

What You Need to Use This Book

You need to have the following software installed:

* Windows 2000/XP Professional or higher, with IIS installed
* Any version of Visual Studio .NET
* SQL Server 2000, or MSDE (provided with VS.NET)

In addition, the book assumes:

* An intermediate knowledge of the C# language
* A basic understanding of SQL Server and its query syntax
* Some familiarity with XML

Summary of Contents

Introduction
Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:
Chapter 10:
Chapter 11:
Index

Introduction to XML Technologies
XmlReader and XmlWriter
XmlDocument
XPath
Transformations
ADO. NET
SQL Server 2000 and SqIXml Managed Classes
E-Business and XML
XQuery
Performance
A Web Services Case Study - An E-Commerce Business Engine

1
9
49
93
177
215
245
267
301
325
367
413

Professional ASP.NET XML with C#

Chris Knowles
Stephen Mohr

J Michael Palermo IV
Pieter Siegers

Darshan Singh

Wrox Press Ltd.

Introduction to XML Technologies

In this chapter, we'll look at current and upcoming Extensible Markup Language (XML). We'll begin by
describing what XML is and then talk about where it can help us, some related standards, and focus on
some important design considerations when writing an XML application.

More specifically, this chapter follows this route map:

❑ An Introduction to XML

❑ The Appeal of XML

❑ XML in Vertical Industries

❑ Web Architecture Overview

❑ ASP.NET Web Development

❑ XML 1.0 Syntax

❑ Processing XML

❑ XML Data Binding and XML Serialization

❑ Validating XML

❑ Navigating, Transforming, and Formatting XML

❑ Other Standards in the XML Family

❑ XML Security Standards

❑ XML Messaging

Chapter 1

10

By the end of this chapter, you'll have a good understanding of the key XML standards, what they do,
where they fit, and how they relate to each other.

An Introduction to XML
The success of XML can be gauged by the fact that since its release in February 1998, there are now
more than 450 other standards based on XML or directly relating to XML in some way. A day seldom
goes by without our encountering XML somewhere, either in a press release, or white paper, or
online/print article. Almost all new (mostly Web) application development jobs post XML experience
as a preferred skill to have. Microsoft's .NET Framework represents a paradigm shift to a platform that
uses and supports XML extensively. Every database and application vendor is adding some kind of
support for XML to their products. The success of XML cannot be overemphasized. No matter which
platform, which language you are working with, knowledge of this technology will serve you well.

What is XML?
In its simplest form, the XML specification is a set of guidelines, defined by the World Wide Web
Consortium (W3C), for describing structured data in plain text. Like HTML, XML is a markup
language based on tags within angled brackets, and is also a subset of SGML (Standard Generalized
Markup Language). As with HTML, the textual nature of XML makes the data highly portable and
broadly deployable. In addition, XML documents can be created and edited in any standard text editor.

But unlike HTML, XML does not have a fixed set of tags; rather it is a meta-language that allows
creation of other markup languages. It is this ability to define new tags that makes XML a truly
extensible language. Another difference from HTML, which focuses on presentation, is XML's focus on
data and its structure. For these reasons, XML is much stricter in its rules of syntax, or "well-
formedness", which require all tags to have a corresponding closing tag, not to overlap, and more. For
instance, in XML you may define a tag, or more strictly the start of an element, like this, <invoice>,
and it could contain the attribute customer="1234" like so: <invoice customer="1234">. This
element would have to be completed by a corresponding closing tag </invoice> for the XML to be
well-formed and useable.

The W3C
The W3C is an independent standards body consisting of about 500 members, formed in 1994 under
the direction of Tim Berners-Lee. Its primary purpose is to publish standards for technologies directly
related to the Web, such as HTML and XML.

However, the syntax and usage that the W3C devises do not have governmental backing, and are thus not
officially 'standards' as such, hence the W3C's terminology of 'Recommendation'. However, these
Recommendations are de facto standards in many industries, due to the impartial nature of the W3C itself.

Once a standard has achieved Recommendation status, it will not be modified or added to any further.
Before reaching that status, standards are first classed as Working Draft, which is still subject to change,
and finally a Last Call Working Draft, where no significant changes are envisaged.

Introduction to XML Technologies

11

XML Design Goals
There were ten broad goals that the designers of the XML 1.0 specification
(http://www.w3.org/TR/REC-xml) set out to achieve:

1. XML must be readily usable over the Internet.

2. XML must support a wide variety of applications.

3. XML must be compatible with SGML.

4. It must be easy to write programs that process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-readable and reasonably clear.

7. The XML specification should be ready quickly.

8. The principles of the specification must be formal and concise.

9. XML documents must be easy to create.

10. Terseness in XML markup is of minimal importance.

Overall, the team did a pretty good job of meeting these aims. As plain text, like HTML, XML side-
steps many platform-specific issues and is well suited to travel over the Internet. In addition, the support
for Unicode makes XML a universal solution for data representation (Design Goal 1).

It is a common misconception that XML is useful only for Web applications. However, in reality, the
application of XML is not restricted to the Web. As XML is architecture-neutral it can easily be
incorporated in any application design (Design Goal 2). In this chapter we'll see how and where XML is
being used today.

XML is in effect simplified SGML, and if desired can be used with SGML tools for publishing (Design
Goal 3). For more information on the additional restrictions that XML places on documents beyond
those of SGML, see http://www.w3.org/TR/NOTE-sgml-xml-971215.

Apart from the textual nature of XML, another reason for XML's success is the tools (such as parsers)
and the surrounding standards (such as XPath, XSLT), which help in creating and processing XML
documents (Design Goal 4).

The notion behind XML was to create a simple, yet extensible, meta markup language, and this was
achieved by keeping the optional features to the minimum, and making XML syntax strict (at least, in
comparison to HTML) (Design Goal 5).

Prior to XML, various binary formats existed to store data, which required special tools to view and
read that data. The textual (if verbose) nature of XML makes it human readable. An XML document
can be opened in any text editor and analyzed if required (Design Goal 6).

Chapter 1

12

The simplicity of XML, the high availability of tools and related standards, the separation of the
semantics of a document from its presentation, and XML's extensibility all result from meeting Design
Goals 7 through 10.

Before looking at XML syntax and XML-related standards, let's first review some of the applications of XML.

The Appeal of XML
The second design goal of the XML specification was that XML's usefulness should not be restricted to
the Web, and that it should support a wide variety of applications. Looking at the current situation,
there's no doubt that this goal has been very well met.

The Universal Data Exchange Format
When Microsoft announced OLE DB as part of the Windows DNA initiative, everybody started talking
about what it was promising, namely Universal Data Access. The underlying concept is that, as long as
we have the proper OLE DB provider for the backend, we can access the data using either low-level
OLE DB interfaces or by using the high-level ADO object model. The idea of Universal Data Access
was very well received on the Microsoft platform, and is still a very successful model for accessing data
from any unspecified data store. However, the missing piece was the data exchange. There was no
straightforward way to send data from one data-store to the other, over the Internet, or across platforms.

Today, if there is need to transfer data from one platform to the other, the first thing that comes to mind
is XML, for the reasons already discussed. If we compare XML as a means of data transfer against the
traditional Electronic Data Interchange (EDI), XML wins hands down because of its openness,
simplicity, extensibility, and lower implementation cost. This lower cost stems mainly from XML's use
of the Internet for data exchange, which is not easily achieved (if not impossible) with EDI, which relies
on private networks.

Let's take an example of how XML enables universal data exchange. Consider a company, ABC Corp.,
that has outsourced some of its technical support to another company, XYZ Corp. Let's assume that
there is a need to send support requests from ABC Corp to XYZ Corp, and vice versa, everyday. To
add to the soup, the companies are located in different countries, and do not share a network. In
addition, ABC Corp. runs SQL Server 2000 on Windows 2000 Advanced Server, while XYZ Corp. runs
Oracle 8 on Sun Solaris. As both SQL Server and Oracle support XML, and there are many tools and
APIs available to import and export XML, and as XML data can be very easily accessed over HTTP or
FTP, the clear choice here would be to exchange the support requests in XML format. The two
companies can establish a Schema to define the basic structure of their XML documents, which they
then adhere to when sending XML data to each other. We'll discuss Schemas later in the chapter.

Business transactions over the Internet require interoperability while exchanging messages, and
integrating applications. XML acts like the glue that allows different systems to work together. It is
helping to standardize the business processes and transaction messages (invoices, purchase orders,
catalogs, etc.), and also the method by which these messages are transmitted. E-business initiatives such
as ebXML, BizTalk, xCBL, and RosettaNet make use of XML and facilitate e-business, supply chain
and business-to-business (B2B) integration. XML mainly helps in streamlining the data exchange format.

Introduction to XML Technologies

13

XML – Industrial Glue
XML is not just well suited for data exchange between companies. Many programming tasks today are
all about application integration: web applications integrate multiple Web Services, e-commerce sites
integrate legacy inventory and pricing systems, intranet applications integrate existing business applications.

All these applications can be held together by the exchange of XML documents. XML is often an ideal
choice, not because someone at Microsoft (or Sun or IBM) likes XML, but because XML, as a text
format, can be used with many different communications protocols. Since text has always been
ubiquitous in computing, standard representations are well established, and are supported by many
different platforms. Thus, XML can be the language that allows your Windows web application to
communicate easily with your inventory system running on Linux because both support Internet
protocols and both support text. What is more, through the .NET classes for Windows and various Java
class libraries for Linux, both support XML.

Data Structures for Business
We're all used to data structures in programs. In theory, these structures model the business objects –
the "things" we deal with in our programs – which describe a business and its activities. A retail business
may have structures to represent customers; or in manufacturing, structures might model the products
that the company makes.

Ideally, these data structures would be idealized representations of the business entities that they model,
and their meaning would be independent of the program for which they were originally designed. In
practice however, data structures don't faithfully replicate their real-world counterparts, as, through
pressures of time or technical limitations, programmers generally employ shortcuts and workarounds in
order to make the application work. To deal with a particular problem, programmers all too often opt
for the quick and easy solution, adding a little flag here or a small string there. Such quick fixes are
commonly found in working systems, which can become encrusted with so many such adornments that
they can no longer usefully be exchanged with other programs. They are far removed from the faithful
representations of real-world entities that they should be, and they serve merely to keep a specific
application going and no more.

This specialization impedes reuse, hindering application-to-application integration. If you have five
different representations of a customer throughout your organization, the web site that talks to your
legacy applications will have to include a lot of hard-to-maintain code to translate from one object to
another. It's important to create structures that promote integration as we go forward.

Making XML vocabularies that represent the core structures of a business is an excellent way to go
about this. We can develop a vocabulary for each major object or concept in the business detailed
enough for programs to manipulate objects of that type using that vocabulary alone. For example, if we
are describing a person outside our organization, we could stop at the name and telephone number.
This might serve our current needs, but could cause problems when we develop further applications. It
is worth the initial effort to establish a more comprehensive, 'future-proof' representation, such as that
represented by the following XML document:

<ExternalPerson>
 <Person id="jack-fastwind">
 <Name first="Jack" last="Happy" prefix="Mr."/>
 <EContact>

Chapter 1

14

 <Telephone>2095551212</Telephone>
 <EMail>jack@fastwind.com</EMail>
 </EContact>
 <Title>Engineering Manager</Title>
 </Person>
 <loc:Address xmlns:loc="urn:xmlabs-com-schemas:location">
 <loc:Street1>180 Pershing Blvd</loc:Street1>
 <loc:City>Cheyenne</loc:City>
 <loc:PoliticalDivision>WY</loc:PoliticalDivision>
 <loc:PostalCode>82009</loc:PostalCode>
 </loc:Address>
 <Organization id="proto01">
 <OrgName>Fast Wind Prototypes, Inc.</OrgName>
 <Classification id="x12345"/>
 </Organization>
</ExternalPerson>

This brief document is enough to identify the person, communicate with them, and locate them. There
are probably other details we could add, depending on the needs of our business.

On a related note, when creating these schemas, it's unwise to do so within the context of a single
project team. Get the buy-in of a variety of stakeholders. Preferably, developing the schemas for a
business is performed separately to any single programming task. Otherwise, the risk is that the
vocabulary will get specialized to a particular application (just as binary formats did), or the schema will
lack the support of other groups and the vocabulary will never get adopted. If you are lucky, a standards
body associated with your particular market may have already developed schemas suitable for your
business, in which case all that development work has already been done for you, not to mention the
other potential benefits of adopting an industry standard.

The effort of devising a schema divorces data from application logic, a separation that becomes all the
easier to maintain in applications. If the vocabulary is well designed, it will facilitate the creation of
database schemas to hold the data, and code components to operate on them, and the code and
database schemas will be useful throughout the business. When the time comes to integrate two
applications built on one of these schemas, the applications already have a suitable communications
medium as both use XML documents conforming to the same schemas.

A word of caution is in order, however. XML is not especially compact and efficient as a storage
medium, and you certainly don't want to model every data structure in XML, nor do you necessarily
want to use XML documents as your primary data structures in applications. Still, for modeling a large-
scale, widely-used business concept, the advantages of XML make it hard to beat.

Merging Data

Integrating data with application logic is simple when there is a single database technology in use.
Things get harder when several databases – say Oracle and SQL Server – or a mix of relational and
non-relational data are employed. If all the data for a given concept resides in a single data store, life is
still simple. It is when the data for a concept is spread across various storage media that there is some
integration to perform. For example, employee information might be stored in a relational database in
Human Relations and an LDAP directory (an hierarchical store) for the IT department. Putting together
an employee's address (from HR) with their e-mail URL (from IT) would require dealing with two
disparate structures. Both formats are binary, but one is relational, with a flat sequence of rows. The
other is hierarchical, so may contain similar information in a nested format.

Introduction to XML Technologies

15

If, however, the primary concepts are modeled in XML, integration like this becomes a lot easier.
Technologies like XPath and XSLT can be used to splice, insert, or otherwise manipulate data from
multiple sources to get the final, integrated result required.

Consider the employee information example again where we need some information from the HR
database, while other information must be drawn from the IT directory. We have to merge the two
subsets to get the final structure relevant to our needs. If we are dealing with native binary formats, we'll
end up writing a lot of special-purpose code. On the other hand, if we convert the results from each
source into XML before performing the merge, we can use XPath to retrieve the data for each
employee, and the Document Object Model or some other XML-related technology to perform the
merging. Better still, many data stores are becoming equipped with native support for XML, so the data
store may be able to output the data directly in XML, as depicted in the following figure. Performing
initial conversions like this can open up the possibility of using off-the-shelf XML tools to work on the
data, greatly reducing the code we have to write.

XML
document
from HR

subtree

Merged
XML

document
XML

document
from IT

subtree

Filter

with
XPath

Filter

with
XPath

Separation of Content and Presentation
With HTML, the actual data and its presentation logic are interleaved. HTML tags do not add any
semantic meaning to the data content, but just describe the presentation details. This approach makes it
hard to manipulate just the data or just the way it is presented. The Cascading Style Sheets (CSS)
initiative made an effort to separate data from the presentation, but still many Web pages squirrel data
away inside presentation tags.

As XML makes no assumption about how tags might be rendered on the display device (browser,
wireless cell phone, PDA, or whatever), but simply provides a means to structure data with tags we
define ourselves, it is quite natural to use the same XML data document and present it differently on
different devices. This separation of data from presentation also facilitates easy access to the data.

Increasing numbers of HTML Web sites now offer an XML interface. For example, Amazon offers an
XML interface that allows its associates to build targeted, customized Amazon placements
(http://associates.amazon.com/). Google exposes its search engine via a SOAP-based XML interface
(http://www.google.com/apis/). Microsoft's MapPoint .NET initiative allows us to integrate maps,
driving directions, distance calculations, and proximity searches into our applications. Separating data
from presentation is the key allowing developers to build new and innovative applications.

Chapter 1

16

Other W3C standards, such as Extensible Stylesheet Language Formatting Objects (XSL-FO) and
Transformations (XSLT), can be used for the formatting and presentation of XML data.

XML-based Languages
Already, many new markup languages based on XML syntax have been created to meet the needs of
specific application domains. The most well known of these have general utility, and include:

❑ MathML (http://www.w3.org/TR/MathML2) enables mathematical equations to be served,
received, and processed on the Web.

❑ SMIL (Synchronized Multimedia Integration Language, http://www.w3.org/TR/smil20) is an
XML-based language for writing interactive multimedia presentations. Using the XML syntax, it
allows the mixing of many types of media, text, video, graphics, audio, and vector animations
together, synchronizing them to a timeline, for delivery as a presentation over the Web.

❑ SOAP (http://www.w3c.org/2002/ws) applies XML syntax to messaging, and is at the core of
Web Services. SOAP enables highly distributed applications that can run over the Internet
without any firewall issues. Extra layers are being built on top of SOAP to make it more
secure and reliable. These layers include WS-Security, WS-Routing, WS-License, and so on,
which form part of Microsoft and IBM's Global XML Web Services (GXA) Specification,
discussed later in this chapter.

❑ SVG (Scalable Vector Graphics, http://www.w3.org/TR/SVG) is a language for describing two-
dimensional vector and mixed vector/raster graphics in XML.

❑ VoiceXML (http://www.w3.org/TR/voicexml20) is an XML-based language for the definition
of voice interfaces and dialogs, and it can be used in v-commerce and call centers.

❑ WML (Wireless Markup Language, http://www.wapforum.org) is a markup language based on
XML for specifying content and defining user interfaces for narrowband devices, including cellular
phones and pagers. It has been optimized for small screens and limited memory capacity.

❑ XML-RPC (XML-based Remote Procedure Calling protocol, http://www.xmlrpc.com) uses
XML as the encoding, HTTP as the transport, and facilitates cross-platform remote procedure
calls over the Internet.

❑ XForms (http://www.w3.org/TR/xforms) is an embryonic XML standard aimed at creating a
platform-independent way of defining forms for the Web. An XForm is divided into the data
model, instance data, and the user interface – allowing separation of presentation and content.
This facilitates reuse, provides strong typing, and reduces the number of round-trips to the
server, as well as promising device independence and a reduced need for scripting. Take a
look at Chapter 9 for a working example based on XForms.

Content Management and Document Publishing
Using XML to store content enables a more advanced approach to personalization, as it allows for
manipulation at the content level (opposed to the document level). That is, individual XML elements
can be selected based on the user preferences. We could store preferences with client-side cookies,
which we access to filter our XML content for each individual user. This filtering can be performed with
the XML style sheet languages (XSL-FO and XSLT), allowing us to use a single source file, and
manipulate it to create the appropriate content for each user, and even for multiple devices (cell phones,
Web browsers, Adobe PDF, and so on).

Introduction to XML Technologies

17

Using XML for content management, instead of proprietary file formats, readily enables integrating that
content with other applications, and facilitates searching for specific information.

WebDAV, the web-based Distributed Authoring and Versioning protocol from the IETF
(http://www.webdav.org), provides an XML vocabulary for examining and maintaining web content. It
can be used to create and manage content on remote servers, as if they were local servers in a
distributed environment. WebDAV features include locking, metadata properties, namespace support,
versioning, and access control. XML is used to define various WebDAV methods and properties.

Other standards related to XML metadata and content management include RDF (Resource Description
Framework), PRISM (Publishing Requirements for Industry Standard Metadata), and ICE (Information
and Content Exchange), whose description is beyond the scope of this chapter.

XML and Instant Messaging
Jabber (http://www.jabber.org/) is an example of how XML can be used for Instant Messaging. It is a set
of XML-based protocols for real-time messaging and presence notification.

XML as a File Format
Many applications now use XML as a file format. For instance, .NET web application configuration data
saved in .config files is written using XML syntax. Many other applications use XML files to store
user preferences and other application data, such as Sun Microsystems's StarOffice XML file format
(http://xml.openoffice.org/).

The qualities that make XML a good file format include its intrinsic hierarchical structure, coupled with its
textual and extensible nature, and the large number of off-the-shelf tools available to process such documents.

XML in Vertical Industries
XML's simplicity and extensibility is attracting many individuals and industries, who are increasingly
coming together to define a "community vocabulary" in XML, so that they can interoperate and build
integrated systems more easily.

These community vocabularies include XML dialects already being used by a wide range of industries,
such as finance (XBRL, for business reporting, and IFX for financial transactions), media and publishing
(NewsML), insurance (ACORD), health (HL7), and shipping (TranXML), to name but a few. There are
many more that also are rapidly gaining popularity.

Distributed Architecture
Now that we've set the scene a little, and have seen some of the areas in business applications where
XML can be useful, let's move on to look at some architectural issues.

Chapter 1

18

The extremely brief history of web applications is a natural progression of developments in distributed
architectures. The relative simplicity of HTTP-based web servers has allowed people who would never
have tried to build a distributed application with prior technologies such as DCOM and CORBA to
throw together simple distributed applications. At first, there was little emphasis on architecture of web
apps, the priority being to get something up and running. Over time though, people asked their web
servers to perform more and more advanced techniques. Developers began to rediscover distributed
computing models in the attempt to improve performance and make their web applications reliable in
the real world.

There are many models for distributed applications, just as there are many people who confuse scribbles
on a cocktail napkin for revealed wisdom. To bring some order to the confusion, we'll look at a brief
history of the growth of the Web, looking at how the models change to overcome problems encountered
with what went before. The three models we will examine are:

❑ Client-server

❑ 3-tier

❑ n-tier

Although each of these models applies to any sort of distributed application, we're going to focus on web
applications, where the client is a web browser displaying pages with only limited processing power of its
own. This 'thin-client' model is not always the case, but it seems to be where web development is headed.
The lack of significant uptake for either Java applets or ActiveX controls on the client, in conjunction with
divergent browsers on multiple platforms, has led to a tendency to favor processing on the server.

In the Beginning: Client-Server
The Web, of course, is inherently distributed. There is no such thing as a standalone web application. A
client makes requests, which are answered by the server, and everything in the application except
presentation is carried out by the server. While there are dynamic HTML applications relying heavily
on client-side script as exceptions to this, general practice has been to keep functionality on the server
in order to avoid the issue of varying browser capabilities. Logic and data are found there, leaving the
client with nothing to do except make requests and display the answers. The model is very simple as
this figure shows:

client

Server

The client-server model offers a big advantage over standalone programming. The key processing in an
application is confined to a single machine under the control of the application's owners. Once installation
and configuration is out of the way, administrators keep watch over the server on an ongoing basis. This
gives the application's owners a great deal of control, yet users all over the network – indeed, all over the
world in the case of the Internet – can access the application. Life is good for the administrator.

Introduction to XML Technologies

19

The advent of the 'mass-market' Web came in the late 1980s and early 1990s, at a time when relational
databases using the client-server model were rapidly gaining acceptance. Networks were becoming
commonplace, and administrators and users were accustomed to a machine called a server living
somewhere off in the ether serving up answers to queries. The fact that web servers sent their
application data as HTML documents instead of binary-format recordsets meant little to the average
user, protected by their browser from the intricacies of what was going on.

Programmers, however, were not satisfied with this model. From the programming viewpoint, such
applications are almost as bad as standalone applications. Data and logic are tangled up in one great big
mess, other applications cannot use the same data very easily, and the business rules in the server-side
code must be duplicated when other programs need the same features. The only bright spot is that
programmers can forget about presentation logic, leaving the task of displaying HTML tags to the browser.

The client-server model was perfect when web applications were simple static HTML pages. Even the
very earliest ASP applications could fit with this model. As users clamored for more dynamic
information, however, developers had to go back to the drawing board.

Architecture Reaches the Web: 3-Tier
3-tier architecture takes its name from the division of processing into three categories, or tiers:

❑ Client

❑ Application logic

❑ Data

The client handles request generation and user interface tasks as it did in the client-server model. The
application logic tier, sometimes referred to simply as the middle tier, contains all the business rules and
computation that make up the features of the application. The data tier holds all of the data in the
application and enforces data integrity. Typically, the data tier consists of a relational database
management system. The sequence of processing is as follows:

app
server

client

data
server

Supporting
data

1

3

2

1. The client generates a service request and transmits it to the application server.

2. The application server produces a query corresponding to the client's request, and sends
it to the data server.

3. The application logic server applies business logic to the data as relevant, and returns the
final answer to the client where it is displayed for the user.

Chapter 1

20

By separating the user interface (client), the logic (middle tier), and the data (data tier), we achieve a
nice, clean separation of function. We can easily apply integrity checks to the database, and require any
application or application tier running against it to pass these checks, thus preserving data integrity.
Similarly, the business rules of the application are all located together, in the application tier. The
application tier has to know how to query the data tier, but it doesn't need to know anything about
maintaining and managing the data. Likewise, it doesn't concern itself with details of the user interface.

The different tiers become more useful because, having been separated and provided with some sort of
API, they can be readily used by other applications. For example, when customer data is centralized in
a relational database, any application tier that needs customer information can access that database,
often without needing any changes to the API. Similarly, once there is a single server that queries the
customer database, any client that requires such information can simply go to that server. This aspect of
3-tier programming is generally less important than the integrity and software engineering benefits we
just described, but it can nonetheless be valuable.

Note that the different tiers are logical abstractions and need not be separated in any physical sense.
Many small web applications run their database on the web server due to a lack of resources, although
this is bad practice from a security standpoint. Since the web server must by nature be available to the
outside world, it is the most exposed link in the application. It is the most prone to attack, and if it
should be compromised when the database resides on the same machine, the database will also be
compromised. Generally speaking, though, the acceptance of the relational database prior to the advent
of public web applications drove web architects to 3-tier systems fairly rapidly. It just makes sense to
have the relational database kept distinct from the code that runs on the web server.

In practice, the distinction between the application logic and data tiers is often blurred. As an extreme
example, there are applications that run almost entirely by stored procedures in an RDBMS. Such
applications have effectively merged the two tiers, leaving us back in the realm of the client-server
model. The stored procedures are physically resident on the data tier, but they implement a good deal
of the business rules and application logic of the system. It is tricky to draw a clear line between the two
tiers, and frequently it comes down to an arguable judgment call. When developing a good architecture,
the effort of deciding where to draw the line, especially if you have to defend it to your peers, is more
valuable than attempting to apply some magic formula good for all cases. A general-purpose rule can
never apply equally to all possible applications, so you should take architectural rules simply as
guidelines, which inform your design effort and guide your thought processes. An honest effort will
shake out problems in your design. Slavish adherence to a rule with no thought to the current problem
risks leaving many faults in the design.

At the other end, separating presentation – the function of the client – from application logic is harder
than it might appear, particularly in web applications. Any ASP.NET code that creates HTML on the
server is presentation code, yet you have undoubtedly written some of that as few browsers are ready to
handle XML and XSLT on the client (Internet Explorer being the notable exception). Here, we
explicitly decide to keep some presentation functions on the server, where the middle tier is hosted, but
we strive to keep it distinct from application logic. In this way, we are observing the 3-tier architecture
in spirit, if not fully realizing it in practice. An example of maintaining this split would be having
application code that generates XML as its final product, then feeding that to code that generates
HTML for presentation to the client. The XML code remains presentation-neutral and can be reused;
the presentation code can be eliminated if we get better client-side support. In fact, XML-emitting
application code is an important enabler for the next, and current, architecture: n-tier design.

Introduction to XML Technologies

21

Today: n-Tier
Applications developed for a particular platform or architecture can benefit greatly from sharing useful
sections of code. This not only saves time writing the code, but can also drastically reduce the effort
required to fully test the application, compared to one developed from all-new source. If the developers
have done things properly, this might take the form of function libraries or DLLs that can easily be used
from a variety of applications. If they've been less meticulous, this may require the copying and pasting
of source code for reuse.

Something similar holds true for web applications. It is a short step from writing static pages to
incorporating simple scripts for a more dynamic experience, and that's pretty much how web
applications got started. Likewise, it is a short step from linking to someone else's content to actually
using their web code in your own site (while observing due legal requirements, of course). Google, for
example, offers an HTTP interface to its service for adding web search capability to a site without its
visual interface (see http://www.google.com/services/ for more information on Google's array of free
and premium search solutions). Weather information is available from a number of sources and is
frequently included dynamically on portal pages.

In short, we need some mechanism that supports and encourages reuse in web applications, a
mechanism that conforms to the HTTP and text based architecture of the web.

Exchanging XML documents is one mechanism that meets these requirements, as many people have
realized independently. Designing Distributed Applications (Wrox Press, 1999, ISBN 1-86100-227-0)
examines this technique at length. The idea, in short, is to provide services through pairs of XML
request/response documents. When a document written in the request vocabulary arrives over HTTP, it
is assumed to be a request for service that is answered by returning a document written in the response
vocabulary. The linkage is implicit, and is inferred by the code at either end through their knowledge of
the XML vocabularies in use. Visual Studio .NET provides a similar service in the Web Service wizard,
which generates code that exchanges XML documents as a means of communicating requests
and responses.

This concept leads to a distributed architecture that is gaining popularity among developers of large-
scale applications, particularly corporate intranet sites. In this architecture, we still segregate
presentation, application logic, and data, but we are no longer confined to just three tiers. We may have
multiple implementations of logic and data, and we may even have an additional tier for combining
application logic results before sending them on for presentation. The number of tiers isn't important (at
least for theoretical purposes; practical performance will constrain you); the separation of logic and
data, as well as the encapsulation of functions into discrete services, is what characterizes n-tier
architecture. Consider the illustration below:

Chapter 1

22

client

web
server

web
service

web
service

web
service

data

composite
page

other clients

1 2 3

4

1. A client sends a request to a web server. The server uses several Web Services, bits of
application logic, to provide partial answers, which, taken together, result in the answer
the client requested. A portal page is a great example: it might include news, weather, and
stock prices, each of which could come from a different provider.

2. The web server, then, breaks the client request into a series of HTTP requests to the Web
Services needed to get the required information.

3. The Web Services, in turn, may make data requests to obtain raw information. They
could also, in theory, make request of their own to other Web Services, leading to many,
many tiers of logic.

4. The web server receives the responses from the Web Services, and combines them into a
composite page that it eventually returns to the client as the response to the client's
original request.

The client has no idea that the result is a composite of the efforts of multiple services, nor does it need
to have this information. Future changes in Web Services, code deployment, or functional
implementation will not affect the client. Of further benefit is the fact that the Web Services are not tied
to the web server or the client. Multiple applications can call on any Web Service. In fact, application
logic can call Web Services and use their results without any presentation to a user.

This architecture is very compatible with the web platform. HTTP requests are used for communication,
XML, a textual format, conveys data in an open and platform-neutral manner, and all components are
interconnected with HTTP links. The use of proprietary XML vocabularies that implicitly denote either
requests or responses is a weak point of the architecture, though, as it precludes the development of
general purpose software for connecting Web Services to applications.

One way to solve this is would be to create an open standard for Web Service communication. At the
moment, the best effort is SOAP, which provides an XML envelope for conveying XML documents that
can represent function calls with their required parameters. Web Services created with Visual Studio
.NET's Web Service template support SOAP. SOAP is a de facto standard, and so general purpose
toolkits for creating and consuming SOAP messages can be produced. Such toolkits can pop the
parameters out of the request document and present them to your application code as actual function or
method parameters.

Introduction to XML Technologies

23

SOAP implementations generally adhere to the SOAP 1.1 version, though version 1.2 is in draft
form (http://www.w3.org/TR/soap12-part0 and http://www.w3.org/TR/soap12-part1/) and
implementations are migrating to it. SOAP was originally an ad hoc effort of several software
vendors, but has now been handed over to the W3C, where further development is under way in the
form of XML Protocol (http://www.w3.org/TR/xmlp-am/).

Another way to resolve this would be with the aid of integration servers. These are proprietary server
software products offered by a variety of vendors that act as middleware between applications for the
purpose of integrating them. They handle issues of protocol and format translation. A message could
come in as an XML document on SMTP and be sent back out as a different XML document (differing
in form, but with the same data content) over HTTP, for example. Some also add business process
semantics, to ensure that a series of messages adheres to the established business process. Some of these
products adhere to standards advanced by various consortia such as RosettaNet
(http://www.rosettanet.org), while others, such as Microsoft BizTalk Server
(http://www.microsoft.com/biztalk) are open to your own business processes. In addition to Microsoft,
established vendors include Ariba (http://www.ariba.com) and CommerceOne
(http://www.commerceone.com).

Sample Architectures
So now we've had a close look at three generic architectures, finishing up with the n-tier model, the
likely future of web applications. We've seen how XML can fulfill many internal needs of these
architectures. Now we'll examine two common web applications that benefit from a 3- or n-tier
architecture with XML. These applications are:

❑ Content sites – high volume web sites with changing content consisting primarily of HTML
pages rather than interactive code, for example, a news site

❑ Intranet applications – medium volume sites providing application access on an intranet

Content Site
A site with a great deal of content, such as an online newspaper or magazine, might not seem to be an
application at all. The site framework seldom changes, though new documents are frequently added and
old ones removed. There is rarely much in the way of interactivity, aside from a search feature for the
site. But XML offers some advantages for maintaining the site and facilitating searching.

One issue with such sites is that they periodically undergo style changes. Hand written HTML is therefore
out of the question as you would scarcely want to redo all the pages just to change style and layout. The
use of cascading style sheets addresses many of the styling issues, but they lack the ability to truly
transform and rearrange pages if so desired. The word "transform" there might provide a clue as to what
I'm getting at: XSLT. If we store the content in XML, we can manipulate it to produce the visual effects we
desire through an XSLT style sheet. When a site redesign is warranted, we just change the style sheet. We
can even update links to reflect hosting changes with XSLT, a feat that is impossible in CSS. You should
not, however, use XSLT dynamically for a high volume site. The performance overhead from even a fast
XSLT processor is something a high-volume site cannot afford. Instead, use XSLT to perform a batch
conversion of your XML documents when you redesign, then serve up the resultant HTML as static pages
between site designs. New documents are transformed once, as they are added to the site. This gives the
site all the speed of static HTML while still maintaining the ability to automate site redesign.

Chapter 1

24

You might ask why you would want to use XML instead of a database for the information content of the
site. Well, firstly, this is not necessarily an either-or proposition. Increasingly, databases can store XML
documents, or access relational data using XML documents, thereby giving you the best of both worlds.
Secondly, we can use XPath to enhance our search capability. Once information is marked up as XML,
we can search by specific elements, such as, title, summary, author byline, or body. Furthermore, we
can selectively publish fragments with another XSLT style sheet. For example, we might select title and
summary only for people browsing with PDAs or customers who have subscribed to a clipping service.
Similarly, we might mark some content as premium content, whether it be by whole page or by
subsections of individual pages.

Intranet Application
A substantially different architecture is required for intranet applications. These sites provide access to
sophisticated corporate functions such as personnel management applications or retirement fund
selections. If we are writing entirely new functions using the latest technology and platforms, there isn't
a problem. We can just write our applications using ASP.NET. XML is optional. The problem for
intranet applications arises because we often have to provide access to legacy systems, or at least
exchange information with them.

The easiest way to deal with this is to wrap the legacy code in a Web Service. This only works when the
legacy applications offer an API that we can call from .NET. COM components work quite well, but
older interfaces can pose a problem. This is where Web Services can help, by isolating the rest of the
system from the legacy, XML-illiterate code. Everything beyond the Web Service is XML, limiting the
spread of legacy data structures. The situation is depicted below:

Web
service

Web
server

XML

Legacy
code
with API

Web
service

Web
service

A bigger problem arises when the code cannot be directly called by .NET or when scalability concerns
preclude the use of synchronous SOAP calls. If we require our system to achieve close to 100% uptime,
we cannot afford to drop requests as is the case when traffic to a synchronous service like SOAP spikes
beyond supported levels. The buffering offered by a queued solution is needed, and in such cases, we
need the help of an integration server, such as BizTalk Server. We can communicate with the
integration server, and leave it to pass the message on in a protocol that is supported by the legacy
application. This might at first seem to leave out many existing applications, until we realize that most
integration servers support exchanges via disk files. The server monitors a particular directory for the
appearance of a file, or it writes a file to the directory that is monitored by the legacy application. This
is a very common, least-common-denominator approach. Now consider the web application
architecture depicted opposite:

Introduction to XML Technologies

25

ASP.NET

ASP.NET

e-mail

db on
disk

disk transfer

legacy app

disk transfer

integration
server

web server

1

2

3

46

5

1. Request arrives from the client tier through an ASP.NET application, which writes an
XML message to the integration server

2. Integration server sends a message to the legacy application, in this case via disk-based
file transfer. Format translation occurs en route.

3. Legacy application receives the message and produces output

4. Output message is exchanged with the integration server via the supported protocol

5. Integration server sends message to client via e-mail, possibly as XSLT styled XML

or, alternatively

6. Upon receiving notification via e-mail, client returns via ASP.NET and retrieves a result
written to a database by the integration server

The asynchronous communication of this design makes it inherently scalable. The client gets an
immediate response via the initial web application indicating that the request has been submitted. The
communications protocol with the legacy application should provide a buffer – typically through some
sort of messaging middleware like MSMQ or through files accumulating on disk. If the protocol is
synchronous, you probably could have wrapped it with a SOAP Web Service.

There are long term plans for asynchronous Web Services using SOAP, but present implementations
use synchronous calls via HTTP.

This design is also clearly n-tier. The ASP.NET applications provide the application logic, as does the
legacy application. The integration server may be considered application logic or part of the
infrastructure. Any database used by the legacy application is data, as is the database used by the
alternative Step 6, above.

Chapter 1

26

Although we've used the example of an intranet application, this architecture can apply to e-commerce
sites as well. In that case, the client tier is located outside the corporate firewall, but order fulfillment
and billing systems are internal, possibly legacy, applications. In such a case, the Web Service would
typically be deployed in a demilitarized zone, or DMZ, between two firewalls. The first firewall protects
the web server hosting the service and provides minimal protection. The web server takes steps to
authenticate requests before passing them through the second, more stringent firewall protecting the
internal network from the Internet. The second architecture, using an integration server, is preferred as
it scales better, but you can use the less costly Web Services architecture if volume is moderate or the
Web Services do not involve much processing.

ASP.NET Web Development
So far we have seen what XML is and some of its general applications. Let's now look at how XML fits
in with the ASP.NET world and its role in the development of ASP.NET web applications.

Welcome to ASP.NET
ASP.NET represents the next generation of web development on the Windows platform. It is an
evolutionary and revolutionary improvement on traditional ASP 3.0, and many things have changed. It
is a totally new platform (although there's a fair amount of backward compatibility) designed to support
high-performance scalable web applications.

Traditional ASP code is generally written using either JavaScript or VBScript, and because of the design
model that it employs, developers are generally obliged to mix the presentation with the logic, causing
code to become less maintainable and harder to understand. Traditional ASP does not natively support
XML. MSXML can be used from within ASP pages to process the XML documents. In addition, every
time the ASP page is called, the engine interprets the page.

ASP.NET changes all this. It runs in a compiled environment, such that the first time an aspx page is
called after the source code has changed, the .NET Framework compiles and builds the code, and
caches it in a binary format. Each subsequent request does not then need to parse the source, and can
use the cached binary version to process the request, giving a substantial performance boost.

The second important change from the developer's perspective is that we are no longer restricted just
JavaScript and VBScript for server-side programming. As a first class member of the .NET Framework,
ASP.NET allows any Framework language to be used for web development, be it Visual Basic .NET or
C# .NET or JScript .NET. ASP.NET makes web programming very similar to standard Windows
application development in .NET.

In ASP.NET, the separation of presentation from the program logic is achieved via the concept of code-
behind files, where the main ASPX page has a corresponding language file behind it. For instance,
default.aspx would contain the presentation code (HTML and client-side scripts), while an
associated file, such as default.aspx.cs, would contain the C# code for that page. This allows us to
keep code nicely separated from its presentation details.

ASP.NET includes many other new features related to Web Forms, such as deployment, state
management, caching, configuration, debugging, data access, as well as Web Services. It is however
beyond the scope of this chapter to provide a complete discussion of all these topics. Try Professional
ASP.NET 1.0, Special Edition (Wrox Press, 1-86100-703-5) if that is what you need. Here, we'll focus on
the XML and Web Services features of ASP.NET.

Introduction to XML Technologies

27

The Role of XML in ASP.NET
The .NET Framework itself makes use of XML internally in many situations, and thus it allows XML to
be easily used from our applications. In short, XML pervades the entire .NET Framework, and
ASP.NET's XML integration can be used to build highly extensible web sites and Web Services. In this
section, we'll briefly look at the XML integration in the .NET Framework, specifically in ASP.NET.

The System.Xml Namespace
This is the core namespace that contains classes which can:

❑ Create and process XML documents using a pull-based streaming API (Chapter 2) or the
Document Object Model (DOM, Chapter 3)

❑ Query XML documents (using XPath, Chapter 4)

❑ Transform XML documents (using XSLT, Chapter 5)

❑ Validate XML documents (using a DTD, or an XDR or XSD schema, Chapter 2)

❑ Manipulate relational or XML data from a database using the DOM (XmlDataDocument
class, Chapter 6)

Almost all applications that use XML in any way will refer to the System.Xml namespace in order to
use one or more of the classes that it contains.

Chapters 2 through 4 focus on the System.Xml namespace and discuss how these classes can be used
in ASP.NET web applications.

Web Services
As well as web sites, .NET web applications can represent Web Services, which can be defined in a
sentence thus:

ASP.NET Web Services are programmable logic that can be accessed from anywhere
on the Internet, using HTTP (GET/POST/SOAP) and XML.

We'll talk about this a little more in the section XML Messaging towards the end of this chapter, and in
detail in Chapter 8.

SQLXML Managed Classes
Although not part of the core .NET Framework, the SQLXML managed classes are available as a
separate download from http://www.microsoft.com/sql/techinfo/xml/default.asp. These classes form part
of the Microsoft.Data.SqlXml namespace and allow access to SQL Server 2000's native and
extended XML features. SQLXML managed classes can be used in our ASP.NET applications to build
scalable and extensible web applications, and they are discussed in detail in Chapter 7.

Chapter 1

28

The ADO.NET DataSet Class
Probably the most fundamental design change in the data access model in the .NET Framework is the
differentiation of the objects that provide connected database access from those that provide disconnected
access. In regular ADO, we use the same objects and interfaces for both connected and disconnected
data access, causing lot of confusion. The improved ADO.NET data access API in .NET provides
stream-based classes that implement the connected layer, and a new class called DataSet that
implements the disconnected layer.

The DataSet can be thought of as an in-memory representation of data records. It can easily be
serialized as XML, and conversely it can be populated using data from an XML document. The .NET
data access classes are present in the System.Data namespace and its sub-namespaces.

Another marked improvement in ADO.NET is the ability to easily bind the data to graphical controls.
We'll talk more about the role of ADO.NET and the DataSet when dealing with XML in Chapter 6.

The .config Files
With ASP.NET, Microsoft has introduced the concept of XCopy deployment, which means that the
deployment of an application does not require any registry changes or even stopping the web server.
The name comes from the fact that applications can be deployed by just copying the files onto the
server with the DOS XCopy command.

Prior to .NET, all web application configuration data was stored in the IIS metabase. The .NET
Framework changes this with the notion of XML-based extensible configuration files to store many
configuration details. These files have the .config extension – and play an important role in XCopy
deployment. As these files are plain text XML files, configuration data can be edited using any text
editor, rather than a specialized tool such as the IIS admin console. The .config files are divided into
three main categories, containing application, machine, and security settings.

C# Code Documentation
Another interesting new feature is found in C# (or strictly speaking, C# .NET), and extends the syntax
for comments beyond the standard // and /*...*/, to create a new type that begins with three slashes
(///). Within these, we can place XML tags and descriptive text to document the source code and its
methods. The C# complier is then able to extract this information and automatically generate XML
documentation files. It can also generate HTML documentation directly from these comments.

Currently, this feature is only available in C#, and none of the other .NET languages support it.

XML 1.0 Syntax
The XML 1.0 (Second Edition) W3C recommendation (http://www.w3.org/TR/REC-xml) defines the
basic XML syntax. As we know, XML documents are text documents that structure data, and bear some
similarity to HTML documents. However as noted earlier, tags in XML, unlike tags in HTML, are
completely user-definable: there are virtually no 'reserved' tags. Also unlike HTML, XML is case-sensitive.

Introduction to XML Technologies

29

An XML document (or data object) has one and only one root element – that is, top level element – which
may contain any number of child elements within it. All elements must be delimited by start- and end-tags,
and be properly nested without overlap. Any element may contain attributes, child elements, and
character data. The XML 1.0 specification allows most of the characters defined by 16-bit Unicode 2.0
(which includes UTF-8, UTF-16, and many other encodings), hence making XML truly a global standard.

The XML specification identifies five characters (<, >, &, ', and ") that have a special meaning and
hence if any of these characters is required, the alternative entity references (<, >, &, ',
and ") must be used in their place.

In addition to elements and attributes, an XML document may contain other special purpose tags such
as comments (<!-- ... -->), processing instructions (<? ... ?>), and CDATA (<![CDATA[
...]]>) sections.

All documents that conform to the XML 1.0 rules are known as well-formed XML documents. If a well-
formed document also meets further validity constraints (defined by a DTD or schema), it is known as a
valid XML document. We'll discuss XML validity later in this chapter.

It is a good practice, although not a strict requirement, to begin an XML document with the XML
declaration. If present, it should be the very first line in the document. The XML declaration identifies
the XML version to which the document syntax adheres (a required attribute), the document encoding
scheme (optional), and if the document has any external dependencies (again optional).

Another extension to the XML 1.0 specification is XML Base, where an xml:base attribute may be
included on an element to define a base URI for that element and all descendent elements. This base
URI allows relative links in a similar manner to the HTML <base> element.

Special Attributes
The XML specification defines two special attributes that can be used within any element in an XML
document. The first, xml:space, is used to control whitespace handling and the second, xml:lang, is
used to identify the language contained within a particular element. The xml:lang attribute allows
internationalized versions of information to be presented, and makes it easier for an application to know
the language used for the data in the element.

Whitespace Handling
An XML document may contain whitespace (space characters, tabs, carriage returns, or line feeds) at
various places. Sometimes whitespace is added to indent the XML document for better readability, and
when an application is processing this document, the whitespace can be ignored. At other times
however, the spaces are significant, and should be preserved. We can use the xml:space attribute on
the element to indicate whether the parser should preserve whitespace or use its default whitespace
handling. The xml:space attribute can have one of two values: preserve or default.

According to the W3C XML specification, if the whitespace is found within the mixed element content
(elements containing character data and optionally child elements) or inside the scope of an
xml:space='preserve' attribute, the whitespace must be preserved and passed without modification
to the application. Any other whitespace can be ignored.

Chapter 1

30

With MSXML 4.0 and the .NET XML classes in the System.Xml namespace, we can use the
PreserveWhitespace property in the code to indicate if the whitespace should be preserved or not.
In other words, if we would like to preserve the whitespace for an XML document, we can either use
the xml:space attribute with the elements in the XML document or set the PreserveWhitespace
property in the code to true (default is false).

Let's look at an example of this. Consider the following XML document, saved as c:\test.xml:

<Root> <Child>Data</Child> </Root>

Note that there are five space characters before and after the <Child> element.

We could create a simple C# console application containing the following code in the Class1.cs file,
and when we ran it, we'd see that the whitespace has not been preserved in the XML displayed on
screen, and in fact carriage return characters have been added (you might want to place a breakpoint on
the closing brace of the Main method):

using System;
using System.IO;
using System.Xml;

namespace ConsoleApplication1
{
 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {
 XmlDocument xmlDOMDoc = new XmlDocument();
 xmlDOMDoc.Load("c:\\test.xml");
 xmlDOMDoc.Save(Console.Out);
 }
 }
}

There are two ways we could preserve the whitespace. The first is to add the xml:space attribute to
the XML document. Change the c:\test.xml file as shown below:

<Root xml:space='preserve'> <Child>Data</Child> </Root>

Run the above code again and this time, the whitespace is preserved and the document will appear
exactly as it does in the file.

The other way is to set the PreserveWhitespace property to true in the code. Add the following
line to the Main method:

 XmlDocument xmlDOMDoc = new XmlDocument();
 xmlDOMDoc.PreserveWhitespace = true;
 xmlDOMDoc.Load("c:\\test.xml");

Now whitespace will be preserved, even without the xml:space attribute in the XML file.

Introduction to XML Technologies

31

Likely Changes in XML 1.1
On April 25, 2002, the W3C announced the last call working draft of XML 1.1 (codenamed Blueberry),
at http://www.w3.org/TR/xml11/. The XML 1.1 draft outlines two changes of note, although they are
unlikely to have a major impact on most web developers. These changes allow a broader range of
Unicode characters, and improve the handling of the line-end character.

In XML 1.0, characters not present in Unicode 2.0 (and some forbidden names) cannot be used as
names; XML 1.1 changes this so that any Unicode character can be used for names (with the exception
of a few forbidden names). This change was made to make sure that as the Unicode standard evolves
(the current version is 3.2), there won't be a consequent need to explicitly change the XML standard.

The other important change relates to how the end-of-line characters are treated. Microsoft uses CR-LF
(hex #xD #xA) to represent end-of-line characters, while Unix (and GNU/Linux) use LF (#xA), and
MacOS uses CR (#xD). XML 1.0 currently requires processors to normalize all these newline characters
into #xA. The XML 1.1 working draft adds the IBM mainframe newline characters and requires XML
processors to normalize mainframe-specific newline characters (#xD #x85, #x85, and #x2028) to #xA.

