This document is created with the unregistered version of CHM2PDF Pilot

ASP.NET Website Programming,
C# Edition: Problem, Design,
Solution

Marco Bellinaso

Kevin Hoffman

ASPNET Website

Programming

Problem - Design - Solution

C# Edition

Marco Bedlinaso and Kevin Hoffrman

Wrox Press Ltd.
Copyright 72002 Wrox Press

Allrights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations embodied
n critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of the
mformation. However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors, Wrox Press, nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused either directly or indirectly by this book.

This document is created with the unregistered version of CHM2PDF Pilot
First Printed in March 2002
Latest Reprint : November 2002

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,
Birmingham, B27 6BH, UK

Printed in the United States
ISBN 0764543776

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products mentioned in this
book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this information.

Credits

Authors
Marco Bellinaso
Kevin Hoftiman

Commissioning Editor
Dan Kent

Technical Editors
Dianne Arrow
David Barnes

Index
Andrew Criddle

Managing Editor
Viv Emery

Project Manager
Helen Cuthill

Production Coordinator
Abbie Forletta

Cover
Chris Morris

Technical Reviewers
Don Lee

Dan Mabharry
Christophe Nasarre
Matthew Rabinowitz
Marc H Simkin

Proof Reader
Dev Lunsford

About the Authors

This document is created with the unregistered version of CHM2PDF Pilot

Marco Bellinaso

Marco Bellinaso is a freelance software developer. He lives in a small town close to Venice, Italy. He has been
working with VB, C/C++, ASP and other Microsoft tools for several years, specializing in User Interface, AP,
ActiveX/COM design and programming. He is now spending all his time on the .NET Framework, using C# and
VB.NET.

He is particularly interested in e-commerce design and implementation solutions with SQL Server, ASP.NET, and
web services. He is a team member at www.vb2themax.com, for which he writes articles and commercial software,
such as add-ins for MS Visual Studio and other utilities for VB and .NET developers.

Marco recently co-authored "Beginning C#" from Wrox Press, and is also a contributing editor for two leading Italian
programming magazines: Computer Programming and Visual Basic Journal (Italian licensee for Visual Studio
Magazine). Reach him at mbellinaso@ vb2themax.com.

Acknowledgments

Writing this book has been a real pleasure to me. It gave me the opportunity to work with ASP.NET on a good
project, and to improve my knowledge of the technology along the way. So it surely has been worth the effort! And
of course, everyone likes to be published writing about what they like to do and how to do it. :-)

I owe many thanks to Wrox Press for giving me the opportunity to write the book: this is the most English I've ever
written, so I guess the editors and reviewers had some extra work with me, although they were so kind as to never
confess it. Some of these people are Daniel Kent, David Barnes, and Dianne Arrow.

Other people contributed to this project, in a way or another, now or in the past, and I'd like to mention at least a
few names. First of all a really big thank you goes to Francesco Balena, famous speaker and author, and editor in
chief of the Italian licensee of VBPJ (now Visual Studio Magazine). He reviewed and published an article about VB
subclassing that I wrote some years ago, when I had no editorial experience at all. Since that moment he has
continued to help me by advising how to improve my writing style, pushing me to start writing in English, suggesting
the hottest technology to study, and giving the opportunity to work on some cool software projects as part of the
VB-2-The-Max team. Francesco, all this is greatly appreciated!

Two other developers I work with for the Italian magazines, who helped me in different ways, are Dino Esposito and
Alberto Falossi.

Giovanni - Gianni - Artico is the person who initiated me in the programming art, suggesting to start with VB and then
to learn C/C++ as well. Thank you for answering my questions when [was at the beginning, and for still helping me in
some situations.

A mention goes also to my closest friends. They still remember me after several "sorry, I can't come today" rebuttals,
and have put up with me when I was under pressure and not the nicest person possible.

Last but not least I have to say thank you to my family, who bought my first computer and a lot of programming
books when I was in high school and couldn't buy all that stuff by myself. They didn't offer much moral support during
the work - mostly because they didn't have a clue of what I was doing! I kept it a secret to almost everybody - I hope
it will be a nice surprise. :-)

Kevin Hoffman
Kevin has always loved computers and computer programming. He first got hooked when he received a

Commodore VIC-20 from his grandfather, who had repaired it after finding it in the trash. He then started a prolific
but unprofitable career writing shareware games and utilities for electronic bulletin board systems.

http://www.vb2themax.com

This document is created with the unregistered version of CHM2PDF Pilot

He started working as a programmer while still in college, writing computer interfaces to solar measurement devices
and various other scientific instruments. Moving to Oregon, he did everything from technical support to tuning Unix
kernels, and eventually working as an ASP programmer for 800.COM, a popular on-line electronics retailer. From
there he moved on to working on large, enterprise ASP applications.

Then he finally found .NET, which he now spends 100% of his programming and learning efforts on. A big C# fan,
who would use it to do everything including brush my teeth if only he could figure out how, Kevin has been writing on
NET for Wrox since the middle of Beta 1. He plans to continue until we get tired of him. He's currently in Houston,
Texas sweating a lot and working on web services and other large-scale .NET applications.

Acknowledgments

I'd like to dedicate this book to the rest of my "family", without whom I could not have accomplished many of the
things I am proud of today. I would like to thank Gerald for all his support - a best friend in every sense of the word -
and his daughter Keely for making me laugh. I would also like to thank Jen, Jocelyn, and Emily for their support and
being there for me. And as always I want to dedicate my work to my wife, Connie - without her support I would
never have published a single word.

This document is created with the unregistered version of CHM2PDF Pilot

ASP.NET Website Programming, C# Edition: Problem,
Design, Solution

byMarco ISBN:0764543776
BellinasoandK evin Hoffman

Wrox Press 2002 (538 pages)

This book shows you how to build an interactive website
from design to deployment. Packed with solutions to
website programming problems, it will have you building
well-engineered, extendable ASP.NET websites quickly
and easily.

=

Ta [
ble Ba
of ck
CoCo
nte ver
nts

Table of Contents

ASP.NET Website Programming, C# Edition: Problem, Design, Solution
Introduction

Ch

Building an ASP.NET Website

- Foundations

- Foundations for Style and Navigation

- Maintaining the Site

- Users and Authentication

- News Management

- Advertising

- Polls

“gEONEERPREQMEER PRERQRPEERQNEEREE

This document is created with the unregistered version of CHM2PDF Pilot
Introduction
byMarco BellinasoandK evin

Hoffman
Wrox Press 72002

Introduction

Welcome to ASP.NET Website Programming. In this book we will build an interactive, content-based website using
expandable, interchangeable modules. By the end ofthe book you will have developed your ASP.NET skills for
producing effective, well-engineered, extendable websites.

ASP.NET is a great tool for building websites. It contains many built-in features that would take thousands of lines of
code in classic ASP. And it does not require admin rights in order to deploy compiled components - your whole site
can be deployed in one folder.

This book will guide you through the bewildering features available to ASP.NET developers, highlighting the most
useful and exciting.

The book concentrates on websites that focus on content. It does not show how to produce an e-commerce system,
although a lot of the advice will apply to e-commerce sites. We could add a shopping basket module using the same
foundations, for example.

This book is different to most Wrox books, because we build a single working website throughout the book.
However, each chapter stands alone and shows how to develop individual modules, which you can adapt for your
own websites. We also suggest a framework that allows us to create modules and slot them in to the website quickly
and easily.

What Does This Book Cover?

The chapters in this book follow a problem-design-solution pattern. First we identify what we need to achieve, then
we sketch out how we will achieve it, and finally we will build the software in Visual Studio .NET.

Most chapters involve building a 3-tier system, with data, business, and presentation layers. We will also see how to
build separate modules so that they integrate well mto the whole site.

looks at the website as a whole. We identify the problem that it is trying to solve, and discuss how we will go about
solving it. We then come up with a solution - which nvolves building and ntegrating the modules detailed in the other
chapters.

builds the foundations of our site. We set coding standards and design our folder and namespace structure. We
create our iitial database - although at this stage we have no data to put in it. We also build site-wide error handling
code and base classes for our data and business layer objects.

extends our foundations to the presentation layer. We will build base classes for the ASP.NET pages in the site, a
custom error page, and site wide navigation, header, and footer controls.

This document is created with the unregistered version of CHM2PDF Pilot

presents a file management module, which we can use to download and upload source code for the site, and make
changes online. We will also look at Microsoft's Data Manager, which enables us to manage SQL Server databases
through our website.

covers user accounts. We look at how to create a powerful role-based security system, and integrate it with
ASP.NET's built-in authentication features.

shows how to provide regularly changing news content through a website. We also build a web service to expose
news headlines to other sites and applications, and a Windows news ticker that uses this web service.

looks at advertising. We create our advertising system by extending the ASP.NET AdRotator control to provide the
power we need. We look at logging Aits and impressions, and providing reports to advertisers.

covers opinion polls and voting. We look at how to administer questions, log votes, and collate them nto useful
reports.

provides the tools to create e-mail newsletters. We will look at how to create messages in plain text and HTML, and
how to administer lists and set up new ones.

looks at forums. We create everything you need to post and read messages, and give administrators special
permissions. Along the way, there is some powerful use of the DataList and DataGrid controls. We also look at how
to use regular expressions to provide limited HTML support, without opening our forum to the risk of cross-site

scripting.

shows how to deploy the site. We will look at the ways Visual Studio .NET allows us to provide source-free
distributable versions of our software, and how to deploy our sites onto hosting services.

looks to the future. We've only just begun our lives as ASP.NET website developers and here we will look at ways
in which Wrox can support your continued development. In particular this includes the book's P2P list, where you can
work together with fellow readers and benefit from each other's ideas and experience.

This document is created with the unregistered version of CHM2PDF Pilot
Introduction
byMarco BellinasoandK evin

Hoffman
Wrox Press 72002

Who Is This Book For?

The book is for developers who have a reasonable knowledge of ASP.NET, and want to apply that knowledge to
building websites. You will get the most from this book if you have read a decent amount of Wrox's Beginning
ASP.NET using C#, or Professional ASP.NET and a C# book.

You should be comfortable using Visual Studio .NET to create ASP.NET projects, and that you know C#.
L~ Prev L Next =

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandK evin
Hoffiman

Wrox Press 72002

What You Need To Use This Book

To run the samples in this book you need to have the following:

Windows 2000 or Windows XP.

Visual Studio .NET 1.0. We have tested the code for version 1.0, although most of the code should work in
late pre-release versions. Nearly everything will also work in Visual C# .NET Standard.

SQL Server 2000 - although most of the techniques we use could apply to any database system, including
Access.

To get the site working you may also need an ASP.NET web host. We will give some guidance on choosing one
towards the end of the book.

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Conventions

We've used a number of different styles of text and layout in this book to help differentiate between the different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Code has several fonts. Ifit's a word that we're talking about in the text - for example, when discussing a For...Next
loop, it's in this font. Ifit's a block of code that can be typed as a program and run, then it's also in a gray box:

<?xml version 1.07>

Sometimes we'll see code in a mixture of styles, like this:

<?xml version 1.07?>

This document is created with the unregistered version of CHM2PDF Pilot

Introduction

byMarco BellinasoandK evin
Hoffiman?

Wrox Press 72002

Customer Support

We want to hear from you! We want to know what you think about this book: what you liked, what you didn't like,
and what you think we can do better next time. Please send us your comments, either by returning the reply card in
the back of the book, or by e-mailing <feedback@wrox.com>. Please mention the book title in your message.

We do listen to these comments, and we do take them into account on future books.

How to Download the Code for the Website

It is well worth getting the website working on your own machine before reading too much of this book. It will help
you follow the descriptions, because you will be able to see how code snippets relate to the whole application, and
experience the modular approach first hand.

To get the code, visit www.wrox.com and navigate to ASP.NET Website Programming. Click on Download in the
Code column, or on Download Code on the book's detail page.

The files are in ZIP format. Windows XP recognizes these automatically, but Windows 2000 requires a
de-compression program such as WinZip or PKUnzip. The archive contains the whole site, plus a readme describing
how to get it up and running,

Errata

We've made every effort to make sure that there are no errors in the text or in the code. If you do find an error, such
as a spelling mistake, faulty piece of code, or any naccuracy, we would appreciate feedback. By sending in errata
you may save another reader hours of frustration, and help us provide even higher quality information.

E-mail your comments to <support@wrox.com™>. Your information will be checked and if correct, posted to the
errata page for that title, and used in subsequent editions of the book.

To find errata for this title, go to www.wrox.com and locate ASP.NET Website Programming. Click on the Book
Errata link, which is below the cover graphic on the book's detail page.

E-mail Support

If you wish to directly query a problem in the book with an expert who knows the book in detail then e-mail <
support@wrox.com>, with the title of the book and the last four numbers of the ISBN in the subject field of the
e-mail. Please include the following things in your e-mail:

The title of the book, last four digits of the ISBN, and page number of the problem in the Subject field.

mailto:feedback@wrox.com
http://www.wrox.com
mailto:support@wrox.com
http://www.wrox.com
mailto:support@wrox.com
http://p2p.wrox.com/
http://p2p.wrox.com/

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 1 - Building an ASP.NET Website
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

o BUIIdING an ASP.NET Website

Overview

In this book we are going to build a content-based ASP.NET website. This website will consist of a number of
modules, which will all fit together to produce the finished product.

We will build each module in a standard order:

Identify the problem - What do we want to do? What restrictions or other factors do we need to take into
account?

Produce a design - Decide what features we need to solve the problem. Get a broad idea of how the
solution will work.

Build the solution - Produce the code, and any other material, that will realize the design.

This book focuses on programming. When we talk about design, we generally mean designing the software - we will
not be looking at graphic or user mterface design.

Your website will not be solving all of the same problems as ours, but many of the modules we build - and the
programming techniques we use - are very transferable.

In this chapter we will take a high-level look at the whole site - what it needs to do, and how it will do it.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 1 - Building an ASP.NET Website
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

We will be building a website for DVD and book enthusiasts. In outlining the site's problem, we need to consider the
purpose and audience. In real life this stage would be business-oriented - taking nto account things like advertising
demographics, competition, and availability of funding. These processes need to be analyzed rigorously, but we will
leave all that to the managers.

