = HttpContext.Current;
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 string xPathFind = "//Ad[NavigateUrl=\"" +
 settings.PassThroughPage + "?AD=" + advertId.ToString() +"\"]";
 Data.Advertisement ad =
 new Data.Advertisement(settings.ConnectionString);
 DataRow advertData = ad.RetrieveAd(advertId);

 advertisementId = advertId;
 description = (string)advertData["Description"];
 trueNavigateUrl = (string)advertData["TrueNavigateUrl"];
 isActive = (bool)advertData["Active"];
 companyId = (int)advertData["CompanyID"];

 As we saw in our previous discussion of the data services component, the data is split between the database and the
XML file. The following code will use the XPath method to search for a unique NavigateUrl element in the XML
document and then retrieve the appropriate information into private members used to populate properties:

 // now fill up the rest of the properties with information from the
 // XML file.
 XmlDocument adDom = new XmlDocument();
 adDom.Load(context.Server.MapPath(settings.RotatorXmlFile));
 XmlElement adCurrent =
 (XmlElement)adDom.DocumentElement.SelectSingleNode(xPathFind);
 if (adCurrent == null)
 throw new InvalidOperationException("Advertisement Selected Does not
 Exist in Rotator XML Source");

 imageUrl = adCurrent.SelectSingleNode("ImageUrl").InnerText;
 navigateUrl = adCurrent.SelectSingleNode("NavigateUrl").InnerText;
 alternateText = adCurrent.SelectSingleNode("AlternateText").InnerText;
 keyword = adCurrent.SelectSingleNode("Keyword").InnerText;
 impressions =
 Convert.ToInt32(adCurrent.SelectSingleNode("Impressions").InnerText);
 }

 public void RecordImpression()
 {
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 Data.Advertisement currentAd =
 new Data.Advertisement(settings.ConnectionString);
 currentAd.RecordImpression(advertisementId);
 }

 public void RecordClick()
 {
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 Data.Advertisement currentAd =
 new Data.Advertisement(settings.ConnectionString);
 currentAd.RecordClick(advertisementId);
 }

 public void Create()
 {
 HttpContext context = HttpContext.Current;
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 Data.Advertisement newAd =
 new Data.Advertisement(settings.ConnectionString);
 newAd.Create(imageUrl, trueNavigateUrl, alternateText,
 keyword, companyId, description,
 context.Server.MapPath(settings.RotatorXmlFile));
 }

 public void Update()
 {
 HttpContext context = HttpContext.Current;
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 Data.Advertisement currentAd =
 new Data.Advertisement(settings.ConnectionString);
 currentAd.Update(advertisementId, imageUrl, trueNavigateUrl,
 alternateText, keyword, description,
 impressions, isActive,
 context.Server.MapPath(settings.RotatorXmlFile));
 }

 In this next section we've used the #region meta-command to indicate a collapsible region of code. Regions are used
to logically differentiate large blocks of code from each other to make viewing the source code in Visual Studio .NET
easier. It significantly reduces time wasted trying to locate a block of code when you can collapse the regions of code
you don't need to look at. We've also cut out most of the properties, since displaying the code for all of the properties
would be a waste of space.

 #region Publicly Exposed Properties

 public int Impressions
 {
 get
 {
 return impressions;
 }
 set
 {
 impressions = value;
 }
 }

 #endregion
 }
 }

 The Presentation Layer
 Our presentation layer consists of several ASP pages and the code-behind classes that support them. Keep in mind
that all our changes and additions to the presentation tier take place in the original "ThePhile" web application project
that is part of our main solution. In addition, we've made some changes to the SiteFooter control in order to facilitate
the display of our banner ads. The following is a list of the elements that comprise our presentation tier:

 Admin.aspx [.cs] - main page of the advertising administration system. Displays the list of advertisements in a
data grid and contains links for creating ads and entries for companies.

 AdDetail.aspx [.cs] - web page and related code-behind class to display and edit the details of a given
advertisement.

 NewAd.aspx [.cs] - web form for creating a new advertisement.

 NewCompany.aspx [.cs] - web form for creating a new entry for a company.

 Pass through.aspx [.cs] - pass-through page (discussed next) facilitating proper auditing of hits on banner
advertisements.

 The Pass-through Page

 Despite the fact that this page has absolutely no user interface, it is the most important part of the entire advertising
module. Without this page the advertising module cannot function at all.

 The purpose of this page is to accept an incoming request that contains a single URL parameter, called AD. This
parameter contains the numeric ID of a particular advertisement that has been clicked. The page then looks up the
advertisement in the database to find out the actual destination intended for the advertisement. Once this information
has been obtained, the page records a click on the advertisement in the database and redirects the user to the
appropriate advertiser's product or home page.

 To see how this works, take a look at the Page_Load event of the Passthrough.aspx.cs file:

 private void Page_Load(object sender, System.EventArgs e)
 {
 AdsBusiness.Advertisement currentAd =
 new AdsBusiness.Advertisement(Convert.ToInt32(Request["AD"]));
 currentAd.RecordClick();
 Response.Redirect(currentAd.TrueNavigateUrl);
 }

 The New SiteFooter Control

 In order to get the advertisements to appear all over our site without having to rewrite too much of our existing code,
we're going to modify the SiteFooter control. Because we built all of the pages to use the footer control to begin with,
only a few changes are required in order to display our AdRotator control.

 Take a look at the new code for the SiteFooter control (SiteFooter.ascx), which replaces the original:

 <%@ Control Language="c#" AutoEventWireup="false"

 Codebehind="SiteFooter.ascx.cs"

 Inherits="Wrox.ThePhile.Web.Controls.User.SiteFooter"

 TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

 <table width="100%" border="0" cellspacing="0" cellpadding="0">

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 7 - Advertising

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 Advertising is an interesting and exciting facet of doing business on the web. Many websites pay their bills by offering
advertising. Website owners and administrators can track the demographics of their audience and use that information
to convince advertisers that paying for impressions on their site is a worthwhile investment. Those same administrators
can also keep track of how many impressions and clicks a particular advertisement receives and use that information
to bill the client (advertiser).

 After reading this chapter, you should have a solid understanding of:

 Storing information on advertisements by aggregating both XML and RDBMS data in the data layer, hiding
the distinction from the business layer.

 Keeping audit trails of clicks and impressions by trapping events in the AdRotator control and doing some
data warehousing in the database.

 Providing sufficient information to advertisers to prove ad effectiveness (or lack of) by providing a stored
procedure designed to pull reporting information from the data warehouse.

 So far we've looked at several ways of providing our site visitors with information. In the next chapter we'll show
how to find out what our readers think, by implementing an opinion polls module.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 8 - Polls

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 8: Polls
 In this chapter we'll discuss polls - which comprise a question with a set of optional responses that the user can select
from and vote for. First we'll recap why polls are useful and important for different websites. We'll then demonstrate
how to design and implement an easily pluggable and maintainable voting module for our ThePhile.com site. We'll also
show how to make it accessible to external clients, such as other sites or Windows programs, via a web service.

 The Problem
 We briefly discussed the benefits of polls in Chapter 1. To recap, sites that provide a poll usually do so because they
are interested in what people think. They use polls as a form of user-to-site communication because they want views
on the products they sell or review, or opinions about the market in general, or they want to know who the users are,
their age, their occupation, and other demographic information. Good polls always contain targeted questions that can
help the site's managers to know who their users are and what they want to find on their site. This information can be
used to identify which parts of the site to improve.

 Polls are valuable for e-commerce sites too, because they can indicate which products have higher interest
and demand. Armed with this information, e-commerce businesses can highlight those products, provide more
detailed descriptions or case studies, or offer discounts to convince users to buy from their site.

 Another use for the information is to attract advertising revenue. If you look on any middle to large site the chances
are that you'll see an "Advertise with us" link, or something similar. On that page you'll probably find information about
the age of the typical users, the regions or countries they live in, and sometimes also their average income. This
information is often gathered by direct or indirect polls. The more details you provide about your typical audience, the
more chance you have of finding a sponsor to advertise on your site.

 Another benefit is user-to-user communication. Users generally like to know what their peers think about a product
or a subject of interest to them, and maybe even how much they earn! I must admit that I'm usually curious when I see
a poll on a website. Even if I don't have a very clear opinion about the question being asked, I vote, often because I
want to know which is the most popular response! This explains why polls are usually well accepted, and why users
generally vote quite willingly.

 Another reason why users might be willing to vote is that they may feel that their choice has some
significance for the people behind the scenes. And the votes actually are important; as we've seen, the results
can drive the future content of the site and other decisions.

 We want the benefits of a poll facility for ThePhile.com, and therefore want to implement some form of poll on the
website. Now we should consider some further details about web polls, namely the problems that we must address to
successfully run a polling system.

 First of all, as for the news and other content, the same poll shouldn't remain active for too long. If we leave the same
poll on the page for, say, two months, we might gather some more votes, but we risk losing the interest of users who
voted early on. Neither can we keep a poll up for just a couple of days, at least not if we want to achieve significant
results. The right duration depends mostly on the average number of visitors we have and how often they come back
to visit the site. As a rough guide, if we know that several thousands of users regularly come to visit the site each
week, then that is a good duration for the active poll. Otherwise, if we have less visitors, we can leave the poll for two
or more weeks, but probably never longer than a month.

 In case you're wondering how to get the information you need to make this decision, there are several
services that allow you to easily retrieve statistics for your site, such as the frequency and the number of
visitors, and much more. Some of these services are commercial, but you can also find some good ones for
free: examples are www.extremetracking.com, www.sitemeter.com, and www.fastcounter.com, but there are
others. Most of these services give you some information for free, while other statistics (such as visitors by
search engine and search word, client browser information, traffic forecast, etc.) are subscription-based. Of
course you could implement your own hit counter - it would be pretty easy to track visitors and generate some
basic statistics, but to reproduce all the advanced features sold by specialized services would involve quite a
lot of work, and it would probably be cheaper to subscribe to the professional/advanced plan of one of the
services mentioned above.

 When you change the active poll, a new question arises - what to do with the old questions and their results. Should
we throw them away? Certainly not! They might be very interesting for new users who didn't take part in the vote,
and the information will probably remain valid for some time, so we should keep them available for viewing. They can
even be considered as part of the content of our site, and we should probably build an archive of past polls.

 If we allow a user to vote however many times they want to, we'll end up with incorrect results. The vote will be
biased towards that user's personal opinion. Having false results is just as useless as having no results at all, since we
can't base any serious decisions on them. Therefore, in general we will want to prevent the user from voting more than
once for the same question.

 However, there are occasions when we might want to allow the user to vote several times. For example, during the
development and testing stage, we may need to post many votes to see if the module works well. The administrator
could just manually add some votes through the Enterprise Manager's table viewer, or by directly calling the
appropriate stored procedure. But using the polling user interface that we'll build is a much more convenient method,
that more thoroughly tests the module, so we want to leave this door open.

 There are reasons for wanting to allow multiple votes after deployment too. Imagine that we are running a
competition to select the best resource on any selected topic, and the list of these resources (external sites, our site's
sections, downloads, etc.) is updated weekly, and the competition lasts one month. If we prevented multiple votes we
would have to create a new poll for each of the four weeks, and after one month we would need to add together the
results of the four distinct polls to get the final winner. There wouldn't be much extra work to do, but it's not very
elegant. A better and quicker solution would be to have only one poll for the entire month, but allow the user to
re-vote, with the limitation of one vote per week. This way, at the end of the month we will have the final results
without doing anything else.

 In this discussion we're talking about polls that only allow a single option to be selected (those poll boxes
with a series of radio buttons). However, there is also another type of poll that allows the user to vote for
multiple options in a single step (the options are listed with checkboxes, and you can select more than one).
This might be useful if you wanted to ask a question like "What do you usually buy online?" and you wanted
to allow the user to answer "books, DVDs, games, etc. "through multiple separate options. However, this
type of poll is quite rare. The design of this type of poll would complicate our module, so we decided to leave
it out. But be aware that they exist, and you may want to use them in situations like the one mentioned above.

 So in summary our problem definition is that we want to implement a poll facility on our site to gauge the opinions of
our users and to generate a sense of community. We don't want users to lose interest but we want the results to be
significant, so we will need to add new questions and change the current poll sufficiently often. We also want to
generate content for our site, so we'd like to make all the results available for viewing. Finally, we want to control the
voting so the results are as unbiased and accurate as possible.

 In the next section we're going to discuss the design in more detail, and consider how we will solve these problems.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.extremetracking.com
http://www.sitemeter.com
http://www.fastcounter.com

Chapter 8 - Polls

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 As usual, in this section we're going to work on the design of the solution. We'll be looking at how we can provide
voting functionality for our site. This module - like most of the others presented in the previous chapters - stores the
data (questions, answers, votes, etc.) in the database shared by all modules of this book. To easily access the
database we'll need a set of stored procedures and a data access layer, and a business layer to keep the presentation
layer separate from the database and the details of its structure. Of course there will be some sort of user interface
that allows the administrators to view and manage the data through their favorite browser.

 To start with we'll list the features we want to implement, then we'll begin to design any database tables, stored
procedures, data and business layers, user interface services, and security that we need for this module.

 Features to Implement
 Let's start our discussion by writing down a list of features that the polls module should provide:

 In order to easily change the current poll and add or remove questions, the administrator will need an
access-protected administration console. It should allow multiple questions, and their options, to be added,
edited, or removed. The ability to have multiple questions is important, because we might want to have
different polls in different sections of our site. The administration pages should also show the current results
for each option, and the total number of votes for each question.

 A user control that builds the poll box that can be inserted into any page. The poll box should display the
question text and the available options (usually rendered as radio buttons to allow only one choice). Each
question will be identified by a unique ID, which should be specified as a custom property for the user
control, so that the web master can easily change the currently displayed question by setting the value for that
property.

 We should prevent the user from voting multiple times for the same poll. Or, even better, we should be able
to dynamically decide if we want to allow the user to vote more than once, and specify the period for which
they will be prevented from voting again. We'll further discuss why we might want to do this in the next
section.

 We can have only one poll (question) declared as current. When we set a question as being current, the
question that was previously the current one should change its state. The current poll will be displayed unless
we specify another question ID for the poll box. Any non-archived poll can be displayed. Of course we can
have different polls on the site at the same time depending on the section (one for DVDs and one for books,
for example), but setting the default question is useful because we'll be able to add a poll box without
specifying the ID of the question to display (through the custom property mentioned above). We'll also be
able to change the question through the administration console, without manually changing the page and
re-uploading it.

 A poll should be archived when we decide that we no longer want to use it. Once archived, a question
cannot be displayed even if we explicitly declare its ID for the poll box.

 A page that displays all the archived polls and their results. We don't need a page for the results of the
current poll, since we want to show them in the poll box - instead of the list of options - when we detect that
the user has already voted. This way, the users are forced to express their opinion if they want to see the
current poll's results. (Once the poll expires it will be archived and anyone can see the results even if they
haven't voted.) You can bet this will bring in more votes than if the current results were freely available to
users that have not voted.

 Shortly we'll see the database tables for this module, and the respective stored procedures. The administration pages
don't require further discussion here. The ASP.NET pages of this section are merely a handy user interface for
managing the database records through the stored procedures.

 As for the user control that creates the poll box, it will be discussed in more detail a bit later, after describing the
database tables and stored procedures. What we need to discuss at this point, before starting to think about the
database design, is how to handle multiple votes.

 Handling Multiple Votes

 We discussed above that we want to be able to control whether users can cast multiple votes, and allow them to
vote again after a specified period. It would be pretty cool to do this, and we like to implement cool things, so we
decided to do it!

 So, we want to give the administrator the ability to prevent multiple votes, or to allow multiple votes but with a
specified lock duration (one week in the example above). We still have to find a way to ensure that the user does not
vote more times than is allowed. The simplest solution is to write a cookie to the client that stores the ID of the
question for which the user has voted. Then, when the poll box loads, it will first try to find a cookie matching the
question. If a cookie is not found the poll box will display the options and the user can vote. Otherwise, the poll box
will show the latest results and not allow the user to vote again. To allow multiple votes, the cookie must have an
expiration date. If we set it to the current date plus seven days, it means that in seven days time the user will be
allowed to re-vote.

 Writing and checking cookies is really straightforward, and in most cases it is sufficient. In most cases, unfortunately
not all cases. The drawback of this method is that the user can easily turn off cookies through a browser option, or
delete the cookies from their machine, and then be allowed to vote however many times they want to. (Only a very
small percentage of users keep cookies turned off- except for company users where security is a major concern -
since they are used on many sites and are sometimes actually required.)

 However, there is an alternative method for preventing multiple votes: IP locking. When the user votes, their
computer's IP address can be retrieved and stored in the database together with the other vote details. Later, when
the poll box loads or when the user tries to vote again, we can run a query that returns the records matching both the
current computer's IP address and the question ID. If a record is found, the user has already voted and we can
prevent further voting. The expiration date can be saved as an additional field in the database table.

 There is yet another option. We could track the logged users through their ID, instead of their computer's IP address.
However, this will only work if the user is registered. We don't want to limit the vote to registered users only, and will
not cover this last method in practice in this chapter. It is an additional option you could add in future if required.

 In our module we'll provide the option to employ both the cookie and IP locking methods, only one of them, or
neither. Employing neither of them means that we will allow multiple votes with no limitations, and this should only be
used during the testing stage. In a real scenario we might need to disable one method. Say that we run the application
on an intranet, and that the computers that access the pages with the poll are in a lab. Several users share each
computer (students for example, who don't have their own PC). Each user has his own account, so the cookies are
not shared, but the IP is static. This means that if we employ IP checking, only the first user to access the application
with that computer can vote. IP locking is usually fine when employed on a LAN where you can be reasonably sure
that any user has their own computer. However, this will not prevent people from using multiple machines to vote
multiple times if they really want to do so. Another issue about IP locking is that if the user gets a dynamic IP from
their ISP, every time they disconnect and reconnect, they will get a new IP, so this locking strategy won't have any
effect. Yet another case where IP locking causes problems is when someone is surfing with a group through a proxy,
because they would always echo the IP of the proxy, regardless of the machine that they were surfing on. IP locking
is fine on an intranet but on the Internet can be awkward for this reason. That is why we decided to let the
administrator decide which methods should be employed, according to the particular situation.

 In conclusion, the polls module will have the following options:

 Multiple votes can be allowed

 Multiple votes can be prevented with client cookies or IP locking or a combination of the two methods

 Limited multiple votes can be allowed, in which case the administrator can specify a lock duration for either
method

 This way, the polls module will be flexible and can be used with the options that best suit the particular situation.

 Designing the Database Tables
 Having a precise list of features to implement is fundamental to designing tables from scratch (although this might be
impossible with large systems that grow over time). Basically, we need to store questions, options, and votes. At first
we might think that two tables would be enough: one for the questions and another for the options, with a column for
the number of votes, incremented every time a user votes for that option. However, we've said that we want to store
information about the user that voted, such as the IP address and the date, and of course this additional data can't be
stored together with the options - we must have a separate table that contains all the details of any vote. So we need
at least three tables. You may also suggest a further linking table (also known as an associate table) in order to
create a many-to-many relationship between the questions and the options tables. This could be useful if we wanted
to use the same options, such as simple "yes" and "no" answers, for multiple questions. However, this would make it
more difficult to store and retrieve the votes, because it would no longer be possible to identify an option by its ID,
but it would be necessary to use the option's ID plus the question's ID, since the same option could be shared by
several questions. Furthermore, short and general answers such as "yes" and "no" are not as useful as having more
specific options. For these reasons, we decided to avoid the many-to-many relationship between the questions and
options, and opted for a simpler one-to-many relationship. In conclusion, we need just three tables: one for the
questions, one for the options for each question, and one for the votes. We have a good idea of the information we
need to store in the database, now we're ready to design it.

 As mentioned in previous chapters, we need a prefix for our module-specific tables, because we have only one SQL
Server database, shared by the tables of all the modules in this project. The prefix for this module is Polls_. Let's see
the diagram that shows the tables and their relationships, before describing them in more detail:

 The Polls_Questions Table

 The Polls_Questions table contains all the questions for the polls, and their attributes, such as whether they are the
default question, and the archived status:

Column Name Type Size Allow Null Description

QuestionID Int - Identity

 primary key

4 No The unique ID for the
question.

QuestionText varchar 150 No The text of the
question.

IsCurrentQuestion Bit 1 No If true (1) this
question is the default
for the poll box, and is
used when no other
question ID is
specified.

Archived Bit 1 No If true (1) the question
can no longer be used
in the poll box but its
results are still made
accessible through an
Archive page.

AddedDate datetime 8 No When the question
was added.

 The Polls_Options Table

 The Polls_Options table contains the options (possible answers) for all the questions in the Polls_Questions table:

Column Name Type Size Allow Null Description

OptionID int - Identity

 primary key

4 No The unique ID for the
option.

QuestionID int foreign key 4 No The ID of the question
to which the option
belongs.

OptionText varchar 150 No The text of the option.

 This is a simple table that has a many-to-one relationship with the Polls_Questions table, through the QuestionID
foreign key.

 The Polls_Votes Table

 The Polls_Votes table stores all the votes for each option, and some details that will be used to prevent multiple
votes by the same user:

Column Name Type Size Allow Null Description

VoteID int - Identity

 primary key

4 No The unique ID for the
vote.

QuestionID int foreign key 4 No The ID of the question
for which the user has
voted.

OptionID int foreign key 4 No The ID of the option
to which the user has
given their vote.

UserIP varchar 1

 5

No The IP address of the
user's computer.

AddedDate datetime 8 No When the vote was
added.

 We keep track of both the question and the specific option that the user has voted for. Both pieces of information are
useful for counting how many votes there have been, for a question and for each option. You might think that
retrieving the number of votes for each option by counting all the individual records with the specified OptionID is
slower than incrementing a number in a field in the Polls_Options table (and the same for the total number of votes in
the Polls_Questions table). However, our method makes the insertion of a new vote a bit faster, because we don't
need to update other fields, and we also avoid the problems of potential concurrent updates - we actually add a new
record for each new vote. Later in the chapter we'll also see how to avoid having to requery the database every time
we display the results in the poll box, in order to save the time that would be required to recount the votes.

 In addition, storing the ID of the question allows us to quickly count the total number of votes for a given question,
and easily check if the user has already voted for it. Although we could find this out by looking at the OptionID they
have voted for and matching this to a QuestionID, adding the extra ID directly to the Options_Votes table makes
queries much faster. The user is identified by the IP address of their computer.

 Finally, we store the date when the vote was added, and not the IP lock expiration date. This is more flexible,
because we can dynamically change the lock duration and have the new duration applied not only to the future votes,
but also to the current votes. In practice, the expiration date is calculated from the AddedDate column and a lock
duration value supplied later in the code.

 The Stored Procedures that Manage the Database
 To manage the database we will build a set of stored procedures. We'll run these later in the data layer classes to do
everything from the addition or deletion of questions, options, and votes, to the update of single fields. Here is the
complete list of the stored procedures we'll build later, with their parameters:

Stored Procedure Description

sp_Polls_GetQuestions Returns all the questions or just the archived questions,
according to the @ArchivedOnly parameter. The
questions are sorted by date, in descending order (from
the newest to the oldest).

sp_Polls_GetQuestionDetails Returns the complete row for the specified question.

sp_Polls_GetCurrentQuestionID Returns the ID of the current question, which is used as
the default for the poll box when no other ID is explicitly
set.

sp_Polls_SetCurrentQuestionID Changes the ID of the current question. This means
setting the IsCurrentQuestion field of the specified
question to 1, and the field for all the other questions to
0.

sp_Polls_InsertQuestion Inserts a new question. If a question already exists with
the same text, and it is not archived, the new question is
not added and the output parameter is set to -1.
Otherwise @QuestionID will be set to the new question's
ID.

sp_Polls_UpdateQuestion Updates all the fields of the question identified by the
specified ID.

sp_Polls_SetQuestionArchived Updates only the Archived field of the specified question.

sp_Polls_DeleteQuestion Deletes the specified question.

sp_Polls_GetOptions Returns all the options for the specified question.

sp_Polls_GetOptionDetails Returns the complete row for the specified option.

sp_Polls_InsertOption Inserts a new option for the specified question. If the
question already has an option with the same text, the
option is not added and @OptionID is set to -1,
otherwise it is set to the added option's ID.

sp_Polls_UpdateOption Updates all the fields of the specified option.

sp_Polls_DeleteOption Deletes the specified option.

sp_Polls_GetVotes Returns all the votes for the specified question.

sp_Polls_GetVoteDetails Returns the complete row for the specified vote.

sp_Polls_GetUserVoteID Sets the output parameter to the ID of the vote for the
specified question, posted by the user identified by the IP
address. If @VoteID is set to -1, it means that the user
has not yet voted for that question.

sp_Polls_InsertVote Inserts a new vote for the specified question, and also
stores the ID of the option selected by the user.

 Most of these stored procedures are simple ones that return, insert, delete, or update records in the various tables.
The descriptions in the table above are sufficient for most of them, but there are a few points that are worth a better
explanation here before proceeding:

 sp_Polls_GetQuestions, sp_Polls_GetOptions, and the two procedures that return only a single row, are a
bit more complex than a plain SELECT query. They all add a dynamically calculated column, TotalVotes,
which contains the number of votes for the questions and the options, respectively. Later, in the
implementation section, we'll see how to do this.

 sp_Polls_GetOptions and sp_Polls_GetOptionDetails return a calculated data column, in addition to the
TotalVotes column. The column is called Percentage, and it contains the votes for each option as a
percentage of the total votes for the question.

 sp_Polls_InsertVote inserts the vote for the specified question and option. It does not check if the user has
already voted. In fact, we might have chosen to allow multiple votes. Multiple votes are prevented, if
necessary, by the business component that we'll see later.

 Designing the Data Layer
 Now that we have a clear picture of what the database tables store, and how we retrieve data through the stored
procedures, we can design the data services. These are nothing but a set of classes that wrap calls to the stored
procedures. In fact, you'll see that the methods of the classes have exactly the same parameters as the respective
stored procedures.

 These classes will be part of an assembly called Wrox.WebModules.Polls.Data, all under the
Wrox.WebModules.Polls.Data namespace. As we've done in previous chapters, we inherit the data classes from
DbObject, the base class from the Core assembly that we built in Chapter 2.

 The QuestionDetails Class

 This class has no methods - it just exposes six public fields that map the values of the five physical fields of the
Polls_Questions table, plus the calculated column, TotalVotes. This class is used as a return type for a GetDetails
method that, instead of returning a DataRow type, returns an instance of an object that exposes the values in an
immediately accessible way.

 The Questions Class

 This class wraps calls to the stored procedures that manage the questions. Contrary to the class above, this one has
only methods, whose return values are the values of the output parameters of the respective stored procedures, or a
Boolean indicating whether the query succeeded. One method returns an instance of QuestionDetails.

Method Name Description

public Questions (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetQuestions () Returns a DataSet containing all the questions.

public DataSet GetQuestions (bool archivedOnly) The same as above, but here we have the opportunity to
specify if we only want the archived questions.

public QuestionDetails GetDetails (int questionID) Returns an instance of QuestionDetails that describes the
specified question.

public DataRow GetDetailsRow (int questionID) Returns the DataRow of the question identified by the
specified ID.

public int GetCurrentID () Returns the ID of the current/default question, or -1 if
there is no current question.

public int Add (string questionText, bool
isCurrentQuestion, bool archived)

Adds a new question, and returns its ID, or -1 if the
same question was already present.

public bool Update (int questionID, string questionText,
bool isCurrentQuestion, bool archived)

Updates all the fields of the specified question.

public bool SetArchived (int questionID, bool archived) Changes the Archived state of the specified question.

public bool Delete (int questionID) Deletes the specified question.

 Another way to retrieve all the polls or only those archived would have been to define two public methods
with different names, such as GetAllQuestions and GetArchivedQuestions that, in turn, call a helper private
method called GetQuestions (bool bArchivedOnly). However, if we later wanted to allow retrieval of polls
archived in a certain interval of time, or with other properties, we would need to add further methods in
addition to the new overloaded methods. More code would be needed, but without bringing significant
advantages, since it should be already clear to the client what the overloaded methods do with different
parameters.