Well-Formedness
Well-formed XML documents must meet the following requirements:

❑ All tags must be closed

❑ Tags are case sensitive

❑ The XML document must have a single root element

❑ Elements must be nested properly without overlap

❑ No element may have two attributes with the same name

❑ Attribute values must be enclosed in quotes (using either ' or ")

Without further delay, let's look at an example of the following well-formed XML document, called
MyEvents.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<MyEvents xmlns='uuid:06F699FA-C945-459a-BFCE-CFED4A4C7D51' >

 <!-- Live Webinars -->
 <Webinar type='live' ID='1'>
 <Title>ProductA Kick-Start Webinar</Title>
 <Date>20020504</Date>
 <Time zone='CST' AMorPM='PM'>3:00</Time>
 <Desc>
 <![CDATA[© 2002 ABC & PQR Corp.]]>
 </Desc>
 <URL>http://www.company.com/events/events.asp?ID=1</URL>
 </Webinar>

Chapter 1

32

 <Webinar type='live' ID='2'>
 <Title>ProductB In-depth Webinar</Title>
 <Date>20020507</Date>
 <Time zone='CST' AMorPM='AM'>10:00</Time>
 <Desc>
 <![CDATA[© 2002 ABC & PQR Corp.]]>
 </Desc>
 <URL>http://www.company.com/events/events.asp?ID=2</URL>
 </Webinar>

 <!-- Recorded Webinars -->
 <!-- *** None *** -->

 <!-- Trade shows -->
 <TradeShow ID="91">
 <Title>ABC Magazine Live!</Title>
 <Address>
 <Location>MGM Grand Hotel and Casino</Location>
 <City>Las Vegas</City>
 <State>Nevada</State>
 <Country>USA</Country>
 </Address>
 <Dates>
 <From>20020607</From>
 <To>20020610</To>
 </Dates>
 <URL>http://www.ABCMagazineLive2002.com</URL>
 </TradeShow>
</MyEvents>

The above XML document illustrates various points that we have discussed so far. It begins with an
XML declaration statement indicating that the syntax follows the XML 1.0 specification, the document
encoding is UTF-8, and the standalone="yes" attribute indicates that this document does not depend
on any other external resource (such as a DTD, schema, or style sheet). The above document contains a
single root element (<MyEvents>), which in turn contains various child elements (two <Webinar>
elements, a <TradeShow> element, and several comments). Do not worry about the xmlns attribute
yet, as we discuss this in the next section. Note also the attributes, comments, and CDATA sections in
the above document.

Namespaces in XML
Wherever they may be found, namespaces generally serve two basic purposes:

1. To group related information under one umbrella

2. To avoid name collision between different groups

XML namespaces also serve these two purposes, and are defined as an extension to the
XML 1.0 specification.

Introduction to XML Technologies

33

In the above sample XML document, we have various element names (such as MyEvents, Webinar,
TradeShow, and so on). It is possible that somebody else might also use the same names in their XML
documents, but for something not quite the same as we did. So how can the processing application
associate elements with their correct meanings? The solution is provided by XML namespaces.

While writing XML documents, it is good practice to use namespaces, to avoid the potential for name
clashes. All elements or attributes belonging to a given namespace can be prefixed with the name of the
namespace, thus making a unique identifier. Hence, namespace names are required to be unique (in the
above XML, uuid:06F699FA-C945-459a-BFCE-CFED4A4C7D51 is the namespace name), and it is
for this reason that URLs are often chosen for the purpose. For instance, if our company has its own
URL, we can be fairly sure that no-one else will use that URL in their namespaces. For instance, Wrox
Press might choose namespace names for its XML documents such as
http://www.Wrox.com/Accounting, http://www.Wrox.com/Marketing, and so on; while
another company, say Friends of ED, might use http://www.friendsofED.com/Accounting,
http://www.friendsofED.com/Marketing, and so on.

Notice that we don't actually prefix any of the element names with a namespace name in the above
example XML document. This is because we have a default namespace declaration on the root element
(xmlns='uuid:06F699FA-C945-459a-BFCE-CFED4A4C7D51'), which binds that element and all
contained elements to this URI. By using the xmlns syntax, all the elements in the document now
belong to the uuid:06F699FA-C945-459a-BFCE-CFED4A4C7D51 namespace (more precisely, all
descendent elements of the element defining the namespace). Note that the default namespace
declaration has no effect upon attribute names, and so in the above XML document, the attributes do
not explicitly belong to any namespace.

It is quite possible for an XML document to contain multiple namespaces for various elements and
attributes, and although we could prefix any element or attribute with the full namespace name, it
would be very cumbersome in practice. A better solution in XML namespaces is to define short
prefixes, which we can then use instead of the long namespace names. An element or attribute name
without a prefix is referred as the local name of the element, and with the prefix it is known as the
qualified name or QName.

Consider the following example:

<evts:MyEvents xmlns:evts='uuid:06F699FA-C945-459a-BFCE-CFED4A4C7D51'
 xmlns:ol='uuid:465CE3B3-A2E9-40ca-8BE1-65B68421F191' >

 <evts:Webinar evts:type='live' evts:ID='1' ol:vcsItemID="DER-ER" />

 .
 .
 .

</evts:MyEvents>

The above XML document declares two namespace names with the prefixes evts and ol assigned.
These short prefixes save our writing the full namespace names over and over. All elements and
attributes above belong to the evts namespace, except vcsItemID, which belongs to the ol
namespace. Note how the attributes are namespace prefixed. The name evts:Webinar is an example
of a qualified name (or QName) for this document, while Webinar is the corresponding local name.

Chapter 1

34

XML Information Set
The XML Information Set (InfoSet) is a W3C specification that tries to help make sure that as new XML
languages are drawn up, they exploit consistent definitions and terminology, and that the dialects used
do not create any confusion.

The current XML InfoSet W3C recommendation (http://www.w3.org/TR/xml-infoset/) defines an
abstract data set for well-formed XML data that also complies with the XML Namespaces naming rules.
There is no requirement for an XML document to be valid in order to have an information set.

Processing XML
Today, there are many tools available to create, read, parse, and process XML documents from our
programs. The primary goal of these tools is to efficiently extract the data stored in between tags, without
having to text-parse the document. Almost all of these tools are based on two standard abstract APIs – the
Document Object Model (DOM) or the Simple API for XML (SAX). We'll have a look at these two now.

Document Object Model (DOM)
The DOM is an abstract API defined by the W3C (http://www.w3.org/DOM) to process XML
documents. It is a language- and platform-independent abstract API that any parser can implement, and
it allows applications to create, read, and modify XML documents.

Using the DOM, the parser loads the entire XML document into the memory at once as a tree,
providing random access to it for searching and modifying any element in the document.

Microsoft XML Core Services (MSXML) version 4.0 (http://msdn.microsoft.com/xml) supports the
DOM. Other freely available DOM implementations include JAXP from Sun Microsystems
(http://java.sun.com/xml/) and Xerces from the Apache XML foundation (http://xml.apache.org).

Most of the current DOM implementations (including that in .NET) support DOM Level 1 Core
(http://www.w3.org/TR/DOM-Level-1) and DOM Level 2 Core
(http://www.w3.org/TR/DOM-Level-2-Core). W3C recently announced the DOM Level 3 Core
Working Draft (http://www.w3.org/TR/DOM-Level-3-Core).

Simple API for XML (SAX)
SAX, like DOM, defines a set of abstract interfaces for processing XML. It differs from the DOM in
that, instead of loading the entire document into memory, SAX follows a streaming model, reading an
XML document character by character as a stream, and generating events as each element or attribute is
encountered. The SAX-based parser passes these events up to the application through various
notification interfaces.

As DOM loads the entire document in the memory, the DOM parser checks the well-formedness (and
optionally validity) of documents on opening them; whereas since SAX reads the XML document as
a character-by-character stream, without caching the document in the memory, it is not able to check
for well-formedness of the document.

Introduction to XML Technologies

35

SAX is an excellent lightweight alternative to DOM for processing XML documents. Unlike DOM,
SAX is not a product of the W3C, and was created by the XML-DEV mailing list members, led by
David Megginson.

Note that SAX is a stream-based API that uses the push model, where XML documents are read as a
continuous stream, and the SAX engine fires events for each item as it is encountered. SAX allows very
simple parser logic, although the application logic required to use it is consequently more complex. The
.NET Framework contains a class (called XmlReader) which also processes XML as a stream, but using
the pull model, where the parser advances from item to item in an XML document when instructed to
do so by the application. This can simplify application logic, while providing the same benefits as SAX.
The XmlReader class provides the best of both worlds: streaming high-performance parsing (as in
SAX), and simplicity of usage (as in the DOM). Neither SAX nor XmlReader maintains state, and so we
must provide our own means of preserving information from XML items that have been read if needed.
We'll look at XMLReader much more closely in Chapter 2.

By not fully loading XML documents into memory, SAX requires less system resources and proves to be a
very efficient API for parsing large XML documents. However, programming SAX is not as simple as the
DOM, firstly because we must implement notification interfaces and maintain state, and also because SAX
does not allow random access to the document or provide editing functionality as does the DOM.

Most of the current SAX implementations, including MSXML 4.0, JAXP, and Xerces, support SAX 2.0.
The .NET Framework does not support true SAX, but an alternative (and simpler to work with) pull-
model stream-based parsing API (the XmlReader classes in the System.Xml namespace). As we shall
see in Chapter 2, we can however use XmlReader to read a document according to a push model
should we wish.

XML Data Binding and XML Serialization
XML data binding refers to the mapping of XML elements and attributes onto a programmatic data
model, in order to use the XML data directly as components of an application, and vice versa. In .NET,
data binding allows us to link data within an XML file directly to a DataSet, which we can then display
in a DataGrid. Any changes to the XML data will appear immediately in the DataGrid, and
conversely, any changes made to the values in the DataGrid will be reflected immediately in the
XML file.

XML serialization is the name given to the rendering of programmatic data as XML for transmission
between computers or storage on some external system. An obvious analogy would be packaging eggs
in a carton for transport and storage, which can be unpackaged intact (deserialized) when they are to be
used. In .NET, an object can be marshaled (or serialized) as a XML stream, and at the other end, an
XML stream can be un-marshaled (or deserialized) back to an object. This allows programmers to work
naturally in the native code of the programming language, while at the same time preserving the logical
structure and the meaning of the original data, and can be readily used instead of using the low-level
DOM/SAX API to manipulate the XML data structural components.

The .NET Framework namespace System.Xml.Serialization contains the classes that serialize
objects into XML streams, and deserialize them back again.

Chapter 1

36

Validating XML
One of the primary goals of XML is to enable the free exchange of structured data between
organizations and applications. To do this, the XML document format that will be used for the
exchange of information must first be defined and agreed upon. It's fairly elementary to ensure that any
XML document is well-formed, but we also need to ensure that it is valid: in other words that it strictly
follows the agreed structure, business logic, and rules. We can do this by defining a schema that we can
then use to validate any XML document.

The initial solution for defining XML document structure was the existing Document Type Definition
(DTD) syntax. However, it was soon realized that DTDs are very restrictive; they do not support strong
data typing, are not extensible, and can perform only limited validation with regards to the sequence
and frequency of elements.

The XML Schema Definition (XSD) language was introduced by the W3C as a replacement for DTDs.
XML Schemas (http://www.w3.org/XML/Schema) overcome all the shortcomings of DTDs, and they
provide a very flexible and extensible mechanism for defining the structure of XML. As with so many
other XML-related specifications from the W3C stables, XML Schemas are themselves constructed from
XML syntax, with the many advantages that brings.

XML Schemas can be used for much more than merely validating an XML document. Visual Studio
.NET, for instance, uses schemas to determine possibilities for the IDE's IntelliSense feature,
allowing it to auto-complete partially typed keywords. In addition, XML Schemas are also used in
database and object technologies.

In May 2001, XML Schema 1.0 reached W3C Recommendation status, meaning that that version of the
specification will not be modified further. The Recommendation is divided into three parts:

❑ XML Schema Part 0: Primer (http://www.w3.org/TR/xmlschema-0) – This document
introduces some of the key concepts and is a good place to get started with XML Schemas.

❑ XML Schema Part 1: Structures (http://www.w3.org/TR/xmlschema-1) – This part describes
how to constrain the structure of XML documents.

❑ XML Schema Part 2: Datatypes (http://www.w3.org/TR/xmlschema-2) – This part defines a
set of built-in datatypes and the means for deriving of new datatypes.

While the W3C was finalizing XSD, Microsoft created XDR (XML-Data Reduced) so that it could start
using XML Schemas as soon as possible. Various Microsoft products (such as MSXML 3, SQL Server
2000, and BizTalk Server 2000) still support and use XDR.

The current release of the MSXML parser and the .NET Framework both fully support the XML
Schema (XSD) W3C Recommendation. XDR is still supported in .NET – but not recommended.
Microsoft recommends, as do I, XSD for all schema-related purposes.

The W3C is currently working on the XML Schema 1.1 standard (http://www.w3.org/XML/Schema).

Introduction to XML Technologies

37

Navigating, Transforming, and Formatting XML
Among complementary standards created by the W3C are some that further help process XML
documents. In this section, we'll discuss three such standards: XPath, XSLT, and XSL-FO.

XPath
Right now there is only one widely supported technology for searching through XML documents and
retrieving specific components, and it is the XML Path Language, or XPath. Once we have structured data
available in XML format, we can easily find the information we require with XPath, a W3C specification
that enables the querying, locating, and filtering of elements or attributes within an XML document.

XPath is based on the notion that all XML documents can be visualized as a hierarchical tree; it is a
language for expressing paths through such trees from one leaf, or node, of the tree to another. It
enables us to retrieve all elements or attributes satisfying a given set of criteria. Most XPath
implementations provide very fast random-access retrieval of XML content when we know something
about the structure of a document.

XPath provides a declarative notation, known as an expression or a pattern, to specify a particular set of
nodes from the source XML document. An XPath expression describes a path up through the XML
'tree' using a slash-separated list of discrete steps. XPath provides basic facilities for manipulation of
strings, numbers and Booleans that can be applied within these steps.

Let's look at an example XPath expression to select data from the MyEvents.xml document:

/MyEvents/Webinar[@ID=2]/Title

This expression selects the <Title> child element of the <Webinar> element that has an attribute
called ID with the value 2. XPath expressions are namespace aware, and thus we would need to specify
the namespace of the elements in a real-world expression. I'll leave this, and the complete explanation
of XPath syntax, for Chapter 4.

XPath .NET classes are found in the System.Xml.XPath namespace (also discussed in Chapter 4), and
include the XPathDocument class to load an XML document, and the XPathNavigator class for
executing complex expressions.

XPath 1.0 (http://www.w3.org/TR/xpath) was published as a W3C Recommendation on December 20th
2001, and XPath 2.0 is currently at working draft stage (http://www.w3.org/TR/xpath20/). XPath is used
by other standards such as XSLT, XPointer, and XQuery. The current releases of MSXML and the
.NET Framework implement XPath 1.0.

XSLT
XSL, the Extensible Stylesheet Language, is an XML-based language to create style sheets. XSL covers
two technologies under its umbrella:

1. XSL Transformations (XSLT) is a declarative language used to transform XML documents
from one format to another.

Chapter 1

38

2. XSL-Formatting Objects (XSL-FO) is a page-formatting language with major focus on very
precisely specifying the visual presentation of XML.

In this section, we'll talk about XSLT, and discuss XSL-FO in the next section.

Earlier in the chapter we learned about XML's role in separating data from its presentation. XSLT has a
lot to offer here. A single source XML document can be transformed to various output formats (HTML,
WML, XHTML, and so on) using an appropriate XSLT stylesheet.

We've also learned that XML acts as glue for integrating e-business and B2B applications. XSLT is the
key player as it can transform one XML dialect to any another.

There are many other potential uses for XSLT, such as performing client-side transformation of raw
XML in a web application, thus reducing the load on the server. This would require a browser with
XSLT support of course, but your web server can detect the user agent type to determine this.

Let's look at an example XSLT stylesheet, called renderHTML.xsl:

<xsl:stylesheet version="1.0" exclude-result-prefixes="xsl src"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:src="uuid:06F699FA-C945-459a-BFCE-CFED4A4C7D51" >

 <xsl:output method="html" />

 <xsl:template match="/">
 Webinars

 <xsl:for-each select="//src:Webinar">
 <xsl:value-of select="src:Title" />

 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

This style sheet provides a good demonstration of the value of namespaces in XML. Note the two
prefixes declared at the top of this style sheet: one is xsl and denotes elements related to XSLT, and
the other is src, for elements from the source XML file. This prevents any ambiguity, should our own
XML dialect also define <template> elements, say. The <stylesheet> element also specifies the
exclude-result-prefixes attribute with "xsl src" as its value, thus preventing elements bound to
these prefixes from appearing in the result tree.

When the above style sheet is applied on our sample MyEvents.xml XML document discussed earlier,
it produces the following HTML output:

Webinars
ProductA Kick-Start
Webinar

ProductB In-depth
Webinar

Introduction to XML Technologies

39

Essentially, this works by embedding XSLT elements inside HTML code, and these elements transform
certain elements from the source XML (as specified by XPath expressions) to an appropriate HTML
form for viewing.

The simplest method to try out the above style sheet (without writing a single line of code), is to add the
following processing instruction just below the XML declaration (<?xml ...?>) in the XML file, and
opening it in Internet Explorer:

<?xml-stylesheet type="text/xsl" href="renderHTML.xsl" ?>

As renderHTML.xsl uses the final release XSLT namespace
(http://www.w3.org/1999/XSL/Transform) you'll need to run the above example with
Internet Explorer 6.0 (which installs MSXML 3.0 in replace mode) or with Internet Explorer 5.0+
and make sure it is using MSXML 3.0.

The current release of MSXML and the .NET Framework support XSLT 1.0 (a W3C Recommendation
at http://www.w3.org/TR/xslt).

Note that the W3C Working Draft of XSLT 1.1 (http://www.w3.org/TR/xslt11/) was frozen, not to be
continued, on release of the XSLT 2.0 Working Draft (http://www.w3.org/TR/xslt20req), so refer to XSL
2.0 to track the progress of the XSLT standard.

XSL-FO
XSL-FO, now also simply called XSL, is a W3C Recommendation (http://www.w3.org/TR/xsl) designed
to help in publishing XML documents (both printing and displaying electronically), and it mainly
focuses on the document layout and structure (such as output document dimensions, margins, headers,
footers, positioning, font, color, and the like).

Currently, MSXML and the .NET Framework do not support XSL-FO.

Other Standards in the XML Family
In addition to XPath and XSLT, W3C is working on various other standards related to XML. Even
though there isn't as yet a great deal of support for these standards, it is nonetheless useful to be aware
of them. In this section, we'll briefly discuss these standards and see where they are as far as the W3C
standardization process is concerned.

XLink and XPointer
Resembling an HTML-type linking mechanism for XML documents is the XML Linking Language,
XLink. XLink is a W3C Recommendation that describes elements that can be inserted into XML
documents to create and describe links between resources. This specification not only allows simple
one-way links between two resources, but also supports more sophisticated bi-directional links, 'multi-
choice' links, and also links between resources that don't normally have the ability to contain links, such
as image files.

XLink v1.0 is now a W3C Recommendation at http://www.w3.org/TR/xlink/.

Chapter 1

40

XLink can be used to create a link in one document pointing to another XML document. To point to
just a part of another XML document, we use the XML Pointer Language (XPointer). XPointer,
currently in candidate recommendation status, is a W3C specification based on XPath, and allows
referring to some portion (a sub-tree, attributes, text characters, etc.) of another XML document.

The specification lives at http://www.w3.org/TR/xptr.

XQuery
The W3C XML Query Working Group is tasked to formulate a universal XML-based query language
that can be used to access XML, relational, and other data stores. XQuery is intended to provide a
vendor-independent, powerful, but easy-to-use method for query and retrieval of XML and non-XML
(exposed as XML by some middleware) data. XQuery can be treated as a superset to XPath 2.0.

Microsoft has created an online demo, and downloadable .NET libraries, that can be used to play about
with the XQuery 1.0 Working Draft. More details on this can be found at http://131.107.228.20.

There are already many commercial products available that have implemented XQuery, such as those
listed at http://www.w3.org/XML/Query#products.

XQuery 1.0 is currently in Working Draft status, and is available at http://www.w3.org/TR/xquery/.

XHTML
XHTML is nothing but HTML 4.01 written in conformance to XML rules. This means XHTML
documents must be well-formed. The W3C tagline for XHTML specification is "a reformulation of
HTML 4 in XML 1.0" (http://www.w3.org/TR/xhtml1).

The W3C has also designed modularized XHTML (http://www.w3.org/TR/xhtml-modularization/),
which essentially splits XHTML into separate abstract modules, each of which represents some specific
functionality in XHTML.

Finally, a simplified and minimal set of these modules have been defined as XHTML Basic
(http://www.w3.org/TR/xhtml-basic).

All three W3C specifications – XHTML 1.0, Modularization of XHTML, and XHTML Basic – have
reached Recommendation status.

XForms
Forms are an integral part of the Web. Nearly all user interaction on the Web is through forms of some
sort. However, today's HTML forms blend the form's purpose with its presentation, are device and
platform dependent, and do not integrate well with XML.

W3C is working on defining the next generation of forms, and calling it XForms
(http://www.w3.org/MarkUp/Forms/). The biggest strength of XForms is the distillation of forms into
three layers – purpose, presentation, and data.

Introduction to XML Technologies

41

The data layer refers to the instance data – an internal representation of the data mapped (using XPath)
to the form controls.

The presentation layer is dependent on the client loading the XForms – this makes XForms device
independent, and the same form can be rendered as HTML or WML, or sent to an audio device.

The XForms namespace defines elements such as <input>, <choices>, and <selectOne>; these are
the basic constructs used in XForms – and define the purpose, with no reference to the presentation.

XForms 1.0 is a Last Call Working Draft, at http://www.w3.org/TR/xforms/.

XML Security Standards
When XML is used as the medium to perform business data transactions over the Internet, it becomes
critical that the XML is secured: that data privacy and integration rules are met.

W3C has started three initiatives to create a robust mechanism to ensure data integrity and
authentication for XML. These are XML Signature, XML Encryption, and the XML Key Management
Specification (XKMS).

XML Signature
Out of the three initiatives outlined above, XML Signature is the most mature specification, and as of
writing the only specification that has reached the Recommendation status. XML-Signature Syntax and
Processing (http://www.w3.org/TR/xmldsig-core/) is a joint initiative between the IETF and W3C to
outline the XML syntax and processing rules for creating and representing digital signatures.
More details on XML Signatures can be found at http://www.w3.org/TR/xmldsig-core/.

XML Encryption
The XML Encryption Syntax and Processing specification (http://www.w3.org/TR/xmlenc-core/)
reached the W3C candidate recommendation status on March 4, 2002. This specification outlines the
process for encrypting data and representing the result in XML. The result of encrypting data is an
XML Encryption EncryptedData element, which contains (via its children's content) or identifies (via
a URI reference) the cipher data. More details on XML Encryption can be found at
http://www.w3.org/TR/xmlenc-core/.

XML Key Management Specification (XKMS)
XML Signature specification provides no means to properly validate the signer's identity before
accepting a signed message. Similarly, when the encrypted message is received, XML Encryption
specification does not provide anything to retrieve the encryption key. The Public-key infrastructure
(PKI) can be helpful in such situations.

W3C has defined another specification, called XKMS, that specifies the protocols for distributing and
registering public keys, suitable for use in conjunction with the XML Signature and XML Encryption
standards. More details can be found at http://www.w3.org/TR/xkms/.

Chapter 1

42

Visit http://www.xml.org/xml/resources_focus_security.shtml to get more information on
XML Security standards.

XML Messaging
Before delving deep into this section, let's consider a few facts:

❑ XML is plain text. It is license free. It is platform and language independent

❑ XML is a standard, and is widely implemented

❑ XML allows encapsulating structured data, and metadata

❑ XML is extensible

❑ HTTP is also widely accepted, very well implemented, and a standard protocol

❑ Most firewalls readily work with HTTP and have port 80 open

❑ HTTP is based on request-response model

❑ By adding 'S' to the end of HTTP, we make HTTP communication secure (using SSL)

❑ It is very difficult (if not impossible) to write distributed applications that can run over the
Internet and across different platforms using proprietary technologies and messaging formats
(DCOM, CORBA, RMI, etc.).

Considering all the above facts, we can surely say that the combination of XML with HTTP (to begin
with) makes a very interesting platform from which to build distributed applications that can run over
the Internet and across platforms.

XML-RPC
Dave Winer of UserLand Software, Inc. (www.userland.com) initiated talks with other industry experts
(from DevelopMentor and Microsoft) about "remote procedure calls over the Internet". Not getting the
expected response from Microsoft, Dave Winer went ahead and announced XML-RPC. The bottom
line is that the XML-RPC specification allows software running on disparate systems to make procedure
calls over the Internet, using HTTP as the transport and XML as the message encoding scheme. More
details on XML-RPC can be found at http://www.xmlrpc.com.

SOAP
The result of discussion between UserLand, DevelopMentor, Microsoft, and a few other organizations
on the topic of building a platform-independent distributed systems architecture using XML and HTTP,
SOAP was submitted for a W3C Note under the name of SOAP (for Simple Object Access Protocol), at
http://www.w3.org/TR/SOAP/. Note that from SOAP 1.2, the term SOAP is no longer officially an
acronym, although it originally stood for Simple Object Access Protocol.

The original name pretty much indicates SOAP's prime aims, namely to provide a simple and
lightweight mechanism for exposing the functionality of objects in a decentralized, distributed
environment. It is built on XML.

Introduction to XML Technologies

43

SOAP forms one of the foundation stones of XML Web Services. XML Web Services can be defined as
loosely coupled software components that interact with one another dynamically via standard
Internet technologies.

The SOAP specification uses the XML syntax to define the request and response message structure,
known as the Envelope. With HTTP, the client POSTs the request envelope to the server, and in result
gets a response envelop back.

Let's see an example of a SOAP request envelope to illustrate:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetAmazonPrice xmlns=
 "http://www.PerfectXML.com/NETWebSvcs/BookService">
 <ISBN>186100589X</ISBN>
 </GetAmazonPrice>
 </soap:Body>
</soap:Envelope>

The above SOAP request envelope calls a method called GetAmazonPrice passing an ISBN as the
parameter. When the above SOAP envelope is posted to the Web Service endpoint, the following
response envelope is received in reply:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetAmazonPriceResponse xmlns=
 "http://www.PerfectXML.com/NETWebSvcs/BookService">
 <GetAmazonPriceResult>$34.99</GetAmazonPriceResult>
 </GetAmazonPriceResponse>
 </soap:Body>
</soap:Envelope>

There are many toolkits available today that simplify SOAP development. Microsoft's SOAP Toolkit, at
http://msdn.microsoft.com/soap, allows writing SOAP clients and servers, and in addition, allows COM
components to be easily converted into SOAP servers that can then be used as Web Services.

The .NET Framework supports XML Web Services very well, and Web Services and clients can be
created very easily in ASP.NET. In addition to the SOAP interface, Web Services created with .NET
also support the regular HTTP GET and POST interfaces. Thus SOAP is not required to access the Web
Service, and a regular HTTP GET or POST request can access the Web Service and retrieve the results
as XML. We'll have a look at ASP.NET XML Web Services in a B2B context in Chapter 8.

Chapter 1

44

The SOAP Toolkit and the .NET Framework implement SOAP 1.1. The current working draft of SOAP
1.2 is divided into three parts:

1. SOAP 1.2 Part 0: Primer (http://www.w3.org/TR/soap12-part0/) is an easily readable
tutorial on the features of SOAP version 1.2.

2. SOAP 1.2 Part 1: Messaging Framework (http://www.w3.org/TR/soap12-part1/) describes the
SOAP envelope and SOAP transport binding framework.

3. SOAP 1.2 Part 2: Adjuncts (http://www.w3.org/TR/soap12-part2/) describes the RPC
convention and encoding rules along with a concrete HTTP binding specification.

WSDL
The Web Services Description Language (WSDL) is another important pillar in the XML Web Services
architecture. It is an XML based format describing the complete set of interfaces exposed by a Web
Service. As the component technologies (such as COM) make use of an IDL file to define the
component interfaces, the XML Web Services make use of the WSDL file to define the set of operations
and messages that can be sent to and received from a given Web Service. A WSDL document (.wsdl
file) serves as a contract between clients and the server.

WSDL 1.1 is currently a W3C Note described at http://www.w3.org/TR/wsdl.

When an ASP.NET Web Service project is created using Visual Studio .NET, it automatically creates a
WSDL file, and updates it automatically as Web Service methods are added or removed. A Web Service
client can then access this .wsdl file (by selecting Project | Add Web Reference in Visual Studio .NET
or by running wsdl.exe), and create a proxy class from it which allows them to access the Web
Service's exposed methods (web methods). The WSDL documents created by Visual Studio .NET
describe HTTP GET and POST based operations in addition to SOAP. This allows a client to access
web methods by HTTP GET or POST request (application/x-www-form-urlencoded), instead of
posting a SOAP request envelope. In addition to SOAP and HTTP GET/POST, the WSDL specification
also permits a MIME binding.

The WSDL document can be divided into two main sections:

❑ Abstract Definitions: Defines the SOAP messages without references to the site that processes
them. Abstract definitions sections contain three sections, <types>, <messages>,
and <portType>.

❑ Concrete Descriptions: Contains site-specific information, such as transport and encoding
method. The Concrete Descriptions comprise two sections, <binding> and <service>

The <types> section contains the type definitions that may be used in the exchanged messages. The
<messages> section represents an abstract definition of the data being transmitted. It contains one
<message> element for each request and response message. Each <message> element in turn contains
<part> elements describing argument and return values, and their types. The input and output
<message> are clubbed together under an <operation> element, and all <operation> elements are
placed under the <portType> element, which identifies the messages exposed by the Web Service.

Introduction to XML Technologies

45

To map the above abstract definitions to physical concrete descriptions, we use the <binding> and
<service> sections. The <binding> section specifies the physical bindings of each operation in the
<portType> section. Web Services WSDL documents created with Visual Studio .NET contain three
<binding> sections, for SOAP, HTTP GET, and HTTP POST. Finally, the <service> section is used
to specify the port address (URL) for each binding. WSDL is described in detail in Chapter 8.

UDDI
Universal Description, Discovery, and Integration (UDDI) offers three main operations: publish, find, and
bind. The notion behind UDDI is that it should be possible to dynamically locate businesses and
businesses' Web Services, and bind to them so that they may be used in an application. The UDDI
initiative outlines the specification and defines an API to perform these operations.

The UDDI registry is in public domain, and privately developed Web Services can be registered with
the registrars. The links to version 1.0 of the IBM and Microsoft registry, and version 2.0 of the Hewlett-
Packard, IBM, Microsoft, and SAP registries can be found at http://www.uddi.org/register.html.

Microsoft has released a UDDI SDK for the .NET Framework under the Software Development Kits
hive at http://msdn.microsoft.com/downloads/. In addition, Microsoft .NET Server comes with UDDI
Enterprise Server, which can be used to publish and find Web Services in an enterprise environment.

DIME
Direct Internet Message Encapsulation (DIME) is a specification submitted by Microsoft to the Internet
Engineering Taskforce (IETF – see http://search.ietf.org/internet-drafts/draft-nielsen-dime-01.txt), and
it defines a lightweight, binary message format that can be used to encapsulate one or more application-
defined payloads of arbitrary type and size into a single message construct.

In other words, DIME can be used to send binary data with SOAP messaging, and it represents a very
efficient means for transmitting multiple data objects (including binary) within a single SOAP message.

PocketSOAP (http://www.pocketsoap.com/) is one of the first SOAP Toolkits to support DIME.
You can discuss DIME at http://discuss.develop.com/dime.html.

GXA
In October 2001, Microsoft announced the Global XML Web Services Architecture (GXA) set of
specifications to add static and dynamic message routing support, and security facilities to XML Web
Services. These are technically SOAP extensions under the following four categories:

❑ WS-Routing (http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp)
defines how SOAP messages are routed from one node to the other.

❑ WS-Referral (http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-referral.asp)
provides the mechanisms needed to enable SOAP applications to insert, delete, and query
routing entries in a SOAP router through the exchange of referral information.

Chapter 1

46

❑ WS-Security (http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security.asp)
describes SOAP extensions to ensure the message integrity, message confidentiality, and
single message authentication.

❑ WS-Inspection (http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wsinspecspecindex.asp) supports querying the point of offering to retrieve
a list of services offered. It is expected to replace .NET's Disco (for Discovery) interface.

WS-I
In February 2002, Microsoft and IBM announced a joint initiative to promote Web Services
interoperability, in the form of the Web Services Interpretability Organization (http://www.ws-i.org/).

At the time of writing, WS-I membership has grown to more than 100. The two primary goals of the
organization are to promote Web Services interoperability across platforms, operating systems, and
programming languages; and to provide guidance, best practices, tools, and resources for developing
Web Services solutions, with the aim of accelerating the adoption of Web Services.

REST
Representational State Transfer (or REST) is based on Roy Fielding's PhD dissertation
(http://www.ebuilt.com/fielding/pubs/dissertation/top.htm), and is an architectural style that models
system behavior for network-based applications. The idea behind REST is to describe the characteristics
of the Web, with the aim of providing a model that can be exploited by developers

With this model, the traditional HTTP GET/POST URI-based model is used to create and access XML
Web Services instead of SOAP. For instance, instead of posting a SOAP envelope request, we'll simply
send a GET request containing method parameters in the querystring appended to the URL. We recieve
the XML result without any SOAP packaging overhead. There is currently a little debate about what
exactly SOAP adds, and if it isn't just a lot simpler to use existing web facilities (HTTP, GET, POST) for
XML Web Services.

To keep abreast with REST, join the mailing list at http://groups.yahoo.com/group/rest-discuss/.

Summary
Hopefully this chapter has provided a good grounding in XML and its surrounding standards. We have
talked about almost all key XML standards, current and future. We've seen that XML is much more
than just a format for representing data, and there is a wealth of supporting technologies for common
tasks with XML documents. As these technologies mature, third-party implementations arise to support
them. If your core data is in XML, you may well be able to find an implementation that will let you do
what you want in far fewer lines of code.

If you need to navigate a document, add to it, or change it in simple ways, there are at least two ways:
the Document Object Model (DOM), a W3C Recommendation widely supported in code, and SAX, a
de facto model also enjoying wide support. The .NET XML classes introduce yet another way to do the
same thing, as we shall see in the next chapter.

Introduction to XML Technologies

47

XPath currently allows querying of an XML document. In the future XQuery will arrive, although
software implementations are currently lacking. Visual rendering? Use XSLT to convert the XML into
appropriate HTML and feed it to a web browser. Better still, there are a number of XML vocabularies
for which native rendering code is available. In vector graphics, the SVG vocabulary is well supported
by a free component from Adobe (http://www.adobe.com/svg). If you need mathematical formulae in
text, you can encode your data in MathML and use one of several renderers for it (for example, Design
Science's MathPlayer, http://www.dessci.com/webmath/mathplayer/). SMIL encodes multimedia, while
VoiceXML covers voice response applications. ChemML is useful for visualizing chemical structures,
and a viewer already exists for it. The list increases daily.

You can use the same technique, XSLT, to translate from one XML vocabulary to another. You can
refer to one bit of XML from another using XPointer, XLink, or XInclude. Security issues are being
addressed through XML signatures (http://www.w3.org/TR/xmldsig-core/) and XML encryption
(http://www.w3.org/TR/xmlenc-core/). SOAP, as noted earlier, is an XML vocabulary, and all of the
integration servers support XML as one of their primary formats. Messaging with Microsoft Message
Queuing supports XML very well using features of the XML and MSMQ COM classes.
Communications, therefore, should be easy.

Once you have your native data in XML form, you are, to borrow a phrase, "halfway to anywhere".
XML is such a useful format and enjoys such market penetration that software support is widely
available for any commonly used XML technology. The W3C, among others, has extended XML in so
many useful ways that you will find that many common and useful tasks can be readily performed using
one of these technologies. The .NET classes provide built-in support for many of them. If you use XML,
you will find that you can leverage this base of existing code and programming tools when building
your web applications.

For a more in-depth discussion of XML and its related standards, take a look at Professional XML 2nd
edition (Wrox Press, ISBN 1-86100-505-9).

Chapter 1

48

2

XmlReader and XmlWriter

Having read through the previous chapter, you're probably eager to start applying some of your XML
know-how to XML documents in ASP.NET. In order to do that, you need to understand how to move
documents back and forth, how to read them, how to parse them, and how to create them
programmatically. In this chapter, we're going to see a series of .NET Framework classes that provide all
these abilities, observing the rules of well-formed XML markup as they go. Specifically, this chapter will
cover:

Q The nature of stream-based document processing
Q The object model of the portion of the Sys tern. Xml namespace that deals with stream-based XML

document processing
Q Parsing documents with XmlTextReader
Q Validating documents using XmlValidatingReader
Q Writing new XML markup using XmlTextWriter

The most basic task in XML programming is reading an existing document, and the XmlReader class
provides this capability. We'll take a look at it, and put two of its derived classes - XmlTextReader and
XmlValidatingReader - to work in a sample application. We'll use them to read, categorize, and
validate XML documents posted to a server using a web form. While we're at it, we'll also explore a
caching mechanism for XML validation that will make your ASP.NET applications more efficient.

Once you're confident reading XML documents, you'll want to start creating and writing your own XML
documents from ASP.NET. XmlWriter (and its derived class, XmlTextWriter) is the class for that. We'll
return to our sample application, and modify it to write XML log files on the server.

Reading XML: XmlReader

The best way to get to grips with XML in ASP.NET is through the XmlReader class, which is found the
System.Xml namespace. However, no ASP.NET application, no matter how rudimentary, will use
XmlReader directly - it's an abstract class. Instead, you must instantiate one of the three classes derived
from it, or derive one of your own. We'll shortly consider two of the derived classes that will usually be
sufficient for ASP.NET applications. If, having seen the abilities of these classes, you find that you need
specialized processing for your particular application, you can derive your own class from XmlReader.

Inevitably, all of the classes derived from XmlReader are closely related, and we can take an overview of
how they work before diving into the detail of actually using them in an application.

Processing Concept
XmlReader is stream-oriented, which means that it regards an XML document as an incoming stream of
text data. Unlike some other processing models, stream-oriented interfaces work on the document as it
flows through the reader; nothing is captured for you in a data structure. If you want to hang on to some
piece of information, you must record it yourself. This is what gives XmlReader its low overhead and
superior efficiency. Without any need for an in-memory data structure to contain the document as a whole,
XmlReader consumes only as much memory as it needs to look at the current chunk of the document.
Since it performs only minimal checking on the document, classes derived from XmlReader are fast - of
the three built-in ones (XmlTextReader, XmlNodeReader, and XmlValidatingReader), only the third
even performs XML validation, and is slower than the other two as a consequence.

So how does the stream look to an instance of a class derived from XmlReader? The first thing to make
clear is that XmlReader does not expose the stream to an application on a character-by-character basis -if
it did, you might as well implement your own parser! Rather, XmlReader returns nodes of information,
where each node is meaningful in the context of XML: elements, comments, attributes, and CDATA
sections are all just nodes to XmlReader.

XmlReader classes work on a stream by reading it one node at a time. The Read method is called
iteratively to process a single node from the stream. Consider the following illustration:

This shows how the XmlReader class processes XML documents one element at a time. Be aware
that XmlReader uses a pull model for stream processing. Pull models require that the program using
the class must take some action to move the data stream through the processor.

50

XmlReader and XmlWriter

The alternative to pull models is the push model, as used (for example) by the popular SAX
processor. Here, once document processing is initiated, the stream moves through the processor
continuously. The processor fires events, and the application responds to those events.

In the figure, Read has been called twice: once to get to the XML declaration, and once to reach the
<Person> element's opening tag. Since XmlReader steps through meaningful units of information, we are
able to interrogate the reader and determine that the current node is an element and that its name is Person,
as well as other pertinent information. As soon as we move to the <Person> element, the XML
declaration is gone, drifting off downstream beyond our reach. The <Name> element, on the other hand, is
upstream, and equally inaccessible to us until we make another call to the Read method.

The streaming nature of XmlReader does create some restrictions. <Person> includes <Name> as a child
element and <Name> has a child text node, but although the reader is currently at the <Person> element, it
doesn't have any knowledge about the elements within it, and we won't find out about them without further
calls to Read. XmlReader, like all other stream-oriented readers, compromises accessibility in the name
of speediness by simply reading opening or closing tags as they are encountered in the document. Given
that no elements have previously been encountered in the stream in the above example, our reader knows
that it is processing the start of an element.

There is one final nuance to consider. Attributes are wholly contained in the opening tag of an element,
and so they are read along with the tag. As we shall see shortly, getting at attributes requires that we call
specialized methods on reaching the start of an element, to iterate through the attributes set for it.

Derived Classes
As we've mentioned a couple of times already, XmlReader is an abstract class, so we need to use one of the
derived classes that inherit the features of XmlReader. The following diagram shows the classes available;
the box in the lower right-hand corner represents a variety of supporting classes that work with the main
classes to provide features that are not provided by the basic XmlReader interface. The very existence of
these classes should serve to remind you that XmlReader is a lean implementation that requires a little
effort to perform more advanced operations. Happily, we can usually just add the class or classes that are
needed for the task at hand, thereby keeping system resource consumption to a minimum.

The .NET System.Xml namespace includes three classes derived from XmlReader:

* XmlTextReader: a high performance reader that processes XML documents as streams of text
without caching, entity resolution, or validation. It does, however, enforce XML rules for
well-formedness.

* XmlValidatingReader: an implementation of XmlReader that's similar to
XmlTextReader, but also performs validation against a DTD, a Microsoft XDR Schema, or a
W3C XML Schema (XSD format).

* XmlNodeReader: a variation on XmlReader that processes XML from an instance
of XmlNode.

In this chapter, we'll use the first two of these three classes. XmlTextReader represents the fastest, leanest
way to process XML documents in .NET, and it's most useful when you're working with documents that
are either known to be valid, or do not conform to an explicit schema and therefore only need to be
well-formed. The former case can arise when validation occurs in some other part of the application (as a
result of an authoring or pre-processing step, for example). The latter frequently occurs in web
applications, where programmers often create 'implicit' schemas when using XML internally. There is no
formal schema (or DTD), and the XML need only be good enough for the application. This certainly isn't
the best way to program with XML, but it happens a lot and benefits from the simplicity and speed
offered by XmlTextReader.

If, however, you are a careful programmer, you are likely to need to validate a document at some point,
and XmlValidatingReader provides one way to do that. It is very closely related to XmlTextReader -
in fact, you generally construct an instance of this class by passing it an instance of XmlTextReader!
We'll do just that in a later section of this chapter.

XmlNodeReader is something of a hybrid that's constructed by passing in an instance of XmlNode, and
can be used to navigate through a tree of such nodes that have been placed in memory (say, a DOM tree)
using some other technique, or a different family of XML-processing classes. We'll be giving no further
coverage to XmlNodeReader in this chapter, but it's treated well in the MSDN documentation.

XmlReader Supporting Classes
As we described above, the XmlReader model uses some additional classes for dealing with tasks such as
handling schema or to resolving XML entities. The act of 'factoring out' such functionality further
streamlines XmlReader, leaving the reader itself lean and compact. As you require additional services, you
instantiate the helper classes you need, and assign those instances to properties of the reader. This is a nice
model, because if you don't need the help, you don't incur the overhead. The main classes provided to
support XmlReader are also drawn from the System.Xml namespace, and they're listed below:

* XmlNameTable: a lookup table implementation for the storage of repeating names (see below)
* XmlConvert: type conversions between CLR and schema types
* XmlNamespaceManager: resolves and stores namespace information
* XmlParserContext: maintains parsing context (for example: namespaces, document

encoding, public or system IDs, xml: lang, and xml: scope information)
* XmlUrlResolver: external resource resolution from URIs

52

XmlReader and XmlWriter

A reader object will create an instance of XmlNametable (or rather, of the derived class, NameTable
-XmlNameTable is abstract) to record the names it encounters while parsing a document. This allows it to
record a repeated element name (say, TaxablePrice), assign it a token, and use that (much shorter) token
wherever the name appears. The other classes listed above, like XmlParserContext, are set up by the
application programmer and passed to the reader to help it make sense of an incoming document. In
general, you'll find that either the Framework will take care of things for us behind the scenes, or the need
for a helper will be clear from the context.

Besides the classes that provide additional features, the System.Xml namespace contains enumerations
that describe various aspects of XML processing. These enumerations, which you will encounter
frequently in this chapter, are:

* XmlNodeType: the type of an XML node (element or attribute, for example)
* WhitespaceHandling: XML options for processing whitespace and exposing it to an

application
* ValidationType: the type of document validation to perform

XmlSpace: the type of whitespace (that is, whether it's significant)

ReadState: the internal processing state of the XML processor

At this stage, we've covered enough groundwork to be ready for a look at the leanest class in the
XmlReader family: XmlTextReader.

XmlTextReader
If you want to read an XML document with the best performance possible, but you don't require
validation, then the workhorse XmlTextReader class is the one to use. It provides the means to open and
parse documents, and it contains hooks for resolving external entities and DTDs with the help of the
supporting classes we mentioned earlier. This class will let us get into XML processing with minimal effort,
and it will serve to explain some key XmlReader concepts in depth.

Constructors
As usual, the first thing we need to do to use this class is create an instance of it, using one of the many
overloaded constructors that XmlTextReader provides for this purpose. The multiplicity of constructors
is due to the fact that the constructor can also open the XML document you want to process, and how you
open a document depends on how you locate it. Here are your options:

Constructor Use

XmlTextReader(;

XmlTextReader(Stream)

Protected constructor that initializes an empty reader. If,
for example, you were deriving a class that stuffed
information into a database as the document is
processed, you might use this constructor to initialize a
database connection.
Creates a new reader poised to begin reading the
XML document contained in the stream passed in.

Table continued on following page

Constructor Use

XmlTextReader(String)

XmlTextReader(TextReader)

XmlTextReader(Stream,
XmlNameTable)

XmlTextReader(String,
Stream)

XmlTextReader(String,
TextReader)

XmlTextReader(String,
XmlNameTable)

XmlTextReader(Stream,
XmlNodeType,

XmlParserContext)

XmlTextReader(String,
Stream,
XmlNameTable)

XmlTextReader(String,
TextReader,
XmlNameTable)

XmlTextReader(String,
XmlNodeType,

XmlParserContext)

Creates a new reader poised to read the XML document
whose URL is passed as the input parameter
Initializes a new XmlTextReader given an XML
document in a TextReader instance. TextReader is a
simple text-file reading class.
Initializes the reader object with a document in the
stream parameter, using the names in the
XmlNameTable parameter. XmlNameTable allows
some economy of representation by providing a
lookup table of names.
The value of the base URI (namespace qualification)
for the XML document in the stream parameter is
contained in the string parameter.
As above, except that the input document is contained
in a TextReader object.
Initializes a reader with a document pointed to by the
URL in the string parameter; the XmlNameTable
parameter contains commonly used names for the
document.
The stream parameter contains an XML fragment; the
XmlNodeType parameter is an enumeration indicating
what sort of fragment (element, attribute, document,
etc.) is being passed, and the parser context identifies a
collection of information that includes encoding type,
name table, and language.
The string contains the base URI of the document
contained in the stream parameter, while the
XmlNameTable parameter provides commonly used
names for use when parsing the document.
As immediately above, except that the document is
contained in a TextReader object.

As XmlTextReader(Stream, XmlNodeType,
XmlParserContext), except the document is
referred to by the URL in the string parameter.

54

There is also a protected constructor of the form XmlTextReader (XmlNameTable), but this is
intended for use by code in the Framework, and cannot be used by applications.

XmlReader and XmlWriter

Properties
Once you've initialized a reader object, you have to start parsing the document by pulling nodes from the
stream using its Read method, which we'll discuss in the next section. For now, assume that you have a
markup node. The properties of XMLTextReader provide information about that node (or the document
as a whole), as detailed in the following table:

Property Meaning

AttributeCount (read-only)

BaseURI (read-only)

CanResolveEntity (read-only)

Depth (read-only) Encoding

(read-only) EOF (read-only)

HasAttributes (read-only)

HasValue (read-only)

IsDefault (read-only)

isEmptyElement (read-only)

Item (read-only)

LineNumber (read-only)

Integer count of attributes belonging to the current node
(only used for nodes of type Element, DocumentType,
and XmlDeclaration).
String containing the URI of the document's namespace.
Boolean returning true only when the reader supports
DTD information and can resolve XML entities in a
document. It therefore returns false for XMLTextReader.
Integer indicating the level of the current node in the
document hierarchy. The document element has depth zero.
(Object) property describing the character encoding of
the document.
Boolean value that is true when the end of the document is
reached.
Boolean property that's true only when the current node
has attributes.
Boolean value that's true when the current node has a
value. Will always be true for Attribute, CDATA,
Comment, DocumentType, Text,
Processinglnstruct ion, Whitespace,
SignificantWhitespace, and XmlDeclaration
node types.
Boolean property that always returns false in
XmlTextReader, as this class does not expand
default attributes.
Boolean that's true when the current node is an
empty element.
Overloaded indexer property. Given the zero-based ordinal
index (integer) or string name of an attribute, this property
returns a string containing the contents of that attribute.
Integer indicating the line number of the current node in
the XML document.

Table continued on following page

Property Meaning

LinePosition (read-only)

LocalName (read-only) Name

(read-only) Namespaces

(read-write)

NamespaceURI (read-only)

NameTable (read-only)

NodeType (read-only)

Normalization (read/write)

Prefix (read-only)

QuoteChar (read-only)

ReadState (read-only)

Value (read-only)

Integer indicating the (one-based) position within the line of the
current node in the XML document.
Unqualified string name of the current node.

Qualified string name of the current node.
Boolean set to true when namespace support is to be used, or
false otherwise.
String containing the URI of the current node's namespace.
Property returning the XmlNameTable object that contains a
lookup table of repeated names in the document.
Enumerated type denoting the type of the current node
(Element, Attribute, etc.)
Property that controls whitespace and attribute normalization.
This is true when normalization is on, but it may be changed
between calls to Read. When true, non-significant whitespace
is normalized to a single space character, and character entities
are resolved to the referenced characters.
String containing the namespace prefix of the current node.
A character value containing the character used to enclose
attribute values.
Enumeration indicating the state of processing of the reader.
Possible values are:
Closed - the reader's Close method has been called

EndOfFile - the end of the document has been reached Error -

an error that prevents further processing has occurred
Initial - the reader has been initialized but the Read
method has yet not been called
Interactive - the reader is processing a document (Read has
been called at least once)
String value of the current node; see HasValue for
relevant nodes.

56

XmlReader and XmlWriter

Property Meaning

WhitespaceHandling
(read/write)

XmlLang (read-only)

XmlResolver (write-only)

XmlSpace (read-only)

Enumerated value that controls what happens when the reader
passes whitespace to the application. Possible values are:
All - returns all whitespace and significant whitespace nodes

None - does not return whitespace nodes of any type Significant

- returns only significant whitespace nodes.
String indicating the xml: lang scope of the current node
("en-us", for example).
Property for setting an instance of XmlResolver for use in
retrieving DTDs and schemas, as well as schema include and
import items (see later).
Enumerated value describing the xml: space attribute of the
document. Possible values are:
Default - default whitespace handling
None - no xml: space scope
Preserve - xml: space has the value preserve
Controls how whitespace is handled in certain contexts (within
elements, for example). Processors usually normalize non-
significant whitespace, but document authors can use xml: space
to prevent this. Note, however, that the value of the xml: space
attribute (or the value of this property) is strictly advisory, and
many processors other than these classes do not respect it.