Our site will cater for lovers of books and DVDs. It will provide useful content and try to build community. Our
visitors will want to read about these things, and contribute their opinions, but each visit will be fairly short - this will
not be a huge database in the style of the Internet Movie Database (www.imdb.com). It will be funded by advertising,
and will rely on repeated (but fairly short) visits from its readers.

We also need to consider constraints. These are more practical. One of the major constraints that this site faced was
the development team - the members would never meet, because they were on opposite sides of the world. This
imeant that the design must allow one developer to work on sections of the site without interfering with other
developers working on different sections. But all of the sections needed to eventually work together smoothly. In most
cases the separation between developers will be less extreme, but giving each developer the ability to work
independently is very useful. We need to design and build methods to enable this.

Site development never really finishes - sites tend to be tweaked frequently. Another key to successful websites is to
design them in a way that makes modification easy. We will need to find ways to do this.

We will call our site ThePhile.com, because it is a site for lovers of books (bibliophiles) and DVDs
(DVD-philes). It's also a play on the word 'file', because our website will be a definitive source of
information.

http://www.imdb.com

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 1 - Building an ASP.NET Website
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

We have outlined what our site needs - now let's look at how we can provide it. The main points raised in the
problem section were:

Enable developers to work from many different locations
Build a maintainable, extendable site

Build community

Provide interesting content

Provide revenue through advertising

Encourage frequent visits

Let's discuss each of these in turn.

Working From Different Locations

Our developers need to work on sections of the site with relatively little communication. Our developers are in
different countries so face-to-face meetings are impossible. Telephone conversations can be expensive, and different
time zones cause problems.

We need to design the system so that developers can work on their own section of the site, knowing that they will
not damage the work of others.

A good way to solve this is to develop the site as a series of modules, with each module being fairly mdependent. Of
course there will be shared components, but changes to these will be rare and can be done in a controlled way. In this
book, we work in modules. We also make frequent use of controls. This means that components for a page can be
developed independently, and easily 'dropped in' as needed - changes to the actual pages of'the site are kept to a
minimum.

A Maintainable, Extendable Site

Most websites have new features added quite frequently. This means that from the start the site needs to be designed

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 1 - Building an ASP.NET Website
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

We've seen what we want the site to do, and sketched out some rough ideas of how we might provide it. Now we'll
look at how to build our solution. This really encompasses the whole of the book. Here we'll look at how each
chapter relates to our initial problem and design.

Working From Different Locations

In the next two chapters, we will provide a framework for development. This will lay down coding standards, and a
framework for organizing the modules into folders and Visual Studio .NET projects.

We will decide what namespaces we will use for each module, and all the other things that will make team working
as hassle-free as possible. We will also develop some initial UI features to use across the site, promoting a unified
feel. These include a header, footer, and navigation control, and stylesheets.

Building A Maintainable, Extendable Site

3 will also set us on the road to a maintainable site. We will develop base classes, giving each new module a solid
foundation to build on.

We will develop a web-based file manager in Chapter 4. Through this we can download and upload files, create new
ones, move them, change their attributes, and even edit files online with a built-in, web-based text editor. If you've
ever wanted to provide file upload facilities, offer source code for download, or provide online editing tools then this
is the place to look!

Most of the modules we develop will have administration features. For these to be useful, we need to identify
administrators. In Chapter 5 we will develop a user accounts system. Using this, we can collect user information and
give different users different privileges. Our final site will support full role-based security, with login details stored in a
SQL Server database.

Providing Interesting Content
In Chapter 6 we create a news management system. This will enable our administrators to add and edit news articles,
receive and approve suggested articles from readers, and place new articles in categories. And, of course, it lets users

read the news. We will create a control so that we can easily display headlines on any page that we like.

The news system will be flexible enough to also cover reviews, which will eventually form the core of our site.

Managing Adverts

Adpvertising will be covered in Chapter 7. We will develop a system to display adverts, and log impressions (when an
ad is displayed) and hits (when an ad is clicked). This will allow us to create reports from this data to give to
advertisers.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 1 - Building an ASP.NET Website
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

We're now ready to look at the site in detail. Before reading the following chapters, it's worth getting hold of the
code download and seeing how the final site fits together. This book does not describe every detail of the website,
and it will be a lot clearer if you look at the final site first.

The code and database is available from www.wrox.com. Once you've downloaded and unzipped it, look at
the readme file to see how to get it working in Visual Studio .NET. You will get far more from the book if

you look at the project before reading on.

In the next chapter we will start to build the foundations for the rest of the site.

http://www.wrox.com

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 2 - Foundations
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e FOUNdations

Overview

Laying foundations is one of the first steps we need to take when starting any non-trivial programming project.
Foundations include things like code and documentation conventions, and the structure and design of the backend. In
a formal development process, the foundations also typically include a vision statement of some kind, and a project
plan.

Developers often have opposing views on how much work to do at this stage. Many want to sit in front of a
keyboard and start coding straight away, while others want to spend weeks developing pages of rules and standards.
Somewhere between the two extremes lies a fairly good medium. We don't want to get caught in an endless loop of
designing, but we also don't want to write any code before we've figured out what our architecture and design is going
to be like.

If we are building a house, and we build the foundations on sand, the house is likely to come tumbling down before
the building is finished. On the other hand, if the ground is too hard then laying the foundations can be a major task in
itself, placing unnecessary restrictions on the rest of the project.

This chapter will demonstrate a sensible compromise between the two extremes - building a solid but unrestrictive
foundation for an ASP.NET website. First we will discuss the common problems facing an ASP.NET website
architect in building the foundation. Then we will delve into designing a solution to these problems. Finally we'll
implement these designs, and even get to work on some code. This chapter is geared towards both architects and
developers alike. We will cover broad, high-level issues such as design and architecture, and we will also take a look
at the code used to implement a solid foundation for an ASP.NET website.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 2 - Foundations
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

Building a solid foundation can be a daunting task. It requires a good understanding of how the application will
operate before we go mto the detailed design of each component. If we build a good foundation, everything else will
seem to fall into place. But if the foundation is poor, the site will take an extraordinary amount of work and time to
complete, if it's completed at all.

Building the foundation of a website is really a collection of smaller, inter-related tasks. There are many aspects of the
website's development that need to be part of the initial foundation's design. One such aspect is the development
environment - for example team size and working style, and the tools that will be used to build the site. The type of
team that will work on the project is an important factor in developing the foundation, as the latter should be
developed to support the needs of the team. For example, a small team in a single office might work well with a fairly
loose foundation, because they can easily make small changes here and there. But a large, distributed team will benefit
if the foundation is set in stone, since negotiating a change could be a mammoth task. For the website in this book, the
development team consisted of only two people. However, these two people were on opposite sides of the world.
For this reason, the foundation needed to provide a stable basis for plugging in the different modules that each
developer was working on.

In addition to the development needs, we need to determine the requirements of the website in its deployment
environment. A website can have many different types of requirements, including;

Physical - the software and hardware environment in which the final website will run. Requirements such as
these typically dictate whether the website needs to be i a certain directory, or on a certain machine, or in a
certain network infrastructure. Physical requirements also dictate the specific type of database to be used to
support the system. We need to plan ahead for what type of system we're going to use to store our back-end
data. Will it be a relational database management system (RDBMS) like Oracle or SQL Server, or are we
pulling information from a mainframe, from a web service, or even from a collection of XML files? While you
can code your data services tier to be as source-agnostic as possible, it isn't an excuse to spend less time on
the definition of your data requirements.

Architectural - we need to know how we plan on structuring our application. We need to know where the
physical and logical separations are, and we need to consider things like firewalls and networking
considerations. The website may need to be designed to support a certain type of development style, or
modification by authorized third parties.

Logical - these requirements are those that, for example, dictate that a website will consist of three layers of
servicing components on top of a layer of database stored procedures.

The deployment environment includes both the server and the client browser. Many websites recommend, or even
require, a particular browser in order to function correctly. Sometimes this is appropriate, but often it isn't. When
laying the foundations of the site, a strategic decision needs to be made about what type and version of browser your

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 2 - Foundations
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

Now that we have formally defined the problem of building our application's foundation, we can begin the design
process. Our design should reach a happy medium, providing enough foundation and structure to produce cohesive
results, without getting so bogged down in design that we end up producing nothing,

Our discussion of the design process is going to look at some of the most common tasks in building the foundation of
a website. Then we'll apply that general concept to our specific application by actually designing the various pieces of
The Phile's foundation. The following list of items illustrates some of the concepts at the core of good foundation
design:

Naming and coding conventions
Programming language choice
Folder structure

Designing the database(s)

Building a data services tier

Building a business services tier
Providing for effective error handling
Deployment and maintenance

User interface design

Naming and Coding Conventions

Coding conventions can be unpopular, particularly where they are imposed on a team by a non-programmer and
contain dated or restrictive rules. Every programmer has their own opinion about the usefulness of naming guidelines,
coding conventions, and other code-related rules. The opinions range from those who think that any coding

PR BRI R J R DR Iy Eh PR IS J R JAh FEAR R R R [R IR IR IR [N

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 2 - Foundations
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

Now that the foundation has been designed, we can start writing some code. To recap, a few of the things that we
covered in our design were:

Naming and coding guidelines - we set out the conventions to be used throughout the project
Programming language choice - we chose C# as our development language

Folder structure - we designed a namespace hierarchy and a corresponding folder structure for all the
modules of the website

Designing the database - we chose SQL Server as our core database

Building the data services tier and the business services tier - we talked about the importance of n-tier design
and architecture, and about the usefulness of creating a base class for each tier

This next section will cover the code and implementation of each tier's base class, as well as a custom exception class
that we're going to build.

Of course, the implementation we create here might have unforeseen limitations that we will discover later. We might
find ourselves changing these classes throughout the development. At this point, we have to continue with what we
already know, and build what's best at this point.

To create the solution for this chapter, we're going to create a new C# Class Library project in Visual Studio .NET,
and name it Core. We're going to make some minor changes to its properties and to the Assemblylnfo.cs file.
Right-click the project and choose Properties. Then make sure that the Assembly Name property is set to
'Wrox.WebModules.Core, and the Default Namespace property is set to Wrox. WebModules.

The next thing we need to do is make sure that our project is strong-named. Since this is the first project in the
entire web application, we get to make our SNK file. The SNK file is a file that contains a digital signature encrypted
using the RSA algorithm. In order to make sure that all of our assemblies appear as though they're coming from the
same vendor, they all need to have the same public key. The only way to accomplish this is to compile each of the
assemblies against the same SNK file.

To create our digital signature file, we go to the command prompt and type:

SN-k ThePhile.SNK

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 2 - Foundations
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

This chapter has introduced the problem of coming up with the core of the website. After creating an mitial design for
the website, we went on to create a design for the foundation of our website. This included designing a namespace
layout, a preliminary directory tree, and even specifying some coding standards and naming conventions. Then we
discussed some of the core concepts of building a data services tier and a business logic tier, and the benefits of
splitting functionality into three or more tiers. Finally, we discussed the design concept behind robust error handling
and why it is so important to the success of a production website.

After designing the solution to our problem, we went ahead and got into the code, producing the assembly

'Wrox. WebModules.Core.DLL, which can be used by all facets of our website as the mitial foundation from which
much of the rest of our classes will be built. We even included an alternative DbObject, the ServicedDbObject, in
case we want to make some data services components hosted by COM+ services.

Hopefully you've gained some of the following knowledge after reading this chapter:

The benefits of a strong and cohesive namespace hierarchy
The benefits of separating business logic from pure data services

The benefits and details of robust error handling in a web application
You should also now know how to implement systems that have these benefits.
The classes we developed for the core of our solution can be compiled into the Core DLL at this point. However, as

all we've done so far is build the core, we won't actually be putting this code to use until the next chapter, where we
will be making use of the foundation code to help build our user nterface elements.

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 3 - Foundations for Style and Navigation

byMarco BellinasoandK evin
Hoffiman?

Wrox Press 72002

e OUNdations for Style
and Navigation

Overview

Now that we have spent some time discussing many of the issues involved in creating a
web application, and have begun building our core foundation, we can move on to
creating the foundation of our front end, or user interface (UI). In this chapter we will
first identify the initial problem we need to solve relating to our front end. Then we will
move on to designing a solution to this problem. Finally, we'll cover the actual code and
implementation of this solution.

This chapter will give you a good look at some of'the tasks that are typically considered
part of the foundation-building, or setup, phase of website development. These include:

[]
Identifying and creating reusable interface components
The purpose and implementation of a 'page inheritance hierarchy'

The purpose, benefits, and implementation of cascading stylesheets

Using XML and XSLT to create content that is quick and easy to maintain

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 3 - Foundations for Style and Navigation
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

At some point we will need a front end (user nterface) for our website. It would be fairly easy (especially for those
programmers who've already spent a lot of time building classic ASP pages) to just open up a favorite editor and start
cranking out page after page of content. I'm sure many ofus have been in this situation before, which is why many of
us remember the pain and suffering mvolved when we were told to change the layout, the style, or some other
fundamental Ul feature after we'd already built dozens of ASP pages from scratch. There's nothing worse than having
to go back and rewrite ASP pages because of a color change or something else that should be equally trivial.

To avoid this kind of maintenance nightmare we want the Ul to be simple to maintain and modify. In order to achieve
this we should build the UI on a solid foundation. Without a solid foundation for the user interface, changes are
incredibly difficult and painstaking to make, and maintenance of'the front end can be a laborious task.

We also want it to be a good Ul in terms of'user experience. Following good usability and user interface design
principles is absolutely essential to the success of your website. If the users are annoyed with the display on their
screen when they see your site, they won't come back. Likewise, if they find it too difficult to get what they want from
your site because it doesn't flow properly, isn't intuitive, or doesn't have clearly labeled functionality, they will also
avoid your site like the plague. One thing to always keep in mind is that, no matter how good your site is, you will
always have competition on the Internet.

There are many books on the market today that cover topics such as designing your website to meet the
needs of your users, including User-Centered Web Design by John Cato (ISBN 0-201398-60-5). Something
else you might want to take into consideration are users with accessibility needs who might have difficulty
navigating a website that doesn't make certain interfaces explicitly available to them.