 The OptionDetails Class

 This class is basically the same as QuestionDetails but for the Polls_Options table instead. It has only public fields
that map the physical fields of the table, plus the TotalVotes and Percentage fields that are calculated values returned
by the sp_Polls_GetOptionDetails stored procedure.

 The Options Class

 This class wraps the calls to all the stored procedures that manage the options, in the same way as the Questions
class does for the questions. Here is a complete list of the methods to implement:

Method Name Description

public Options (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetOptions (int questionID) Returns the options for the specified question.

public OptionDetails GetDetails (int optionID) Returns an instance of OptionDetails that describes the
specified option.

public DataRow GetDetailsRow (int optionID) Returns the DataRow of the option identified by the
specified ID.

public int Add (int questionID, string optionText) Adds an option and returns the ID of the added record,
or -1 if an option with the same text was already present
for the specified question.

public bool Update (int optionID, string optionText) Updates all the fields of the specified option.

public bool Delete (int optionID) Deletes the specified option.

 The VoteDetails Class

 This class is similar to the two xxxDetails classes above, with the following public fields: VoteID, QuestionID,
OptionID, UserIP, and AddedDate.

 The Votes Class

 This class is similar to Questions and Options, but a bit simpler because here we don't need methods that update and
delete votes. If this functionality is really necessary, for example during the testing stage, you should resort to the
Enterprise Manager or some other database manager, like the one we discussed in Chapter 4, which allows the
administrator to work online. Here are the methods for this last data access class:

Method Name Description

public Votes (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetVotes (int questionID) Returns all the votes for the specified question.

public VoteDetails GetDetails (int voteID) Returns an instance of VoteDetails that describes the
specified vote.

public DataRow GetDetailsRow (int voteID) Returns the DataRow of the specified vote.

public int GetUserVoteID (int questionID, string userIP) Returns the ID for the vote for the specified question
posted by the user whose computer's IP is userIP.
Returns -1 if no record is found.

public int Add (int questionID, int optionID, string
userIP)

Adds a vote for the specified question and option, and
returns the ID of the added record. The record is always
added; multiple votes, when not allowed, are prevented
by a business class.

 Storing and Retrieving Settings
 Before showing the design of the business layer we'd better spend a moment thinking about the settings we want to
offer, because they will be important for the logic of some of the business methods. The most obvious setting is the
connection string for the database, but there are others relating to the methods to be employed to avoid unwanted
multiple votes.

 In the previous chapters we've already extensively discussed how to store and retrieve settings: we decided to use an
XML file, written and read by a separate module-specific assembly with two classes. The assembly for this module
should be named Wrox.WebModules.Polls.Configuration.dll and there should be a corresponding namespace for the
classes. The first class is ModuleConfig, and this takes care of persisting and retrieving the settings to and from the
XML file. The other class is ModuleSettings, which has public properties that expose the settings, and that is used as
source and destination for the serialization and deserialization of the settings. This is achieved thanks to a great
ASP.NET class, XmlSerializer, which we've already seen in action earlier.

 The properties we need for ModuleSettings are as follows:

 ConnectionString: the connection string that all the data classes use to access the database.

 LockByCookie: Boolean property that, if true, means that we want to use cookies to prevent multiple votes.

 LockByIP: Boolean property that, if true, means that we want to use IP locking to prevent multiple votes.

 LockDuration: integer property that specifies the duration of the lock, during which the user is not allowed to
vote more than once. The period is specified in days. If -1, it means that the lock never expires.

 Designing the Business Layer
 The data access classes are sufficient for administering the database, since there are no particular rules to respect
when adding, editing, or deleting records. Simple rules, such as preventing the addition of a record that is already
present, are applied within the stored procedures. However, we have more complex business rules to take care of,
for example preventing the user from voting multiple times if the administrator has decided that this should not be
possible, or writing and retrieving cookies when the user votes. In addition, we want to access the data in a more
object-oriented way; the data layer basically provides a mere set of functions, without properties that describe the
object and relationships between child and parent objects. Therefore we must create another couple of classes to do
this, and so separate the business logic from the data layer. This is needed because a lower layer is not supposed to
access information available to another layer - if you need such information it is supposed to be passed as a method
parameter. The business layer is based on top of the data layer, and has classes that provide a completely
object-oriented description of the entities (questions and options), as well as methods to manipulate them. It hides the
details of the data layer, and prevents direct access to protected records, such as the votes.

 We'll put the business classes in a new assembly, Wrox.WebModules.Polls.Business, whose classes will inherit from
BizObject in the Core assembly.

 The Question Class

 This class fully describes a question, and is based on the data layer's Questions, Options, and Votes classes. It also
provides methods that check if the current user is allowed to vote, add their vote, and add or return the possible
options for a question:

Method Name Description

public int ID Read-only property that returns the ID of the question
represented by the object.

public string Text Gets/sets the question text.

public bool IsCurrent Gets/sets the IsCurrentQuestion status of the question.

public bool Archived Gets/sets the Archived status of the question.

public int TotalVotes Read-only property that returns the number of votes for
all the child options.

public DateTime AddedDate Read-only property that returns the date when the
question was added to the database.

public bool AllowVote Read-only property that, based on the current settings,
returns a value indicating whether the current user can
vote for this question.

public Question() Class constructor with no parameters. It just resets the
public properties to a default value. For example, the ID
property is set to -1, indicating that no record is
represented by the object, TotalVotes is 0, Text is an
empty string, etc.

public Question (int existingQuestionID) Class constructor that sets the properties to describe the
question identified by the input ID.

public Question (Question existingQuestion) Class constructor that sets the properties to describe the
question identified by an existing Question object.

private void LoadFromID () Loads the properties of the question identified by a
private ID variable. This method is called by the
constructors, or when the data has to be refreshed.

private void ResetProperties () Resets the properties.

public int LoadFromID (int existingQuestionID) Loads all the properties of the question identified by the
input ID. This method allows a different question to be
loaded after the object has been created, or the
properties to be loaded if we created an object but didn't
specify an ID for the constructor.

public int LoadCurrent () Loads the question marked as current, and sets the
properties accordingly.

public int Create (string questionText, bool
isCurrentQuestion, bool questionArchived)

Creates a new question, and sets the properties of the
object to represent the new record.

public bool Update () Updates the current question with the new values of the
public properties.

public bool Delete () Deletes the question.

public static DataSet GetQuestions (bool archivedOnly) Static method that returns all the questions or only the
archived ones.

public static DataSet GetQuestions () Overloaded version of the method above that returns all
the questions.

public static int GetCurrentID () Returns the ID of the question defined as the
current/default question.

public static DataSet GetCurrent () Returns a DataSet with two tables: the first has a row that
identifies the current/default question, and the second has
all the child options.

public DataSet GetOptions() Returns all the child options.

public Option AddOption (string optionText) Adds a child option.

public bool Vote (int optionID) Votes for the child option identified by the specified ID.

public bool Vote (Option option) Votes for the option specified in the input. This
overloaded version accepts an Option object instead of
its ID, and is actually based upon the previous version.

 Here we have quite a few interesting methods and properties, such as AllowVote, Vote, and GetCurrent. AllowVote
determines whether the user is allowed to vote for the question according to the options set by the administrator and
exposed by the configuration component explained above. It checks for the presence of a cookie on the client's
system, and checks against the IP address to see if they have already voted. We'll be using this property from inside
the Vote method to find out if the current user has already voted, and therefore whether we should show the list of
options and radio buttons for the question, or whether we should show the results.

 The other interesting method is GetCurrent, but we'll describe it in more detail shortly, when discussing the design of
the presentation layer, and specifically the design of the web service.

 The Option Class

 This is a simple class that describes a particular option and allows us to update, delete, or create a new one. Below is
the list of methods and properties we'll be implementing:

Method Name Description

public int ID Read-only property that returns the ID of the option
represented by the object.

public int QuestionID Read-only property that returns the ID of the parent
question.

public Business.Question Question Returns the parent question.

public string Text Gets/sets the text of the option.

public int TotalVotes Read-only property that returns the number of votes this
option received.

public float Percentage Read-only property that returns the percentage of votes
this option received, in relation to all the options of the
parent question.

public Option() Class constructor with no parameters. It just resets the
properties.

public Option (int existingOptionID) Class constructor that sets the properties to describe the
option identified by the input ID.

public Option (Option existingOption) Class constructor that sets the properties to describe the
option identified by an existing Option object.

private void LoadFromID () Loads the properties of the option identified by a private
ID variable.

private void ResetProperties () Resets the properties.

public int LoadFromID (int existingOptionID) Loads all the properties of the option identified by the
input ID. This method allows a different option to be
loaded after the object has been created, or the
properties to be loaded if we created an object but didn't
specify an ID for the constructor.

public int Create (int optionQuestionID, string
optionText)

Creates a new option, and sets the properties of the
object to represent the new record.

public bool Update () Updates the current option with the new values of the
public properties.

public bool Delete () Deletes the option.

 Designing the User Interface Services
 In this section we'll discuss the user control that will allow us to insert the poll box into any page we want, with just a
couple of lines of code. In addition, we'll also see the design of a web service that makes the current poll's question
and results available to any client that can send and understand XML/SOAP messages (for example, another site, or
a Windows or Linux application).

 The Poll User Control

 This control has two functions:

 If we detect that the user has not voted for the question yet, the control presents a list of radio buttons with
the various options, and a Vote button.

 If we detect that the current user has already voted, instead of the radio buttons we have to show the results.
We will show the percentage of votes for each option, as a number and also graphically as a colored bar.

 In both cases the control can optionally show header text, and a link at the bottom that points to the Archive page.
Some polls that you may have found around the web are simpler, they always show the options, and tell you that you
can't vote again only when you try to do so. The results are displayed through a pop-up window when you vote, or
with an explicit link. Our method is much better, as it doesn't need any additional window and it intelligently hides the
radio buttons if the user can't vote. Why show the options and the Vote button if the user will get an error message
when it is pressed?

 Let's think a bit about the actual voting system: how do we handle the option posted by the user? We have two
possibilities, both with advantages and disadvantages:

 We can use the ASP.NET postback events, and thus have all the required code in the codebehind of the
user control. The advantage is that it is easy to implement, and similar to the normal ASP.NET pages we've
already developed so far: just a RadioButtonList, a button, and its server-side Click event. The drawback is
that the user control must be declared inside a server-side form to be able to handle postback events. This is
not a problem when we want to insert the poll box in single pages that we know about in advance, but say
that we want to insert the poll box in the site layout, the header or footer of the site, in order to show the box
from every page. We'll have to be sure that the header/footer controls are declared inside the server form,
and often this isn't the case. (It is not necessary when we are showing static HTML, only if we have to show
server controls.)

 The other possibility is to work as in traditional ASP: we create a normal HTML <form> tag and post the
selected option to a different ASP.NET page. The advantage of this solution is that we can easily insert the
poll box outside a server form and into the site layout, maybe in a column that is always visible. The
drawback is that to ensure that the form will correctly post the data it must be declared outside the server
form, in case it exists. This is OK if we want to insert the box into an external column of the layout, but it is a
problem if we want to insert the control into a particular page, with other controls that are declared in a
server-side form. There are other drawbacks, such as the need to manually build the list of options (we can't
use a RadioButtonList bound to a data source from outside a server form), and we need to have a separate
page for processing the selected option being posted. In practice we lose all the advantages of ASP.NET.

 As you can see, there isn't a perfect solution for every case, but the pure ASP.NET solution has many more
advantages than the latter, and the drawback is limited, especially if we are aware of it! For these reasons we decided
to build a real ASP.NET user control that posts back the form and handles the events on the server.

 Having decided how to solve the most compelling issue, handling the vote posting, we can now complete the
discussion of the user control with the list of properties we want to implement:

Property Name Description

public int QuestionID The ID of the question to ask within the poll box. If no
ID is specified, the question with the IsCurrentQuestion
field set to 1 will be used (if any).

public bool ArchiveLinkVisible If true, shows a link at the bottom of the control, pointing
to the Archive page.

public string HeaderText The text for the control's header bar.

public Unit Width The width, in pixels or percentage, of the poll box.

public HorizontalAlign HorizontalAlign The alignment of the text inside the box.

public string CssClass The CSS class for the box content. (CSS styles were
discussed in Chapter 3.)

public string QuestionStyle The CSS class for the question. If not specified then
CssClass is used for the question as well.

public string HeaderStyle The CSS class for the header bar. If not specified the
CssClass is used for the header as well.

public string ButtonStyle The CSS class for the Vote button.

public string LinkStyle The CSS class for the link to the Archive page.

public string ResultsStyle The CSS class for the result percentages (in numbers).

public string BarStyle The CSS class for the results percentage bar.

 We could add more properties for the graphical aspect, but these should be enough for a complete and functional
example. The data will actually be shown in the control through a call to an overridden DataBind method.

 The Poll Web Service

 The site staff can discover the results of the current poll either by adding their own vote, or by accessing the
administration section. However, instead of having to refresh the page from time to time to requery the database and
see the latest results, it would be cool if they could check the result with a small Windows client that connects to the
site, downloads all the results from the polls, and shows them through different types of graph. Or it could simply be
something more appealing to show to a client!

 For our example we're going to keep things simple: we'll just show the results for the current question, using a grid
displaying the numerical percentages. Explaining a more complex Windows application is beyond the scope of the
book, but it wouldn't be that much more difficult. The web service would still be structured in a very similar way.

 The web service is a small piece of software that will allow our future Windows client to query the database on the
server. We want to show the current poll, so we must retrieve the row describing the current question and the
corresponding options. We could simply use two methods to do this. However, we've chosen to return a DataSet,
because this will be disconnected from the physical data on the database, and the cursor can be moved through the
records in any direction. Remember that a DataSet is basically a container for any number of tables (it can also
include constraints and relationships among tables, but let's keep it simple for now) so we can return both the question
and the options in a single step. We can get a DataSet with the options, and then add a table for the row of the parent
question. This would also work fine if we wanted to return all the questions, not just the current one, as we would just
add more rows to this table.

 So, the web service will have only one method, defined as follows:

 public DataSet GetCurrent: returns a DataSet with a table called Questions containing the current question,
and a table named Options containing all the options (and the results) for the current question. This method is
based upon the static GetCurrent method of the Business.Question class that we mentioned earlier.

 Of course we'll need to use the [WebMethod] attribute to make the method remotely accessible, while retrieving the
required data will be straightforward through the use of the data access component.

 It's worth highlighting again that this method returns the question's details every time we call it. This is a little wasteful
because, unlike the options, the question does not change between consecutive calls. Therefore there is no need to
retrieve it again every time, we could just get it the first time and then only download the updated results. However,
this is not a big issue in our case because we've decided to retrieve just the current question and its options/results,
and we don't need to retrieve the questions very often as we only have a few administrators who need to access this
information (we want to make the web service available to the site staff only). If, on the other hand, we were
designing the web service to return any archived polls (maybe hundreds), and for a large number of clients, then the
time required to retrieve the questions from the database and to send them to the client every time would be much
more significant. In that case it would be better to have a method that returns all the questions, and have a separate
method that returns the options/results for a particular question. This way the questions could be downloaded only
when the client starts, and the options could be downloaded when the user changes the selected question. This is very
similar to what we've done in Chapter 6, for the news manager's web service. If you think you need better
performance for the polls web service, refer back to that chapter to see how to change the implementation presented
in this chapter.

 The Need for Security
 The Polls module is basically split in two parts:

 The administration section that allows the web master (or someone else) to add, delete, or edit the questions
and their options, and change the module's settings.

 The poll box control, the respective ASP.NET page that handles its data posted to the server to add the vote
to the database, and the page that shows the archived polls' results.

 The second part is freely accessible to the user, but we must protect access to the administration pages. Only one
person, or a selected set of people, should be allowed to enter this section. In the previous chapters, especially in
Chapter 5.

 We will follow exactly the same strategy here. We'll place the administration pages under an Admin directory, and
allow only the users who have AdministerPolls permission to enter. If they do not have that permission, they will be
redirected to the default login page.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 8 - Polls

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 Now that we have a thorough design for the module, we can start the hands-on part - the implementation of the
solution. We'll follow the same order as we did in the design section: starting with the implementation of the database
tables, we'll move on to the data, configuration, and business assemblies, and finally we'll look at the presentation
layer. This comprises the administration section, the poll user control, the web service, and the Windows web service
consumer.

 Working on the Database
 With the help of the Enterprise Manager, creating the tables for our SQL Server database is such a simple task that it
is not necessary to describe it in detail here. Earlier in this chapter we presented the complete lists of the columns for
each table, along with the most significant properties, so you should have no problems creating them. (Alternatively,
script files to create the tables are available in the code download, as is a complete backup of the database.)

 You can create the new tables (or even a new database if you need to) right within Visual Studio .NET, without
opening SQL Server. On the far left of the IDE, near the Toolbox, you find another tab called Server Explorer. This
window allows the developer to explore the server components such as SQL Server databases, events logs, message
queues, etc., through an easy-to-browse tree control. Under the SQL Server leaf are listed all the available
databases. If you select and expand one you can see its tables, stored procedures, views, diagrams, and functions.
You can edit or delete existing objects, or create new ones, by clicking the respective commands of the popup menu
that appears by right-clicking on a tree item. The following screenshot shows the IDE while displaying the data of the
Polls_Options table:

 The data is displayed and edited with an interface very similar to the Enterprise Manager's editors, and the same is
true for the table designers. What's even cooler is that you can drag and drop a table/view or a stored procedure over
a form or control (Windows or Web, it doesn't matter), and Visual Studio .NET will auto-generate the code for the
respective DataAdapter, SqlConnection, and SqlCommand objects. Honestly, I don't use this feature very much
because Visual Studio .NET generates code for any constructor parameter and for most properties - even if not
required - and I prefer to write tighter code. But it's actually great if you just want to quickly test a stored procedure
or fill a grid on the page, for example.

 In the next sections we'll see the relationships we need to create between the tables, and the code for some of the
stored procedures.

 Creating the Relationships

 After creating the tables, we have to create the relationships between them, as shown in the diagram in the design
section. As we saw in Chapter 6, with the Enterprise Manager (or with the Visual Studio .NET's Server Explorer)
this is also a simple matter, so we won't go into details here. We need three relationships:

 A relationship between the question and the possible options that can be selected. This relationship,
FK_Polls_Options_Questions, is between the QuestionID column of the Polls_Options table and the
Polls_Questions table. The other settings are as shown:

 We select the Cascade Update and Cascade Delete options, so that if a question ID is changed (which
shouldn't happen, since the QuestionID is an identity field) the QuestionID foreign key in the Polls_Options
table will change accordingly, and if a question is deleted all the child options will be deleted as well.

 A relationship between the votes and the question. FK_Polls_Votes_Questions links the QuestionID column
of the Polls_Votes table with the Polls_Questions table, and has the same settings as seen above.

 A relationship between the votes and the options. FK_Polls_Votes_Options links the OptionID column of
the Polls_Votes table with the Polls_Options table, and again has the same settings.

 All three relationships are many-to-one, since many options belong to the same question, and many votes refer to the
same question and option.

 Creating the Stored Procedures

 The code for inserting, deleting, or updating a record is very similar for all three tables, and is similar to the respective
procedures already seen in previous chapters, so here we'll only show the few procedures that differ somehow. You
can easily derive the code for the other procedures, or use the scripts in the code download to create all the
procedures.

 sp_Polls_GetQuestions

 Here's the code for the sp_Polls_GetQuestions procedure that returns the archived questions only, or all the
questions, according to the input parameter:

 CREATE PROCEDURE sp_Polls_GetQuestions
 @ArchivedOnly bit = 0
 AS

 DECLARE @QuestionID int

 IF @ArchivedOnly = 1
 BEGIN
 SELECT QuestionID, QuestionText, IsCurrentQuestion, Archived, AddedDate,
 (SELECT COUNT(*) FROM Polls_Votes WHERE QuestionID = Q.QuestionID)
 AS TotalVotes
 FROM Polls_Questions Q
 WHERE Archived = 1
 END
 ELSE
 BEGIN
 SELECT QuestionID, QuestionText, IsCurrentQuestion, Archived, AddedDate,
 (SELECT COUNT(*) FROM Polls_Votes WHERE QuestionID = Q.QuestionID)
 AS TotalVotes
 FROM Polls_Questions Q
 END
 GO

 There are two distinct SELECT statements - which one is run depends on whether we are retrieving archived
questions or all questions. The most important point to note is how we declare and calculate the new TotalVotes
column. This contains the total number of votes for the row's question. Basically, we run a sub query that counts the
votes where the QuestionID field is equal to the QuestionID of the current row in the Polls_Questions table being
queried, and the result is kept in a new column named TotalVotes.

 sp_Polls_GetCurrentQuestionID

 The sp_Polls_GetCurrentQuestionID procedure runs a simple SELECT to get the ID of the row that contains the
current (non-archived) question. If no current question is found, the procedure returns -1, as an indication for the
caller code:

 CREATE PROCEDURE sp_Polls_GetCurrentQuestionID
 @QuestionID int OUTPUT
 AS

 SELECT @QuestionID = QuestionID
 FROM Polls_Questions
 WHERE IsCurrentQuestion = 1 AND Archived = 0

 IF @QuestionID IS NULL
 SET @QuestionID = -1
 GO

 sp_Polls_SetCurrentQuestionID

 The sp_Polls_SetCurrentQuestionID procedure is used to assign the current question. It can't just update the
IsCurrentQuestion field of the selected question, it must also ensure that only one question is marked as current. So it
first sets to 0 the IsCurrentQuestion field of all the rows, and then sets to 1 the field of the specified question:

 CREATE PROCEDURE sp_Polls_SetCurrentQuestionID
 @QuestionID int
 AS

 -- first set IsCurrentQuestion = 0 for all questions
 UPDATE Polls_Questions
 SET IsCurrentQuestion = 0

 -- set the current question
 UPDATE Polls_Questions
 SET IsCurrentQuestion = 1
 WHERE QuestionID = @QuestionID
 GO

 sp_Polls_InsertQuestion

 The following code, sp_Polls_InsertQuestion, inserts a new row in the Polls_Questions table, and returns the ID of
the added row through the output parameter. If the question already exists and it is not archived, it is not added again:

 CREATE PROCEDURE sp_Polls_InsertQuestion
 @QuestionText varchar(150),
 @IsCurrentQuestion int,
 @Archived int,
 @QuestionID int OUTPUT
 AS

 DECLARE @CurrID int

 -- see if the question already exists
 -- (check only the non-archived questions)
 SELECT @CurrID = QuestionID
 FROM Polls_Questions
 WHERE QuestionText = @QuestionText AND Archived = 0
 -- if not, add it
 IF @CurrID IS NULL
 BEGIN

 INSERT INTO Polls_Questions
 (QuestionText, IsCurrentQuestion, Archived, AddedDate)
 VALUES (@QuestionText, @IsCurrentQuestion, @Archived, GETDATE())

 SET @QuestionID = @@IDENTITY

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Insert of Question failed', 16, 1)
 RETURN 99
 END

 -- if @CurrentQuestion is 1, set this question as the active one.
 -- This could not be done in the Insert statement because we need to
 -- set CurrentQuestion = 0 for the other questions first
 IF @IsCurrentQuestion = 1
 EXEC sp_Polls_SetCurrentQuestionID @QuestionID

 END
 ELSE
 BEGIN
 SET @QuestionID = -1
 END
 GO

 In the INSERT statement we specify the input value for the IsCurrentQuestion field. If the parameter is 0, we're
done. If it is 1, we must ensure that the new row is the only one that has IsCurrentQuestion set to 1, and so we must
call the sp_Polls_SetCurrentQuestionID procedure that does this, as we've seen earlier.

 sp_Polls_UpdateQuestion

 The sp_Polls_UpdateQuestion procedure updates all the fields of the specified question, except for the ID of course.
If @IsCurrentQuestion is 1 then we must call sp_Polls_SetCurrentQuestionID, for the reason explained above:

 CREATE PROCEDURE sp_Polls_UpdateQuestion
 @QuestionID int,
 @QuestionText varchar(150),
 @IsCurrentQuestion bit,
 @Archived bit
 AS

 BEGIN TRANSACTION UpdateQuestion

 UPDATE Polls_Questions
 SET QuestionText = @QuestionText, IsCurrentQuestion = @IsCurrentQuestion,
 Archived = @Archived
 WHERE QuestionID = @QuestionID
 -- if @CurrentQuestion = 1, call the sproc that unchecks the value
 -- for all the other questions, and check this
 -- if @CurrentQuestion = 0, it has already been updated by the command above
 IF @IsCurrentQuestion = 1
 EXEC sp_Polls_SetCurrentQuestionID @QuestionID

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Update of Question failed', 16, 1)
 ROLLBACK TRANSACTION UpdateQuestion
 RETURN 99
 END

 COMMIT TRANSACTION UpdateQuestion
 GO

 sp_Polls_GetOptions

 This procedure returns the options for the specified question, and the total number of votes. It also creates a new
column that shows the votes for each option as a percentage of the votes for all the options of this question. Here's
the code:

 CREATE PROCEDURE sp_Polls_GetOptions
 @QuestionID int
 AS

 DECLARE @QuestionTotalVotes int

 -- get the total of number votes for this question
 SELECT @QuestionTotalVotes = COUNT(*) FROM Polls_Votes
 WHERE QuestionID = @QuestionID

 IF @QuestionTotalVotes = 0
 SET @QuestionTotalVotes = 1

 -- get the OptionID and OptionText
 -- + count the total number of votes for each options
 -- + calc the percentage for each option
 SELECT OptionID, OptionText,
 (SELECT COUNT(*) FROM Polls_Votes WHERE OptionID = O.OptionID)
 AS TotalVotes,
 (CAST((SELECT COUNT(*) FROM Polls_Votes WHERE OptionID = O.OptionID)
 AS Decimal) * 100 / @QuestionTotalVotes)
 AS Percentage
 FROM Polls_Options O
 WHERE QuestionID = @QuestionID
 GO

 It first gets the total number of votes for all the options of this question, and saves this value in a variable. If no votes
are found, it sets the variable to 1, because otherwise the forthcoming division would produce an error. Finally it
executes the SELECT query and adds the Percentage column, with the following code:

 (CAST((SELECT COUNT(*) FROM Polls_Votes WHERE OptionID = O.OptionID)

 AS Decimal) * 100 / @QuestionTotalVotes)

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 8 - Polls

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 This chapter has presented a working solution for handling multiple dynamic polls on our website. The complete Polls
module is made up of several parts:

 An administration console for managing the polls through a web browser

 Integration with the Accounts module to secure the administration pages

 A user control that enables us to show different polls in any page we want with just a couple of lines of code

 A web service that can be accessed by external clients to get the current poll's question and results

 A Windows client program that uses the web service to display the current poll and its results

 This module can easily be employed in many real world sites as it is now, but of course you can expand and enhance
it. Here are just a few suggestions:

 Add more styles properties to the poll control, and the ability to remind the user which option they voted for.
Currently they can see the results, but the control does not indicate how they voted.

 Add a ReleaseDate and ExpireDate to the polls, so that we can schedule the current poll to change
automatically.

 Provide the option to allow only registered users to vote. Alternatively, keep the vote open to all, but allow
only registered users to see the results and/or the archive page.

 Expand the web service and the respective Windows client so that it can display all the archived polls as well
as the current one.

 In the next chapter we're going to continue the development of ThePhile.com through the addition of another easily
pluggable module. This new module will be used for managing multiple mailing lists and their subscribers, and for
sending out newsletters.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 9 - Mailing Lists

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 9: Mailing Lists
 In this chapter we'll discuss the design and implementation of a complete mailing list system. This will enable users to
subscribe to receive regular newsletters, and will allow administrators to manage mailing lists and newsletter content.
First we'll look at what mailing lists and newsletters can offer to websites like ours, and will consider various ways of
making the mailing list administrator's life as easy as possible. By the end of the chapter we'll have developed a
flexible mailing list module that can be plugged into most sites. In keeping with the rest of the project, we will aim to
integrate this module into our ThePhile.com site through the reuse of familiar code and architecture where appropriate.