Although they belong to the document reader as a whole, many of these properties detail specifics of the
node that's currently 'in view'. As the stream is pulled through the reader, the reader's properties
reflect the nature of the node currently being read.

Methods
While the properties of XmlTextReader can tell us things about the current node, the methods of the
class perform the stream-based mechanics of navigating through the document. Since the XmlReader
interface is a pull model, the sequence in which you call these methods completely controls the flow of the
stream through the reader. The only thing you cannot control, however, is the direction: the flow is
always forward only. If we wish to retain information about elements after the stream has moved on, we
must create and use our own data structures.

For brevity in this table, we'll omit the methods inherited from System. Object. Since we haven't
discussed the base class XmlReader in depth, we'll note which methods are overloaded or inherited
from that class in this table, but then omit them when we discuss the XmlValidatingReader
class.

Close

GetAttribute

GetRemainder

IsName

IsNameToken

IsStartElement

LookupNamespace

MoveToAttribute

MoveToContent

MoveToElement

MoveToFirstAttribute

MoveToNextAttribute

Read

Parameters and Purpose Method

Ends processing and releases resources used by the processor If
the reader was constructed with a Stream object, the stream is closed.
No parameters.
Overloaded method that takes either an integer ordinal index or a
string name, and returns the attribute referenced by the passed
parameter.
Takes no parameters and returns a TextReader object containing
the unread, buffered remainder c - of the XML document. After this
method is called, the EOF property is set to true.
Inherited from XmlReader, this method takes a string
containing a name and returns true if the string value is a valid
XML name.
As with IsName, except that the reader is testing whether the
parameter is a valid XML name token.
Takes no parameters and returns true if the current node is the
opening tag of an element.
Takes a string namespace prefix and returns the URI of the
namespace associated with that prefix.
This method is overloaded and takes either an integer (zero-based)
or a string name and moves the current node to the desired
attribute.
Inherited. Moves to the next content node ((non-whitespace text,
CDATA, Element, EndElement, EntityReference, or EndEntity)
if the current node is not itself of a content node. No parameters.
Overridden. Checks to see if the current node is an attribute. If not,
it returns false. If it is, it moves the current node back to the
element containing the attribute and returns true. No parameters.
Overridden. Takes no parameters and moves the current node to
the first attribute of the current node (if the current node has an
attribute). Returns true if successful, false otherwise.
Overridden. Returns true and moves the current node to the
next attribute; if any), or false otherwise. No parameters.
Overridden. This key method takes no parameters and
advances the reader to the next node. Returns true if the
reader advances, false if there are no more nodes.

58

XmlReader and XmlWriter

Methods Parameters and Purpose

ReadattributeValue Overridden. Used to process attributes containing entity
values, this method takes no parameters and advances the
current node to the next Text, EndEntity, or EntityReference
value in the attribute. Returns false if the end of the attribute
value has been reached, or the reader's current node is not
positioned on an attribute when the method is called.

ReadBase64 Reads a node containing base-64 encoded content, decodes it,
and writes the equivalent text into an array. Its parameters are:
Array - an array of bytes to receive text
Offset - integer offset from the start of the array denoting
where to begin writing text
Len - integer length of bytes to write

ReadBinHex Same parameters and meaning as ReadBase64, except that the
encoding is binary hexadecimal.

ReadChars Same parameters as ReadBase64, except that the array is
typed as char []. This method reads text content into a
character array. The purpose is to grant applications control
over how much text is read from a potentially lengthy source in
any given read operation.

 hReadElementString Inherited. Used to read text-only element values, this method

as three overloaded forms:
The first takes no parameters and returns the text node of the
element.
The second takes a string representation of an element name
and returns the text node if and only if the name matches the
element name.
The third form takes two string parameters - localname and
URI - and returns the text node if the qualified element name
matches these parameters.

ReadEndElement Inherited. This method advances the reader to the next node. If
the current node is not an element end tag, an XmlException
instance is thrown.

Table continued on following page

Method Parameters and Purpose

ReadlnnerXml

ReadOuterXml

ReadStartElement

ReadString

ResolveEntity

Skip

No parameters. Reads the child markup of the current node when
the current node is an element or an attribute, and returns that
markup as a string. If the current node is some other type or the
current node has no content, it returns an empty string '
If the current node is an element, the current position is advanced
past the end tag; if an attribute, the current node pointer remains
on the attribute. If the current node is an element with no further
child content, the result is the same as a call to Read.

As with ReadlnnerXml, except that the containing node is
returned with the child markup.
Checks that the current node is an element, and moves the current
node pointer to the next node. No return value. There are three
overloaded forms:

The first takes no parameters.
The second takes a string and moves the pointer only if the
current node is an element with that name.
The final form takes two strings - name and namespaceURI
and ensures that the current node is an element with the
qualified name indicated by the parameters.

Reads, concatenates, and returns all text, whitespace, and CDATA
sections of the current node. It stops when any markup is
encountered (mixed content models). If the current node is an
attribute, the returned string is the content of the element
possessing the attribute.
Inherited from XmlReader, this method is simply overridden to
throw an InvalidOperation exception in all cases.
XmlTextReader sacrifices the ability to resolve XML entities in
favor of performance and a minimal footprint.
Advances the current node pointer to the next sibling node -that
is, the next peer element. Takes no parameters and returns no
value.

Typically, we use Read to iterate through nodes, and we'll have an example of that shortly. As an
alternative, however, the MoveToContent method is ideal when we're processing a document if we
only have interest in the textual content. MoveToContent skips over nodes that cannot contain
textual content (processing instructions, for example), and it skips over whitespace. We might wan
use this in an application that uses XML to organize data within text nodes. In such structures, w
seldom use attributes, and the content model of the document is relatively flat, using the text nodes
bottommost leaves of the document tree) as slots for content.

60

XmlReader and XmlWriter

XMLCategorizer Example: Web Forms and Reading XML
We'll illustrate the XmlTextReader class with an example that's useful for exploring
stream-based processing models. The idea is to load a document and extract information
such as the count of its elements and attributes. This has the interesting side effect of
demonstrating the nested nature of XML structure. When processing a nested document, the
sample will show:

* Element names
* Count of attributes on each element processed
* Attribute names
* Attribute values
* Comment text
* Textual content
* Global counts for elements, attributes, CDATA sections, comments, and processing
instructions

Additionally, we'll note the document type declaration, if any, as it goes by.

Web Form Interface
The application takes the form of an ASP.NET Web Application project; so create a new one
called XMLCategorizer now. Delete the default web form, and create a new one called
selector.aspx. The visual elements of the user interface will be defined in this file, backed up by
the processing code in the code-behind page selector.aspx.cs.

In the Design view for selector.aspx, open the HTML tab of the Toolbox, and drag out
the following controls:

Control Type (id) Property

Label blank
File Field f ileSelector

Button analyzeBtn

Text Area resultsArea

Lay out these controls on the form, as shown below:

Notice that when the File Field input control is added, the Browse button is automatically placed
alongside it. Notice also that you enter text for the HTML label by clicking it once to select it, and then
clicking again (not double-clicking) to enter text. You can create the top label, which reads, Upload an
XML document and receive a basic analysis of its contents, by switching to the HTML view and
typing it in immediately after the <body> tag.

We're now ready to start thinking about how we'll code the page. When the user has selected a local fi
using the fileSelector control, we want to submit it to the server when they click the Analyze button.
At this point, the contents of the selected file are picked up on the server, where the code-behind page will
perform the processing we require. The code will output to the text area at the bottom of the page, and then
the finished page can be returned to the user as the response to the form being posted.

The complete project can be found in the code download for this chapter, in the XmlCategorizer project
folder.

Setting up the Web Form
We need to do two things to make the user interface work. First, we have to ensure that the select file's
contents will be posted to the server. Switch to the HTML view, and set the enctype attribute the HTML
<form> element to multipart/form-data:

<form id="selector" method="post" enctype="multipart/form-data" runat="serve”>

This enctype value ensures that the contents of the file are posted, rather than just the fully
qualified path. (The path would be useless to the server, as it pertains to the client's local file system.)
Now return the Design view, and right-click and check Run as Server Control for the file field control,
the Analyze button, and the text area.

62

XmlReader and XmlWriter

Parsing an XML Document
Two event handler for the button being clicked will be invoked by the .NET Framework whenever the
web form is posted to the server. At this point, our code will have the contents of the posted file
available, and because our form elements are configured as server controls, we can manipulate them in
code too. This lets us get hold of the file (as a Stream object), and output information into the text area
control so that it can be returned to the client as HTML text.

Double-click the Analyze button in the Designer to create an event handler where we can put our XML
processing code. This is how the event handler starts:

private void analyzeBtn_ServerClick (object sender, System. EventArgs e)

{

XmlTextReader xmlDoc = null;

int nElements = 0;
int gnAttributes = 0;
int nComments = 0;
int nPIs = 0; int
nCDATAs = 0;

string sWorkingText =
resultsArea. InnerText = " " ;

So far, all we've done is to declare and initialize a bunch of variables - mainly integers - that we'll use to
categorize the documents we read. The only variables that directly relate to a control or to XML
processing are xmlDoc, which will be used to hold our XmlTextReader instance, and resultsArea,
which is the name of the text area control.

The XmlTextReader class handles any problems with XML documents by throwing an exception of
type Xml Except ion. This makes it easy to respond to errors when the document is not a text document,
or when an XML document is not well formed. We write code that we expect to work, and wrap it in a
try. .catch block:

try
{

xmlDoc = new XmlTextReader (fileSelector. PostedFile. InputStream) ;
xmlDoc. WhitespaceHandl ing = WhitespaceHandling.None;

The first line after the try statement feeds the document posted from the client web form into the
XMLTextReader class constructor that takes a Stream object. We get the posted file by using the
FileSelector variable, which represents the file field control. Since this is a server-side control,
the .NET framework will have created an object for it, named after the id of the control, which will
contain the information passed in the HTTP POST. The PostedFile property of this object refers to
the file; had we not set the enctype of the form as we did, it would only have contained the fully
qualified filename.

So, the PostedFile property is an object whose Input-Stream property holds the contents of th in the
form of a stream, but the .NET Framework is doing a considerable amount of work behind th scenes to
make things easy for us. The process is that the client opens a file, reads it, and passes it 0 HTTP to
ASP.NET, which receives the stream and exposes it to us as the property of a class. Our c passes it to
the constructor, and we are ready to work with the document. We set the reader's WhitespaceHandling
property to the enumerated value WhitespaceHandling. None because not interested in whitespace in
the document for this application.

Now that we've got the file as a stream in xmlDoc, we can step through it, reading one element at a time.
The reader starts off positioned at the very beginning of the stream, and doesn't actually read anything
until the first call to Read. Because Read returns false when the end of the document is reached, it's
quite simple to run through the document an element at a time with a while loop:

while (xmlDoc. Read ())
 {

In the body of the loop, we're simply going to check what type of node we're currently at, and
increment the appropriate counter variable. We check the type of the current node by examining the
NodeType property of the reader in a switch statement:

switch (xmlDoc . NodeType)
 {

The heart of our application lies in the body of this switch statement. The most important case is when
element content is found:

case XmlNodeType. Element :
nElements++;
resultsArea. InnerText += "Element: " + xmlDoc. Name + " has " +
xmlDoc. AttributeCount + " attributes" + Environment .NewLine;
gnAttributes += xmlDoc .AttributeCount;

The Environmen t . NewLine property generates the character defined in the current operating environment as the
newline character, allowing us to output information on individual lines. We can also indent a line by inserting the
escaped literal character \ t.

The first and most obvious thing to do is to increment the global count of elements in the document
nElements. Then we insert a line of information into the text area (resultsArea. InnerTex Name
property gives us the element name, while AttributeCount conveniently tells us how attributes are
defined on the element. We reuse the last property in the next line, when we add global count of
attributes, gnAttributes.

Now we have to iterate through the attributes that have been specified for this element. To do must
explicitly iterate through the element's attributes while the reader's current node is the start element
tag:

while (xmlDoc. MoveToNextAttribute ())
{
resultsArea. InnerText += "\t" + xmlDoc. Name + "= " +
xmlDoc.Value + Environment.NewLine;
}
break;

XmlReader and XmlWriter

Notice how the Name property is again used here. As we move from the start of the element into the
collection of attributes, the current node 'becomes' each attribute in turn, and Name takes on the value of
the attribute name. Attributes are nodes that can have a value, so the Value property of the reader to
output those values, rounding out our element node processing.

Now we have the code to handle text nodes. We want to output a line of information that includes the
value. We're not going to maintain a count of text nodes, so the output line is the whole of ^processing
for this node type:

case XmlNodeType.Text:
sWorkingText = "Text: " + xmlDoc.Value + Environment.NewLine;
resultsArea.InnerText += sWorkingText;
break;

A well-formed XML document can have at most one document type declaration. If there is more than one,
an exception will be thrown. Consequently, if we encounter this type of node, we simply want to generate
a line noting the presence of the declaration:

case XmlNodeType.DocumentType:
resultsArea.InnerText += "Document has a DOCTYPE" +

Environment.NewLine;
break;

Comment handling is similar to text node processing, except that we also keep track of the number of
comments in the document in the nComments variable:

case XmlNodeType.Comment: nComments++;
resultsArea.InnerText += "Comment: " + xmlDoc.Value +

Environment.NewLine;
break;

Y*T
ssing instructions are application-specific by nature. Since we're only interested in broadly

ictenzmg a document, we simply increment the counter nPIs. We do the same thing for sections:

case XmlNodeType.Processinglnstruction:
nPIs++;
break; case

XmlNodeType.CDATA:
nCDATAs++;
break;

After we emerge from the switch statement, we hit the end of the while loop and move the reade '
current node pointer to the next node. When we drop out of the while loop, it's because Read retu false
on reaching the end of the document. Our counters will then contain global statistics to apne j to our
results:

sWorkingText = Environment.NewLine + "Total number of elements: " +
nElements + Environment.NewLine; sWorkingText +=

"Total number of attributes in document: " +
gnAttributes + Environment.NewLine;

sWorkingText += "Total comments: " + nComments + Environment.NewLine;
sWorkingText += "Total Pis: " + nPIs + Environment.NewLine; SWorkingText
+= "Total CDATA sections: " + nCDATAs; resultsArea.InnerText +=
sWorkingText;

That completes the try section of the try. .catch block, which will be executed as long as everything
works as it should. Now let's code what happens when an exception is thrown:

catch(XmlException exc)

sWorkingText = "Exception while parsing:" + Environment.NewLine;
sWorkingText += "Line number: " + exc.LineNumber + Environment.NewLine;
sWorkingText += "Line position: " + exc.LinePosition +

Environment.NewLine;
sWorkingText += "Message: " + exc.Message +

Environment.NewLine + Environment.NewLine;
sWorkingText += "Stack Trace:" + Environment.NewLine + exc.StackTrace;
resultsArea.InnerText = sWorkingText;

The LineNumber and LinePosition properties of the XmlException class locate the spot where
parsing failed. Message is a human-readable statement of the problem. Just to round out the error
handling (and overload the unsuspecting user), we toss in the contents of the StackTrace property. This
is a list of the Framework classes that were executing at the time the reader failed parsing.

There's one more part of a try. . catch block in .NET, and that's the finally statement. The code this
section will be executed whether or not exceptions were caught. We use it to clean up by closin the
reader stream:

finally {
iffxmlDoc != null)

xmlDoc.Close();
}

Our code is now complete, and we're ready to run the project by hitting F5. Click the Browse bi and
select one of the sample XML files that were provided with the code download (such as
sample_event .xml). When you now click Analyze, the text area will show some results a little like this:

66

XmlReader and XmlWriter

1 Analyze]

Element
http:/ / i
Element

Event has 3 attributes xmlns : p=
urn: xmlabs -corn-people xmlns= urn:
xmlabs-com-f unctions xmlns : xsi= iww.
w3 . org/2001/XHL5chema-instance
loc:5ite has 1 attributes xmlns :
loc= urn: xmlabs-com-loc

1

i

If you scroll down to the bottom of the text area, you will see the global statistics for the document.
Experiment using different source XML files, and verify that the results are as expected. To test the
exception handling, you might also like to try loading up an XML document that is not well formed, such
as the malf ormed_sample_event .xml file:

Analyze

Exception while parsing:
Line number: 34
Line position: 3
Message: The 'Services' start tag on line '33'
does not match the end tag of 'Event1. Line 34,
position 3.

Although the classes in the XmlReader family are intended for lightweight and efficient XML processing,

there are times when you have to validate an XML document against a formal specification of the
document's XML vocabulary - when you're receiving a document from an external source, for example.
The XmlValidatingReader class permits you to do this, while retaining many of the virtues of the
XmlReader class. It works with DTDs, with Microsoft's XDR schemas, and with XSD-format schemas
that conform to the W3C schema recommendation.

This code illustrates the basics of XML parsing with XmlTextReader, giving us the ability to read and
analyze a well-formed document. What we lack is the ability to generate new markup, or to change
anything at all. We'll come to these points later in the chapter, but for now let's address the other thing
that XmlTextReader lacks: the ability to perform XML validation.

XmlValidatingReader

Architecture
XmlValidatingReader derives from XmlReader. It implements the basic stream-reading interface, and
adds a layer of methods and properties for XML validation. As a result, it consumes more system
resources than XmlTextReader.

What do you get for the extra money? Well, XmlValidatingReader resolves XML entities. It also
manages namespace and metadata (DTD and schema) information. But even though these features require
memory during the validation process, XmlValidatingReader is still a very efficient class in comparision
to processing models that hold entire documents in memory, such as the Document Object Model (DOM).
The DOM is the WSC's contribution to in-memory XML document processing, and is the topic of the next
chapter.

Chapter 2

While XmlValidatingReader implements the XmlReader class, we don't always start with an X\1T
document and associate a validating reader with it. More commonly, we already have an
XmlTextReader attached to an XML file (as in the preceding example), and then attach it to a
validating reader to perform validation functions. This reflects the fact that XmlValidatingReacJ a
layer of validation functionality over and above the core, stream-based model, and allows us to wri
programs in which we decide whether to validate at run time, conserving system resources.

Constructors
The layered approach is brought home by the three constructors available for building validating readers-

Constructor Usage

XmlValidatingReader(XmlReader)

XmlValidatingReader(Stream,
XmlNodeType,

XmlParserContext)

XmlValidatingReader(string,
XmlNodeType,

XmlParserContext)

Accepts an XmlReader instance (only
XmlTextReader is supported in the current
version of the Framework) and reads from it
during validation. Throws an
ArgumentException if the passed parameter is
not an instance of XmlTextReader. This is used
when you want to layer validation on top of an
existing reader.
Takes a stream containing a markup fragment, an
enumerated type denoting the type of the
fragment (only Node, Document, and Attribute
are supported), and a parser context object. This
is used when you have an existing parser context,
typically when you have gone to the trouble of
declaring a number of namespaces and want to
reuse the information.
As with the previous constructor, except that the
markup fragment is contained in the string
parameter.

The first constructor is the one most commonly used to validate complete documents. In concert v
the XmlTextReader on which it is based, it provides the ability to open and process a document
(either locally, or from a remote source via a URL).

The other two constructors are for validating document fragments. If you were building a docui over
the course of several input forms, for example, you could use XmlValidatingReader input field
checking by validating partial documents as they are constructed. Alternatively, if
large document, you can extract a sub-tree that's of interest to your application, and validate it

Before we can work a validating reader, we need to know about the run-time interface it expos
begin with its properties.

68

XmlReader and XmlWriter

properties
Most of the properties of XmlValidatingReader are inherited from or overrides of the properties in

nlReader. In this table, we've omitted those properties that are simply inherited from XmlReader. A ,
w properties, which are noted explicitly, are introduced by this class and serve to support validation:

Property Meaning

AttributeCount (read-only)

BaseURl (read-only)

CanResolveEntity (read-only)

Depth (read-only)

Encoding (read-only)

EntityHandling (read/write)

EOF (read-only)

HasValue (read-only)

IsDefault (read-only)

IsEmptyElament (read-only)

Returns an integer count of the number of attributes on the
current node. Applies to element, document type, and XML
declaration nodes. Since metadata is now available, this count
includes default attribute values. This permits application
developers to use default values in their applications.
As for XMLTextReader.
Returns a Boolean value of true if the reader can resolve
entities. This class's implementation always returns true.
As for XMLTextReader.
Duplicates a property of XmlTextReader, but does not
inherit this from XmlReader. Returns an Encoding
instance denoting the character encoding of the document.
If none is provided in the document, UTF-8 is returned.
This property is introduced by the
XmlValidatingReader class and describes how XML
entities are processed. The property is typed as an instance
of the public enumeration EntityHandling. If the value is
ExpandCharEntities, character entities are expanded
and returned as nodes; the ResolveEntity method must
then be called to see the results of expansion. If the value is
ExpandEntities (the default), entities are expanded and
the expanded form is returned in lieu of the entity reference.
As for XMLTextReader.
Returns the Boolean value true when the current node is
of a type that can have values. See the equivalent entry in
XmlTextReader for the node types that support values.
Returns Boolean true when the current node is an attribute
and the value is a default provided by the DTD or schema.
Although XmlReader declares this property,
XmlValidatingReader is the first class to implement the
ability to detect this information, and therefore the only
derived class that can return true as well as false.
As for XMLTextReader.

Table continued on following page

Property Meaning

Item (read-only)

LocalName (read-only)

Name (read-only)

Namespaces (read/write)

NamespaceURI (read-only)

NameTable (read-only)

NodeType (read-only)

Prefix (read-only)

QuoteChar (read-only)

Reader (read-only)

ReadState (read-only)

Schemas (read-only)

SchemaType (read-only)

Indexer for the class. Three overloaded versions are
provided. One takes a zero-based integer index and returns
the referenced attribute of the current node. The other two
take strings representing the attribute's name and return the
attribute's value. One takes a single string providing the
name, while the other takes a string representing the
attribute's base URI and a second string providing the base
name of the attribute.
As for XMLTextReader.

As for XMLTextReader.
Although XmlTextReader has a similar property, this
Boolean property is not inherited from XmlReader. When
true, namespaces are supported. When false, namespaces
are ignored. The default value is true.
As for XMLTextReader.
The value of this property of type XmlNameTable is an
atomized table of node names used in the document.
A NodeType enumeration indicating the XML type of the
current node. This property won't return values for
Document, DocumentFragment, Entity, or
Notation nodes.
As for XMLTextReader.

As for XMLTextReader.
XmlReader value containing the reader instance used to
process the document. Introduced by
XmlValidatingReader.
As for XMLTextReader.
Property returning an instance of XmlSchemaCollectii
Used to cache schema files and associate them with their
URIs (see later). New with XmlValidatingReader.
New with this class, this Object property returns the type °
the reader's current node, as declared in the schema. T value
will be an XmlSchemaDatatype object if the node declared
as one of the built-in types defined in W3C] schemas, an
XmlSchemaSimpleType if the node is an X simpleType, and
an XmlSchemaComplexType if the n is declared as an XSD
complexType. The property is m the current node is not
typed in the schema.

70

XmlReader and XmlWriter

property^ __________________
iationType (read-write)

Value (read-only) XmlLang

(read-only) XmlResolver

(write-only) XmlSpace

(read-only)

Meaning
Introduced with this class, this property has one of the
ValidationType values to describe what sort of validation
is to be performed. The values are:
Auto - validation occurs based on a reference to DTD or
schema information in the document
DTD - XML 1.0 DTD validation
None - XML 1.0-compliant non-validating processing
Schema - W3C XSD format schema validation
XDR - XML-DR validation
The default is Auto.
As for XMLTextReader.
As for XMLTextReader.
As for XMLTextReader.
As for XMLTextReader.

Methods
Most of the public methods of XmlValidatingReader have the same names as and behave identically
to those of XmlTextReader, so we need not duplicate their descriptions here. The two entries in this
table are peculiar to this class; add them to the list in the earlier table, noting as you do so that
leadBase64, ReadBinHex, and ReadChars are exclusive to XmlTextReader, and therefore absent
from this class.

Method Parameters and Purpose

ReadTypedValue

ResolveEntity

Introduced by this class, this method returns an object based on the
type of the node as declared in the schema. Types returned are the
CLR equivalent of XSD types. You may check the type with GetType,
and then cast the value.
Overridden. Returns void. This method, inherited from XmlReader
and given a non-trivial implementation in this class, is used to resolve
XML entities. The current node must be an EntityReference node,
or an InvalidOperationException will be thrown. If the entity is
within an attribute, calling ReadAttributeValue returns the entity
replacement text. For other nodes, calling Read causes the
replacement text to be parsed.

Chapter 2

Catching ValidationEvents
Validation warnings and errors are exposed to the application by validating readers in the form of
ValidationEventHandler events, which are caught by an event handler assigned by the applicayQ As
with all events, we can catch them with a function with the required functional signature. Once we' set up
a callback as the handler for this event type, the .NET Framework calls that function when the event is
fired. Here's the required signature for the validation event handler:

public void funcname(object sender, ValidationEventArgs args);

The name of the function, f uncname, can be anything you like. The sender parameter is the object
originating the event (in this case, your instance of XmlValidatingReader). ValidationEventArqc
inherits from EventArgs, but may not be further subclassed. It has three properties:

Q Exception - an instance of XmlSchemaException that, like most exceptions, provides a stack
trace as well as line number and line position information regarding the location of the
validation error in the XML document. There are also members that point back to the schema
object that was used for validation.

Q Message - read-only string property describing the validation problem.
Q Severity - read-only property of type XmlSeverityType indicating whether this is merely a

warning, or a fatal error.

You construct an instance of a ValidationEventHandler by passing the constructor the address of
your callback. When you have a new instance, you assign the callback function to the
ValidationEventHandler with the += operator. Thereafter, any call to Read that results in a
validation problem will invoke your callback.

Note that with many .NET events, particularly the ones for visual controls, the process of assigning the
event handler is performed automatically by Visual Studio .NET. For instance, when we
double-click on a button in the Designer, VS.NET not only creates the appropriate signature in the
code-behind page, but also adds the correct code to assign it as the event handler within the
InitializeComponent method in the Designer-generated code region.

Extending the Categorizer with Validation
Let's put this theory into practice by extending our previous sample to include validation. In fact,
create two iterations of the application: one that acts on any validation information it finds in ai
incoming document, and a second that builds on that to manage a collection of schemas activel;
parsing, output, and visual interface will be as before, but we'll inject any warnings or errors dete into
the output.

Rather than lose the existing selector. aspx web page, copy and paste it, and rename it a;
vselector . aspx. Open up the code-behind file, and change the name of the class from sel to
vselector.

XmlReader and XmlWriter

Inherent Validation
Any validating XML processor that's compliant with XML 1.0 or the XML Schemas recommendation
has to be able to detect XML metadata or metadata references (that is, schema or DTD information) in
the documents it processes, to retrieve that metadata, and to act on it. A document specified by a DTD
uses a DOCTYPE declaration with either an inline DTD, or a URI identifying an external DTD. For XSD
format schemas, the schemaLocation attribute locates the schema file. I call this inherent validation:
the processor reacts to such declarations, and does not manage metadata until it encounters a DTD or
schema reference in the document. Enabling this in XmlValidatingReader is relatively
straightforward. The first thing we must do is to import another .NET namespace, to give access to the
supporting classes and enumerations:

using System.Xml.Schema;

Next, we have to create an instance of XmlValidatingReader. Since that class is layered on top of
XmlTextReader, this is a two-step process. At the top of the click handler for the Analyze button,
change the identifier for the XmlTextReader, and add a declaration for an XmlValidatingReader:

XmlTextReader XmlReader = null;
XmlValidatingReader xmlDoc = null;

int nElements = 0;

As before, we instantiate the XmlTextReader object, associating it with the document posted from the
client side (don't forget to change the identifier!). When we've got that, we pass it to the
XmlValidatingReader constructor, which returns a validating reader for that document:

tr
y {

XmlReader = new XmlTextReader(fileSelector.PostedFile.InputStream;;
XmlReader.WhitespaceHandling = WhitespaceHandling.None;
xmlDoc = new XmlValidatingReader(XmlReader);

The ValidationType property of XmlValidatingReader defaults to ValidationType. Auto. This
tells the reader to act on any of the three types of metadata documents (DTD, XML-DR, or XSD), which
is precisely what we want to happen in this case. (We could specify one of the schema or DTD types, to
restrict validation to a specific metadata format.) Although the default suffices, we'll include it explicitly
for clarity in our code, and to help any maintenance programmers who may come after us.

Also, the ValidationEventHandler property of XmlValidatingReader should be set with an
instance of the eponymous delegate. The constructor for that takes the name of the callback function,
which will be called ValidationEvtCallback, as a parameter:

xmlDoc.ValidationType = ValidationType.Auto;
xmlDoc.ValidationEventHandler +=

new ValidationEventHandler(this.ValidationEvtCalLback);
while(xmlDoc.Read(})

This technique lets us write custom error processing code for validation errors without having to
subclass ValidationEventHandler. Now we have to code the validation callback function itself-

public void ValidationEvtCallback (object sender, ValidationEventArgs args) {
if (args . Severity == Xml Sever ityType. Warning)

resultsArea. InnerText += "Validation warning: " +
args. Message + Environment .NewLine; else

resultsArea. InnerText += "Validation error: " +
args. Message + Environment .NewLine;

All we do here is inject a line of text, including the value of Message, into our text control. We use the
Severity property to distinguish between warnings and errors. Unlike compiler errors, a validation
error does not necessarily terminate processing.

Set vselector . aspx as the start page, and build and run the revised project by pressing F5. If you
now post a document with an inline DTD, validation will occur as expected. If, however, you post a
document with an external DTD or schema, the code will throw an exception. Once again, a helper
class is needed.

You can test the application as it stands with the files good_inline . xml and bad_inline.xml. If
you're using the source code download from our site, be sure to comment out the line in which
XmlResolver is set. There's a comment in the code to help you find the correct line.

XmlUrlResolver
The problem here is that we have a URL, but XmlValidatingReader doesn't know how to resolve this
into a DTD or a schema file. The aptly named XmlUrlResolver class exists for this very task. Attaching
one of these objects is as simple as calling its constructor, and assigning the returned object t a property
of our XmlValidatingReader:

xmlDoc.ValidationType = ValidationType.Auto;
xmlDoc .XmlResolver = new XmlUrlResolver (),-

XmlUrlResolver will usually be sufficient, but if you need application-specific logic for
resolving URLs - perhaps to refer to a local cache, rather than making a round trip to a heavily
trafficked public site - you can subclass its abstract base class, XmlResolver.

It really is as easy as creating the resolver object and 'snapping' it onto the reader object. The
Framework takes care of the rest. Whenever a URL is encountered and the resource it locates is
XmlValidatingReader will invoke the resolver object to go and get it.

As we will see when we start managing schema caches, there are validation scenarios that do m
URL resolution. By delegating this task to a helper class, XmlValidatingReader is able to con:
system resources in such cases, as it uses the extra memory only when a resolver is actually nee You,
as the programmer, determine this necessity in advance and supply a resolver object to tn as
required.

74

XmlReader and XmlWriter

j(download includes several sample schemas and XML documents. If you use them with ctor. aspx,
you can see what happens when errors occur during processing. Documents rs , ^liberate errors
in them are bad_sample_person.xml and

jrn sample_person.xml. The latter document, however, will not be useful to you until ^
implement schema caching in the next section.

Schema Caching
. vselector. aspx will do a fine job of validating documents (as long as they use one of the

;ed methods for identifying their metadata), and provide an accessible URL to the schema or 5
Sometimes, however, this is inconvenient. If you're using a public schema, it might be situated on
nderpowered, overwhelmed server somewhere, and unavailable just when you need it. Better to a local
copy - but then we have to change the URL in any documents to match. One way around is would be to
provide a URN that uniquely identifies a particular XML vocabulary, rather than a JRL and then use
some local cache to resolve that into a physical schema document or DTD.

In other situations, such as a newspaper site in which the content consists of XML documents that use the
site's own schemas, an application will specialize in documents written according to a limited number of
schemas. In such a case, for performance reasons it is much better to cache the schemas in memory,
regardless of whether the documents provide a URL or URN.

In the .NET Framework, the System.Xml. Schema namespace provides the XmlSchemaCollection
class for precisely this purpose, and XmlValidatingReader can use it as a helper class. The Schemas
property of XmlValidatingReader is designed to hold an instance of the collection class.

When our application initializes, we can take advantage of this provision and load any schemas that we'll
require into a cache. When a document comes in that contains a reference to a schema, we'll make the
reader check the URI against those in the cache. If a match is found, the associated schema is used. If not,
and the URI is a URL, the resolver is invoked to load the schema, just as it did in the previous example.

nagine, for example, that we have a vocabulary for scheduling social functions and their attendant
upport services (sound systems, catering, and the like). This vocabulary is modularized. We have a

a and a namespace for defining physical locations (the event venue), people (event contacts), and
'Cial functions schema that makes use of the other two. The document below conforms to this ibulary;
the specific details important here, but notice how the three schemas are intermingled, and w each is
identified by URN:

version = "1.0" encoding = "UTF-8"?> rent xmlns =
"urn:xmlabs-com-functions" xmlns:p = "urn:xmlabs-corn-people"
»nlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">

:Site xmlns:loc = "urn:xmlabs-com-loc">
<loc:Address>
<loc:Company>Omicron</loc:Company>
<loc:Building>World Headquarters</loc:Building>
<loc:City>Philadelphia</loc:City>
<loc:State>PA</loc:State>
<loc:ZipCode>19102</loc:ZipCode> '/loc:Address>

•loc:Room>Fishbowl Conference Room</loc:Room>
/1°C:Site> <P:Contact>

Chapter '2.

<p : First>Doan</p : First> <p :
Last>Needme</p : Last> <p:EContact
preferred = "phone">

<p:Telephone>215-555-1212</p:Telephone> <p :
EMail>goway@omicron . com</p : EMail> </p:EContact>
</p:Contact>
<Scheduled attendance = "100" start = "2001-11-13T08 : 00 : 00"
end = "2001-11-13T16:00:00" prepStart = "2001-11-13T07 : 00 : 00"
postEnd = "2001-11-13117:00:00" /> <Services>

<Catering menuCode = "mstry-lOlA"
vendor = "Meat Eaters" workOrder = "EZS-123"/>

<AudioVisual workOrder = "01101100" vendor = "Computing Droids, Inc."/>
<AudioVisual workOrder = "OU812" vendor = "Sound Guys"/> </Services> </Event>

Back in our XMLCategorizer example, we'll leave the other validation code intact (so that other
documents are still handled correctly), but we want to provide for validation of documents such as this
one in a scalable and efficient manner. The first step is to set up the cache of our three schema
documents (provided in the code download), which we can do in the Page_Load event handler for our
web form. If you host them on another server, or you're using a virtual directory other than
XMLCategorizer, be sure to change the URLs given here.

private void Page_Load(object sender, System. EventArgs e) {
if (Application! "cache"] == null) {

XmlSchemaCollection cache = new XmlSchemaCollection() ;
cache. Add (" urn :xmlabs -corn-people" ,

"http: //localhost /XMLCategorizer/ People. xsd") ;
cache. Add("urn:xmlabs-com-loc" ,

"http: //localhost/XMLCategorizer/Location.xsd") ;
cache. Add (" urn :xmlabs -com- functions" ,

"http: //localhost/XMLCategorizer/SocialFunctions .xsd") ;
Application ["cache"] = cache;

When the page loads, we first check the Application object to see if a cache exists. If it doesn't, we
create a new schema collection object, load the schema files, and store the object in the Application.

The Add method of XmlSchemaCollection is overloaded and comes in four varieties. The one shown
here takes two strings, the first of which is the schema's URI, and the second of which is the URL locating
the schema. If a null URI is provided and the schema is in XSD format, the targetNamespace value in
the schema is used. The other forms of Add accept an XmlSchemaCollection instance (as we will see
next), an instance of XmlSchema, and lastly a string URI and an XmlReader instance containing the
schema.

76

XmlReader and XmlWriter

Next, add the following line to the try block of our click event handler:

xmlDoc = new XmlValidatingReader(XmlReader);
xmlDoc.ValidationType = ValidationType.Auto;
xmlDoc.Schemas.Add((XmlSchemaCollection)Application!"cache"]);

This code retrieves the cached schema collection and snaps it onto the validating reader as we set it up.
Now when a document comes in bearing one of the URNs in the collection, the copy of the schema in
memory will be used rather than the disk copy. At the cost of checking a URN against a collection and
retaining these schemas in memory, we save a file or HTTP roundtrip, a disk read, and the overhead of
parsing a schema file.

Compile and run the project now, and test it out it by posting any of the sample documents
(urn_sample_person.xml, bad_urn_sample_person.xml, or sample_event .xml) to our
ASPX page.

Writing XML: XmlWriter

As far as reading XML documents goes, we've done about as much as we can. Our XML-handling
know-how is a little lacking, however, until we've got the ability to write XML documents as well as read
them. Beyond the realm of validators and categorizers, we need to be able to create entirely new
documents, and write them out for some other program or user.

XmlReader has a complementary, stream-based writer class that meets this need. Predictably, it's called
XmlWriter. Like XmlReader, XmlWriter offers a lean-and-mean technique for the efficient writing of
documents using a stream model. It also shares the problems inherent in that model - chiefly, the lack of
random access, the absence of enduring context, and no intrinsic mechanism to contain the document in
memory.

XmlTextWriter

XmlWriter is an abstract class with, at present, one predefined derived class: XmlTextWriter. Despite its
name, this class can write to more than just text files. It is named as it is because it writes text, but that text
can be sent to any sort of stream, as will become apparent when we examine the class constructors. Since
this is the only implementation of XmlWriter that can be instantiated in the current release of the .NET
Framework, the two classes are very close in terms of their interfaces. We'll be practical, then, and discuss
XML writers by exploring the details of XmlTextWriter.

Eventually, we'll use XmlTextWriter to extend our XMLCategorizer example with server-side log files.
Before we can do that, though, we'll take a formal look at the public interface of this class. The first task in
working with a writer is of course to create an instance of it, so the first stop on the tour of XmlTextWriter
must examine its constructors.

Constructors
The XmlTextWriter class provides three public constructors that allow you to write XML documents to a
variety of media. All of the constructors associate a file or a stream with the writer.

Constructor Usage

XmlTextWriter(TextWriter)

XmlTextWriter(Stream,
Encoding)

XmlTextWriter(String,
Encoding)

Builds a writer on top of an existing TextWriter object.
The encoding used is taken from the TextWriter object.
Builds a writer on a given stream for writing, with the
given encoding. It fails, throwing ArgumentException, if
the stream cannot be written to or the encoding is not
supported.
Takes a string filename and an Encoding object, and
opens the named file for writing with the given encoding. If
the file exists, it is overwritten. If it does not exist, one is
created. On failure, a number of exceptions are possible:
ArgumentException - encoding is not supported;
filename string is empty; filename string contains only
whitespace, or contains one or more invalid characters.
UnauthorizedAccessException - file access is denied.
ArgumentNullException - the filename parameter is
null.
DirectoryNotFoundException - the directory named
in the filename string is not found.
lOException - the filename string has invalid syntax for
the fully qualified file path.
SecurityException - the caller lacks sufficient
privileges to write to the specified file.

The first constructor - the one built on an existing TextWriter object - is more useful than it might at
first appear. The most obvious use is when we already have a file open for writing, and later decide that
it's necessary to write XML into the file. A more subtle use is for writing XML to forms that we cannot
address directly by using one of the other constructors. TextWriter is an abstract class, so the object
passed to the XmlTextWriter constructor will actually be an instance of IndentedTextWriter,
StreamWriter, StringWriter, HttpWriter, or HtmlTextWriter.

The second form in this table is really useful, since it lets us write to a variety of objects that present a
stream interface. This includes the intrinsic ASP.NET Response object, memory streams, network
streams, and cryptographic streams. For sheer ease of use, though, the third form cannot be beat. If you
provide a fully qualified path, .NET will take care of the ugly little details of opening, creating, or
overwriting files.

78

XmlReader and XmlWriter

Properties
XmlTextwriter has a small number of properties, as listed in the following table:

Property Meaning

BaseStream (read-only)

Formatting (read/write)

Indentation
(read/write)

IndentChar (read/write)

Namespaces (read/write)

QuoteChar (read/write)

Writestate (read-only)

The underlying stream on which the writer is writing. If the writer
was constructed with a TextWriter that does not derive from
StreamWriter, the property is null. If the specific subclass of
TextWriter inherits from StreamWriter, the property is
equivalent to StreamWriter. BaseStream. If the writer was
constructed with any other stream, the property is that stream.
A Formatting enumeration controlling what formatting the writer
will observe. Possible values of that enumeration are:
Indented - element content will be indented using the values of
Indentation and IndentChar
None - no formatting (default)
Integer property indicating how many IndentChar characters are
repeated for each level of indentation. The default value is two.
The character (type char) used for indenting. Although you may set
any value in XmlTextwriter, any value other than a valid XML
whitespace character (0x9, 0x10, 0x13, 0x20) will result in invalid
XML.
Boolean value controlling whether namespace support is to be
provided. The default is true (meaning that namespaces are
supported).
Controls which character (type char) is used to delimit attribute
values. Throws an ArgumentException for any character other
than a single or double quote. Defaults to double quote.
WriteState enumerated value indicating the internal state of the
writer. Possible values are:
Attribute - an attribute is being written Closed - the

writer has been closed Content - element content is

being written Element - an element start tag is being

written Prolog - the XML document prolog is being

written Start - writing has not begun
Table continued on following page

Property
XmlLang (read-only)

XmlSpace (read-only)

Meaning

String value indicating the cuitent xml: lang scope, or null if no
such scope is current.

String value indicating the curent xml: space scope. Possible
values are:
None - no scope exists
Default - xml:space="de:uilt"

Preserve - xml:space="psserve"

In contrast with XmlReader, the properties of this class control k details of writing, rather than
containing information about the element currently under constuction.

Methods
XmlTextwriter has public methods that offer an easy means o writing any of the items defined in
XML 1.0: elements, attributes, and so on. Additionally, it takes ilvantage of the fact that it's 'just'
writing to a stream to provide some low-level writing capabilit) irough the WriteBase64 and
WriteBinHex methods. The public methods of this class are asjllows:

Method
Close

Flush

LookupPrefix

WriteAttributes

Parameters and Usage
Closes the stream for writing. N parameters.
Clears the internal buffer by wrung it to the stream, then flushes the
stream. The stream remains ope: for writing. No parameters, returns
void.
Takes one parameter (a string UII representation), checks it against
the namespace table, and returethe closest namespace prefix as a
string.
Writes all attributes found at the urrent node of a given
XmlReader. Returns void. Taks two parameters:
Reader - an open XmlReader stance from which to copy
WriteDef - a Boolean indicatin,whether to write default attributes
(true) or to omit them (false

Fails and throws ArgumentExcetion if Reader is null, or
XmlException if the current note of the reader is not an element,
attribute, or XML declaration.

80

XmlReader and XmlWriter

Method Parameters and Usage

WriteAttributeString

WriteBase64

WriteBinHex

WriteCData

WriteCharEntity

Writes an attribute with the specified name and value, plus
namespace if supplied. There are three overloaded forms, all
taking string parameters exclusively:
localname, value
localname, namespaceURI, value
prefix, localname, namespaceURI, value
Fails and throws InvalidoperationException if the writer is
closed or the writer is not writing an element, and throws
ArgumentException if the xml: space or xml: lang attribute
is invalid.
Takes bytes from buffer, encodes them as base 64, and writes
them. Takes three parameters:
Byte [] buffer - byte array that is the source to write
int index - index into buffer denoting the start of the bytes to
write
int count - number of bytes to write
Fails and throws ArgumentNullException if buffer is null;
ArgumentException if index leaves fewer bytes in the array
than count; ArgumentOutOfRangeException if index or
count is less than zero.
Same parameters and usage as WriteBase64, except that the
bytes drawn from buffer are encoded as binary hexadecimal.

Takes a string parameter and writes it as a CDATA section.
Returns void. Fails and throws ArgumentException if the
parameter would, if written, not result in a well-formed XML
document. However, if the parameter is null or String.Empty,
an empty CDATA section is written.
Takes a Unicode character as the input parameter, and writes it
as a hexadecimal character entity reference. Returns void.
Fails and throws ArgumentException if the character is in the
surrogate pair range (OxdSOO - Oxdf f f) or well-formedness
would be violated by writing the reference.

Table continued on following page

Method Parameters and Usage

WriteChars

WriteComment

WriteDocType

WriteElementString

WriteEndAttribute

WriteEndDocument

Writes a series of characters from a buffer in a single operation
void method taking the following parameters:
char [] buffer - character buffer source
int index - offset into buffer denoting the start of the
characters to write
int count - number of characters to write
Fails and throws ArgumentNullException if buffer is
null-Argument Except ion if index leaves fewer chars in the
array than count; ArgumentOutOfRangeException if index
or count is less than zero.
Takes a string parameter, returns void, and writes an XML
comment with the parameter as its content.
void method that writes a DOCTYPE declaration. Takes the
following parameters:
string name - name of the DOCTYPE string pubid -

Public ID of the DOCTYPE if non-null string sysid -

System ID of the DOCTYPE if non-null string inline -

contents of an inline DTD
Throws InvalidoperationException if the writer is outside
the prolog (that is, it's called following the document element), or
ArgumentException if name would, if written, not result in a
well-formed document.
void method for writing an element with a specified text node.
Two overloaded forms with string parameters:
localname, value
localname, namespaceURI, value
Throws InvalidoperationException if the operation woulc
not result in a well-formed document, or ArgumentExcepti if
localname is null or String.Empty.
void method, taking no parameters, that completes an attnb
void method that closes any open elements or attributes, ai
closes the document. The writer state reverts to Start. Fails
throws XmlException if the operation would result in a
document that is not well formed. No parameters.

82

XmlReader and XmlWriter

-eEntityRef

WriteFullEndElement

WriteName

WriteNmToken

WriteNode

WriteProcessinglnst
ruction

WriteQualifiedName

Parameters and Usage
void method that closes an element. No parameters. If the
element is empty, the shorthand form is written, otherwise a full
end tag is written.

lEndElement

void method with one string parameter - name - that writes the
entity reference &name;. Fails and throws ArgumentException
if the operation doesn't result in a well-formed document, or
name is null or String.Empty.
void method with no parameters that closes an element. A full
end tag is always written.
void method with one string parameter - name - that's written if
it's a valid XML name. Throws ArgumentException if name is
not a valid XML name, null, or String. Empty.
Like WriteName except the parameter is written if it is a valid
XML NmToken type.
Writes the current node from reader to the stream, and advances the
reader's node pointer to the next node. Takes two parameters:
XmlReader reader - reader providing the source node

bool def attr - if true, default attributes are written

Throws ArgumentException if reader is null.
void method that writes a processing instruction. Takes
two parameters:
string name - name of the processing instruction

string text - text of the PI
Throws ArgumentException if text violates well-formedness, if
name is null or String. Empty, or if the method is being used to
create an XML declaration after WritestartDocument has been
used to create one.
void method that writes a qualified name. The current prefix for
the URI parameter provided is determined from the namespace
table. Takes two parameters:
string name - base name

string uri - namespace URI
Throws ArgumentException if name is null, String. Empty,
or not a valid XML name.

Table continued on following page

Method Parameters and Usage

WriteRaw

WriteStartAttribute

WritestartDocument

WritestartElement

WriteString

void method that writes raw XML markup to the stream. Two
overloaded forms are provided:
string markup - writes the markup provided
char [] buffer, int index, int count - writes markup from
buffer, starting at index and continuing for count characters
The second form fails and throws ArgumentNu 11 Except ion if
buffer is null, ArgumentException if index does not leave
count characters in buffer, or ArgumentoutofRangeException
if index or count is less than zero.
void method that starts an attribute. Two overloaded forms
are provided:
string localname, string namespaceURI
string prefix, str ing localname, str ing namespaceURI
Throws ArgumentException if localname is null or
String.Empty.
method that begins a document with an XML declaration. The version
attribute is always written with the value 1. 0. Two forms are provided:
the first takes no parameters, while the second takes a Boolean that's
written as the value of the void XML standalone attribute.
void method that opens an element. Three overloaded forms are
provided:
string prefix, str ing localname, str ing namespaceURI
string localname
string localname, string namespaceURI
All three forms fail and throw an InvalidOperationException if
the writer is closed.
void method that writes the text node provided. Takes one string
parameter providing the content. Throws ArgumentException if
the parameter contains an invalid surrogate pair. The characters &, <,
and > are replaced with their entity references. Characters in the
range 0x00 - Oxl f, excluding whitespace characters, are replaced
with numeric entity references. If called while writing an attribute
value, any single or double quotes in the parameter are replaced with
" or' respectively.
Surrogate characters are a Unicode mechanism for accommodating new
characters. The mechanism consists of two IK blocks ofunassigned
characters. By taking one character from each block (a low and a high
character), you get over a million potential new characters.

84

XmlReader and XmlWriter

Method Parameters and Usage
WriteSurrogateCharEntity void method that generates and writes a surrogate character

entity from the two given parameters:
char low - low surrogate char (range OxDCOO - OxDFFF) char

high - high surrogate char (range OxDSOO - OxDBFF) Throws

ArgumentException if the surrogate pair is invalid.
WriteWhitespace void method that takes a single string parameter consisting

exclusively of whitespace, and writes it. Throws
ArgumentException if the parameter contains
non-whitespace characters.

You may have noticed that a number of the methods subject to namespace considerations include
overloaded forms that take a namespace URI, but no prefix. XmlTextwriter will generate a prefix if
needed, and it keeps track of prefixes and attempts to reuse them as required.

XMLCategorizer with Log File
To illustrate the use of the XmlTextwriter class, let's return to our original text reader web form and
modify it to write an XML-format log file that summarizes the results of categorizing the document
submitted to the server. This example will illustrate the following:

Q Writing to a file stream
G Creating a new document
Q Writing XML declarations, elements, and attributes
Q Namespace support

You can start by copying and pasting selector. aspx in the Solution Explorer, and renaming it
write_selector.aspx. Also change the class name appropriately, and make the new page your
start page.