The Problem Statement and Requirements

Our problem has two different facets. The first is, of course, to provide a solid, functional foundation on which to
build the rest of our user interface. This is actually the problem statement. The other facet, which we cannot ignore, is
the requirement that our design for our Ul fundamentals should strive toward the following common goals:

Achieve maximum ease-of-use through well-planned Ul elements and efficient use of web page 'real estate’'.
Real estate is the available space on a web page in which you can display meaningful information to a user.
Examples of poor use of real estate are pages in which important information occurs in such a position as to
force the user to scroll down (or off to the side) in order to see it.

Provide maximum flexibility by allowing configuration changes of UI elements to take place with minimal or
zero recompilation of code.

Keeping in mind that a site's look and feel is almost as important as its functionality, we want to make the
website attractive and mtuitive to our users.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 3 - Foundations for Style and Navigation
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

Now that we've determmed that our problem is the lack of a solid UI foundation, we can go about designing the
basics of our user interface, or presentation layer. Anyone with any experience of a full software development life
cycle knows that no matter how much effort you put into an initial design, it probably won't cover every scenario. This
is why many managers opt for the Unified Process, a very common and popular iterative process that makes
allowances for changes in specification and design in the middle of a development project. Other managers, especially
those producing Microsoft-based solutions, prefer the Microsoft Solutions Framework (M SF).

You can read more about the Unified Process in the book The Unified Software Development Process by
Jacobson, Booch, and Rumbaugh (ISBN 0-201571-69-2). In addition, you can find more information about the
Microsoft Solutions Framework at http://www.microsoft.com/msf.

While there are management processes that allow us to make room for changes in our design, specification, and
requirements throughout the life cycle of our project, there are some things we can do in terms of code and
infrastructure to make the development of those changes easier as well. Some of the common things we can do to
make our website code more agile are as follows:

Use cascading stylesheets to 'classify' different types of Ul elements, such as headers, footers, tables used for
certain purposes, background colors, and font styles.

Use an object inheritance hierarchy in our component model to encapsulate functionality, properties, and
visual traits common to related groups of pages and Ul elements.

Use reusable controls (server and user) in order to encapsulate common or frequently displayed UI elements
that may occur on many or all pages, and to provide a code-enforced uniform look and feel.

We mentioned in the Problem section the desire to create an attractive UL If you build a website that provides
amazing functionality, but the interface is dull, drab, and uninspired, then you're probably not going to be as successful
as a competitor who provides fewer services with a nicer-looking website. It is a sad, unfortunate fact. The other
thing to keep in mind is that the development process is iterative, and you'll probably go through many iterations of
your user interface design before any customer ever sees your website, so don't grow too attached to any one
particular idea.

Typically, one of the first steps people take when designing the UI of a website is to create mock-ups or samples of
what they think the website might look like during a typical user session. Remember, the purpose here is not to
provide any functionality, just a foundation on which to build the UI. We did the same thing when we built this
website.

Being a programmer who learned HTML using Emacs on a Unix machine, I still prefer to do my HTML
design in Notepad, and so the mock-ups we used to create samples of our user interface were done in simple,

http://www.microsoft.com/msf

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 3 - Foundations for Style and Navigation
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Error Handling

When we were building the core foundation of our website, in Chapter 2, we built our own custom exception class,
AppException. We did this in order to have an exception class that we could throw that would guarantee the writing
of'an event log entry. We can also extend this class later to add e-mail functionality to our custom errors without
tracking down every single line of code that throws an exception.

As you've been working with ASP.NET you've probably seen the default exception screen. It isn't exactly pretty and
our application loses control at that point. What this means is that if we don't trap exceptions properly and they
display using ASP.NET's default mechanism, we can't guarantee that any of our code will execute. For this reason,
we want to make sure that we're exerting strict control over the exception handling system. For our design, we would
like to develop an error trapping system where we control the display of the error information to the users. We aren't
quite sure how we're going to accomplish this at this point, but we're certain that we need to implement some form of
error trapping system in the core of our presentation tier, especially if errors are going to 'bubble up' from the business
tier or data services tier at some point.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 3 - Foundations for Style and Navigation
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

This chapter has presented a problem - the need for creating a solid foundation for the presentation tier of our web
application. After identifying the problem, we went on to discuss the concerns involved in designing a solution to this
problem. Now that we have our basic design, and we have a good idea of what we plan on doing to create our
presentation-tier foundation, let's get into the code and create some user interface elements.

We are going to be working with three projects, all of them within our main VS.NET Solution:

ThePhile - the solution's default project, containing the site's homepage, and stylesheets. As we develop
modules, it will need to reference to the presentation layer of each module. For now it should reference Core,
Controls, and PhilePageBase.

Controls - containing site-wide user controls: a header, footer, and navigator.

PhilePageBase - containing a base class for all pages that we create for the site.

Let's look first of all at our stylesheets.

Styles

As we discussed in the design section, we know that we're going to need a stylesheet that provides user interface
element templates, or classes, for our website. As we discussed earlier, we're going to have one main stylesheet to
aid in providing a consistent look and feel, and then we'll create another stylesheet for our navigator control. To
recap, the list of elements that we decided would need to be classified in our main stylesheet are as follows:

Site Header, Poll Header, Poll (Generic), Book News Header, Book News (Generic), Book News Item (Left Side,
Date Field), Book News Item (Right Side, Description Field), Alternating Book News Item (Left Side, Date Field),
Alternating Book News Item (Right Side, Description Field), DVD News Header, DVD News (Generic), DVD
News Item (Left Side), DVD News Item (Right Side), Alternating DVD News Item (Left Side), Alternatng DVD
News Item (Right Side), and Site Footer.

The true benefit of these classes is that any time we decide to make a change to any of the user interface elements
(this includes when sales or marketing decide to make this change, too!) all we have to do is modify the entries in the
CSS file, and we don't have to worry about tracking down each and every page that displays the particular UI
element we're modifying.

Here is the listing for our main stylesheet source file (ThePhile.css - this file should be created in the Styles directory
directly under the main application directory, in other words ThePhile\Styles\ThePhile.css). First we have the style
definition for <BODY> elements:

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 3 - Foundations for Style and Navigation
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

This chapter began with an introduction to the problem: the need to provide a clear, consistent, solid, and scalable
foundation for the presentation tier of our web application. We then worked through the design of this foundation,
discussing stylesheets, subclassing the default page class, creating a navigation control, creating headers and footers,
and error handling within ASP.NET. After having read this chapter, you should now be familiar with the following

concepts:

Identifying and creating reusable interface components by creating user and server controls.

The purpose and mplementation of a page mheritance hierarchy, using a page base class to save time and
promote consistency.

How to dynamically render HTML using data styled with cascading stylesheets.
How to use XSLT to transform XML into HTML and other forms of data, and the difference between

XSLT and CSS.

In the next chapter we'll take the core foundation that we've been building and use it as a platform on which to build
our first module, a module that allows for administration and maintenance of the site's files remotely via the web.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 4 - Maintaining the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e VIQINtAINING the Site

Overview

Any real website is generally made up of a lot of pages, images, XML/XSL files, stylesheets, databases, and other
types of document. It's very common to have many hundreds or even thousands of files for a single website. During
development of the site these files will usually be modified several times. This will also continue after deployment,
since no application is ever really finished - particularly when we can redeploy to all our users at once. As a result, an
integral part of any development work is having some kind of maintenance system.

In this chapter we'll explain why it's useful to have an online site management system, and we'll design and build one
that allows us to easily maintain the site's files and directories.

Our solution will provide file uploads over HTTP connections, a useful technique that is not limited to site
maintenance. For example, web-based e-mail sites use this method to upload attachments, and many community sites
use it to upload images for user profiles.

We will also build an online text editor, so that we can edit our ASPX files right in the web browser.

Our tools will really be for administrators or developers to use. But with a simplified, restricted front-end we could
use this technique to build a maintenance system for even the most technically nept client!

We will also present an existing third party tool, Microsoft's Web Data Administrator. This could save our
developers a great deal of time managing the site's SQL Server database, both before and after deployment.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 4 - Maintaining the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

During the development of our site, we'll need to add, copy, and move files, change the source code of ASP.NET
pages, edit the stylesheets, and generally fix things here and there. Since we're working on a test machine, and as
we're all familiar with doing such common operations, this does not pose any problems. Managing the SQL Server
database 1s easy as well, because even if we don't have the program installed on our development machine, through
the Enterprise Manager we can do everything we could if we had the SQL Server on our local computer.

After development will come the time to upload everything and to test the website online. We'll almost certainly need
to make further changes, upload additions, move files around, and perform other file management operations. The
same applies to the database: we'll need to add, edit, or delete records, run and edit stored procedures, and backup
the data. If we had an in-house server, we wouldn't expect to encounter any problems here, as we would just need to
move everything to the production system. Maintaining the site would be as easy as it was on our development
machine. Having an in-house server offers maximum control over the system, and this is important when we need to
install additional software, register COM+ components, change the IIS default settings, and so on - in fact, whenever
we want to configure things according to our needs. However, often we do not require all this power, especially for
small and medium sized sites. Also, with ASP.NET, deployment and configuration has been made much easier and
flexible (take for example the use of web.config to change settings that would previously have required direct access
to an IIS snap-in in ASP). Lastly, in-house or dedicated servers are expensive, and not all companies can and/or
want to afford them, unless their purpose is very unusual.

Therefore, if we have budget limitations or we simply don't need full control over the system, the common solution for
publishing our website is to a rent a shared server from a hosting company. We decided to choose this solution for
our website, because we don't really need a deep level of system customization - web.config settings are enough for
this. Also, we wanted to present an example that would be useful to the majority of readers, and that means using
shared hosting.

FTP Versus Online File Management

Now that we've chosen to use a third party hosting service for our site, we should also consider the additional
implications that this choice has on the ease of site maintenance. Uploading files is not a problem - we need nothing
more than a simple FTP client to upload, download, rename, and perform most of the other necessary operations on
the files. There are lots of them on the market, many available for free. On the other hand, using FTP to update every
changed file can be slow and boring, especially when you need to upload the same very large file several times for
minor changes, perhaps affecting only a single line of code each time. Sometimes FTP can be slow or even
maccessible when the server is busy (remember that we chose to use a shared server) or because the FTP server is
temporarily down. Imagine another situation: when you're traveling or visiting a client's place without your laptop, you
show the project to your client and are asked to make a quick modification. Something simple that should only take a
few seconds, but how do you do it if you don't have your ASP.NET source code available, and if you don't have an
FTP program to upload your changes? Often company networks have firewalls or proxies that prevent full FTP
access.

Some of these issues might not seem important and you may be thinking that we could just ignore them. Admittedly,
these situations are not the rule, but they do happen, and having a reserve plan can turn out to be a good precaution.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 4 - Maintaining the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

Now that we're aware of the usefulness of having maintenance tools, let's start designing our file manager module by
writing down the list of features we want to implement. A typical utility of this type includes the following functionality:

[]
Starting from the web root, the file manager should allow the administrator to see the list of sub directories

and files, and to navigate the structure by clicking a directory name to go one level down, or an arrow at the
top of'the list to go one level up.

It should display information about each file-system item (file or directory) in our application. This will include
a predefined icon that describes the item type, size (of all the subdirectories and files if the item is a directory),
attributes, creation date, and the date of last modification.

There should be the ability to upload and download files.

It should offer the ability to create, rename, copy, move, and change the attributes of any directories and
files.
It should enable us to view and edit the content of text files.
This list includes most of the basic commands that we would expect from any file manager for Windows. We want to
reproduce them with a web interface running on a browser, which will allow us to perform common operations

without the need for any external tools.

We want this application to respect a couple of basic requirements:

It should be easy to integrate the tool into other existing websites

It should not be possible for an anonymous Internet user to access the file manager; it must have a reliable
authentication/authorization system

Let's look at some details to better explain the design choices.

Implementation Design

Most applications are data-driven and have a set of business rules to respect. In this case, as we said in Chapter 2,

e et concearn fhar a Aevelaner wntilld he fa Aecide havr 0 anhif the annlicatinn ta coveral laveres data hiiciecc

http://www.passport.com

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 4 - Maintaining the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

Now that we have a clear idea about what we're going to build, we can start creating the project with VS.NET. The
files for the presentation layer are part of the main ThePhile project, and sit in the Modules\FileManager folder.
Unless otherwise stated, all classes for this module should be part of the Wrox. WebModules.FileManager. Web
namespace.

Classes to Work with Files and Directories

In the design section of the chapter we mentioned that the .NET Framework provides quite a lot of classes to easily
manipulate and retrieve information about the file system's items. The System.IO namespace contains all the classes
that have to do with the IO operations for any backing store, and some classes that allow us to do advanced stuff
such as monitoring the file system and listening for changes (this was pretty hard to do with the Windows API). Since
we'll use some of these classes throughout the chapter, it's worth giving a brief description of the most used 10

classes:

Class Description

Directory Provides static (shared) methods for enumerating
directories and logical drives, creating/deleting/moving
directories and files, and retrieving/editing things like the
creation date or the last access date.

DirectorylInfo Used to work with a specified directory and its
subdirectories.

File Provides static methods for working with files: this
includes opening or checking the existence of a file, and
appending text data to a file.

FileInfo Used to work with a specific file.

Path Performs operations such as extracting the root or the file
name from the specified path or combining two path
strings.

FileSystemWatcher Monitors the file system and raises events to handle
changes.

Stream Base class used to read from and write a backing store,
such as the file system or network.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 4 - Maintaining the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

This chapter presented the design and implementation of a web module, called FileManager, which provides
functionality to:

List and navigate folder contents
Create directories

Create and edit text files
Download files

Upload files

Rename files and directories
Modify file/directory attributes
Delete files

Copy and move files

This tool can help you to effectively manage your site files, resources, and directory structure. For all but very major
updates, we can now rely on this tool without the need for external FTP clients or other tools.

We also saw how to set up Windows security to protect the FileManager module from unauthorized access.
Later in the chapter we installed and explored Microsoft's Web Data Administrator tool, which helps in the online
management of SQL Server databases. It's particularly useful when the database serving the website is located on a

remote server.