 The Problem
 Throughout this book we've mentioned that the key to a successful site is having good content. This content also
needs to be logically organized to ease navigability, have an attractive design, and offer some interaction with the user.
The content not only has to be interesting and accurate, but to ensure that users keep visiting the site it must always be
fresh and regularly updated. To help us achieve this for our ThePhile.com website, we built the NewsManager
module (in Chapter 6) to allow an administrator to easily manage and publish new content (for example an article, a
new product for sale, or a new design).

 But even if fresh content is frequently added to the site, not every user will be aware of it. They might not visit the site
daily or weekly just to see the latest updates, especially if the site is updated on a random basis with no public
announcement of when new material has been added. A good way to inform the user that some new content has been
added to the site is to send an e-mail newsletter that lists all the new resources available on the site. Many sites offer
the option of subscribing to a mailing list, which typically represents a group of users interested in a certain kind of
news. A newsletter is sent to a mailing list to inform the community of users that the site is still worth visiting.

 You should always keep in mind that you're offering a service to the user, and it must be a high quality service if you
don't want to lose your subscribers. This means that you need to provide targeted content. So, you shouldn't send
out a general content newsletter if you have a large site with different sections and different types of content. For
example, at ThePhile.com we cover DVDs and books, and so we have news for two different topics. We should
provide at least two different mailing lists, so that the users can get what they want and avoid getting what they are not
interested in, which they may perceive as spam.

 It's a nice touch to personalize every e-mail message, for example with the name of the subscriber if this information
is available, because this can help to build a more personal relationship with the subscriber. However, in order to
persuade users to subscribe to a mailing list the subscription process should be as straightforward as possible and
they should not be forced to provide additional personal details. The most common way of subscribing to a list is to
type your e-mail address in a form on the home page and press submit. This will allow only the e-mail address to be
used to personalize the newsletter. In order to achieve more extensive personalization you have to ask the users to
provide more details, such as their first and last names. For your websites the choice is up to you, but we want our
module for ThePhile.com to support both a basic and extended subscription form, so that we can cater for users with
different attitudes and so that managing the mailing list is as straightforward as possible in either case.

 Some website visitors don't like to submit their e-mail address even to be informed about changes to the website. To
encourage people to maintain their subscriptions, and to encourage more people to sign up, a webmaster can offer
something extra that is only available to the mailing list's subscribers, for example a short tip, article, or some kind of
discount for one of the site's products.

 The primary purpose of a mailing list system is to inform the users that some new material is available online, and
therefore convince them to visit the site again. But you could also make money from your mailing lists. Say that you
have several thousands of subscribers; you could sell some space in your newsletters for advertisement spots.
These shouldn't be anything too invasive, perhaps just a two to three line description of a partner site or company, or
the manufacturer of a product you sell on your site. If you provide some valuable content in your newsletters (as
mentioned above, an extra article or tip), and the advertisement is short and not invasive, the users won't complain
about it. If you manage to sell space in the newsletter, remember that this space is very valuable for the sponsor. As
users have elected to receive the newsletter, they will often read it thoroughly, and so the advertisement will get much
more attention than it would receive through a common banner ad. Research shows that the average click-through
from spots in newsletters is around 4?5%, compared to around 1% or less for banner ads.

 However you decide to promote your website and get more people to subscribe, you will face the problem of
managing all the details of your clients, such as e-mail addresses, keeping track of the messages you send, and
building a system to allow the user to subscribe or unsubscribe easily. The user must have the right to unsubscribe at
any time, so we should provide facilities that allow the user to easily do this, preferably without having to re-typing
their e-mail address. Some small sites manually collect subscriber e-mail addresses from an HTML form, create a
group of contacts in Outlook or their messaging client, and use it to write to all the subscribers. This mostly applies to
static sites, where ASP or other server-side code is not used. However, when the site starts to have a significant
number of subscribers, manually adding or removing the users several times a week becomes a pain, and if the
number is in the order of thousands, it is almost impossible.

 The Problem Statement
 This leads us to our problem statement: we risk losing traffic because we have no way of letting our users know that
our content has been updated. So the aim for the chapter is to build a newsletter mailing list system so we can deliver
targeted, personalized content to users who choose to subscribe. A secondary problem then arises - managing the
system and personalizing newsletters could become time-consuming. So we want to include a subscription and
administration system that automates most of the tasks and allows the administrator to complete the rest of the tasks
much easier.

 Now we know what the problems are that we want to solve, we can move on to specifying the features we want our
solution to have, in other words the requirements:

 A user interface where users can join/leave mailing lists without needing to register on the site.

 An administration console for managing multiple mailing lists. It should allow the administrator to add,
remove, or modify lists and their properties.

 The administrator should also be able to manage the archive of newsletters previously sent to each list,
reading the archived messages, and copying them. The copy facility will be useful for quickly creating new
messages, or for manually sending a message to a recent subscriber who has requested an old newsletter.

 The ability to send e-mails to subscribers in plain text or HTML format, containing the message and other
information about the list (such as the name and description).

 In each newsletter there should be a link to enable easy unsubscription.

 A facility for automatically customizing each e-mail message with the name and address of the user, even
within the body of the message (the user feels this as a more personal relationship with the site's staff, even if
we all know that it's not really personal, since the name is automatically replaced by a machine). We will also
need a backup plan in case the user decides not to supply their name.

 The ability for the administrator to auto-generate HTML code for a form that will collect the user's data. This
feature works like a wizard - we choose the list we want to create the form for, select a few other options,
and the wizard generates the code for us. This can then be copied into any (static or dynamic) page where we
want to show the subscription form.

 The facility to set options such as the sender's name and address that will be seen by the subscribers on the
e-mails they receive, a signature that will be automatically added to each message, a default subject, and
subscription and un-subscription messages.

 We want the administrator to be able to monitor website subscribers online, contact them, and even change
the website layout from anywhere is the world - all that is needed is access to a computer with a web
browser and an Internet connection.

 In the next section we're going to provide a more detailed discussion of the features we can implement to have a fully
functional mailing list module.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 9 - Mailing Lists

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 From our requirements it's clear that we're going to be handling data about users and the lists they subscribe to. In
keeping with the rest of the site we'll use our SQL Server database to store this information. We'll also need an
interface for administrators to manage the lists, and an interface where users can subscribe. As with other modules
we'll use a multi-tier approach and will make use of data access and business logic layers to keep the UI and
database separate.

 In this section we'll design the database tables for this module, and design the data and business layers that we'll use
for managing the subscriptions from the administration console. The nice thing about the administration console is that
we won't need to manually manage the group of subscribers - the application will automatically add or remove them
to/from the database. For this we will make use of stored procedures called by methods in response to certain events.

 Designing the Database Tables
 As discussed in Chapter 2, all modules in our project require a prefix for the tables and stored procedures. For this
module it will be MLists_. We need the four tables shown in the following diagram, which also indicates their
relationships:

 The MLists_Lists Table

 The MLists_Lists table is used to store the information about each available mailing list:

Column Name Type Size Allow Null Description

ListID int - Identity

 primary key

4 No The unique ID for the
mailing list.

Name varchar 50 No The name of the
mailing list.

Description varchar 250 Yes The optional
description of the
mailing list.

 The MLists_Users Table

 The MLists_Users table stores the user's personal information:

Column Name Type Size Allow Null Description

UserID int - Identity

 primary key

4 No The unique ID for the
user.

Email varchar 50 No The user's e-mail
address. This column
must have a unique
constraint, to avoid
multiple records with
the same e-mail
address.

FirstName varchar 50 Yes The user's first name.

LastName varchar 50 Yes The user's last name.

 You may wonder why we need a new table for storing the user's e-mail address and name, since we already have an
Accounts_Users table that can store this information (created in Chapter 5 and allowing the user to register for both
the site and the mailing list in a single step. Later we'll build a new data component that makes the addition of a
subscription very easy.

 Another thing you'll notice in this table is that we decided to allow the first and last names to be null. Having the first
and last name would allow us to achieve some form of newsletter personalization, but most sites don't ask for this
information, because users prefer to give as little information as possible. So we'll make it optional to supply this
information. Later we'll see how we can replace some special marks in the newsletter with the user's information, so
that they receive a newsletter customized with their name. This will contribute to making the user feel that they have a
more personal relationship with the site's staff. If their name isn't supplied we'll use a generic 'name' instead, such as
"List Reader".

 This table does not store the lists to which the user is subscribed, because a single user can subscribe to several lists.
This would require the user's data to be repeated, which is bad design, as it wastes space and makes it more difficult
to update the user's details. Instead we treat each user-list pair as a subscription and store these in a separate table.

 The MLists_Subscrlptions Table

 The MLists_Subscriptions table stores the subscriptions for all the lists:

Column Name Type Size Allow Null Description

SubscriptionID int - Identity

 primary key

4 No The unique ID for the
subscription.

ListID int

 foreign key

4 No The ID of the list to
which the user is
subscribed, which
should match an ID in
the MLists_Lists
table.

UserID int

 foreign key

4 No The ID of the user,
which should match
an ID in the
MLists_Users table.

Active bit 1 No If false (0) the
subscription is
inactive, and the user
will not receive
newsletters for the
ListID list.

AddedDate datetime 8 No The date of creation
of this subscription.

 This is the table where we maintain the relationship between the users and the mailing lists to which they have
subscribed. In conjunction with MLists_Users, we have all the information for the subscription: for example the lists to
which the user is subscribed, the e-mail and name of the subscriber, and each subscription's active state.

 The Active column is included to allow the user to unsubscribe from a mailing list (and you must allow this), without
deleting the subscription details. This is useful because you might still want to contact old subscribers in special
circumstances. If a subscription record has 0 (false) in that field, it means that the subscription is inactive, namely that
the user does not receive newsletters from the mailing list of that subscription. Later in the chapter we'll show how the
administration console allows us to change the Active status of any subscription. We'll also give options for when a
user wants to unsubscribe, that is, whether their subscription should be permanently deleted or just made inactive.

 The MLists_History Table

 The MLists_History table is used to store newsletters previously sent to the subscribers of a mailing list:

Column Name Type Size Allow Null Description

Newsletter ID int -Identity

 primary key

4 No The unique ID for the
message.

ListID int

 foreign key

4 No The mailing list to
which the message
was sent.

Subject varchar 200 No The subject of the
message.

Body text No The body of the
message.

IsHTML bit 1 No If true, it means that
the message was sent
in HTML format.

SentDate datetime 8 No When the message
was sent.

 The Stored Procedures that Manage the Database
 To manage the database we will build a set of stored procedures, that we'll run later in the data layer classes to do
everything from the addition or deletion of lists and subscriptions, to the update of single fields. Here is the complete
list of the stored procedures we'll be building with their parameters:

Stored Procedure Parameters Description

sp_MLists_GetLists Returns all the available mailing lists.

sp_MLists_GetListDetails @ListID int Returns the complete row identified
by the specified ID.

sp_MLists_InsertList @Name varchar (50),

 Description varchar (250),

 @ListID int OUTPUT

Inserts a new list. If a list already
exists with the same name, the new
list is not added and the output
parameter is set to -1. Otherwise
@ListID will be set to the new list's
ID.

sp_MLists_UpdateList @ListID int,

 @Name varchar (50),

 @Description varchar (250)

Updates all the fields of the mailing list
identified by the specified ID.

sp_MLists_DeleteList @ListID int Deletes the specified list.

sp_MLists_GetSubscriptions @ListID int,

 @ActiveOnly bit

Returns the subscriptions (with all the
details for both the subscriptions and
the subscribers) for the specified list.
If @ActiveOnly is 1, returns only the
subscriptions where the Active field is
1.

sp_MLists_Get Subscription Details @Subscription ID int Gets all the details for the specified
subscription.

sp_MLists_GetSubscriptionID @ListID int,

 @Email varchar (50),

 @Subscription ID int OUTPUT

Gets the ID of the subscription for the
specified mailing list, with the
specified e-mail address.

sp_MLists_InsertSubscription @ListID int,

 @FirstName varchar (50),

 @LastName varchar (50),

 @Email varchar (50),

 @Active bit,

 @SubscriptionID int OUTPUT

Inserts a new subscription for the
specified mailing list. If a subscription
to this list already exists with the
specified e-mail address, the new
subscription is not added and the
output parameter is set to -1.
Otherwise @SubscriptionID will be
set to the new subscription's ID.

sp_MLists_UpdateSubscription @Subscription ID int,

 @FirstName varchar (50),

 @LastName varchar (50),

 @Email varchar (50),

 @Active bit

Updates all the fields of the specified
subscription. This includes the fields
of the subscriber (name and e-mail
address).

sp_MLists_SetSubscriptionActive @Subscription ID int,

 @Active bit

Updates only the Active field for the
specified subscription.

sp_MLists_DeleteSubscription @Subscription ID int Deletes the specified subscription (but
not the respective user, because they
could be subscribed to other lists).

sp_MLists_GetNewsletters @ListID int Gets all the archived newsletters sent
to the specified list.

sp_MLists_GetNewsletterDetails @NewsletterID int Gets all the details of the specified
archived newsletter.

sp_MLists_InsertNewsletter @ListID int,

 @Subject var char (200),

 @Body text,

 @IsHTML bit,

 @NewsletterID int OUTPUT

Inserts a newsletter into the database
and returns its ID. No check is
performed to see if the newsletter is
already present in the archive, since
we can have as many newsletters with
the same subject as we want. The
value for the SentDate field is not
passed as a parameter; the stored
procedure takes care of retrieving
and using the current date for that
field, as the other Insert procedures
do for the AddedDate fields.

sp_MLists_DeleteNews letter @News letter ID int Deletes the specified newsletter.

 The stored procedures that manage the lists and the archived newsletters are pretty simple. Those that manage the
subscriptions are a bit more complex, because they work on two tables, MLists_Subscriptions and MLists_Users.
For example, when we retrieve all the subscriptions, using sp_MLists_GetSubscriptions, we need to join the two
tables, in order to have rows with the complete details of the subscriptions, the parent list's ID, the active state of the
subscription, and all the information of the subscribed user. The procedures that add and update a subscription also
operate on the same two tables. In cases like this, having stored procedures that do the work will make it much easier
to write the data component later, rather than writing SQL commands directly into the classes, because we write
methods that map the stored procedures, and don't worry much about the relationships. This is even more evident
when different teams are responsible for the database/stored procedure design and writing the data/business layers.

 Designing the Data Services
 Now that we understand what data is stored in the database tables, and we have designed a set of stored
procedures to add, delete, and modify any row in the tables, we can design the data services. These are a set of
classes in their own assembly and namespace (Wrox.WebModules.MailingLists.Data) that provide an
object-oriented version of the stored procedures. In other words the data components have methods that exactly
map the stored procedures, exposing them through a set of classes. We will look at each class in turn.

 The ListDetails Class

 The ListDetails class exposes three public fields that map the three fields of a row in the MLists_Lists table. This
class is used as the return type for the GetDetails method in the Lists class, discussed next, that instead of returning a
DataRow type returns an instance of an object that exposes the values in a more easily accessible way.

 The Lists Class

 This class has a set of methods that map the calls to the stored procedures that manage the mailing lists. The methods
return the value of the output parameter of the respective stored procedure, or a Boolean value indicating whether the
query succeeded. Here is a complete list of the methods we'll implement:

Method Name Description

public Lists (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetLists () Returns a DataSet with all the lists.

public ListDetails GetDetails (int listID) Returns an instance of ListDetails that describes the
specified mailing list.

public DataRow GetDetailsRow (int listID) Returns a DataRow containing details of the specified list.

public int Add(string listName, string listDescr) Adds a new mailing list, and returns its ID, or -1 if the
same list was already present.

public bool Update (int listID, string listName, string
listDescr)

Updates all the fields of the specified mailing list.

public bool Delete (int listID) Deletes the specified mailing list.

 The SubscriptionDetails Class

 This class is basically the same as ListDetails, but for the MLists_Subscriptions and MLists_Users tables. It has only
public fields that map the physical fields of the tables returned by the sp_MLists_GetSubscriptionDetails stored
procedure.

 The Subscriptions Class

 This class wraps the calls to the stored procedures that manage the subscriptions and the respective users:

Method Name Description

public Subscriptions (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetSubscriptions (int listID) Returns a DataSet with all the subscriptions for a
particular mailing list.

public DataSet GetSubscriptions (int listID, bool
activeOnly)

The same as above, but here we have the opportunity to
specify that we only want the active subscriptions.

public SubscriptionDetails GetDetails (int subscriptionID) Returns an instance of SubscriptionDetails that describes
the specified subscription.

public DataRow GetDetailsRow(int subscriptionID) Returns the DataRow of the specified subscription.

public int GetSubscriptionID(int listID, string email) Returns the ID of the subscription for the specified
mailing list, and with the specified e-mail address.

public int Add (int listID, string firstName, string
lastName, string email, bool active)

Adds a new subscription, and returns its ID, or -1 if the
same e-mail address was already subscribed for the
specified list.

public bool Update (int subscriptionID, string firstName,
string lastName, string email, bool active)

Updates all the fields of the specified subscription. This
includes fields in both the MLists_Subscriptions and
MLists_Users tables.

public bool SetActive (int subscriptionID, bool active) Changes only the Active state of the specified
subscription.

public bool Delete (int subscriptionID) Deletes the specified subscription.

 The NewsletterDetails Class

 This class is the same as the two xxxDetails classes above, but this time for the archived newsletters. It has fields
corresponding to all the fields of the MLists_History table.

 The Newsletters Class

 This class is shorter than the previous ones, because it only provides methods to retrieve, add, and delete
newsletters, and doesn't provide any methods for updating them:

Method Name Description

public Newsletters (string newConnectionString) Class constructor taking the connection string as a
parameter.

public DataSet GetNewsletters (int listID) Returns all the newsletters for a particular mailing list.

public NewsletterDetails GetDetails (int newsletterID) Returns an instance of NewsletterDetails that describes
the specified newsletter.

public DataRow GetDetailsRow (int newsletterID) Returns the DataRow of the newsletter identified by the
specified ID.

public int Add (int listID, string subject, string body, bool
isHTML)

Archives a newsletter, and returns the ID of the new
record.

public bool Delete (int newsletterID) Deletes a newsletter.

 Storing and Retrieving Settings
 In previous chapters we've already designed a couple of classes that retrieve and store each module's settings in an
XML file. This module has quite a lot of settings to store, because we want it to be as flexible as possible. This is the
list of settings that will be persisted to and retrieved from the XML file:

Setting Name Type Description

ConnectionString string The connection string that all the data
classes use to access the database.

SubscribeURL string The complete URL of the
Subscribe.aspx page that actually
adds or removes a user to or from a
list.

SenderName string The name of the news sender.

SenderEmail string The e-mail address of the news
sender.

NewsSubject string The default subject for the news. The
administrator will be able to append
any text to this default string, directly
from the page where the message is
written.

Signature string The signature that will automatically
be appended at the end of the
message.

SubscrSubject string The subject of the e-mail sent as the
confirmation message for the
subscription.

SubscrMessage string The body of the e-mail sent as the
confirmation message for the
subscription.

UnsubscrSubject string The subject of the e-mail sent as the
confirmation message for the
unsubscription.

UnsubscrMessage string The body of the e-mail sent as the
confirmation message for the
unsubscription.

UnsubscrAction UnsubscrAction Type

 custom enumeration

Specifies the action taken when a
user unsubscribes from a mailing lists.
They can be completely removed, or
the subscription can just be set as
inactive, by setting the respective field
in the MLists_Subscription table.

SendSubscrEmail bool If true, the new subscriber will get a
confirmation e-mail after subscribing
to a list.

SendUnsubscrEmail bool If true, the existing subscriber will get
a confirmation e-mail after
unsubscribing from a list.

 The NewsSubject, [Un]SubscrSubject, and [Un]SubscrMessage settings can contain special tags, such as
#SubscriberFirstName# and #ListDescription#. These will be replaced with their respective values just before each
mail is sent. We'll see more on this point later in the chapter.

 Designing the Business Services
 At this point we have all the calls to the stored procedures wrapped into easily accessible methods of the data access
layer. Now it's time to build the business classes upon the data access classes, in order to provide a real
object-oriented representation of the data and its relationships. However, the mailing list manager not only has to
manage the data in the database, but it has other work to take care of too, such as actually sending out the
newsletters to the active subscribers (the stored procedure only inserts the newsletter into the database, but does not
send the e-mails), subscribing or unsubscribing someone and sending a confirmation message if required, and
processing special list and subscription tags. One option would be to write the code to do this directly in the
presentation layer: if we have data/business classes that simplify access to the database, the rest of the work will be
quite easy. However, these methods are best fit in the business layer, since they are based upon business rules and the
application's settings, stuff that the presentation layer doesn't need to know about. By adding methods in the business
layer to also do the non-database work, in the presentation layer we'll be able to write only the code that manages the
visual appearance of the site, plus a few lines to call the business assembly's methods. With this code separation we
achieve better reusability and maintenance of the business rules, and it's easier to change the application's user
interface, because we don't need to touch the business code.

 The List Class

 This class exposes most of the functionality we need: it allows us to manage the mailing lists, but also to send out
newsletters, subscribe and unsubscribe someone, and return all the child records (both subscriptions and archived
newsletters), although some of these methods just wrap the respective methods of the child objects.

Method Name Description

public int ID Read-only property that returns the ID of the list
represented by the object.

public string Name Gets/sets the list's name.

public string Description Gets/sets the list's description.

public List () Class constructor with no parameters. It only resets the
properties.

public List (int existingListID) Class constructor that sets the properties to describe the
list identified by the input ID.

public List (List existingList) Class constructor that sets the properties to describe the
list identified by an existing List object.

private void LoadFromID () Retrieves the list record identified by a private ID
variable, and loads the object's properties accordingly.
This method is called by the constructors, or when the
data has to be refreshed.

private void ResetProperties () Resets the properties.

public int LoadFromID (int existingListID) Loads all the properties of the question identified by the
input ID.

public int Create (string listName, string listDescription) Creates a new mailing list, and sets the properties of the
object to represent the new record.

public bool Update () Updates the list with the new values of the public
properties.

public bool Delete () Deletes the list.

public static DataSet GetLists () Static method that returns all the mailing lists.

public DataSet GetNewsletters () Returns all the child archived newsletters.

public Newsletter SendNewsletter (string subject, string
body, bool isHTML, MailPriority priority, bool
saveToDB, out int totalNewsletters)

Sends out a newsletter to all the active subscribers of the
mailing list. The last parameter is an output parameter that
can be used by the caller to retrieve the number of sent
newsletters.

public Newsletter SendNewsletter (string subject, string
body, bool isHTML, MailPriority priority, bool
saveToDB)

Overloads the method above, but does not have the last
output parameter.

public DataSet GetSubscriptions (bool activeOnly) Gets the subscribers of the list; all of them or only those
that are active.

public DataSet GetSubscriptions () Overloads the above method, and returns all the
subscriptions.

public Subscription AddSubscription (string firstName,
string lastName, string email, bool active)

Adds a new child subscription to the database.

public Subscription Subscribe (string firstName, string
lastName, string email, out string subjectText, out string
messageText)

Subscribes a new user to the mailing list. It differs from
the AddSubscription method in that a confirmation is sent
to the subscriber, if required in the settings. The output
parameters are used to return the subject and body of the
confirmation message.

public bool Unsubscribe (string email, out string
subjectText, out string messageText)

Unsubscribes the user with the specified e-mail address.
The output parameters are used to return the subject and
body of the confirmation message.

 You may be wondering why we need both the AddSubscription and the Subscribe methods. Well, the former simply
wraps a call to the Add method of the Data. Subscriptions class to add a new record to the database, and is used by
the administration console to manage the subscriptions. On the other hand, the Subscribe method adds a record to
the database if the subscription is not present, or activates the existing subscription. It also sends a customized
confirmation message to the user, if required. Consequently, the page that handles the mailing list subscription box
uses this version and it is therefore available to any site visitor.

 The Subscription Class

 This is a simple class that describes a particular subscription. It allows us to update, delete, or create a new
subscription, and also to subscribe/unsubscribe a user:

Method Name Description

public int ID Read-only property that returns the ID of the
subscription represented by the object.

public int ListID Read-only property that returns the ID of the parent
mailing list.

public Business.List List Returns the parent mailing list.

public int UserID Returns the ID of the user.

public bool Active Gets/sets the Active state of the subscription.

public string FirstName Gets/sets the subscriber's first name.

public string LastName Gets/sets the subscriber's last name.

public string Email Gets/sets the subscriber's e-mail.

public DateTime AddedDate Returns the date when the subscription was added to the
database.

public Subscription () Class constructor with no parameters. It only resets the
properties.

public Subscription (int existingSubscriptionID) Class constructor that sets the properties to describe the
subscription identified by the input ID.

public Subscription (Subscription existingSubscription) Class constructor that sets the properties to describe the
subscription identified by an existing Subscription object.

public Subscription (int subscrListID, string subscrEmail) Class constructor that sets the properties to describe the
subscription with the specified e-mail address.

private void LoadFromID () Retrieves the subscription record identified by a private
ID variable, and loads the object's properties
accordingly.

private void ResetProperties () Resets the properties.

public int LoadFromID (int existingSubscriptionID) Loads all the properties of the subscription identified by
the input ID.

public int LoadFromEmail (int subscrListID, string
subscrEmail)

Loads all the properties of the subscription with the
specified e-mail address.

public int Create (int subscrListID, string
subscrFirstName, string subscrLastName, string
subscrEmail, bool subscrActive)

Creates a new subscription record to the database.

public bool Update () Updates the current subscription with the new values of
the public properties.

public bool Delete () Deletes the subscription.

public int Subscribe (int subscrListID, string
subscrFirstName, string subscrLastName, string
subscrEmail, out string subjectText, out string
messageText)

Creates a new subscription or reactivates a disabled one,
and optionally (if required in the settings) sends a
confirmation message. The last two output parameters
return the subject and body of that message, customized
with the list and subscriber's data.

public bool Unsubscribe (int subscrListID, string
subscrEmail, out string subjectText, out string
messageText)

Removes or inactivates a subscription, as specified in the
settings, and optionally sends a confirmation message.
The last two output parameters return the subject and
body of that message.

 The Subscribe and Unsubscribe methods are those used by the identically named methods of the List class.
Subscribe adds a subscription for the specified mailing list if one with the same specified values is not already present,
otherwise it ensures that its Active status is true. Unsubscribe removes a subscription, or deactivates it.

 The Newsletter Class

 The Newsletter class is even simpler than Subscription because, in addition to the usual LoadFromID,
ResetProperties, and Update, it has only a Send method, and all the properties are read-only. This is because it
doesn't make sense to modify a newsletter when it is archived.

Method Name Description

public int ID Returns the ID of the newsletter represented by the
object.

public int ListID Returns the ID of the parent mailing list.

public Business.List List Returns the parent mailing list.

public string Subject Returns the newsletter's subject.

public string Body Returns the newsletter's body.

public bool IsHTML Returns whether the newsletter is in HTML format.

public DateTime SentDate Returns the date when the newsletter was sent.

public Newsletter () Class constructor with no parameters. It only resets the
properties.

public Newsletter (int existingNewsletterID) Class constructor that sets the properties to describe the
newsletter identified by the input ID.

public Newsletter (Newsletter existingNewsletter) Class constructor that sets the properties to describe the
newsletter identified by an existing Newsletter object.

private void LoadFromID () Loads the properties of the option identified by a private
ID variable.

private void ResetProperties () Resets the properties.

public int LoadFromID (int existingNewsletterID) Loads all the properties of the specified archived
newsletter.

public bool Delete () Deletes the newsletter.

public int Send (int newsletterListID, string
newsletterSubject, string newsletterBody, bool
newsletterIsHTML, MailPriority priority bool saveToDB,
out int totalNewsletters)

Sends out a newsletter with the specified subject, body,
format, and priority to all the active subscribers of the
specified mailing list. The last output parameter returns
the total number of newsletters sent to the mailing list.

public int Send (int newsletterListID, string
newsletterSubject, string newsletterBody, bool
newsletterIsHTML, MailPriority priority, bool
saveToDB)

The same as the above version, but without the last
output parameter.