Log Fife Format and Location
The idea behind this exercise is to keep a collection of XML log files on the server containing summary
results for each submitted document.

Our document element will be <DocumentCategorization>, from the urn:xmlabs-com-cat
namespace. It will have two child elements, the first being the document element drawn from the
submitted document. We'll maintain the namespace on that element. The other element in our
namespace will be <GlobalCount>, which will have a series of attributes giving the global count of XML
constructs found in the original document. That element, in turn, will have a <ClientPath> element
whose textual content is the fully qualified filename of the submitted document.

Here's a sample log file that puts all of the above into context:

<?xml version="l . 0" encoding="utf-8" ?>
<DocumentCategorization xmlns= " urn :xmlabs -corn-cat ">

<TestCase xmlns="urn: foo" />
<GlobalCount attributes="l " elements="2" comments="0" pi="0" cdatas="0">

<ClientPath>C: \temp\ junk. xml< /Client Path>
</GlobalCount>

</DocumentCategorization>

Incidentally, the indented formatting you see above was not added by hand. XmlTextWriter permits
control over certain aspects of formatting, which can be a welcome addition if you're debugging an
application that generates XML.

Creating the Log File
The first thing to do is to create a text writer by passing the filename to the constructor. We can't use the
filename passed in f ileSelector . PostedFile . Filename, however, as that path will be local to the
submitting client. We must extract the unqualified filename from that string, and provide a path to a
directory on our server.

In addition, we'll prefix the filename on the server with the client session ID, so that different submissions
may be distinguished. (The intrinsic ASP.NET Session object has a property called SessionID that
returns a unique string for the client session.) The code uses the c : \temp directory to store log files, but
you can change this easily enough by modifying the first line of the code below. Add this code immediately
after the variable declarations in the Analyze button's click handler:

resultsArea. InnerText = "";

string sLogFileName = "c: \\temp\\ " + Session. SessionID;
string sFile = f ileSelector . PostedFile. FileName;
sLogFileName += Path.GetFileName (sFile) ;

Now that we've got a suitable filename, we can call the XmlTextWriter constructor. We've chosen
UTF-8 encoding, which will be picked up when we write an XML declaration in the next section. While
we're at it, we tell the writer that we want indented output using the Formatting property, and set the
indentation to three characters:

try

xmlDoc = new XmlTextReader (f ileSelector . PostedFile. InputStream) ;
xmlDoc.WhitespaceHandling = WhitespaceHandling.None;

xmlLog = new XmlTextWriter (sLogFileName, System. Text .Encoding. UTF8) xmlLog.
Formatting = Formatting. Indented; xmlLog. Indentation = 3;

86

XmlReader and XmlWriter

Using a file stream as we have here (the Framework will create one for us) introduces the possibility of
a number of file-related errors, and as a result the constructor we used is capable of throwing an
impressive range of exceptions. Our code should include catch blocks for ArgumentException,
UnauthorizedAccessException, lOException, DirectoryNotFoundException,
and SecurityException. We omit only ArgumentNu 11 Except ion for the very good reason
that, having just created a filename, we know that the argument is not null. Bad, perhaps, but not
null. This code requires the addition of using statements for the System. 10 and System. Securi
ty namespaces.

Starting the Document
The XML recommendation encourages (but does not require) the use of the XML declaration in every
XML document. Since we strive to be conscientious XML programmers, we will start off our document by
creating one, using Writes tar tDocument. This method also writes the version attribute with the value 1.
0. XmlTextWriter also picks up the encoding we've set in the constructor, and writes the appropriate
attribute in the declaration:

xmlLog.Formatting = Formatting.Indented;
xmlLog.Indentation = 3;
xmlLog.WriteStartDocument();
xmlLog.WriteStartElement("DocumentCategorization",

"urn:xmlabs-com-cat");

Having started the document, we immediately write the <DocumentCategorization> document
element, using the version of WriteStartElement that allows us to declare a URI for the element's
namespace. The writer takes care of writing the xmlns attribute for us. Note that the method is called
WriteStartElement rather than WriteElement because anything we now write, prior to calling
WriteEndElement for this element, will be a descendent of it.

Writing the Original Namespace
The next task is to extract the document element from the original document and write it to the log file
while preserving its original namespace. We place the code to do this in the part of the switch statement
that handles elements. Since XmlReader is stream based, we have to worry about which element is the
document element. Fortunately, the Depth property of XmlTextReader comes to our rescue, as it will
have the value zero when the current node is the document element. Here's the code now:

case XmlNodeType.Element:
if(xmlDoc.Depth == 0) {

xmlLog.WriteStartElement(xmlDoc.Name,
xmlDoc.GetAttributef"xmlns"));

xmlLog.WriteEndElement(); }

First, notice the position of this code. As you may recall from our first example, this case also processes
the attributes of the element. If we waited to write the element to the log file until after this - perhaps out of
a desire to segregate the log file code from the reader code - we would find that the current node was no
longer the document element. This may appear obvious now, but it's an easy mistake to make in practice.
When you are using a stream-based model and you have something you need to manipulate, don't delay!
Do the manipulation while you have the proper context.

What happens if the original document doesn V declare a namespace? As it is written, GetAttribute
returns String. Empty, and WriteStartElement is smart enough not to write an xmlns
attribute. Strictly speaking, failing to declare a namespace puts the document element into the null
namespace, according to the Namespaces recommendation
(http://www.w3.org/TR/REC-xml-names/). However, if we don't write such an attribute in our log
file after creating a default namespace on our document element, the original document element will be
erroneously placed in the urn:xmlabs-com-cat namespace, which is not what we want. In
practice, most programmers who fail to declare a namespace simply do not care about namespaces
-particularly if validation is not an issue. To be perfectly correct, we should break GetAttribute out
onto a line of its own, test for String. Empty, and generate xmlns="". This is a fairly pedantic
point, however, and reduces the clarity of the sample code.

Finally, we round out our response to element nodes by closing the element with a call to
WriteEndElement. Since no intervening content has been written, the output will take the compact form
of an empty element: <name xmlns=" . . . " />.

Writing Summary Information
After all of the XmlTextReader processing is complete, and we emerge from the Read loop, we want to
write the count of various XML items into the log file as attributes. One option might be to write them as
attributes of the document element, but a problem that's a direct result of the stream-processing model
prevents this. Since we have now written other content - the original document element - the writer has
moved on from the document element. Even though the intervening element has been closed, the writing
context cannot return to the document element's opening tag - the stream has moved on. Conversely, we
cannot write the attributes when we create the document element, because we don't have the totals yet.

This is why our XML dialect has the <GlobalCount> element. Using this separate element also provides
a good opportunity to reinforce the concept of nesting elements when we write the fully qualified
filename. Add this call to WriteStartElement, passing in the element name GlobalCount, immediately
after the totals have been written to the text area following the loop:

sWorkingText += "Total CDATA sections: " + nCDATAs;
resultsArea.InnerText += sWorkingText;

xmlLog.WriteStartElement("GlobalCount");

We don't need to specify a namespace URI. Since the namespace of the original document's document
element is scoped to that element, the namespace scope in our document reverts to the default scope we
established in the log file's document element. Now we want to write a series of attributes using
WriteAttributeString:

xmlLog.WriteAttributeString("attributes", gnAttributes.ToString());
xmlLog.WriteAttributeString("elements", nElements.ToString());
xmlLog.WriteAttributeString("comments", nComments.ToString());
xmlLog.WriteAttributeString("pi", nPIs.ToString());
xmlLog.WriteAttributeString("cdatas", nCDATAs.ToString ());

The only novelty to remember here is to call the ToString method on our integers to ensure that our
parameters are of the proper type for WriteAttributeString.

88

XmlReader and XmlWriter

Now it's time to write the element that contains the fully qualified pathname of the original document.
Since we haven't yet called WriteEndElement, <GlobalCount> remains open. Writing another
element at this point makes it the second child of <GlobalCount>:

xmlLog.WriteStartElement("ClientPath");

The local variable sFile contains the pathname we want, and we pass it to the WriteString method to
insert it as a text node in our XML log file:

xmlLog.WriteString(sFile) ;
xmlLog.WriteEndElement();
xmlLog.WriteEndElement();

The last two lines here close our nested XML in a similar way to the closing brackets in a programming
language - when you're finished, there are often several elements to close in succession. Keep careful
track of element depth when writing such code, and make sure that all WriteStartElement calls are
balanced appropriately and in the correct place. At best, an error will lead to misplaced elements; at
worst, you will attempt to write markup that's not well formed and XmlTextWriter will throw an
exception.

Finishing the Document
Finally, we need to clean up resources. Since we built our writer on top of a file stream, we have an
open file handle somewhere in the operating system. To clean up our resources immediately, we
expand the finally block so that the log file gets closed:

finally
{

if(xmlDoc != null)
xmlDoc.Close();

if(xmlLog != null)
xmlLog.Close();

}

Here's what a finished summary document looks like:

<?xml version="1.0" encoding="utf-8"?>
<DocumentCategorization xmlns="urn:xmlabs-com-cat">
<Event xmlns="urn:xmlabs-com-functions" />
<GlobalCount attributes="18" elements="25" comments="0" pi="0" cdatas="0">
<ClientPath>C:\Inetpub\wwwroot\XMLCategorizer\sample_event.xml </ClientPath>
</GlobalCount> </DocumentCategorization>

unapter 2.

Summary

In this chapter, we brought XML onto the ASP.NET platform with an exploration of XmlReader and
XmlWriter. These have proved to be lean, efficient classes for processing XML, due to the use of a
stream-based model. The benefits of these classes stem directly from certain tradeoffs, namely the loss of
global document context and the inability to move in both directions through a document. This means we
have to act on things as we read them, and we must be sure to write items in the order in which they j are to
appear in the document. To preserve the content of a document we have to provide data structures to do so
ourselves. Nevertheless, these classes are a good place to start. They stick to the essentials of XML 1.0 and
XML namespaces, making them relatively easy to learn.

Readers and writers are closely tied to a particular document, and are somewhat disposable. We attach a
document to a reader or writer when we call the constructor, and when we are finished with that document,
we cannot reuse the object - so we just call Close and dispose of it.

Both XmlReader and XmlWriter are abstract classes, and we've seen that the capabilities of these classes
broaden considerably when used in their derived classes. XmlTextReader can take documents from a
variety of sources, depending on which constructor is used to create the reader. Additional capabilities can
be added as required by attaching helper objects to properties of the reader. This means that we can control
an application's resource usage by selecting only those capabilities the application requires.

We can write some very powerful applications using these classes alone. If we require access to some of the
other technologies related to XML, however, we need to explore some classes that use a processing model
that is not stream-based. This is the topic of the next chapter, when we take up the Document Object Model,
an in-memory tree representation of complete documents.

90

XmI Document

In the last chapter, we introduced stream-based processing of XML documents. In this chapter, we'll
look at the in-memory, tree-based model for creating and manipulating XML documents known as the
Document Object Model (DOM). In some cases, the .NET implementation of the DOM uses the classes
we saw in the last chapter, but there are also a number of additional classes that exist solely to support
DOM manipulation.

The DOM offers a powerful processing model for the XML programmer that provides random access to
all elements in the current document. There is no need to maintain any data structures of our own to
store information, as the entire document is persisted in memory. The tradeoff of the DOM over the
stream-based model is that the tree model requires significantly greater system resources, chiefly
memory. This is no lean and efficient set of classes, so it's unlikely that we'd want to use them to process
documents many megabytes in size.

In this chapter, we will examine:

Q The class hierarchy supporting the DOM in the .NET Framework

Q The seven key DOM classes, and their use in the .NET Framework

Q How to load and save XML documents using DOM methods

Q How to traverse and manipulate XML documents in the DOM

Q How to obtain information on XML items in a document using DOM methods and properties

Q How to create new documents programmatically using the DOM

unapier

At the end of the chapter, we will put all of this information into action as we create an ASP.NET
application that generates speaker schedules for each of several days of a conference. We will read and
traverse an existing XML document in ASP.NET, and create a new document from it for return to the
client, with all XML processing taking place on the server.

Document Object Model
The Document Object Model (DOM) is endorsed by a formal, vendor-neutral body: the World Wide
Web Consortium (W3C). The DOM is an API, not an implementation, so it's language-neutral too.
Since the W3C is not, strictly speaking, a standards body - it lacks legal authority - its final, formal
specifications are called recommendations, not standards.

The DOM is now at its second version. In the nomenclature of the DOM Working Group, these
versions are called levels. Level 2 is the latest version to achieve full recommendation status, though
preliminary work is in progress for level 3. The bulk of commercially available XML processors
supporting the DOM are at level 1 and quickly migrating to level 2. The .NET classes we will discuss in
this chapter implement level 2 of the DOM.

The specification for DOM Level 1, dated 1 October 1998, may be found on the W3C web site at
http://www.w3.org/TR/REC-DOM-Level-1. DOM Level 2, also a recommendation, is more
complicated and is split across five documents. The core is specified in a document dated 13 November
2000, which can be found at http://www.w3.org/TR/DOM-Level-2-Core.

Where stream-based models create inherently transient structures, the DOM's fundamental construct is
a completely parsed document that resides in memory, in the form of a tree. Every XML document has
a single element that contains all other elements in the document. This element is known as the
document element, and is the root of the DOM tree. Every XML item beneath the document element
forms a node in the tree. Note that a DOM tree may have one or more prolog nodes that represent
special items such as processing instructions and the XML declaration. In XML 1.0, prolog nodes are
those that precede the document element.

Beyond this point, the DOM has two distinct structures: one for containing elements, comments,
processing instructions, and the like; and the other for containing attributes. Anything other than an
attribute is represented as a node of the tree, which will be a 'child' of some higher node. The document
element has children, which may have children of their own, and so forth until the bottom of the tree is
reached. As we'll see later in the chapter, the traditional methods of tree traversal taught in computing
courses (depth first, breadth-first, etc.) work well with the DOM.

Attributes, on the other hand (and although they are also nodes, as we saw in the last chapter), exist as a
flat collection attached to their owning element. Thus, if you want to inspect all the attributes in a DOM
tree, you must find each element and separately iterate through its attributes. The following diagram
depicts the logical structure of a DOM tree for an XML document in memory:

94

XmlDocument

Bottom-most
Document nodes

Prolog node(s)

Because we have the entire document in memory, we're
consuming far more resources than a stream-based
processor would require. On the other hand, we have everything in

the document available to us at all times. You are free to move up, down, and sideways in the tree to get
to the data you require. The DOM's structure inherently preserves the state of the document for us, so
we can frequently get away with very few, if any, major data structures of our own. The DOM tree itself
becomes our data structure.

Attributes

That's the theory, and in fact the practical aspects of working with the DOM in ASP.NET aren't much
more complicated. With that in mind, let's turn our attention to the .NET Framework classes that
support this style of processing. Microsoft has supported the DOM for years, first with its COM-based
XML processor component, and now with the .NET classes that represent Microsoft's implementation of
the latest DOM recommendation. There are more DOM-related classes than you might at first expect,
and the key to getting a handle on them is to understand the class hierarchy.

IET Class Hierarchy for the DOM

Every major .NET class for processing XML documents with the DOM belongs to the System.Xml
namespace, and the Framework makes extensive use of inheritance to add extra features as and when
they're needed. Below is a depiction of the classes you will use, and how they inherit from base classes:

XmlAttribute
XmlDocument

.ion XmlEntity i

!
lement t ! XmlCharacterData XmlDeclaration XmlDocumentType XmlEntityReference [i XmlProcessinglnstruction

XmlText

In this chapter, we'll be concentrating on the most commonly used classes. In particular, we will provide
reference material for the following:

Q xmlNode
Q XmlNamedNodeMap
Q XmlNodeList
Q XmlAttribute
Q XmlDocument
Q XmlDocumentFragment
Q XmlElement

A quick look at that diagram will let you know that the .NET Framework gets a lot of mileage out of
XmlNode, and the diversity of the classes beneath it might make you wonder just how object-oriented
this solution is. However, having a base class that ties everything below the document element together
lets the .NET DOM get away with far fewer methods and properties than it would need if every sort of
node was independent from every other one. The derived classes add capabilities when it makes sense,
but XmlNode does the lion's share of the work.

Core Classes

As you can see from the class hierarchy above, there are three core classes that derive directly from
System.Object:

Q System.Xml.XmlNode
Q Systern.Xml.XmlNamedNodeMap
Q System.Xml.XmlNodeList

Of these, XmlNode is absolutely key. Consider the general case of an element - as its 'child' content, it
could have any number of other elements, character data, entity references, or processing instructions.
When we access the child content of an element - a key task in traversing a document - we don't
usually know what we'll encounter. But since all these different types of possible child content derive
from XmlNode, we can use this class at first, and specialize our processing once we've examined the
content more closely.

XmlNode

Having built XmlNode up in the last few paragraphs, let me knock it down just a little. You will seldom, if
ever, create an XmlNode instance. Rather, you'll create instances of its derived classes: attributes,
elements, and so on. The value in XmlNode comes from the interface that it provides to all the other
classes that derive from it. Even so, we're going to spend more time on this one class than any other,
because all of the classes that derive from it either inherit or overload the properties and methods it
exposes. Once we have a sound grasp of XmlNode, the other classes will fall into place quite easily.

96

XmlDocument

In the sections for the derived classes, we will only list properties or methods that overload those of
XmlNode in significant ways. Thus, if a property or method discussed here is not mentioned
specifically for a deriving class, the implication is that it works as described for XmlNode. Also note
that we are exclusively dealing with the public methods and interfaces of the DOM-related classes.
There are some protected methods and properties, but knowing about these is not a common
requirement for ASP.NETprogramming.

As you read the following sections, notice the lack of a public constructor for this class, meaning that we
never create an instance of XmlNode using the new keyword. Nodes are always created using one of the
methods of XmlDocument, and nodes always belong to the document that created them. If you wish to
transfer a node from one document to another, you must use the Import method of XmlDocument.
This point is particularly relevant for programmers moving to .NET from MSXML, as that component
was somewhat forgiving of careless node transfer. The .NET classes are much stricter in this regard.

Properties
The XmlNode class has the following public properties:

Property Meaning

Attributes (read-only)

BaseURl (read-only)

ChildNodes (read-only)

FirstChild (read-only)

HasChildNodes (read-only)

innerText (read/write)

InnerXml (read/write)

If the node is of type XmlNodeType. Element, this returns an
XmlAttributeCollection (derived from
XmlNamedNodeMap) containing the attributes of the element.
Otherwise it returns null.

Returns a string whose value is the URI from which the node
was loaded. In most cases, this will be the URI of the XML
document. However, when one of the XML inclusion
mechanisms is used, the value of this attribute will reflect the
URI of the external resource. Returns String. Empty if the
document was not loaded using a URI.

Returns an XmlNodeList of all the child nodes of this node. If
the node has no children, an empty list is returned.

Returns an XmlNode representing the first child of the current
node. If there are no child nodes, a null reference is returned.

Returns a Boolean value indicating whether the node has
children, true is returned if there is child content, false
otherwise.

A string whose value is the concatenated textual content of the
current node and all its children. Changing this value replaces
all child nodes of the current node with the character data
provided. If the current node is a leaf node (that is, it has no
children other than a text node), this property is equivalent in
function to Value.

Returns or sets the child content markup of the current node as
a string.

Table continued on following page

Property Meaning

IsReadOnly (read-only)

Item (read-only)

LastChild (read-only)

LocalName (read-only)

Name (read-only)

NamespaceURl (read-only)

NextSibling (read-only)

NodeType (read-only)

OuterXml (read-only)

OwnerDocument (read-only)

Returns a Boolean value: true if the node is read-only, false
otherwise. For example, entity nodes are always read-only.

Used to get an XmlElement instance representing the desired
element. Available in two overloaded implementations. The
first takes a single string whose value is the qualified name of
the desired element. The second takes two strings: one for the
local name of the desired element, and the second for the
namespace URI of the element. In C#, this property is the
indexer for XmlNode.

Returns an XmlNode instance representing the last child node
of the current node, or a null reference if no such node exists.

Returns a string providing the local name of the node. The
behavior of this property depends on which derived class it is
called upon (that is, on what type of node is being checked).
For elements, attributes, entities, entity references, and
notations, the local name of the item is returned. For DOCTYPE
nodes, the document type name is returned. For a processing
instruction, the Pi's target is returned. For all other types, a
string literal denoting the type of the node (#xml-declaration,
#text, #document, etc.) is returned.

Returns the qualified name of the node as a string. As with
LocalName, the behavior of this property depends on the
implementing derived class. Behavior for the different node
types is the same as for LocalName, except that the qualified
name is returned instead of the local name.

String property returning the URI of the node's namespace. If
none exists, String.Empty is returned.

Property returning the XmlNode instance representing the next
peer item to (that is, with the same depth as) the current node
in document order. If no such node exists, a null reference is
returned.

Returns one of the XmlNodeType values denoting the XML
type of the node. XmlNodeType is an enumeration of the types
provided in the XML 1.0 W3C recommendation, along with
such useful things as EndEntity and EndElement. This
property, however, will never return the enumerated values
EndElement, EndEntity, or None.

String property returning the XML markup of the current node
and all its children, recursively.
Property returning the XmlDocument instance to which this
node belongs. If the node is itself a document, this property
is null.

98

XmlDocument

Property Meaning

parentNode (read-only)

Prefix (read/write)

PreviousSibling (read-only)

Value (read/write)

Returns the XmlNode that serves as the parent of this node. If
the node is newly created or detached from a document, this
property is null. Some XML types (attributes, documents,
document fragments, entities, anc3 notations) do not have
parents, and for these, this property is also null

String property whose value is the namespace prefix of the
node. Fails and throws Argument Except ion for a read-only
node, or Xml Except ion if the prefix is malformed, contains
an illegal character, or is xml for a namespace other than the
one defined by the XML 1.0 recommendation. Note that
setting this property does not change the namespace of the
node. If no prefix is defined, getting this property results in a
String. Empty value.

Returns the preceding XmlNode en the same depth as the
current node, or null if none exists.
String property whose value is the vaiue of the node The exact
value depends on the type of the node. Nodes directly
containing textual content (CDATA sections and attributes)
return the values you would expect. A PI node returns
everything except the target, while an XML declaration
returns everything excluding the <?xml and ?> markup.
Node types that do not directly contain text (DOCTYPE, for
example) return a null reference. Note that an element node
will return a null value. If an element has textual content, that
content is a child node of the element

The first thing to notice is that there is one collection for Attributes, and another for child content
(ChildNodes). It cannot be stressed too strongly that attributes, while they belong to elements, are not
child content. You must iterate through attributes separately from child nodes.

Another important point here is that there are several means available for traversing DOM trees using
this interface. When we discuss XmlNamedNodeMap and XmlNodeList, We wjH see tjjat these collections
have their own properties and methods for iterating over the node collection they represent But the
XmlNode class also provides FirstChild, LastChild, PreviousSibling and NextSibling, as well
as some other ways to move through a DOM tree.

Microsoft's COM-based DOM implementation, MSXML, offers significantly improved performance
using the First- and Next- methods for iteration when compared with index-based iteration. It
remains to be seen whether this holds true for the .NET implementations.

A final point to bear in mind is that we can use NodeType to distinguish between instances of different
derived classes. This is important when we use the Value property, as it returns different things
depending on what sort of XML type we're currently working on.

Methods
The methods for populating an XML document programmatically to create a particular structure are all
to be found in the XmlNode class. The only thing that XmlNode doesn 't contribute to the problem of
building documents is creating the nodes in the first place - that function, together with loading and
saving documents, is reserved for XmlDocument. Here, then, are the public methods of the XmlNode
class, and they are the most commonly used methods in the entire DOM:

Method Usage

AppendChild

Clone

CloneNode

CreateNavigator

GetEnumerator

GetNamespaceOfPrefix

GetPrefixOfNamespace

Takes a single parameter of type XmlNode (or one of its
derivatives) and adds it to the end of the list of child nodes for
the current node. The return value is the node added.

Makes a deep copy of the node (that is, including all descendent
nodes and attributes). Takes no parameters, and returns the
XmlNode copy. Equivalent to CloneNode (true). This method
is a proprietary Microsoft extension to the DOM.

Abstract method. Copies the current node. Takes a single
Boolean parameter indicating whether to make a deep copy
(true) of the node. Returns XmlNode. The cloned node has no
parent. Fails and throws InvalidOperationException for
node type Notation, which cannot be cloned.

Creates an XPathNavigator object positioned on the node for
use with XPath selection. No parameters. This is a proprietary
Microsoft extension to the DOM.

Returns an lEnumerator instance to enable for each-style
iteration over the children of the node. No parameters. This is a
proprietary extension to the DOM.

Takes a string parameter containing a namespace prefix and
returns the closest matching namespace URI that's in scope for
the node. This is a proprietary extension to the DOM.

Takes a string parameter containing the namespace URI and
returns the prefix as a string. This is a proprietary extension to
the DOM.

100

XmlDocument

Method Usage

InsertAfter

InsertBefore

Normalize

PrependChild

RemoveAl1

Inserts a node immediately after a given reference node in
the list of children for this node. Takes two parameters of
type XmlNode: the child node to add and the reference
node, in tha.t order. If the reference node is null, the new
node is added at the beginning of the list. The return value is
the XmlNode being added.

Fails with InvalidOperationException if the node
cannot accept children of the type provided, or if the node
to add is in fact an ancestor of this node. It fails with
ArgumentlJxception if the new node belongs to another
document, if the reference node is not a child of this node,
or if the node is read-only. This is a proprietary extension to
the DOM.

Exactly like InsertAf ter, except that the new node is
inserted iminediately before the reference node (unless the
reference node is null, when the node is added at the end
of the list of children).

Normalizes whitespace in the sub-tree that's anchored by
the current node by ensuring that only markup separates
text nodes. Takes no parameters, returns void. Used to
ensure a consistent tree structure between saves when tree
comparisons must be made that would be rendered invalid if
whitespace appeared. Processors are free to discard non-
significant vvhitespace during loads and saves, so this
method is used to eliminate this potential source of change
in the tree structure.

Adds a node to the beginning of the child node list for this
node. Takes a single parameter of type XmlNode, and
returns that node if it is successfully added. If the new node
is already a child of this node, it is removed and re-added. If
the given node is a document fragment, the entire fragment
is inserted.

Throws InvalidOperationException if the calling node
does not permit children of the exact type passed as a
parameter, or if the node to add is an ancestor of the calling
node. Thro\vs ArgumentException if the node to add
belongs to a different document, or the calling node is
read-only.

Removes all children and/or attributes of the calling node. If
the node is an element known to have default attributes, these
attributes immediately reappear with their default values.
No parameters, void return. This is a proprietary extension
to the DOM.

Method Usage

RemoveChild

ReplaceChild

SelectNodes

SelectSingleNode

Supports

WriteContentTo

WriteTo

Removes the specified child node. Takes a single parameter of
XmlNode type, and returns that node if successful. Throws
ArgumentException if the parameter is a node belonging to another
document, or the calling node is read-only.

Replaces one child node with a new node, returning the old (replaced)
child. Takes two parameters, new and old, of type XmlNode. Fails
and throws InvalidOperationException if new is not a type
permitted as a child of the calling node or if new is an ancestor of that
node. Throws ArgumentException if new was created by another
document, if old is not a child of the calling node, if or the calling
node is read-only. If new is already a child, it is removed and
reinserted.

Returns an XmlNodeList of nodes that match a given XPath
expression, when that expression is applied in the context of the
calling node. Two overloaded forms are provided. The first takes a
string containing the XPath expression and assumes that the document
belongs in the empty namespace. If the expression contains a prefix,
an exception of type XPathException will be thrown.

The second form supports namespaces and takes two parameters:

expr - a string containing the XPath expression

nsMgr - an XmlNamespaceManager for resolving prefixes in expr

This form throws XPathExpression if any prefix in expr cannot be
resolved using nsMgr.

Selects the first node matching an XPath expression. Provides two
overloaded forms whose parameters and behavior are as noted in
SelectNodes. The return type of both forms is the XmlNode
matching the expression, or null.

Tests for the presence of support for a particular feature in the DOM
implementation. Takes two string parameters, feature and version,
and returns a Boolean (true if supported). The feature parameter
is the XML package name of the feature to check, and version is a
string denoting the XML version, feature must always be XML in
this implementation, while version may be 1. 0, 2 . 0, or null. If null,
all versions are checked.

This method is abstract in XmlNode, but implemented in derived
classes. It writes the children of the calling node to the XmlWriter
instance passed as the sole parameter of this method. Returns void.
This is a proprietary extension to the DOM.
Abstract in XmlNode, this method writes the node and all its children
to the XmlWriter passed as the sole parameter of this method.
Returns void.

102

XmlDocument

The various Append-, Insert-, and Remove- methods let us assemble and disassemble DOM trees one
layer at a time. Clone and CloneNode provide easy shortcuts for assembling repeated content, as we'll
see when we get to our code sample. The technique is to assemble the basic structure once, and
whenever we need a new section with the same structure, we set the element and attribute values to
reflect the new section, and then clone the root of the sub-tree that represents the repeated section. After
that, we insert the copy into the proper position. No matter how we assemble a sub-tree, we will have to
set the values, but this technique allows us to avoid repeating the node creation and insertion steps.

Before we leave the topic of the XmlNode class, remember that XmlDocument derives from it. This may
seem to be circular in nature, but it is not. Each document is represented in its entirety by a document
node. The document element is then attached to that node. The nice thing about deriving XmlDocument

from XmlNode is that we can perform all the same operations on the document itself as we can on the
nodes that make it up. For example, the property in XmlDocument that accesses the document element is
read-only. We can create a new document from nothing, however, by instantiating an XmlDocument
instance, using the appropriate method to create an element, then use AppendChild or one of the Insert-
methods to attach that node, which promptly becomes the document element. Once we have a document
and some nodes, XmlNode methods are then all we need to build up the document.

XmlNamedNodeMap

This is a utility class used chiefly to collect the attributes of an element. (As we saw in the last section, it's
used to implement an XmlElement's Attributes property.) Now, attributes must have names that are
unique in any particular element's attribute collection (though of course they can be used on other
elements elsewhere in the document), so it's natural to access attributes by those names. That's where the
"Named" part of this class's name comes from.

Like so many other classes in the DOM hierarchy, XmlNamedNodeMap has no public constructor. We
get an instance of it through a property of some other class, such as the Attributes property of
XmlNode, which is the most common source. Once we have such a collection, it's fairly straightforward
to work with it - there are a small number of methods, and only one property. All we're doing is getting
at the contents of a collection, inserting or removing members, but never changing them.

Properties
The single property of this class is called Count. It's a read-only integer property that indicates how
many nodes belong to the map.

Methods
The public methods of XmlNamedNodeMap are as listed in the following table:

Method Usage

GetEnumerator

GetNamedltem

Provides an lEnumerator instance for supporting for each-style
enumeration over the contents of the map.

Returns the named XmlNode from the map. There are two overloaded
forms. The first takes a string whose value is the qualified name of the node
to match. The second takes two strings, localname and nsURI, which are
the local name and the namespace URI of the node to match. If no match
is found, null is returned.

Chapter 3

Method Usage

Item Takes a zero-based integer index and returns the XmlNode at that
position in the map. If the index is less than zero or greater than Count,
null is returned.

RemoveNamedltem Removes the specified node from the map. Two overloaded forms are
provided that match the two different versions of GetNamedltem.

SetNamedltem Inserts a provided instance of XmlNode into the map. If the passed node
is already in the map (as when you're changing the content of a node), the
old (replaced) node is returned. If the node is new, null is returned.

GetNamedltem and RemoveNamedltem let you access and remove existing members of the collection.
SetNamedltem lets you replace an existing attribute with one of the same name (essentially changing
the value in place), or add an attribute that was not previously in the collection.

While the primary method of accessing items in the collection is by name, there are always going to be
times when you'd like to access the members of the collection by their ordinal position instead, and that
is the role fulfilled by the Item method.

Enumerating Attributes
Let's take a closer look at these two access techniques - names and ordinal indexes - and contrast them.
GetNamedltem lets us directly access any attribute when we know its name, but it gives no way of
iterating through the collection exhaustively. The following line is an example of GetNamedltem's usage:

String s = myNode.Attributes.GetNamedltem("age");

This requires that you know the name of the attribute. If you don't know all the names of the attributes
for a particular element, the best you can do without recourse to Item is to use a f oreach statement (or
a For Each. .Next statement in Visual Basic) that calls GetEnumerator behind the scenes and
inspects the names of the returned attributes. Thus, for some XmlElement called elt:

foreach(XmlAttribute attr in elt.Attributes)
String s = attr.Name;

On the other hand, exhaustive enumeration is a key feature of the Item property:

for(int i = 0; i < elt.Attributes.Count; i++) String
s = elt.Attributes.Item(i).Name;

These two code snippets are outwardly the same. The point is that while GetNamedltem enables access
by name, Item only offers an ordinal index. Now, in XML 1.0, attribute order is not only not
guaranteed, but it's insignificant. In other words, we shouldn't write code that relies on calling Item
with an index that we 'know' points to a particular attribute. Sooner or later, such code will fail when
you're least expecting it. If we know the name of the attribute we're after, we should just use
GetNamedltem. If we have to plow through the entire collection (if we're writing general-purpose code
to handle multiple XML vocabularies, for instance), that's when we should use Item explicitly (or
GetEnumerator implicitly), and inspect the attribute returned in each iteration, rather than make
assumptions.

104

XmlDocument

XmlNodeList

In our discussion of the DOM, we noted that items are assembled in two distinct ways: attributes are
attached to an element in a flat collection, while all other XML items are attached to one another in a
nested tree structure. As we've seen, XmlNamedNodeMap provides the means for dealing with attributes.
XmlNodeList is the collection class for accessing nested content.

Unlike attributes, elements are poor candidates for named access - a <Library> element could have
dozens of child elements, each named <Book>. Worse, nested content can include other XML types,
such as text nodes, that don't have names at all. XmlNodeList deals with content by position rather
than by name.

As with XmlNamedNodeMap, there is no public constructor, and we do not create and destroy instances
of the XmlNodeList class. The most common way to obtain an instance of XmlNodeList is by
reference to the ChildNodes property of XmlNode.

Properties
The XmlNodeList class has two public properties:

Property Meaning

Count (read-only) Integer property denoting the total number of nodes in the list.

ItemOf (write-only) Takes an integer index (zero-based) and returns the XmlNode at that
position in the list. Returns null if the index is outside the bounds of
the list. In C#, this property is the class indexer.

Count, of course, is what lets us write loops to iterate through a level of the DOM tree, like this:

for(int i = 0; i < node.ChildNodes.Count; i++) {
// some action here }

To do something useful inside such a loop, we have to delve into the methods of this class.

Methods
XmlNodeList has a pair of public methods:

Method Usage

GetEnumerator Takes no parameters and returns an lEnumerator instance
supporting for each-style iteration over the list.

Item Takes a zero-based integer index and returns the XmlNode at that
position in the list. Returns null if the index is out of bounds for the list.

Let's revisit the loop we presented in our discussion of the properties:

for(int i = 0; i < node .ChildNodes . Count; i++) {
DoSomething (node. ChildNodes. Item(i)) ;

It doesn't really matter what the DoSomething routine actually does; Item lets us pass it each child node
in turn. In fact, we can write recursive routines that traverse the entire tree with very few lines of code, as
we'll see next.

Traversing the Tree
The most common way to traverse a DOM tree is through the ChildNodes collection of XmlNode. A
recursive algorithm for visiting every non-attribute node of an XML document using this collection
might look something like this:

// Somewhere in the code... XmlDocument
doc = new XmlDocument();
doc.Load("http://mysite//mydoc.xml");
Descend)doc.DocumentElement);

protected void Descend (XmlNode node) {
if (node.NodeType == XmlNodeType. Element) {
for(int i = 0; i < node. ChildNodes .Count; i++) {
//Do something with the node here, if you wish

// Iterate through attributes too, if you need to

// Recursively call Descend on any child nodes Descend
(node .ChildNodes . Item(i)) ;

else
// Process non-element nodes here

This algorithm will progress depth first. That is, it will go as far down the tree as it can, popping a level
of recursion off the stack when it reaches a leaf node. When that happens, it moves to the next node at
the previous level of the tree, and traverses its sub-tree.

An alternative is to use a breadth-first approach with the NextSibling property of the XmlNode class.
We can traverse a given level of the tree like this:

XmlNode node = parentNode.FirstChild;
while (node != null)

106

XmlDocument

//Do something here

// Move onto next element at this level in the tree node
= node. NextSibling;

This is most useful for driving across a single level of the tree. If you don't mind depth-first traversal,
though, you can use sibling navigation to re-implement the first algorithm above, accomplishing the same
effect as in the previous sample but using a sibling linked list (NextSibling) instead of a collection:

protected void Traverse (XmlNode node) {
XmlNode child;

//Do something here

child = node.FirstChild;
while (child != null) {

Traverse (child) ;
child = child. NextSibling;

Numerous tree traversal algorithms are presented in Algorithms in C++ by Robert Sedgewick
(Addison- Wesley, 1992, ISBN 0-201-51059-6). There are similar volumes by the same author
presenting the algorithms in Pascal and Java.

Derived Classes

So far, we've looked at DOM nodes and two collection classes. Let's round up our review of DOM
classes by considering the document class and the specialized classes that derive immediately from
XmlNode: XmlDocument, XmlAttribute, and XmlDocumentFragment. There is another, XmlEntity,
but entities are usually used as shorthand to avoid repeating keystrokes, and they're seldom found in
ASP.NET programming (or in any other programmatic approach to XML, for that matter). Later on, a
swift examination of XmlLinkedNode will lead us to the next level of the class hierarchy, but we'll set
that aside for a moment. We're about to have our hands full with XmlDocument.

XmlDocument

The XmlDocument class brings us to the big picture. Not only does it implement the interface of the
all-encompassing construct that is the DOM model, but also it's the class that lets you create new nodes.
We'll use this feature to build and modify documents in our sample application later in the chapter.

Constructors
Unlike nodes and the various collection classes, you willbe creating documents out of thin air using new.
Here, then, are the public constructors for XmlDocument:

(jnapter

Constructor Usage

public XmlDocument ()

public
XmlDocument(XmlNameTable)

Initializes a new, empty instance of an XML DOM document.

Initializes a new instance with the provided name table.
Provides name initialization with public scope.

In practice, we almost always use the first form. However, the second form can be very useful too. The
XmlNameTable argument is not a list of namespaces, but a list of the unique names of all the XML
items (elements, attributes, etc.) along with a set of atomized tokens that it uses internally to replace the
names whenever they appear. We can use this constructor when we've gone to a lot of trouble to establish
a set of names for XML items and wish to reuse them in a new document. Doing so can give a small
performance edge when parsing a new document that comes from the same vocabulary as an earlier one.

Properties
The following table lists the public properties of the XmlDocument class that add to those inherited
from XmlNode:

Property

DocumentElement (read-only)

DocumentType (read-only)

Implementation (read-only)

InnerXml (read/write)

IsReadOnly (read-only)

LocalName (read-only) Name

(read-only) NameTable

(read-only)

NodeType (read-only)

OwnerDocument (read-only)
PreserveWhitespace
(read/write)

XmlResolver (read/write)

Meaning

Returns the XmlElement that forms the root of the
DOM tree.

Returns the DOCTYPE declaration, if any, as an
XmlDocumentType object.

Returns the XmlImplementation object for the document.

String comprising the child markup of the document.

Always returns false for this class, as documents always
have some children that can be changed.

Returns the string #document.

Returns #document.

Returns an XmlNameTable of atomized strings for the
document. The names contained therein are single entries for
every unique name used in the document.

Returns XmlNodeType. Document.

Returns null.

Boolean property controlling whether whitespace is
preserved during Load, LoadXml, and Save. If true before
one of these operations, whitespace is preserved.

Property getting or setting the XmlUrlResolver instance
used to resolve external references. Throws XmlException
if this value is null and an external DTD or entity is
encountered.

108

XmlDocument

The two properties you'll use most often are DocumentElement and Preservewhitespace. The first
is used in virtually every DOM-based application to supply the root of the tree, while
Preservewhitespace controls the appearance of documents that are intended for viewing by users (or,
more likely, by us during debugging). InnerXml is also useful for debugging; it provides a quick look at
the structure of a document we've parsed or are building.

Methods
The next table lists the public methods of XmlDocument, including those essential ones that create new
nodes. Remember that the methods of XmlNode are also available from this class.

Method Usage

CloneNode

CreateAttribute

CreateCDataSection

CreateComment

CreateDocumentFragment

CreateDocumentType

Copies the node. Takes a Boolean parameter, which, when
true, causes the method to make a deep copy. When false,
only the node itself is copied. Returns the XmlDocument node.

Creates an XmlAttribute node with a given name. The new
attribute is not attached to any element. Three overloaded
forms are provided:

string name - qualified attribute name

string qname, string nsURI - qualified attribute name,
namespace URI

string prefix, string localname, string nsURI
-namespace prefix, local attribute name, namespace URI

This method is a proprietary Microsoft extension to the DOM.

Creates a CDATA section (XmlCDataSection). Takes a string
parameter representing the content for the CDATA section.

Creates an XmlComment node from the string parameter
passed in.

Creates a new document fragment (xmlDocumentFragment).
Takes no parameters.

Creates a new DOCTYPE declaration given the following
parameters:

string name - DOCTYPE name string pubID - public

DOCTYPE identifier or null string sysID - system

DOCTYPE identifier or null string internalsubset

- internal DTD subset Returns an

XmlDocumentType object.
Table continued on following page

unapier o

Method Usage

CreateElement

GreateEntityReference

CreateNode

CreateProcessinglnstruction

CreateSignificantWhitespace

Creates an XmlElement node. Three overloaded forms
are provided:

string qname - qualified element name

string qname, string nsURI - qualified element name
and namespace URI

string prefix, string localname, string nsURI
-namespace prefix, local name of element, URI
identifying the namespace of the new element

Creates and returns an instance of XmlEntityRef erence,
given a string parameter containing the name of the
entity reference. Fails and throws ArgumentException if
the name parameter has an invalid character prohibited
by XML naming rules.

Creates and returns an XmlNode, given a type, name, and
namespace information. Three overloaded forms are
provided:

string type, string name, string nsURI - string
denoting the type, qualified name of the node, namespace
URI

XmlNodeType type, string name, string nsURI
-type of the node, qualified name of the node, namespace
URI of the node

XmlNodeType type, string prefix, string name,
string nsURI - node type, namespace prefix, local
name, and namespace URI of the node

These all throw ArgumentException instances if a
name is required and one is not provided. In addition,
such an exception is thrown if the string type
parameter of the first form is not one of the permitted
values. These values are simple, lowercase representations
of the XML node types ("attribute", "element",
"entity reference", etc.).

Creates an XmlProcessinglnstruction instance from
the following parameters:

String target, string data - PI target (first part) and
data (rest of PI)

Creates an XmlSignif icantWhitespace node for use
in formatting a document. Takes a single string parameter
composed entirely of whitespace characters (that is,
,
. , or 	,-).

110

XmlDocument

Method Usage

CreateTextNode

CreateWhitespace

CreateXmlDeclaration

GetElementByld

GetElementsByTagName

ImportNode

Creates and returns an XmlText node, given a string containing
the textual content of the new node.

Creates and returns an XmlWhitespace node, given a string of
whitespace characters (,
, ,).

Creates an XmlDeclaration node, given the
following parameters:

str ing version, str ing encoding, str ing standalone
-XML version, character encoding, and either "yes" or "no" to
indicate whether this document is standalone.

The version parameter must be "1. 0". Fails and throws
ArgumentException if version is any other value, or if
standalone differs from the two permitted values.

Returns an XmlElement matching the given string ID parameter.
ID attributes must be declared with an associated DTD (schemas
cannot be used to declare IDs for use with this method in this
version). If no such element is found, null is returned.

Returns an XmlNodeList composed of all child elements whose
name matches the given name. Two overloaded forms are
provided:

string qname - qualified element name

string localname, string nsURI - local element name and
namespace URI

The wildcard character * matches all elements.

Imports a node from another document into this one. Takes two
parameters - XmlNode node, bool deep - which are the node
to import and a flag indicating whether a deep copy (true)
should be imported, or only the node itself (false). Namespace
information is imported even if a shallow copy is made. Fails and
throws InvalidArgumentException if the node is a type that
cannot be imported (document, entity, notation).

Table continued on following page

Method
Load

LoadXml

ReadNode

Save

WriteContentTo

Usage

Loads an XML document and parses it. Four overloaded forms are provided:

stream input - stream containing the document

string docURL - URL of the document to load

TextReader reader - reader object used to bring the document in

XmlReader reader - reader object used to load the document

Significant whitespace is always preserved. (Setting PreserveWhitespace
only applies to non-significant whitespace) This method fails and throws an
XmlException if an error occurs during parsing. Validation is not
performed; if you want validation, you must use one of the latter two forms
and provide an XmlValidatingReader and its supporting objects, as
discussed in Chapter 2. This method is a proprietary extension to the DOM.

Loads an XML document from a string. The single string parameter is
composed of the document markup. No whitespace is preserved. Validation
is not provided. This is a proprietary extension to the DOM.

Creates and returns an XmlNode (or null), given an XmlReader
parameter. The node is built based on the current position of the reader. If
the reader is positioned on a node that does not translate into a DOM type
(EndElement or EndEntity, for example), the method fails and an
InvalidoperationException is thrown. The reader is advanced to the
next node. If the current node is an element, the entire child sub-tree is copied.

Writes the XML document to a given location. Four overloaded forms are
provided:

stream out - stream to which to write the document string

filename - disk-based file location to which to write

TextWriter out - text writer object to which to write. The Encoding of
the object controls the encoding of the written document.

XmlWriter out - XML writer object to which to write. Again, the
Encoding property of this object controls the encoding of the written
document.

All forms fail and throw an XmlException if this method would result in
an XML document that is not well formed. This method is a proprietary
extension to the DOM.

Saves the children of the document node to the single XmlWriter
parameter. The Encoding property of the XmlDeclaration node, if any,
controls the encoding of the document written (UTF-8 is the default).

This method is a proprietary extension to the DOM.

112

XmlDocument

Method Usage

WriteTo Writes the document node and all children to the XmlWriter provided
as the single parameter. Encoding of the written document is as for
WriteContentTo.

This method is a proprietary extension to the DOM.

As you can see from the table, there are two methods for creating any type of XML node: the general
CreateNode, and the specific CreateX method, where X represents the type of node being created.
Which form you choose really depends on the requirements of your application. In general, CreateXis
easier and more convenient when building a well-known, specific structure, while CreateNode is better
when building general-purpose code, as it allows you to perform conditional initialization of the
parameters, based on the circumstances of your application.

A crucial method that it would be easy to overlook here is ImportNode. If we have two XmlDocument
instances and we wish to transfer a node between them, we must use ImportNode. Exceptions result if
we attempt to insert nodes created in another document into the current document by any other means.

Two other methods worthy of note are GetElementByld and GetElementsByTagName. While XML
is inherently hierarchical (as is the DOM), it does offer relational constructs through the ID, IDREF, and
IDREFS attribute types. If we have a formal specification such as a DTD or an XML schema, we can use
GetElementByld and exploit this referential mechanism: an attribute of one element can act as a
pointer to another related element, because they share the same value. Obviously, a formal declaration
is needed to identify these types, but it is just as well to have one so that we can validate instance
documents. This lets us catch problems like ID values that are not unique, or IDREF or IDREFS values
that have no corresponding ID value in the document.

Afar better approach, XPath, is presented in the next chapter. It is more sophisticated than
GetElementByld, yet does not require a formal metadata document. Also note that the current
(May 2002) XmlDocument implementation only supports DTDs for use with
Ge tEl emen tByld.

GetElementsByTagName, on the other hand, is a brute force approach to retrieval. If we know the tag
name of an element, we can retrieve it using this method. Unfortunately, we will also get every other
element with the same name. This might be what we want, or we may find it useful to get the collection
and iterate through it if we know that the collection will be small. This method does not require that
metadata in the form of a DTD or schema should be available.

Events
With all the things that can be done in a DOM tree, it stands to reason that one of the DOM classes
should support events. You might, for example, want to know when a new node is inserted, so that you
can update a user interface or do some application-specific constraint checking. That honor falls to
XmlDocument in its capacity as the principal, unifying structure of the DOM. Anything that happens in
a document is visible from this object, so it makes sense to add events to this class.

Event Meaning

NodeChanged Fired after the Value property of a node has changed

NodeChanging Fired just before the Value property of a node is changed

Nodelnserted Fired after a node has been inserted into the 'child nodes' list of another node

Nodelnserting Fired just before a node is to be inserted into the child list of another node

NodeRemoved Fired after a node has been removed from another node's child list

NodeRemoving Fired just before a node is removed from another node's child list

Each event passes an instance of XmlNodeChangedEventArgs to the event handler. This class has four
properties that may be of interest to you:

Q Action - an instance of the XmlNodeChangedAction enumeration (insert, Remove,
Change) denoting the type of event

Q NewParent - an instance of XmlNode that is the value of the node's ParentNode
property after the operation completes

Q Node - XmlNode instance to which the operation is occurring (that is, the node being added,
changed, or removed)

Q OldParent - XmlNode instance that is the value of Node's ParentNode property
before the operation

Action lets us discriminate between the three types of events, but doesn't differentiate between the
before (-ing) and after (-ed) versions of the events. If we need this information, we must use separate
event handlers, rather than employing a single, multi-purpose one.

Note once again that node-related events are part of XmlDocument, and not XmlNode and its
derivatives. This makes sense, because the document has the scope that includes the parent-child
relationship. Moreover, it gives us one place to put all event handling. We can watch nodes from the
point at which a newly created node is placed into the document, through changes, and through removal.
Putting events on XmlNode would result in more code, and would not give us such a global view.

Creating Document Components
XmlDocument is the generator of nodes that are used to make up XML documents through DOM trees.
It is not enough, however, simply to call one of the creation methods and receive a node. Until a node is
inserted into a document, it is owned by the document, but it's not part of the tree. We can call, say,
CreateElement a dozen times, but until we call InsertAf ter, AppendChild, or InsertBef ore, all
we have is an unattached cloud of a dozen element nodes.

114

XmlDocument

If we're starting with an empty document, we take advantage of the fact that XmlDocument derives
from XmlNode to call one of the latter class's insertion methods on the XmlDocument instance. This
results in the assignment of this pioneer node to the DocumentElement property of the document.
Once we have that, we can call the various insertion methods on the document element to create a
second level of elements, and so on to whatever level of nesting we need. We can add attribute nodes to
an element at any time by calling the SetAttribute method on XmlNamedNodeMap with an attribute
that previously did not appear in the collection.