Before concluding, here are a few new features that you could add to enhance the FileManager:

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 5 - Users and Authentication
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

aes USECES and Authentication

Overview

One of the most important aspects of a content-based website, or any website for that matter, is community
building. As we discussed earlier in this book, a website with a strong, enthusiastic community can survive and profit
far longer than other websites that might have greater funding, more development staff, or even a bigger advertising or
marketing budget.

The first step towards building a thriving community is to give each user an identity. Each website has different needs
in this area, but a few things are fairly common. The first step is to provide users with an account - a
password-protected identity that can be used to represent the user on the website. These accounts allow us to add
personalization, e-commerce facilities, targeted advertising, direct news delivery, and mailing list participation.

This chapter will first identify some of the issues and problems involved with providing user accounts. Once we've
defined the problems, we will produce an mitial design for a solution to this problem. Finally we will write the software
to implement this solution.

We will also look at how we can secure some of the facilities and pages of our website, and how we can make
provisions for administrators and power users.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 5 - Users and Authentication
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

ThePhile.com provides content to users, and also allows users to contribute to the site in several ways, such as
forums, which will be covered in Chapter 10. We also want our site to be able to serve different content to different
users. All of these features rely on our site being able to identify its users, and determine what features they are
allowed to access. In order to do this, the website must authenticate the user in some way, to prevent another
person from using a particular user's account. For all this to work, user accounts will need to be created and
maintained, and users will need to be correctly identified by their accounts.

Many features of the site will need to be administered remotely, so we need to allow for administrative users who will
be given particular privileges. For example, some users might be able to remove offensive forum postings. However
we might not want these users to access every administrative feature on the site - only those features required to
moderate the forum. We might want to give another user - the main webmaster, say - access to everything. So this is
more complex than simply differentiating between a set of normal users and a set of super users.

Another thing that we feel very strongly about, that should be listed as part of our problem, is the concept of
user-friendliness. The authentication and authorization system of a content website should be as unobtrusive as
possible. The users should barely be aware of the fact that the website has recognized them, and the process of
logging into the website should be quick and painless.

In many other situations, such as an e-commerce website or a secured intranet application, the
authentication system should be very visible, and very, very strong. In our case, however, we want the
authentication system to remain in the background to prevent it from slowing down the site and confusing or
distracting our users.

Now that we've described what we are trying to build, we can move on to designing a system that meets these
needs.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 5 - Users and Authentication
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

With most desktop or intranet applications we can prevent users from accessing the application until they log in. This
means that the developer can assume that the user of an application can always be identified. Most websites don't
work this way. Many websites don't require the user to supply a password until the very last possible minute. For
example, the user is often recognized through a cookie, goes shopping for a while, and just after they click the Check
Out button, they are prompted for their secure credentials.

Our site will follow the same policy. It will be completely acceptable for an anonymous user, or a user identified with
a cookie but not authenticated with a password, to browse the site and use many of'its features. If the user is
identified with a cookie, some personalization can take place, as long as it doesn't compromise the user's privacy. For
those parts of the site where authentication is required, the user will be forced to authenticate, otherwise they will be
denied access.

In addition to building several new components that will drive our user authentication and security module, we should
make sure that our design accounts for changes to the existing code. First of all, we're going to want to provide a link
to log in, a page that allows logins, and a customized greeting in the site header that identifies the user by name.

The following UML use case diagram illustrates the process of authenticating a user. As you can see, at all times, any
user (anonymous or authenticated) can follow a 'normal’, or unsecured, link. This simply loads a new page and the
process begins again. However, if the user chooses to authenticate, they can do this by either creating a new user
account or by supplying the password information for an existing account. Finally, you can see from the diagram that it
is possible to recognize a previously authenticated user without forcing them to manually authenticate. We will do this
using the cookie-based system supplied with ASP.NET's forms-based authentication.

User Authentication Flow

{Authenticated)

¥
Load User Profile
(Mot Authenticated)
v
w Render P &
F ol -
Mlow Normal Link C te New Us g
-
.
B | oad User Prof

Our site will be using forms-based authentication, which is entirely based on cookies. But there are other ways to
authenticate website users. For example, in order to truly secure the administrative portions of our application, we are
going to use standard N'T/2000 domain security (Windows authentication). This has the benefit of adding the

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 5 - Users and Authentication
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

We have spent some time looking at our design, and will now start to build the software. To recap, we are
implementing a traditional three-tier solution with distinct presentation, business logic, and data services tiers.

We'll start by implementing the database changes, and then work our way up through the data tier and the business
tier to the presentation tier.

The Database

We've already looked at the table structure that we'll use for this part of the database. We can choose whether to
construct it using visual tools or SQL scripts. In Chapter 6 we'll look at the Enterprise Manager's visual tools, for now
we'll present the SQL scripts that can be run in the Query Analyzer. The scripts required are as follows:

CREATE TABLE [dbo].[Accounts PermissionCategories] (
[CategoryID] [int] IDENTITY (1, 1) NOT NULL,
[Description] [varchar] (50) NOT NULL)
ON [PRIMARY]
GO

CREATE TABLE [dbo].[Accounts Permissions] (
[PermissionID] [int] NOT NULL,
[Description] [varchar] (50) NOT NULL,
[CategoryID] [int] NOT NULL)
ON [PRIMARY]
GO
CREATE TABLE [dbo].[Accounts RolePermissions] (
[RoleID] [int] NOT NULL,
[PermissionID] [int] NOT NULL)
ON [PRIMARY]
GO

CREATE TABLE [dbo].[Accounts Roles] (
[RoleID] [int] IDENTITY (1, 1) NOT NULL,
[Description] [varchar] (50) NOT NULL)
ON [PRIMARY]
GO

CREATE TABLE [dbo].[Accounts_StateCodes] (
[Description] [varchar] (60) NOT NULL,
[StateCode] [char] (2) NOT NULL)
ON [PRIMARY]
GO

CREATE TABLE [dbol TAccounts UserRoles] (

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 5 - Users and Authentication
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

This chapter started off by presenting a problem that many websites today are faced with: that of identifying,
authenticating, remembering, and persisting user accounts. We then went through a design for a solution to this
problem. Finally, we looked at the extensive source code for an expandable, powerful implementation.

In this chapter we covered quite a few topics and took a look at a fair amount of code. We covered some important
concepts, such as the uses and benefits of role-based security, and the importance of integrating into existing systems
rather than creating entirely new infrastructures. We covered a complex system of assigning permissions to roles, and
assigning users to those roles, and showed how we can create a fully functioning authentication system around this

concept.

Hopetully, you have found this chapter useful, and you will understand the following important concepts that you can
use in your own projects and sample applications:

The issues surrounding user identification
Issues nvolved in user authentication
Issues involved in securing all or some of a web application

Provisions for admmistrative or 'power' users

Now that we have our Accounts module we can move on and implement other modules that rely on it for user
identification and authentication. In the next chapter we'll begin to look at modules relating to the content of our site,
beginning with one to manage news articles.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 6 - News Management
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e INEWS Management

The site we're building is basically a content site focused on DVDs and books. Content can be in the form of news,
articles, reports of special events, reviews, and so on. In this chapter we're going to point out some of the
content-related problems that should be considered for sites of this type. We'll then design and develop an online
news manager to enable complete management of our site's content - acquiring news, adding, activating, and
removing news, sharing news with others, and so on. While we will focus on managing news, many of these
techniques will be relevant when dealing with other types of content.

The Problem

There are several ways to gather information and news for our site's content: we might hunt for news ourselves, get
news directly from the users (a great example of this is the Add Your News link at www.aspwire.com), or rely upon
a company, such as Reuters, whose business it is to gather and organize news and distribute it to third party sites.
Another common technique is to keep an eye on other news sites, and scrape articles together from nformation
available on the Internet. Many sites (for example www.wired.com) also provide links to suggested stories elsewhere.
[t doesn't matter which methods we use, we still need fresh and updated content if our site is to be successful and
entice users to return. No user will come regularly to a site if they never, or very seldom, find some new content.

Once we have our news sources, a second problem arises: how to add news and articles to our site. We can
immediately rule out manually updating or adding static HTML pages - if we have to add news several times a day, or
even just every week, creating and uploading pages and editing all the links is not practical in most cases. In cases
where it is practical, we don't need to write a new management system!

For our site, we need a much more flexible system, one that allows the site administrators to easily publish news
without requiring special HTML tools or a knowledge of HTML. We want it to have many features, such as enabling
us to organize news in categories and show abstracts, and allowing the site users to post their own news. We'll see
the complete list of features we're going to implement in the Design section. For now it's sufficient to say that we must
be able to manage the content online, without any other tool. Think about what this implies: you can add or edit news
as soon as it is available, in a few minutes, even if you're not in your office and even if you don't have access to your
own computer; all you need is a connection to the Internet and a browser. And this can work the same way for your
news contributors and partners. They won't need to e-mail the news to you and then wait for you to publish it - they
can submit and publish content without your intervention (although in our case we will give the administrator the option
to approve or edit the content before publication). A good example of this is www.codeproject.com, which provides
article categories plus an "unedited section” for the user-submitted articles that have not been edited yet.

For small content sites, or for sites where news and articles are not the main business, simply showing news and
other resources is sufficient. But others may want to take this one step further, and decide to offer the news they have
gathered/written and organized to other sites. Such sites might not want to spend time finding and formatting articles,
may not have people who look after a news management system, but might want to fuel their site with some fresh
content automatically updated on a regular basis. In many cases, paying a fee for such a service can be relatively
cheap and very easy, since the site administrator doesn't have to worry at all about the content, and they'll be able to

NS S N DU PSR A A S P I B IS JA T b PR R A P N B PR A P

http://www.aspwire.com
http://www.codeproject.com

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 6 - News Management
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

In this section we're going to work on the design of our online tool for acquiring, managing, and sharing the news
content of our site. Specifically we will:

Provide a full list of the features we want to implement

Design the database tables for this module

Write down a list and a description of the stored procedures that provide access to the database
Describe the object models of the data and business layers

Describe the user interface services specific to news management, such as the site pages, reusable user
controls, and web services

Explain how we will ensure security for the administration section and for other access-restricted pages

Features to Implement

Let's start our discussion by writing down a list of the features that the news manager module should provide in order
to be flexible and powerful, but still easy to use. We might decide to add more features later, but these are the things
we definitely need to implement:

A news item can be added to the database at any time, with the option not to publish it until a specified
release date. In addition, the person submitting the news must be able to specify an expiration date, after
which the news will be retired. If these dates are not specified then the news should be immediately published
and remain active indefinitely.

News items or articles can have an approved status. Ifit is the admnistrator who submits the news item, it
should be approved directly. If we allow other people, such as staff or users of the site, to post their own
news, then it should be added to the database in a "pending” state. The site administrator will then take care
of controlling this content, applying any required modifications, and finally approving the news for publishing
once it is considered suitable.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 6 - News Management
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

We've discussed just about every aspect of the design, and we are now ready to produce the solution. We'll follow
the same pattern as in the Design section: from the creation of database tables and stored procedures to the
implementation of security, passing through the data access and user interface services coding,

Working on the Database

Creating the database tables is straightforward, using the Enterprise Manager, so we won't cover it here. The best
way to set up the database is to use the backed up version in the code download.

Now let's look at how to create the relationships between the tables and write some stored procedures, although
these already exist in the backup.

Relationships Between the Tables

We create a new diagram in the Enterprise Manager, and by following the wizard we add the News_Categories,
News News, and Accounts Users tables. As soon as the three tables are added to the underlying window, the
Enterprise Manager should recognize a relationship between News Categories and News News and automatically
add a connection with the correct properties. However, if it does not, click on the News News table's CategorylD
field and drag and drop the icon that appears over the News Categories table. Once you release the button, a dialog
with the relationship's properties appears. You should set the options as shown in the screenshot below:

A% P A% R T «wE0
| a

!Lg IJ.I:J

The Cascade Update Related Fields option ensures that if we change the CategorylD primary key in the

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 6 - News Management
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

In this long chapter we have seen how to build a complex and feature-rich module to completely manage the site's
news and articles. We've provided numerous features through the chapter:

A tool for managing the database.

Pages for browsing the published content.

Integration with the Accounts module to secure the module and track the authors of the news items.
A user control for showing the headlines on the homepage or in any other page.

A web service that can share the headlines with any site or program that can use and understand
XML/SOAP messages.

A Windows client program that uses the web service to show the headlines of all the available categories,
and that opens a browser and shows the whole news item when a title is clicked.

This system should be flexible enough to be successfully plugged into many real world applications. When customized
to fit a particular site's needs, it could become very powerful.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 7 - Advertising
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Chapter 7: AdvertiSing

Overview

No matter how wonderful the website, how amazing the look, how talented the programmers, or how useful the
service - a site will not last long without a consistent source of funding. Some sites are maintained by volunteers who
donate their own time and money, and others get subscription fees from readers. Many of these sites try to
supplement their revenue with advertising, and other sites rely on it entirely.

Many sites use banner advertisement-style features even when they don't sell advertising space. For example, some
sites exchange links with other sites. Others (for example www.play.com) use banner advertising to provide links to
areas of their product catalogue that the viewer would not necessarily go looking for.

In this chapter we will present an overview of the problems involved with advertising and some common design
patterns in overcoming those problems. We'll develop a reusable advertising module that we'll plug into our website
and that we can easily adapt to our future needs.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 7 - Advertising
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

There are two main concepts you need to be familiar with to provide advertising on a website: impressions and hits.

Impressions

An impression occurs when a particular advertisement is displayed on a web page to a single user. Website owners,
administrators, and marketing managers should consider impressions a commodity - chips to bargain with when
obtamning lucrative advertising contracts.

Consider this scenario: a popular content website receives over a million impressions a day. For the sake of example,
imagine that it is a fan club website dedicated to a popular video game. Its audience consists of a wide range of
browsers from older adults to young teenagers and pre-teens. An impression on this site would be considered an
extremely valuable commodity to a video game manufacturer. However, a manufacturer of a popular brand of craft
elue would probably not find those impressions particularly valuable.

Impressions are yours to sell, and you should look for a buyer for your impressions that would be most mterested in
your target audience. Therefore, you must know the audience of your website in order to market your impressions to
the right audience.

Typically, impressions are sold in bulk. A typical advertising contract will consist of the advertising buyer paying for a
mathematical or statistical guarantee that a certain number of impressions of a given ad will be displayed in a given
time period (usually measured in weeks or months).