 The Send method requires as input all the parts of the newsletter (subject, body, priority) in order to archive the
newsletter to the database. The interesting point is that the subject and body strings can contain special tags such as
#ListName# or #SubscriberEmail#. These are processed and replaced with the respective values for each
subscription to which the newsletter is sent. Read below for more details about the supported tags.

 An alternative implementation of the Send method would be to set all the public parameters, and just call a
Send() method without parameters. However, some properties are read-only and this would create a bit of
confusion when the user has to set them. Additionally, and this is the main reason, I personally prefer to pass
all the parameters in a single line, rather than having to set one property per line. This same discussion
applies to the Create methods of most of the business classes, which require as input all the values for a new
record, instead of using the values of the public properties.

 The Helper Class

 The Helper class exposes some static methods that are not specific to any other class, but can be of general use,
namely it exposes the methods to process and replace the special tags just mentioned above:

Method Name Description

public static string ProcessListTags (string message, int
listID)

Replaces the list's special tags with the respective values.

public static string ProcessSubscriptionTags (string
message, int subscrID)

Replaces the subscription's special tags with the
respective values.

public static string ProcessSettingsTags (string message) Replaces the settings' special tags with the respective
values.

 You may be wondering why there are three methods instead of only one. Each method requires the subscription ID
or list ID as input and performs the necessary replacements. The reason for having three methods is as follows. When
we build the administration console later in the chapter, we'll see that there are occasions when we only need to parse
and replace the tags for the settings and the list, and not for the current subscription. For example, when we preview a
message during its preparation with the editor that we'll provide, we can't replace the tags for the subscription. This is
because there is no current subscription to parse; the preview is general, not specific to a particular subscription. This
means that we wouldn't have a subscription ID to pass to a unique method. Sure, we could pass a value with the
special meaning of "do not replace the tags for the subscription", but at this point it is easier to use separate methods.

 The tags for the list can be inserted in both the body and the subject of the newsletters we send out, while the tags for
the settings and the subscription are allowed within the body only. The newsletter's subject does not need to be
customized for each subscriber, so we accept this limitation by design in order to speed up the execution of the Send
method. In fact, we can spare thousands of calls to the ProcessSubscriptionTags and ProcessSettingsTags methods
for the subject in this way, if we have thousands of subscriptions. This is another reason why it is simpler to provide
three separate methods that parse the text and replace the tags: if we had only one method for all the replacements,
we would need a further parameter to tell the method if the passed text is the subject, and whether we can skip the
tags for the subscriber.

 But which are the tags for the lists, subscriptions, and settings? Here is the complete list:

 List tags: #ListID#, #ListName#, #ListDescription#

 Subscription tags: #SubscriptionID#, #SubscriberFirstName#, #SubscriberLastName#, #SubscriberEmail#

 Settings tags: #SenderName#, #SenderEmail#, #SubscribeURL#

 The settings should be self-explanatory, except for #SubscribeURL# maybe. This tag maps the SubscribeUrl setting,
and refers to the full base URL (the URL without additional parameters) of the page that takes care of subscribing or
unsubscribing a user based on the parameters passed along with its URL. At the end of each newsletter we should
provide an opt-out link to allow the user to easily unsubscribe. The link points to that page, with some additional
parameters that specify the current e-mail address, and the fact that we want to unsubscribe them from the mailing list.
So we can use this tag and the other subscription tags to dynamically build the complete opt-out link customized for
each subscriber.

 Designing the User Interface Services
 The user interface layer of this module is simpler than for the previous ones. Some of our other modules have
numerous pages for the user, reusable user controls, web services, and also Windows clients that make use of the
web services. In this case, most of the module is made up of the administration console. The end-user side of things
includes a box for subscribing to a mailing list, and a page that either confirms the operation or reports an error.

 We could think about implementing a web service to administer the mailing lists through a Windows client, but this
wouldn't be really useful. The administrator only needs to access the administration console for sending out a
newsletter once a week, every two weeks, or less frequently. There isn't a huge amount of work involved in
administering subscriptions, since the users can subscribe and unsubscribe by themselves, with no help from the
administrator. Therefore, unless you have dozens of different mailing lists and you are sending out newsletters every
day, the mailing list administration pages won't be required very often. When you have to prepare a newsletter, you'll
usually use a word processor or an HTML editor to write and format the content, then you'll copy and paste it to the
module's administration page and send it out. In the HTML code you can also use tags that reference images
on your server, and these can be uploaded through the file manager tool presented in Chapter 4. Most of the time that
is actually spent is on thinking about the organization of the content, but this has nothing to do with the module
implementation. Therefore, we decided we don't need a web service and a Windows client to administer the
newsletters section of the database.

 Let's move on and think about the subscription box. Should we build a user control so we can insert it into any page?
Well, that is a possible solution, but in this case there are other factors to consider:

 We aren't using any server controls bound to the data.

 We don't need the box to be dynamically programmable.

 The box is a simple HTML table that requires only a few lines of normal HTML code.

 When a user subscribes we want to point to a different page to handle the submitted data, because we also
want to print a confirmation message or show an error if the user has not supplied the required information. If
we employed a user control, we would need to handle a server event and then redirect to another page to
show those messages, because writing the messages directly into the box could possibly enlarge the
subscription box and mess up the layout of the page that hosts the user control. We don't have this problem if
we use a simple HTML form that points to a separate ASP.NET page to handle the submitted user's data
and show the required messages.

 If we have partner sites, they may agree to host our mailing list subscription box on their own site. If they run
on a Linux server or a Windows server without the .NET Framework installed, they won't be able to insert
our user control box. We can avoid this problem by using HTML.

 After considering all these points, we came to the conclusion that having a user control won't provide any significant
advantages for this solution. In fact, it would actually make it more difficult to customize it, add JavaScript client-side
validation of input, or show the confirmation/error messages. Also, a mailing list box is something that we can plug into
our layout and show in every page (maybe in the right-hand column in a typical site layout). However, our web
developers might have got used to two-line implementations for things like this. So instead of forcing them to manually
write the dozen lines of HTML code, in the administration console we'll provide a wizard that will create the
necessary code for the box for the specified mailing list. Aren't we kind to our web developers? The wizard actually
auto-generates the code for a basic subscription box that the developers can customize with images, JavaScript, other
colors, etc., to make it best fit with the current site's layout and styles.

 The Need for Security
 As we just mentioned in the last section, the end-user side of this module is very limited, and most of the module is
concerned with the administration console. Therefore, all that we need to do to protect this module is to check if the
current user has the AdministerData permission for general administration tasks (adding, editing, and deleting
records), and the SendNewsletter permission for sending out a newsletter. We'll be using the Accounts module from
Chapter 5 to check the permissions, as we've already done in previous chapters for other administration pages.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 9 - Mailing Lists

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 This module has a very similar structure to that of previous modules. The administration console has similar pages: the
page for the mailing lists (questions or categories in the previous chapters), the page for the subscribers (options and
news in the previous chapters), and the page for the settings. We won't list the code for these pages, as it is so similar
to the code already seen - all of the code can be found in the download. The same applies to the data component.
Thanks to the DbObject base class of the Core assembly, we can use the RunProcedure method to run the stored
procedures and return a dataset or an output parameter. As we saw in the Design section, our data assembly has
classes that almost exactly map the stored procedures, and there is nothing new to add that wasn't already discussed
in previous chapters.

 So what are we going to see? We'll look at the code of some of the stored procedures (to better understand the
relationships between the tables), the business classes, the subscription box, and the pages required for subscribing.

 Working on the Database
 Looking at the diagram and the descriptions of the tables we provided earlier, you should have no problems building
the tables for our SQL Server database and the relationships. (All three one-to-many relationships should have the
Enforce Relationship for INSERTs and DELETEs options selected.) However, as for the previous chapters, you can
go to the Wrox site and download the database backup with all the tables, stored procedures, triggers, and also some
data that will allow you to test the module straight out of the download.

 Creating the Stored Procedures and Triggers

 In this section we won't cover the code of all the stored procedures, since in previous chapters we've already seen
how the procedures for deleting and updating a record work. However, we'll show a few of the procedures for
working with subscribers, because they are a bit more complex as they involve joins and relationship constraints.

 Retrieving Subscriptions

 Here's the code for the sp_MLists_GetSubscriptions procedure. It joins the MLists_Subscriptions and
MLists_Users table, to return either all the details of the subscriptions for the specified mailing list, or just the details of
those users with an active subscription:

 CREATE PROCEDURE sp_MLists_GetSubscriptions
 @ListID int,
 @ActiveOnly bit
 AS

 IF @ActiveOnly = 0
 BEGIN
 SELECT SubscriptionID, MLists_Users.UserID, Active, FirstName, LastName,
 Email, AddedDate, ListID
 FROM MLists_Users
 INNER JOIN MLists_Subscriptions
 ON MLists_Users.UserID = MLists_Subscriptions.UserID
 WHERE MLists_Subscriptions.ListID = @ListID
 END
 ELSE
 BEGIN
 SELECT SubscriptionID, MLists_Users.UserID, Active, FirstName, LastName,
 Email, AddedDate, ListID
 FROM MLists_Users
 INNER JOIN MLists_Subscriptions
 ON MLists_Users.UserID = MLists_Subscriptions.UserID
 WHERE MLists_Subscriptions.ListID = @ListID
 AND MLists_Subscriptions.Active = 1
 END
 GO

 There are two distinct SELECT statements, with or without the WHERE clause for the active subscriptions. The two
tables are joined on the UserID field that is present in each table.

 The sp_MLists_GetSubscriptionDetails procedure is very similar, it just has an additional WHERE clause for the
specified SubscriptionID.

 Retrieving Subscriptions by ID

 This procedure, sp_MLists_GetSubscriptionID, also joins the two tables, as above, but only for the purpose of
returning the information for the subscription with the specified e-mail address that points to the specified mailing list.
If a row is found we return its SubscriptionID, or -1 otherwise:

 CREATE PROCEDURE sp_MLists_GetSubscriptionID
 @ListID int,
 @Email varchar(50),
 @SubscriptionID int OUTPUT
 AS

 SELECT @SubscriptionID = SubscriptionID
 FROM MLists_Users
 INNER JOIN MLists_Subscriptions
 ON MLists_Users.UserID = MLists_Subscriptions.UserID
 WHERE MLists_Subscriptions.ListID = @ListID
 AND MLists_Users.Email = @Email

 IF @SubscriptionID IS NULL
 SET @SubscriptionID = -1
 GO

 Inserting Subscriptions

 sp_MLists_InsertSubscription is the most complex procedure. It has to add a row in both tables, but it also has to
check that the subscription does not already exist. If it does not, it has to check if a user with the specified e-mail
address already exists (which is the case when the user is already subscribed to another mailing list). If so, it gets their
ID and uses it for the UserID field of the new row it creates in MLists_Subscription. Otherwise it first adds a new
row in MLists_Users, gets the ID of the new row, and then adds a row in MLists_Subscriptions. The code below is
well commented, so you should have no problems understanding the execution flow:

 CREATE PROCEDURE sp_MLists_InsertSubscription
 @ListID int,
 @FirstName varchar(50),
 @LastName varchar(50),
 @Email varchar(50),
 @Active bit,
 @SubscriptionID int OUTPUT
 AS

 DECLARE @CurrSubscription int
 DECLARE @CurrUser int

 -- see if the subscription already exists
 SELECT @CurrSubscription = SubscriptionID
 FROM MLists_Users
 INNER JOIN MLists_Subscriptions
 ON MLists_Users.UserID = MLists_Subscriptions.UserID
 WHERE MLists_Subscriptions.ListID = @ListID
 AND MLists_Users.Email = @Email

 -- if not, go ahead
 IF @CurrSubscription IS NULL
 BEGIN

 -- the subscription does not exist, but check if the user already exists
 SELECT @CurrUser = UserID
 FROM MLists_Users
 WHERE MLists_Users.Email = @Email

 -- if the user is not present, add it
 IF @CurrUser IS NULL
 BEGIN
 -- insert the User
 INSERT INTO MLists_Users
 (FirstName, LastName, Email)
 VALUES (@FirstName, @LastName, @Email)
 -- save the new UserID
 SET @CurrUser = @@IDENTITY

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Insert of User failed', 16, 1)
 RETURN 99
 END
 END

 -- add the new subscription
 INSERT INTO MLists_Subscriptions
 (ListID, UserID, Active, AddedDate)
 VALUES (@ListID, @CurrUser, @Active, GETDATE())
 -- save the new ID to be returned
 SET @SubscriptionID = @@IDENTITY

 IF @@ERROR > 0
 BEGIN
 RAISERROR ('Insert of Subscription failed', 16, 1)
 RETURN 99
 END

 END
 ELSE
 SET @SubscriptionID = -1
 GO

 Deleting Subscriptions

 To delete a subscription we have a simple stored procedure, sp_MLists_DeleteSubscription, defined as follows:

 CREATE PROCEDURE sp_MLists_DeleteSubscription
 @SubscriptionID int
 AS

 DELETE FROM MLists_Subscriptions WHERE SubscriptionID = @SubscriptionID
 GO

 As you can see, this code only deletes the record in the MLists_Subscription table, and does not delete the
respective user in the MLists_Users table. The same user can be subscribed to more than one mailing list, so if we
wanted to delete it, we should first ensure that there are no other subscriptions that refer to it. This would be simple to
do, and could be done from within the stored procedure above. However, if we deleted a subscription by directly
executing a DELETE query, without calling the helper stored procedure, no check would be performed, and unused
users could remain in the database. To be sure that the user is deleted and can have no more subscriptions when we
delete a subscription, either via the stored procedure or with a direct query, we can write a trigger. This is the code
to create it:

 CREATE TRIGGER DeleteUser ON [dbo].[MLists_Subscriptions]
 FOR DELETE
 AS

 DELETE MLists_Users
 FROM MLists_Users AS u
 JOIN Deleted AS d
 ON u.UserID = d.UserID
 LEFT JOIN MLists_Subscriptions AS s
 ON s.UserID = d.UserID
 WHERE s.UserID IS NULL

 This trigger is executed when one or more records are deleted from the MLists_Subscription table. When records
are deleted, they are copied into the Deleted table, a table managed by SQL Server behind the scenes, and that exists
only within the scope of the trigger. Therefore, we can retrieve the deleted subscriptions from the Deleted table, join
the two tables as you see above, and detect which users are no longer subscribed to any mailing list and can therefore
be deleted.

 If you want to know more about triggers, you can read about them in Professional SQL Server 2000 (Wrox
Press, ISBN 1-861004-48-6).

 Note that if we were using the Users table of the Accounts module to store the users' contact information for
the subscriptions, we wouldn't have this trigger. Although they aren't subscribed to anything they might still
use the site and so we should keep their account in the database.

 Implementing the Data and Configuration Assemblies
 At this point we should build the data and configuration assemblies, following the structure designed earlier.
However, as we mentioned, the code required has the same structure as the respective assemblies of the previous
chapters, with just the following differences:

 The names of the methods and stored procedures in the data component

 The site-wide web. config's custom key that stores the settings file name

 The entry name for the cached settings in the configuration component

 The data component is an assembly named Wrox.WebModules.MailingLists.Data, the configuration assembly and
namespace is Wrox.WebModules.MailingLists.Configuration, the new custom key for web.settings is
MailingLists_SettingsFile, and the cache entry is MailingLists_Settings. You can refer back to Chapter 5 to see how
these two assemblies are structured, and you can find the complete code for this module in the download.

 Implementing the Business Layer
 Just like the data assembly, some of the methods of the business layer are the same as in other modules. For
example, those that load and reset the properties, and those that create, delete, and update a record. But there are
also some things that are specific to this module, such as the methods for sending out a newsletter,
subscribing/unsubscribing a user, and processing the special tags. We'll just look at these new methods here. In the
Design section you can read the complete declaration of them all, and you can understand how they are implemented
by looking at the respective methods in some of the previous chapters.

 We start off by adding a new Class Library to the solution, name it MailingLists.Business, set its properties (set the
assembly and default namespace name to Wrox.WebModules.MailingLists.Business) and edit its AssemblyInfo.cs file
to specify the assembly key file. From reading the previous chapters you should already know how to complete all
this without the need for further details, so let's go ahead and start coding the classes.

 The Subscription Class

 If you still have the default Class1.cs file in the project, rename it to Subscription.cs. The methods we're going to
show for this class are Subscribe and Unsubscribe. These are also used by the corresponding methods of the List
class.

 The Subscribe Method

 The Subscribe method takes care of all the details for the subscription of a new user. It checks if the user is already
present on the chosen mailing list, but in inactive mode. In that case it sets the user as active, otherwise it adds a new
record. Then, if required in the settings, it sends a confirmation message to the subscriber. Sending the notification
e-mail requires a couple of classes of the .NET Framework, MailMessage and SmtpMail, which we'll explain when
discussing the Send method of the current class. For now just be aware that they are needed to send e-mails.

 The notification message can be personalized with the name, e-mail address, and other user or list information, thanks
to the special tags explained earlier which are replaced by the methods of the Helper class that we'll see shortly. The
subject and the body of the confirmation message are also returned to the caller through two output parameters, in
case the caller wants to print them on the page (that's exactly what we'll be doing later). Here's the code:

 public int Subscribe(int subscrListID, string subscrFirstName,
 string subscrLastName, string subscrEmail,
 out string subjectText, out string messageText)
 {
 subjectText = "";
 messageText = "" ;
 if (subscrEmail.Trim() == "") return -1;

 // get the subject/body of the subscription message
 subjectText = settings.SubscrSubject;
 messageText = settings.SubscrMessage;

 // get the subscription for this list, with the specified e-mail, if any
 Business.Subscription subscription = new Business.Subscription(
 subscrListID, subscrEmail);

 // if the subscription already exists...
 if (subscription.ID != -1)
 {
 // set it to active
 subscription.Active = true;
 subscription.Update();
 }
 else
 {
 // otherwise add the subscription
 subscription.Create(subscrListID, subscrFirstName, subscrLastName,
 subscrEmail, true);
 }

 // replace the tags of this new subscriber
 messageText = Helper.ProcessSubscriptionTags(
 messageText, subscription.ID);
 // replace the list's and settings tags
 subjectText = Helper.ProcessListTags(subjectText, subscrListID);
 messageText = Helper.ProcessListTags(messageText, subscrListID);
 messageText = Helper.ProcessSettingsTags(messageText);

 // if a confirmation e-mail is required
 if (settings.SendSubscrEmail)
 {
 // create a new message
 MailMessage mailMsg = new MailMessage();
 mailMsg.From = settings.SenderName + " <" + settings.SenderEmail + ">";
 // set the "To" field to the subscriber's e-mail
 mailMsg.To = subscrEmail;
 // set the Subject/body to the subject/body created
 // for the confirmation page
 mailMsg.Subject = subjectText;
 mailMsg.Body = messageText;
 // send the mail
 SmtpMail.Send(mailMsg);
 }

 if (subscription.ID == -1)
 ResetProperties();
 else
 LoadFromID(subscription.ID);

 return subscriptionID;
 }

 In order to save a round trip to the database, we could also add an overloaded version of ProcessSubscriptionTags
that accepts a Subscription object instead of the subscription's ID, and pass in the existing Subscription object. But as
this method isn't called very often (unless we have 100 users registering every minute) the effect on performance will
not be significant.

 The Unsubscrlbe Method

 The Unsubscribe method has the same structure as Subscribe. It first checks if the specified subscriber is present: if
not, the method returns false, otherwise it sets the subscription as inactive (the subscriber won't receive any future
newsletters for this mailing list), or completely removes the record from the database, according to the options set by
the administrator. It also sends the confirmation message if required:

 public bool Unsubscribe(int subscrListID, string subscrEmail,
 out string subjectText, out string messageText)
 {
 subjectText = "";
 messageText = "";
 if (subscrEmail.Trim() == "") return false;

 // get the subscriptions for this list, with the specified e-mail, if any
 Business.Subscription subscription = new Business.Subscription(
 subscrListID, subscrEmail);
 // if the subscription does not exist...
 if (subscription.ID == -1)
 {
 subjectText = "There is no subscription with the specified e-mail
 address";
 messageText = "";
 return false;
 }

 // get the subject/body of the subscription message
 subjectText = settings.UnsubscrSubject;
 messageText = settings.UnsubscrMessage;
 // replace the tags of this subscription. This has to be done
 // BEFORE removing the subscription
 messageText = Business.Helper.ProcessSubscriptionTags(messageText,
 subscription.ID);

 // remove or inactivate the subscription,
 // according to the UnsubscrAction setting
 if (settings.UnsubscrAction == Configuration.UnsubscrActionType.Remove)
 subscription.Delete();
 else
 {
 subscription.Active = false;
 subscription.Update();
 }

 // replace the list's and settings' tags
 subjectText = Helper.ProcessListTags(subjectText, subscrListID);
 messageText = Helper.ProcessListTags(messageText, subscrListID);
 messageText = Helper.ProcessSettingsTags(messageText);

 // if a confirmation subscrEmail is required
 if (settings.SendUnsubscrEmail)
 {
 // create a new message
 MailMessage mailMsg = new MailMessage();
 mailMsg.From = settings.SenderName + " <" + settings.SenderEmail + ">";
 // set the "To" field to the subscriber's subscrEmail
 mailMsg.To = subscrEmail;
 // set the subject/body to the subject/body created
 // for the confirmation page
 mailMsg.Subject = subjectText;
 mailMsg.Body = messageText;
 // send the mail
 SmtpMail.Send(mailMsg);
 }

 ResetProperties();
 return true;
 }

 You can see that in both these methods we use the static methods of the Helper class to process and replace the
special tags. In this second case, this is still required because even if the subscription is being deleted and the user
won't receive any more newsletters from that mailing list, we need to show and/or send a last personalized
confirmation message. We'll see the implementation of those helper methods shortly, but let's first have a look at the
Newsletter class.

 The Newsletter Class

 The core of the Newsletter class is the Send method, which sends the newsletter to all the active subscribers for the
specified list. The e-mails are sent through the default SMTP service installed with Windows 2000 Server, so we
don't need anything special or any third party server to send the messages. All we need is a reference to
System.Web.dll, which is not added by default for this type of project. Before starting with the implementation of the
methods, ensure that you've also added a reference to the Core project, inherited from BizObject, and added a using
directive for the System.Web.Mail namespace.

 How to Send E-mails with the .NET Classes

 In the Subscribe and Unsubscribe methods shown above we've used a couple of classes from the System.Web.Mail
namespace to send the notification e-mails. Before going ahead with the Send method that actually sends out all the
newsletters, it's worth taking a closer look at those classes.

 The most important class is SmtpMail, which allows e-mail messages to be sent through the use of the
Collaboration Data Objects (CDO) for Windows. The e-mails are delivered through any third party server
specified by the static property SmtpServer or, if this property is not set, through the default SMTP Server installed
with Windows 2000 Server. In our case we'll always use the default server, so there is no need to supply a value for
this property. The method that we actually use to send a mail is Send, which has two overloaded versions. The first
one is declared as follows:

 public static void Send(string from,
 string to,
 string subject,
 string messageText);

 This version accepts as input all the parameters needed to send an e-mail, namely the e-mail address of the sender
and the receiver, and the subject and body text. The method is static, so we don't need to create an instance of the
class to use it. Here's an example of its usage:

 SmtpMail.Send("myemail@thephile.com", "youremail@thephile.com",
 "Test",
 "Hello! This is just to test the Send method");

 This version works fine if we only want to send a message in plain text, and we don't need anything more than those
four parameters. But what if we want to create an HTML e-mail, set its priority, and the CC and BCC properties?
Well, for this there is the second overloaded version of the Send methods, defined as follows:

 public static void Send(MailMessage message);

 Here the method takes as input a MailMessage object (the second class mentioned above), which has properties
such as From, To, Cc, Bcc, Subject, Text, Priority, BodyFormat, and Attachments. The meaning of these properties
is clear; in the implementation of the Unsubscribe/Subscribe methods we've already seen how to create and use a
MailMessage object and send the respective mail, and we'll see similar code again in the next section, for the
implementation of Newsletter.Send. The only property that's worth a further example is Attachments, because it is not
used anywhere in our module. Say that we've already created an instance of MailMessage called mailMsg, and set its
basic properties (sender, recipient, subject, and text). The following code shows how to add a couple of attachments:

 mailMsg.Attachments.Add(new MailAttachment(@"C:\filel.doc"));
 mailMsg.Attachments.Add(new MailAttachment(@"C:\file2.bmp"));

 We add new MailAttachment items through the Add method of the Attachments collection. The constructor of the
MailAttachment class takes as input the path of the file to add to the e-mail. As a last step, the mail is sent with:

 SmtpMail.Send(mailMsg);

 The Send Method

 The Send method requires as input the destination mailing list's ID, the newsletter's subject, body, format, and
priority, and a parameter that tells whether the newsletter has to be archived to the database or not. It returns the
number of sent e-mails through the last (output) parameter. Here is the complete code:

 public int Send(int newsletterListID, string newsletterSubject,
 string newsletterBody, bool newsletterIsHTML,
 MailPriority priority, bool saveToDB,
 out int totalNewsletters)
 {
 // reset the ID of the newsletter identified by this object
 newsletterID = -1;

 // replace the list's tags in the subject
 newsletterSubject = Helper.ProcessListTags(newsletterSubject,
 newsletterListID);
 // replace the list's and settings' tags in the body
 newsletterBody = Helper.ProcessListTags(newsletterBody, newsletterListID);
 newsletterBody = Helper.ProcessSettingsTags(newsletterBody);

 // add a new record in the newsletters archive, if required
 if (saveToDB)
 {
 Data.Newsletters news = new Data.Newsletters(settings.ConnectionString);
 newsletterID = news.Add(newsletterListID, newsletterSubject,
 newsletterBody, newsletterIsHTML);
 }

 // create a new mail message and set the common properties
 MailMessage mailMsg = new MailMessage();
 mailMsg.From = settings.SenderName + "<" + settings.SenderEmail + ">";
 mailMsg.Priority = priority;
 mailMsg.BodyFormat = (MailFormat)Convert.ToInt16(newsletterIsHTML);
 mailMsg.Subject = newsletterSubject;

 // get all the active subscribers of this list
 DataTable dt = new Business.List(
 newsletterListID).GetSubscriptions(true).Tables[0];
 for(int i = 0; i < dt.DefaultView.Count; i++)
 {
 // replace the subscriber's special tags with their values
 mailMsg.To = (string)dt.DefaultView[i]["Email"];
 mailMsg.Body = Helper.ProcessSubscriptionTags(newsletterBody,
 (int)dt.DefaultView[i]["SubscriptionID"]);
 // send the mail to this subscriber
 SmtpMail.Send(mailMsg);
 }

 // load the data for the sent newsletter in the current object
 if (newsletterID != -1)
 LoadFromID();
 else
 ResetProperties();

 // return the number of sent newsletters through an output parameter
 totalNewsletters = dt.DefaultView.Count;

 // return the ID of the newsletter added to the archive,
 // or -1 if it has not been added
 return newsletterID;
 }

 This code does quite a lot of things, so let's break it down:

 The special tags for the list and the general settings are replaced with their values.

 If required, the newsletter is archived to the database through the Data.Newsletters class.

 A new MailMessage object is created, and its properties that are common for all the subscribers are set.

 A Business.List class instance is used to get all the active subscribers for the specified mailing list, through the
GetSubscriptions method.

 For each subscription returned by the query, it replaces the subscription's special tags, sets its e-mail address
as the destination address for the mail object, and sends the mail.

 The number of sent messages is saved and returned to the caller through the output parameter.

 This method does not support attachments for the newsletters, but it would be quite easy to add a parameter array
with the path of the files to send, and attach them through the MailMessage's Attachments collection (of course you
would need to update the presentation layer as well, though).

 One last thing that's worth noting in the code is that after sending the newsletter we call the LoadFromID method to
set the object's properties with the values of the new record. This is exactly what we do in the Create methods of any
other business class. Here the name of the method is different and we also do different work, but we still add a record
to the database (if saveToDB is true) and so we also update the object's state before terminating the method.