Calling SetAttribute with an attribute whose name - respecting namespaces - is already
found in the collection results in the replacement of the existing attribute node with the new one.

One final shortcut for document creation should be noted. It is not necessary to create every single node
through calls to XmlDocument. It is frequently the case that some nodes, particularly elements, appear
many times in a single document instance, albeit with different values. We can use a shortcut and create
the first instance, then clone it as needed and set the values of the new nodes.

XmlDocumentFragment

XmlDocumentFragment is a helpful utility class for creating fragments of documents - think of a
clipboard for nodes that preserves structure. Note, that these are fragments, not subtrees
-XmlDocumentFragment derives from XmlNode, not XmlDocument. It has no document element, and
it is entirely possible to have a document fragment consisting entirely of peer nodes - that is, a list of
elements at the same level. The fragment object itself is considered the parent of these nodes; calling
ChildNodes on an instance of this class permits access to the first tier of nodes.

Properties
In addition to the properties of XmlNode, XmlDocumentFragment has the following public properties
in its interface:

Property Meaning

InnerXml (read/write)

LocalName (read-only)

Name (read-only)

NodeType (read-only)

OwnerDocument (read-only)

ParentNode (read-only)

String property consisting of the markup for the children of the
document fragment node. Setting the property replaces the
previous fragment.

Returns a string consisting of #document-fragment.

Returns a string consisting of #document-fragment.

XmlNodeType property with the value
XmlNodeType.DocumentFragement.

Returns the XmlDocument instance to which the document
fragment belongs.

XmlNode property having the constant value null for this class.

Since this class derives from XmlNode, it must provide some implementation for all of its properties, but
LocalName, Name, and ParentNode will always have fixed values. Although a document fragment
must belong to a document (as all XML constructs below the document level must do), it is not part of a
document. This is like a node that has been created but not yet inserted into the DOM tree. It also
explains why ParentNode is always null.

Methods
The following public methods may be called from XmlDocumentFragment, in addition to the other
methods of XmlNode:

Method Usage

CloneNode

WriteContentTo

WriteTo

Copies the document fragment. Takes a single Boolean parameter, which
when true instructs the method to make a deep copy of the document
fragment. If the parameter value is false, only the document fragment
node is copied. Returns the copy as an XmlNode.

Writes the children of the fragment to an XmlWriter instance passed as
the sole parameter of this method. Returns void.

This is a proprietary extension to the DOM.

Like WriteContentTo, except that the document fragment node is
written as well.

This is a proprietary extension to the DOM.

Each of these methods appears in the public interface of XmlNode, but they've been included here
because they are overloaded. The implementations in XmlDocumentFragment account for the fact that
the document fragment object serves as the owning 'root node' of the fragment. They ensure that only
actual XML nodes are copied or written.

XmlAttribute

After XmlDocument and XmlElement (which we'll see shortly), XmlAttribute is the most frequently
used DOM class in the System.Xml namespace. It derives from XmlNode, and adds properties and
methods that make it uniquely suited to representing XML attributes.

Properties
In addition to the properties of the XmlNode base class, XmlAttribute offers the following public
properties for your use:

116

XmlDocument

Property Meaning

BaseURI (read-only)

InnerText (read/write)

InnerXml (read/write)

LocalName (read-only)

Name (read-only)

NamespaceURl (read-only)

NodeType (read-only)

OwnerDocument (read-only)

OwnerElement (read-only)

ParentNode (read-only)

Prefix (read/write)

Specified (read-only)

Value (read/write)

Returns the base URI of the attribute as a string, or String.
Empty if none exists. In contrast to NamespaceURl, below, an
attribute can inherit this property from the element to which it
belongs. This URI will be the URL from which the document
was loaded (if the owning document was loaded).

Equivalent to Value for this class. Textual value of the
attribute as a string.

String value of the attribute as markup.

Returns the local name of the attribute as a string.

Returns the qualified name of the attribute as a string.

Namespace URI of the attribute (if one has been explicitly
declared) as a string. String. Empty if the attribute belongs to
the null namespace.

An XmlNodeType enumeration with the value
XmlNodeType.Attribute.

Returns the XmlDocument to which this attribute belongs.

Returns the XmlElement bearing this attribute, or null if the
attribute has not yet been attached to an element.

Always null for this class, typed as XmlNode.

Namespace prefix of this attribute, or String. Empty if none
exists. String type.

Returns true if the attribute was explicitly given a value in the
document, or false if it implicitly appears with a default value
due to a DTD declaration.

Textual string value of the attribute. Throws
ArgumentException if you attempt to set this property on a
node that is inherently read-only because of its type.

In this class, InnerText, InnerXml, and Value are essentially the same thing. This is one of the perils
of inheritance: sometimes, you end up with too much of a good thing! Of note, however, are Specified
and OwnerElement. Specified is unique, and reflects the fact that a DTD or schema can specify
default values. In a document, an attribute declared with such a default is automatically created with the
default value, if the document does not explicitly define that attribute on the element for which it is
declared. When working with an attribute node at run time, the only way to determine whether an
attribute actually appears in the original document on disk is to check the value of the Specified
property.

Given what we've presented on tree traversal so far, you might think that OwnerElement is
unnecessary - the designers of the DOM must have been paid by the property! Generally speaking, the
tools of this chapter only permit us to traverse the DOM tree from the document element down - but if
we need the element that bears the attribute, why not just grab it when it went by in the traversal?

However, this property can come in handy when we use XPath, which we'll discuss in the next chapter.
That technology lets us access nodes randomly, by supplying the path to them without explicitly
traversing the nodes between the start point and the desired node(s). Having OwnerElement lets us
jump back to the element from the retrieved attribute. From there, we can navigate anywhere else. This
property is a way of ensuring that we can drop into a document at any point, and still inspect the
immediate neighborhood when we get there.

Methods
The following new public methods are available on XmlAttribute:

Method Usage

CloneNode

WriteContentTo

WriteTo

Copies the attribute and returns the copy as an XmlNode. Takes a single
Boolean value denoting a deep (true) or shallow (false) copy. A clone
of an attribute whose Specified property is false will have true for
its Specified property.

Equivalent to innerXml, this method writes the value of the attribute to
the XmlWriter instance passed as its sole parameter.

This method is a proprietary extension to the DOM.

Writes the entire attribute (that is, the attribute and its value) to the
provided XmlWriter instance.

This method is a proprietary extension to the DOM.

As with XmlDocumentFragment, these methods, which are overloads of XmlNode methods, appear
here because the class requires special handling.

A Word about XmlLinkedNode

If you refer back to the inheritance hierarchy we presented at the beginning of this chapter, you'll find a
number of classes derived from XmlLinkedNode. They include classes for all of the XML constructs
other than attributes, entities, and notations. What's significant about XmlLinkedNode classes is that
they represent the XML types for which node order is important. In consequence, XmlLinkedNode
overloads those properties of XmlNode that are important to ordered traversal, namely NextSibling
and PreviousSibling.

XmlLinkedNode is an abstract class, so we never instantiate it explicitly. Therefore, we'll skip over its
properties and methods in favor of moving directly to XmlElement, one of the classes derived from it.
XmlElement is a very important class; you will deal with it in every DOM application you write in .NET.

118

XmlDocument

XmlElement

Elements are the heart of XML documents. You can write a document without attributes, but you must
always have at least one element. This is, therefore, the last class we need to study before getting down
to the practical business of programming with the .NET DOM classes.

properties
The following table lists the public methods added or overloaded by this class:

Property Meaning

Attributes (read-only)

HasAttributes (read-only)

InnerText (read/write)

InnerXml (read/write)

IsEmpty (read/write)

LocalName (read-only) Name

(read-only) NamespaceURl

(read-only)

NextSibling (read-only)

NodeType (read-only)

OwnerDocument (read-only)

Prefix (read/write)

Returns an XmlAttributeCollection containing all of the
attributes of this element.

Returns true if the element has attributes, or false otherwise.

This property is an extension to the DOM.

Gets or sets the concatenated text nodes of the element and
any children. If set, the children of this element are replaced
with the provided string.

This property is a proprietary extension to the DOM.

Gets or sets the markup comprising the children of this element.

Boolean. When true, the element is empty and written in the
abbreviated form <name/>. If the element has child content or
is written in long form <namex/name>, this returns false.

If this property is set to true, any child content will be deleted,
as you are indicating that the element should be empty.

This property is a proprietary extension to the DOM.

Returns the local name of the element as a string.

Returns the qualified name of the element as a string.

Returns the namespace URI for the element as a string. If none
exists (that is, the element belongs to the null namespace), it
returns String.Empty.

Returns the XmlNode immediately succeeding this element or
null if no such node exists.

Returns XmlNodeType. Element.

Returns the XmlDocument to which the element belongs.

Returns the namespace prefix of the element as a string, or
String. Empty if no such prefix exists.

The most significant entries in this table are Attributes and HasAttributes. The Attributes
collection provides access to any attributes of an element, while HasAttributes determines whether it
is worthwhile checking that collection. IsEmpty is another interesting property - if it has the value true,
we know not to expect any information other than attributes. Careful use of HasAttributes and
IsEmpty can cut out significant amounts of processing in our applications.

Methods
XmlElement adds the following public methods (or inherits them from XmlNode and overloads them in
its implementation):

Method Usage

CloneNode

GetAttribute

GetAttributeNode

GetElementsByTagName

HasAttribute

RemoveAll

Copies the element and returns the copy as an XmlNode
instance. Takes a Boolean parameter (true to recursively copy
child content for a deep copy, false to copy only the element).

Returns the value of the named attribute as a string. Has two
overloaded forms:

string name - qualified name of the attribute for which to search

string localname, string nsURI - local name and
namespace URI

An empty string is returned if no match is found.

Like GetAttribute (including both overloaded parameter
lists), except that the return type is XmlAttribute if a match is
found, and null if one is not.

Returns an XmlNodeList composed of all descendent elements
matching the tag name provided. Two overloaded forms are
available:

string qname - qualified element name for which to search

string localname, string nsURI - local name and
namespace URI of the element for which to search

If the name parameter is an asterisk (*), all elements match.

Boolean. Returns true if the element has the specified attribute,
false otherwise. Two overloaded forms are provided:

string qname - qualified name of the attribute

string localname, string nsURI - local name and
namespace URI of the attribute

Removes all child nodes and specified attributes of the element.
No parameters, void return. Unspecified attributes (that is,
attributes that exist because of a default value declaration in an
associated DTD) are not removed.

120

XmlDocument

Method Usage

RemoveAllAttributes

RemoveAttribute

RemoveAttributeAt

RemoveAttributeNode

SetAttribute

Removes all specified attributes of the element. Default
attributes remain. No parameters, void return.

This method is a proprietary extension to the DOM.

Removes the specified attribute, if any, from the Attributes
collection. If you attempt to remove a default-valued attribute,
it is immediately and automatically replaced. Two overloaded
forms are provided:

string qname - qualified attribute name

string Iname, nsURI - local attribute name and
namespace URI

Removes the attribute at the specified index in the Attributes
collection. Takes a single integer parameter for the
zero-based index. If the attribute is unspecified (it's a default
value), it is immediately replaced. Fails and throws
ArgumentException if the node is read-only.

This method is a proprietary Microsoft extension to the DOM.

Removes and returns an XmlAttribute from the element. If
the removed attribute is a default value, it is immediately
replaced. Two overloaded forms are provided:

string Iname, string nsURI - local attribute name and
namespace URI

XmlAttribute attr - object to remove

Sets the value of the specified attribute. Two overloaded forms
are provided:

string qname, string value - qualified attribute name and
value to set

string Iname, string nsURI, string value - local
attribute name, attribute namespace URI, and attribute value to
set

The first form throws XmlException if the name contains an
invalid character, and ArgumentException if the node is
read-only.

Table continued on following page

unapier

Method Usage

SetAttributeNode

WriteContentTo

WriteTo

Adds a new XmlAttribute node to the Attributes
collection. Two overloaded forms are provided, both returning
the XmlAttribute you added:

XmlAttribute attr - node to add. This form throws
ArgumentException if attr was created by a different
document or the element is read-only, and
InvalidOperationException if attr currently belongs to
another element. You must clone attribute nodes to reuse them.

string Iname, string nsURI - local attribute name and
namespace URI.

Writes the element's child content to an XmlWriter. Takes one
parameter - the XmlWriter instance - and returns void.

This method is a proprietary extension to the DOM.

Writes the element and its child content to an XmlWriter. Same
parameter and return type as WriteContentTo.

This method is a proprietary extension to the DOM.

Notice the variety of methods for attribute checking and management. The main tasks we perform with
elements are either management of nested content (chiefly, though certainly not exclusively, more
elements), or management of attributes. The former is handled through the methods of the
XmlNodeList contained in the ChildNodes property, while the latter - a key differentiator of
elements - is handled with such methods as SetAttribute and RemoveAllAttributes.

Conference Schedule Sample Application

Imagine that you're attending a conference, and you want to know the schedule for a day. You've lost
the brochure that details the schedule, or perhaps you're worried about changes. Maybe you had
entirely too much fun last night, and you simply can't remember today's schedule? What you need is an
ASP.NET application that produces the schedule when you supply it with the day you're interested in.
In this section, we'll write a schedule sample that's based on XML documents.

The sample will demonstrate the following DOM features:

Q Loading documents using Load and a URL
Q Navigating a document
Q Retrieving elements with GetElementByld
Q Constructing XML documents using XmlDocumentFragment and XmlDocument
Q Using shortcuts for document construction

122

XmlDocument

If you want to run the sample, copy the download files to a virtual directory on your IIS server. If
your directory has a URL other than http://localhost/Agenda, be sure to modify the URL in the
DOCTYPE declaration for master_schedule.xml.

User Interface and Application Lifecycle

To get the information you need, you access the conference intranet (you did bring your laptop, didn't
you?) and navigate to a page where you select one of the days of the conference to see the schedule. The
client side of the application relies solely on basic HTML, and will not perform script processing or XML
manipulation in the browser. The server side of the application consists of a single ASP.NET page that
uses Web Forms. The HTML elements of the user interface can be found in GetSchedule . aspx,
while the DOM code is located in GetSchedule. aspx. cs.

If you'd rather start from scratch, select an ASP.NET Web Application from the New Project Wizard in
Visual Studio .NET, and enter Agenda for the project name. Delete the default WebForml. aspx, and
add a new one called GetSchedule. aspx. Switch to the HTML view for the new form, and enter the
following within the <body> element:

<body MS_POSITIONING= "GridLayout" >

Obtain A Daily
Schedule <form method="post" runat="server">

<table height="49" cellSpacing="l" cellPadding="2"
border="0" width="161"

bgcolor="silver"> <tr>
<td>Day:</td>
<td>

<select id="daySelect" nante="daySelect" runat=" server ">
<option selected>l</option> <option>2</option>
<option>3</option> </select> </td> </tr> <tr>

<td colspan="2" align="middle">
<input id="Submitl" type="submit" value="Submit"
name="Submitl" runat="server" /> </td>

</tr> </table> </form>
<h3>Schedule</h3>

</body>

If you wish, you can also do this through the Visual Studio .NET IDE by inserting a form element into
the page (through the Insert menu on the Design view), and then dragging a listbox and a Submit
button onto the form from the HTML tab of the Toolbox. Right-click on both controls, and check
Run as Server Control. Be sure to set the id properties of the controls as shown in the HTML
source shown above.

The top portion of the page, where the user will specify the information they're after, uses a standard
HTML form with runat attributes with the value "server" added to the <f orm> and <select>
elements, so that we can work with these controls in server-side code.

When you switch back to the Design view, you should see this:

)ft Visual C# .NET [design] - GetSchedule.aspx^

-JQlxl
£9e gilt Wew Fyoject gjld Debug Daja Fgrmat Table Jisert Fpimes loote Window Help

GetSchedule.aspx*

Obtain A Daily Schedule

Schedule

Since there is no action attribute on the form element, the Web Form will hit GetSchedule. aspx
whenever the Submit button is clicked. (If present, the action attribute would have a URL for its value,
and would POST the form to the page specified by that URL.) The server will then retrieve the
schedule in XML format, using DOM code. To enable construction of the schedule in a human-friendly
format, we use an XSLT stylesheet to convert the XML schedule document into HTML that will be
embedded in the page after the form.

To aid with the final task mentioned in the previous paragraph, drag an XML control from the
Toolbox's Web Forms tab onto the page. This is a utility control that's going to take the XML document
we generate and convert it into the HTML that's streamed to the client. It will do this by applying an
XSLT stylesheet that we will specify. Here's what Visual Studio .NET inserts into the page's HTML
code in order to create the control and set it as a server-side form element:

<asp:Xml id="Xmll" runat="server"></asp:Xml>

When DOM processing completes, we'll assign the output document to the XML control's Document
property, and assign an XSLT stylesheet to the Transform property of that control. The control then
takes over, performing the transformation and returning the resulting HTML in the page's Response
stream without further intervention from us. The result is that a pure HTML page is returned to the
browser: no XML appears on the client at any time.

124

XmlDocument

Data Documents
When we come to putting our data on the server, things become a little contrived. In a real application,
we would likely use a relational database for the conference schedule. We might use XML and XSLT to
simplify the user interface, but there isn't any compelling reason to use XML for the raw schedule data.

The aim of this example, however, is to demonstrate DOM processing, so we'll store the conference
schedule as an XML file. The output document - the day's schedule - is extracted from the master
document. Just to make things interesting, we'll give the output document a different vocabulary from
the one used in the master document. This will give us the opportunity to work with DOM tree traversal
and node inspection in the master document, and to create the document programmatically as we build
a document for the daily extract.

Here is the master schedule document for our application. (Some elements have been elided for
brevity.) In short, a <Conf erence> element consists of a series of <Day> elements, followed by a
<Speakers> element and a <Topics> element:

<?xml version = "1.0'
<!DOCTYPE Conference
<Conference> <Day>
<Event speaker =
<Event speaker =
<Event speaker =
<Event speaker =
<Event speaker =
<Event speaker =
</Day>

encoding = "utf-8"?> SYSTEM
"http://localhost/Agenda/conference.dtd">

"A2" room = "Main" topic="keynote" time = "8:00"/>
"Al" room = "Greenhouse" topic="Datal" time = "09:00"/>
"Bl" room = "Corsican" topic="Theoryl" time = "10:00"/>
"Al" room = "Versailles" topic="Webl" time ="ll:00"/>
"A2" room = "Greenhouse" topic="Web2" time ="13:00"/>
"B2" room = "Corsican" topic="Data2" time = "14:00"/>

<Speakers>
<Speaker id = "A2">
<Name>Bill Gates</Name>

</Speaker>

</Speakers>

<Topics>
<Topic id = "Datal">

<Title>Making SQL Server Jump Through Hoops</Title> <Abstract>SQL
Statements are boring. Let's jazz things up with

a confluence of .NET, XML, and portable devices. </Abstract>
</Topic>

</Topics>
</Conference>

Chapter 3

Each day consists of one or more <Event> elements, and each <Event> represents a single presentation
of a topic that might be given several times during the conference. The document uses ID _ IDREF
relationships to model the 1:1:1 relationship between <Event> elements, conference speakers, 1 and topics.
This is a structure that would work well as the XML representation of some relational query.

So, each <Event> element refers to a <Speaker> element. In our document, each <Speaker> contains
nothing more than the speaker's name, but you might easily include additional information such as a job
title and some biographical text. <Event> also refers to a <Topic> element. These elements contain the
presentation title and an abstract describing the presentation. <Event> elements also provide the name of
the room in which the presentation will be given, and the starting time. Note that <Event> elements are
empty, relying solely on attributes to convey the relevant information.

We've used a DTD, rather than an XML schema, to describe our vocabulary. This is because the
GetElementByld method only supports resolution of the ID - IDREF relationship via
DTD-format metadata.

The application would be a good deal simpler if the output looked like the master schedule. In fact, given
our use of XSLT for the output, we could write the entire application in an XSLT stylesheet! Our application
is being deliberately awkward, therefore, by making us specify a different XML dialect for the output
document. This form, which is not formally declared in a DTD or a schema, follows the hierarchical form
for XML. Here's a sample of the XML document our application will create:

<AGENDA>
<SESSION>

<TOPIC>Define the Universe, Give Two Examples</TOPIC>
<SPEAKER>Galileo Galilei</SPEAKER>
<ABSTRACT>Dr. G talks post-modern nonsense.</ABSTRACT>
<ROOM>Venice Room</ROOM>
<TIME>12 : 00</TIME>

</SESSION>

</AGENDA>

Server-Side Processing

When the Submit button on our ASP.NET Web Form is clicked, the page makes an HTTP POST that's
handled by the code in GetSchedule. aspx. cs. All activity necessary to retrieve scheduling information
and format the response occurs in that handler, or in the protected methods it calls. Various optimizations
are possible, such as caching the master schedule document and the XSLT stylesheet, but we've kept the
code in one place for clarity in this prototype.

Top-Level Processing
The general flow for the server-side processing is as follows:

1 . Get the index of the 'day selection' drop-down box from the posted data

2. Create an XmlDocument instance and load the master schedule document

126

___________________________________ XmlDocument

3 . Create a skeleton response document

4 . Create a document fragment for a <SESSION> element and its children

5 . Recover the appropriate <Day> element through DOM traversal

6 . Iterate through the <Event> child elements of <Day>, creating and appending new
<SESSION> elements to the output document

7. Create an XslTransf orm instance and load the XSLT stylesheet

8 . Configure the XML server-side control

Since the Submit button was adorned with the runat attribute, we have access to server-side code for
this button. The event handler method, Submitl_ServerClick, captures the general processing tasks.
Here's how that method starts:

private void Submitl_ServerClick(object sender,
System.EventArgs e) {

int i = daySelect.Selectedlndex;
XmlDocument data = new XmlDocument();
data.Load(Server.MapPath("master_schedule.xrol"));

The drop-down box was also marked as running on the server, and given the ID daySelect, so there
will be an object with that name to represent it on the server. This conveniently allows us to retrieve the
zero-based index of the selected option. The <Day> elements are listed sequentially, but ChildNodes is
a zero-based collection, so this index will allow us to locate the correct <Day> element in that collection.
We could retrieve the option text itself from the intrinsic Request object, but that would be a string.
This index comes as an integer, which is what we'll need shortly.

Loading the master schedule document, data, is easy: we use the simplest constructor for
XmlDocument, and then invoke Load. Note the use of Server .MapPath to get a file URL for this
document on the server. Now we can turn our attention to the response document, doc:

XmlDocument doc = new XmlDocument();
MakeDoc(data, doc, i) ;

These two lines encompass a lot of tasks from the above list. MakeDoc, which we'll write shortly, takes
an initialized master schedule document (data, which we just created), an empty XmlDocument
instance for the response document (doc), and a zero-based day index. It is in MakeDoc that all retrieval
and construction tasks take place. When it returns, doc holds a complete DOM tree representing the
schedule document we want to return to the client.

Before we dive into the details, let's wrap up the top-level processing by looking at how the XSLT
stylesheet gets loaded and assigned to the XML control:

XslTransform styler = new XslTransform();
styler.Load(Server.MapPath("agenda.xslt"));
Xmll.Document = doc; Xmll.Transform = styler;

Chapter 3

The constructor for XslTransf orm is as simple as the one we used in XmlDocument (in fact, the
former derives from the latter). That means that loading the stylesheet, itself an XML document, has the
same form as the load of the master schedule. The last two lines above invoke the transformation simply
by assigning our response document to the XML control's Document property, and our stylesheet
document to the Transform property. The XML control then executes the transformation and streams
the output - an HTML fragment - to the intrinsic ASP.NET Response object.

Building a Response Document
MakeDoc receives data, an empty document object, and an index indicating which day's data to retrieve
from the master document. The first thing to do is to set up the response document with the document
element it requires, <AGENDA>:

protected void MakeDoc(XmlDocument src, XmlDocument tgt, int
day) {

try {
XmlElement root = tgt.CreateElement("AGENDA");
tgt.InsertAfter(root, null);

The first line creates root as a rootless element node. The document is empty at this point, and the
DocumentElement property is read-only. Happily, XmlDocument derives from XmlNode, so
InsertAfter is available to us. We pass null as the second parameter, and the value of root
becomes the new document element. We have a well-formed XML document!

It's a very short document, though, so now we need data with which to feed it. The first task is finding the
day in which the user is interested. We know from the structure of the master schedule vocabulary that
<Day> elements are immediate children of the document element, and that they are arranged in order
at the beginning of the ChildNodes collection. The day index passed in is the zero-based index of the
day we want, so we can reach directly into the ChildNodes collection:

XmlNode Day = src.DocumentElement.ChildNodes.Item(day);

It's still too early to start grabbing <Speaker> and <Topic> elements; that must wait until we iterate
through the <Event> elements of the master schedule. We do know, however, that we're going to need
a series of <SESSION> elements, and to this end we'll use the shortcut introduced in the discussion of
creating documents: using XMLDocumentFragment and cloning nodes. We create a fragment for a
single <SESSION> element, but we don't bother filling in any of the text nodes, as we have to change
them for every session according to the values obtained from the <Event> (and related) elements.

XmlDocumentFragment sessionFrag = tgt.CreateDocumentFragment();

XmlNode session = tgt.CreateElement("SESSION");
sessionFrag.InsertAfter(session, null);

So far, this is just the same as creating a document. The document fragment and the node are created
within the context of the document that will receive the cloned <SESSION> element sub-trees - that
way, we can bypass importing the nodes into the document. There is a distinction between this and
document creation, however: sessionFrag, being an instance of XmlDocumentFragment, has no
document element. If you called sessionFrag .ChildNodes . Item(O), you'd receive root. This
might ZooA;like a document element, but we could add additional elements using InsertAfter, and
they'd all end up as siblings of root.

XmlDocument

Now we create all the children of <SESSION>, and attach them to that element:

XmlNode topic = tgt .CreateElement ("TOPIC"); XmlNode
speaker = tgt .CreateElement ("SPEAKER") ; XmlNode abs
= tgt .CreateElement ("ABSTRACT"); XmlNode room =
tgt .CreateElement ("ROOM"); XmlNode time =
tgt .CreateElement ("TIME");

session. AppendChild(topic) ;
session. AppendChi Id (speaker) ;
session. AppendChild(abs) ; session.
AppendChi Id (room) ; session.
AppendChildl time) ;

The preliminaries are at last out of the way. We can now iterate through the <Event> elements that are
children of <Day> elements, and start retrieving the data to which their attributes point:

forfint i = 0; i < Day .Chi IdNodes .Count; i++) {
tgt .DocumentElement .AppendChi Id (
MakeSession (sessionFrag, (XmlElement) Day .ChildNodes. Item(i) , src)) ;

catch (XmlException e) {
Response. Write ("Error : XML Exception");

We've crammed a lot into one line here, but the key to unraveling it all is to know what MakeSession
does. As the name suggests, it creates a <SESSION> element. More specifically, it will set the values of
our document fragment and clone it, but that isn't important right now. Its parameters comprise a
document fragment, sessionFrag, an <Event> element, and the master schedule. Getting the
<Event> element is easy - it is an immediate child of <Day>, and we have an index in the loop variable i.

Since we're iterating through the <Event> elements sequentially, we need to add the <SESSION>
elements (and their dependent sub-trees) in the same order. They will be attached to the document
element, <AGENDA>, so calling AppendChild on the document element is ideal.

Configuring a Session
We've peeled away another layer of processing and arrived at the lowest, most detailed level of our
algorithm. This is perhaps the most interesting part, as it is where we stitch together the relationship
between <Event>, <Speaker>, and <Topic> elements.

protected XmlNode MakeSession (
XmlDocumentFragment frag, XmlElement evtElt, XmlDocument resource) {

try {
XmlAttribute speakerlD =

(XmlAt tribute) evtElt . At tributes. GetNamedl tern ("speaker") ;
XmlElement speakerElt = resource. GetElementByld (speaker ID.
Value);

XmlAttribute topicID =
(XmlAt tribute (evtElt. At tributes. GetNamedl tern ("topic") ;

XmlElement topicElt = resource. GetElementByld (topicID.
Value);

We follow the same pattern in each case: we get the IDREF value, and then pass it to GetElementByld
on the master schedule document. In each case, we get the attribute as a named item from the
Attributes collection of the <Event> element. The Value property of the returned node is the value
we need for the parameter of GetElementByld in the next line. The result is a pair of nodes
representing the <Speaker> and <Topic> elements referred to by the <Event> element we are
processing.

We're now ready to set the text node values of our document fragment, but the last two items - the
room name and the start time - are kept in attributes of <Event> itself. We know the order of the child
elements of <SESSION>, so we're going to do this using ChildNodes and ordinal access. We're using
the proprietary Microsoft extension InnerText as shorthand; the equivalent procedure using strict
DOM method calls would involve creating text nodes using CreateTextNode, attaching them to the
children of <SESSION>, and then setting their value here. Microsoft's shortcut lets us skip the first two steps:

XmlElement sessionNode = (XmlElement) frag. ChildNodes . Item (0) ;

// Topic title
sessionNode. ChildNodes . Item(O) .InnerText =

topicElt .ChildNodes . Item(O) . InnerText; //
Speaker name sessionNode. ChildNodes . Item(l) .InnerText =

speakerElt. ChildNodes. Item(O) . InnerText; //
Abstract sessionNode. ChildNodes . Item(2) .InnerText =

topicElt .ChildNodes . Item(l) . InnerText; /
/ Room name sessionNode. ChildNodes . Item(3) .InnerText =

evtElt .Attributes .GetNamedl tern ("room") . InnerText; // Start
time sessionNode. ChildNodes . Item(4) .InnerText =

evtElt .Attributes .GetNamedl tern ("time") . InnerText;

The last two values come from attributes of the Event element, so we use the now familiar GetNamedltem method
of XmlNamedNodeMap. The final step is to clone the document fragment and return it from the method,
so that MakeDoc can append the new <SESSION> element to the response document:

return (XmlElement) sessionNode. CloneNode (true) ; }
catch (XmlException e) {
return null;

130

XmlDocument

XSLT Transformation
Although we're going to look at XSLT in depth in the next chapter, we'll get a taste of it here to
transform the response document into HTML. The Framework's XML server-side control handles all of
the tasks involved in executing a transformation, and it only requires a small knowledge of XSLT syntax
to understand what is going on.

Basically, we turn each displayed element of our output XML document into an HTML DIV element
with fixed style characteristics. The results of the transformation are inserted into the shell of the HTML
document returned to the client, so we don't need to generate that in the stylesheet:

<?xml version="l . 0"?>
<xsl : stylesheet version="l . 0"

xmlns:xsl="http: //www.w3 . org/1999/XSL/Transf orm">
<xsl:output method="html" />

<xsl : template match="/">
<xsl :apply-templates />

</xsl : template>

<xsl : template match=" SESSION" >
<xsl :apply-templates/>

</xsl : template>

<xsl : template match= "TOPIC ">
<div style= "color: black; font -family: Verdana; font- size: 18pt;

font-weight : 700 " >
<xsl:value-of select="."/> </div>
</xsl : template>

<xsl : template match=" SPEAKER ">
<div style=" font- family: Verdana; font -size: 14pt; color : white;

background-color : teal ; " > <xsl :
value-of select="."/> </div> </xsl: template>

<xsl:template match=" ABSTRACT ">
<div style="color:black; font-family: 'Times New Roman' ; font-size: 12pt; ">

<xsl :value-of select="."/>

</xsl : template>

<xsl : template match="ROOM">
<div style= "color: gray; font- family: Verdana; f int-size: 12pt;

font-style: italic; font-weight: 400; "> <xsl :
value-of select="."/>

</xsl : template>

Wl IU |^LVxl *-f

<xsl:template match="TIME">
<span style="color:gray;font-family:Verdana;font-size:12pt;

font-style: italic; font-weight: 400; ">
<xsl:value-of select="."/>

</xsl:template>
</xsl:stylesheet>

Save the above as agenda.xslt in the directory containing your ASP.NET project code, and compile and
run the project with F5. Here's what the application looks like when showing the first day's schedule:

'3 Conference Speaking Schedules - Microsoft Internet Explorer

jojjsi
File Edit View Fjyorttes Tools Help
*c*Back •* ^ F a v o r i t e s ^ M e d a £ | j f V s j S f

d &

Address]® http://localhost/Agenda/GetSchedule.aspx ZJ f̂ 0

Obtain A Daily Schedule

Submit

Schedule

What I Think About Everything ... Today
Bill Gates
Ruminations of a big man so you feel you got your money's worth
Main
8:00
Making SQL Server Jump Through Hoops
lack Flash

SQL Statements are bonng. Let's jazz things up with a confluence of .NET, XML, and portable devices.
Greenhouse
09:00
The Pi Calculus for Fun and Profit
Web Master
Petri Nets were great for static systems. With transient actors, we need something more. That something is the pi
calculus. -rj

|H§ Local intranet
fflDone

Summary

We've now introduced the classes that ASP.NET uses to implement the Document Object Model. The
DOM is a product of the W3C's standardization process, and enjoys wide support from vendors. The
DOM trades away the simplicity and efficiency of stream-based processing, but in return gets a robust,
tree-structured model that maintains a comprehensive view of the document in memory at all times.
We've looked at the following concepts:

132

XmlDocument

Q DOM class hierarchy in terms of the .NET Framework classes
Q Document traversal
Q The difference between named and ordinal collection class access
Q Document and node creation
Q Use of document fragments as a shortcut for creating repeated content

The DOM is a very powerful model and forms an essential part of every professional XML
programmer's toolkit. It is well supported in ASP.NET - In fact, the Framework classes represent
Microsoft's most advanced implementation of the DOM yet. For programmers of XML applications in
ASP.NET, the Framework offers a broad array of weaponry for dealing with XML documents.

XPath

Try to imagine a large data source such as those that SQL Server can support, but without a SELECT
statement to retrieve that data. Imagine for a moment that the only way to see your data was to retrieve
the entire table at once! Without the filtering capabilities of SQL statements, life would get pretty
difficult when dealing with a table consisting of thousands of rows.

An XML document can represent a data source, and thousands of XML nodes are possible, so where is
the SELECT statement to retrieve and filter nodes to a manageable level? The established way to query
data in an XML document is through XPath. We look at an alternative, XQuery, in Chapter 9.

We will be using XPath extensively throughout the rest of the book, and this chapter aims to cover the
following essential points:

Q Introduction to XPath
Q Understanding node types in the XPath node tree
Q Location paths - absolute and relative
Q Location steps - axis, node-test, and predicate
Q Using XPath with XmlNode methods
Q XPath operators and functions
Q Using XPathNavigator

We will also create two Web Forms: one to exploit the XmlNode methods that execute XPath
expressions, and the other to demonstrate the features of the XPathNavigator object.

Chapter 4

Why XPath?

Put simply, XPath is a standard language for retrieving data in an XML document. XPath 1.0 became a
W3C Recommendation on November 16, 1999, and the specification is available for review at
http://WWW.w3c.org/TR/xpath. We will be focusing on this version in this book, as this is the version
used in the .NET Framework. XPath 2.0 is currently at working draft level, and more information on it
can be found at http://www.w3.org/TR/2001/WD-xpath20-20011220.

XPath is a standard expression language for identifying, selecting, or manipulating nodes (a node is a
generic term for any part of an XML document - elements, attributes and so on) and is used by several
technologies today. We'll take a look at these now, starting with where XPath is found in the .NET world.

XPath and .NET

The .NET Framework contains classes that support XPath queries, including:

Q System. Xml. XmlNode and all of its derivatives such as XmlDocument - XPath
expressions are generally passed into one of two methods, SelectSingleNode and
SelectNodes, according to whether a single matching XMLNode is to be returned, or a set of
nodes. (Alternatively, we can execute the XPath statement from an XPathNavigator object
returned by the CreateNavigator method. See last bullet point.)

Q System. Xml .XPath .XPathDocument - This is an optimized, read-only cache of the
underlying XML. XPath statements are executed by retrieving the XPathNavigator object
using the CreateNavigator method. See next bullet point.

Q System.Xml .XPath.XPathNavigator - Both XmlNode (and its descendants) and
XPathDocument contain a method called CreateNavigator, which returns an instance of
this object. With this object, we can compile an XPath expression, and determine its validity
and even the return type. We cover this later, in the section Using XPathNavigator.

This chapter will extensively explore the use of XPath in these methods.

XPath and XSLT Style Sheets

XSLT style sheets also use XPath expressions to select nodes from an XML source document that will
be transformed according to a series of template rules. Each template rule defines how the selected
nodes should be transformed in the resulting output.

Chapter 5 contains more information on XSLT style sheets.

XPath and SQL Server 2000
Microsoft SQL Server 2000 is rich with XML support. Not only does SQL Server 2000 allow data to be
returned as XML, it also enables developers to query the database using XPath expressions. This is
accomplished by creating an annotated XML Schema (which serves as an XML view to the underlying
tables). The XPath expression is performed against the XML view, which generates an XML response.

For more information about retrieving XML using XPath in SQL Server 2000, see Chapter 7.

136

XPath

XPath and Other XML Technologies
Knowledge of XPath comes in handy for various other XML technologies as well. Below is a list of those
XML technologies followed by the role that XPath can play:

Q XPointer - Links one document to nodes in another
Q XML Schemas - Enable referential constraints; Schemas can use XPath to enforce

uniqueness and establish relationships

Q XML Signature - Enable node-set filtering and transformation support

Clearly, learning how to use XPath will sharpen our XML skills in all these differing technologies.

Let's now move on to examine exactly how we can access node information using XPath.

Accessing Node Information

What information do we as developers have access to in the source XML document? How do we
differentiate between elements, attributes, or comments within such a document? When invoked, what
does an XPath expression return? To answer these questions, let's take a look under the hood to see
how it all works.

Understanding the XPath Tree

How XPath "sees" an XML document is the starting point to understanding how XPath works. With this
in mind, let's take a look at an XML file named shopping-cart. xml, which is a simplified version of
a file that I once used in a production environment. Don't worry too much about the custom-error
processing instruction at the beginning, its meaning is processor specific, and has been included just for
illustrative purposes.

The following XML document will be referenced in many examples this chapter, and
is included in the code download for the book.

<?xml version="l.0" encoding="UTF-8" ?>
<?custom-error code="0" message="OK" ?>
<!--Shopping Cart Example-->
<shopping-cart xmlns="urn:wrox-asp.net-xml-xpath">

<header>
<customer id="P4LLC" billingld="001" shippingld="001'
<contact>Toshia Palermo</contact>

</customer>
<order-type>Regular</order-type>

</header> <items>
<item id="ITM-1001" productLine="l">
<quantity>l</quantity>
<list-price>123.45</list-price>
<description>Gadget XYZ</description>

</item>
<item id="ITM-1002" productLine="l">
<quantity>3</quantity>
<list-price>4.00</list-price> <description>XYZ
Accessory</description> </item>
<item id="ITM-1003" productLine="2">
<quantity>l</quantity>
<list-price>15.00</list-price>
<description>Gizmo Part</description> </item>

<item id="ITM-1004" productLine="3">
<quantity>l</quantity>
<list-price>44.00</list-price>
<description>Widget X</description> </item>
</items> </shopping-cart>

The question to ask now is - how does XPath interpret the preceding XML document? The underlying
principle is that it, as any other XML document, is viewed as a hierarchical tree of nodes. Each node in
the tree is classed as a specific node type. Let's quickly look at what these node types are.

Node Types
As a reference, the table below identifies and describes the seven node types recognized in the XPath tree:

Node Type Description

Root

Processing
Instruction

Comment

Element

Every XML document begins with an implicit root node, which lies at the top
of the XPath tree, and therefore never has a parent. This is not to be confused
with the document node, which is an explicit element, and in the above sample
XML file is the <shopping-cart> element. The root node is the implicit node
that is the parent of this node.

Processing instructions are distinguished by the <? and ?> delimiters. One of
the most commonly-used processing instructions links the XML file to an XSLT
style sheet like so:
<?xml-stylesheet type="text/xsl" href="name.xsl"?>

Note: Although XML declarations share the <? and ?> delimiter syntax, they
are not considered processing instructions, and are not represented in the XPath
tree.

Comments are distinguished by the < ! -- and --> delimiters. It is not required
for an XML parser to pass comments to a higher application, but Microsoft's
parser does so, as do most.
Every element in an XML document maps to a distinct element node in the
corresponding XPath tree. Every well-formed XML document consists of a
single document element, which contains any number of descendent elements.

138

XPath

Node Type Description

Attribute

Namespace

Text

Every attribute in an XML document maps to a distinct attribute node in the
corresponding XPath tree. The parent of an attribute is the element in which it is
contained, although attribute nodes are not considered children of element.

If an attribute is not explicitly set in an XML document, but has a default value
specified in the corresponding DTD or XML Schema, it will be represented in
the XPath tree.

Each distinct namespace node is associated with the element in which it was declared.
Although the namespace node in many ways resembles an attribute node of an
element (for instance, the parent of a namespace node is the element associated with
it, yet the namespace node is not considered a child of that element), it is considered
a special case, and is distinguished by the following syntax:
xmlns:prefix="URI"

where prefix indicates a string which precedes any element belonging to that
namespace in the document. Note that it is not required to specify a prefix:
xmlns="URI"

in which case the namespace is said to be the default namespace, and any
unprefixed descendent elements are taken to be members of it.

Namespace nodes are not shared. If an element defines a namespace, that
namespace will cascade down to all child elements, but each child element will
have its own distinct namespace node in the XPath tree.

The content of an element is considered a separate text node. Text separated by
markup is normalized to form one single text node. A text node contains at least
one character. The parent of a text node is the element which contains it,
likewise, the text node is a child of the element.

Now let's take a look at the following illustration which shows the top of the XPath tree for the
shopping-cart. xml document:

Namespace Node | Namespace Node

As the illustration indicates, there are more nodes under the <header> and <items> nodes. Before we
look at those though, let's just consider the top of this tree. As we have seen, there are seven node types
recognized by XPath. The very first node is the implicit root node, of which there is only ever one.
Consider the root node as the "starting point" for the entire XML document.

In this case, the first node we come to after the root node is a processing instruction node. It represents
an instruction for the XML parser, and its exact meaning is not important. Notice though the XML
declaration given right before it:

<?xml version="1.0" encoding="UTF-8"?>

which, although outwardly appearing much like a processing node, is not represented in the XPath tree,
in accordance with the XPath specification.

Hence there are just two other nodes under the root node in our example - a comment node containing
the string "Shopping Cart Example", and the single document element of <shopping-cart>, which
has a node type of element node.

Under <shopping-cart> we find three nodes, two of which are also element node types - <header>
and <items>, and the third being a namespace node. Remember that although it is under
<shopping-cart>, it is not considered a child of the element - even though the element
<shopping-cart> is considered a parent of the namespace node. If this seems a little nuts right now, it
does simplify things when selecting the children of elements, where we usually do not wish to include
namespace nodes.

In our example, the namespace node contains the value:

urn:wrox-asp.net-xml-xpath

As no prefix was given, this specifies the default namespace for descendent elements. Notice however
that it is not shared with <header> or <items>, as each element now is given its own distinct
namespace node - although they will all contain the same value.

Underneath the <header> element, the tree view can be represented like this:

Namespace Node <customer> <order-type>

Namespace Node
U- Namespace Node "Regular"

Text Node

id Attribute f*-
<contact>

[billingld Attribute J4-
Namespace Node

ishippingld Attribute 14- "Toshia
Palermo"
Text Node

140

XPath

Once agam> each element descendant of the document element has its own namespace node. Under the
<customer> element, we see three attribute nodes named id, billingld, and shippingld. These re
attribute node types. Like namespace nodes - and for the same reason - XPath does not consider an
ttribute node to be a child of the element that contains it, although the element containing the attribute
is considered its parent. It might help to think of attributes as 'properties' of the element they belong to,
while other child elements have their own tree structures and 'properties' (attributes) of their own.

Finally* the <contact> and <order-type> elements also each have a distinct namespace node. Plus,
the characters found between the opening and closing tags of the elements are considered as a separate
text node. In our example, the value of the text node child of <order-type> is "Regular", while the
value of the text node child of <contact> is "Toshia Palermo".

Since we have seen an example of each node type, we don't need to go into the details of how the XPath
tree looks under the <items> element. Just bear in mind that each <item> element is a unique child
node under the <items> element, and will appear in the tree in the same order as in the source
document. Also, each descendent element under <items> will have its own namespace node.

By observing the hierarchical relationships of a typical XPath tree and looking at the various node types,
I hope to have laid the ground for more detailed examination of the XPath syntax for locating any
desired nodes in an XML document.

Location Paths

Location paths are XPath expressions that locate specific nodes in the XPath tree. In this section, we
will look at the basic structure of a location path. There are two primary kinds of location path: absolute
location paths and relative location paths. This nomenclature is borrowed from the absolute and relative
paths of URLs and those used in disk file systems, and work on the same principles.

Unless otherwise indicated, the XPath examples from this point forward will assume
the shopping-cart. xml is not declared with any namespace. Namespace support
will be covered later this chapter.

Absolute Location Paths
Absolute location paths always specify nodes starting at the root node of the XPath tree. For illustration,
consider how we might change to the IIS wwwroot directory by entering the following command at a
DOS prompt:

>cd c:\inetpub\wwwroot

This sets the current directory to the wwwroot directory, no matter where we might be in the file system
when we issue it: it is an absolute file path. In the above example, beginning the file path with the drive
letter (c : \) indicates we are supplying an absolute address.

Chapter 4

In XPath, we indicate an absolute path by the forward slash character ("/") to start us at the root node.
For instance, the following XPath uses an absolute path to locate the <header> element node in the
shopping-cart .xml file:

/shopping-cart/header

As in the file path example above, no matter where we are in the XPath tree, the above XPath
expression will always locate the same <header> element under <shopping-cart>.

What do we mean by "no matter where we are in the XPath tree"? As this statement implies, the XPath
expression is executed in the context of the node we currently have access to - called the context node.
Understanding this concept will help us to understand the next location path type. Think of the context
node as the point from which execution begins. Following the analogy of a file system directory
structure, the context node is equivalent to the current directory.

Relative Location Paths
If we want to access nodes relative to the current node in the XPath tree, we use a relative location path.
Let's return to the familiar file path notation for illustration. Suppose we are in the C : \Program Files
directory at a DOS prompt. To access the Microsoft Visual Studio .NET folder immediately under
the Program Files directory, we could type the following:

>cd "Microsoft Visual Studio .NET"

As this file path does not begin with a drive letter, the path search is in the context of the directory
where we are currently located. If we executed this statement from any other folder, we would either get
a message indicating that the system could not find the path specified, or, less likely, end up in a
different Microsoft Visual Studio .NET folder to the one we intended.

In XPath, relative location paths work in a very similar manner. Any XPath expression that does not
begin with the forward slash character ("/") is executed in the context of the current node. For example,
if the context node is the <header> element, the following XPath expression would return the
<contact> element node:

customer/contact

Now if this were executed from any other node in the XPath tree, no nodes would be returned (resulting
in null). We look at how and when the context node is changed later.

Structure of a Location Path

A location path consists of one or more "location steps", and is read left to right. The result of each step
within the location path is a node-set, which provides the input for the next location step to the right.
Ultimately, the location path returns a node-set of many, one, or zero nodes (in other words, a null
node-set).

The generic format of an absolute path is thus something like:

/Step/Step/Step...

142

XPath

Whereas the format of a relative path begins without the forward slash character ("/"):

Step/Step/Step...

Each location step in an expression is separated with the forward slash character. Now we will examine
in detail what a location step consists of.

Location Step

A location step consists of three parts: an axis, a node-test, and optionally a predicate. The syntax of a
location step follows this pattern:

axis::node-test [predicate]

Let's consider each part of the location step.

Axis
The axis specifies the direction in which to move in order to locate the node(s) we are searching for.
XPath defines a total of 13 axes, described in the following table. If a match is not found, a null value is
returned.

XPath Axis Description

ancestor

ancestor-or-self

attribute child

descendant

descendant-or-self

following

The ancestor axis of a node includes its parent node, the parent of
that node, and so on all the way up to the root node. The node-set
denoted by this axis will be ordered in the way that the nodes
appear in the XPath tree. Therefore, the root node is always the
first in the node-set.

Same as ancestor, but the resulting node-set also includes the
node itself.

When the context node is an element, this is returns a node-set of
all its attributes.

Returns the child nodes of the context node. Attribute and
namespace nodes will never be included in the resulting node-set.

Returns the child nodes of the context node, and their children,
their children's children, and so on. As with the child axis,
attribute and namespace nodes will never be included in the
resulting node-set.

Same as descendant, but the resulting node-set also includes the
context node.

Returns all nodes (except attribute and namespace nodes) that
appear after the closing tag of the context node. Therefore,
descendants of the context node are not included in the resulting
node-set.

Table continued on following page

XPath Axis Description

Returns all siblings (that is, elements at the same level in the XML hierarchy)
that come after the context node in the current document. If the context
node is either an attribute node or a namespace node, the node-set will
return null.

Returns any namespace nodes of the context node if it is an element. Returns

the parent of the context node.

Returns all nodes (except attribute nodes and namespace nodes) that appear
before the opening tag of the context element. Ancestors of the context
node will not be included in the resulting node-set.

Returns all siblings that precede the context node. If the context node is
either an attribute node or a namespace node, the node-set will return
empty.

Returns the context node.

Of these 13 axes, five allow abbreviated syntax. The following table has
examples of how to use each axis in its abbreviated form:

 following-sibling

namespace

parent

preceding

preceding-sibling

se l f

XPath Axis Unabbreviated Example Abbreviated Example

ch i ld child: : customer customer
1 child is
th

in effect,
default axis)

attribute attribute: : id @id
descendant-or-self /descendant-or-self: :item / / i t em
parent parent : : node ()
self self : :node ()

Note particularly that the absence of an axis implies child, node (), appearing in the above examples,
returns true for all nodes at the current location, and we'll cover it further in the section headed The
Node-Test, once we've looked at some examples of these five axes used with our sample XML file.