Hits

While impressions are yours to sell, hits are to be considered rewards or prizes. An impression occurs and an
advertisement appears on the user's page. If the user is particularly interested in what the advertisement has to offer,
then the user will click the advertisement. This is called a hit. Just to confuse things more, virtually every dotcom
company has a different term for hits, including clicks, click-throughs, scores, buy-ins, and more. No matter what

term is used, it all boils down to the simple act of the user clicking on the advertisement.

This is where advertising gets more profitable. Hits are worth more than impressions. Advertising contracts typically
pay percentages of sales resulting from banner advertisement hits, or they pay a flat rate per hit.

When designing an advertising system we need to keep track ofthe following:

Impression counts

Hit counts

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 7 - Advertising
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Design

Now that we have specified the broad requirements of our advertising system, let's lay down a design for it. Once
again ASP.NET provides a component that almost does what we want - the AdRotator. So before we look at the
components we are going to build, let's look at how the AdRotator works and what impact using it will have on the
rest of our design.

Using the AdRotator

The AdRotator handles a lot of the work associated with displaying an advert. It will save us time overall if we use i,
but it has its own foibles that we need to overcome.

We would like to store all data for our application in the database, but AdRotator only supports an XML file. So we
will need to find a way to work around this. Information required by the AdRotator will go in the XML file, while
related data will go in the database. We will need a way to tell which entry in the database relates to which entry in
the XML file.

Another limitation is that the AdRotator doesn't come with the ability to record hits or impressions. It doesn't expose
a click event that we could use ourselves to record hits, so we'll have to implement this functionality ourselves.
However, it does fire an event every time an ad is displayed - so we can use this to record an impression.

The XML file for an AdRotator stores the following details:

Property Description

ImageUrl Absolute or relative URL to an image to be displayed as
the banner advertisement.

NavigateUrl The URL of the page to go to if a user clicks the ad.
AlternateText Text to display in the images ALT attribute.
Keyword An optional keyword for the advertisement, to allow

filtering. We won't be using this feature here, consult the
MSDN documentation for more information on this

property.

Impressions This number indicates the relative importance of this
advertisement with respect to all other ads in the rotators
XML file. The larger this number, the more frequently the
ad will be displayed. This number will typically be
adjusted based on how much the advertiser is paying,

http://msdn.microsoft.com/library/default.asp?urh/library/en-us/cpgenref/html/cpconadrotatorwebcontrol.asp

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 7 - Advertising
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

As with any project, we hope that by the time we are ready to code we have created a good, solid, effective design.
In our design we covered the data services and business layer classes that we would need to create. We also
discussed the fact that we would be using the AdRotator control.

This is actually a very simple control to use, and is the core of our advertising solution. You just put the AdRotator
control onto your ASP.NET page and indicate where it can find the advertisement files - it then handles everything
else. In this section we'll show you how we use this control to record impressions and hits, two things that it doesn't
have built-in support for recording. We'll also show you how we have implemented the rest of our design to support
the advertising solution.

The Database Tables

Before building our database, we need to decide on the details of the tables. Here is a fuller schema, which we will
use to build the database.

AdsManager_Advertisements Table

Column Name Data Type Description
AdvertisementID mnt - Identity Unique ID for the advertisement.
primary key

Description varchar Description of the advertisement.

CompanyID mt foreign key ID of company owning the
advertisement.

Active bit Boolean flag indicating whether the
advertisement is active.

TrueNavigateUrl varchar URL where the user will be
redirected from the pass-through
page.

AdsManager_Companies Table

Column Name Data Type Description

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 7 - Advertising
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

Advertising is an interesting and exciting facet of doing business on the web. Many websites pay their bills by offering
advertising. Website owners and administrators can track the demographics of their audience and use that information
to convince advertisers that paying for impressions on their site is a worthwhile investment. Those same administrators
can also keep track of how many impressions and clicks a particular advertisement receives and use that mformation

to bill the client (advertiser).

After reading this chapter, you should have a solid understanding of:

Storing information on advertisements by aggregating both XML and RDBMS data in the data layer, hiding
the distinction from the business layer.

Keeping audit trails of clicks and impressions by trapping events in the AdRotator control and doing some
data warehousing in the database.

Providing sufficient information to advertisers to prove ad effectiveness (or lack of) by providing a stored
procedure designed to pull reporting information from the data warehouse.

So far we've looked at several ways of providing our site visitors with information. In the next chapter we'll show
how to find out what our readers think, by implementing an opmion polls module.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 8 - Polls
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Chapter 8: P O lls

In this chapter we'll discuss polls - which comprise a question with a set of optional responses that the user can select
from and vote for. First we'll recap why polls are useful and important for different websites. We'll then demonstrate
how to design and implement an easily pluggable and mamntainable voting module for our ThePhile.com site. We'll also
show how to make it accessible to external clients, such as other sites or Windows programs, via a web service.

The Problem

We briefly discussed the benefits of polls in Chapter 1. To recap, sites that provide a poll usually do so because they
are interested in what people think. They use polls as a form of user-to-site communication because they want views
on the products they sell or review, or opinions about the market in general, or they want to know who the users are,
their age, their occupation, and other demographic information. Good polls always contain targeted questions that can
help the site's managers to know who their users are and what they want to find on their site. This information can be
used to identify which parts of the site to improve.

Polls are valuable for e-commerce sites too, because they can indicate which products have higher interest
and demand. Armed with this information, e-commerce businesses can highlight those products, provide more
detailed descriptions or case studies, or offer discounts to convince users to buy from their site.

Another use for the mformation is to attract advertising revenue. If you look on any middle to large site the chances
are that you'll see an "Advertise with us" link, or something similar. On that page you'll probably find information about
the age of the typical users, the regions or countries they live in, and sometimes also their average income. This
information is often gathered by direct or indirect polls. The more details you provide about your typical audience, the
more chance you have of finding a sponsor to advertise on your site.

Another benefit is user-to-user communication. Users generally like to know what their peers think about a product
or a subject of interest to them, and maybe even how much they earn! I must admit that I'm usually curious when I see
a poll on a website. Even if I don't have a very clear opinion about the question being asked, I vote, often because I
want to know which is the most popular response! This explains why polls are usually well accepted, and why users
generally vote quite willingly.

Another reason why users might be willing to vote is that they may feel that their choice has some
significance for the people behind the scenes. And the votes actually are important, as we've seen, the results
can drive the future content of the site and other decisions.

We want the benefits of a poll facility for ThePhile.com, and therefore want to implement some form of poll on the
website. Now we should consider some further details about web polls, namely the problems that we must address to
successfully run a polling system.

First of all, as for the news and other content, the same poll shouldn't remain active for too long, If we leave the same
poll on the page for, say, two months, we might gather some more votes, but we risk losing the nterest of users who

IR R EES Y G R (R | T Ay T PR Ak DI Py S B Ay T I J S A

http://www.extremetracking.com
http://www.sitemeter.com
http://www.fastcounter.com

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 8 - Polls
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

As usual, in this section we're going to work on the design of the solution. We'll be looking at how we can provide
voting functionality for our site. This module - like most of the others presented in the previous chapters - stores the
data (questions, answers, votes, etc.) in the database shared by all modules of'this book. To easily access the
database we'll need a set of stored procedures and a data access layer, and a business layer to keep the presentation
layer separate from the database and the details of its structure. Of course there will be some sort of user interface
that allows the administrators to view and manage the data through their favorite browser.

To start with we'll list the features we want to implement, then we'll begin to design any database tables, stored
procedures, data and business layers, user interface services, and security that we need for this module.

Features to Implement

Let's start our discussion by writing down a list of features that the polls module should provide:

In order to easily change the current poll and add or remove questions, the administrator will need an
access-protected administration console. It should allow multiple questions, and their options, to be added,
edited, or removed. The ability to have multiple questions is important, because we might want to have
different polls in different sections of our site. The administration pages should also show the current results
for each option, and the total number of votes for each question.

A user control that builds the poll box that can be inserted into any page. The poll box should display the
question text and the available options (usually rendered as radio buttons to allow only one choice). Each
question will be identified by a unique ID, which should be specified as a custom property for the user
control, so that the web master can easily change the currently displayed question by setting the value for that

property.

We should prevent the user from voting multiple times for the same poll. Or, even better, we should be able
to dynamically decide if we want to allow the user to vote more than once, and specify the period for which
they will be prevented from voting again. We'll further discuss why we might want to do this in the next
section.

We can have only one poll (question) declared as current. When we set a question as being current, the
question that was previously the current one should change its state. The current poll will be displayed unless
we specify another question ID for the poll box. Any non-archived poll can be displayed. Of course we can
have different polls on the site at the same time depending on the section (one for DVDs and one for books,
for example), but setting the default question is useful because we'll be able to add a poll box without
specifying the ID of the question to display (through the custom property mentioned above). We'll also be
able to chanee the auestion throuch the administration console. without manually chaneine the nase and

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 8 - Polls
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

Now that we have a thorough design for the module, we can start the hands-on part - the implementation of the
solution. We'll follow the same order as we did in the design section: starting with the implementation of the database
tables, we'llmove on to the data, configuration, and business assemblies, and finally we'll look at the presentation
layer. This comprises the administration section, the poll user control, the web service, and the Windows web service
consumer.

Working on the Database

With the help of the Enterprise Manager, creating the tables for our SQL Server database is such a simple task that it
is not necessary to describe it in detail here. Earlier in this chapter we presented the complete lists of the columns for
each table, along with the most significant properties, so you should have no problems creating them. (Alternatively,
script files to create the tables are available in the code download, as is a complete backup of the database.)

You can create the new tables (or even a new database if you need to) right within Visual Studio .NET, without
opening SQL Server. On the far left of the IDE, near the Toolbox, you find another tab called Server Explorer. This
window allows the developer to explore the server components such as SQL Server databases, events logs, message
queues, etc., through an easy-to-browse tree control. Under the SQL Server leaf are listed all the available
databases. If you select and expand one you can see its tables, stored procedures, views, diagrams, and functions.
'You can edit or delete existing objects, or create new ones, by clicking the respective commands of the popup menu
that appears by right-clicking on a tree item. The following screenshot shows the IDE while displaying the data of the
Polls Options table:

I e T e il
R e wn b ey ek e b e
Eevedu® s mn W o p— e g
=S N e | bl w &
Y ; e g
- e : E
i . I
. =3
. : @
' =
- |
= s
‘.
s
- e
l.
‘_
il e 5
[S—— =
el]
T

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 8 - Polls
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

This chapter has presented a working solution for handling multiple dynamic polls on our website. The complete Polls
module is made up of several parts:

An administration console for managing the polls through a web browser

Integration with the Accounts module to secure the administration pages

A user control that enables us to show different polls in any page we want with just a couple of lines of code
A web service that can be accessed by external clients to get the current poll's question and results

A Windows client program that uses the web service to display the current poll and its results

This module can easily be employed in many real world sites as it is now, but of course you can expand and enhance
it. Here are just a few suggestions:

Add more styles properties to the poll control, and the ability to remind the user which option they voted for.
Currently they can see the results, but the control does not indicate how they voted.

Add a ReleaseDate and ExpireDate to the polls, so that we can schedule the current poll to change
automatically.

Provide the option to allow only registered users to vote. Alternatively, keep the vote open to all, but allow
only registered users to see the results and/or the archive page.

Expand the web service and the respective Windows client so that it can display all the archived polls as well
as the current one.

In the next chapter we're going to continue the development of ThePhile.com through the addition of another easily
pluggable module. This new module will be used for managing multiple mailing lists and their subscribers, and for
sending out newsletters.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 9 - Mailing Lists
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e VIQLIING LLASTS

In this chapter we'll discuss the design and implementation of a complete mailing list system. This will enable users to
subscribe to receive regular newsletters, and will allow administrators to manage mailing lists and newsletter content.
First we'll look at what mailing lists and newsletters can offer to websites like ours, and will consider various ways of
making the mailing list administrator's life as easy as possible. By the end of the chapter we'll have developed a
flexible mailing list module that can be plugged into most sites. In keeping with the rest of the project, we will aim to
integrate this module into our ThePhile.com site through the reuse of familiar code and architecture where appropriate.

The Problem

Throughout this book we've mentioned that the key to a successful site is having good content. This content also
needs to be logically organized to ease navigability, have an attractive design, and offer some mteraction with the user.
The content not only has to be interesting and accurate, but to ensure that users keep visiting the site it must always be
fresh and regularly updated. To help us achieve this for our ThePhile.com website, we built the NewsManager
module (in Chapter 6) to allow an admnistrator to easily manage and publish new content (for example an article, a
new product for sale, or a new design).

But even if fresh content is frequently added to the site, not every user will be aware of it. They might not visit the site
daily or weekly just to see the latest updates, especially if the site is updated on a random basis with no public
announcement of when new material has been added. A good way to inform the user that some new content has been
added to the site is to send an e-mail newsletter that lists all the new resources available on the site. Many sites offer
the option of subscribing to a mailing list, which typically represents a group of'users mterested in a certain kind of
news. A newsletter is sent to a mailing list to inform the community of users that the site is still worth visiting.

You should always keep in mind that you're offering a service to the user, and it must be a high quality service if you
don't want to lose your subscribers. This means that you need to provide targeted content. So, you shouldn't send
out a general content newsletter if you have a large site with different sections and different types of content. For
example, at ThePhile.com we cover DVDs and books, and so we have news for two different topics. We should
provide at least two different mailing lists, so that the users can get what they want and avoid getting what they are not
mterested i, which they may perceive as spam.

It's a nice touch to personalize every e-mail message, for example with the name of the subscriber if this information
is available, because this can help to build a more personal relationship with the subscriber. However, in order to
persuade users to subscribe to a mailing list the subscription process should be as straightforward as possible and
they should not be forced to provide additional personal details. The most common way of subscribing to a list is to
type your e-mail address in a form on the home page and press submit. This will allow only the e-mail address to be
used to personalize the newsletter. In order to achieve more extensive personalization you have to ask the users to
provide more details, such as their first and last names. For your websites the choice is up to you, but we want our
module for ThePhile.com to support both a basic and extended subscription form, so that we can cater for users with
different attitudes and so that managing the mailing list is as straightforward as possible in either case.