 For the sake of completeness, let's also look at the overloaded version of the Send method. This version takes the
same parameters except for the last one, and it's useful because it is quicker to call if we're not interested in the
number of sent messages. Here's the code:

 public int Send(int newsletterListID, string newsletterSubject,
 string newsletterBody, bool newsletterIsHTML,
 MailPriority priority, bool saveToDB)
 {
 int totalNewsletters;
 return Send(newsletterListID, newsletterSubject, newsletterBody,
 newsletterIsHTML, priority, saveToDB, out totalNewsletters);
 }

 It just calls the first version we wrote, and passes as the last parameter a variable declared with a private scope. The
Send method is also called by another business class (List) from its SendNewsletter method.

 The Helper Class

 The Helper class is the easiest to implement, as it only exposes three very short static methods. The ProcessListTags
method retrieves the details of the specified list through an instance of Business.List, and then replaces the special
tags:

 public static string ProcessListTags(string message, int listID)
 {
 Business.List list = new Business.List(listID);

 message = message.Replace("#ListID#", listID.ToString());
 message = message.Replace("#ListName#", list.Name);
 message = message.Replace("#ListDescription#", list.Description);

 return message;
 }

 ProcessSubscriptionTags does the same, but for the subscription tags:

 public static string ProcessSubscriptionTags(string message, int subscrID)
 {
 // if the subscriber does not exist, replace with empty strings
 if (subscrID==-1)
 {
 message = message.Replace("#SubscriptionID#", ""); message =
 message.Replace("#SubscriberFirstName#", ""); message =
 message.Replace("#SubscriberLastName#", ""); message =
 message.Replace("#SubscriberEmail#", "");
 }
 else
 {
 // otherwise get the details of this subscriber
 Business.Subscription subscription =
 new Business.Subscription(subscrID);

 // and replace the tags
 message = message.Replace("#SubscriptionID#", subscrID.ToString());
 // replace #SubscriberFirstName# with the subscriber's first name
 // if the first name value is not null,
 // otherwise replace with "List Reader"
 message = message.Replace("#SubscriberFirstName#",
 subscription.FirstName!="" ? subscription.FirstName : "List Reader");
 message = message.Replace("#SubscriberLastName#",
 subscription.LastName);
 message = message.Replace("#SubscriberEmail#", subscription.Email);
 }

 return message;
 }

 In the code above there is one detail that's especially worth noting. If the subscriber's first name is empty, the
#SubscriberFirstName# tag is replaced with "List Reader". This is because we might ask the subscriber to type and
submit only the e-mail address, or even if we asked for their name they could choose not to supply it (as long as we
don't make it required of course, but that's not a good choice usually). The conclusion is that we might easily have
subscriptions without the first/last names. If we then sent a newsletter with the #SubscriberFirstName# tag, someone
would receive the message with a null string where their name should be (for example "Dear, how's it going?", instead
of something like "Dear Marco, how's it going?"). To prevent this, we replace the tag with "List Reader" if the first
name is not provided, so that the message would be "Dear List Reader, how's it going?". That is a more acceptable
message.

 It's better not to replace #SubscriberFirstName# with "List" and #SubscriberLastName# with "Reader", as you
might think at first, because we may use only the first tag in the newsletter. However, if we use both, it's very
probable that we won't have e-mails with "List Reader"plus a non-null last name (for example "Dear List
Reader Bellinaso, ..."), because if the first name is not supplied then it's very likely that the last name won't be
either. (Also, we might ask for the full name with a single field, and the value would be stored as first name
only).

 Lastly, ProcessSettingsTags processes and replaces the settings tags, retrieved through an instance of
ModuleSettings:

 public static string ProcessSettingsTags(string message)
 {
 Configuration.ModuleSettings settings =
 Configuration.ModuleConfig.GetSettings();
 // replace the tags
 message = message.Replace("#SenderName#", settings.SenderName);
 message = message.Replace("#SenderEmail#", settings.SenderEmail);
 message = message.Replace("#SubscribeURL#", settings.SubscribeUrl);

 return message;
 }

 The Administration User Interface
 The administration console is made up of a set of pages that allows us to add, remove, and edit the mailing lists, their
subscriptions, and the subscribers' personal details. It also allows us to send out newsletters and consult the archive,
and a few other things. The following screenshot shows the Lists.aspx page, which lists and manages the available
mailing lists:

 You can see that, in addition to the ID, name, and description of each mailing list, the grid also displays some icons,
which allow us to directly jump to other pages to do something to the mailing list of the clicked row. Here is a list of
the grid's icons with a description of the actions they perform:

Icon Description

Edit the record.

Delete the record.

Jump to the page that shows the subscribers of this
mailing list.

Jump to the page that shows the newsletters previously
sent to this mailing list.

Jump to the page to compose and send a new
newsletter to the subscribers of this mailing list.

 When you click the book icon in the table above you jump to the page to manage the subscriptions,
Subscriptions.aspx, which looks like the following screenshot:

 The code for these two web forms should be familiar if you've read the previous chapters. Maybe the only interesting
new detail is that we use a RegularExpressionValidator control to validate the e-mail address for a new subscription
or a subscription being edited. Here is how we define the textbox and the validators:

 <asp:TextBox runat="server" CssClass="TextBox" ID="NewEmail" Width="100%" />

 <asp:RequiredFieldValidator runat="server" ControlToValidate="NewEmail"

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 9 - Mailing Lists

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 The aim of this chapter was to show how to design and build a full-featured mailing list manager that could be used
as-is for many websites. We've implemented an administration console that allows us to:

 Add, edit, and delete mailing lists and their associated subscriptions.

 Create and send newsletters (both in plain text and HTML format) and consult the archive of previously sent
messages.

 Modify the settings online.

 Auto-generate the HTML code for the subscription box.

 Administration aside, we've developed the page that actually handles the subscription process. This used the business
components developed at the beginning of the implementation section. Finally, we've used the Accounts business
classes to ensure that only users with the appropriate permissions can administer the data and send out newsletters.

 By doing all this we've learnt some new techniques in this chapter, most notably:

 How to use the SmtpMail and MailMessage classes to send e-mails with the Windows SMTP Server.

 The use of regular expressions to validate e-mail addresses (or, in general, any other string) against a given
pattern.

 As for any other module presented in this book, you can add further features to make it even more powerful. Here
are just a few ideas:

 Add the ability to create and handle subscription forms that allow the user to subscribe to multiple mailing
lists in one step, giving their e-mail address only once. This would simply require a few changes to the HTML
form that you paste in your pages, and to the Subscribe. aspx page that processes the data posted to the
server. Adding a subscription to more than one list is really just a matter of a few lines of code, thanks to the
business layer classes that handle the actual subscription process.

 Allow each user to choose whether to receive the newsletters in HTML or plain text format, and send
different newsletters according to that choice.

 Add the ability to send attachments with the newsletters. This can be very useful if you want to send HTML
newsletters with images. Currently, you can send mails with images by referencing the full URL of the image
on your server, but it would be better to send them along with the message.

 Add a search engine to the administration console, which allows a specified e-mail address or contact name
to be easily found. This would be useful if the administrator wants to see or change the properties of a
particular subscriber.

 Add a double check on the subscription/unsubscription process. This consists of sending a notification e-mail
to the subscriber, asking them to confirm that they want to subscribe/unsubscribe fto/from the mailing list. The
action will only be taken if they click a link to confirm. This feature is really useful if you want to be sure that
someone does not subscribe someone else by posting a false e-mail address. You can't be 100% sure that
this won't happen anyway, since (as always) someone could hack the link format and make false
confirmations, but it's better than doing no checks at all!

 Add the option to have multiple administrators, with different rights. For example, a basic administrator could
only see the current mailing lists and subscribers, a second level of administrator could also send out new
newsletters, and an advanced administrator would have full rights, with permission to add, remove, and
modify the mailing lists and subscribers.

 In the last few chapters we've developed modules to strengthen the site-to-user communication, such as the polls
module and this mailing lists manager. In the next chapter we're going to implement a module to manage forums, the
most important form of user-to-user communication system.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 10 - Forums and Online Communities

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 10: Forums and Online
Communities
 A successful site should build a community of loyal visitors. Internet users like to feel part of a community of people
with the same interests, to discuss their favorite subjects, and to ask questions and reply to those of others.
Community members will return often to meet other people that they've already chatted with, or to find comments and
opinions about their interests. In this chapter we'll outline some of the advantages of building such a virtual community.
We'll then identify the goals for our website community, and step through the design and implementation of a new
module for setting up and managing discussion boards (forums).

 The Problem
 User-to-user communication is important in many types of website. For example, in a content-based site relating to
programming resources, programmers need to ask questions about problems they are facing and hear suggestions
from their peers. e-Commerce sites benefit from allowing users to review products online.

 Two ways to provide user-to-user communication are opinion polls and discussion boards. We looked at opinion
polls in Chapter 8. In this chapter we will talk about discussion boards, or forums.

 Forums act as a source of content, and provide an opportunity for visitors to participate and contribute. Visitors can
browse the various messages in the forums, post their questions and topics, reply to other people's questions, and
share ideas and tips.

 For our ThePhile.com site, we can offer discussion boards about books and DVDs. We will also want sub groups
within that, so that it is easier for visitors to read about what they are specifically interested in. For example, if we
have a books category we can have sub forums for programming books, classic literature, novels, and publishing.

 Early web-forum systems often threw up long lists of messages on a single page, which took ages to load. We want
to avoid this by displaying lists in pages, with each page containing a set number of messages.

 Our website already has a way to identify users (the Accounts module we developed in Chapter 5), and our forums
should support that. But we should also give users the opportunity to create a profile, so that they can post messages
without revealing their true identity. These profiles should include a public name, an avatar image (a small picture that
represents the user), a signature, and a homepage URL.

 The administrator must be able to add, remove, or edit categories, forums, topics, and replies, and change the
module's settings. If you're wondering what the difference is between a category and a forum, let's say that a category
is a container for multiple forums. For example, we can have two categories: Books and DVD. The Books category
can contain the following forums: programming books, books for children, school course books, spy stories, etc. The
DVD category, on the other hand, will have child forums such as PC games, action movies, horror movies, cartoons,
etc. In practice, a category allows better organization and keeps together forums with related subjects.

 Cross-Site Scripting
 One problem with forums is when users enter HTML or JavaScript code that somehow impairs the site. This could
range from making the page look irritating (remember <blink>?), including large or offensive images, or automatically
redirecting the browser to other sites. However, giving readers access to some simple tags can make the site far more
user friendly.

 The problems we're trying to solve here are relatively simple. Our site will be nothing like the massive forum systems
such as Slashdot or Plastic. In the site's design, we will try to get the best of both worlds - give users the flexibility to
present their messages well, without allowing them to damage the site.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 10 - Forums and Online Communities

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 As usual, we will design our data layer first and work up to the presentation layer. The configuration system is quite
important in this module, so we will look at the design for that before considering the business layer.

 The Database
 The design begins with the database tables needed to store all the categories, forums, topics, replies, and members.
The prefix for the tables and stored procedure for this module is Forums_. We have five new tables (we also use
Accounts_Users, created in Chapter 5), shown in the following diagram:

 In the next sections we'll be explaining each table in detail, but remember that - as usual - you can download the
complete database backup with the required tables, stored procedures, views, etc. from the Wrox site.

 The Forums_Categories Table

 The Forums_Categories table is used to store the name and image for the forum categories. It is structured as
follows:

Column Name Type Size Allow Null Description

CategoryID int - Identity primary
key

4 No The unique ID for the
category.

CategoryName varchar 100 No The name of the
category.

CategoryImage Url varchar 100 Yes The optional URL of
the category's
descriptive image.

CategoryPosition int 4 Yes The ordinal position of
the category. Later
we'll return the
categories ordered by
this field, in ascending
order.

 At first, the CategoryPosition column might seem useless, but it's actually very handy. It allows the administrator to
decide the position of the categories when they are all shown in a web page. For example, you may want to show a
particular category at the top of the page, because it reflects the subject of the site's main business. We can't just use
the ID column to order the categories, because it is an Identity column that's auto-incremented. It reflects the order in
which the categories were created and not necessarily their importance.

 The Forums_Forums Table

 The Forums_Forums table stores information on specific forums, and their relationship with the parent categories. It
is structured as follows:

Column Name Type Size Allow Null Description

ForumID int - Identity primary
key

4 No The unique ID for the
forum.

CategoryID int foreign key 4 No The ID of the parent
category, matching a
record in the
Forums_Categories
table.

ForumName varchar 100 No The name of the
forum.

ForumDescription varchar 250 Yes An optional
description of the
forum.

ForumPosition int 4 Yes The ordinal position of
the forum, used to
control display order.

 The Forums_Topics Table

 The Forums_Topics table stores all the topics for all the forums. When a new topic is introduced, the message is
stored in this table. Then responses are posted as replies to this message - our chat room does not allow true
threading at this stage. Forums_Topics has the following columns:

Column Name Type Size Allow Null Description

TopicID int - Identity primary
key

4 No The unique ID for the
topic.

ForumID int foreign key 4 No The ID of the parent
forum, matching a
record in the Forums
Forums table.

TopicKey varchar 15 Yes An optional key for
the topic.

Subject varchar 100 No The subject/title of the
topic.

Message text 0 No The text of the topic.

MemberID int foreign key 4 No The ID of the member
who authored this
message. It matches a
record in the
Forums_Members
table (presented
shortly).

MemberIP varchar 15 No The IP address of the
member who
authored this
message.

AddedDate datetime 8 No When the message
was added to the
database.

 Two columns, TopicKey and MemberIP, are worth some more explanation. TopicKey enables us to associate a
particular topic to other resources, such as a news article. It can contain the ID (but in string format) of a news article,
or some identifier (of string type) of another resource, such as the ISBN for a book, for example. Later we'll see in
practice how to employ this column to integrate the module with other parts of the site.

 The MemberIP column stores the IP address of the member who submitted the topic. We already have the
MemberID column to identify members, and can ban them if they post offensive messages. If a user posts something
illegal, we might need to resort to legal means to identify them. Although difficult, it is sometimes possible to use IP to
trace a specific user. In any case, it will act as a deterrent for serious misuse.

 The Forums_Replies Table

 Forums_Replies is similar to Forums_Topics, but stores messages sent in reply to the topics:

Column Name Type Size Allow Null Description

ReplyID int - Identity

 primary key

4 No The unique ID for the
reply.

TopicID int foreign key 4 No The ID of the parent
topic, matching a
record in the
Forums_Topics table.

ForumID int foreign key 4 No The ID of the parent
forum. It matches a
record in the
Forums_Forums
table.

Message text No The text of the
message.

MemberID int foreign key 4 No The ID of the member
who authored this
message. It matches a
record in the
Forums_Members
table, presented
below.

MemberIP varchar 15 No The IP address of the
member who
authored this
message.

AddedDate datetime 8 No When the message
was added to the
database.

 As you can see, this table has almost the same columns as Forums_Topics, except for TopicKey and Subject, which
are not present here. We could just use one table for the topics and the replies, but using two separate tables makes
retrieving a list of topics for a forum faster. We also want to calculate further columns for topics and replies, and this is
much easier if they are stored in separate tables.

 ForumID may seem unnecessary, since we could retrieve the parent forum's ID from the Forums_Topics table joined
through the TopicID value. However, repeating the ForumID here helps us count the number of replies for the
specified forum, which we will want to do later when displaying the page with the available forums.

 It's also worth noting that this structure does not support threaded discussions, such as the newsgroup discussions
that you can browse through your mail client. Threaded discussions allow a reply to any post, as a new topic or as a
reply to an existing topic, and are represented through a tree structure. The structure for non-threaded discussions
only allows replies directly to the main topic - there is no field in the database to keep a reference to another reply.
The replies will be shown to the reader sorted by creation date, from the oldest to the newest. Both these two types
of forum systems, threaded or not, have their pro and cons. Threaded discussions make it easier to follow replies to
previous posts, but non-threaded discussions make it easier to follow the discussion with the correct temporal order.
Furthermore, non-threaded discussions usually allow a previous reply to be quoted, making it quite easy for the
reader to follow the discussion even if the referenced message is a number of posts above the new reply. I don't
know if it is because non-threaded forums are a little easier to develop, but our investigations of the discussion boards
used in quite a lot of popular sites show that non-threaded discussions seem to be used most often, so we've decided
to go that way too.

 The Forums-Member Table

 The Forums_Members table stores the profiles of the registered forums' members:

Column Name Type Size Allow Null Description

MemberID int - Identity

 primary key

4 No The unique ID for the
member.

UserID int

 foreign key

4 No The ID of the
respective site's
account that matches
a record in the
Accounts_Users
table.

MemberName varchar 15 No The member's name.

ShowEmail bit 1 No If true, the e-mail
address will be visible
in the posts of this
member.

Signature varchar 300 Yes The signature text,
added at the bottom
of every message
from this member.

AvatarUrl varchar 100 Yes The URL of an image
that will be shown
together with the
member name in all
the member's posts

Homepage varchar 100 Yes The URL of the
member's homepage,
if any.

AddedDate datetime 8 No The date when the
user registered a
profile for the forums.

 This table is joined to the Accounts_Users table of the Accounts module, developed in Chapter 5, on the UserID
column. This table contains information specific to forums, while other information such as the user's first and last
name, e-mail address, etc., are already present in the Accounts_Users table. This also means that the user must
create an account for the site first, and then register for the forums. This is good because this way the user is not
required to insert the same information twice, but neither do we need to have a unique but larger table if the user does
not want to use the forums. Of course, you can change the site's registration page to require all the information in a
single place, and store the value for both tables.

 Database Views

 We need to return more information than that stored in the tables above, including the number of topics and posts
(topics plus replies) to the forums, and the date of the most recent post to a forum or topic. We will provide this
through views with dynamically calculated columns, so that it's easier to access the data from the stored procedures
without repeating the required SQL code in all of them. We'll build some views for retrieving the data in
Accounts_Users and Forums_Members in a single SELECT statement, so that we don't need to write the JOINs in
the stored procedures, and it's easier to modify them if we need to do so. We'll see all the details about the added
columns and the required JOINs in the Solution section.

 Stored Procedures

 As usual, we'll use stored procedures to keep our application efficient and simplify the data layer. The complete list
of the stored procedures that we'll build later is presented below.

 Managing the Categories

 We will build the following stored procedures for managing categories:

Stored Procedure Description

sp_Forums_GetCategories Returns all the available categories.

sp_Forums_GetCategoryDetails Returns the complete row identified by the specified ID.

sp_Forums_InsertCategory Inserts a new category. If a category already exists with
the same name, the new category is not added and the
output parameter is set to -1. Otherwise @CategoryID
will be set to the new category's ID.

sp_Forums_UpdateCategory Updates all the fields of the category identified by the
specified ID.

sp_Forums_DeleteCategory Deletes the specified category.

 Managing the Forums

 These procedures are the same as above, but this time for the Forums_Forums table:

Stored Procedure Description

sp_Forums_GetForums Returns all the forums underneath the specified category.

sp_Forums_GetForumDetails Returns the complete row identified by the specified ID.

sp_Forums_InsertForum Inserts a forum and returns its ID. If a forum with the
same name already exists, returns -1.

sp_Forums_UpdateForum Updates the specified forum record.

sp_Forums_DeleteForum Deletes a forum.

 Managing the Topics

 The procedures for the Forums_Topics table are slightly more complex:

Stored Procedure Description

sp_Forums_GetTopics Returns all the topics of the specified forum.

sp_Forums_GetTopicsByPage Returns the topics for the specified virtual page of the
specified forum. The last parameter is the number of
topics that make up a page.

sp_Forums GetTopicDetails Returns the complete row identified by the specified ID.

sp_ForumsGetTopicID Returns the ID of the topic identified by the specified
key.

sp_Forums_InsertTopic Inserts a new topic and returns its ID. Nothing is done to
check if a topic with the same subject is already present,
as this is perfectly possible in a forum.

sp_Forums UpdateTopic Updates a topic record. Note that not all fields can be
updated, in fact we don't want to allow anybody to
change the ID or the IP address of the user who posted
the topic.

sp_Forums DeleteTopic Deletes the specified topic.

 The most notable procedure here is sp_ForumsGetTopicsByPage, that instead of returning all the topics returns only
the topics for a virtual page. We've already seen that it's important to display long discussions in pages. If we paginate
the records through the auto pagination feature of the DataGrid or DataList controls, all the records are retrieved, and
then only the records for the current page are shown. This works fine if we have a few records but it becomes
inefficient when we have thousands of topics to retrieve. The sp_Forums_GetTopicsByPage procedure only returns
the records of a specified page with a specified size, wasting no time retrieving records that we won't show.

 sp_Forums_updateTopic doesn't update the member's ID and IP, because it is only the administrator who will
update a topic - we want to preserve the information about the original sender. If an administrator wants to change
the IP or member ID, they must use a SQL query through the online database manager presented in Chapter 4.

 Managing the Replies

 These procedures are very similar to the procedures above, but work against the Forums Replies table:

Stored Procedure Description

sp_Forums_GetReplies Returns all the replies to the specified topic.

sp_Forums_GetRepliesByPage Returns the replies for the specified virtual page of the
specified topic.

sp_Forums_GetReplyDetails Returns the complete row identified by the specified ID.

sp_Forums_InsertReply Inserts a new topic and returns its ID.

sp_Forums_UpdateReply Updates the message text of the specified reply.

sp_Forums_DeleteReply Deletes the specified reply.

 Managing the Members

 These procedures work against the Forums_Members and Accounts_Users tables to manage those members who
are current site users with a special profile for the discussion board:

Stored Procedure Description

sp_Forums_GetMembers Returns all the members.

sp_Forums_GetMemberDetails Returns the complete row identified by the specified ID.

sp_Forums_GetMemberID Returns the ID of the member registered against the
specified user account.

sp_Forums_InsertMember Inserts a new member. If a member already exists with
the same name, the new member is not added and the
output parameter is set to -1. Otherwise @MemberID
will be set to the new member's ID.

sp_Forums_UpdateMember Updates the member.

sp_Forums_DeleteMember Deletes a member.

 Designing the Data Services
 As usual, the data layer will consist of classes whose members map one-by-one onto the stored procedures listed
above. The parameters are the same as those of the respective stored procedure. Since the meaning of the methods is
also the same as the stored procedure, we won't repeat the complete list of members here.

 Configuration
 As in the previous module, the Forums module will have a configuration component that exposes two classes to load,
access, and save the settings. The classes are ModuleConfig and ModuleSettings, as before.

 The table below lists all of the available settings, with their meanings:

Setting Name Type Description

ConnectionString string Database connection string.

TopicsPerPage int The maximum number of topics per
page.

RepliesPerPage int The maximum number of replies per
page.

HtmlEnabled bool If true, users can use HTML tags.
Usually false.

SpecialTagsEnabled bool If true, the users can use special tags
such as [:)], [B] , and [/B] to format
their messages and add 'smilies'.

SmiliesFolder string The virtual path of the folder where
the 'smilies' images are stored. These
images are shown if
SpecialTagsEnabled is true, and
replace some special tags such as [:)].

 The Business Layer
 The business layer of this module is not complex, but it is fairly big: six classes, with quite a lot of members, to
manipulate the data in a good object-oriented way. All the classes except for Helper, which has a single static
method, expose a set of public properties that describe a specified record and then have methods such as Create,
LoadFromID, ResetProperties, and Delete. It's easy to guess that the meaning of these methods is always the same,
so it's not worth showing the declaration for each class here. Instead, we'll look at the complete declarations for just a
representative class, Forum, and the Helper class.

 The Forum Class

 A Forum object represents a single forum. Here are the members of the Forum class:

Method Name Description

public int ID Read-only property that returns the ID of the forum
represented by the object.

public int CategoryID Returns the ID of the parent category.

public Business.Category Category Returns a Category object that represents the forum's
parent category.

public string Name Gets/sets the forum's name.

public string Description Gets/sets the forum's description.

public int Position Gets/sets the forum's position.

public int Topics Returns the total number of topics for this forum. This
information is dynamically calculated by a view, as we
mentioned earlier.

public int Posts Returns the total number of posts (topics plus replies) for
this forum. This information is dynamically calculated by a
view, too.

public DateTime LastPostDate Returns the date when the last post for this forum was
added. As with the two properties above, this is a
dynamically calculated value.

public Forum() Class constructor with no parameters. It only resets the
properties.

public Forum(int existingForumID) Class constructor that sets the properties to describe the
forum identified by the input ID.

public Forum(Forum existingForum) Class constructor that sets the properties to describe the
forum identified by an existing Forum object.

private void LoadFromID () Loads the properties of the list identified by a private ID
variable. This method is called by the constructors, or
when the data has to be refreshed.

private void ResetProperties () Resets the properties.

public int LoadFromID(int existingForumID) Loads all the properties of the forum identified by the
input ID. This method is useful when we create the object
with the parameter-less constructor, or we want to
change the currently loaded forum.

public int Create (int forumCategoryID, string
forumName, string forumDescription, int forumPosition)

Creates a new forum, and sets the properties of the
object to represent the new record.

public bool Update() Updates the forum with the new values of the public
properties.

public bool Delete () Deletes the forum.

public DataSet GetTopics () Returns all the child topics.

public DataSet GetTopics (int pageNumber) Returns the child topics for the specified page. This
method is employed for the custom pagination. The
number of topics per page is retrieved internally through
the configuration component.

public Topic AddTopic (string topicKey, string subject,
string message, int memberID)

Adds a child topic and returns a Topic object that
represent the new record.

 This class allows us to create, edit, and delete any forum, and to access its properties. It also provides direct access
to all the properties and operations of the parent category, by exposing the ParentCategory property of type
Category. Lastly, it has methods to directly retrieve the child topic or add a new topic. It's not like the data access
classes, where each class has methods to retrieve, add, edit, and delete only the records of the respective database
table, and has no relationships with the other classes. The business classes really provide an object-oriented way to
access records, by returning and linking to instances of other business classes.

 The Helper Class

 This class has a single static method, ProcessSpecialTags, which processes a given text string and replaces the
special tags with the respective HTML tags. It's time to decide which tags we want to support, so here's the complete
list:

 [B] sometext [/B] is replaced with sometext.

 [I] sometext [/I] is replaced with <i>sometext</i>.

 [U] sometext [/U] is replaced with <u>sometext</u>.

 [:)],[:D],[8)],[:(],[:o],[:x] are all replaced with 'smilies' images, whose folder's path is stored in the settings file
and is exposed by ModuleSettings . SmiliesFolder of the Configuration library.

 [URL]http://www.thephile.com[/URL] is replaced with
http://www.thephile.com.

 [EMAIL]<marco@thephile.com>[/EMAIL] is replaced with <a href="mailto: <marco@thephile.com>"><
marco@thephile.com>.

 [QUOTE] sometext[/QUOTE] is replaced with <blockquote>sometext</blockquote>, and is used to indent
the sometext part. This tag is still supported when ProcessSpecialTags is false, because quoting a message
must always work - the other tags will still appear on screen.

 Designing the User Interface Layer
 All of the modules from previous chapters have two separate user interfaces: one for administrators, and one for
normal users.

 With the Forums module, we want administrators to see similar things to normal users. Instead of building a separate
administration system, we will simply give users with special privileges access to features hidden from other users.
Here are the relevant permissions, and the special facilities they will get:

 AdministerCategories: the user is allowed to add, edit, or delete categories and forums

 ModerateForums: the user is allowed to add, edit, and delete topics and replies

 EditSettings: the user is allowed to edit the module's settings

 That said, the following diagram describes all the various execution paths that an end-user can follow in the forums
application. This is useful to determine what pages to build:

 As you can see, first the user views the available categories and forums in one page, then in another page views the
topics for the selected forum. One level below, again, and they read the complete topic and its replies. From the list of
topics or from the complete topic the users may want to post their own message to the current forum, or to post a
reply to the current topic. When they try to load the page to post the message, if they already have a profile for the
Forums module the page loads correctly and they can post the message. Otherwise they are redirected to the page to
register a new profile. But we already know that to create a new profile, a site account must be already present. This
check is done when the registration page loads, and if the user is not logged in or the account is not present at all, the
user is redirected immediately to the Login page developed in Chapter 5, where there is also a link to create the new
account. Otherwise the profile is created, and the message sent.