Using the Child Axis
The following expression retrieves the <customer> element using an absolute location path:

/child::shopping-cart/child::header/child::customer

The more readable abbreviated form would be:

/shopping-cart/header/cus tomer

144

XPath

Using the Attribute Axis
If the context node is at the <items> element, we can specify the productLine attribute of the
<item> element using the following relative location path:

child::item/attribute::productLine

It could also be written like so:

item/@productLine

Using the Descendant-or-Self Axis
An absolute location path to return all <description> elements that are descendants of the <items>
element would be:

/child::shopping-cart/child::items/descendant-or-self:description

Using abbreviated syntax, it becomes:

/shopping-cart/items//description To get hold of all <item> elements

anywhere in the XPath tree, we could use:

/descendant-or-self::item

This is the same as:

//item Note that the technical name of the / / operator is the recursive

descent operator.

Using the Parent Axis
To find the parent of the <contact> element, if <contact> is the context node:

parent::node() This

can be abbreviated to:

Similarly, we can retrieve the element that contains the billingld attribute, if the billingld
attribute is the context node, with this expression:

parent::node()

This can also be rewritten as:

The latter demonstrates that the element containing a particular an attribute node is considered its
parent, even though the attribute is not considered a child element.

Using the Self Axis

To search for all <quantity> elements that are descendants of the context node, we can use:

self::node(}/descendant-or-self::quantity We

could use the abbreviated form equally well:

. //quantity

These examples give a good general idea of how the axes function. Now let's consider the next part of the
location step - the node-test.

The Node-Test
Once we know the axis, we must next specify which node(s) we want from that axis, which we do using
the node-test in one of two ways:

Q Locate the node(s) by

name G Locate the node(s)

by type

Locating Nodes by Name
We have several options available when referencing nodes by name. When locating nodes by name, we
have the option to:

Q Search for a specific name
Q Search for all nodes (the asterisk "*" may be used for wildcard searches)
Q Search for a specific namespace and name
Q Search for all nodes in a specific namespace

We have already seen how to locate a node with a specific name. For instance, the following example
demonstrates how to find any attribute called id in the XPath tree:

//@id But what if we wanted a node-set of all attributes in the document? We use the wildcard "*"

like this:

//@*

146

XPath

The same applies for elements. For example, the following XPath expression returns all elements found
under the <header> element:

/shopping-cart/header/* In our sample XML file, this would return the

<customer> and <order-type> elements.

Most of the examples we have seen so far have assumed that no namespace has been declared. If we had
set a namespace, and allocated it the prefix of wrx, say, our XPath expressions would require the prefix
in the node-test. For example, the following XPath expression would return the <items> element:

/wrx:shopping-cart/wrx:items

The use of namespaces in XML documents is quite prevalent, and we will see more examples of
namespace support throughout the chapter.

Locating Nodes by Type
We can also search for nodes by type. The following table describes the four node-tests which locate a
node by its type:

Node-Test Result
node () True for all nodes.

text () True for all text nodes.

comment () True for all comment nodes.

processing-instruction () or True for all processing instruction nodes.

Optionally,
processing- we can specify a literal target. For example, the
ins truct ion (target) processing instruction in our sample file:

processing-instruction("custom-error")

In earlier examples, we saw the node () test in action for the self and parent axes. This is useful when
we do not want to use (or we don't know) the actual name of the node in our location step. When we want
to find specific node types, we can use the node-tests in this table as a guide, as in the following examples.

The following expression would retrieve the text node of the <contact> element:

/shopping-cart/header/customer/contact/text() The next

expression retrieves all comment nodes in the document:

//comment()

This one returns any processing instruction nodes under the root node:

/processing-instruction()

Predicate
For the most part, our location steps have been comparable to a SELECT statement with no WHERE
clause. We can achieve a similar sort of filtering in XPath through use of predicates; the third and final
part of a location step. Unlike the axis or node-test, predicates are optional. The syntax for a predicate is
always contained within square brackets like this:

axis::node-test [predicate] There are three different ways to

filter nodes in a location step:

Q Filter by presence

Q Filter by value Q

Filter by position

Let's examine each in detail.

Filtering Nodes by Presence
In some cases, we may want to select nodes based on the presence of other related nodes. All that is required
is to specify the location path for such related nodes as the predicate, as in the following examples.

To select all <header> elements that contain a <customer> element as a child node:

/shopping-cart/header[customer] To return all <item>

elements that have a productLine attribute:

//item[@productLine] To return all <contact> elements only if the direct parent element is

<customer>:

//contact[parent::customer]

The last example is an example of how we can filter nodes based on the presence of nodes in whatever
axis location we choose. Note that location steps specified in the predicate like this must be relative
paths in order to be meaningful.

Filtering Nodes by Value
A classic WHERE clause in a SELECT statement allows us to refine our search based on data in the table,
and we can do the same thing with predicates in the location step. Have a look at the following examples.

148

XPath

We can search for the <item> element that contains an id attribute equal to "ITM-1002":

//item[@id="ITM-1002"]

Note the use of double quotes (") around the literal string in our predicate. Enclosing the value in single
quotes (') is also valid. We can also search for all <item> elements where <quantity> is equal to 1:

//item[quantity="l"] Note

that this is equivalent to:

//item[quantity/text()="!"]

These are very similar, except of course that the first example refines the search based on the value of an
attribute, while the second example refines the search based on the value of an element.

Filtering Nodes by Position
We can also filter nodes based on their position within the source XML document. Note that if a reverse
axis (such as ancestor, ancestor-or-self, preceding, or preceding-sibling) is specified, the nodes will
nonetheless be numbered in document order. Let's see some examples.

To retrieve the third <item> element:

/shopping-cart/items/item[3]

We can search for the second preceding <item> element like this, assuming the context node is an
<item> element:

preceding-sibling::item[2]

Defining Multiple Predicates
We can also define multiple predicates in the same location step. In this case, the order of the predicates
makes a difference. Once again, I'll illustrate with some examples.

This expression searches for all <item> elements where <quantity> is equal to 1, narrowing the
search to the second <item> in the resulting node-set (remember the left-to-right rule of location paths):

//item[quantity="l"][2]

The result of this XPath expression on our sample document would be the <item> element with an id
attribute of "ITM-1003". Now if we reverse the predicates like this:

//item[2][quantity="l"]

The resulting node-set would now be empty (null), because this expression is attempting to select the
second <item> element only if it contains a <quantity> equal to 1, which is not the case in our
sample document.

_>l IdjJld

Using XPath with XmlNode

Now that we have built a solid foundation in XPath basics, the next step is to see how we can use it in
our ASP.NET applications. So, in this section, we will design an ASP.NET page that will load an XML
document using XmlDocument, from the System.Xml namespace, and allow the user to execute XPath
statements against it or any of the nodes within it.

The XPath Web Project

Let's now create a web application where we can put our XPath knowledge to use.

Open Visual Studio .NET and select File | New | New Project, and create a new C# ASP.NET web
application called XPath:

lempiates:

Application Control Library

Visual C++ Proiects Setup and
Deployment Projects Other Projects
-£n Visual Studio Solutions ASP.NET Web

Control Web Service

P
Console Windows Empty Project
J|).'.'ing an application with

location:
ct wil be created at Wtp: Wbcdhost*<Pa(h

Visual Studio .NET will create a new web project and open the Web Form Designer. A blank Web
Form is now available for us to design and code.

The XPath Web Form
Our objective is to design a web form that will load up an XmlDocument, capture an XPath expression
from the user, and display the results on the screen. This page will serve as a utility for testing XPath
expressions against the shopping-cart .xml sample file, but with minor modifications, it would not
be hard to make the page a generic utility to test any specified XML document.

First, rename the default web form (WebForml. aspx) to XPath. aspx. Then add five labels, two text
boxes, and two buttons from the Web Forms tab of the Toolbox, and set their ID properties as shown
in the following table:

150

XPath

Web Form Control
Label
Label
Label
Label
Label
TextBox
TextBox
Button
Button

ID Property
TitleLabel
PrefixLabel
XPathLabel
MessageLabel
ResultsLabel
PrefixTextBox
XPathTextBox
SelectSingleNodeButton
SelectNodesButton

Lay the controls out as in this screenshot, formatting and sizing as shown:

File Et» View Eroject Biid Bebug
OsU
^3 U cS Hffl I tot

XPath Test Page
-"refix for Default Namespace: ;].

iCPath Egression: |..
SeiectSingleNode j] SetectHodss .1

MessageLabef]

: ;

PResultsLabel]

*
-

\^ Solution XPath'(1 project}
B [§ XPalh

[p • ^ Refeiences
j b i n

Assemblylnto.es IB
Q Slobalasax

shopping-catt.xml
Webconfig

a- __ _
 ̂
 XPath.aspK.resH

H3 XPath. vsdisco

Viewing the HTML
If we click the HTML button at the bottom of the designer, we can see the Page directive right at the top
of the HTML that VS.NET has generated for our web page. Note that this directive points to another
file for the code behind:

<%@ Page language="c#"
Codebehind="XPath.aspx.cs"
AutoEventWireup="false"
Inherits="XPath.WebForml" %>

As we see, all the code for this Web Form will be found in the XPath. aspx. cs file, which was
automatically created when we renamed the page. The Inherits attribute indicates that this page is
inherited from the XPath. WebForml class, which is still the name of the class defined in the
XPath.aspx.es file. When we change the name of the class in the code-behind in the next section, the
value of this Inherits attribute will be updated automatically to reflect the new name.

The Code-Behind for XPath.aspx
So let's now turn our attention to the code-behind file XPath. aspx. cs. Change the class name and the
namespace that contains it as shown below, and add using statements for the System.Xml and
System. 10 .NET namespaces at the top as highlighted:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using Systern.Web.UI.WebControls;
using Systern.Web.UI.HtmlControls;
using System.Xml;
using System.10;

namespace Wrox.ASPNET.Xml.XPath {
/// <summary>
/// Summary description for XPath
/// </summary>
public class XPath : System.Web.UI.Page
{
protected System.Web.UI.WebControls.Label TitleLabel;
protected System.Web.UI.WebControls.TextBox XPathTextBox;
protected System.Web.UI.WebControls.Button SelectSingleNodeButton;
protected System.Web.UI.WebControls.Button SelectNodesButton;
protected System.Web.UI.WebControls.Label XPathLabel;
protected System.Web.UI.WebControls.TextBox PrefixTextBox;
protected System.Web.UI.WebControls.Label PrefixLabel;
protected System.Web.UI.WebControls.Label MessageLabel;
protected System.Web.UI.WebControls.Label ResultsLabel;

152

XPath

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the
page here }// Page_Load

[Web Form Designer generated code]

As we can see, the controls that were added in the designer are reflected in the code as well. The region
entitled [Web Form Designer generated code] contains a block of code that is maintained by
Visual Studio .NET, and contains the code to initialize the page.

Declaring Other XML Objects
Add the following object member declarations just after the last control declaration:

protected System.Web.UI.WebControls.Label MessageLabel;
protected System.Web.UI.WebControls.Label ResultsLabel;

private XmlDocument _SourceXml;
private XmlNamespaceManager JSIamespaceManager;
private XmlNode _SingleNode;
private XmlNodeList _Nodes;
private XmlNode _ContextNode;

private void Page_Load(object sender, System.EventArgs e)

The _SourceXml object is an XmlDocument that will be used to load the shopping-cart .xml
document. The _NamespaceManager object is an XmlNamespaceManager which will provide
namespace support for executing our XPath expressions. The _SingleNode and _Nodes objects will be
used to capture the results of our XPath query. Finally, the _ContextNode will house the current node
returned so we can also execute relative location oaths.

Note that the underscore "_" preceding each object name is a commonly used naming convention for
private or local variable declarations. This is a matter of preference, as Microsoft does not provide any
guidelines for objects at this level of scope.

Loading the XmlDocument
In the Page_Load event, let's add the following code:

// The try block will catch the error should the XML files not be available
try
{
// Load the shopping-cart.xml document if not already cached

if (Cachet "SourceXml"]==null) {
// shopping-cart .xml must be placed in the XPath virtual directory
string _XmlDocPath = Server .MapPath (Request . ApplicationPath + "

/shopping-cart .xml") ;
_SourceXml = new XmlDocument () ;
_SourceXml .Load(_XmlDocPath) ;

// Save the loaded XmlDocument to the cache
Cache [" SourceXml "] =_SourceXml ; }

else
{
// Get the XmlDocument saved in the cache
_SourceXml = (XmlDocument) Cache [" SourceXml "];

The code above attempts to load the _SourceXml object either from the shopping-cart . xml file, or
from the cache. If Cache [" SourceXml "] is null (meaning we have not yet stored the _SourceXml
object in the cache), we get the path to the shopping-cart . xml file (assumed to be in the same
directory as our Web Form), and load it. Otherwise, we can optimize performance by using the cached
XmlDocument from a previous visit to the page.

The following code completes the Page_Load event handler:

// Add support for namespaces if
(PrefixTextBox.Text !=" ") {
_NamespaceManager=new XmlNamespaceManager (_SourceXml .NameTable) ;
_NamespaceManager . AddNamespace (Pref ixTextBox . Text ,

"urn: wrox-asp.net -xml -xpath") ; }

MessageLabel .Text = "Shopping-cart .xml is loaded...";
ResultsLabel .Text = " " ; }

catch (Exception handledException) {
MessageLabel. Text = handledException. Message; }

This code first checks to see if there is any value in the Pref ixTextBox. If there is, it is mapped to the
urn: wrox-asp.net -xml -xpath namespace in the source XML document with the AddNamespace
method. The prefix entered by the user in this textbox will allow us to locate nodes associated with that
namespace in our XPath expressions.

Preserving the Context Node for Relative Location Paths
Just as we used the Cache property to preserve the XmlDocument across round trips to the web server,
we will also cache the result of our XPath queries when such return a single node, as that will be the
current context node. Here is a private method we can add to our XPath class to retrieve the context
node:

154

XPath

private XmlNode GetContextNode () {
XmlNode _ResultNode = null;
try
{
_ResultNode = (XmlNode) Cache ["ContextNode"]
if (_ResultNode==null)
{
_ResultNode = (XmlNode) _SourceXml;

catch (Exception handledException) {
MessageLabel .Text = handledException. Message; }

return _ResultNode;

This function returns one of two values - either the value of the Cache ["ContextNode"] , or the root
node of the _SourceXml if the cache is null.

Executing XPath Expressions Using SelectsingleNode
In the Design view for XPath. aspx, double-click the SelectsingleNode button to create the click
event handler, and place us inside the handler in the XPath. aspx. cs code file. Add the following
code, which executes an XPath statement provided by the user:

private void SelectSingleNodeButton_Click(object sender, System. Even tArgs
e) {

try
{
_ContextNode = GetContextNode () ;
_SingleNode = _ContextNode. SelectsingleNode (XPathTextBox. Text,

_NamespaceManager) ;

if (_SingleNode==null) {
MessageLabel .Text = "No matching nodes!"; }

else {
MessageLabel .Text = "Context Node = " +

_SingleNode.Name + " ,
Node Type = "
+ _SingleNode.NodeType.ToString() ;

ResultsLabel . Text=Server . Html Encode (_SingleNode . OuterXml) ; Cache!
"ContextNode"] = _SingleNode; } }
catch (Exception handledException) {
MessageLabel .Text = handledException. Message;

First, we call the private method we created earlier to determine the context node. We want to execute our
XPath queries from this node to support relative location paths. Next we execute the XPath expression
typed into the XPathTextBox by the user, and return the resulting value to _SingleNode. Notice we pass
in the _NamespaceManager object (instantiated in the Page_Load event) as an argument to provide
namespace support.

If _SingleNode is null, the XPath expression yielded no matching nodes, and we display a message f
to that effect in the MessageLabel control. If it is not null, we display the resulting node's name and f
node-type, as well as the markup. Note that unless we use the Server. HtmlEncode method to escape J
the results, the output in ResultsLabel will not appear correctly, as your browser will treat all the ,f
XML tags as invalid HTML and discard them, leaving only the content of any text nodes. |

Executing XPath Expressions Using SelectNodes
Let's return to the Design view for XPath.aspx again, this time double-clicking the SelectNodes button.
This generates the signature for the SelectNodes button click handler. Within this handler, add the
following code:

private void SelectNodesButton_Click(object sender, System.EventArgs

e) try

_ContextNode = GetContextNode();
_Nodes = _ContextNode.SelectNodes(XPathTextBox.Text,

_NamespaceManager);

if (_Nodes.Count==0)

MessageLabel.Text = "No matching nodes!"; else

MessageLabel.Text = "Nodes found: " +
_Nodes.Count.ToString();

string _NodeListResults = "";

// We could use a StringBuilder below for better performance foreach
(XmlNode _XmlNode in _Nodes)

_NodeListResults += Server.HtmlEncode(_XmlNode.OuterXml) +
"
";

ResultsLabel.Text = _NodeListResults;
Cache["ContextNode"] = (XmlNode) _SourceXml;

catch (Exception handledException)

MessageLabel.Text = handledException.Message;

156

XPath

This code starts much like the event handler for the SelectSingleNode button. After the context
node is determined, the SelectNodes method is executed, supplying the XPath expression and
namespace manager. The result of this method call returns an XmlNodeList, which we populate
into _Nodes.

If the Count property is zero, no matching nodes were found. If there are matches, we iterate through
each XmlNode in the list, and display its markup. We also inform the user how many nodes matched the
search criteria. Because multiple nodes are potentially returned, we set the Cache ["ContextNode"] to
the root node of _SourceXml for the next XPath statement execution.

Testing the XPath Web Form
We're now ready to test. Press F5 to save, build, and run the solution in your web browser. You'll see a
screen similar to this one:

3XPath Test Page - Miciosoft Internet Exploiel
nte Ecft View ravttfft&s loots

XPath Test Page
Prefix for Default Namespace

After checking that the MessageLabel shows that the XmlDocument was successfully loaded, type the
following XPath expression into the XPathTextBox, and press SelectNodeS:

//item

You may be a little surprised to see the message No matching nodes! appear in the MessageLabel.

So why didn't this search work? We know that there are <item> elements in our document, and as we
know by now, this XPath should retrieve all such elements. The reason is down to namespaces: because
a namespace has been declared in the XML file, we need to specify that we're looking for nodes that fall
under that namespace. What we have to do is associate a prefix with the default namespace so type wrx
in the Pref ixTextBox. We can now use that prefix in our XPath expressions to identify nodes that
belong to the default namespace.

Now change the previous XPath expression to include the prefix as shown below, and click the
SelectNodes button:

//wrx:item

The results should look something like this:

Prefix for Default Namespace: K2L

XPath Expression: |/Awx:item

ode

158

[Nodes found: 4
<item id="ITM-1001" productl_ine = "l" xrnln£="urn:wrox-asp.net-xml-
xpath"xquantity>l</quant -price>123.45</list-pHce><description><3adget ity><list
XYZ</description></item>
<item id = "ITM-10Q2" produrtLine="l" xnr)tns="urn:wrox-asp.net-xml-
xpath"xquantity>3</quantity><list-price>4,00</list-price><description>XYZ
Accessory</descriptionx/item>
<item id="ITM-1003" productl_ine="2" xmlns="urn;wrox-asp.net-xml-
xpath"xquantity>i</quan ityx|ist-price>15.00</list-pricexdescription><3izmo t
Part</descriptionx/itenn>
<item id="ITM-1004" productl_ine = "3" xrnlns="urn:wrox-asp.net-xml-
xpath"xquantity>l</quantityxlist-price>44,00</list-pricexdescription> Widget
X</descriptionx/item>

XPath

Now simply click the SelectSingleNode button, using the same XPath expression. This is the new result:

Prefix for Default Namespace: C™

XPath Expression: |/Awx:item

[Context Node = item, Node Type = Element
<item id="ITM-1001" productl_ine="l" xmlns = "urn!wrox-asp.net-xml-
path"><quantity>l</quantity><list-price>123.45</list-price><description>Gadget

XYZ</description></item>

The MessageLabel indicates the context node is now the first <item> element in the document. We
can see that using an XPath expression which renders multiple nodes will return only the first matching
node when executed with SelectSingleNode.

So we've got a nice little utility to test out some basic XPath expressions. Now that the context node is
<item>, we can explore using relative location paths. Below are some example expressions to try out.

Select the parent node:

Select all attributes of the current node:

Select all descendants of the current node:

.//*

unapter 4 __ _ •

Using XPath Operators and Functions

Now that we have a basic understanding of what XPath expressions look like and how they behave, we can
move on to some more complex syntax which allows for greater selectivity and functionality. The XPath
specification provides functions and operators that enable features we are familiar with from other
programming languages.

These operators and functions are grouped into the following four categories:

Q Node-Set
Q Boolean
Q Numeric
Q String

Let's look at each category separately.

Node-Set Operators and Functions

Thus far this chapter, we have been dealing with node-sets only. When we called the SelectNodes method
of XmlNode, we in fact returned a node-set into an XmlNodeList object. For this reason, we'll start by
looking at features related to node-sets as a good transition into the discussion on XPath operators and
functions.

Merging Node-Sets
The union operator " " is used to merge the results of multiple location paths. Below are some examples of
how to use it. Note that for simplicity, I've not included the wrx namespace identifier, which you'll need to
add to the beginning of each element name (but not attributes) if you wish to try these in our project.

Return all <quantity> and <list-price> elements:

//quantity I //list-price

Search for all @id attributes for either <customer> or <item> elements:

(//customer I //item)/® id

Return all elements and attributes in the document:

//* I //©*

All the above examples merge the node-sets returned by each location step into one node-set. Also note that
the nodes are returned in document order, and the result contains no duplicates.

Using Node-Set Functions
Node-set functions work in various ways. The following table discusses each of them:

160

XPath

Node-Set Function Description

count(node-set

Id(unique-id

last l

local-name(node-set)

name(node-set)

namespace-uri(node-set

pos i t ion()

Returns the number of nodes in the provided
node-set. Example:
count(//item)

This results in 4. We will cover expressions that
return other data types later in this chapter.

Returns a node-set of elements that have an ID attribute
containing the unique-id value.

Returns the number of the last node in the node-set. Example:
/ / i t e m [l a s t ()]
In our document, this returns the <item> element
containing an attribute id value of "ITM-1004".

Returns the local part of the expanded name of the first
node in the node-set. If a node-set is not passed in as the
argument, the context node is used. So:
/ /*[local-name()="i tem"]
results in a node-set containing all <item> elements
regardless of what namespace they are associated with.

Here is another example:
local-name(/*)
In this example, the location path is passed in as the
argument. This results in a string with the value of
"shopping-cart".

Returns the expanded name of the first node in the
node-set. If the node-set argument is not provided, the
context node is used. If prefix values are used in the source
XML document, these will be seen in the resulting name.

Returns the URI of the first node in the node-set. If the
node-set argument is not provided, the context node is
used. Example:
namespace-uri(/*)

This results in the string "urn:wrox-asp.net-xml-xpath".

Returns the position of the context node. Example:

/ / i tem[pos i t ion()=2]
This results with the second <item> element in document
order (the one containing an attribute id value of
"ITM-1002").

Boolean Operators and Functions

XPath supports a number of Boolean expressions.

Boolean Operators
The following table describes the different Boolean operators available in our XPath expressions:

162

Boolean Description
Operator

Used to evaluate equality. Example:
//item[@id = "ITM-1003"]

The equation in the predicate returns true only for the <item> element that
contains the id attribute with the value of " ITM-1003 ". (Remember that XML is
case-sensitive.)

! = Used to evaluate inequality. Example:
//item[(?id != "ITM-1003"]

In this scenario, the resulting node-set contains all the <item> elements with the
exception of the one containing the id attribute with the value of "ITM-1003".

Evaluates to true if the left side of the operator is greater than the right. Example:
//item[quantity > 1]

This results in all <item> elements that contain a <quantity> child element
with a value greater than one.

Evaluates to true if the left side of the operator is equal to or greater than the right.
Example:
//item[quantity >= 2]

The result is the same as for the previous example.

Evaluates to true if the left side of the operator is less than the right.

Evaluates to true if the left side of the operator is equal to or less than the right,

and Evaluates to true if both sides of the operator evaluate to true. Example:
//item[list-price >= 10 and list-price <= 50]
This returns all <item> elements that contain <list-price> child elements
with a value in the range 10 to 50 inclusive.

or Evaluates to true if either side of the operator evaluates to true. Example:
//item[@productLine="1" or @productLine="3"]
This returns all <item> elements that contain a productLine attribute with a
value of either "1" or "3".

XPath

Boolean Functions
The following table details the Boolean functions available and a brief description:

Boolean Function Description

Boolean(value)

true ()

falseO

not(boolean

lang(string

Converts the provided value into a Boolean value. If the value is a
node-set, the function returns true unless the node-set is empty. If
the value is numeric the result is true unless the value is zero. If the
value is a string the result is true unless it is devoid of characters.

This always returns true. Although it could be used in a comparison,
a more practical use for it is to pass it as a parameter into an XSLT
template rule. This will be covered in the next chapter.

This is a static value of false. The same principal applies for this
function as for true ().
Returns the inverse of the supplied Boolean expression.

Returns true if string (which represents a language encoding like "en")
defines an xml: lang attribute starting with the same language name.

Order of Precedence
Below, the operators are listed in precedence order from highest to lowest:

1. () Grouping

2. [] Filters

3. / // Path Operators

4. < <= > >= Comparisons

5. = ! = Comparisons

6. | Union

7. not () Boolean NOT

8. and Boolean AND

9. or Boolean OR

Numeric Operators and Functions

XPath supports numeric operations, using the floating-point number type.

Numeric Operators
The following table displays the numeric operators supported in XPath syntax:

Numeric
Operator

Description

div mod

Addition operator.

Subtraction operator. This is also used to invert the sign of a number.
When doing so, be careful to use whitespace around the operator to avoid
ambiguity with node names that contain a hyphen.

Multiplication operator.

Division operator.

Modulus operator.

Numeric Functions
The following table lists the numeric functions available, and a brief description of how to use them:

Numeric Function Description

ceiling! number)

floor(number

number(value

round(number

Returns the smallest integer that is greater than the number
argument. Example:
ceiling(8 . 3)

This returns an integer of 9.

Returns the largest integer that is less than the number argument.
Example:
floor(9 . 9)
This returns an integer of 9.

Converts the value argument to a numeric value. If the value is a
string containing a number, the value is converted to a numeric
value, otherwise the result is NaN (for 'not a number'). If value is a
node-set, its text values are first converted to a string, and the same
process follows. If the value is a Boolean, the number 1 is returned
for true, 0 for false.

Returns the integer that is closest to the number argument. Example:
round(3 . 5)
This returns an integer of 4, while:
round(5 . 4)
will return an integer of 5.

164

XPath

Numeric Function Description

sum(node-s
et

Returns the sum of all values in a node-set. If any of the values in
the node-set is not numeric, the result is NaN.

String Functions
Often we are faced with the need to manipulate string values. We may need to extract subsets of a string,
concatenate strings together, or determine if a value exists within a string. Among other things, we will
now look at how to do just that by using the string manipulation functions of XPath.

The following table displays the string functions with a corresponding description:

String Function Description

concat(string, string*)

Contains(string, string)

normalize-space(string

starts-with(string, string)

This returns the concatenated values of two or
more strings. Example:
concat("[", //contact, "]")

This would result in a string with the value of

"[Toshia Palermo]"
This returns true or false according to whether
the first string contains the second. The string
comparison is case sensitive. Example:
/ / i t em[conta ins (descr ip t ion ,"XYZ")]
This returns all <item> elements where the
<description> element contains a text node
with a value of "XYZ" anywhere in the string.

This returns a string that has been stripped of any
leading or trailing whitespace, and where any
adjacent spaces within the string are reduced to
one single space character. Example:
normalize-space(" A B C ")
The resulting string is "A B C".

This returns true if the first string starts with the
second. The string comparison is case-sensitive.
Example:
/ /@*[starts-with(. , "ITM")]
The result of this statement is to return all attribute
nodes in the XML document whose value begins
with "ITM".

Table continued on following page

String Function Description

string(value)

string-length) string)

substring(string, number, number?)

substring-after(string, string)

substring-before(string, string)

Converts the value argument to a string. If the
value is a node-set, the function converts the
value of the first node to a string. If the
node-set is empty, an empty string is
returned. If the value is Boolean, the string
"true" is returned for true; "false" for false.
Numeric values are returned with an
appropriate string representation.

Returns the length of the supplied string.
Empty strings return zero. Example:
string-length("ABCDEFGHIJ")

The result is 10.

Returns a substring of the string argument
starting from the position provided by the
second argument. The third argument (which
is optional) specifies how many characters
from the position to extract. If the third
argument is omitted, the remainder of the
string is returned. Example:
substring(//contact, 8, 3}
The result is "Pal". By omitting the argument
like this:
substring)//contact, 8)

The result is "Palermo".
Returns the remainder of the first string
argument after the first occurrence of the
second string argument. Example:
substring-after(/ /contact, "

") The result is "Palermo".

Returns the beginning of the first string
argument up to the character prior to the
occurrence of the second string argument.
Example:
substring-before(//contact, "

") The result is "Toshia".

166

XPath

String Function Description

translate(string, string, string) Returns a manipulated version of the first
string argument.

The second string argument contains a list of
characters to be searched for in the first string
argument, and the search is performed
character by character. Upon finding these
characters, the third string argument is used
for substitution.

For example if we wanted to find all spaces in
a given string, and replace them with
"-hyphens, the syntax would look something
like this:
translate("no spaces", " ",

" - ") The result is "no-spaces".

To eliminate characters, provide an empty
string as the last argument. For example:
translate("*Mike!* " , •*!",

" ") The result is "Mike".

The string functions provided by XPath enable us to perform many of the tasks required in our
development environment.

Using XPathNavigator

Many of the XPath features we have just looked at return values that we cannot retrieve using our
XPath.aspx page. This is because the page calls either the SelectSingleNode or the SelectNodes
method of the XmlNode object, which return either an XmlNode or XmlNodeList accordingly.

So now we'll modify our example to capture the result if it is a string, Boolean, or number.

A powerful ally for XPath support is the XPathNavigator object in the System.Xml .XPath
namespace. XPathNavigator offers many benefits and features, and a full rendition is unfortunately
beyond the scope of this book. However, we will demonstrate how to use this class for the capture of
results not of a node-set type, XmlNode or XmlNodeList.

Typed Results of an XPath Expression

An XPath expression will return one of the following types: node-set, Boolean, number, or string. With
XPathNavigator, we can evaluate each of these result types.

Chapter 4

There are two methods of XPathNavigator used to retrieve the results of an XPath expression:

Q Select - Used to return a node-set for evaluation (much like SelectNodes method of
XmlNode)

G Evaluate - Returns the typed result of the XPath expression, which is either a node-set,
Boolean, number, or string.

The following table displays the XPath result type, and the corresponding type in .NET which will
house the result. The .NET types are what is potentially returned with the XPathNavigator when
using the Evaluate method:

XPath Data-Type .NET Data Type Description

Node-Set

Boolean

Number

String

XPathNodelterator

System.Boolean

(Any integer or floating-
point value types)

System.String

When the result is a node-set, the nodes
are placed in the XPathNodelterator
object for processing.

When the result is Boolean, it is mapped
to the bool data type.

When the result is numeric, we can
unbox the results into any of the .NET
numeric data types.

When the result is a string, the value is
mapped to the string data type.

Determining the Result Type with XPathExpression

When we created the XPath. aspx page, we knew our result types. If we wanted a single node returned,
we invoked the SelectSingleNode method which returned an XmlNode. If we wanted a node-set,
we invoked the SelectNodes method which returned an XmlNodeList. What if we don't know what
we want? (An age-old problem among developers...) Specifically, what if the result cannot be determined
until run-time - how can we determine the type of the result before executing the XPath expression?

The answer is that we use the XPathNavigator object to 'compile' our XPath expressions into
XPathExpression objects - which allow us to capture what type it returns before we execute it.

Let me illustrate this. Suppose we have loaded an XML document into an XmlDocument object named
_SourceXml. The following code retrieves an instance of an XPathNavigator object by calling the
CreateNavigator method on _SourceXml, and then compiles an XPath expression to an
XPathExpression object:

// Get an instance of the XPathNavigator
XPathNavigator _Navigator = _SourceXml.CreateNavigator();

// Compile an XPath expression, and store into an XPathExpression object
XPathExpression _XPathExpr = _Navigator.Compile("count(//*)");

168

XPath

At this point _XPathExpr is our 'compiled' XPath expression which contains the XPath syntax count
(/ / *) . We know from earlier in the chapter that the count () function returns a number, and we can
determine this programmatically by examining the ReturnType property of the _XPathExpr object.

The ReturnType property is an enumerated type called XPathResultType. Here are the enumerated
values as they map to the XPath result types:

XPathResultType Member Description
NodeSet The result type is a node-set. When the Evaluate method of the

XPathNavigator object is called, the method will return an
XPathNodelterator object containing the matching nodes.

Boolean The result type is either true or false.

Number The result type is numeric.

Str ing The result type is a string.

There are other members of XPathResultType, but the ones listed above are sufficient for our
purposes. For more information on this enumeration, refer to the Framework documentation.

We now have enough information to create another Web Form to harness the various result types of our
XPath expressions.

Creating the XPath2.aspx Web Form

Using the same web project we opened earlier this chapter, we will copy XPath. aspx, make some
minor modifications to the presentation, and add the support for multiple return types.

Open the web project containing the XPath. aspx Web Form. In the Solution Explorer, right-click the
XPath. aspx file and click Copy from the pop-up menu. Now right-click the project name, XPath, and
choose Paste from the pop-up menu. A new file will appear in the list named Copy of XPath.aspx.
Right-click it and select Rename, entering XPath2 . aspx.

Setting Controls in Design View
Right-click XPath2 .aspx in Solution Explorer, and select View Designer from the pop-up menu.
Remove SelectSingleNodeButton and SelectNodesButton, and replace with a new button
named ExecuteXPathButton with its Text property set to Execute XPath.

Change the TitleLabel's Text property to XPath2 Test Page, and your design view should now
resemble the following screen shot:

vi iapici

-. XPalh MicrosoH Visual CD NET [design] XPalh2 atpx'

XPath2 Test Page
; Prefix for Default

Namespace: : XPath

Expression: I

I *» Solution XPath'(1 projed)
» f E r 0 XPa t h

R
bi

eferences
n

AnemWnfo.cs
Global, asax
shopping-cart xml
Webconfig XPath.

aspx

If we now select the HTML view of the page, we will see the Inherits attribute of the Page
processing directive still refers to Wrox. ASPNET.Xml .XPath.XPath, but this will automatically
change when we rename the class in the code-behind shortly.

Right-click anywhere on the HTML view, and select View Code from the context menu.

Modifying the Code-Behind
Feel free to scroll down and delete the event handlers for the two buttons we destroyed in the design
view, although their presence won't hurt us. Then change the class name from XPath to XPath2, and
add a using statement for System. Xml .XPath somewhere among the others at the top of the code file.

Next change the XML object declarations so that the _Nodes member is now declared as an
XPathNodelterator instead of an XmlNodeList:

private XmlDocument _SourceXml;
private XmlNamespaceManager _NamespaceManager;
private XmlNode _SingleNode;
private XPathNodelterator _Nodes;
private XmlNode _ContextNode;

We don't need to make any changes to the Page_Load event handler, or the
GetContextNode method.

170

XPath
Executing XPath Expressions using XPathNavigator
Our focus in this Web Form is to be able to evaluate any XPath expression, no matter what the
result type is. As already mentioned, this is accomplished by the XPathNavigator and related
objects.

Adding the Click Event Handler for ExecuteXPathButton
Switch to the Design View, and double-click the Ex
b

- ecuteXPathButton button. This will bring us
ack to the code view, at the first line of the event handler. Let's start writing some code!

Add the following lines:

try
{

// Get the context node
_ContextNode = GetContextNode();

// Create the XPathNavigator from the context node
XPathNavigator _Navigator = _ContextNode.CreateNavigator();

// Compile the user's XPath expression
XPathExpression _XPathExpr = _Navigator.Compile(XPathTextBox.Text);

// Provide namespace support
_XPathExpr.SetContext(_NamespaceManager);

At this point, we have established the context of our XPath expression and obtained a reference to the
XPathNavigator object by calling the CreateNavigator method of the context XmlNode. We've
also 'compiled' the user's XPath expression by the Compile method of our XPathNavigator object,
resulting in an XPathExpression object. Finally we pass the _NamespaceManager object into the
SetContext method of the XPathExpression object to provide namespace support.

Now we are ready to execute the XPath expression provided by the user. However, we don't know what
sort of expression this is, and therefore we've no idea what the resulting data type will be. We need to
check the value of the ReturnType property of our _XPathExpr object:

switch (_XPathExpr.ReturnType)
{

case XPathResultType.NodeSet:
_Nodes = (XPathNodeIterator)_Navigator.Evaluate(_XPathExpr);
if (_Nodes.Count==0)
{
Mess geLabel.Text="No matching nodes!"; } a

else {
MessageLabel.Text = "Nodes found: " + _Nodes.Count.ToString(); string
_NodeListResults = ""; Cache["ContextNode"] =
_ContextNode.SelectSingleNode(XPathTextBox.Text,
_NamespaceManager);

while (_Nodes.MoveNext())

unapier

XPathNavigator _LocalNav = _Nodes .Current; string
_NodeName = (_LocalNav.Name==" ") ? " (No Name) " :
_LocalNav . Name ; _NodeListResults += ""

+ _NodeName + ", Node-Type=" +
_LocalNav.NodeType.ToString() ;

// Does this node contain Text?
XPathNodelterator JTextSearch = _LocalNav.SelectChildren (

XPathNodeType . Text) ;

//If there is text, display the value
if (_TextSearch.Count>0)
{

_NodeListResults += ", Text=" + _LocalNav.
Value; }
_NodeListResults += "
"; }
ResultsLabel .Text =

_NodeListResults; } break;

The first case of our switch is selected if the XPathResultType is a NodeSet. If so, we execute the
XPath expression by calling the Evaluate method of _Navigator, which will return an object that we
cast to an XPathNodelterator. If there are no nodes in the result, we inform the user. Otherwise the
rest of the code navigates each node of the result by calling the MoveNext method of _Nodes. We
display the name of the node, and its type. If the node contains a child text node, we display that value
as well.

The next block of code addresses the remaining case statements of our switch:

case XPathResultType. Boolean:
MessageLabel.Text= "XPath expression returns a boolean result";
ResultsLabel . Text=_Navi gator .Evaluate (_XPathExpr) .ToString() ; break;

case XPathResultType. Number :
MessageLabel .Text=" XPath expression returns a numeric result";
ResultsLabel . Text=

((double)_Navigator . Evaluate (_XPathExpr)) .ToStringO ; break;

case XPathResultType. String:
MessageLabel .Text="XPath expression returns a string result"; Resul
tsLabel. Text =_Navigator .Evaluate (_XPathExpr) . ToStringl) ; break;

default:
MessageLabel .Text=" Expression returned an unknown result";
ResultsLabel .Text=" " ;
break; // Don't forget the last break!

172

XPath

The above code cccontinues to capture the possible result types of the compiled XPath expression.
Finally, we end tfcrhe method by completing the try. .catch block:

catch (Excen=Ption handledException)
{

MessageL^li,bel .Text=handledExcept ion. Message;
ResultsLcBH_bel.Text=" " ;

Right-click XPat hti2 . aspx in Solution Explorer, and choose Set As Start Page. Then save, build, and
run the project b-yy pressing F5.

Testing the XP>sath2.aspx Web Form
After the page lo asds, supply the wrx prefix for namespace support. Then type the following XPath
expression in the textbox:

//wrx:item

The results shoulod look similar to this:

Prrefix for Default Namespace:

XZPath Expression: l//wrx:item

s found i 4
Node-Type = Element
Node-Type = Elernent
Node-Type^Elernent
Node-Type = Element

As we can see, the resulting node-set has been managed by our code. Now let's try a statement which
will only return ome node in the node-set:

/wrx:shopping-ca it

Transformations

For the development community, one of the most useful features when working with XML is the ability
to transform XML content to another format more appropriate for a given situation. To harness this
power in ASP.NET, we first of all need to understand when and why we should use transformations in a
web application. Once we've made that decision, we must understand the syntax necessary to create our
transformation and how to execute the transformation in the managed environment of .NET.

By the end of this chapter, we will have covered the following subjects:

a What is XSLT?
U Structure of an XSLT document
a Applying XSLT Style Sheets to XML documents
Q Controlling document output
Q Using transformations for the presentation layer
Q Using transformations for B2B

We will learn how to harness the XPath skills acquired from the previous chapter, and examine how to
use transformations effectively in ASP.NET.

What is XSLT?

Extensible Stylesheet Language Transformations (XSLT) is a declarative programming language, with its
origins in the early Extensible Stylesheet Language (XSL). XSLT vl.O was endorsed by the Director of
W3C as a Recommendation in November 1999, and more information can be found at
http://www.w3.org/TR/XSlt. We will be using version 1.0 in this chapter, as supported by the .NET
Framework, although there are other versions in working draft at the time of writing.

Transforming XML Documents

XSLT is the language which instructs an XSLT processor how to convert information in an XML source]
document to a format of our preference - be it an XML document (including WML for example), an
HTML document, or just plain text. Note that different XSLT engines will adhere to the standard to
differing levels, but in this chapter, we will naturally concentrate on the behavior of .NET.

From XML to XML
There are many situations where there is a need to transform an XML document to one in a completely
different XML dialect. For example, consider the following document extract:

<Item>
<ID>ITM-1001</ID>
<LineOfProduct>l</LineOfProduct>
<ListPrice>123.45</ListPrice>
<QTY>1</QTY>
<Description>Gadget XYZ</Description

</Item>

We may prefer to have this information in a different form, perhaps for a component we have already
developed which handles data in this form:

<item id="ITM-1001" productLine="l">
<quantity>l</quantity>
<list-price>123.45</list-price>
<description>Gadget XYZ</description>

</item>

Notice how the first extract is element-centric; it is devoid of any attributes. Also the first uses a
different nomenclature for node names, like <QTY> vs. <quantity>, and we can't forget that XML
documents are case-sensitive - thus <Description> is different from <description>.

So how can we transform one to the other? We could load the first XML document into an
XmlDocument object, traverse each node and programmatically generate a second XmlDocument
object. This would work, but what if we needed to make changes to the transformation? It could be
quite a challenge to locate and change the code to create the new transformation. Also, the
programmatic route requires recompiling the code after any such changes.

The preferred method would be to use XSLT style sheets. After all, the language is designed specifically
for this purpose. Secondly, it is fairly easy to locate the template rules that perform certain aspects of a
transformation (discussed later) and add, update, or delete parts to create new transformations. Finally, it
is not necessary to recompile and redeploy the code which references an XSLT style sheet that has been
changed.

178

Transformations

from XML to HTML
In ASP.NET applications, it is quite common to encounter a need to present data provided as XML to
the user in HTML. A typical example of this would be a symmetrical XML document that quite easily
lends itself to a table format. For instance, we may be interested in taking the following XML structure:

<items>
<item id="ITM-1001" productLine="1">
<quantity>l</quantity>
<list-price>123.45</list-price>
<description>Gadget XYZ</description> </item>
<item id="ITM-1002" productLine="l">
<quantity>3</quantity>
<list-price>4.00</list-price>
<description>XYZ Accessory</description>
</item>
<item id="ITM-1003" productLine="2">
<guantity>l</quantity>
<list-price>15.00</list-price>
<description>Gizrao Part</description> </item>

<item id="ITM-1004" productLine="3">
<quantity>l</quantity>
<list-price>44.00</list-price>
<description>Widget X</description>
</item> </items>

and presenting it to the user like this:

1 3 Item Details - Microsoft Internet Explorer
j File Edit View Favorites Tools Help
j *• Back *• «* - iQ "^ (JJ 1 '2| Search _^j Favorites ^Media -^ : ^)- ^J @ ' _a|

Address je] http://www.ourwebsite.com/itemdetails.xml *•! i/^Go ; Links ^1 _^_j «. | I

Item ID Line Description

Q ti
T List Price

ITM-1001 Gadget XYZ j 1 I $123.45
ITM-1002 XYZ Accessory 3 $4.00
ITM-1003 Gizmo Part 1 $15.00
rTM-1004 Widget X | 1 I $44.00

d

|@Done
| ^| Local intranet ^

The markup to create the table above would be enclosed within an HTML <table> tag. By using
XSLT, we can take any XML structure and convert it to HTML. We will see how to do this a little later.

From XML to Plain Text
From time to time, we may need to generate plain text. Typically, this is done to support legacy
applications that consume text documents with either fixed length or comma delimited columns. Thus
the <items> element and all of its children from the previous XML file could be transformed to a
comma delimited text file like this:

ITM-1001, 1, 1, 123.4 5, Gadget ZYZ
ITM-1002, 1, 3, 4.00, XYZ Accessory
ITM-1003, 2, 1, 15.00, Gizmo Pa rt
ITM-1004, 3, 1, 44.00, Widget X

Structure of an XSLT Style Sheet

Now that we have a glimpse of what XSLT style sheets can do, the next step is to examine the actual
structure of a style sheet. Of course the subject of XSLT style sheets is enough to fill an entire book, so
our objective in this chapter will be to provide what you need to know in order to use its features in
ASP.NET applications.

XSLT is a Declarative, Rule-Based Language

Unlike procedural languages, which are executed in sequential order, XSLT is a declarative, rule-based
language where the XSLT processor determines the execution sequence. Simply stated, we describe the
rules (which can appear in any order), and the processor parses these rules and applies them to
produce a corresponding output document.

XSLT is XML
An XSLT style sheet is an XML document. All the rules that specify the behavior of a style sheet are
contained within XML elements belonging to the XSLT namespace.

The <stylesheet> Document Element
The document or root element of the style sheet is <stylesheet>. Like the XML declaration node, it
contains a version attribute, which we will set to "1.0". Typically, the prefix xsl is used to reference
the XSLT namespace http://www.w3.org/1999/XSL/Transform. Therefore, the declaration usually looks
like this:

<?xml version="l.0" encoding="UTF-8"?>
<xsl:stylesheet version="l.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Trans form" >

</xsl:stylesheet>

However, in keeping with standard XML rules, the xsl prefix is merely the suggested prefix for the
required namespace declaration. In fact, when we create an XSLT file in Visual Studio .NET, it declares
the XSLT namespace as the default.

180

Transformations

Creating a Style Sheet in VS.NET
Open Visual Studio .NET and select File | New | File, or just press Ctrl-N. The following dialog box appears:

lempiafces:
iategories:

ta
O Visual C
Q Script Text File HTML Page

Frameset

Style Sheet XML File XML Schema

Bitmap File Icon File

Transform file,

Open Help

With the General folder in the Categories pane selected, select the XSLT File icon in the Templates
pane. Click the Open button, and it will create an empty solution with a style sheet containing just the
opening declaration as shown:

Microso

fje

tart Page XSlTFilel
I- <?xml version="1.0" encoding="IJTF-8" ?>

-^stylesheet version="1.0" xrolns="http://¥uw.ra3 .org/1999/XSL/Transf orm">
3| </stylesheet> 4! Si

As mentioned earlier, Visual Studio .NET declares http://www.w3.org/1999/XSI-/Tranform as the
default namespace. Although this is the default behavior for Visual Studio .NET and won't normally
cause any problems, we will use the xsl prefix in our examples this chapter. Alter the code like so:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="l.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
</xsl:stylesheet>

Now save the file by selecting File I Save XSLTFile"! .xslt as... and a file dialog box will appear. When
prompted, enter the name transform-one .xslt. We will add content to this style sheet shortly.

Specifying the Output Type

As stated earlier, the output of a transformation can either be XML, HTML, plain text, or qualified
names (the exotic sounding qname-but-not-ncname type). By default, the output is HTML. We can
specify other output types by declaring an <output> element as a child of the <stylesheet> element
with the appropriate method attribute set. For example, this is how we specify XML as the output type:

<xsl:output method="xml" />

Note that as a child of the <stylesheet> document element, this element is designated as a top-level
element of the style sheet. Top level elements are immediate children of <stylesheet>.

Other attributes of this element control behavior such as whether to omit the XML declaration in the
resulting document, or which version and encoding should be specified.

Defining Template Rules

Template rules are elements that describe how the XSLT processor should transform nodes that meet
certain criteria in an XML document. We declare template rules by creating a top-level element named
<template>, and specifying which node(s) it contains rules for using an appropriate XPath expression
in its match attribute.

The Template Rule for the Root Node
It is good practice to always declare a template rule for the root node of the source document in your
XSLT style sheets, and some XSLT processors will actually fail if it is not present. Below is the syntax
for a template rule matching the root node:

<xsl:template match="/">
<!-- Template rules go here -->

</xsl:template>

Notice the XPath expression provided in the match attribute, which, as we learned in the previous
chapter, identify the root node. The "/" character on its own is also the starting point for absolute
location paths. Refer back to Chapter 4 if you need more information on XPath expressions and
location paths.

Don't forget that <template> is a top-level element, which means it must always be an immediate
child of <stylesheet>. We can define as many <template> elements as we need in a style sheet.
What sets one template rule apart from another is the XPath expression in the match attribute, although
we could have two templates with the same XPath expression, but differentiated by the mode attribute
(covered in the Enhancing Template Rules section).

182

Transformations

Specifying Template Rules for Other Nodes
The XPath expression in the match attribute of the <template> element identifies nodes in the source
document that we wish to transform by applying that template. Let's illustrate this with the following
XML document, which we've alr«ady seen in the previous chapter:

<?xml version="l. 0"
enco<ding="UTF-8" ?> <?custom-error
code="0" message="OK" ?> <!--Shopping
Cart Example--> <shopping-cart> <header>

<customer id="P4LLC" billingld="001" shippingld="001" >
<contact>Toshia Palermo</contact>

</customer>
<order-type>Regular</order-type>

</header> <items>
<item id="ITM-1001" productLine="1">
<quantity>l</quantity>
<list-price>123.45</list-price>
<description>Gadget XYZ</description>
</item>
<item id="ITM-1002" productLine="l">
<quantity>3</quantity>
<list-price>4.00</list-price>
<description>XYZ Accessory</description>
</item>
<item id="ITM-1003" productLine="2">
<quantity>l</quantity>
<list-price>15.00</list-price>
<description>Gizmo Part</description
</item>

<item id="ITM-1004" productLine="3">
<quant i ty>1</quantity>
<list-price>44.00</list-price>
<description>Widget X</description
</item> </items> </shopping-cart>

This file, shopping-cart. xml, will be used in our examples throughout the chapter. The one
difference with the file used in Chapter 4 is the absence of the namespace on the <shopping-cart>
element, which has been removed for simplicity. The table below shows some example XPath
expressions and their effect on the shopping-cart .xml document:

XPath Expression in match Description
Attribute of <template> Element
match="/shopping-cart" This will match the <shopping-cart> element - the

document element of the source XML. Remember that
there can only ever be one document element in
well-formed XML.