[7 . S (R PR b T I JRy BV P P Dk PR I PN AR T Py S Y IS S Sy e n

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 9 - Mailing Lists
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

From our requirements it's clear that we're going to be handling data about users and the lists they subscribe to. In
keeping with the rest of the site we'lluse our SQL Server database to store this information. We'll also need an
interface for administrators to manage the lists, and an interface where users can subscribe. As with other modules
we'll use a multi-tier approach and will make use of data access and business logic layers to keep the Ul and
database separate.

In this section we'll design the database tables for this module, and design the data and business layers that we'll use
for managing the subscriptions from the administration console. The nice thing about the administration console is that
we won't need to manually manage the group of subscribers - the application will automatically add or remove them
to/from the database. For this we will make use of stored procedures called by methods in response to certain events.

Designing the Database Tables

As discussed in Chapter 2, all modules in our project require a prefix for the tables and stored procedures. For this
module it will be MLists . We need the four tables shown in the following diagram, which also indicates their
relationships:

L3 ListiD ™ | s o PR Ui

- | L
Nmme Email
Desrmyniion L LintiD

a FHL | UsadiD rattimmn

The MLists_Lists Table

The MLists_Lists table is used to store the information about each available mailing list:

Column Name Type Size Allow Null Description
ListID mnt - Identity 4 No The unique ID for the
mailing list.
primary key
Name varchar 50 No The name of the
mailing list.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 9 - Mailing Lists
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

This module has a very similar structure to that of previous modules. The administration console has similar pages: the
page for the mailing lists (questions or categories in the previous chapters), the page for the subscribers (options and
news in the previous chapters), and the page for the settings. We won't list the code for these pages, as it is so similar
to the code already seen - all of the code can be found in the download. The same applies to the data component.
Thanks to the DbObject base class of the Core assembly, we can use the RunProcedure method to run the stored
procedures and return a dataset or an output parameter. As we saw in the Design section, our data assembly has
classes that almost exactly map the stored procedures, and there is nothing new to add that wasn't already discussed
in previous chapters.

So what are we going to see? We'll look at the code of some of the stored procedures (to better understand the
relationships between the tables), the business classes, the subscription box, and the pages required for subscribing,

Working on the Database

Looking at the diagram and the descriptions of the tables we provided earlier, you should have no problems building
the tables for our SQL Server database and the relationships. (All three one-to-many relationships should have the
Enforce Relationship for INSERTs and DELETES options selected.) However, as for the previous chapters, you can
20 to the Wrox site and download the database backup with all the tables, stored procedures, triggers, and also some
data that will allow you to test the module straight out of the download.

Creating the Stored Procedures and Triggers

In this section we won't cover the code of all the stored procedures, since in previous chapters we've already seen
how the procedures for deleting and updating a record work. However, we'll show a few of the procedures for
working with subscribers, because they are a bit more complex as they involve joins and relationship constraints.

Retrieving Subscriptions

Here's the code for the sp_ MLists GetSubscriptions procedure. It joins the MLists Subscriptions and
MLists_Users table, to return either all the details of the subscriptions for the specified mailing list, or just the details of
those users with an active subscription:

CREATE PROCEDURE sp MLists GetSubscriptions
@ListID int,
@ActiveOnly bit

AS

IF @ActiveOnly =0
BEGIN
SELECT SubscriptionID, MLists Users.UserID, Active, FirstName, LastName,
Email, AddedDate, ListID

FROM MLists Users

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 9 - Mailing Lists
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

The aim of this chapter was to show how to design and build a full-featured mailing list manager that could be used
as-is for many websites. We've implemented an administration console that allows us to:

Add, edit, and delete mailing lists and their associated subscriptions.

Create and send newsletters (both in plain text and HTML format) and consult the archive of previously sent
messages.

Modify the settings online.

Auto-generate the HTML code for the subscription box.

Administration aside, we've developed the page that actually handles the subscription process. This used the business
components developed at the beginning of the implementation section. Finally, we've used the Accounts business
classes to ensure that only users with the appropriate permissions can administer the data and send out newsletters.

By doing all this we've learnt some new techniques in this chapter, most notably:

How to use the SmtpMail and MailMessage classes to send e-mails with the Windows SMTP Server.

The use of regular expressions to validate e-mail addresses (or, in general, any other string) against a given
pattern.

As for any other module presented in this book, you can add further features to make it even more powerful. Here
are just a few ideas:

Add the ability to create and handle subscription forms that allow the user to subscribe to multiple mailing
lists in one step, giving their e-mail address only once. This would simply require a few changes to the HTML
form that you paste in your pages, and to the Subscribe. aspx page that processes the data posted to the
server. Adding a subscription to more than one list is really just a matter of a few lines of code, thanks to the
business layer classes that handle the actual subscription process.

Allow each user to choose whether to receive the newsletters in HTML or plain text format, and send
different newsletters according to that choice.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 10 - Forums and Online Communities
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e FOTUMS and Online
Communities

A successful site should build a community of loyal visitors. Internet users like to feel part of a community of people
with the same interests, to discuss their favorite subjects, and to ask questions and reply to those of others.
Community members will return often to meet other people that they've already chatted with, or to find comments and
opinions about their interests. In this chapter we'll outline some of the advantages of building such a virtual community.
'We'll then identify the goals for our website community, and step through the design and implementation of a new
module for setting up and managing discussion boards (forums).

The Problem

User-to-user communication is important in many types of website. For example, in a content-based site relating to
[programming resources, programmers need to ask questions about problems they are facing and hear suggestions
from their peers. e-Commerce sites benefit from allowing users to review products online.

Two ways to provide user-to-user communication are opinion polls and discussion boards. We looked at opinion
polls in Chapter 8. In this chapter we will talk about discussion boards, or forums.

Forums act as a source of content, and provide an opportunity for visitors to participate and contribute. Visitors can
browse the various messages in the forums, post their questions and topics, reply to other people's questions, and
share ideas and tips.

For our ThePhile.com site, we can offer discussion boards about books and DVDs. We will also want sub groups
within that, so that it is easier for visitors to read about what they are specifically interested n. For example, if we
have a books category we can have sub forums for programming books, classic literature, novels, and publishing,

Early web-forum systems often threw up long lists of messages on a single page, which took ages to load. We want
to avoid this by displaying lists in pages, with each page containing a set number of messages.

Our website already has a way to identify users (the Accounts module we developed in Chapter 5), and our forums
should support that. But we should also give users the opportunity to create a profile, so that they can post messages
without revealing their true identity. These profiles should include a public name, an avatar image (a small picture that
represents the user), a signature, and a homepage URL.

The administrator must be able to add, remove, or edit categories, forums, topics, and replies, and change the
module's settings. If you're wondering what the difference is between a category and a forum, let's say that a category
is a container for multiple forums. For example, we can have two categories: Books and DVD. The Books category
can contain the following forums: programming books, books for children, school course books, spy stories, etc. The
DVD category, on the other hand, will have child forums such as PC games, action movies, horror movies, cartoons,

At~ T vrarticra a catoacntryr allavre hatHfar nraantatinn ond acsna facathar FAharr1e vtk ralaftad ciihianta

This document is created with the unregistered version of CHM2PDF Pilot

Chapter 10 - Forums and Online Communities

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

The Design

As usual, we will design our data layer first and work up to the presentation layer. The configuration system is quite
important in this module, so we will look at the design for that before considering the business layer.

The Database

The design begins with the database tables needed to store all the categories, forums, topics, replies, and members.
The prefix for the tables and stored procedure for this module is Forums . We have five new tables (we also use
Accounts_Users, created in Chapter 5), shown in the following diagram:

I

Lo ot g
R TR AT T
]

]

& FEl Colageeyid
e

(] Yo oD L] ey
- i borw A
L :.-Mt - = S
gt [F] Vg T
3 [vl
e
B il
e AL -
e
L L]
1 Lameg -
e b
[T —
-
— s L—
" g
mankimen
T P
[ET—
LT
L
¥
e
Toeds

In the next sections we'll be explaining each table in detail, but remember that - as usual - you can download the
complete database backup with the required tables, stored procedures, views, etc. from the Wrox site.

The Forums Categories Table

The Forums_Categories table is used to store the name and image for the forum categories. It is structured as
follows:

Column Name Type Size Allow Null Description

CategorylD mnt - Identity primary |4 No The unique ID for the

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 10 - Forums and Online Communities
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

We've already developed several modules throughout the book, and we know the path to follow. We start by
creating the database tables and the stored procedures, then we continue with the data and business classes, and
finish with the ASP.NET pages for the presentation layer. In practice, we'll follow exactly the order of the design
section. Much of the code required here is very similar to that of previous chapters, which was shown in great detail.
So we'll skip the discussion of the common code, and try to focus on the new stuff.

Creating the Database Tables

We create the tables and relationships, and set all relationships to enforce cascade updates and deletes - except for
the relationship between Forums Replies and Forums Members. This is because we already have a relationship
between Forums_Topics and Forums Members, and one between Forums_Replies and Forums_Topics.

When a member is deleted, all topics by that member are deleted, and all the replies of that topic are deleted as well.
SQL Server can't handle a cascade delete of the same row when rows from two different tables are deleted, which
would happen if we enforced a cascade update between Forums Replies and Forums Members. And exactly the
same applies for the cascade update. So, when a member is deleted its topics are deleted, the replies of those topics
are deleted, and we must ensure that the replies authored by that member for other topics are deleted as well. This
can be done using a DELETE trigger, created on the Forums Members table as follows:

CREATE TRIGGER DeleteForumsReplies ON [dbo].[Forums Members]
FOR DELETE
AS
DELETE Forums_Replies
WHERE MemberID = (SELECT MemberID FROM Deleted)

Deleting all records of a user is an extreme measure. In most cases we would prevent a user from accessing the site
by revoking all their permissions, but would leave their database entries intact.

Creating the Views

We now need to create views to add dynamically calculated columns, and create standard joins between tables.
The v_Forums_Forums View

This view joins the Forums_Categories and Forums Forums table to return rows with information on the forums and
their parent category as well. It also adds these calculated columns:

ForumTopics: the total number of topics for the forum

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 10 - Forums and Online Communities
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

In this chapter we've built a forums system from scratch. We've seen how to integrate other modules such as the
Core and the Accounts modules, as well as ASP.NET's built-in authentication. Our Forums module supports multiple
categories and sub-forums, displays topics and replies through custom pagination, enforces the user currently
registered to the site to also create a forums' profile with their username, signature, avatar, and homepage, and
supports or prevents the use of HTML code and other special tags.

We've written quite a lot of code to fuel the discussion board system. Below we just list the most important
techniques that this chapter should have taught you:

Creating nested data bound controls: in the Default.aspx page we showed how to create a DataGrid inside a
DatalList to represent a parent-child relationship.

Custom implementation of the Delete command for the DataList and DataGrid in Default.aspx, namely the
JavaScript popup box that asks for a confirmation and calls doPostBack to generate an event on the
server.

How to implement the DataGrid's custom pagmnation, by using a stored procedure that returns the specified
page of records, the DataGrid's AllowCustomPaging property, and custom controls to navigate through the

pages.
Using regular expressions and the RegEx class to extract and replace string patterns.

However, we've really only scratched the surface ofthe features we could implement for a professional forum. Below
we list some of the features they offer, in case you want to enhance our module with some more advanced
functionality:

[]
Email notification of forum activity, or even e-mail message digests - eventually we could integrate the web
forum with an e-mail discussion list.

Add some kind of preview or revision system for users to edit their own messages.

Banning certain words, and using regular expressions to replace them with acceptable alternatives.

An administration console, that allows administrators to browse members, edit their profiles, or ban them

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 11 - Deploying the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e DE€Ploying the Site

Overview

Now that we have developed our website, we need to deploy it - prepare and distribute the site so that users can
access it.

The release of ASP.NET forces us to reconsider many preconceptions about the deployment of websites. For
example, we need to get used to the possibility of running multiple copies of the same site on a single server, sharing
different versions of identically named DLLs. Another thing that developers might find incredible is XCopy
deployment, which allows a developer to deploy an application by simply copying files to the target location. There's
no need to use the Registry or any complex COM registration.

In the past, deploying a large-scale web application could become a nightmare. Most enterprise web sites were
comprised of dozens (or more) COM and COM+/MTS components. Maintaining the imformation on all of those
components in the Registry and making sure that the information was updated properly when upgrading to a new
version was an incredibly difficult task. ASP.NET allows entire websites to be configured with simple XML text files,
and components to automatically register themselves n COM-+. There's no need to look to the registry for anything in
deployment of ASP.NET, completely alleviating one of the biggest ASP deployment headaches.

This chapter will discuss the general issues surrounding the deployment of ASP.NET websites and the various
approaches we can take. We will describe the deployment techniques we used for ThePhile.com.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 11 - Deploying the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Problem

Our problem for this chapter is deploying our fully functional website to our production server.

It is a common practice to develop a site on a development server, then deploy to a staging server, and finally after
a successful test on the staging server, deploy to the production server. We want a solution that will allow us to
deploy the entire functioning site to a production server. However, we also want to be able to easily deploy the code
to multiple machines so that we can test it in various scenarios. In our solution, our production server is hosted by
Wrox, but it could just as easily be a segment of disk space allocated to us by a website hosting company.

So, in this chapter we want to explore the various ways we can deploy ASP.NET websites and then choose the one
that best suits our needs. The chapter will provide some useful information about ASP.NET deployment that will help
decide which method is most appropriate for different organizations.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 11 - Deploying the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Design

There are two parts to deploying the website: the database and the application. First of all, we will discuss how to
deploy the database. Then we will move on to look at the web application itself.

Deploying the Data Store

A data store for a website can be anything from a set of XML files or simple Access database, to a complex SQL
Server or Oracle database. Each of the website deployment options has a different set of limitations and advantages
for database deployment. However, since database deployment is an important topic all on its own, we'll discuss it
here rather than split up the discussion among the different installation scenarios.

Deploying a database is easiest when we own the machine to which it needs to be deployed. We can use whatever
deployment scenario is most convenient for copying our particular data store. For SQL Server or Oracle there are
several options, including;

Making a backup of the development database and restoring from that backup on another machine.