 This shows that we need to develop the following new pages:

 Default.aspx: lists categories and respective forums

 Forum.aspx: lists all topics in a selected forum

 Topic.aspx: displays a topic and its replies (in pages)

 PostMessage.aspx: posts a new topic or a reply to an existing topic

 MyProfile.aspx: creates or edits the user's profile

 Settings.aspx: enables the administrator to edit the module's settings online, without the need to manually edit
and upload the settings file.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 10 - Forums and Online Communities

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 We've already developed several modules throughout the book, and we know the path to follow. We start by
creating the database tables and the stored procedures, then we continue with the data and business classes, and
finish with the ASP.NET pages for the presentation layer. In practice, we'll follow exactly the order of the design
section. Much of the code required here is very similar to that of previous chapters, which was shown in great detail.
So we'll skip the discussion of the common code, and try to focus on the new stuff.

 Creating the Database Tables
 We create the tables and relationships, and set all relationships to enforce cascade updates and deletes - except for
the relationship between Forums_Replies and Forums_Members. This is because we already have a relationship
between Forums_Topics and Forums_Members, and one between Forums_Replies and Forums_Topics.

 When a member is deleted, all topics by that member are deleted, and all the replies of that topic are deleted as well.
SQL Server can't handle a cascade delete of the same row when rows from two different tables are deleted, which
would happen if we enforced a cascade update between Forums_Replies and Forums_Members. And exactly the
same applies for the cascade update. So, when a member is deleted its topics are deleted, the replies of those topics
are deleted, and we must ensure that the replies authored by that member for other topics are deleted as well. This
can be done using a DELETE trigger, created on the Forums_Members table as follows:

 CREATE TRIGGER DeleteForumsReplies ON [dbo].[Forums_Members]
 FOR DELETE
 AS

 DELETE Forums_Replies
 WHERE MemberID = (SELECT MemberID FROM Deleted)

 Deleting all records of a user is an extreme measure. In most cases we would prevent a user from accessing the site
by revoking all their permissions, but would leave their database entries intact.

 Creating the Views

 We now need to create views to add dynamically calculated columns, and create standard joins between tables.

 The v_Forums_Forums View

 This view joins the Forums_Categories and Forums_Forums table to return rows with information on the forums and
their parent category as well. It also adds these calculated columns:

 ForumTopics: the total number of topics for the forum

 ForumPosts: the total number of posts (topics + replies) for the forum

 LastPostDate: the date when the last post for the forum was added

 Here's the code used for this view:

 SELECT Forums_Categories.CategoryID, Forums_Categories.CategoryName,
 Forums_Categories.CategoryImageUrl,
 Forums_Categories.CategoryPosition, Forums_Forums.ForumID,
 Forums_Forums.ForumName, Forums_Forums.ForumDescription,
 Forums_Forums.ForumPosition,
 (SELECT COUNT(*)
 FROM Forums_Topics
 WHERE Forums_Topics.ForumID = Forums_Forums.ForumID) AS ForumTopics,
 (SELECT COUNT(*)
 FROM Forums_Topics
 WHERE Forums_Topics.ForumID = Forums_Forums.ForumID) +
 (SELECT COUNT(*)
 FROM Forums_Replies
 WHERE Forums_Replies.ForumID = Forums_Forums.ForumID) AS ForumPosts,
 (SELECT MAX(AddedDate)
 FROM (SELECT ForumID, AddedDate FROM Forums_Topics
 UNION ALL
 SELECT ForumID, AddedDate FROM Forums_Replies) AS dates
 WHERE dates.ForumID = Forums_Forums.ForumID) AS ForumLastPostDate
 FROM Forums_Categories INNER JOIN Forums_Forums
 ON Forums_Categories.CategoryID = Forums_Forums.CategoryID

 Except for the join between the two tables, it's pretty simple. The interesting thing is the code that calculates the other
dynamic column. Let's see the code piece by piece. Here's the SQL that counts the topics for the forum:

 (SELECT COUNT(*)

 FROM Forums_Topics

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 10 - Forums and Online Communities

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 In this chapter we've built a forums system from scratch. We've seen how to integrate other modules such as the
Core and the Accounts modules, as well as ASP.NET's built-in authentication. Our Forums module supports multiple
categories and sub-forums, displays topics and replies through custom pagination, enforces the user currently
registered to the site to also create a forums' profile with their username, signature, avatar, and homepage, and
supports or prevents the use of HTML code and other special tags.

 We've written quite a lot of code to fuel the discussion board system. Below we just list the most important
techniques that this chapter should have taught you:

 Creating nested data bound controls: in the Default.aspx page we showed how to create a DataGrid inside a
DataList to represent a parent-child relationship.

 Custom implementation of the Delete command for the DataList and DataGrid in Default.aspx, namely the
JavaScript popup box that asks for a confirmation and calls __doPostBack to generate an event on the
server.

 How to implement the DataGrid's custom pagination, by using a stored procedure that returns the specified
page of records, the DataGrid's AllowCustomPaging property, and custom controls to navigate through the
pages.

 Using regular expressions and the RegEx class to extract and replace string patterns.

 However, we've really only scratched the surface of the features we could implement for a professional forum. Below
we list some of the features they offer, in case you want to enhance our module with some more advanced
functionality:

 Email notification of forum activity, or even e-mail message digests - eventually we could integrate the web
forum with an e-mail discussion list.

 Add some kind of preview or revision system for users to edit their own messages.

 Banning certain words, and using regular expressions to replace them with acceptable alternatives.

 An administration console, that allows administrators to browse members, edit their profiles, or ban them
from the forum.

 A feature that allows moderators to move a topic to another forum.

 Threaded discussions, where it is possible to follow a particular thread within a topic, rather than seeing all
messages arranged by date.

 Allow all users to submit topics for approval.

 Allow users to see what forums contain the current hot topics, where a hot topic is one that has been posted
to most frequently in a given time period. This generates cross-forum interest.

 Private forums, where only restricted members can read and post messages.

 We've now implemented all of the modules for our website, and in the next chapter will look at how we can deploy it
as a live site.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 11 - Deploying the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 11: Deploying the Site
 Overview
 Now that we have developed our website, we need to deploy it - prepare and distribute the site so that users can
access it.

 The release of ASP.NET forces us to reconsider many preconceptions about the deployment of websites. For
example, we need to get used to the possibility of running multiple copies of the same site on a single server, sharing
different versions of identically named DLLs. Another thing that developers might find incredible is XCopy
deployment, which allows a developer to deploy an application by simply copying files to the target location. There's
no need to use the Registry or any complex COM registration.

 In the past, deploying a large-scale web application could become a nightmare. Most enterprise web sites were
comprised of dozens (or more) COM and COM+/MTS components. Maintaining the information on all of those
components in the Registry and making sure that the information was updated properly when upgrading to a new
version was an incredibly difficult task. ASP.NET allows entire websites to be configured with simple XML text files,
and components to automatically register themselves in COM+. There's no need to look to the registry for anything in
deployment of ASP.NET, completely alleviating one of the biggest ASP deployment headaches.

 This chapter will discuss the general issues surrounding the deployment of ASP.NET websites and the various
approaches we can take. We will describe the deployment techniques we used for ThePhile.com.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 11 - Deploying the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Problem
 Our problem for this chapter is deploying our fully functional website to our production server.

 It is a common practice to develop a site on a development server, then deploy to a staging server, and finally after
a successful test on the staging server, deploy to the production server. We want a solution that will allow us to
deploy the entire functioning site to a production server. However, we also want to be able to easily deploy the code
to multiple machines so that we can test it in various scenarios. In our solution, our production server is hosted by
Wrox, but it could just as easily be a segment of disk space allocated to us by a website hosting company.

 So, in this chapter we want to explore the various ways we can deploy ASP.NET websites and then choose the one
that best suits our needs. The chapter will provide some useful information about ASP.NET deployment that will help
decide which method is most appropriate for different organizations.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 11 - Deploying the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Design
 There are two parts to deploying the website: the database and the application. First of all, we will discuss how to
deploy the database. Then we will move on to look at the web application itself.

 Deploying the Data Store
 A data store for a website can be anything from a set of XML files or simple Access database, to a complex SQL
Server or Oracle database. Each of the website deployment options has a different set of limitations and advantages
for database deployment. However, since database deployment is an important topic all on its own, we'll discuss it
here rather than split up the discussion among the different installation scenarios.

 Deploying a database is easiest when we own the machine to which it needs to be deployed. We can use whatever
deployment scenario is most convenient for copying our particular data store. For SQL Server or Oracle there are
several options, including:

 Making a backup of the development database and restoring from that backup on another machine.

 Transferring data structures and data between linked servers in some fashion, perhaps using script files.

 We often don't fully control the database server. Web hosting companies often set up a single database with a certain
quota of disk space, for example. In situations like this, our options are more limited. We probably can't restore from
a backup, because we won't have access to Enterprise Manager against the host's database servers. Even if we do
have access to Enterprise Manager, we might not have the right permissions to perform a database restore. In these
cases, we are limited to using text queries to create the data structures and load the data.

 For an Access database, the file just needs to be copied to a certain directory and the file is deployed. It doesn't
matter what server access we have. This does pose a serious danger: if an unwanted intruder happens to find out that
your Access database is available in a public internet directory, they'll be able to download it. You'll want to keep the
MDB file somewhere non-obvious and preferably in a private location, so that only code from your application can
access the file.

 Consult your SQL Server, Oracle, or Access manual for the various options available for transferring your
database from your development PC to a deployed production environment.

 For automated deployment, where we create an installation program for our website, we have another option. We
can take the scripts that recreate the data structures required for the application, and can have our installer execute
them at install-time, guaranteeing that the data structures will be available before the application is run for the first time.

 Preparing the Site for Deployment
 There are three main scenarios that we will consider for deploying our ASP.NET website:

 XCopy deployment

 A specialized type of XCopy deployment for deploying a website to a hosted server that we have little
control over

 Using Visual Studio .NET to create an installation program that will perform the installation and deployment
process automatically

 While there are a great number of variations in the ways to deploy an ASP.NET website, all of them will derive from
a combination of the above three. We will discuss each of these methods in detail and explain the benefits and
drawbacks of each, and then apply that information to our situation in terms of deploying ThePhile.com.

 The following diagram shows a sample website directory structure. It includes a list of some DLLs that the sample
application might be using. The directory structure contains everything that is required to run the application, except
the database. There are no Registry entries to be made:

 During development, the folder structure will not be this neat. In fact, things can get downright messy. In ThePhile's
development folder, we have many copies of the same DLL and source code for all classes, even supposedly secret
business and data layer classes. Deploying all this would waste our disk space and pose a security risk. We should
only deploy the files required to execute the application - one copy of each DLL, and only source code for classes
that compile on the fly.

 Visual Studio .NET enables us to copy a web project to a new location. While at first it might not appear all that
beneficial to copy a web project, there is a subtle feature that comes in extremely handy. On the Copy Project dialog
box, accessible from the Project menu, there is a radio button that allows us to exclude source code files from the
destination copy of the application. Choosing "Only files needed to run this application" when copying the project
creates a copy of the entire solution, without the source code files. This includes all supporting assemblies (which will
be copied to the \bin directory), all .aspx pages, all .ascx controls, and all .asmx files, as well as all images and other
non-code items associated with the project. This copy can then be used as the source for all of the deployment
options that we will discuss in this chapter.

 If we are copying to a location that has not been set up as a web folder, Visual Studio .NET will do everything it can
to create the new site. If the site already exists, make sure that its FrontPage extensions are configured properly to
allow Visual Studio .NET to make whatever changes are necessary.

 Once we have created a 'clean' copy the website, we can carry out one of the available deployment options.

 In fact, using this method we can create a clean copy on our host's machine in one go - we just need to ensure that
the host is running FrontPage Extensions.

 Manual (XCopy) Deployment
 XCopy deployment is a painless way to install .NET software. It gets its name from a DOS command for copying
whole folders, including its subfolders, to a different location. In DOS this was often all you needed to do to install
software in new locations - create an exact copy of the folder structure. Because of COM component registration,
and other OS complications, this often doesn't work in Windows. .NET brings the facility back.

 In the case of ASP.NET, when a codebehind class or an ASP.NET page makes a request involving an external
assembly, that request is directed to the web application's \bin directory.

 When using Visual Studio .NET to build a web application, compiled codebehinds will be placed in a file called
Web.dll, which will be placed in the \bin directory. Therefore when ASP.NET handles a request for a page with a
codebehind class, that class is obtained from the Web.dll file.

 With XCopy, we only need to copy all of the files from the 'clean' application directory and all related subdirectories
to the deployment location and the application is deployed.

 The benefit of the XCopy approach is that it is incredibly simple, quick, and relatively painless. The downside is that
it is manual. We end up deploying websites by manually dragging and dropping folders and files. If you are in control
of both your clean application and the machine you are deploying to, this approach is fine. If you plan on bundling
your site for distribution to a wider audience, this approach might not be suitable and you may instead have to build a
deployment project in Visual Studio .NET. This latter approach is the one we took when deploying ThePhile.com,
and is described in the Solution section.

 When using XCopy there is one extra thing that must be done. XCopy only copies the files. In order for the newly
deployed web application to work properly, we need to make sure that IIS has been configured properly.

 Configuring IIS for your Application

 Although we've hyped XCopy deployment, in ASP.NET it is not an entirely hands-free process. We can't simply
copy our files to a directory and expect the directory to magically become a web application. We still need to
configure IIS to replicate our local configuration. In some cases you won't have direct access to IIS and will need to
communicate your needs to the host's IT staff. If this is the case, knowing the IIS issues will make it far easier to
explain what you need.

 To get a web application working properly, we need an IIS application to be running and serving HTTP requests for
the application's virtual directory. The IIS Virtual Directory Creation Wizard can help do this.

 Here we will set up a folder in IIS that will allow us to deploy by XCopy. First, open up the Internet Services
Manager console. Expand the node for your computer, select the "Web Sites" node, and choose "New | Virtual
Directory" to start this wizard.

 From there, you will be prompted for an alias name (for example, ThePhile or MyApp) for the virtual directory. Then
you will be asked for the physical directory to which the virtual directory should point. This will be where you
manually copied your directory structure, or an empty directory if you are going to copy the files in later. Select the
folder to which you copied your 'clean' website and proceed to the next step. Here you specify what permissions you
would like to create for the application. Leave the checkboxes set at their default values: only read and script (ASP)
execution should be allowed. These permissions are sufficient to run an ASP.NET website.

 If you already have a web application created for this website, and you want to deploy to the existing IIS application,
the procedure varies slightly. First, you still need to make sure that you have a clean deployment source, with no
legible source code in it. Secondly, you should delete any existing files in the web application. If you created a virtual
directory with IIS, or if you created a web application using VS .NET, there will be some default 'clutter' in the
directories that you can get rid of before copying your files into the directory. From there, your web.config file will
take care of the rest of the administrative tasks for your web application. With ASP.NET you no longer have to
worry about other kinds of configuration methods, because all required settings are controlled by web.config.

 Deploying to a Hosting Service
 We do not all work for large corporations that can provide Internet connectivity, bandwidth, databases, and servers
capable of hosting the .NET Framework and storing web pages. In these cases a hosting service comes in handy.

 The Visual Studio .NET start page contains a link to a current list of participating .NET web hosting services. There
are standard and premier services listed here. The standard services usually provide a web application, some limited
storage space, and possibly some data access method. Premier services often offer e-commerce initiatives, larger
disk space allowances, dedicated servers, and other services more useful to businesses than individual programmers.
Premier services also tend to give us more control over the web and database server configurations.

 Each will vary in the services they provide, the fees they charge, and the methods they support for updating the
website. It's a good idea to prepare for the least amount of supported functionality in order to make your deployment
plan flexible, just in case you have to suddenly change providers (a surprisingly common event).

 The first thing we need is a 'clean' version of the website to be deployed. As discussed earlier, this means either
manually removing sensitive source code from the web directories, or using the project copy feature in Visual Studio
.NET to do this for us.

 Typically, the hosting services will provide a single web application to do with as we please. For example, we might
end up with a web application running at www.hostingcompany.com/myapp. If the web hosting company also
provides DNS resolution, we might be able to get that particular application to be the destination for an address, for
example www.myapplication.com.

 To deploy an application to a hosting service, we follow the typical XCopy model, except that the destination
machine is not our own, and is often an FTP site provided by the web hosting company. This works fine, allowing us
to copy our files as we please. The two main differences between standard XCopy deployment and deploying to a
web hosting company are:

 With XCopy deployment, we control our own IIS configuration manually. By deploying to a web host, the
web host is in control of the IIS configuration and any changes to our application's IIS configuration often go
through their technical support department.

 When using traditional XCopy deployment, we can use Visual Studio .NET to develop directly against the
web application. However, with a web hosting company, FrontPage extensions may not be available, so we
have to use VS .NET to develop the solution in an offline fashion and then FTP the files to the server later.

 Before deciding on a particular web hosting company, read as much technical information about the process by
which pages get uploaded to the site, their technical support policy, and any uptime guarantees they may have. Do not
put a critical application on a web-hosting site unless they guarantee a reasonable level of uptime.

 Because the technical support department controls our site's configuration, always check it before agreeing to
anything. Check references, and if possible get information from other people currently running applications on their
site. When looking for a hosting service, you should check out what kind of access you would have to your database
(for example, if they allow Enterprise Manager), and what kind of application control you would have (for example,
will they allow you to have more than one application or must you run everything from the same root application?).

 Another thing to consider are the resources that your application will use. If you're designing your application with
deployment to a third party server in mind, there are some design and architecture decisions that you might want to
consider. Resources are generally limited or entirely restricted in availability on hosting servers. For example, most
applications will typically not have access to the Event Log. Even if the application has access to it, you won't, so you
would be unable to see the results of your application's log. In cases like this, you'll want to design your code to
require the least amount of environment-specific resources so that you can be prepared for deployment to a variety of
environments.

 Automated Deployment (Building Installers)
 Automated deployment is obviously the preferred solution, but it isn't always available. If you have built a web site to
sell to a client, those clients need to easily install the site on their own servers. For example, if you have developed a
support call center application using ASP.NET and are selling that application, you will need some robust,
easy-to-use way for the clients to install and set up that application.

 In the past, this was accomplished by using a tool such as InstallShield or WISE Installmaster. These tools would
allow you to create scripts that dictated which files were copied during the installation. They also registered COM
components and handled creation of COM+ applications. These tools are complex and take some time to fully
master their use.

 Visual Studio .NET provides a built-in method for creating installation programs. Visual Studio .NET allows us to
create CAB files, self-installing executable files and even MSI files for use with the Microsoft Windows Installer
package. While using these installers is a good solution and helpful, it only works if you actually have access to the
console of the server on which you're installing the application. This pretty much rules out this method for building
deployment scenarios to web hosting companies, but is still an excellent idea for providing shrink-wrapped software
to clients or departments within a company.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.hostingcompany.com/myapp
http://www.myapplication.com

Chapter 11 - Deploying the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

The Solution
 Wrox Press will host the final version of ThePhile.com, so we do not need to enlist the services of a web hosting
company. This makes a deployment project in Visual Studio .NET an appropriate choice. We will create two - one
with the source code and one without.

 In this section we'll cover indepth the steps involved in creating a deployment project for ThePhile.com, which will
result in a Windows Installer file to distribute for deploying ThePhile.

 First, we open up Visual Studio .NET and choose the option to create a new project. Then we highlight the Setup
and Deployment Projects option in the left pane, and the right pane shows the following options:

 The following are the different types of setup and deployment projects available:

 Setup Project - this will create a blank installation project. It will be up to us to choose all of the various
activities and files for the installer. This is typically recommended for those programmers who know ahead of
time what activities need to be performed and which files need to be copied.

 Web Setup Project - this is similar to the blank Setup Project, except it comes with a few settings and
directories already created to guide us in the right direction for installing a website.

 Merge Module Project - this is a slightly more advanced project for creating merge modules for use with
the latest versions of the Windows Installer. Merge Modules are an advanced technique that we won't discuss
here.

 Setup Wizard - this is basically a frontend to all of the other project types. We will choose this one - it's
easy and it guides us step-by-step through creating the appropriate type of setup project.

 Cab Project - this project builds a Windows installation cabinet file. This is another advanced technique.
Find out more on Cabinet files in the .NET Framework SDK and Windows documentation.

 For our purposes, we're going to create a new project called ThePhileSetup, using the Setup Wizard option. We
enter our new project's filename and click OK. Once we've done this, we're presented with a dialog that looks like
this:

 The Setup Wizard guides us through creating a new setup project. It asks a couple of user-friendly questions, and
then creates a variety of blank template projects that we can expand as needed. The previous dialog asks whether the
setup is for a Windows application, a web application, a merge module, or a downloadable CAB file. These options
should look familiar from the New Project panel. We'll choose web application and click Next. After Visual Studio
.NET does some initial setting up, we're presented with a Project view:

 This is the File System view of the deployment project. It is actually quite intuitive - it shows the state of the file
system we would like to exist after the installation. In our case, once the installation is over we want to place the
above directory structure under a web application created in the Web Application Folder. The main benefit of using
Visual Studio .NET's deployment projects, beyond the ease of use, is that we don't have to leave Visual Studio .NET
to create the setup projects. The beauty of this model is that we only need to create an image of our final destination
in the File System tab. To do this, we drag and drop directories and files into the file system tree and it's ready to go.

 The setup project designer is far more powerful than it might first appear. If you right-click the project itself and
choose View, you will be able to modify all kinds of details about the deployment project. This includes the user
interface, registry settings, and much more. For example, the following screenshot shows the top left corner of a
window for editing the user interface tree of a deployment project:

 As you can see, the interface is incredibly easy and straightforward to understand. There are two sets of user
interfaces, one for standard users and one for those users with administrative rights on the machine to which the
project is being deployed. You can also change views, program prompts, and embed commands in the deployment
project.

 In short, creating a deployment project is so amazingly easy in Visual Studio .NET that there is no reason not to use
this feature to its fullest. Unless you already own, and are extremely proficient in, another third party installation tool,
this method is the best. Visual Studio .NET can automatically 'build' your project, resulting in an MSI file or a CAB
file. This used to be a black art, but Visual Studio .NET illuminates it.

 When we've created our two projects (one with source, one without), building them will result in two files:
ThePhileSetup.msi and ThePhileSourceSetup.msi. The first file will deploy the entire website without any source code.
The second file will deploy the website complete with source code, plus a Visual Studio .NET client solution file and
project file.

 To launch the installation program we just created, double-click the MSI files. This assumes that you have the latest
version of the Windows Installer on your machine. If you are deploying to a location that might not have the latest
installer, there is an option to package the installer itself with your MSI files when you build the installation projects.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 11 - Deploying the Site

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Summary
 We have seen how to deploy and install ASP.NET websites. We've discussed some of the issues that tend to arise
during deployment and the various options available for installation. After having read this chapter, you should be
familiar with the following types of deployment and their associated issues and concerns:

 XCopy deployment

 Deployment to a hosted environment

 Automated deployment using VS .NET deployment projects

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 12 - The End

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Chapter 12: The End
 This is the end of the book but it is not the end of the road. By now you should have played with the site, both by
browsing the code in Visual Studio .NET, and playing with the site on your local machine.

 You should also have seen how and why we built the site the way we did, and how to use those techniques on your
own website.

 Get Building
 The next step is to start building your site. This book will have given you a framework, and some modules to use or
modify. Now you will want to tailor our modules and pages to fit the needs of your site.

 We also hope that you will build your own modules in our framework. A lot of our design went into making it easy to
add new modules - we don't want it to go to waste! You will be able to link your modules to our central accounts
system, modify our header and footer controls, and so on. This book will provide a reference for building your own
modules employing similar techniques.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 12 - The End

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Join Our Community
 We don't want you to develop alone. This book will have its own forum at p2p.wrox.com where you can discuss it
with us and other readers. This is a great place to get help with problems, share ideas, and find out if other people
have written the module you need. Or you can just show off the sites you've developed! This service is free to all
readers.

 Through P2P, we hope to build up a list of the best websites built with the help of this book. If you do anything really
impressive, we might even ask you to write a book about it!

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 12 - The End

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Read More
 This book has touched on a large number of subjects: web services, server controls, security, ADO.NET, and more.
If you want to find more about any of these subjects, there are several Wrox books that will help.

 Web Services

 This book has presented a couple of very simple web services. Professional ASP.NET Web Services contains lots
of detailed information on web services and how to develop them. It looks at a variety of issues, including how XML
is used to transmit the data, how to send complex data types, and how to ensure web services support thousands of
users.

 Security

 Our site uses the extensibility of the ASP.NET security framework to give us a flexible accounts system.
Professional ASP.NET Security delves deeper into these topics, showing how we can build our own custom
security frameworks. It also contains many tips on ensuring code is secure.

 ADO.NET

 Data access and manipulation have played a major part in developing our website. Efficient use of databases is one
of the best things we can do to ensure performance and scalability. Professional ADO.NET covers a wide range of
data handling techniques, while Professional SQL Server 2000 gives information on setting up and using SQL Server
in the most effective way.

 Professional Server Controls

 Our site uses server controls in a number of places. Building good controls puts us in an excellent position to reuse
functionality and save development effort. Professional ASP.NET Server Controls looks at how to build solid,
reusable and flexible controls for your ASP.NET projects.

 We hope that you have enjoyed this book, and that it will prove useful as you develop ASP.NET websites.

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 A Guide to the Index

 The index is arranged hierarchically, in alphabetical order, with symbols preceding the letter A. Most second-level
entries and many third-level entries also occur as first-level entries. This is to ensure that users will find the information
they require however they choose to search for it.