Table continued on following page

XPath Expression in match Description
Attribute of <template> Element

match="//item" This matches any <item> elements in the source XML.

match=" /*/items//@* " This matches any attribute nodes that are descendants
of the <items> element, which is itself a grandchild of the
root node.

match="quantity" This relative expression matches any <quantity>
children of the context node.

Once the nodes are identified, the rules inside the <template> element describe the transformation to
perform.

Accessing Values with <value-of>
Within the template, we can access each node matching the XPath expression as the context node. To
obtain values from the source XML, we use the <value-of > element. It has an obligatory select
attribute containing another XPath expression denoting the node whose value we want. The following
example demonstrates this:

<xsl:template match="item">
<div>

Item=<xsl:value-of select="@id" />,
Quantity=<xsl:value-of select="quantity" /> </div>
</xsl:template>

The template rule in the above example matches <item> element children of the context node. Any
such <item> element becomes in turn the context node for XPath expressions within the template. The
first <xsl: value-of> element has a select attribute with an XPath expression locating the id
attribute of the <item> element. The select attribute of the second <xsl: value-of> element
provides a relative location path (with abbreviated syntax) to retrieve the value of the <quantity>
child. These values are placed within an enclosing HTML <div>.

Earlier we indicated that the order in which template rules are defined is irrelevant, so how did the
processor get to this template rule? The starting point is the template rule that matches the root node.
From there, we can explicitly apply other templates to the elements we want to transform.

Applying Templates with <apply-templates>

The <apply-templates> element is used to transform nodes from within other templates. To apply
transformations using the template in the previous example, we could use this element within the
template for the root node, like so:

<xsl:template match="/">
<html> <head>

<title>Transformation Example</title>
</head> <body>

184

Transformations

<xsl: apply- templates select="//itemn />
</body> </html>

</xsl : template>

Here, we wrap the 'call' to the other template rule inside HTML markup, with the <apply-templates>
element in the <body> tag. Our select attribute indicates that all of the <item> elements in the
source XML document should be processed by any matching templates at this point. If we omit the
select attribute, the parser would apply templates for all children of the context node.

The result of this call is similar to that produced by the SelectNodes method of the XmlNode object
(or any of its descendants, such as XmlDocument). The XSLT processor builds a node-set in memory,
and looks for a template rule that satisfies a match for each node. In our example, a node-list of four
elements is generated, appearing in the set in the order in which they appear in the source document.
The XSLT processor then processes each node one at a time by searching the style sheet for a matching
template, such as this one:

<xsl : template match=" item">
<div>
Item=<xsl :value-of select="@id" />, Quantity=<xsl :
value-of select= "quantity" />

</xsl : template>

For the first <item> element in the document, this would produce the following output:

<div>ltem=ITM-1001, Quantity=1</div>

The processor then moves on to the next node in the node-set, which in this case is also processed by
the same template rule, and so on for each node in the node-set. The final output is this:

<div>ltem=ITM-1 001 , Quantity=1 </div>
<div>ltem=ITM-1 002, Quantity=3</div>
<div>ltem=ITM-1 003, Quantity=1 </div>
<div>ltem=ITM-1004, Quantity=1</div>

If we put all this together in the transform-one . xslt sheet, here is what it looks like in its entirety:

<?xml version= "1 . Q" encoding="UTF-8 " ?> <xsl :
stylesheet version=" 1 . 0"

xmlns:xsl="http: //www.w3 . org/ 1999 /XSL/Trans form" >

<xsl : template match="/">
<html> <head>

<title>Transformation Example</title>
</head> <body>

<xsl :apply-templates select="//item" /> </body>
</html> </xsl : template>

unapter o

<xsl:template match="item">
<div>
Name=<xsl:value-of select="@id" />,
Quantity=<xsl:value-of select="quantity"

</xsl:template>

</xsl:stylesheet>

It is also worthy of note that we have ignored all the other nodes in the source XML document. We
only need to define template rules for those nodes we need to process.

Applying an XSLT Style Sheet to an XML Document

Essentially, there are two ways to apply an XSLT style sheet to an XML document. We can either
reference the style sheet in our XML document, or apply the style sheet programmatically. The first
approach is considered static, while the latter is more dynamic.

Applying a Style Sheet Statically
To statically link an XSLT style sheet to an XML document, we add the <?xml-stylesheet?>
processing directive to the start of the source XML. For instance, if the transform-one, xslt and the
shopping-cart. xml files are in the same directory, we could add the following to the top of
shopping-cart.xml:

<?xml version="l.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="transform-one.xslt" ?>
<?custom-error code="0" message="OK" ?>
<!--Shopping Cart Example-->
<shopping-cart>

</shopping-cart>

The type attribute specifies that it is an XSLT style sheet we want to apply, as we could also specify a
cascading style sheet by setting this attribute to " text/ess". The href attribute supplies the location
of the style sheet. If we open the XML document in a web browser, this is what we will see:

tion Example - Microsoft Internet Enplorer
File Edt View Favorites Tods

[^Favorites

Address H C:\Pro A5P.NET + XMAChapter 7\shopping-cart.xml

Name=ITM-1001, Quanhty=l
Name=ITM-1002, Quantity=3
Name=rTM-1003, Quantity=l
Name=nM-1004, Quantity=l

J

186

Transformations

jf we view the source for this page, we will see the source XML, not the XSLT output that produces the
bove display. In order to view the XSLT output in Internet Explorer, we can download a free plug-in
from Microsoft's site at http://msdn.microsoft.com/msdn-files/027/000/543/iexmltls.exe.

Applying a Style Sheet Dynamically
To demonstrate how to apply a style sheet programmatically, let's create a new web application in
Visual Studio .NET. Select File | New | Project to pull up the New Project dialog box. Create a new
Visual C# ASP.NET web application project, and name it Transforms:

Project Types:
C3 Visual Basic Projects

C_l Visual C++ Projects ; Q
Setup and Deployment Projects IB
£3 Other Projects '- f£l Visual Studio
Solutions

Templates!

Windows Class Library
Windows

ASP.NET Web Web
Control

http: //localhost/Tr ansf orrnsl

f* flose Solution

Project will be created at http://localhost/WebApplte

*More

A project for creating an application with a Web user

interface Name; Location: f" Add to Solution

This will create the application and display the WebForml.
aspx page. Rename the WebForml. aspx file in Solution
Explorer to TransformXML.aspx.

Copy the shopping-cart.xml and transform-one.xslt files into the Transforms directory. Now

view the code-behind for the page, and change it as highlighted below:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using Sys tern. Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Xml.XPath;
using System.Xml.Xsl;

namespace Wrox. ASPNET. Trans forms
{
/// < summary >
/// Summary description for TransformXML
/ / / < / summary>
public class TransformXML : System. Web. UI . Page
{
private void Page_Load(object sender, System.EventArgs e)
{
// P-ut user code to initialize the page here

}

[Web Form Designer generated code]

All we're doing is including the System.Xml .XPath and System.xml .Xsl namespaces, and changing
the namespace and class name.

Switch back to the TransformXML . aspx window, and view the HTML code noting how -the Page
processing directive has changed to reflect our changes:

<%@ Page language="c#" Codebehind="TransformXML.aspx.cs"
AutoEventWireup=" false" Inner its = " Wrox. ASPNET. Trans forms. Trans f ormXiyCL"%>

Remove all other markup on this page so that only the above line appears there.

Using XslTransforrn
Now find the Pa.ge_Load event handler, and add the following code:

private void Page_Load(object sender, System.EventArgs
e) {

try
{
// Instantiate and Load the XPathDocument
XPathDocument _SourceXml =
new XPathDocument (Server .MapPath("shopping-cart .xml")) ;

// Instantiate and load the XslTransform object
XslTr^.nsform _Transform = new XslTransforml) ;
_Trans form. Load! Server .MapPath ("trans form-one. xslt" }) ;

// Send result of transformation to Response . Output stream
JTrans form. Transform) _SourceXml , null, Response. Output) ; }

catch (Exception handledException) {
Response. Write (handledException. Message) ;

188

Transformations

c-rst we load the source XML into an XpathDocument object. This object is similar to XmlDocument,
h t is highly optimized for XSLT processing. Next, we load the transform-one .xslt style sheet into

XslTransf orm object. XslTransf orm implements the .NET XSLT processing engine, which is .
voked when we call its Transform method. In the example above, we're using the overloaded rransf
orm method which takes the source XML, any parameters for the style sheet (none are required, -o we
provide null), and finally where to place the results of the transformation. Our results are directed to
the HTTP response stream.

Hit F5 to compile and run the project. On the surface, the output is the same as if we applied the sheet
statically. However, this time if we view the source, we see the XSLT processor output, not the source
XML, because the transformation occurred on the server, not client-side in the browser. By applying the
style sheet on the server, we can ensure it will be viewed correctly by a far greater range of browsers, as
many do not support XSLT transformations natively.

Enhancing Template Rules

There are several situations that require special handling. In such cases, we can provide more context
for our template match by providing a mode, or we can explicitly call a template by name, rather than
by node match.

Before we investigate these topics, let's first make some changes to our Transforms web application. In
the TransformXML.aspx. cs code file, make the following revisions to the Page_Load event handler:

// Put user code to initialize the page here
try
{
string _XMLPath = Request.QueryStringt"xml"].ToString();
string _XSLTPath = Request.QueryString["xslt"].ToString();

// Instantiate and Load the XPathDocument
XPathDocument _SourceXml = new XPathDocument(Server.MapPath(_XMLPath));

// Instantiate and load the XslTransorm object
XslTransform _Transform = new
XslTransform(); .Transform.Load(Server.MapPath
(_XSLTPath)) ;

// Send result of transformation to Response.Output stream
JTransform.Transform! _SourceXml, null, Response.Output); }

catch (Exception handledException) {
Response.Write(handledException.Message);

These changes allow us to reuse the TransformXML. aspx page with any source document and style
sheet using filenames supplied in the query string. For example, the following URL is equivalent to the
previous example:

http://localhost/transforms/transformxml.aspx?xml=shopping-cart.xml&xslt=transform-one.xslt

Template Modes
Template modes are a great way to handle nodes based on a specific purpose. What if we want to
perform two or more separate transformations on the same node-set? We can tailor the transformation
by specifying a mode, in one of:

Q the «z//z'ng<apply-templates> element

Q the receiving <template> element, containing the rules

Using our shopping-cart . xml file example, what if we wanted to first highlight all the quantities for
each item, and also provide a separate list for each product line? Let us examine one way to accomplish
this using template modes. First, create a copy of transform-one. xslt and name it
transform-two.xslt .

In the template match for the root node in this new file, we will apply another template for the <item>
nodes, placing HTML heading tags before the call to each template rule:

<xsl : template match="/">
<html> <head>

<title>Transf ormation Example</title>
</head> <body>
<hl>Item Quantities</hl>
<xsl :apply-templates select=" //item" mode="QTYn />
<hl>Item Product Lines</hl>

<xsl :apply-templates select=" //item" mode="PL" /> </body>
</html> </xsl : template>

The first <apply-templates> element for <item> nodes now contains an attribute named mode with
a value of QTY. The second <apply-templates> element contains an identical XPath expression,
"//item", but with a mode attribute value of PL.

Now let's see the template elements that will match each of these:

<xsl : template match="item" mode="PL">
<div>
Item=<xsl : value-of select="@id" />, Product
Line=<xsl :value-of select="@productLine" />

</xsl : template>

<xsl : template match="item" mode=nQTY">
<div>

Item=<xsl :value-of select="@id" />, Quantity=<xsl :
value-of select="quantity" /> </div> </xsl : template>

190

Transformations

Notice that we're declaring the templates in the opposite order to which they are called. We can do this
because of the declarative nature of the language. Each template element has a mode attribute which
corresponds to the calling <apply-templates> element. This mechanism allows us to differentiate
matches on the same node, and trigger different template rules as we wish.

Now type the following URL into your browser:

http://localhost/transforms/transformxml.aspx?xml=shopping-cart.xml&xslt=transform-two.xslt

The value for xslt in the query string is now transform-two.xslt. This example also demonstrates
the reusability of the Trans formXML. aspx page, which we haven't had to recompile. The results
appear as follows:

file Edit View Favorites Tools Help

"»•- ® [3] {21 l 'glSearch

hopping-cart. xml&xslt=transf orm-two. xsltAddress ,jjy ttp://localhost/Transforms/TransformXML.aspx?xrnl=s

Item Quantities

Name=ITM-1001, Quantity=l
Name=rrM-1002, Quantty=3
Name=rrM-1003, Quantty=l
Name=nM-1004, Quan%=l

Item Product Lines

IterrrfTM-1001, Product Line=l
Item=nM-1002, Product Line=l
Item=ITM-1003, Product Line=2
Item=ITM-1004, Product Line=3

Named Templates
We also have the ability to apply a template by name, rather than by node match. When using this
technique, the context node of the calling template becomes the context node of the named template.
This allows us to call a specific template from any template in the style sheet. So, as the mirror image of
the previous example, we will now apply one transformation to two separate node types.

Add the following named template to transform-two.xslt:

<xsl:template name="BoldRed">

<xsl:value-of select="." />

</xsl:template>

Chapter 5

Note the name attribute in place of the match attribute. As its name suggests, this template wraps the
text value of the context node in a HTML element with a style attribute set to make the
content bold and red.

Now let's add two more templates, matching the productLine attribute and quantity
element respectively:

<xsl : template match="@productLine">
<xsl : call-template name="BoldRed" />

</xsl : template>

<xsl : template match="quantity">
<xsl : call-template name=" BoldRed" />

</xsl: template>

Both these templates call the same "BoldRed" template with the <call-template> syntax. Should we
now make any changes to the "BoldRed" named template, they will apply to all calling templates. The
final change is to apply the above two templates from the other templates, like so:

<xsl : template match="item" mode="PL">
<div>

Item=<xsl : value-of select="@id" />,
Product Line=<xsl :apply-templates select="@productLine" />

</xsl : template>

<xsl : template match="item" mode="QTY"> <div>
Item=<xsl :value-of select="@id" />,
Quantity=<xsl :apply-templates select=" quantity" />

</xsl : template>

1 QO

Transformations

u'hen the page is executed with these changes, the result is as follows:
File Edit View Favorites Toois Help

j | J ^arch ^Favor i tes '#
j ttp : //localhost/Transf orms/Transf ormXML .aspx?xml=shopping-cart . xmltoslt=transform-two . x:

Item Quantities

Name=ITM-1001, Quantity=l Name=iTM-1002, Quantity=3 Name=rTM-1003,
Quantiry=l Name=rTM-1004,
Quantity=S

Item Product Lines

Item=nM-1001, Product Line=l
Item=nM-1002, Product Line=l
Item=rTM-1003, Product Line=2
Item=ITM-1004, Product Line=3

JgfSorair™

Here, the values for the <quantity> elements and productLine attributes are red and bold (trust me
on this!). We can now do this for any other element, by simply calling the named template to handle the
element in question.

Controlling Document Output

Now that we have a basic understanding of the purpose of template rules in a style sheet, we'll move on
to investigate how to control the document output. We'll see how to sort the results of the
transformation, and apply conditional logic to filter the result.

Sorting Node-Sets with <sort>

A common scenario when dealing with data is to provide it in a sorted order. XSLT provides the means
for sorting node-sets in our style sheets with the <sort> element.

The <sort> element supports several attributes, as described in this table:

Attribute of Description
<sort>

se lec t An XPath expression using a relative location path to provide the value on
which the sort is based. The default value is ".", which uses the
context node.

lang The language the sort is based on. If not specified, this is derived from the
system environment.

data-type Typically "text" or "number".Sorts on "text" are sorted alphabetically. Sorts
on "number" convert the node to a numeric value and then sort the node-set
numerically.

order Either "ascending" or "descending". The default is "ascending", meaning
lower values appear first.

case-order Possible values are "upper-first" or "lower-first". This allows us to
determine which conies first when a word or character begins with a different
case. The default value is "upper-first".

The <sort> element can be used in one of two ways:

Q As a child of

<apply-templates> Q As a child of

<f or-each>

We will start by exploring how to sort using <apply-templates> .

Using <sort> with <apply-templates>
Remember, when we call <apply-templates>, the node-set resulting from the XPath expression in
the select attribute is ordered as the nodes were found in the source document. If we want to override
that behavior, we can place a <sort> element as a child of <apply-templates>.

Open the transform-two.xslt style sheet, and locate the template match for the root node. Add two
<sort> elements as shown:

<xsl:template match="/">
<html> <head>

<title>Transformation Example</title>
</head> <body>

<hl>Item Quantities</hl>
<xsl:apply-templates select="//item" mode="QTY">
<xsl:sort

select="quantity"

194

Transformations

data-type="number"
order="descending" />

</xsl:apply-templates>
<hl>Item Product Lines</hl>
<xsl:apply-templates select="//item" mode="PL">
<xslrsort
select="8id"
data-type="text"
order="descending" />

</xsl:apply-templates>
</body> </html>
</xsl:template>

Notice how we've changed both <apply-templates> elements so that they are no longer empty. Each
now has a <sort> child element, with attributes specifying how to perform the sort. In our example,
the results appear as follows:

•3 Transformation Example - Microsoft Internet Explorer

.=101 JSi

File Edit View Favorites Tools
Heip

- * , S » j a I ^ S e a r c h
j H F

frffcd.

Address Ji£) Up : //localhost/Transforms/Tr ansformXML . aspx?xml=shopping-cart . xml8«slt=transfomi-two . xslt jj s£»*6o ; Links

Item Quantities

Name=lTM-1002, Q
Name=nM-1001, Quantity=l
Name=nM-1003, Quantity=l
Name=nM-1004, Quantity=l

Item Product Lines

Item=riM-1004, Product Line=3
Itern=rTM- 1003, Product Line=2
Itern=nM-1002, Product Line=l
Item=riM- 1 00 1 , Product Line=l

J
Local intranet

Under the Item Quantities heading, the nodes are now listed in descending order based on the value in
the <quantity> element, whereas the nodes listed under the Item Product Lines header are listed in
descending order according to the value of the id attribute on the <item> element.

Chapter b

Performing Repetition with <for-each>

When dealing with symmetrical data, we may elect to iterate through each node in a node-set. In XSLT,
this is accomplished using the <f or-each> element. As the name implies, it applies the same
processing logic to each node in a node-set.

Creating an HTML Table
Still using the shopping-cart .xml file as our data source, let's create a new XSLT style sheet for it,
named transform-three.xslt in the same directory as our Transforms project.

This all-new style sheet starts off like this:

<xsl:template match="/">
<html> <head>

<title>Transformation Example</title>
</head> <body>
<h2>Shopping Cart Items</h2>
<table style="border: thick solid;">
<tr style="background-color:#000000,-color:#FFFFFF">
<th>Line Number</th> <th>Item Number</th>
<th>Description</th> < th align="right">Quant i ty</th> <th
align="right">List Price</th> </tr>

So far, we've got some literal HTML markup in the template match for the root »riode to format our
result. We have an opening <table> tag, followed by the column headings.

In our transformation, we want a <tr> row for each item in the document, whic^i we will create with the
<f or-each> element:

<xsl:for-each select="//item">
<tr>

<tdxxsl :value-of select= "position () " /></td> <tdxxsl: value-of
select="@id" /></td> <tdxxsl:value-of select="description"
/></td> <td align="right"xxsl: value-of select="quantity"
/></td> <td align="right"xxsl: value-of select="list-price"
/></td> </tr> </xsl:for-each>

When the XSLT processor reaches the <xsl: f or-each> element above, it establishes a node-set of
<item> elements in the same order as in the source XML. Inside the <xsl: fo:cr-eich> element, each
<item> element becomes the context node for any XPath expressions. The first, <td> tag of the row
represents the line number, which is generated by calling the position () XPat~th function to give the
position of the context node in the node-set.

196

Transformations

Finally, we close the <table> and other HTML tags:

</table>
</body> </html>
</xsl:template>

</xsl:stylesheet>

We have only one template match in our style sheet. However, with the use of <f or-each>, we were
able to process each <item> node in the document.

Type the following URL in the browser to see the results:

http://localhost/transforms/transformxml.aspx?xml=shopping-cart.xml&xslt=transform-three.xslt

The resulting screen will be something like this:

 Links

Shopping Cart Items

Line Number Item Number Description Uuantity List Price
IIM-lOOl Gadget XYZ 1 123.451
IIM-1002 XYZ Accessory 3 4.00*
1TM-1003 Gizmo Part 1 15.001
ITM-1004 WidgetX 1 44.00

It] Done HJf Loeafintranet

Using <sort> with <for-each>
As we mentioned earlier, we can use the XSLT <sort> element within a <f or-each> element to sort
the document output.

In our example, we might want the items sorted in descending order by list price. We can do this simply
by adding the following element as an immediate child of our <f or-each>:

<xsl:for-each select="//item">
<xsl:sort select="list-price"
data-type="number"
order="descending"

una pier o

Calling the previous URL now displays this screen:

3 Transformation Example - Microsoft Internet Explorer
Fte Etlt View Favorites Tools Help

$ ' '^Search Jj jFavorites ^j>Media
Address j|£j ttp ; //localhost/Transf orms/Transf ormXM .aspx?xml=shopping-cart . xml&xslt-=transf orm-three . xslt ** | f^Go Links "'

Shopping Cart Items
J

Line Number Item Number Description Quantity List Price
1 IIM-1001 Gadget XYZ 1 123.45.
2 UM-1004 Widget X 1 44.00;
3 HM-1003 Gizmo Part 1 15.00 ̂
4 HM-1002 XYZ Accessory 3 4.00

Done

Notice that there was no change to the line number values as produced by the XPath position ()
function. This is because the sort is executed on the node-set first. Keep in mind therefore that using the
position () function after sorting the node-set will not return the position of the node as it originally
appears in the source XML document.

Using Conditional Logic in XSLT

XSLT is a programming language, and as such it has elements that provide the functionality of the i f
statement. These elements control document output according to Boolean tests, and they are:

Q <choose> . .<when> . .<otherwise>

The <if> and <when> elements have a test attribute, where we provide a Boolean expression. Since
we can provide XPath expressions for this attribute, the following table shows how the results are
converted to either true or false:

Expression Data-Type Boolean Result

Boolean The result is true or false based on the Boolean expression.
For example:
5 >

String

The result of this Boolean expression is false.

If the string is empty, the result is false, otherwise true.

198

Transformations

Expression Data-Type Boolean Result

Numeric

Node-Set

If the number is zero, the result is false, otherwise true.
For example:
-321

This is interpreted as true.

If the node-set is empty, the result is false, otherwise true.

The expression in the test attribute behaves identically to the argument for the XPath
boolean () function.

Controlling Output using <if>
Let's add a few lines to our transform-three.xslt style sheet to demonstrate how these elements let
us easily control document output. We will add a new column to the HTML <table>, which will
contain special information if the product line is 2:

<table style="border: thick solid;">
<tr style="background-color:#000000;color:#FFFFFF">
<th>Line Number</th> <th>Item Number</th>
<th>Description</th> <th align="right">Quantity</th> <th
align="right">List Price</th> <th>Notes</th> </tr>
<xsl:for-each select="//item">

<xsl:sort select="list-price"
data-type="number"
order="descending"

/> <tr>
<td><xsl:value-of select="position()" /></td>
<tdxxsl :value-of select="@id" /></td>
<td><xsl:value-of select="description" /></td>
<td align="right"xxsl :value-of select= "quantity" /></td>
<td align= "right "xxsl: value-of select="list-price" /></td>
<td>
<xsl:if test="@productLine='2'" >
Call for details!

</xsl:if>
</td>

</tr>
</xsl:for-each>

</table>

Chapter 5

The test condition in the XSLT <if > element checks to see if the current item's product line is equal to
the number 2. If the result is true, the message Call for details! will be output on that row. Here is how
the resulting screen looks:

3 Transformation Example - Microsoft Internet Explot
File Edit View Favorites Tods Help
^Back ' «4 * Q^j | L^j t ^ i ^Search f j j y Favor i tes

Address |^) tt : //localhost/Transforms/Transf ormXML . aspx?xml=shopping-cart . xml&xslt=tr ansf orm-three , xslt _J Links

Shopping Cart Items

Line Number Item Numberl Description
Quantity List Rice Notes

TIM-1001 Gadget XYZ
ITM-1004 WidgetX
ITM-1003 Gizmo Part

1 123.45
1 44.00
1 15.00 Call for details!;
3 4.00

ITM-1002 XYZ Accessory

v I
i Done r Local intranet

Controlling Output using <choose>..<when>..<otherwise>
Much like other languages, XSLT allows us to check for multiple conditions in one logical block. This is
similar to switch, .case in C# and Select. .Case in VB.NET. The syntax is as follows:

<choose>
<when test="Boolean express!on">

[Output 1] </when> <when
test="Boolean expression">

[Output 2]
</when>
<otherwise>
[Output 3]

</otherwise>
</choose>

The XSLT processor checks each <when> child of the <choose> element for an expression that returns
true. If the processor finds a true result, the output is rendered and the <choose> is escaped. If no
<when> test returns true, then the processor uses the output given in the <otherwise> element, if
present. Thus a <choose> with only one <when> and an <otherwise> is similar to using an if . . else
statement.

Let's add a <choose> to our transform-three.xslt file. Our aim is to create a different
background for alternating items in the table:

200

Transformations

<table style= "border : thick solid; ">
<tr s tyle=" background- color : #00 00 00, -color : #FFFFFF"> <th>Line
Number</th> <th>Item Number </th> <th>Description</th> <
th>Quantity< / th> <th>List Price</th> <th>Notes</th> </tr>
<xsl : f or-each select=" //item">

<xsl:sort select=" list-price"
data- type= " number " order= " descending
" /> <xsl:element name="tr">

<xsl : attribute name=" style ">
<xsl :choose>

<xsl:when test="position() mod 2">
background-color : #DDDDFF;

</xsl :when> <xsl : otherwise>
background-color : #BBBBBB; </xsl :

otherwise> </xsl :choose> </xsl :
attribute>
<tdxxsl : value-of select="position() " /></td> <tdxxsl :
value-of select="@id" /></td> <tdxxsl: value-of
select="description" /></td> <td align= " right " xxsl :
value-of select= "quantity" /></td> <td align= "right "xxsl :
value-of select="list-price" /x/td> <td>

<xsl:if test="@productLine= ' 2 ' " > Call
for details!

</td>
</xsl : element>

</xsl : for-each>
</table>

Now wait a minute! What is the <xsl : element> element that we just threw in there? And what is the
<xsl : attribute> element? These are necessary in this example, as our XSLT here is building up the
opening <tr> tag in the <table>. We will cover this more in just a moment.

For now, examine the test condition in our <when> element. It essentially checks to see whether the
position of the <item> in the node-set is odd or even. If odd, the result is true, which executes the
output in the <when> element. If false, the output in <otherwise> is used.

So, to come back to why we couldn't simplify the <choose> like this:

<xsl :choose>
<xsl:when test="position() mod 2">

<tr style= "background-color : #DDDDFF; ">
</xsl :when>

o MCI pier ;j

<xsl:otherwise>
<tr style="background-color:#BBBBBB;">

</xsl:otherwise> </xsl:choose>

The issue here becomes apparent if we view the above XML fragment through the eyes of an XML
parser. The parser sees two opening <tr> tags, and other elements overlapping. This is not well-formed,
the parser gets upset, and our style sheet will break. That is why the earlier solution uses the XSLT
<element> and <attribute> elements to accomplish the task. Note that making <attribute> a
child of <element> is how we define an attribute for that element, and that the closing </element>
tag inserts the corresponding </tr> tag in this case. Alternatively, we could've used <xsl: text>
elements, which can produce the same output produced by <xsl: element> and <xsl: attribute:-,
as long as we specify the disable-output-escaping="yes" attribute to output the angle-brackets
correctly.

Understanding XSLT Functions, Variables, and
Parameters

The XSLT language supports a number of functions to provide, among other things, extended support
for node-set operations. We will not be able to cover every XSLT function in this section, so we will
instead highlight just those functions that can be very useful in a web environment.

Uniquely Identifying Nodes with generate-id()

We often need a way to uniquely identify nodes in the output document. We may need a unique value
for an ID attribute, or to differentiate two or more nodes with the same name and value. The
generate-id () function gives us this ability.

Save transform-three.xslt as transform-four .xslt in our Transforms web application. In
trans form-four .xslt, we'll add another column to our table, which will contain a button to display
the generated ID for each <item> node.

In the <tr> tag holding table heading information, add a column named ID:

<tr style= "background-color :#000000; color: #FFFFFF" >
<th>Line Number</th>
<th>ID</th>
<th>Item Number</th>
<th>Description</th>
<th>Quantity</th>
<th>List Price</th>
<th>Notes</th>

</tr>

202

 Transformations

Then, in the <for-each> element, add the code highlighted below:

<xsl:for-each select="//item">
<xsl:sort
select="list-price"
data-type="number"
order="descending" /> <xsl:element
name="tr">

<xsl:attribute name="style">
<xsl:choose>

<xsl:when test="position() mod 2">
background-color:#DDDDFF;

</xsl:when> <xsl:otherwise>
background-color:#BBBBBB;

</xsl:otherwise> </xsl:choose>
</xsl:attribute>

<tdxxsl: value-of select="position() "
/></td> <td>

<input type="button"
id="{generate-id()}"
onclick="alert(this.id);"
value="Click!" /> </td>
<td><xsl:value-of select="@id" /></td> <tdxxsl: value-of
select= "description" /></td> <td align=" right"xxsl:
value-of select= "quantity" /></td> <td align="right
"xxsl: value-of select="list-price" /x/td> <td>

<xsl:if test="@productLine='2'" >
Call for details!

</xsl:if> </td>
</xsl:element>

</xsl:for-each>

Here, we have added an HTML <input> tag of type button. Notice the syntax for the id attribute,
enclosing the function in curly braces ({}) produces the same effect as calling an <xsl: value-of >
statement right inside the quotes. The function returns a string that uniquely identifies the context node,
which in this case is the current <item> element. The onclick attribute calls the Javascript alert
function to open a message box with the value of the unique ID.

unapter

Save the changes to transform-four .xslt, and specify it in the query string for the
TransformXML. aspx page. The results look like this:

nple - Microsoft Internet Explorer
File Edit View Favorites Tools Help

I g f i l l

.-101*1

Addess|a!lhttD:<flocalhostJTransfforms<TransformXML.aspx?xml=shopplna-cart.xml&xslt=transfonn-four,xst ?|

Shopping Cart Items
j

Line Number ID Item Number Description
Quantity List Price Notes

Clickl IITM-1001 Gadget XYZ _Click!_|riM-1004

Widget X Click! llIM-1003 Gizmo Part

If we click the first button, we get a message box something like
this:

XSLTiteml2Q121123120

Each button will of course return a different value. The method used to generate the ID is dependent on
the implementation, and cannot be relied upon to always produce the same value for the same document,
even with the same transform engine.

We will use this function again in the next example to compare nodes with each other.

Accessing Nodes using <key> and key()

A common situation I have faced when using XSLT style sheets is the need to transform data items
according to the categories they are classed under in that particular XML dialect. The real challenge is to
do so dynamically, without hard-coding template rules for each category. By using the XSLT <key>
element and key () function, we can retrieve such "category" nodes in a document prior to processing the
template rules, and then use the acquired node-set for access later.

Understanding the <key> Element
The <key> element is a top-level element, which means it must be a child of the <stylesheet>
element. There are three attributes of <key>:

a name - Used as an identifier in the XSLT style sheet. Typically referenced by the
key () function.

204

| ^Starch ^Favorites>B«cfc - »» -

1 1 2 3 . 4 5 1

4 4 . 0 0 1 15.00

Call for <

1

2

Transformations

3 match - An XPath expression that identifies the nodes in the source XML document to be
gathered into the node-set. This search is done throughout the document, so it is not necessary
to use the / / operator to find all nodes.

Q use - A relative location path identifying how to access the matched node. To access the
node by its own value, supply the "." self expression. To access the matched node by a relative
node (such as an attribute of the element), provide the respective location path. This is also
referenced by the key () function. This will become clearer once we've looked at an example.

Understanding the key() Function
The key() function allows us to access the matched nodes identified by the XSLT <key> element. The
function accepts two arguments:

Q name - This should match the name attribute of the corresponding <key> element.

Q key - The value by which to access the node-set. This corresponds to the use attribute of
the <key> element.

To demonstrate, we'll use the following XML document, distinct .xml:

<?xml version="l.0"?>
<doc>
<parent category="E">
<child>l</child>

</parent> <parent
category="D">
<child>2</child>

</parent> <parent
category="E">
<child>3</child>

</parent> <parent
category="A">
<child>4</child>

</parent> <parent
category="B">
<child>5</child>

</parent> <parent
category="B">
<child>6</child>

</parent> <parent
category="C">
<child>7</child>

</parent> <parent
category="A">
<child>8</child>

</parent> <parent
category="A">
<child>9</child>

</parent> <parent
category="B">
<child>10</child>

</parent> </doc>

Chapter 5

Now, say that we want to display the value of each child listed according to its parent's category. If we
know all the possible category values, we could create a separate template rule for each one. But there is
a more dynamic and robust way which uses the XSLT <key> element and key () function.

Create a new XSLT style sheet in our Transforms project, and name it transform-five.xsIt. This
style sheet will be used to transform the distinct. xml document listed above.

Begin the style sheet with the following markup:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="l.0 " >

<xsl:key name="category_key" match="parent" use="@category" />

We have defined an XSLT <key> element, and named it category_key. The match attribute contains
the single value of parent. By supplying this value, the XSLT processor will search the entire source
document node by node for all occurrences of <parent> elements, and build a node-set accordingly.
The use attribute informs the processor that the node-set is to be accessed by providing the value of the
category attribute.

We now create a template match for the root node:

<xsl:template match="/">
<html> <head>

<title>Transformation Example</title>
</head> <body>

<xsl:apply-templates select="doc"/>
</body> </html> </xsl:template>

The above template formats the output as an HTML document. The content of the <body> tag is
provided by the template matching the <doc> document element.

Now it gets interesting. This is the template matching <doc>:

<xsl:template match="doc">
<xsl:for-each select="parent[generate-id(.)=
generate-id(key('category_key', Scategory) [1])] ">
<xsl:sort select="©category" /> <div
style="font-weight:bold">

Category=<xsl:value-of select="@category" />

<xsl:for-each select="key('category_key', Scategory)">
<xsl:sort select="child"

order="descending"
data-type="number" />

Child=<xsl :value-of select= "child" /xbr /> </xsl:
for-each>

206

Transformations

</xsl:for-each>

</xsl : template>

The magic really happens in the first <;f or-each> element. The XPath expression looks a little tricky,
and I'll explain it as best I can. The first location step searches for <parent> elements that are children
of the <doc> element (as this is the context node in this template). The predicate then selects only the
<parent> element whose uniquely generated ID matches the first node returned from the
category_key node-set containing the same generated ID.

The result is that this <f or-each> neatly collects together <parent> nodes with distinct values in their
category attribute.

The inner <for-each> statement then iterates through each child of each <parent> element, listing
them in descending order.

The last thing to do is close the style sheet:

</xsl : stylesheet>

Save the trans f orm- f ive .xs It sheet, and feed it and the distinct. xml file into the Trans
formXML . aspx page in your browser. The results are shown in the following screenshot:

3 Transformation Example - Microsoft Internet Explorer
Ffc Edt Wew Favorites Tods Help
4- Back - «* - '4} J 4J ' ^Search ^Favorites

ecfa ,J 0M

gj ^

Address [jg) http : //IncalhostirransformsfTransf or mXML , aspx?xml=distinct , >ml&xslt=transf orm-f ive . xslt ̂j I Links :

Category=A
Child=9
CMd=8
Child=4

Category=B
CUd=10
CUd=6
Child=5

Category=C
CUd=7

Category^D
CMd=2

Category=E
Child=3
Child=l

J

, •)

iDone

In this way, we have dynamically categorized our output. Experiment by adding or removing
categories ,£
in the distinct .xml document - the style sheet will react accordingly. W

Assigning Values with <variable>

We can assign values to use in XPath expressions with the XSLT <variable> element. An XSLT
variable's scope is limited to the element that it is a child of, so if declared as a top-level element, it can be
accessed throughout the style sheet. The element has just two attributes:

Q name - Supplies the identifier for the variable, within the scope of its declaration

Q select - An optional XPath expression returning the value to be assigned to the variable

Alternatively, we can specify the value of the variable by placing content directly in the element. If
select is not provided, and the element is empty, the variable equals an empty string.

Here is a simple demonstration of how to use a variable. In the transform-five.xslt style sheet,
locate the template match for <doc>, and make the changes highlighted below:

<xsl:template match="doc">
<xsl:for-each select="parent[generate-id(.)=
generate-id(key('category_key' , @category) [1])] ">
<xsl:sort select="@category" />
<xsl:variable name="CategoryName" select="@category" /> <div
style="font-weight:bold">
Category=<xsl:value-of select="$CategoryName" />

<xsl:for-each select="key('category_key',
@category)"> <xsl:sort select="child"
order="descending" data-type="number" />
Child=<xsl: value-of select="child" /xbr

/> </xsl:for-each>

</xsl:for-each>

</xsl:template>

In this example, we have assigned the category attribute to the CategoryName variable. For each
iteration, the variable value changes. Note the syntax to access the variable in the line that follows
shortly after the variable declaration:

Category=<xsl:value-of select="$CategoryName"

/> The $ character denotes a variable identifier.

This example does not change the behavior of our transformation, and may seem a little pointless.
Variables can really save us a lot of trouble when used to hold complex XPath expressions that are
employed several times in the same template. In following examples though, we will see another
practical use of this feature: to hold a complete XML document.

208

Transformations

Processing Multiple XML Documents with document()

There are times when data in one XML document directly relates to data in another, and in order to
create meaningful output, we must take values from one XML document and relate them to the other.
Linking such documents together is made possible with the document () function, which could be
thought of as a SQL JOIN between the two documents.

Although there are other uses for document () , the following example focuses on how to use it to link
data between XML documents during a transformation.

We will link the distinct. xml document to the following document, called categories .xml:

<?xml version="l . 0" ?>
<categories>

<category id="A">ASP.NET</category>
<category id= " B " >VB . NET< / ca tegory>
<category id="C">C#</category>
<category id="D">ADO.NET</category>

</categories>

Open the transform-five. xslt style sheet, and add the following variable declaration as a
top-level element:

<xsl:variable name="categories_doc" select= " document (' categories .xml ') " />

This associates the entire categories .xml document with the variable categories_doc. Now make
these changes to the template for <doc>:

<xsl : template match="doc">
<xsl : for- each select=" parent [generate- id (.) = generate-id(key
(' category_key ' , Ucategory) [!])]"> <xsl:sort
select="@category" />
<xsl : variable name="CategoryName" select="@category" /> <div
style="f ont-weight :bold">

Category=<xsl :value-of select=" $CategoryName" />,
<xsl :choose>

<xsl:when test= "$categories_doc/ /category [@id=$CategoryName] "> <xsl :
value-of selec t="$categories_doc// category [@id=

$CategoryName] " />
</xsl :when> <xsl : otherwise>
Unknown

</xsl :otherwise>
</xsl:choose>

<xsl : for-each select="key (' category_key ' , Scategory)
"> <xsl:sort select="child" order = " descending "
data- type=" number " />
Child=<xsl: value-of select="child" /xbr

/> </xsl : f or-each>

</xsl:for-each>
</xsl:template>

This new XSLT <choose> element contains a <when> element that tests for the existence of a
<category> element in the categories .xml document matching the value currently in our
CategoryName variable. If the test returns true, we select the text value of the matching <category>
element. Otherwise, we output Unknown to indicate there was no match in the other XML document.

Save the changes to transform-f ive.xslt, and view the results in your browser. It should look like
the following screenshot:

5 Transformation Example - Microsoft Internet Explorer

11*1

Category=A,
ASP.NET
Child=9
CUld=8
CMd=4

Category=B, VB.NET
Child=10
Child=6
Child=5

Category=C, C#
Child=7

Category=D, ADO.FTET
Child=2

Category=E, Unknown
Child=3
Child=l

File Edit View Favorites Tods

ISearch ^Favorites •rfMedia tj i=\» _=* 3
=d

Mj^^«^.^.t^m..':^.^^.ajL..^Jrfg^^ 1.^.^*.. ..^T^ ^TyTv)........"^ , Lmks Mi

Done I local intranet

As we can see, the values from the categories .xml document are included in the output of the
transformation. When there was no match for "E", the conditional logic output Unknown as we expect

Creating Dynamic Output with <param>

Very similar to <variable> is the <param> element, as both can store information that we can acce in
our style sheet. One of the key differences is that it allows external data to be passed in when the
transformation is invoked. Again, there are multiple uses for <param>, but in the following exampl6 w are
going to focus on how to pass external data into the transformation to filter the results.

210

Transformations

First, I'll just briefly mention the other important use for <param> elements: defining parameters for
named templates, like so:

<xsl : template name= " templateName " >
<xsl:param name=" f irstParameter" />
<!-- Other parameters here --> </xsl :

template>

We then pass in parameters by setting values with <with-param> child elements of the
<call-templates> element:

<xsl : call -template name=" templateName ">
<xsl :with-param name=" f irstParameter" select "XPathExpression" />
<!-- Other parameters defined here --> </xsl :

call-template>

These aren't something we would normally change programmatically, so we'll pay more attention to the
use of parameters for style sheets.

Similarly to named templates, parameters are declared as immediate children of the <stylesheet>
element (in fact, named templates can be thought of as localized inline style sheets), so add the
following as a top level element of the trans form- five . xslt sheet:

<xsl:param name="CategoryParam" /> Then in the template match for <doc>,

incorporate an <xsl : if > element as shown below:

<xsl : template match="doc">
<xsl : for-each select = "parent [generate- id (.) = generate-id(key
(' category_key ' , @category) [!])]"> <xsl:sort
select="@category" /> <xsl :variable name="CategoryName"
select="@category" />
<xsl:if test="not ($CategoryParam) or $CategoryName=$CategoryParam">
<div style="f ont-weight :bold">
Category=<xsl : value-of select=" $CategoryName" />,
<xsl :choose>

<xsl :when test= " Scat egories_doc/ /category [@id=$CategoryName] ">
<xsl: value-of select="$categories_doc// category [@id=$CategoryName] " />

</xsl :when> <xsl :
otherwise>
Unknown

</xsl : otherwise>
</xsl :choose>

<xsl : for-each select="key (' category_key ' , @category)"> <xsl:sort
select="child" order= " descending " data-type="number " />

Child=<xsl : value-of select="child" />

</xsl : f or-each>

Chapter b

</xsl : if >
</xsl : f or-each>

</xsl : template>

The <if > element does a clever trick here. It tests two conditions using the parameter (which is
identified with $ just like a variable). The first condition determines if $CategoryParam has no value,
and the second determines if the $CategoryParam value is equal to $CategoryName. If either is
true, the contents of the <if> element are processed.

So now we just need to know how to provide a value for the $CategoryParam parameter from an
ASPX page.

Using XsltArgumentList to Add Parameters

We have to return to Visual Studio .NET, and modify our TransformXML.aspx.es code to provide
support for parameters. We will use the XsltArgumentList object, which we then pass to the
Transform method of the XslTransf orm object. Make the following changes to our Page_Load
event handler:

private void Page_Load(object sender, System. Even tArgs
e) {

// Put user code to initialize the page here
try
{
string _XMLPath = Request . QueryString ["xml "] ; string
_XSLTPath = Request .QueryString ["xslt"];
string _Param = Request .QueryString ["category"];

// Instantiate and Load the XPathDocument
XPathDocument _SourceXml =
new XPathDocument) Server .MapPath(_XMLPath)) ;

// Instantiate and load the XslTransforra object
XslTransf orm _Transform = new XslTransf orm (); _Trans
form. Load (Server .MapPath(_XSLTPath)) ;

// Create the XsltArgumentList object
XsltArgumentList _Args = null;
if (_Param != null && _Param != String. Empty)
{
_Args = new XsltArgumentList () ;
_Args . AddParam("CategoryParam" , " " , _Param) ; }

// Send result of transformation to Response. Output stream _Trans
form. Trans f orm(_SourceXml, _Args, Response. Output) ;

}
catch (Exception handledException)
{
Response. Write (handledException. Message) ;

212

Transformations

The first change above captures a possible value named category from the query-string. Our next
change is the declaration of a new Xs It Argument List object. We initialize it to null, and only
instantiate it if there is a value in the _Param string. If there is a value, we instantiate the object and call
the AddParam method to set the value of the _Param string as the CategoryParam named parameter
in the XSLT style sheet. (The middle argument in AddParam is for namespace support.)

If we now save and rebuild the project, we can call the Trans f ormXML. aspx page with the
distinct.xml and transform-five.xslt files in the query-string. This gives the same results as
before. Now append the query-string with the following:

&category=B

This will pass the value of "B" to our style sheet, to deliver the following results:

3 Transformation Example - Microsoft Internet Explorer

Flu Edit View Favorites Tools Help

Address ||jfr http: //localhost/Transforms/TransformXML.
aspx?xml dlsUnct xmlteslt transform five xslt8a:ategQry=B

Category=E, YB.NET
Child=10
CWd=6
Child=5

\ a Done

Try setting category to different values in the query string, and you'll see that the parameter filters the
output to display only the matching category.

Summary

In this chapter, we learned how to utilize XSLT style sheets in our web applications. We covered the
various reasons why and when we would use XSLT. We looked at language syntax, template rules, and
saw how XPath is used throughout. We also explored how it allows us to transform data dynamically
using conditional statements and XSLT functions. We looked at some typical situations we may
confront during our development careers, and how XSLT provides a neat solution.

However, the examples in this chapter have used static XML documents as source data. In many cases,
the XML we use may either be generated from another component, or derived from a data source such
as SQL Server or MS Access. In our next chapter, we will see how to use ADO.NET and its XML
features to provide a dynamic data source for our application. Along the way, we'll see an example or
two of how to use XSLT against such data sources.

ADO.NET

Getting data onto our web pages effectively is the key to providing dynamic, useful information for
users of our web applications. Our focus in this chapter takes data access to a different level, to capture
the benefits of the XML features of ADO.NET in ASP.NET applications.

This chapter will focus on the following areas as they relate to developing web applications:

Q A basic introduction to ADO.NET
Q Accessing data with ADO.NET
Q Understanding Security when using ADO.NET in ASP.NET
a Using DataSets with XML documents.
Q Synchronizing an XmlDataDocument with a DataSet
a Transforming XML data

What is ADO.NET?

Microsoft's new solution for handling data access and manipulation in the managed environment of the
Framework is called ADO.NET - but what is it? Is it a namespace? Is it simply the ADO object model
exposed in the .NET Framework?

unapier o

In fact, it is neither of these. Rather, it is a term which covers the many namespaces, classes, interfaces,
and enumerations that provide us as developers with an awesome new way to handle data in our
web-enabled applications. ADO.NET was designed expressly to meet the challenges thrown up by
ASP.NET. It offers many advantages over its predecessor: it is lightweight and fast, plus it is extensible,
allowing us to add data relations and constraints in addition to data itself.

The design goals for ADO.NET were primarily to leverage the power of ADO, support a disconnected
environment, and, you guessed it, integrate well with XML. Looking at how it relates with XML will
be a major element (no pun intended) of our explorations in this chapter.

For the moment, let's turn our attention to the support that ADO.NET offers for a disconnected
environment. This is important to us as web developers, because the environment in which we work is
highly disconnected. Disconnected means that we do not maintain an open connection to the data
source across round trips to a web page. Rather, the data used in our web applications is retrieved as
and when needed.

Data Access using Managed Data Providers
Accessing information from disparate data systems is made possible with managed data providers.
Managed data providers are the link between our applications and the data source. The .NET
Framework supports two providers "out of the box":

Managed Data Provider Description

OLE DB .NET Data Provider

SQL Server .NET Data Provider

Used to access data exposed through the
general-purpose OLE DB interface. Examples of
OLE DB providers and the data source they
expose include:
Microsoft. JET.OLEDB. 4 . 0: Access, Excel
MSDAORA: Oracle
SQLOLEDB: SQL Server 6.5 (or lower)
For SQL Server version 7.0 and higher.

Additionally, Microsoft has provided another managed data provider for ODBC support, available from
the download site at http://msdn.microsoft.com/downloads. This add-on component provides access to
native ODBC drivers, and is intended to work with all compliant ODBC drivers. Note however that the
ODBC .NET Data Provider has only been tested with the Microsoft SQL ODBC driver, the Microsoft ;
ODBC driver for Oracle, and the Microsoft Jet ODBC driver.

Core Components of the Managed Data Providers
Every .NET data provider has four objects at its core, which implement interfaces to enable consistent
behavior across all managed data providers. These common-ground interfaces and objects exist in either
the System. Data or System. Data .Common namespace. The following table displays each core
interface, and the classes which implement it for each respective provider:

216

ADO.NET

Core Interface(s) or OLE DB Implementation SQL Server Implementation
Class(es)
IDbConnection OleDbConnection SqlConnection
IDbCommand OleDbCommand SqlCommand
IdataReader OleDbDataReader SqlDataReader
IDataRecord
IdbDataAdapter OleDbDataAdapter SqlDataAdapter
DBDataAdapter
DataAdapter
IDataAdapter

The role that each object plays in the data access mechanism is determined by the last part of the class
name, and is either Connection, Command, DataReader, or DataAdapter. Let's now summarize
what each of these roles entails.

Connection Objects
Connection objects provide the means of opening a connection to a data source, and we supply a
connection string to the object to specify the nature of the connection. The most common parameters
of a connection string are listed below. Note that where a default value is supplied, that parameter need
not be included in the string.

Q Connection Timeout (or Connect Timeout)
Represents the length of time to wait for a successful connection before returning an error.
The default value is 15 seconds.

U Data Source (or Server, Address, Addr, or Network Address)
The name or network address of the database server or the path to a data file.

Q Initial Catalog (or
Database) The name of the
database.

Q Integrated Security (or Trusted_Connection)
If set to true or SSPI (for Security Support Provider Interface), the connection is secured
using Windows authentication, and SQL Server will authenticate the Windows identity of the
process that is attempting to connect. The default is false.