Transferring data structures and data between linked servers in some fashion, perhaps using script files.

We often don't fully control the database server. Web hosting companies often set up a single database with a certain
quota of disk space, for example. In situations like this, our options are more limited. We probably can't restore from
a backup, because we won't have access to Enterprise Manager against the host's database servers. Even if we do
have access to Enterprise Manager, we might not have the right permissions to perform a database restore. In these
cases, we are limited to using text queries to create the data structures and load the data.

For an Access database, the file just needs to be copied to a certain directory and the file is deployed. It doesn't
matter what server access we have. This does pose a serious danger: if an unwanted intruder happens to find out that
your Access database is available in a public internet directory, they'll be able to download it. You'll want to keep the
MDB file somewhere non-obvious and preferably in a private location, so that only code from your application can
access the file.

Consult your SOQL Server, Oracle, or Access manual for the various options available for transferring your
database from your development PC to a deployed production environment.

For automated deployment, where we create an installation program for our website, we have another option. We

can take the scripts that recreate the data structures required for the application, and can have our installer execute
them at install-time, guaranteeing that the data structures will be available before the application is run for the first time.

Preparing the Site for Deployment

MM At 1om Flhter s v 292 vttt xx7m vv120 A ~nvcad A £ A AncmvTdAacrienr ~11ee ACD NTET «vrnalh ctdne

http://www.hostingcompany.com/myapp
http://www.myapplication.com

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 11 - Deploying the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

The Solution

Wrox Press will host the final version of ThePhile.com, so we do not need to enlist the services of a web hosting
company. This makes a deployment project in Visual Studio .NET an appropriate choice. We will create two - one
with the source code and one without.

In this section we'll cover indepth the steps involved in creating a deployment project for ThePhile.com, which will
result in a Windows Installer file to distribute for deploying ThePhile.

First, we open up Visual Studio .NET and choose the option to create a new project. Then we highlight the Setup
and Deployment Projects option in the left pane, and the right pane shows the following options:

e |
Iremc T vorw: lemmiams mi!
= v B Prowectn ___"j_ s :
o] vemasl C & Progecis g.' £ _::n
-'m | fep Projpct Weh P Merge Modkue
+ [Oehey Projoch POt W
ol el L T i —
s
Srup Yiaed b Project
Creatn & Wirces atabet vl Oropedt B e Mg can e acided!
. [et
\msadior; Cooumenty ard Setings Fewn 5 Foflean Py '.'u-cu_tl o=
Propect will e crested oL 0L Waoen § ol My Documerts T DLas Prosds Weblewp |,
i [oc] cmm | wo |

The following are the different types of setup and deployment projects available:

Setup Project - this will create a blank installation project. It will be up to us to choose all of the various
activities and files for the mstaller. This is typically recommended for those programmers who know ahead of
time what activities need to be performed and which files need to be copied.

Web Setup Project - this is similar to the blank Setup Project, except it comes with a few settings and
directories already created to guide us in the right direction for mstalling a website.

Merge Module Project - this is a slightly more advanced project for creating merge modules for use with
the latest versions of the Windows Installer. Merge Modules are an advanced technique that we won't discuss
here.

Setup Wizard - this is basically a frontend to all of the other project types. We will choose this one - it's
easy and it guides us step-by-step through creating the appropriate type of setup project.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 11 - Deploying the Site
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Summary

We have seen how to deploy and mstall ASP.NET websites. We've discussed some of the issues that tend to arise
during deployment and the various options available for installation. After having read this chapter, you should be
familiar with the following types of deployment and their associated issues and concerns:

[]
XCopy deployment

Deployment to a hosted environment

Automated deployment using VS .NET deployment projects
L~ Prev L Next =

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 12 - The End
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

e 1 NE KN

This is the end of the book but it is not the end of the road. By now you should have played with the site, both by
browsing the code in Visual Studio .NET, and playing with the site on your local machine.

You should also have seen how and why we built the site the way we did, and how to use those techniques on your
own website.

Get Building

The next step is to start building your site. This book will have given you a framework, and some modules to use or
modify. Now you will want to tailor our modules and pages to fit the needs of your site.

We also hope that you will build your own modules in our framework. A lot of our design went into making it easy to
add new modules - we don't want it to go to waste! You will be able to link your modules to our central accounts
system, modify our header and footer controls, and so on. This book will provide a reference for building your own
modules employing similar techniques.

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 12 - The End
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Join Our Community

We don't want you to develop alone. This book will have its own forum at p2p.wrox.com where you can discuss it
with us and other readers. This is a great place to get help with problems, share ideas, and find out if other people

have written the module you need. Or you can just show off the sites you've developed! This service is free to all
readers.

Through P2P, we hope to build up a list of the best websites built with the help of this book. If you do anything really
impressive, we might even ask you to write a book about it!

This document is created with the unregistered version of CHM2PDF Pilot
Chapter 12 - The End
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Read More

This book has touched on a large number of subjects: web services, server controls, security, ADO.NET, and more.
[f you want to find more about any of these subjects, there are several Wrox books that will help.

Web Services

This book has presented a couple of very simple web services. Professional ASP.NET Web Services contains lots
of detailed information on web services and how to develop them. It looks at a variety of issues, including how XML
is used to transmit the data, how to send complex data types, and how to ensure web services support thousands of
users.

Security

Our site uses the extensibility of the ASP.NET security framework to give us a flexible accounts system.
\Professional ASP.NET Security delves deeper into these topics, showing how we can build our own custom
security frameworks. It also contains many tips on ensuring code is secure.

ADO.NET

Data access and manipulation have played a major part in developing our website. Efficient use of databases is one
of the best things we can do to ensure performance and scalability. Professional ADO.NET covers a wide range of
data handling techniques, while Professional SOL Server 2000 gives information on setting up and using SQL Server
in the most effective way.

Professional Server Controls

Our site uses server controls in a number of places. Building good controls puts us in an excellent position to reuse
functionality and save development effort. Professional ASP.NET Server Controls looks at how to build solid,
reusable and flexible controls for your ASP.NET projects.

We hope that you have enjoyed this book, and that it will prove useful as you develop ASP.NET webstites.
L~ Prev L Next =

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

A Guide to the Index

The index is arranged hierarchically, n alphabetical order, with symbols preceding the letter A. Most second-level
entries and many third-level entries also occur as first-level entries. This is to ensure that users will find the mformation
they require however they choose to search for it.

Symbols

#region meta-command
regions of code, 296
NET Framework
security, 145

identity object, 145
principal object, 145
user authentication, 145
XCopy deployment, 507
__doPostBack function
categories and forums page, 467
directories, creating, 104
text files, creating, 107
3-layer design of website
business services tier, 11
data services tier, 11
user interface, 11

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

A

Access database
database deployment, 505
accounts

see user accounts.
AccountsTool class
business services tier, 174
data services tier, 163
Activate method
ServicedDbObject class, 39
Add method
Attachments collection, 415
Cookies collection, 343
News class, 220
Add Web Reference option
news ticker web service client, 270
Poll web service client, 378
AddNews method
Category class, 229

address, validating
CustomValidator control, 422
problems with, 423

regular expressions, 420
RegularExpressionValidator control, 420
AddTopic method
Forum class, 462

AdMaster class
business services tier, 293
data services tier, 287
DbObject base class, 287
AdminFooter control
categories manager page, 240
news management, 233
online polls, 344

question manager page, 350
user controls, 231
AdminHeader control
categories manager page, 235
news management, 232
online polls, 344

question manager page, 346

This document is created with the unregistered version of CHM2PDF Pilot
Index
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Index

B

backup system, database design, 28
base class for tier

business services tier, 40

data services tier, 34

BmaryReader class

System.IO namespace, 80
BinaryWriter class

System.IO namespace, 80
BindGrid method

categories manager page, 240
Forum page, 481

news manager page, 250

question manager page, 351

Topic page, 488

BindList method

categories and forums page, 472
BindTopicControls method

Topic page, 489

BizObject base class, 40
BoundColumn

DataGrid control, 350

branding

Header control, 54

BrowseFiles web form, FileManager web application, 83
FillFoldersAndFilesTable procedure, 123
FormatSize procedure, 96
GetAttributesDescription procedure, 94
GetDirectorySize procedure, 95
Rename procedure, 117
BuildIntCommand procedure
DbObject base class, 35
BuildQueryCommand procedure
DbObject base class, 36

business services tier, 30

3-layer design of website, 11
advantages, 30

advertising on the web, 293
building, 30

classes

AccountsTool class, 174

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

C

Cab project

automated deployment, 511
Cache class

Insert method, 368

Remove method, 368
caching

dynamic output caching, 258
problems with, 366

using with Poll user control, 367
camel casing convention, 22
cascading stylesheets

see CSS.

categories and forums page
adding categories, 473
administration, 466
BindList method, 472
code-behind page, 472
DataGrid control, 470
DataList control, 468
DataView method, 472
deleting categories, 475
editing categories, 473
Footer control, 475

Forum menu, 468

hacking, preventing, 475
Header control, 475
code-behind page, 476
HyperLink control, 476
Label control, 476
JavaScript functions, 466
_doPostBack function, 467
user interface, 466

working with forums, 475
Categories class

data services tier, 199
categories manager page
AdminFooter control, 240
AdmiHeader control, 235
BindGrid method, 240
code-behind file, 240

This document is created with the unregistered version of CHM2PDF Pilot
Index
byMarco BellinasoandK evin

Hoffman?
Wrox Press 72002

Index

D

data binding

role editor, 182

user profile page, 179

data services tier, 29

3-layer design of website, 11
advantages, 29

advertising on the web, 287
problems with two data stores, 283
availability, 29

building, 29

classes

AccountsTool class, 163
AdMaster class, 287
Advertisement class, 289
base class for tier, 34
Categories class, 199
CategoryDetails class, 199
ListDetails class, 394

Lists class, 395

News class, 216
NewsDetails class, 200
NewsletterDetails class, 396
Newsletters class, 396
OptionDetails class, 320
Options class, 321
Permission class, 160
PermissionCategory class, 162
QuestionDetails class, 319
Questions class, 319

Role class, 157
SubscriptionDetails class, 395
Subscriptions class, 395
User class, 151

CRUD functionality, 151
VoteDetails class, 321

Votes class, 321

forums, 458

information aggregation, 289
mailing lists, 410
maintainability, 29

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

E
EditCommandColumn
DataGrid control, 348

EditFile web form
code-behind for, 110
FileManager web application text file editor, 109
RequiredField Validator control, 110
EditltemIndex property
DataGrid control, 351

e-mail address, validating
CustomValidator control, 422
problems with, 423

regular expressions, 420
RegularExpressionValidator control, 420
e-mail newsletter
see newsletter.
Enterprise Manager
website database management, 77
Error event
Page class, 66

error handling
see exception handling.
escape characters
see character escapes.
Eval method
DataBinder class, 239

event handlers
PhilePage class, 66

role editor, 183

testing, 68

exception handling
AppException base class, 54
problems with, 40

testing, 68

user iterface, designing, 66
website design fundamentals, 31
ExecuteNonQuery method
SqlCommand class, 36
ExecuteReader method
SqlCommand class, 34
extending website, 13

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

F

fault tolerance

website design fuindamentals, 3 1
File class

Copy method, 127

Move method, 127
SetAttributes method, 121

file management, website, 76
FTP, 76

online file manager, 77
designing, 77

FileManager web application Integrated Windows Security, 129
File System view

Setup Wizard, 512

FileInfo class

Attributes property, 118
CreationTime property, 97
LastWriteTime property, 97
Length property, 95

System.IO namespace, 80
FileManager web application
client-side JavaScript, 125
directories

creating, 103

renaming, 115

files

copying or moving, 125
deleting, 122

downloading, 99

renaming, 115

uploading, 101

Footer control, 81

Header control, 81

Integrated Windows Security, 131
Main Page, 82

displaying additional attributes, 89
listing folder contents, 84
modifying attributes, 118

text file editor, 109

text files

creating, 107

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

G

GetAttributesDescription procedure
BrowseFiles web form, FileManager web application, 94
GetAuthorText method
Forum page, 482

GetCategories method

Category class, 229

GetCurrent method

Question class, 340

GetDetails method
INews class, 218
GetDetailsRow method
INews class, 219

GetDirectorySize procedure
BrowseFiles web form, FileManager web application, 95
GetHeadlines method

Category class, 230

News class, 218

Getimage method

categories manager page, 241
GetNews method

Category class, 229

News class, 217

GetOptions method

Question class, 339

GetTopics method

Forum class, 462

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

H

hacking, preventing

categories and forums page, 475
checking permissions, 475
hardware, database design, 28
Header control

AdminHeader control, 344
advertising, 54

branding, 54

categories and forums page, 475
code-behind page, 476
HyperLink control, 476

Label control, 476

FileManager web application, 81
SiteHeader control, 64

user interface, designing, 54
HeaderTemplate

Datal ist control, 469
runat="server" attribute, 469
Headlines control

DataBind method, 264

DataGrid control, 263

news management, 262

plug-in headlines, 206

testing, 264

Headlines web service

news management, 267

news ticker web service client, 270
testing, 268

WebService class, 268

Helper class

business services tier, 463
processing text into HTML format, 463
ProcessSpecialTags method, 490
hits

advertising on the web, 278
definition, 278

economics of, 278

home page, user interface, 70
CSS (cascading stylesheets), 71
navigation control, 71

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

I

Icon for item, displaying
FileManager web application, 90
identifying users
see user identity.
identity object
NET Framework security, 145
identity property
[Principal interface, 164
PhilePrincipal class, 146
IgnoreCase value
RegexOptions enumeration, 464
[Identity interface
Phileldentity class, 167
System.Security. Principal namespace, 167
IS
configuring for website deployment, 507
Integrated Windows Security, 129
Virtual Directory Creation Wizard, 507
Image web control
ImageUrl property, 90
ItemTemplate, 470
ImageUrl property
Image web control, 90
 tag
src attribute, 91
implementation
online file manager, design issues, 78
impressions
advertising on the web, 277
definition, 277
economics of, 278
IndexOf method
Array class, 92
mformation aggregation, 289
Advertisement class, 289
information hiding
see information aggregation.
Insert method
Cache class, 368
mstallers