 Symbols
#region meta-command
regions of code, 296
 .NET Framework
security, 145
 identity object, 145
 principal object, 145
 user authentication, 145
 XCopy deployment, 507
 __doPostBack function
categories and forums page, 467
 directories, creating, 104
 text files, creating, 107
 3-layer design of website
business services tier, 11
 data services tier, 11
 user interface, 11

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 A
Access database
database deployment, 505
 accounts
see user accounts.
AccountsTool class
business services tier, 174
 data services tier, 163
 Activate method
ServicedDbObject class, 39
 Add method
Attachments collection, 415
 Cookies collection, 343
 News class, 220
 Add Web Reference option
news ticker web service client, 270
 Poll web service client, 378
 AddNews method
Category class, 229
 address, validating
CustomValidator control, 422
 problems with, 423
 regular expressions, 420
 RegularExpressionValidator control, 420
 AddTopic method
Forum class, 462
 AdMaster class
business services tier, 293
 data services tier, 287
 DbObject base class, 287
 AdminFooter control
categories manager page, 240
 news management, 233
 online polls, 344
 question manager page, 350
 user controls, 231
 AdminHeader control
categories manager page, 235
 news management, 232
 online polls, 344
 question manager page, 346
 user controls, 231
 administration, 13
 advert details page, 302
 advertising admin page, 299
 advertising on the web, 299
 categories and forums page, 466
 mailing lists, 419
 Form Wizard, 429
 settings, modifying, 428
 settings, storing and retrieving, 428
 new advert page, 304
 news management, 230
 settings, modifying, 254
 online polls, 343
 settings, modifying, 356
 option manager page, 354
 question manager page, 345
 user accounts, 180
 role editor, 180
 AdRotator control
advertising on the web, 279
 limitations, 279
 SiteFooter control, 298
 user interface, 283
 using, 279
 XML files, 279
 synchronizing entries between database and XML file, 291
 advert details page
administration, 302
 DropDownList control, 304
 pre-populated web form, 302
 Advertisement class
business services tier, 294
 data services tier, 289
 information aggregation, 289
 synchronizing entries between database and XML file, 291
 updating XML file, 292
 XPath, 295
 advertisement spots
newsletter, 386
 advertising admin page, 299
 DataGrid control, 300
 advertising on the web, 277
 administration, 299
 advert details page, 302
 advertising admin page, 299
 new advert page, 304
 AdRotator control, 283
 business services tier, 293
 AdMaster class, 293
 Advertisement class, 294
 data services tier, 287
 AdMaster class, 287
 Advertisement class, 289
 problems with two data stores, 283
 database design, 281
 AdsManager_Advertisements table, 284
 AdsManager_Clicks table, 285
 AdsManager_Companies table, 285
 AdsManager_Impressions table, 285
 stored procedures, 285
 warehousing data, 281
 designing advertising modulee, 279
 Header control, 54
 hits, 278
 impressions, 277
 module configuration, 306
 problems and solutions, 284
 requirements, 278
 ThePhile.com, 297
 user interface, 297
 AdRotator control, 283
 pass-through page, 297
 SiteFooter control, modifying for advertising, 298
 aliases for table names
stored procedures, 151
 AllowCustomPaging property
DataGrid control, 479
 AllowPaging property
DataGrid control, 301
 AllowVote property
Question class, 341
 anonymous users
user identity, 136
 AppExeeption base class, 41
 deriving from ApplicationException class, 41
 exception handling, 54
 LogEvent method, 66
 ApplicationException class
converting to AppException base class, 41
 System namespace, 41
 architectural requirements, website, 18
 Array class
IndexOf method, 92
 arrays
compared to XML files, 113
 ASP.NET
AdRotator control, 279
 deploying website, 503
 dynamic output caching, 258
 problems with, 366
 ASP.NET websites
see websites.
Assembly attribute
Register directive, 70
 associate table
see linking table.
atomicity
transactions, 215
 Attachments collection
Add method, 415
 MailMessage class, 415
 Attributes property
DirectoryInfo class, 118
 FileInfo class, 118
 attributes, displaying
FileManager web application, 89
 displaying item attributes, 92
 displaying item creation and modification dates, 97
 displaying item icon, 90
 displaying item size, 95
 attributes, modifying
client-side JavaScript, 118
 FileManager web application, 118
 authentication, 79
 Forms-based authentication, 137
 Passport authentication, 79
 PhilePage class, modifying, 175
 SiteHeader control, 65
 modifying to support authentication, 176
 user identity, 135
 .NET Framework, 145
 extending .NET Framework, 145
 UML case diagram, 136
 user interface
Login page, 177
 modifying to support authentication, 175
 user profile page, 177
 Windows authentication, 79
 automated deployment
Cab project, 511
 database deployment, 505
 deploying website, 510
 installers, 510
 Merge Module project, 511
 Setup project, 511
 Setup Wizard, 511
 Visual Studio .NET, 510
 Web Setup project, 511
 AutoPostBack property
DropDownList control, 355
 RadioButton web control, 246
 availability
data services tier, 29

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 B
backup system, database design, 28
 base class for tier
business services tier, 40
 data services tier, 34
 BinaryReader class
System.IO namespace, 80
 BinaryWriter class
System.IO namespace, 80
 BindGrid method
categories manager page, 240
 Forum page, 481
 news manager page, 250
 question manager page, 351
 Topic page, 488
 BindList method
categories and forums page, 472
 BindTopicControls method
Topic page, 489
 BizObject base class, 40
 BoundColumn
DataGrid control, 350
 branding
Header control, 54
 BrowseFiles web form, FileManager web application, 83
 FillFoldersAndFilesTable procedure, 123
 FormatSize procedure, 96
 GetAttributesDescription procedure, 94
 GetDirectorySize procedure, 95
 Rename procedure, 117
 BuildIntCommand procedure
DbObject base class, 35
 BuildQueryCommand procedure
DbObject base class, 36
 business services tier, 30
 3-layer design of website, 11
 advantages, 30
 advertising on the web, 293
 building, 30
 classes
AccountsTool class, 174
 AdMaster class, 293
 Advertisement class, 294
 base class for tier, 40
 Category class, 228
 Forum class, 459
 Helper class, 463
 List class, 398
 News class, 225
 Newsletter class, 414
 Option class, 325
 PhileIdentity class, 167
 PhilePrincipal class, 164
 Question class, 339
 Role class, 172
 Subscription class, 411
 User class, 170
 forums, 449
 mailing lists, 410
 maintainability, 30
 modifying settings, 404
 news management, 225
 UML diagram, 201
 online polls, 339
 separation
mailing lists, 398
 user accounts, 164
 XPath, 295
 Button web control
CausesValidation property, 354
 modifying settings online, 357
 news ticker web service client, 271
 Poll web service client, 378
 question manager page, 354
 ButtonColumn
CommandName property, 480
 DataGrid control, 479

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 C
Cab project
automated deployment, 511
 Cache class
Insert method, 368
 Remove method, 368
 caching
dynamic output caching, 258
 problems with, 366
 using with Poll user control, 367
 camel casing convention, 22
 cascading stylesheets
see CSS.
categories and forums page
adding categories, 473
 administration, 466
 BindList method, 472
 code-behind page, 472
 DataGrid control, 470
 DataList control, 468
 DataView method, 472
 deleting categories, 475
 editing categories, 473
 Footer control, 475
 Forum menu, 468
 hacking, preventing, 475
 Header control, 475
 code-behind page, 476
 HyperLink control, 476
 Label control, 476
 JavaScript functions, 466
 _doPostBack function, 467
 user interface, 466
 working with forums, 475
 Categories class
data services tier, 199
 categories manager page
AdminFooter control, 240
 AdminHeader control, 235
 BindGrid method, 240
 code-behind file, 240
 creating category, 243
 DataGrid control, 237
 deleting category, 243
 editing categories, 241
 Getlmage method, 241
 RequiredFieldValidator control, 237
 sorting categories, 241
 updating categories, 242
 user interface, 234
 Category class
AddNews method, 229
 business services tier, 228
 GetCategories method, 229
 GetHeadlines method, 230
 GetNews method, 229
 CategoryDatails class
data services tier, 199
 CausesValidation property
Button web control, 354
 character classes
regular expressions, 421
 character escapes
regular expressions, 421
 CheckBox control
Checked property, 350
 modifying settings online, 357
 question manager page, 345
 used byTemplateColumn, 350
 Checked property
CheckBox control, 350
 RadioButton web control, 350
 child options, managing
Question class, 339
 choose project type dialog
Setup Wizard, 511
 client properties, web services
Timeout property, 381
 Url property, 381
 client-side code
compared to server-side code, 185
 client-side JavaScript
attributes, modifying, 118
 directories, creating, 103
 files, copying or moving, 125
 files, deleting, 122
 renaming files and directories, 115
 text files, creating, 107
 coding conventions
see naming and coding conventions.
COM+
object construction, 39
 COM+/MTS ServicedComponent
ServicedDbObject class, 38
 CommandEventArgs object
CommandName property, 481
 CommandName property
ButtonColumn, 480
 CommandEventArgs object, 481
 communities
see online communities.
community building for website, 135
 see also online communities.
user identity, 135
 authentication, 135
 user accounts, 135
 user-friendliness, 136
 CompareValidator control
ControlToValidate property, 255
 modifying settings online, 358
 news management administration
settings, modifying, 255
 Type property, 255
 Construct method
ServicedDbObject class, 39
 ConstructionEnabled attribute
ServicedDbObject class, 40
 content
mailing lists, 385
 news management, 191
 designing news management tool, 192
 problems and solutions, 208
 targeted content, 386
 spam, avoiding, 386
 websites, 14
 Control class
Render method, 63
 Server controls inherit from, 62
 System.Web.UI namespace, 62
 controls, website design, 11
 ControlToValidate property
CompareValidator control, 255
 RequiredFieldValidator control, 237
 Convert class
ToBoolean method, 350
 cookies
Forms-based authentication, 137
 preventing or allowing multiple voting, 313
 user identity, 136
 Cookies collection
Add method, 343
 Copy method
File class, 127
 Create method
Forum class, 461
 News class, 228
 Create Retrieve Update Delete functionality
see CRUD functionality.
creation date of Item, displaying
FileManager web application, 97
 CreationTime property
Directorylnfo class, 97
 Filelnfo class, 97
 cross-browser compatibility
role editor, 185
 server-side code, 185
 cross-site scripting
forums, 440
 problems with, 440
 CRUD functionality
User class, data services tier, 151
 CSS (cascading stylesheets)
code listing, 55
 compared to XSLT, 50
 display classes, 55
 navigation control, 58
 user interface, designing, 55
 user interface, home page, 71
 CurrentPageIndex property
DataGrid control, 252
 CustomValidator control
e-mail address, validating, 422

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 D
data binding
role editor, 182
 user profile page, 179
 data services tier, 29
 3-layer design of website, 11
 advantages, 29
 advertising on the web, 287
 problems with two data stores, 283
 availability, 29
 building, 29
 classes
AccountsTool class, 163
 AdMaster class, 287
 Advertisement class, 289
 base class for tier, 34
 Categories class, 199
 CategoryDetails class, 199
 ListDetails class, 394
 Lists class, 395
 News class, 216
 NewsDetails class, 200
 NewsletterDetails class, 396
 Newsletters class, 396
 OptionDetails class, 320
 Options class, 321
 Permission class, 160
 PermissionCategory class, 162
 QuestionDetails class, 319
 Questions class, 319
 Role class, 157
 SubscriptionDetails class, 395
 Subscriptions class, 395
 User class, 151
 CRUD functionality, 151
 VoteDetails class, 321
 Votes class, 321
 forums, 458
 information aggregation, 289
 mailing lists, 410
 maintainability, 29
 news management, 216
 UML diagram, 199
 online polls, 337
 performance, 30
 scalability, 29
 storing and retrieving settings, 397
 synchronizing entries between database and XML file, 291
 updating XML file, 292
 user accounts, 151
 data warehousing
see warehousing data.
database deployment
automated deployment, 505
 deploying website, 504
 database design
advertising on the web, 281
 AdsManager_Advertisements table, 284
 AdsManager_Clicks table, 285
 AdsManager_Companies table, 285
 AdsManager_Impressions table, 285
 stored procedures, 285
 backup system, 28
 forums, 453
 Forums_Categories table, 442
 Forums_Forums table, 442
 Forums_Members table, 445
 Forums_Replies table, 444
 Forums_Topics table, 443
 stored procedures, 456
 hardware, 28
 linking table, 314
 mailing lists, 406
 MLists_History table, 391
 MLists_Lists table, 389
 MLists_Subscriptions table, 390
 MLists_Users table, 389
 optional information, 390
 separating from user accounts database, 389
 stored procedures, 406
 network topology, 28
 news management, 208
 News_Categories table, 194
 News_News table, 195
 stored procedures, 211
 online polls, 330
 Polls_Options table, 316
 Polls_Questions table, 315
 Polls_Votes table, 316
 stored procedures, 333
 permissions, 137
 relationships between database tables, 332
 roles, 137
 scalability, 28
 security, 28
 Server Explorer, 330
 ThePhile.com, 28
 triggers, 453
 user accounts, 149
 separating from mailing list database, 389
 stored procedures, 150
 users, 137
 views, 453
 warehousing data, 281
 website design fundamentals, 27
 database management, website, 77
 Enterprise Manager, 77
 T-SQL statements, 77
 Web Data Administrator, 132
 database views
see views.
DataBind method
DataGrid control, 302
 DataList control, 181
 DropDownList control, 355
 Headlines control, 264
 Page class, 365
 Poll user control, 365
 Repeater control, 374
 DataBinder class
Eval method, 239
 DataGrid control
advertising admin page, 300
 AllowCustomPaging property, 479
 AllowPaging property, 301
 BoundColumn, 350
 ButtonColumn, 479
 categories and forums page, 470
 categories manager page, 237
 compared to DataList control, 360
 CurrentPagelndex property, 252
 DataBind method, 302
 DataKeyField property, 237
 DataKeys property, 483
 DataSource property, 470
 EditCommandColumn, 348
 Editltemlndex property, 351
 Forum page, 478
 Headlines control, 263
 HyperlinkColumn, 479
 ItemCommand event, 301
 managing newsletters archive, 427
 news manager page, 246
 news ticker web service client, 271
 option manager page, 355
 PagelndexChanged event, 302
 PagerStyle, 301
 Poll web service client, 378
 question manager page, 348
 showing abstracts page, 259
 TemplateColumn, 485
 Topic page, 485
 DataGridItem class
FindControl method, 242
 DataKeyField property
DataGrid control, 237
 DataKeys property
DataGrid control, 483
 DataList control
categories and forums page, 468
 compared to DataGrid control, 360
 DataBind method, 181
 DataSource property, 181
 HeaderTemplate, 469
 ItemTemplate, 471
 Poll user control, 365
 RepeatColumns property, 360
 showing categories page, 257
 templates supported by, 360
 DataSet class
Relations collection, 37
 DataSource property
DataGrid control, 470
 DataList control, 181
 DropDownList control, 250
 Repeater control, 374
 DataTextField property
RadioButtonList web control, 360
 DataValueField property
RadioButtonList web control, 360
 DataView class
RowFilter property, 251
 Sort property, 351
 DataView method
categories and forums page, 472
 DbObject base class, 34
 AdMaster class, 287
 BuildlntCommand procedure, 35
 BuildQueryCommand procedure, 36
 converting to ServicedDbObject class, 38
 News class, 217
 RunProcedure procedure, 36
 Deactivate method
ServicedDbObject class, 39
 Delete method
Forum class, 462
 News class, 228
 deploying website, 503
 automated deployment, 510
 configuring IIS, 507
 copying web project without source code, 506
 database deployment, 504
 designing deployment, 504
 problems and solutions, 510
 shared hosting for website, 508
 XCopy deployment, 507
 deployment requirements, website, 20
 architectural requirements, 18
 logical requirements, 18
 physical requirements, 18
 de-serialization
XML files, 147
 development requirements, website, 32
 Direction property
SqlParameter class, 220
 directories, creating
client-side JavaScript, 103
 FileManager web application, 103
 directories, renaming
client-side JavaScript, 115
 FileManager web application, 115
 Directory class
does not have Copy method, 127
 Move method, 127
 System.IO namespace, 80
 directory structure
see folder structure.
DirectoryInfo class
Attributes property, 118
 CreationTime property, 97
 does not have length property, 95
 LastWriteTime property, 97
 System.IO namespace, 80
 discussion boards
see forums.
display classes
advantages of using, 55
 CSS (cascading stylesheets), 55
 Display property
RequiredFieldValidator control, 237
 <div> element
expanding or collapsing, 374
 downloading files
see files, downloading.
DropDownList control
advert details page, 304
 AutoPostBack property, 355
 DataBind method, 355
 DataSource property, 250
 new advert page, 305
 news manager page, 245
 news ticker web service client, 271
 option manager page, 355
 SelectedIndexChanged event, 356
 Duration parameter
OutputCache directive, 374
 dynamic output caching, ASP.NET, 258
 problems with, 366

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 E
EditCommandColumn
DataGrid control, 348
 EditFile web form
code-behind for, 110
 FileManager web application text file editor, 109
 RequiredFieldValidator control, 110
 EditItemIndex property
DataGrid control, 351
 e-mail address, validating
CustomValidator control, 422
 problems with, 423
 regular expressions, 420
 RegularExpressionValidator control, 420
 e-mail newsletter
see newsletter.
Enterprise Manager
website database management, 77
 Error event
Page class, 66
 error handling
see exception handling.
escape characters
see character escapes.
Eval method
DataBinder class, 239
 event handlers
PhilePage class, 66
 role editor, 183
 testing, 68
 exception handling
AppException base class, 54
 problems with, 40
 testing, 68
 user interface, designing, 66
 website design fundamentals, 31
 ExecuteNonQuery method
SqlCommand class, 36
 ExecuteReader method
SqlCommand class, 34
 extending website, 13
 Extensible Stylesheet Language Transformations
see XSLT.

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 F
fault tolerance
website design fundamentals, 31
 File class
Copy method, 127
 Move method, 127
 SetAttributes method, 121
 file management, website, 76
 FTP, 76
 online file manager, 77
 designing, 77
 FileManager web application Integrated Windows Security, 129
 File System view
Setup Wizard, 512
 FileInfo class
Attributes property, 118
 CreationTime property, 97
 LastWriteTime property, 97
 Length property, 95
 System.IO namespace, 80
 FileManager web application
client-side JavaScript, 125
 directories
creating, 103
 renaming, 115
 files
copying or moving, 125
 deleting, 122
 downloading, 99
 renaming, 115
 uploading, 101
 Footer control, 81
 Header control, 81
 Integrated Windows Security, 131
 Main Page, 82
 displaying additional attributes, 89
 listing folder contents, 84
 modifying attributes, 118
 text file editor, 109
 text files
creating, 107
 editing, 113
 files, copying or moving
client-side JavaScript, 125
 FileManager web application, 125
 files, deleting
client-side JavaScript, 122
 FileManager web application, 122
 files, downloading
FileManager web application, 99
 streams, using, 99
 files, renaming
client-side JavaScript, 115
 FileManager web application, 115
 files, uploading
FileManager web application, 101
 FileStream class
System.IO namespace, 80
 FileSystemWatcher class
System.IO namespace, 80
 FillFoldersAndFilesTable procedure
BrowseFiles web form, FileManager web application, 123
 FindControl method
DataGridltem class, 242
 flexibility, website design, 20
 user interface, 46
 folder contents, listing
FileManager web application, 84
 folder structure
namespace hierarchy and, 27
 website design fundamentals, 26
 folders
compared to namespaces, 24
 Footer control
AdminFooter control, 344
 categories and forums page, 475
 FileManager web application, 81
 SiteFooter control, 66
 user interface, designing, 54
 foreign keys
primary keys and, 209
 triggers, 211
 Form Wizard
creating subscription form, 429
 mailing list administration, 429
 FormatSize procedure
BrowseFiles web form, FileManager web application, 96
 Forms-based authentication, 79
 cookies, 137
 user identity, 137
 Forum class
AddTopic method, 462
 business services tier, 459
 constructors, 460
 Create method, 461
 Delete method, 462
 GetTopics method, 462
 handling child topics, 462
 handling variables, 460
 LoadFromID method, 460
 modifying forum records, 461
 ResetProperties method, 461
 Update method, 461
 Forum menu
categories and forums page, 468
 Forum page
BindGrid method, 481
 code-behind page, 480
 custom pagination, 481
 DataGrid control, 478
 deleting topics, 483
 GetAuthorText method, 482
 user interface, 478
 forums, 439
 business services tier, 449
 Forum class, 459
 Helper class, 463
 compared to online polls, 439
 cross-site scripting, 440
 data services tier, 458
 database design, 453
 Forums_Categories table, 442
 Forums_Forums table, 442
 Forums_Members table, 445
 Forums_Replies table, 444
 Forums_Topics table, 443
 stored procedures, 456
 triggers, 453
 views, 453
 designing, 440
 handling child topics, 462
 modifying forum records, 461
 module configuration, 458
 ModuleConfig class, 448
 ModuleSettings class, 448
 settings file, 459
 permissions, 465
 posting to, 440
 user profiles, 440
 problems and solutions, 452
 security, 475
 ThePhile.com, 440
 threaded discussions, 444
 user interface, 465
 categories and forums page, 466
 Header control, 475
 Forum page, 478
 MyProfile page, 497
 PostMessage page, 490
 Topic page, 483
 forums and categories page
see categories and forums page.
front-end
see user interface.
FTP
compared to online file manager, 77
 website file management, 76

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 G
GetAttributesDescription procedure
BrowseFiles web form, FileManager web application, 94
 GetAuthorText method
Forum page, 482
 GetCategories method
Category class, 229
 GetCurrent method
Question class, 340
 GetDetails method
News class, 218
 GetDetailsRow method
News class, 219
 GetDirectorySize procedure
BrowseFiles web form, FileManager web application, 95
 GetHeadlines method
Category class, 230
 News class, 218
 Getimage method
categories manager page, 241
 GetNews method
Category class, 229
 News class, 217
 GetOptions method
Question class, 339
 GetTopics method
Forum class, 462

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 H
hacking, preventing
categories and forums page, 475
 checking permissions, 475
 hardware, database design, 28
 Header control
AdminHeader control, 344
 advertising, 54
 branding, 54
 categories and forums page, 475
 code-behind page, 476
 HyperLink control, 476
 Label control, 476
 FileManager web application, 81
 SiteHeader control, 64
 user interface, designing, 54
 HeaderTemplate
DataList control, 469
 runat="server" attribute, 469
 Headlines control
DataBind method, 264
 DataGrid control, 263
 news management, 262
 plug-in headlines, 206
 testing, 264
 Headlines web service
news management, 267
 news ticker web service client, 270
 testing, 268
 WebService class, 268
 Helper class
business services tier, 463
 processing text into HTML format, 463
 ProcessSpecialTags method, 490
 hits
advertising on the web, 278
 definition, 278
 economics of, 278
 home page, user interface, 70
 CSS (cascading stylesheets), 71
 navigation control, 71
 Register directive, 70
 SiteHeader control, 71
 HTML controls, using in ASP.NET
runat="server" attribute, 101
 HttpContext class
System.Web namespace, 145
 User property, 435
 HttpRequest class
QueryString property, 487
 System.Web namespace, 342
 UrlReferrer property, 494
 UserHostAddress property, 342
 <httpRuntime> element
maxRequestLength attribute, 102
 Hungarian notation, avoiding, 23
 HyperLink control
Header control
categories and forums page, 476
 NavigateUrl property, 249
 TemplateColumn, 486
 Text property, 249
 HyperlinkColumn
DataGrid control, 479

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 I
Icon for item, displaying
FileManager web application, 90
 identifying users
see user identity.
identity object
.NET Framework security, 145
 identity property
IPrincipal interface, 164
 PhilePrincipal class, 146
 IgnoreCase value
RegexOptions enumeration, 464
 IIdentity interface
Phileldentity class, 167
 System.Security.Principal namespace, 167
 IIS
configuring for website deployment, 507
 Integrated Windows Security, 129
 Virtual Directory Creation Wizard, 507
 Image web control
ImageUrl property, 90
 ItemTemplate, 470
 ImageUrl property
Image web control, 90
 tag
src attribute, 91
 implementation
online file manager, design issues, 78
 impressions
advertising on the web, 277
 definition, 277
 economics of, 278
 IndexOf method
Array class, 92
 information aggregation, 289
 Advertisement class, 289
 information hiding
see information aggregation.
Insert method
Cache class, 368
 installers
automated deployment, 510
 Integrated Windows Security
see also Windows authentication.
FileManager web application, 131
 IIS, 129
 Internet Explorer, 131
 Web.Config file, 131
 Internet Explorer
Integrated Windows Security, 131
 Internet Information Server
see IIS.
Intranet websites, 19
 IP locking
preventing or allowing multiple voting, 313
 IPrincipal interface
Identity property, 164
 PhilePrincipal class, 164
 SitePrincipal class, 435
 System.Security.Principal namespace, 164
 IsPostBack property
Page class, 355
 item attributes, displaying
FileManager web application, 92
 ItemCommand event
DataGrid control, 301
 ItemTemplate
DataList control, 471
 Image web control, 470
 Repeater control, 374

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 J
JavaScript functions
__doPostBack function, 467
 categories and forums page, 466
 expanding or collapsing <div> element, 374
 PostMessage page, 491
 prompt function, 107

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 L
Label control
Header control
categories and forums page, 476
 Poll web service client, 378
 Text property, 431
 LastWriteTime property
Directorylnfo class, 97
 Filelnfo class, 97
 Length property
Filelnfo class, 95
 linking table
advantages and disadvantages, 314
 List class
business services tier, 398
 ListBox control
SelectedIndexChanged event, 184
 ListDetails class
data services tier, 394
 Lists class
data services tier, 395
 LoadFromID method
Forum class, 460
 News class, 226
 location attribute
<soap:address> element, 382
 LogEvent method
AppException base class, 66
 PhilePage class, 67
 logical requirements, website, 18
 Login page
SiteHeader control, 177
 user interface, 177

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 M
mailing lists, 385
 administration, 419
 Form Wizard, 429
 settings, modifying, 428
 settings, storing and retrieving, 428
 advertisement spots, 386
 business services tier, 410
 Helper class, 417
 List class, 398
 modifying settings, 404
 Newsletter class, 414
 Subscription class, 411
 content issues, 385
 targeted content, 386
 data services tier, 410
 ListDetails class, 394
 Lists class, 395
 NewsletterDetails class, 396
 Newsletters class, 396
 storing and retrieving settings, 397
 SubscriptionDetails class, 395
 Subscriptions class, 395
 database design, 406
 MLists_History table, 391
 MLists_Lists table, 389
 MLists_Subscriptions table, 390
 MLists_Users table, 389
 optional information, 390
 separating from user accounts database, 389
 stored procedures, 406
 triggers, 409
 designing mailing list system, 388
 module configuration, 410
 newsletter and, 385
 personalizing messages, 386
 problems and solutions, 406
 security, 435
 subscribing to mailing list, 432
 confirmation of subscription, 433
 ThePhile.com, 386
 user interface, 419
 managing newsletters archive, 427
 sending newsletters to subscribers, 423
 MailMessage class
Attachments collection, 415
 System.Web.Mail namespace, 415
 Main Page, FileManager web application, 82
 BrowseFiles web form, 83
 displaying additional attributes, 89
 item attributes, 92
 item creation and modification dates, 97
 item icon, 90
 item size, 95
 listing folder contents, 84
 modifying attributes, 118
 client-side JavaScript, 118
 maintainability
business services tier, 30
 data services tier, 29
 user interface, 46
 maintaining website, 75
 database management, 77
 Web Data Administrator, 132
 file management, 76
 FTP, 76
 online file manager, 77
 designing, 77
 security, 129
 problems and solutions, 76
 using shared hosting, 76
 MapPath method
Server object, 63
 maxRequestLength attribute
<httpRuntime> element, 102
 MemoryStream class
System.IO namespace, 80
 Merge Module project
automated deployment, 511
 messages, personalizing
newsletter, 386
 Microsoft Solutions Framework
user interface, designing, 46
 modification date of item, displaying
FileManager web application, 97
 modifying settings online
Button web control, 357
 CheckBox control, 357
 code-behind page, 358
 CompareValidator control, 358
 online poll administration, 356
 TextBox control, 357
 modular design of websites, 13
 module configuration for advertising, 306
 module configuration for forums, 458
 ModuleConfig class, 448
 ModuleSettings class, 448
 settings file, 459
 module configuration for mailing lists, 410
 module configuration for news management, 222
 ModuleConfig class, 223
 ModuleSettings class, 222
 settings file, 224
 module configuration for online polls, 337
 ModuleConfig class, 338
 ModuleSettings class, 337
 settings file, 338
 module configuration for user Identity, 147
 ModuleConfig class, 147
 ModuleSettings class, 148
 Web.Config file, 147
 ModuleConfig class
module configuration for forums, 448
 module configuration for news management, 223
 module configuration for online polls, 338
 module configuration for user identity, 147
 ModuleSettings class
module configuration for forums, 448
 module configuration for news management, 222
 module configuration for online polls, 337
 module configuration for user identity, 148
 Move method
Directory class, 127
 File class, 127
 multiple voting, preventing or allowing, 310
 AllowVote property, Question class, 341
 cookies, 313
 IP locking, 313
 Myprofile page
code-behind page, 498
 TextBox control, 497
 user interface, 497
 user profiles, 497

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 N
namespace attribute
Register directive, 70
 namespace hierarchy
designing, 23
 folder structure and, 27
 ThePhile.com, 24
 namespaces
compared to folders, 24
 naming and coding conventions, 21
 camel casing, 22
 Hungarian notation, avoiding, 23
 Pascal casing, 22
 underscore character, avoiding, 22
 NavigateUrl property
HyperLink control, 249
 navigation control creating, 59
 CSS (cascading stylesheets), 58
 re-usability, 51
 user interface, designing, 59
 user interface, home page, 71
 XML files, 59
 converting XML into HTML, 60
 XSLT, 71
 network topology, database design, 28
 new advert page
administration, 304
 DropDownList control, 305
 News class
Add method, 220
 business services tier, 225
 Create method, 228
 data services tier, 216
 DbObject base class, 217
 Delete method, 228
 GetDetails method, 218
 GetDetailsRow method, 219
 GetHeadlines method, 218
 GetNews method, 217
 LoadFromID method, 226
 ResetProperties method, 226
 SetApproved method, 221
 Update method, 228
 using System.Data namespace, 217
 using System.Data.SqlClient namespace, 217
 news management, 191
 AdminFooter control, 233
 AdminHeader control, 232
 administration, 230
 settings, modifying, 254
 business services tier, 225
 Category class, 228
 News class, 225
 UML diagram, 201
 data services tier, 216
 Categories class, 199
 CategoryDetails class, 199
 News class, 216
 NewsDetails class, 200
 storing and retrieving settings, 205
 UML diagram, 199
 database design, 208
 News_Categories table, 194
 News_News table, 195
 relationships between database tables, 208
 stored procedures, 211
 triggers, 211
 designing news management tool, 192
 required features, 193
 module configuration, 222
 ModuleConfig class, 223
 ModuleSettings class, 222
 settings file, 224
 news submitted by users, 262
 permissions, 266
 problems and solutions, 208
 security, 266
 showing news to users, 257
 ThePhile.com, 192
 user interface, 230
 categories manager page, 234
 Headlines control, 262
 Headlines web service, 267
 news manager page, 244
 showing abstracts page, 259
 showing categories page, 257
 showing news item page, 261
 news manager page
adding news items, 253
 BindGrid method, 250
 code-behind file, 250
 DataGrid control, 246
 DropDownList control, 245
 RadioButton web control, 250
 user interface, 244
 news ticker web service client
Add Web Reference option, 270
 Button web control, 271
 DataGrid control, 271
 DropDownList control, 271
 Headlines web service, 270
 Timer control, 271
 Windows Forms applications, 270
 NewsDetails class
data services tier, 200
 newsletter, 14
 advertisement spots, 386
 mailing list and, 385
 managing newsletters archive, 427
 DataGrid control, 427
 personalizing messages, 386
 sending newsletters to subscribers, 423
 using dedicated mailing server, 425
 spam, avoiding, 386
 targeted content, 386
 Newsletter class
business services tier, 414
 Send method, 415
 using System.Web.Mail namespace, 414
 NewsletterDetails class
data services tier, 396
 Newsletters class
data services tier, 396

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 O
object construction, 39
 OnInit method, Page class
overriding in PhilePage class, 67
 online administration
modifying settings online, 356
 online communities
see also community building for website.
forums, 439
 online polls, 12
 online file manager
compared to FTP, 77
 designing, 77
 implementation design, 78
 security design, 79
 FileManager web application
Integrated Windows Security, 129
 website file management, 77
 online news management
see news management.
online polls, 309
 AdminFooter control, 344
 AdminHeader control, 344
 administration, 343
 option manager page, 354
 question manager page, 345
 settings, modifying, 356
 business services tier, 339
 Option class, 325
 Question class, 339
 compared to forums, 439
 data services tier, 337
 OptionDetalls class, 320
 Options class, 321
 QuestionDetails class, 319
 Questions class, 319
 settings, storing and retrieving, 322
 VoteDetails class, 321
 Votes class, 321
 database design, 330
 Polls_Options table, 316
 Polls_Questions table, 315
 Polls_Votes table, 316
 relationships between database tables, 332
 stored procedures, 333
 designing, 311
 module configuration, 337
 ModuleConfig class, 338
 ModuleSettings class, 337
 settings file, 338
 problems and solutions, 330
 requirements, 312
 security, 376
 ThePhile.com, 310
 user interface, 343
 Poll user control, 359
 Poll web service, 377
 show archived polls page, 373
 voting, 310
 preventing or allowing multiple voting, 313
 Option class
business services tier, 325
 option manager page
administration, 354
 DataGrid control, 355
 DropDownList control, 355
 options for questions, 354
 OptionDetails class
data services tier, 320
 Options class
data services tier, 321
 options for questions, 320
 child options, managing, 339
 option manager page, 354
 Oracle
database deployment, 504
 Output value
ParameterDirection enumeration, 220
 OutputCache directive
Duration parameter, 374
 VaryByParam parameter, 260

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 P
page base class
see PhilePage class.
Page class
DataBind method, 365
 deriving PhilePage class from, 51
 Error event, 66
 IsPostBack property, 355
 Onlnit method, 67
 System.Web.Ul namespace, 51
 PageIndexChanged event
DataGrid control, 302
 PagerStyle
DataGrid control, 301
 ParameterDirecticn enumeration
Output value, 220
 System.Data namespace, 220
 Pascal casing convention, 22
 Passport authentication, 79
 pass-through page
advertising on the web, 297
 Path class
System.IO namespace, 80
 performance
data services tier, 30
 news management stored procedures, 198
 user interface, 46
 Permission class
data services tier, 160
 PermissionCategory class
data services tier, 162
 permissions
checking
preventing hacking, 475
 database design, 137
 forums, 465
 news management, 266
 personalizing messages
see messages, personalizing.
Phileldentity class
business services tier, 167
 IIdentity interface, 167
 table of members, 146
 PhilePage class
creating, 58
 Visual Studio .NET, 58
 deriving from System.Web.UI.Page, 51
 event handlers, 66
 LogEvent method, 67
 modifying to support authentication, 175
 OnInit method, 67
 user interface, 58
 PhilePrincipal class
business services tier, 164
 Identity property, 146
 IPrincipal interface, 164
 table of members, 145
 physical requirements, website, 18
 plug-in headlines
Headlines control, 206
 Poll user control
caching, 367
 code-behind page, 362
 DataBind method, 365
 DataList control, 365
 design options, 327
 handling Postback event, 365
 online polls, 359
 optimizing control, 366
 question manager page and, 368
 RadioButtonList web control, 365
 hiding radio buttons, 327
 style properties, 363
 TableCell class, 360
 testing, 368
 Poll web service
online polls, 377
 Poll web service client, 378
 SOAP protocol and, 377
 testing, 377
 WebMethod attribute, 377
 Poll web service client
Add Web Reference option, 378
 Button web control, 378
 DataGrid control, 378
 Label control, 378
 Poll web service, 378
 Timer control, 378
 web service client properties, 381
 Windows Forms applications, 378
 polls
see online polls.
PostMessage page
code-behind page, 492
 JavaScript functions, 491
 TextBox control, 492
 user interface, 490
 pre-populated web form
advert details page, 302
 presentation tier
see user interface.
primary keys
foreign keys and, 209
 principal object
.NET Framework security, 145
 Process class
System.Diagnostics namespace, 273
 ProcessSpecialTags method
Helper class, 490
 ProcessTags method
Topic page, 490
 programming language selection, 26
 using several .NET languages, 26
 prompt function
directories, creating, 103
 text files, creating, 107
 public key
SNK file, 33

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 Q
quantifiers
regular expressions, 422
 QueryStrlng property
HttpRequest class, 487
 Question class
AllowVote property, 341
 business services tier, 339
 child options, managing, 339
 GetCurrent method, 340
 GetOptions method, 339
 Vote method, 342
 question manager page
adding question, 353
 AdminFooter control, 350
 AdminHeader control, 346
 administration, 345
 BindGrid method, 351
 Button web control, 354
 CheckBox control, 345
 DataGrid control, 348
 deleting question, 352
 editing questions, 351
 Poll user control and, 368
 RadioButton web control, 345
 sorting questions, 351
 TextBox control, 346
 updating questions, 351
 QuestionDetails class
data services tier, 319
 Questions class
data services tier, 319

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 R
RadioButton web control
AutoPostBack property, 246
 Checked property, 350
 news manager page, 250
 question manager page, 345
 TemplateColumn, 350
 RadioButtonList web control
DataTextField property, 360
 DataValueField property, 360
 Poll user control, 365
 hiding radio buttons, 327
 Regex class
Replace method, 464
 System.Text.RegularExpressions namespace, 464
 RegexOptions enumeration
IgnoreCase value, 464
 System.Text.RegularExpressions namespace, 464
 regions of code
#region meta-command, 296
 Register directive
Assembly attribute, 70
 home page, user interface, 70
 namespace attribute, 70
 src attribute, 70
 TagName attribute, 70
 TagPrefix attribute, 70
 regular expressions
character classes, 421
 character escapes, 421
 description, 421
 e-mail address, validating, 420
 processing text into HTML format, 464
 quantifiers, 422
 string validation, 465
 syntax, 421
 System.Text.RegularExpressions namespace, 463
 RegularExpressionValidator control
e-mail address, validating, 420
 Relations collection
DataSet class, 37
 relationships between database tables
news management, 208
 online polls, 332
 Remove method
Cache class, 368
 Rename procedure
BrowseFiles web form, FileManager web application, 117
 renaming files and directories
client-side JavaScript, 115
 FileManager web application, 115
 Render method
Control class, 63
 RepeatColumns property
DataList control, 360
 Repeater control
DataBind method, 374
 DataSource property, 374
 ItemTemplate, 374
 show archived polls page, 374
 Replace method
Regex class, 464
 String class, 464
 RequiredFieldValidator control
categories manager page, 237
 ControlToValidate property, 237
 Display property, 237
 EditFile web form, 110
 requirements list, website design, 20
 ResetProperties method
Forum class, 461
 News class, 226
 re-usability, website design, 20
 navigation control, 51
 Role class
business services tier, 172
 data services tier, 157
 role editor
cross-browser compatibility, 185
 data binding, 182
 event handlers, 183
 membership of roles, 186
 Page_Load event, 182
 server-side code, 185
 user account administration, 180
 roles
advantages of using, 143
 database design, 137
 definition, 143
 membership of roles, 186
 RowFilter property
DataView class, 251
 runat="server" attribute
HeaderTemplate, 469
 HTML controls, using in ASP.NET, 101
 RunProcedure procedure
DbObject base class, 36

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 S
sample mockup of website
user interface, deigning, 47
 scalability
data services tier, 29
 database design, 28
 website design, 20
 security
.NET Framework, 145
 identity object, 145
 principal object, 145
 authentication, 79
 Forms-based authentication, 79
 Passport authentication, 79
 Windows authentication, 79
 database design, 28
 FileManager web application, 129
 forums, 475
 mailing lists, 435
 news management, 266
 online file manager, design issues, 79
 online polls, 376
 SelectedIndexChanged event
DropDownList control, 356
 ListBox control, 184
 Send method
Newsletter class, 415
 SmtpMail class, 414
 separation
business services tier, 30
 mailing lists, 398
 website design, 20
 serialization
XML files, 147
 server controls
inherit from Control class, 62
 navigation control, 59
 Server Explorer
database design, 330
 Visual Studio .NET, 330
 Server object
MapPath method, 63
 server-side code
compared to client-side code, 185
 cross-browser compatibility, 185
 role editor, 185
 server-side Include files
problems with, 51
 ServicedComponent class
System.EnterpriseServices namespace, 38
 ServicedDbObject class
Activate method, 39
 COM+/MTS ServicedComponent, 38
 Construct method, 39
 ConstructionEnabled attribute, 40
 Deactivate method, 39
 deriving from DbObject base class, 38
 Transaction attribute, 40
 SetApproved method
News class, 221
 SetAttributes method
File class, 121
 settings file
module configuration for forums, 459
 module configuration for news management, 224
 module configuration for online polls, 338
 settings, modifying
business services tier
mailing lists, 404
 mailing list administration, 428
 news management administration, 254
 CompareValidator control, 255
 online poll administration, 356
 modifying settings online, 356
 settings, storing and retrieving
data services tier
mailing lists, 397
 news management, 205
 online polls, 322
 mailing list administration, 428
 Setup project
automated deployment, 511
 Setup Wizard
automated deployment, 511
 choose project type dialog, 511
 File System view, 512
 modifying deployment project, 512
 shared hosting for website, 76
 choosing hosting company, 509
 deploying website, 508
 XCopy deployment, 509
 show archived polls page
code-behing page, 375
 Repeater control, 374
 user interface, 373
 showing abstracts page
DataGrid control, 259
 user interface, 259
 showing categories page
DataList control, 257
 user interface, 257
 showing news Item page
user interface, 261
 sites
see websites.
SiteFooter control
AdRotator control, 298
 modifying for advertising, 298
 user interface, 66
 SiteHeader control
authentication, 65
 building, 64
 code-behind class, 65
 Login page, 177
 modifying to support authentication, 176
 user interface, 64
 user interface, home page, 71
 SitePrincipal class
IPrincipal interface, 435
 size of item, displaying
FileManager web application, 95
 SmtpMail class
Send method, 414
 SmtpServer property, 414
 System.Web.Mail namespace, 414
 SmtpServer property
SmtpMail class, 414
 SNK file
public key, 33
 strong-naming, 33
 SOAP protocol
Poll web service and, 377
 <soap:address> element
location attribute, 382
 Sort property
DataView class, 351
 spam, avoiding
mailing lists, 386
 SQL Server
database deployment, 504
 SqlCommand class
ExecuteNonQuery method, 36
 ExecuteReader method, 34
 SQL-DMO
Web Data Administrator, 132
 SqlParameter class
Direction property, 220
 System.Data.SqlClient namespace, 217
 src attribute
 tag, 91
 Register directive, 70
 stored procedures
advertising on the web, 285
 creating advertisements, 285
 obtaining advert list, 286
 obtaining campaign reports, 286
 aliases for table names, 151
 forums, 456
 GetTopicsByPage procedure, 457
 managing categories, 446
 managing forums, 446
 managing members, 448
 managing replies, 447
 managing topics, 446
 mailing lists, 406
 deleting subscriptions, 409
 inserting subscriptions, 408
 retrieving subscriptions, 406
 retrieving subscriptions by ID, 407
 news management, 211
 adding news, 213
 approving news, 215
 deleting news, 216
 performance issues, 198
 returning headlines, 213
 returning news details, 213
 returning news items, 211
 updating news, 214
 online polls, 333
 adding new question, 334
 assigning current question, 334
 returning current question, 333
 returning options for question, 336
 returning questions, 333
 updating question, 335
 transactions, 214
 user accounts, 150
 views and, 456
 Stream class
System.IO namespace, 80
 StreamReader class
System.IO namespace, 80
 streams, using
files, downloading, 99
 StreamWriter class
System.IO namespace, 80
 String class
Replace method, 464
 string validation
regular expressions, 465
 strong-naming
SNK file, 33
 style properties
Poll user control, 363
 stylesheets
CSS (cascading stylesheets), 48
 display classes, 55
 navigation control, 58
 XSLT, 50
 Subscribe method
Subscription class, 411
 Subscription class
business services tier, 411
 Subscribe method, 411
 Unsubscribe method, 412
 using System.Web.Mail namespace, 411
 subscription form
creating subscription form, 429
 subscribing to mailing list, 432
 confirmation of subscription, 433
 SubscriptionDetails class
data services tier, 395
 Subscriptions class
data services tier, 395
 System namespace
ApplicationException class, 41
 System.Data namespace
ParameterDirection enumeration, 220
 using in News class, 217
 System.Data.SqlClient namespace
SqlParameter class, 217
 using in News class, 217
 System.Diagnostics namespace
Process class, 273
 System.EnterpriseServices namespace
ServicedComponent class, 38
 System.IO namespace, 80
 BinaryReader class, 80
 BinaryWriter class, 80
 Directorylnfo class, 80
 FileInfo class, 80
 FileStream class, 80
 FileSystemWatcher class, 80
 MemoryStream class, 80
 Path class, 80
 Stream class, 80
 StreamReader class, 80
 StreamWriter class, 80
 TextReader class, 80
 TextWriter class, 80
 System.Security.Principal namespace
IIdentity interface, 167
 IPrincipal interface, 164
 System.Text.RegularExpressions namespace, 463
 Regex class, 464
 RegexOptions enumeration, 464
 System.Web namespace
HttpContext class, 145
 HttpRequest class, 342
 System.Web.Mail namespace
MailMessage class, 415
 SmtpMail class, 414
 using in Newsletter class, 414
 using in Subscription class, 411
 System.Web.Services namespace
WebService class, 268
 System.Web.UI namespace
Control class, 62
 Page class, 51
 System.Xml.Xpath namespace
XPathDocument class, 63
 System.Xml.Xsl namespace
XslTransform class, 63

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 T
TableCell class
Poll user control, 360
 Text property, 360
 TagName attribute
Register directive, 70
 TagPrefix attribute
Register directive, 70
 targeted content
mailing lists, 386
 spam, avoiding, 386
 TemplateColumn
CheckBox control, 350
 DataGrid control, 485
 HyperLink control, 486
 RadioButton web control, 350
 testing, website design, 20
 text file editor, FileManager web application, 109
 EditFile web form, 109
 text files, creating
client-side JavaScript, 107
 FileManager web application, 107
 text files, editing
FileManager web application, 113
 Text property
HyperLink control, 249
 Label control, 431
 TableCell class, 360
 TextBox control, 431
 TextBox control
modifying settings online, 357
 MyProfile page, 497
 PostMessage page, 492
 question manager page, 346
 Text property, 431
 TextReader class
System.IO namespace, 80
 TextWriter class
System.IO namespace, 80
 ThePhile.com
advertising on the web, 297
 database design, 28
 deploying website, 510
 forums, 440
 introduction, 10
 mailing lists, 386
 namespace hierarchy, 24
 news management, 192
 online polls, 310
 user identity, 135
 user interface, 55
 threaded discussions
advantages and disadvantages, 444
 Timeout property
web service client properties, 381
 Timer control
news ticker web service client, 271
 Poll web service client, 378
 ToBoolean method
Convert class, 350
 Topic page
BindGrid method, 488
 BindTopicControls method, 489
 code-behind page, 486
 DataGrid control, 485
 ProcessTags method, 490
 user interface, 483
 Transaction attribute
ServicedDbObject class, 40
 transactions
atomicity, 215
 stored procedures, 214
 Transform method
XslTransform class, 63
 triggers
database design
forums, 453
 mailing lists, 409
 news management, 211
 foreign keys, 211
 T-SQL statements
website database management, 77
 Type property
CompareValidator control, 255

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 U
underscore character, avoiding, 22
 Unified Process
user interface, designing, 46
 Unsubscribe method
Subscription class, 412
 Update method
Forum class, 461
 News class, 228
 uploading files
see 101
 Url property
modifying, 382
 web service client properties, 381
 UrlReferrer property
HttpRequest class, 494
 user accounts
administration, 180
 role editor, 180
 business services tier, 164
 AccountsTool class, 174
 Phileldentity class, 167
 PhilePrincipal class, 164
 Role class, 172
 User class, 170
 community building for website, 135
 data services tier, 151
 AccountsTool class, 163
 Permission class, 160
 PermissionCategory class, 162
 Role class, 157
 User class, 151
 database design, 149
 permissions, 137
 roles, 137
 separating from mailing list database, 389
 stored procedures, 150
 users, 137
 User class
business services tier, 170
 data services tier, 151
 CRUD functionality, 151
 user controls
Footer control, 81
 AdminFooter control, 344
 SiteFooter control, 66
 Header control, 81
 AdminHeader control, 344
 SiteHeader control, 64
 Headlines control, 262
 Poll user control, 359
 user Identity
anonymous users, 136
 authentication, 135
 .NET Framework, 145
 extending .NET Framework, 145
 Forms-based authentication, 137
 UML case diagram, 136
 user interface, modifying, 175
 community building for website, 135
 cookies, 136
 membership of roles, 186
 module configuration, 147
 ModuleConfig class, 147
 ModuleSettings class, 148
 problems and solutions, 149
 ThePhile.com, 135
 user accounts, 135
 administration, 180
 business services tier, 164
 data services tier, 151
 database design, 149
 user Interface, 45
 3-layer design of website, 11
 AdRotator control, 283
 advertising on the web, 297
 categories and forums page, 466
 Header control, 475
 categories manager page, 234
 designing, 46
 CSS, 55
 exception handling, 66
 Footer control, 54
 Header control, 54
 Microsoft Solutions Framework, 46
 navigation control, 59
 sample mockup of website, 47
 Unified Process, 46
 XSLT, 50
 flexibility, 46
 Forum page, 478
 forums, 465
 Headlines control, 262
 Headlines web service, 267
 home page, 70
 Login page, 177
 mailing lists, 419
 maintainability, 46
 managing newsletters archive, 427
 DataGrid control, 427
 modifying to support authentication, 175
 MyProfile page, 497
 news management, 230
 news manager page, 244
 online polls, 343
 pass-through page, 297
 performance, 46
 PhilePage class, 58
 modifying to support authentication, 175
 Poll user control, 359
 Poll web service, 377
 PostMessage page, 490
 problems and solutions, 55
 sending newsletters to subscribers, 423
 using dedicated mailing server, 425
 show archived polls page, 373
 showing abstracts page, 259
 showing categories page, 257
 showing news item page, 261
 SiteFooter control, 66
 modifying for advertising, 298
 SiteHeader control, 64
 modifying to support authentication, 176
 ThePhile.com, 55
 Topic page, 483
 user profile page, 177
 website design fundamentals, 32
 user profile page
data binding, 179
 Page_Load event, 178
 user interface, 177
 user profiles
forums, posting to, 440
 MyProfile page, 497
 User property
HttpContext class, 435
 user-friendliness
community building for website, 136
 UserHostAddress property
HttpRequest class, 342
 users
categories and forums page, 468
 database design, 137
 deleting all record of, 453
 frequent visits, 14
 news submitted by users, 262
 posting messages to forums, 490
 showing news to users, 257
 subscribing to mailing list, 432
 confirmation of subscription, 433
 using keyword, 217

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 V
VaryByParam parameter
OutputCache directive, 260
 views
forums, 453
 v_Forums_Forums view, 453
 v_Forums_Members view, 455
 v_Forums_Replies view, 455
 v_Forums_Topics view, 455
 stored procedures and, 456
 virtual directory
removing for Web Data Administrator, 132
 Virtual Directory Creation Wizard, IIS, 507
 vision statement
website design fundamentals, 20
 Visual Studio .NET
automated deployment, 510
 copying web project without source code, 506
 deploying website, 15
 PhilePage class, creating, 58
 Server Explorer, 330
 web services, 207
 Vote method
Question class, 342
 VoteDetails class
data services tier, 321
 Votes class
data services tier, 321
 voting
online polls, 310
 options for questions, 320
 child options, managing, 339
 option manager page, 354
 preventing or allowing multiple voting, 310
 cookies, 313
 IP locking, 313
 question manager page, 345

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 W
warehousing data
advertising on the web, 281
 Web Data Administrator
installing, 132
 removing virtual directory, 132
 SQL-DMO, 132
 website database management, 132
 Web Service Description Language file
see WSDL file.
web services
client properties, 381
 Timeout property, 381
 Url property, 381
 Headlines web service, 267
 Poll web service, 377
 WSDL file, 381
 Web Setup project
automated deployment, 511
 Web.Config file
Integrated Windows Security, 131
 module configuration for user identity, 147
 WebMethod attribute
Poll web service, 377
 WebService class
Headlines web service, 268
 System.Web.Services namespace, 268
 website design fundamentals, 17
 business services tier, 30
 controls, 11
 data services tier, 29
 database design, 27
 deployment requirements, 18
 design process, 21
 development requirements, 32
 exception handling, 31
 folder structure, 26
 modules, 13
 namespace hierarchy, 23
 naming and coding conventions, 21
 problems and solutions, 33
 programming language selection, 26
 requirements list, 20
 user interface, 32
 vision statement, 20
 websites
3-layer design, 11
 business services tier, 11
 data services tier, 11
 user interface, 11
 administration, 13
 advertising, 277
 community building, 135
 user identity, 135
 content, 385
 news management, 191
 deploying website, 503
 design fundamentals, 17
 designing, 10
 extending website, 13
 forums, 439
 further information, 517
 intranet websites, 19
 introduction, 9
 mailing lists, 385
 maintaining website, 75
 modular design, 13
 news management, 14
 newsletter, 385
 online communities, 439
 online polls, 309
 problems and solutions, 13
 ThePhile.com, 10
 user interface, 45
 using shared hosting, 76
 well-formed XML
produced by XSLT, 61
 whitespace
XSLT and, 64
 Windows authentication, 79
 see also Integrated Windows Security.
Windows Forms applications
news ticker web service client, 270
 Poll web service client, 378
 Windows security
see Integrated Windows Security.
WSDL file
web services, 381

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandKevin
Hoffman?
Wrox Press ?2002

Index
 X
XCopy deployment
advantages, 507
 configuring IIS, 507
 deploying website, 507
 limitations, 507
 shared hosting for website, 509
 XML files
AdRotator control, 279
 synchronizing entries between database and XML file, 291
 compared to arrays, 113
 converting XML into HTML, 60
 de-serialization, 147
 navigation control, 59
 searching using XPath, 295
 serialization, 147
 well-formed XML, 61
 XPath
searching XML files, 295
 using with XSLT, 60
 XPathDocument class
System.Xml.Xpath namespace, 63
 <xsl:attribute> element, 60
 <xsl:for-each> element, 60
 <xsl:value-of> element, 60
 XSLT
compared to CSS, 50
 converting XML into HTML, 60

This document is created with the unregistered version of CHM2PDF Pilot

ASP.NET Website Programming, C# Edition: Problem,
Design, Solution
byMarco
BellinasoandKevin Hoffman

ISBN:0764543776

Wrox Press 2002 (538 pages)

This book shows you how to build an interactive website
from design to deployment. Packed with solutions to
website programming problems, it will have you building
well-engineered, extendable ASP.NET websites quickly
and easily.

Ta
ble
of
Co
nte
nts

Ba
ck
Co
ver

Back Cover

ASP.NET Website Programming shows you how to build an interactive website from design to deployment.
Packed with solutions to website programming problems, this book will have you building well-engineered,
extendable ASP.NET websites quickly and easily.

 With ASP.NET Website Programming you will learn to:
 Provide flexible user accounts integrating with ASP.NET?s built-in security
 Create fully featured discussion forums
 Generate revenue from advertising
 Build a web interface for managing the files on your site
 Add opinion polls, email newsletter, and news management
 Deploy the finished site on a live server
 Build modular websites using good, n-tier coding techniques

The book?s P2P forum is a platform for exchanging code and ideas, helping to extend the website with new modules
and modifications.

 This book is for developers who:
 Use ASP.NET and C#
 Use Visual Studio .NET Professional or above, or Visual C#, .NET Standard
 Want to build content-based websites

About the Authors

Marco Bellinaso is a freelance software developer. He has been working with VB, C/C++, ASP and other
Microsoft tools for several years, specializing in User Interface, API, ActiveX/COM design and programming. He is
now spending all his time on the .NET Framework, using C# and VB .NET. He is particularly interested in
e-commerce design and implementation solutions with SQL Server, ASP.NET and web services. Marco recently
co-authored Beginning C# from Wrox Press, and is also a contributing editor for two leading Italian programming
magazines.

 Kevin Hoffman started working as a programmer while still in college, writing computer interfaces to solar
measurement devices and various other scientific instruments. Moving to Oregon, he did everything from technical
support to tuning Unix kernels, and eventually working as an ASP programmer for 800.COM, a popular online
electronics retailer. From there he moved on to working on large, enterprise ASP applications. Then he finally found
.NET, which he now spends 100% of his programming and learning efforts on. A big C# fan, Kevin has been writing
on .NET for Wrox since the middle of Beta 1.

This document is created with the unregistered version of CHM2PDF Pilot

	ASP.NET Website Programming, C# Edition: Problem, Design, Solution
	Table of Contents
	Introduction
	Who Is This Book For?
	What You Need To Use This Book
	Conventions
	Customer Support

	Chapter 1: Building an ASP.NET Website
	The Problem
	The Design
	The Solution
	Summary

	Chapter 2: Foundations
	The Problem
	The Design
	The Solution
	Summary

	Chapter 3: Foundations for Style and Navigation
	The Problem
	The Design
	Error Handling
	The Solution
	Summary

	Chapter 4: Maintaining the Site
	The Problem
	The Design
	The Solution
	Summary

	Chapter 5: Users and Authentication
	The Problem
	The Design
	The Solution
	Summary

	Chapter 6: News Management
	The Design
	The Solution
	Summary

	Chapter 7: Advertising
	The Problem
	Design
	The Solution
	Summary

	Chapter 8: Polls
	The Design
	The Solution
	Summary

	Chapter 9: Mailing Lists
	The Design
	The Solution
	Summary

	Chapter 10: Forums and Online Communities
	The Design
	The Solution
	Summary

	Chapter 11: Deploying the Site
	The Problem
	The Design
	The Solution
	Summary

	Chapter 12: The End
	Join Our Community
	Read More

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back Cover