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoffiman?
Wrox Press 72002

Index

J

JavaScript functions

| doPostBack function, 467

categories and forums page, 466
expanding or collapsing <div> element, 374
PostMessage page, 491

prompt function, 107

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

L

Label control

Header control

categories and forums page, 476
Poll web service client, 378
Text property, 431
LastWriteTime property
Directorylnfo class, 97

Filelnfo class, 97

Length property

Filelnfo class, 95

linking table

advantages and disadvantages, 314
List class

business services tier, 398
ListBox control
SelectedIndexChanged event, 184
ListDetails class

data services tier, 394

Lists class

data services tier, 395
LoadFromID method

Forum class, 460

News class, 226

location attribute
<soap:address> element, 382
LogEvent method
AppException base class, 66
PhilePage class, 67

logical requirements, website, 18
Login page

SiteHeader control, 177

user interface, 177

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

M
mailing lists, 385

administration, 419

Form Wizard, 429

settings, modifying, 428

settings, storing and retrieving, 428
advertisement spots, 386
business services tier, 410
Helper class, 417

List class, 398

modifying settings, 404
Newsletter class, 414
Subscription class, 411

content issues, 385

targeted content, 386

data services tier, 410
ListDetails class, 394

Lists class, 395
NewsletterDetails class, 396
Newsletters class, 396

storing and retrieving settings, 397
SubscriptionDetails class, 395
Subscriptions class, 395
database design, 406

MLists History table, 391
MLists_Lists table, 389

MLists Subscriptions table, 390
MLists_Users table, 389
optional information, 390
separating from user accounts database, 389
stored procedures, 406

triggers, 409

designing mailing list system, 388
module configuration, 410
newsletter and, 385
personalizing messages, 386
problems and solutions, 406
security, 435

subscribing to mailing list, 432
confirmation of subscription, 433
ThePhile.com, 386

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

N

namespace attribute

Register directive, 70
namespace hierarchy
designing, 23

folder structure and, 27
ThePhile.com, 24

namespaces

compared to folders, 24
naming and coding conventions, 21
camel casing, 22

Hungarian notation, avoiding, 23
Pascal casing, 22

underscore character, avoiding, 22
NavigateUrl property

HyperLink control, 249

navigation control creating, 59
CSS (cascading stylesheets), 58
re-usability, 51

user interface, designing, 59

user interface, home page, 71
XML files, 59

converting XML into HTML, 60
XSLT, 71

network topology, database design, 28
new advert page

administration, 304

DropDownlList control, 305
News class

Add method, 220

business services tier, 225

Create method, 228

data services tier, 216

DbObject base class, 217

Delete method, 228

GetDetails method, 218
GetDetailsRow method, 219
GetHeadlines method, 218
GetNews method, 217
LoadFromID method, 226
ResetProperties method, 226

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

O

object construction, 39

Onlnit method, Page class
overriding in PhilePage class, 67
online administration

modifying settings online, 356
online communities

see also community building for website.
forums, 439

online polls, 12

online file manager

compared to FTP, 77
designing, 77

implementation design, 78
security design, 79
FileManager web application
Integrated Windows Security, 129
website file management, 77
online news management

see news management.

online polls, 309

AdminFooter control, 344
AdminHeader control, 344
administration, 343

option manager page, 354
question manager page, 345
settings, modifying, 356
business services tier, 339
Option class, 325

Question class, 339

compared to forums, 439

data services tier, 337
OptionDetalls class, 320
Options class, 321
QuestionDetails class, 319
Questions class, 319

settings, storing and retrieving, 322
VoteDetails class, 321

Votes class, 321

database design, 330

Polls Options table, 316

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

P

page base class

see PhilePage class.

Page class
DataBind method, 365

deriving PhilePage class from, 51
Error event, 66

IsPostBack property, 355
Onlnit method, 67
System.Web.Ul namespace, 51
PagelndexChanged event
DataGrid control, 302
PagerStyle

DataGrid control, 301
ParameterDirecticn enumeration
Output value, 220

System.Data namespace, 220
Pascal casing convention, 22
Passport authentication, 79
pass-through page

advertising on the web, 297
Path class

System.IO namespace, 80
performance

data services tier, 30

news management stored procedures, 198
user nterface, 46

Permission class

data services tier, 160
PermissionCategory class

data services tier, 162
permissions

checking
preventing hacking, 475
database design, 137

forums, 465

news management, 266
personalizing messages

see messages, personalizing,
Phileldentity class
business services tier, 167

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index
Q

quantifiers

regular expressions, 422
QueryString property
HttpRequest class, 487
Question class

AllowVote property, 341
business services tier, 339
child options, managing, 339
GetCurrent method, 340
GetOptions method, 339
Vote method, 342
question manager page
adding question, 353
AdminFooter control, 350
AdminHeader control, 346
administration, 345
BindGrid method, 351
Button web control, 354
CheckBox control, 345
DataGrid control, 348
deleting question, 352
editing questions, 351

Poll user control and, 368
RadioButton web control, 345
sorting questions, 351
TextBox control, 346
updating questions, 351
QuestionDetails class

data services tier, 319
Questions class

data services tier, 319

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

R

RadioButton web control
AutoPostBack property, 246

Checked property, 350

news manager page, 250

question manager page, 345
TemplateColumn, 350
RadioButtonList web control
DataTextField property, 360
DataValueField property, 360

Poll user control, 365

hiding radio buttons, 327

Regex class

Replace method, 464

System. Text.RegularExpressions namespace, 464
RegexOptions enumeration
IgnoreCase value, 464

System. Text.RegularExpressions namespace, 464
regions of code
#region meta-command, 296

Register directive

Assembly attribute, 70

home page, user interface, 70
namespace attribute, 70

src attribute, 70

TagName attribute, 70

TagPrefix attribute, 70

regular expressions

character classes, 421

character escapes, 421

description, 421

e-mail address, validating, 420
processing text into HTML format, 464
quantifiers, 422

string validation, 465

syntax, 421

System. Text.RegularExpressions namespace, 463
RegularExpressionValidator control
e-mail address, validating, 420
Relations collection

DataSet class, 37

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

S

sample mockup of website
user interface, deigning, 47
scalability

data services tier, 29
database design, 28

website design, 20

security

.NET Framework, 145
identity object, 145

principal object, 145
authentication, 79
Forms-based authentication, 79
Passport authentication, 79
Windows authentication, 79
database design, 28
FileManager web application, 129
forums, 475

mailing lists, 435

news management, 266
online file manager, design issues, 79
online polls, 376
SelectedIndexChanged event
DropDownList control, 356
ListBox control, 184

Send method

Newsletter class, 415
SmtpMail class, 414
separation

business services tier, 30
mailing lists, 398

website design, 20
serialization

XML files, 147

server controls

inherit from Control class, 62
navigation control, 59

Server Explorer

database design, 330

Visual Studio .NET, 330
Server object

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

T
TableCell class
Poll user control, 360

Text property, 360
TagName attribute
Register directive, 70
TagPrefix attribute
Register directive, 70
targeted content
mailing lists, 386

spam, avoiding, 386
TemplateColumn
CheckBox control, 350
DataGrid control, 485
HyperLink control, 486
RadioButton web control, 350
testing, website design, 20
text file editor, FileManager web application, 109
EditFile web form, 109

text files, creating
client-side JavaScript, 107
FileManager web application, 107
text files, editing
FileManager web application, 113
Text property
HyperLink control, 249
Label control, 431
TableCell class, 360
TextBox control, 431
TextBox control
modifying settings online, 357
MyProfile page, 497
PostMessage page, 492
question manager page, 346
Text property, 431
TextReader class
System.IO namespace, 80
TextWriter class
System.IO namespace, 80
ThePhile.com
advertising on the web, 297

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

U
underscore character, avoiding, 22
Unified Process
user interface, designing, 46
Unsubscribe method
Subscription class, 412

Update method
Forum class, 461

News class, 228

uploading files
see 101

Url property
modifying, 382

web service client properties, 381
UrlReferrer property
HttpRequest class, 494

user accounts
administration, 180

role editor, 180

business services tier, 164
AccountsTool class, 174
Phileldentity class, 167
PhilePrincipal class, 164

Role class, 172

User class, 170

community building for website, 135
data services tier, 151
AccountsTool class, 163
Permission class, 160
PermissionCategory class, 162
Role class, 157

User class, 151

database design, 149
permissions, 137

roles, 137

separating from mailing list database, 389
stored procedures, 150

users, 137

User class
business services tier, 170

data services tier, 151

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

\%

VaryByParam parameter

OutputCache directive, 260

Views

forums, 453

v_Forums Forums view, 453
v_Forums_Members view, 455
v_Forums_Replies view, 455
v_Forums_Topics view, 455

stored procedures and, 456

virtual directory

removing for Web Data Admnistrator, 132
Virtual Directory Creation Wizard, IIS, 507
vision statement

website design fundamentals, 20

Visual Studio .NET

automated deployment, 510

copying web project without source code, 506
deploying website, 15

PhilePage class, creating, 58

Server Explorer, 330

web services, 207

Vote method

Question class, 342

VoteDetalils class

data services tier, 321

Votes class

data services tier, 321

voting

online polls, 310

options for questions, 320

child options, managing, 339

option manager page, 354

preventing or allowing multiple voting, 310
cookies, 313

IP locking, 313

question manager page, 345

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

W

warchousing data

advertising on the web, 281

Web Data Administrator

installing, 132

removing virtual directory, 132
SQL-DMO, 132

website database management, 132
Web Service Description Language file
see WSDL file.
web services

client properties, 381

Timeout property, 381

Url property, 381

Headlines web service, 267

Poll web service, 377

WSDL file, 381

Web Setup project

automated deployment, 511
Web.Contfig file

Integrated Windows Security, 131
module configuration for user identity, 147
WebMethod attribute

Poll web service, 377

WebService class

Headlines web service, 268
System.Web.Services namespace, 268
website design fundamentals, 17
business services tier, 30

controls, 11

data services tier, 29

database design, 27

deployment requirements, 18

design process, 21

development requirements, 32
exception handling, 31
folder structure, 26

modules, 13

namespace hierarchy, 23
naming and coding conventions, 21
problems and solutions, 33

This document is created with the unregistered version of CHM2PDF Pilot

Index

byMarco BellinasoandK evin
Hoftman?

Wrox Press 72002

Index

X

XCopy deployment

advantages, 507

configuring IIS, 507

deploying website, 507
limitations, 507

shared hosting for website, 509
XML files

AdRotator control, 279
synchronizing entries between database and XML file, 291
compared to arrays, 113
converting XML nto HTML, 60
de-serialization, 147

navigation control, 59

searching using XPath, 295
serialization, 147

well-formed XML, 61

XPath

searching XML files, 295

using with XSLT, 60
XPathDocument class
System. Xml. Xpath namespace, 63
<xsl:attribute> element, 60
<xsl:for-each> element, 60
<xsl:value-of> element, 60
XSLT

compared to CSS, 50

converting XML nto HTML, 60

This document is created with the unregistered version of CHM2PDF Pilot

ASP.NET Website Programming, C# Edition: Problem,
Design, Solution

byMarco ISBN:0764543776
BellinasoandK evin Hoffman

Wrox Press 2002 (538 pages)

This book shows you how to build an interactive website
from design to deployment. Packed with solutions to
website programming problems, it will have you building
well-engineered, extendable ASP.NET websites quickly
and easily.

ASP.NET Website Programming shows you how to build an interactive website from design to deployment.
Packed with solutions to website programming problems, this book will have you building well-engineered,
extendable ASP.NET websites quickly and easily.

With ASP.NET Website Programming you will learn to:
e Provide flexible user accounts integrating with ASP.NET?s built-in security
e Create fully featured discussion forums
e Generate revenue from advertising
e Build a web mterface for managing the files on your site
e Add opinion polls, email newsletter, and news management
e Deploy the finished site on a live server
e Build modular websites using good, n-tier coding techniques

The book?s P2P forum is a platform for exchanging code and ideas, helping to extend the website with new modules
and modifications.

This book is for developers who:
e Use ASP.NET and C#
e Use Visual Studio .NET Professional or above, or Visual C#, .NET Standard
e Want to build content-based websites

About the Authors

Marco Bellinaso is a freelance software developer. He has been working with VB, C/C++, ASP and other
Microsoft tools for several years, specializing in User Interface, API, ActiveX/COM design and programming. He is
now spending all his time on the .NET Framework, using C# and VB .NET. He is particularly nterested in
e-commerce design and implementation solutions with SQL Server, ASP.NET and web services. Marco recently
co-authored Beginning C# from Wrox Press, and is also a contributing editor for two leading Italian programming
magazines.

Kevin Hoffman started working as a programmer while still in college, writing computer interfaces to solar
measurement devices and various other scientific imnstruments. Moving to Oregon, he did everything from technical
support to tuning Unix kernels, and eventually working as an ASP programmer for 800.COM, a popular online
electronics retailer. From there he moved on to working on large, enterprise ASP applications. Then he finally found

1 o v - o~~~ s ~ .

	ASP.NET Website Programming, C# Edition: Problem, Design, Solution
	Table of Contents
	Introduction
	Who Is This Book For?
	What You Need To Use This Book
	Conventions
	Customer Support

	Chapter 1: Building an ASP.NET Website
	The Problem
	The Design
	The Solution
	Summary

	Chapter 2: Foundations
	The Problem
	The Design
	The Solution
	Summary

	Chapter 3: Foundations for Style and Navigation
	The Problem
	The Design
	Error Handling
	The Solution
	Summary

	Chapter 4: Maintaining the Site
	The Problem
	The Design
	The Solution
	Summary

	Chapter 5: Users and Authentication
	The Problem
	The Design
	The Solution
	Summary

	Chapter 6: News Management
	The Design
	The Solution
	Summary

	Chapter 7: Advertising
	The Problem
	Design
	The Solution
	Summary

	Chapter 8: Polls
	The Design
	The Solution
	Summary

	Chapter 9: Mailing Lists
	The Design
	The Solution
	Summary

	Chapter 10: Forums and Online Communities
	The Design
	The Solution
	Summary

	Chapter 11: Deploying the Site
	The Problem
	The Design
	The Solution
	Summary

	Chapter 12: The End
	Join Our Community
	Read More

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back Cover