Q User ID
If not using integrated security, this is the login name of the user.

Q Password (or PWD)
The password used in conjunction with User ID if not using Integrated Security.

Each managed provider may also have certain special attributes in the connection string. For instance,
OLE DB uses the Provider keyword to identify the underlying data source. Here is an example of a
connection string used by an OleDbConnection object to connect to an Access database:

Provider=Microsoft. Jet .OLEDB.4. 0,-Data Source=c: \AccessDB.mdb;

onapier o

For SQL Server, specific feature support can be configured such as enabling or disabling connection
pooling. The connection string below shows how to connect to a database called pubs hosted on the
SQL Server instance running on the local machine:

Data Source=(local);Initial Catalog=pubs;Integrated Security=true;

Command Objects
Command objects embody actions we wish to make to the data source. We use their properties to
execute a SQL statement, update data, or call on a stored procedure. Objects which implement the
IDbCommand interface can execute commands using one of the following methods:

J ExecuteNonQuery
This typically executes DML (Data Manipulation Language) statements which don't retrieve
data, such as INSERTS, UPDATES, or DELETES. It can also be used to call stored procedures that
return no values. ExecuteNonQuery returns a value representing the number of rows affected.
For statements that do not affect rows, the return value is -1.

J ExecuteScalar
This type of execution returns a singleton value, representing the value found in the first
column in the first row of the result, and ignoring everything else. We would typically use this
when returning an aggregate value such as SELECT Count (*) FROM Employees.

J ExecuteReader
This execution type is used when the command will yield a stream of data - such as a SELECT
statement returning a set of records. The result is an object which implements the
IDataReader interface (discussed in the following section).

Managed data providers may extend this behavior by defining methods specific to that provider's
feature set. For example, the SqlCommand object supports the ExecuteXmlReader method, for
SELECT statements which return XML markup. See Chapter 7 for more information on
ExecuteXmlReader.

DataReader Objects
As we have just learned, the ExecuteReader method returns an object which implements the
IDataReader interface. This is a read-only, forward-only stream of data. The two primary methods of
this interface are:

_i Read
This method advances the reader to the next record. The reader starts prior to the first record,
so calling this method at least once is necessary to access any data. This function returns true
if it successfully advanced to another record, otherwise false.

a Close
When we are finished using the reader, calling the Close method is important, as it frees up
the associated object implementing the IDbConnection interface, which we can then use as
the database connection for other activities.

To access column values in each row, we use the OleDbDataReader and SqlDataReader objects,
which implements the IDataRecord interface to provide methods for accessing column values. These
methods all begin with Get and are followed by the data type in question, for example GetString and
Getlnt32. The methods accept a number representing the ordinal value of the column.

218

ADO.NET

DataAdapter Objects
DataAdapter objects are a link between the data source and cached tables in the application. We cache
data in a DataSet object (discussed in more detail later this chapter) for client-side processing. Objects
derived from DBDataAdapter contain methods to get the data from the source to the specified DataSet
object. Two of the noteworthy methods are:

a Fin
This method is called once the DataAdapter object has been associated with a command
object that returns data. We provide the DataSet object that is to be 'filled' as a parameter, and
an optional name for the table generated. Subsequent calls to the Fill method will restore the
data to the underlying values in the data source. This has the effect of losing any updated
information, but any new records added will still be present in the DataSet.

G Update
This method is called when updates to the data cached in the DataSet are to be propagated to
the underlying data source. There are several options when using Update, which we will
explore later the chapter.

Populating a DataSet object with relational data and synchronizing changes with the data source is
accomplished with DataAdapter objects.

Creating the ADONET Web Application

To illustrate the concepts introduced in this chapter, let's create a new web application. Open Visual
Studio .NET and select File | New | Project. Select Visual C# Projects in the Project Types pane, and in
the Templates pane, choose ASP.NET Web Application:

kl Visual Basic Projects <~j Visual C#
Projects d Visual C++ Projects {23
Setup and Deployment Projects | B-C3
Other Projects

G) Visual Studio Solutions

fegj
Windows Class Library
Windows
Application Control Library

ASP.MET Web ASP,NET Web Web Control
Application Service Library

f A projectfor creating an application VMfth a Web user interface
Name:
Location: |http://localhost/ADONET|
Project will be created at httpi/ l̂ocalhost/AOONET.

Browse..

OK Cancel Help

Name the application ADONET and click OK. This will build the solution and project. Before we
continue, we need to address a very important issue for modern web applications: security.

Security and ADO.NET in ASP.NET Applications

Secure access to our data is an important requirement for almost every application, and understanding
how to provide data access security in ASP.NET demands special attention. Choosing between
integrated security or supplying specific user credentials should be weighed against the level of
authentication required for a web application.

Accessing Data with User ID and Password
One way to authenticate with a data source was touched on in the discussion of connection strings, that
is to provide user credentials - a user ID and password. Depending on its needs, an application can
either use a single user ID and password for all data access, or it could use credentials bound to the
particular user currently using the application. Let's discuss best practices in either scenario.

The following demonstrations use the Northwind sample database in SQL Server. In this chapter, I'll
assume you've created a SQL Server login account with the name of DBUser, with a password of
password, and with database owner access granted for the Northwind database.

Application-Level Access
When all data access is handled through a single user ID and password, the credentials are usually kept
somewhere safe for the application to retrieve and use when it needs to establish a connection. Where
the credentials are maintained is something we'll discuss next. Hopefully, for many reasons, these values
are not hard-coded in our Web Forms or components, as that can constitute a bit of a maintenance
headache should we need to change the details of the connection.

So what are suitable places? One available avenue is to store the credentials in the Web.conf ig XML
configuration file for the project, by defining an <appSettings> element as a child of <conf
iguration>. This element can be used to store general application settings by setting the key and
value attributes of <add> child nodes of <appSettings>, which we can then access from any Web
Form that requires them. Here is an example of storing a connection string in Web. conf ig:

<appSettings>
odd key="CSl" value="Provider=SQLOLEDB; Data Source= (local) ;

Initial Catalog=Northwind; User ID=DBUser; Password=password" />
</appSettings>

Add a similar <appSettings> element to the Web. conf ig file in the ADONET project to associate the
value of CS1 with a connection string, but using a user ID and password valid for the Northwind
database on your machine.

To get hold of <appSettings> values from code, we use the NameValueCollection returned by the
AppSettings property of the Conf igurationSettings class in the System. Conf iguration
namespace. The Item indexer property of this collection takes an argument that names the key
attribute of an <add> element, and returns the corresponding value.

Add a new Web Form to the ADONET web application project, and call it AppLevel .aspx. In the
Properties window, select DOCUMENT in the top dropdown, and find the title property. Change it t<
AppLevel Example. Next, drag a Label control from the Web Forms tab of the Toolbox, and place it
on the page. Set its ID property to MessageLabel, and clear its Text property. Now open the
code-behind file, and make the changes highlighted:

220

using System;
using System. Collections;
using System. ComponentModel ;
using System. Data;
using System. Drawing;
using Sys tern. Web;
using System. Web. SessionState;
using System. Web. UI;
using Sys tern. Web. UI .WebControls;
using System. Web. UI .HtmlControls;
using System. Conf iguration;
using System. Data. OleDb;

namespace Wrox.ASPNET. ADONET {
/// <summary>
/// Summary description for AppLevel
/// </summary>
public class AppLevel : System. Web. UI . Page
{
protected System. Web. UI. WebControls .Label MessageLabel ;
private void Page_Load(object sender, Sys tern. EventArgs e)
{
// Retrieve connection string from Web.config string _ConnectionString
= Conf igurationSettings .AppSettings [

"CS1"] .ToStringO ;

// Use it to open a connection
OleDbConnection _Connection=new OleDbConnection(_ConnectionString) ;

tr
y {
_Connection.Open () ;
MessageLabel .Text =

"Connection opened successfully...";

catch (Exception handledException) {
MessageLabel .Text = handledException. Message; }

finally
{
if (_Connection!=null) {

_Connection. Close () ; } } }
[Web Form Designer generated code]

ADO.NET

The code in the Page_Load event above uses the connection string value from Web.conf ig to open a
connection to the database. We need to include the System.Configuration namespace in order to
get the ConfigurationSettings object that exposes the values stored in Web.config. Now compile
and run the application by pressing F5. If the connection is successful, the following message appears in
the browser:

'3 AppLevel Example - Microsoft Internet Explorer
File Edit View Favorites Tools Help

•fMBB?! f2J I S Search jy Favorites

..JOjjcl

:"!
-^•^^Mg^ —— .. -— ----------- .

Address j^g) http //localhostjADONET/AppLevel.aspx 7] f^Go ;
Links
Connection opened
successfully...

^jDone

Now change the password attribute set for the connection string located in Web. conf ig to something
else, and save the changes. Refresh the page and the message label will read Login failed for user
'DBUser'.

As we have demonstrated, placing user credentials in the Web. conf ig file allows easy access without
making the credentials public, because ASP.NET prevents access to the Web.config file.

To further secure the user details, we could employ encryption when persisting connection information.

This way of storing and accessing connection strings could also work for behavior-specific or role-based
access, where we define multiple connection strings for each role.

User-Level Access
If we need to access the data differently for each user, and the mechanism for gaining authentication is
by passing in a user ID and password, we first need to establish how to obtain the user credentials. Often,
a Web Form will capture the user's login and password. If this is the case, security such as Secure Sockets
Layer (SSL) or Internet Protocol Security (IPSec) should be implemented to ensure the privacy of the
data.

If the actual database user ID and password are not passed into a Web Form, then we would need to
link users to their credentials through a table or config file, which we can query to retrieve their details.
However, this approach raises issues about having all the users' credentials available to the application.

Using encryption certainly provides another layer of security. For instance, the user's password may be
stored at the data source with a one-way hash. Prior to encryption, the DBA can concatenate the password
with a secret key so that when the user provides the actual password to the application, our code
concatenates the secret key, encrypts the merged value, and compares it to the value in the underlying
data source. This approach, combined with other security measures such as SSL and web application
authentication (either Passport, Windows, or Forms), provides very secure access to the data source.

222

ADO. NET

Accessing Data with Integrated Security
Access to SQL Server can be controlled by the Windows NT or Windows 2000 account or group, as
authenticated when the user logs on to the Windows operating system on the client. We can use these
credentials to control access to SQL Server, and we'll look at the options in this section.

Application-Level Access
To use integrated security, we need to understand how the web application attempts to authenticate
itself. This is configurable in the Web . conf ig file, as we will now explore.

Anytime we use integrated security to access the database, we need to be aware of which account
ASP.NET will use to authenticate itself. The default Web. conf ig file generated by Visual Studio .NET
is configured to request access to SQL Server using the aspnet_wp service, which runs as a local user
named ASPNET. One way to grant application-level access to our web application therefore is to grant
the ASPNET account access to SQL Server. However, this is not ideal, as any web application on the
same web server will now have equal access to that database.

Configuring Impersonation with <identity>
We do have an alternative. In the Web . conf ig XML file, we can define the context in which the
application runs by providing an <identity> node as a child of <system. wet». This <identity>
element can contain up to three attributes, as described below:

J impersonate
When set to true, the web application runs in the context of either the client or the user
account defined in the userName attribute. When set to false (the default), impersonation is
disabled, and the application runs in the context of the account associated with the aspnet_wp
service (ASPNET by default).

U userName
This is the user account that our web application runs under when impersonate is enabled.

LJ password
The password for the account provided in the userName attribute.

Thus, to enable impersonation for an account named [MachineName] \LocalUser, the following
element should be added to the application's Web. conf ig file:

<identity impersonate=" true"
userName= "GRAYAREAXLocalUser "
password= "password"

Where GRAYAREA in the userName value is the local machine name.

It's not quite this simple, as by default, the ASPNET account does not have the privilege to impersonate
another account. We have two options here: either allow the ASPNET account to 'Act as part of the
operating system' in the local security settings for the web server, or reassign an account which has that
privilege (such as SYSTEM) to the aspnet_wp service in the machine, conf ig XML file.

For our purposes, let us grant the privilege to the ASPNET account to 'Act as part of the operating
system'. Select Start Programs | Administrative Tools | Local Security Policy to bring up the
following screen:

1 1" Local Security Settings
01 ® Acton View $=> •* dD :

|«] ''"' Tree Name f D ription esc
C§Audit Policy Audit Policy jj) Security Settings

Fj-f"9 Account Policies
B-CS Local Policies !
H £§ Audit Policy

C3 Security Options Security Options

i FH-PiS User Rights Assignment
! ffl-O3 Security Options
ffi-i2 Public Key Policies
S "^ IP Security Policies on Local Machine
'.

 <l
1 rl

Double-click User Rights Assignment as highlighted above, and then locate and double-click the policy
Act as part of the operating system. Add the ASPNET local account:

.3)
Act as part of the operating system

Assigned To

Local Effective
Policy Setting Policy
Setting

If domain-level policy settings are defined, they override local policy settings.

OK) Cancel

Again, GRAYAREA is the name of the local machine. Click OK.

224

ADO. NET

Now make the following changes in Web. conf ig:

<configuration>
<appSettings>
<add key="CSl" value="Provider=SQLOLEDB; Data Source=(local);

Initial Catalog=Northwind; User ID=DBUser; Password=password" /> odd
key="CS2" value="Data Source=(local); Initial Catalog=Northwind;

Integrated Security=true" />
</appSettings>

<system.web>
<identity irnpersonate="true"

userName="GRAYAREA\LocalUser"
pas sword="pas sword"

/>

<authentication mode="None" />

<!-- other settings -->

</sys t em.web>
</configuration>

We're creating a new child entry of <appSettings> for a connection string using integrated security
that we can retrieve in our code using the key value CS2. We've also enabled impersonation, requesting
the aspnet_wp service to run under the local account named LocalUser.

Now, copy and paste AppLevel. aspx in Solution Explorer, and rename it AppLevel2 .aspx. Make the
highlighted changes in the code-behind file, AppLevel2 .aspx.cs:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using Systern.Web.UI.HtmlControls;
using System.Configuration;
using System.Data.SqlClient;

namespace Wrox.ASPNET.ADONET
{
/// <summary>
/// Summary description for AppLevel2
/// </summary>
public class AppLevel2 : System.Web.UI.Page
{
protected System.Web.UI.WebControls.Label MessageLabel;

private void Page_Load(object sender, System.E entArgs e) { v
// Put user code to initialize the page here

string _ConnectionString = ConfigurationSettings.AppSettings["CS2"]
.ToStringl);

SqlConnection _Connection = new SqlConnection(_ConnectionString);

try
{
_Connection.Open();
MessageLabel.Text = "Connection opened successfully...";

}
catch (Exception handledException)
{
MessageLabel.Text = handledException.Message; }

finall
y {
if (_Connection!=null)
C
_Connection.Close();

} } }//
Page_Load

[Web Form Designer generated code]

First, because we are using integrated security with SQL Server, we can optimize access by using the
SQL Server managed data provider. We create a connection using the value of the connection string
associated with the key CS2, and attempt to open it within the try block.

Set AppLevel2.aSpX as the start page, and compile and run the project with F5. However, werll receive
the 'login failed' message, because we haven't granted the LocalUser account access to our SQL
Server. The message should name the user we specified in the identity element, which at least informs
us that the impersonation succeeded. Let's experiment a little now. In the Web.config file, comment
out the <identity> element:

<identity
impersonatê " true "
userName= "GRAYAREAXLocalUser "
password= "password"

Refresh the AppLevel2 . aspx page, and this time you should receive a login failure messa-ger for the
ASPNET account.

226

ADO.NET

Now grant the LocalUser account access to SQL Server, putting the account in the db_owner role for
the Northwind database. Remove the opening and closing comment XML tags surrounding the
<identity> element, and refresh the AppLevel2 . aspx page again. This time we should receive a
message indicating the connection was opened successfully.

With this configuration, when our web application makes requests for external resources, it is doing so
using the account designated for impersonation. Because we have granted the account access to our
database server, the connection was successful.

Configuring Impersonation Programmatlcally
Another possibility with impersonation is to programmatically apply it only when needed, as opposed to
having the entire application run under an impersonated account as happens when we set it through the
configuration file. Although this option provides the most control, it is also more complex to implement.

To demonstrate, we'll create a component that can be called from our web application and which will
impersonate a user for a particular action. We will then create a Web Form to use the component, and
use impersonation only when accessing the database.

First we must create the component. Right-click the ADONET project in Solution Explorer and select Add
| New Folder, and name it Source. Right-click this folder when it appears, and choose Add Add
Class from the context menu, and name it Impersonate . cs. Here is the code for this class:

using System;
using System.Security.Principal;
using System.Runtime.InteropServices;

namespace Wrox.ASPNET.ADONET
{
// Delegate for impersonation action
public delegate void ImpersonationAction();

// Impersonate class public
class Impersonate {
// Unmanaged functions for account token management
[Dlllmport("advapi32.dll", CharSet=CharSet.Auto)] public
static extern int LogonUser(string IpszUserName, string
IpszDomain, string IpszPassword, int dwLogonType, int
dwLogonProvider, ref IntPtr phToken);

[Dlllmport("advapi32.dll", CharSet= System.Runtime.InteropServices
.CharSet.Auto, SetLastError=true)]

public extern static int DuplicateTokenfIntPtr hToken, int
impersonationLevel, ref IntPtr hNewToken);

// Private property
private WindowsImpersonationContext _WindowsImpersonationContext;

// Public method
public bool DOImpersonationAction(string userName, string domain,

string password, ImpersonationAction actionToImpersonate) {
WindowsIdentity _WindowsIdentity;
IntPtr _Token = IntPtr.Zero;
IntPtr _DuplicateToken = IntPtr.Zero;

if (LogonUser(userName, domain, password, 2, 0, ref _Token) = 0) { !
if(DuplicateToken(_Token, 2, ref _DuplicateToken) != 0) {
_WindowsIdentity = new WindowsIdentity(_DuplicateToken);
_WindowsImpersonationContext = _WindowsIdentity.Impersonate();

if (_WindowsImpersonationContext != null)

// Invoke the delegate
actionToImpersonate();
_WindowsImpersonationContext.Undo();
return true;

else
return false;

else
return false;

else
return false;

}
 }

This code defines a delegate and a class. The delegate, ImpersonationAction, is a placeholder for
the code to execute under the credentials of the impersonated user. The DOImpersonationAction
method in the Impersonate class invokes this delegate. DOImpersonationAction accepts user
credentials and a delegate to invoke as arguments.

Next, add the following application settings to Web. conf ig, and comment out the <identity>
element again:

<configuration>
<appSettings>

odd key="CSl" value="Provider=SQLOLEDB; Data Source=(local); Initial
Catalog=Northwind; User ID=DBUser; Password=password" /> odd

key="CS2" value="Data Source=(local); Initial Catalog=Northwind;
Integrated Security=true" /> odd key

="UserName" value="LocalUser" /> odd
key="Domain" value="GRAYAREA" /> odd
key=" Password" value=" pas sword" />
</appSettings>

228

!

ADO.NET

<system.web>

<identity
impersonate="true"
username="GRAYAREA\LocalUser"
password="password"

<authentication mode="None"

<!-- other settings -->

< / sy s t em . web> </conf
iguration>

The above changes to Web. conf ig will disable impersonation for the ASPNET account. Be sure to use
your machine name in place of GRAYAREA for the Domain value. Now let's create a page to try out this
programmatic method for impersonation. Copy and paste AppLevel2 . aspx in Solution Explorer, and
rename it AppLevel3 . aspx. Change the code behind like so:

using System;
using System. Collections;
using System. ComponentModel;
using System. Data;
using System. Drawing;
using System. Web;
using System. Web. SessionState;
using Sys tern. Web. UI;
using Sys tern. Web. UI .WebControls ;
using Sys tern. Web. UI .HtmlControls;
using System. Conf iguration;
using System. Data. Sqlclient;
using Wrox. ASPNET. ADONET;

namespace Wrox. ASPNET. ADONET

public class AppLevelS : System. Web. UI . Page {
protected System. Web. UI .WebControls .Label MessageLabel;
private SqlConnection _Connection = null;

private void ConnectToSQLServer () {
string _ConnectionString = Conf igurationSettings . AppSettings ["CS2 "

.ToStringt) ; SqlConnection _Connection=new
SqlConnection (_ConnectionString) ;

try
{
_Connection . Open () ;
MessageLabel. Text = "Connection opened successfully...";

catch (Exception handledException)

MessageLabel.Text=handledException.Message;

private void Page_Load(object sender, System.EventArgs e)

string .JJserName = ConfigurationSettings.AppSettings["UserName"]
.ToString(); string _Domain =

ConfigurationSettings.AppSettings["Domain"]
.ToStringt); string _Password =

ConfigurationSettings.AppSettings["Password"]
.ToStringt);

Impersonate _Impersonate = new Impersonate();

ImpersonationAction _ImpersonationAction =
new ImpersonationAction(this.ConnectToSQLServer);

if (!_Impersonate.DoImpersonationAction(_UserName, _Domain,
_Password, _ImpersonationAction))

MessageLabel.Text= "Impersonation Failed!"; if

(_Connection!=null) _Connection.Close();

[Web Form Designer generated code]

}
 }

We declare a method named ConnectToSQLServer to use with our ImpersonationAction
delegate. In the Page_Load event handler, we create an instance of the Impersonate class, and call
the DoImpersonationAction method - passing in data retrieved from the Web. conf ig file and the
delegate. If the method call returns false, the impersonation failed.

Set this page as the start up, and compile and run the project. The resulting screen should show that the
impersonation successfully opens the connection. If you change Web. conf ig, say to use an incorrect
password, we'll receive the message Impersonation Failed! in the browser.

User-Level Access
To enable user- or role-level access to SQL Server from our web applications, we are typically in an
intranet environment. To impersonate the identity of a web client for SQL Server access, we need to
make the following change to the <identity> element in the Web. conf ig file:

<identity impersonate="true" />

230

ADO.NET

When we don't specify a user name and password, the impersonation is performed based on the
credentials of the requesting client. With this option, the <authentication> element in the
configuration file should be set like so:

<authentication mode="Windows" />

Depending on the needs of the application, we might also disable anonymous logins through IIS. Now
that we've covered the options for connecting to the database, we can turn our attention to the subject of
data retrieval and manipulation.

Using DataSets in ASP.NET

In this section we'll see how to employ the XML features of DataSets in ASP.NET.

Filling a DataSet using DataAdapter
Our first focus will be how to go about the fundamental task of getting data from the data source into a
DataSet object. Here are the steps needed to fill a DataSet object using a DataAdapter:

1 . Create a Connection object.

2 . Create a SELECT Command to retrieve the data, and associate it with the Connection.

3 . Create a DataAdapter object, and associate it with the SELECT Command.

4 . Call the Fill method of the DataAdapter, passing in the DataSet to be populated.

The data placed in the DataSet is cached - that is, it is disconnected from the underlying data source.

Binding a DataSet to a DataGrid
Let's create a Web Form to demonstrate the process. First, let's add another application setting to our
Web. conf ig XML file, as highlighted:

<appSettings>
<add key="CSl" value="Provider=SQLOLEDB; Data Source=(local); Initial
Catalog=Northwind; User ID=DBUser; Password=password" /> odd key="CS2"
value="Data Source= (local); Initial Catalog=Northwind;
Integrated Security=true" /> <add

key="UserName" value="LocalUser" /> <add
key="Domain" value="GRAYAREA" /> odd key="
Password" value= "password" />
odd key="ShipperQuery" value="SELECT * FROM Shippers" />

</appSettings>

Chapter 6

Add a new Web Form to our ADONET web application named ShipperData. aspx. Drag a Label and
a DataGrid control from the Toolbox onto the form. The DataGrid will display the shipper data from
the Northwind database and the Label will be used to display any error messages should we fail to
connect. Set the ID property for the DataGrid to ShipperDataGrid, and to MessageLabel for the
Label. Also clear the Text property of the Label:

h-flDONET-r
" •«r i
Fie Edit View Project guild Debug Data Farmat
T = • an'"?; loots Window Hefp
J]- _]- ^ y 0 ' ^ <P- •• . >:?;'-, - L»
"[*]^ «* Q °

--w*«- , i'
<$ HfpLr-
rl - :

A L B
ShipperData.aspx* ^
• X Properties __ * *

jM RB .
n UJ ColumnO

0
Coluimi2 j j | ShipperDatabnd MFI r-t III l»cbC ->|

j
* [5][S] ^ t ^^O

~""^abc

Jabc
~tbT-

(DataBindings)
(ID) ShipperDataGrid ^| *

j
?>1 abc abc AccessKey "
r,5 aj)c abc AllowCustomPaging False

abc abc abc
n D 11

i AliowPaging
1 1 Allo ng wSorti

False
i False

ipMess ageLabel] Ai_'_i L^J_

 DataSource
j The dafaiuur hai- ce l" u ed to populate the

[O Deign U H HTML items in the fist
a • .-• "I

— J s*

Now let's look at the code behind the page. We will impersonate a user in order to connect to SQL
Server, so you'll recognize a lot of this from what we've learned so far:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using Sys tern. Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using Systern.Web.UI.HtmlControls;
using System.Configuration;
using Wrox.ASPNET.ADONET;

namespace Wrox.ASPNET.ADONET

/// <summary>
/// Summary description for ShipperData
/// </summary>
public class ShipperData : Systern.Web.UI.Page

// Web Controls

232

ADO.NET

protected System. Web. UI .WebControls .DataGrid ShipperDataGrid; protected
System. Web. UI .WebControls .Label MessageLabel ;

// Private level instance variables private
SqlConnection _Connect = null; private
SqlDataAdapter _DataAdapter = null; private
SqlCommand ..Command = null; private DataSet
_ShipperDataSet = null;

private void FillDataSet () {
try
{
// Get values from Web.config
string _ConnectionString = Conf igurationsettings .Appsettings ["CS2 "

. ToStringt) ;
string _ShipperQuery = Conf igurationsettings .Appsettings [

"ShipperQuery"] .ToStringO ;

// Instantiate the SqlConnection object
.Connect = new SqlConnection (_ConnectionString);

// Create the SqlCommand object Command
= Connect .CreateCommand(); Command .
CommandText = ShipperQuery;

// Instantiate the SqlDataAdapter object
JDataAdapter = new SqlDataAdapter (Command) ;

// Instantiate the DataSet object _ShipperDataSet =
new DataSet (" ShipperDataSet ") ;

// Fill the DataSet object with data _DataAdapter .Fill
(.ShipperDataSet, "Shippers") ;

catch (Exception handledException) {
MessageLabel .Text = handledException. Message; } }

private void Page_Load(object sender, System. EventArgs e) {

try
{
string _UserName = Conf igurationsettings .Appsettings ["UserName"]

.ToStringt) ; string _Domain = Conf
igurationsettings .Appsettings ["Domain"]

.ToString() ;
string _Password = Conf igurationsettings .Appsettings ["Password"] .

ToStringl) ;

ImpersonationAction _ImpersonationAction =
new ImpersonationAction(this.FillDataSet) ; Impersonate

_Impersonate = new Impersonate(}; if (!
_Impersonate.DoImpersonationAction(_UserName, _Domain,

_Password, _ImpersonationAction)) {
MessageLabel.Text="Impersonation

Failed!";)
if (_ShipperDataSet!=null)
{
// Set the data source to DataSet object
ShipperDataGrid.DataSource = ShipperDataSet;

// Bind the DataGrid to the DataSet
ShipperDataGrid.DataBind();

}
 }
catch (Exception handledException) {
MessageLabel.Text=handledException.Message;

Web Form Designer generated code]

The interesting areas above have been emboldened to highlight how we establish a connection to the
database, retrieve data using the query stored in Web. conf ig, and finally populate the DataSet with
the results. To display the results, we bind the DataGrid to the DataSet object. Set ShipperData.
aspx as the start page, and compile and run. The resulting screen should be something like this:

1 <1 ShiooerData - Microsof|: gUmUmHUIIIIJJII *lSlJ£l
File Edit View Favorites
loois

- •» ^ ja^iLud
Help
Search *J
Favorites
mmmwj®.'"**: . '

'

t̂ Media ,J __j- J
»|4-Addre

ss | fe| http://kKalhost/ADONET/5HpperData.aspx J-J 4VGn Links *|
ShipperlD CompanyNarne

k
|3

Speedy Express
United Package
Federal Shipping

Phone
(503)555-9831
(503) 555-3199
(503)555-9931

jyOone 1 i | Ijj^r Local intranet
^

234

 ADO.NET

As we'd expect, data has been taken from the Shippers table of the Northwind database and displayed
in our DataGrid.

Filling a DataSet with XML Content
Our data source need not be a relational database, and we can retrieve data from an XML document into
a DataSet object as well, and then use it just as in the previous example.

There are several ways to load XML data into a DataSet: we can fill it from a relational database, we
can build it in memory, and we can load it from an XML file, to name but a few. In the following code,
we will use the ReadXml method to load XML data from the shopping-cart .xml document
(introduced in Chapter 4). Add shopping-cart .xml to the root directory of the ADONET web
application, and create a new Web Form called ShoppingCart. aspx.

Add a DataGrid and Label to the new form from the Toolbox, naming them CartDataGrid and
MessageLabel. Clear the Text property of the Label as before, but make the DataGrid a little wider
than it was:

. ADONET - Microsoft Visual C# .NET [design] - ShoppingCart
Bte E* yew Eroject fejld Qebug Oaja
Fo;mat Table

<P - E» i

bpx.cs j Web.config I

 Now let's turn to the code-behind page, and see how to load a DataSet from an XML document:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

o

namespace Wrox. A ET. ADONET { SPN
/// <summary>
/// Slimmary description for ShoppingCart
/// </ summary >
public class ShoppingCart : System. Web. UI . Page
{
// Web Controls
protected System. Web. UI .WebControls .DataGrid CartDataGrid;
protected System. Web. UI .WebControls .Label MessageLabel;

// Declare and initialize DataSet object private
DataSet _CartDataSet = null;

private void Page_Load(object sender, System.EventArgs e) {
try
{
_CartDataSet = new DataSet ("CartDataSet") ;
_CartDataSet . ReadXml (Server .MapPath(" /ADONET /shopping-car t .xml ") , XmlReadMode.

Infer Schema) ;

// Set the DataGrid data source to DataSet object
CartDataGrid . DataSource=_Car tDataSet ;

// Set the member to <item> elements
CartDataGrid. DataMember = "item";

// Bind the DataGrid to the DataSet
CartDataGrid.DataBind() ;

catch (Exception handledException) {
MessageLabel . Text=handledException . Message ; } }

[Web Form Designer generated code]

Within the try block, the DataSet object called _CartDataSet attempts to load the shopping-cart .
xml file from the path provided. By specifying XmlReadMode . Inf erSchema in the call, Visual Studio
will build a schema for its own internal use when dealing with the XML file based on the structure of
the XML document. In production environments, it is preferable to supply an external schema, which
will be used to validate the XML that we load.

Our DataSet object is more complex in form than it was in the previous example, because the
shopping-cart .xml file has a hierarchical structure that must be represented in the DataSet. We
need to specify exactly what part of the XML document we want the DataGrid object to bind to using
the DataMember property of the DataGrid. Here we are binding to <item> elements in the document.

236

ADO.NET

Now set this as the start page, and compile and run the project. We see the following results:

; Fie Edit View Favorites Tools Help

. iQ '& £ ^Search _4y Favorites

I Address jjjjfj http;//localhost/ADONET/ShoppingCart.aspx

quantity list-price description i productLine items Id
:1 3 123.45

4.00
Gadget XYZ XYZ
Accessory

ITM-1001
HM-1002

1
1

0 0

1
;i

15.00
"44.00

Gizmo Part
Widget X

ITM-1003
HM-1004

2 3 o
0

zJ

This demonstrates how simple it can be to bind XML data to a DataGrid in ASP.NET. We can get
more control over what is displayed from the XML source by defining the schema definition for the
DataSet prior to loading it.

Synchronizing a DataSet with XmlDataDocument
One of the exciting features of ADO.NET is the ability to use data either hierarchically or relationally
according to what best meets our objectives, whether our data comes from an XML document, or SQL
Server. The DataSet exposes our data in a relational manner, and XmlDocument presents it
hierarchically. XmlDataDocument, which inherits from XmlDocument, can be synchronized with a
DataSet so that both objects point to the same data to provide both types of access simultaneously.

Transformations using XmlDataDocument
We can exploit this DataSet - XmlDataDocument relationship to access relational data, extract its
XML representation, and transform that data as we see fit. Let's try this in our ADONET web application,
by creating a new Web Form which will query the Employees table in the Northwind sample database
in SQL Server. The results of the query will be stored in a DataSet object, which we then synchronize
with an XmlDataDocument object. After synchronization, we will perform a transformation on the data,
and present the result on the Web Form.

First, let's add a new entry to Web. conf ig to house the query that will be used by our Web Form:

<appSettings>
<add key="CSl" value="Provider=SQLOLEDB; Data Source = (local); Initial
Catalog = Northwind; User ID = DBUser; Password=password" /> <add key="CS2"
value="Data Source=(local); Initial Catalog=Northwind;
Integrated Security = true" /> <add

key="UserName" value="LocalUser" /> <add
key="Domain" value="GRAYAREA" /> odd
key="Password" value= "password" />

unapter

<add key="ShipperQuery" value="SELECT * FROM Shippers" />
odd key="EmployeeQuery" value="SELECT EmployeelD, LastName, FirstName
FROM Employees" />
</appSettings>

The EmployeeTransform.xslt Style Sheet
Add a new XSLT style sheet to our web application named EmployeeTransform.xslt. It will take
the XML representation of our query and transform it to an HTML table. Here is what the style sheet
should look like:

<?xml version="l.0" encodings"UTF-8" ?>
<xsl:stylesheet version="l.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" />

<xsl:template match="/" >
<table style="border: thin solid">
<tr>

<th style="width:150px;background-color: #60EOCO">ID</th>
<th style="width:150px;background-color: #60DOCO">Last Name</th>
<th style="width:150px;background-color: #60COCO">First Name</th>

</tr>
<xsl:apply-templates select="/*/Employees" />

</table>
</xsl:template>

<xsl:template match="Employees'^
<tr>

<td><xsl:value-of select="EmployeeID" /></td>
<td><xsl:value-of select="LastName" /></td>
<td><xsl:value-of select="FirstName" /></td> </tr>
</xsl:template>

</xsl:stylesheet>

Notice that we've added the xsl prefix to the XSLT namespace declaration on the top-level
<stylesheet> element.

The EmployeeTransform.aspx Web Form
Add a Web Form to the ADONET web application and call it EmployeeTransform.aspx. Add a
Literal control to the page from the Toolbox, and set its ID property to Transf ormLiteral. This
control will be the placeholder for the transformation results.

<%@ Page language="c#" Codebehind="EmployeeTransform.aspx.cs"
AutoEventWireup="false" Innerits="Wrox.ASPNET.ADONET.EmployeeTransform" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4 . 0 Transitional//EN" >
<HTML>

<HEAD>
<title>EmployeeTransform</title>

238

ADO.NET

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0"> <meta
name="CODE_LANGUAGE" Content="C#">
<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD> <body MS_POSITIONING="GridLayout">

<form id="EmployeeTransform" method="post" runat="server">
<asp:Literal id="TransformLiteral" runat="server"> </asp:Literal>
</form> </body> </HTML>

In the code-behind page, we will employ many of the concepts learned so far. First, add the following
five namespaces:

using System;
using System.Collections;
using System.ComponentModel;
using Systern.Data;
using Systern.Drawing;
using Systern.Web;
using System.Web.SessionState;
using Systern.Web.UI;
using System.Web.UI.WebControls;
using Systern.Web.UI.HtmlControls;
using System.Data.SqlClient;
using System.Configuration;
using Systern.Xml;
using System.Xml.Xsl;
using System.10;

Next, set the namespace for our class:

namespace Wrox.ASPNET.ADONET
{
/// <summary>
/// Summary description for EmployeeTransform.
/// </summary>
public class EmployeeTransform : System.Web.UI.Page

Our next step is to declare the class-level variables:

// Maps to TransformLiteral
protected System.Web.UI.WebControls.Literal TransformLiteral;

// Class instance level variables private
SqlConnection _Connect = null; private
SqlDataAdapter _DataAdapter = null; private
SqlCommand _Command = null; private DataSet
_EmployeeDataSet = null;

The following method matches the delegate signature that will be used to provide the data connection
action in a later step:

private void FillDataSet () {
try {

// Get values from Web.config
string _ConnectionString = Conf igurationSettings . AppSettings ["CS2 "]

. ToString {) ;
string _EmployeeQuery = Conf igurationSettings .AppSettings [

"EmployeeQuery"] .ToStringO ;

// Instantiate the SqlConnection object _Connect = new
SqlConnection (_ConnectionString) ;

// Create the SqlCommand object _Command =
_Connect . CreateCommand () ; _Command .
CommandText = _EmployeeQuery;

// Instantiate the SqlDataAdapter object
_DataAdapter = new SqlDataAdapter (_Command) ;

// Instantiate the DataSet object _EmployeeDataSet = new
DataSet ("EmployeeDataSet");

// Fill the DataSet object with data
_DataAdapter .Fill (_EmployeeDataSet, "Employees") ; }

catch (Exception handledException) {
TransformLiteral .Text = handledException. Message;

The above method fills the _EmployeeDataSet DataSet property with the result of the query taken
from Web . con fig.

We'll use the Page_Load event handler to bring all this together:

private void Page_Load(object sender, System. Even tArgs e)

try

string _UserName = Conf igurationSettings .AppSettings ["UserName"]
.ToString() ; string _Domain = Conf

igurationSettings. AppSettings f "Domain"]
.ToString () ; string _Password = Conf

igurationSettings .AppSettings ["Password"]
. ToString () ;

240

ADO.NET

ImpersonationAction .ImpersonationAction =
new ImpersonationAction(this.FillDataSet);

Impersonate .Impersonate = new Impersonate(); if
(! .Impersonate.DoImpersonationAction(_UserName, .Domain,

_Password, .ImpersonationAction))

TransformLiteral.Text="Impersonation Failed!"; if

(.EmployeeDataSet!=null)

StringWriter x = new StringWriter();

This next line is where the synchronizing magic occurs:

XmlDataDocument .EmployeesXml =
new XmlDataDocument(.EmployeeDataSet);

Now that the .EmployeesXml object contains the same values as the .EmployeeDataSet object, we
can use it as the source of our transform as seen below:

XslTransform .Transform = new XslTransform();
_Transform.Load(Server.MapPath("/ADONET/EmployeeTransform.xslt"));

.Transform.Transform(_EmployeesXml, null,

x); TransformLiteral.Text = x.ToString();

catch (Exception handledException) {
TransformLiteral.Text=handledException.Message;

And that's all we need to add for this Web Form. Set the page as the start up, and compile and run the
project. The resulting screen shows the data from the Employees table transformed into an HTML
table:

3 EniployeeTransform - Microsoft Internet Explorer
Fte Edit View Favorites Tods Help

fal I €|Se«reh Si Favorites
Address £) http://localhost/ADONET/EmployeeTransform.aspx links

ID Last Name

1 Davoko Nancy
2 Fuller Andrew
3 Leverling Janet
4 Peacock Margaret
5 Buchanan Steven
6 Suyama Michael
7 King Robert
8 Callahan Laura
9 Dodsworth Anne

________ _d
Local intranet ^

>one

Summary

In this chapter, we've seen how ADO.NET lets us quickly get hold of data from SQL databases or XML
files. Whenever we access databases from a web application, a high priority is security, whether the
application is available to the wider public over the Internet, or to employees over a company intranet.
We looked at storing settings in the Web. conf ig file, as a secure central storage area which is only
accessible internally to our code. We saw how we can set up our application to impersonate a given user
account, by either enabling it in Web. conf ig, or programmatically.

Once we'd covered those important issues, we explored some typical uses of a DataSet object in an
ASP.NET environment, and demonstrated the ability to synchronize a DataSet with an
XmlDataDocument to allow us to apply XSLT transforms to data taken from a relational source such as
SQL Server.

What we haven't covered here, despite using a SQL Server database throughout the chapter, was the
XML support it offers through classes associated with the SQL Server managed data provider. In the next
chapter, we move on to look at some of the neat tricks that SQL's XML support enables for our
applications.

242

SQL Server 2000 and SqIXml

Managed Classes

In the previous chapter, we explored the world of data access using ADO.NET. The examples generally
used the .NET OLE data provider to retrieve or update data, but we had a little taste of using the SQL
provider at the end. In this chapter, we will take a more detailed look at the SQL Server .NET data
provider, as well as some new tools that provide even stronger support for XML when working with SQL.

We will address the following areas of interest in this chapter:

Q Advantages of the SQL Server .NET data provider

Q Understanding queries that return XML Q

SqlXml 3.0 Managed Classes
Q SqlXmlCommand
Q SqlXmlParameter
Q SqlXmlAdapter

We will explore some examples of these topics, and discuss when and why we can employ the
techniques introduced to our advantage.

SQL Server .NET Data Provider

The last chapter briefly introduced the managed data providers available in the .NET Framework for
accessing specific types of data sources. The System. Data. OleDb namespace contains classes to
access OLE data. The System.Data. SqlClient namespace provides classes that are used to access data
directly from SQL Server version 7.0 and higher. SQL Server can still be accessed through the OleDb
classes, but connecting to SQL Server through its own managed provider provides certain advantages
that we'll look at here. We'll also see how the differences of the SQL Server .NET data provider to the
OLE DB .NET data provider can be beneficial in our XML-aware web applications.

Advantages of the SQL Server .NET Data Provider

Whenever we know that we will be connecting to SQL Server for our web application data, there are two
overriding reasons to choose the SQL Server-specific .NET data provider.

Performance
The SQL Server .NET data provider was written to communicate directly with SQL Server version 7.0
and higher; it does not go through any other layer such as OLE DB or ODBC. It uses SQL Server's own
Tabular Data Stream (TDS) protocol - thereby achieving significantly improved performance.

XML Support
In the last chapter we learned that DataSets are capable of exposing underlying data as XML. However,
a DataSet may not be the best solution if we want the XML representation of the data, particularly if all
we need is fast, read-only data in XML format. As we will see, the SQL Server .NET data provider has
additional features for retrieving data with SQL Server 2000 XML queries.

Creating the SQL2000 Web Application 1

In order to examine specific features of SQL Server 2000 in ASP.NET, let's create a web application to
showcase some key techniques. Open Visual Studio .NET and select File I New I Project to bring up the
following dialog:

Pr ect Types: oj

Templates:
il'j Visual Basic Projects ••_J Visual
C# Projects 1_J Visual C++ Projects
Cj Setup and Deployment Projects
'+< CD Other Projects

£j Visual Studio Solutions
Windows Class Library
Windows
Application Control Library

ASP.PCTWeb ASP.NET Web Web
Control
Application Service Library

; A project for creating an application with a Web user interface
^ ^ j ^ t , . 0 ()

Location:
Help

-,

Jhttp://localhost|fSQL2000

Project will be created at http;//SocalhQst/5Ql2QQO.

*More I
246

SQL Server 2000 and SqIXml Managed Classes

With Visual C# Projects selected, choose the ASP.NET Web Application template and name the
project SQL2000 as seen in the screenshot. Press OK.

After the web application has been created, right-click the project name in Solution Explorer, and select
Properties. Change the default namespace as shown below:

[sQL2000 Property Pages ••BBBB:

J , r |',v.
J ,,,:,,:f,,-,J11,?.

^3 Common Properties IS Application ^ General
Assembly Name Web Settings | Output
Type Designer Defaults ;
BSBIHBBEHHIl References Path startup
object ! 1 Configuration Properties 1 Application Icon
E3 > ' • ; :

1
SQL2000 Class Library

(wrox.A5PNET.SQL2000| (Not set)

. ••Project Fi le •
Project Folder
ISloulputFfe

jSQL2000.csproi C:\Pro ASP. NET + XML\Chaptw

u7\5QL2uOO\ •

Wrappei Assembl) Key Fik!
I" Wrapper Assembly ey Name K
Default Namespace
Specifies the default namespace for added items, such as classes, that are added via the Add
New Item Dialog Box.
Qt. Cancel | Help j

After changing the default namespace as above to conform to the recommended guidelines on naming
namespaces, press OK.

Adding a Connection String to Web.config
The connection string could be hard-coded in our code, but this has the disadvantage of requiring
recompilation should any changes be made. Also, hard-coding the connection string usually means that
it is located in multiple code files in an application. For ease of maintenance, it is preferable to place the
connection string in a central location accessible to the entire application. If we use Web.config for
this purpose, should we change the connection string at a later date, we will not need to recompile the
project, or even stop it running on the web server.

Open Web. conf ig, and add the following XML as a child of <conf iguration>, which defines two
connection strings that all the examples in this chapter will be able to use:

<appSettings>
odd key="SQLConnection"

value="Data Source=(local);Initial Catalog=Northwind;
User ID=SQLLoginAccount;Password=password"

odd key="OLEDBConnection"
value=" Provider=SQLOLEDB;
Data Source=(local);Initial Catalog=Northwind; User
ID-SQLLoginAccount;Password=password"

</appSettings>

Note the values for User ID and Password need to be changed to a SQL Server login account with
access to the Northwind database on your system.

Understanding XML Queries

SQL Server 2000 allows developers to obtain the results of a SELECT statement as XML by using the
FOR XML clause in the query. Once we've covered the basic usage of this clause, we'll create a page in
our web application that makes use of it.

When using FOR XML, the following three modes are available:

Q FOR XML RAW
Q FOR XML AUTO
a FOR XML EXPLICIT

What primarily differentiates one mode from another is the level of control we need in the XML output.

Writing XML Queries using FOR XML

Let's look at how to write XML queries by examining the three modes mentioned above.

Using RAW Mode
When executing a query using FOR XML RAW, each row of the result is given a <row> XML element, and
all non-null column values are represented by attributes of that <row> element. For example, if you
execute the following SELECT statement in the SQL Server Query Analyzer:

SELECT [CategorylD] , [Category-Name] ,
[Description] FROM Categories FOR XML RAW

then each returned row will have the format demonstrated by this partial result:

<row CategorylD="1" CategoryName="Beverages" Description="Soft drinks,
coffees, teas, beers, and ales" />

Note what happens if we make the following changes to our SELECT statement:

SELECT [CategorylD] AS [ID], [CategoryName] AS [Name],
[Description] FROM Categories FOR XML RAW

We now provide aliases for the first two column names, with the result that the attributes for those
columns take the new names when we run the query:

<row ID="1" Name="Beverages" Description="Soft drinks, coffees, teas, beers,
and ales" />

248

SQL Server 2000 and SqIXml Managed Classes

Using AUTO Mode
If we use FOR XML AUTO, the resultant XML not only maps column names to attributes (as in RAW mode),
but it also maps the table names to the XML element names. This is handy when we want to see the
hierarchical nature of a JOIN in a SELECT statement. Consider the following SQL statement, which joins
the Categories table to the Products table:

SELECT [Category].[CategorylD], [Category].[CategoryName],
[Product].[ProductID],

[Product].[ProductName] FROM [Categories] AS
[Category] INNER JOIN [Products] AS [Product]
ON [Category]. [CategorylD] = [Product] . [CategorylD]
FOR XML AUTO

The resulting XML nests the products under each category:

<Category Category I D="1" CategoryName="Beverages">
<Product ProductlD="1" ProductName="Chai"/>
<Product ProductlD="2" ProductName="Chang"/>

</Category>

It's quite easy to have our results structured with a full XML hierarchy with the ELEMENTS clause, which
returns XML devoid of attributes. Make the following change to the last line of the previous SELECT
statement:

FOR XML AUTO, ELEMENTS

The result is now has this form:

<Category>
<CategorylD>1</CategorylD>
<CategoryName>Beverages</CategoryName>
<Product>

<ProductlD>1</ProductlD>
<ProductName>Chak/ProductName>

</Product> <Product>
<ProductlD>2</ProductlD>

<ProductName>Chang</ProductName>
</Product> </Category>

Notice that these XML elements contain no attributes, and that the <Product> elements are nested
underneath the <Category> elements.

Using EXPLICIT Mode
When strong control of the output is required, EXPLICIT mode enables the developer to precisely
define the structure of the XML in the SELECT statement, with a small tradeoff in the complexity of the
query. Try this example:

SELECT 1 AS [Tag], NULL AS [Parent],
[c].[CategorylD] AS [Category!1!ID],
[c].[CategoryName] AS [Category!1Iname],
[c].[Description] AS

[Category!1![Element] FROM [Categories] AS
[c] FOR XML EXPLICIT

As this shows, the FOR XML EXPLICIT clause requires more than simply adding the clause at the end,
but such queries can give us invaluable control over the output. When the above SELECT statement is
executed, CategorylD and CategoryName values are created as attributes, and Description is the
element text:

<Category ID="1" name="Beverages">Soft drinks, coffees, teas, beers, and ales</Category>

For more information on how to write FOR XML EXPLICIT queries, consult the SQL Server Books Online
documentation that ships with SQL Server.

Retrieving Schema Information with XMLDATA

If desired, we can request an inline schema for the resultant XML by the XMLDATA clause. This is useful
if for instance we are writing SELECT statements using FOR XML EXPLICIT, and we want to define
certain columns with ID, IDREF, and IDREFS for validation. The inline schema returned in SQL Server
2000, however, uses Microsoft's XML-Data Reduced (XDR) language, not the XML Schema Definition
(XSD) language, which is a W3C Recommendation.

Retrieving XML in a .NET Client

Now that we have a brief background on how to write XML queries, let's see how to capture the resul
of such queries in a .NET client. The best approach is to use the SQL Server .NET data provider, whu
provides support for executing XML queries.

Executing XML Queries with ExecuteXmlReader

The SqlCommand class ^ffers a method called ExecuteXmlReader for retrieving XML by executu
SELECT statements with FOR XML clauses. The method returns an XmlReader object that we can use
navigate the resulting nodes.

To demonstrate, let's add a web form to our SQL2000 web application. Right-click the project in
Solution Explorer and select Add I Add Web Form. Name the page Categories . aspx:

250 i

I
SQL Server 2000 and SqIXml Managed Classes

1 Add New m-m - «ll 7nno
HRI
Categories : Templates ;

It. ^ W eb Project Items Eyl Jftl Pi

1 -------------------- = . 1
----------------------- 1
Vt/bfam A/el a • Ilass

 Component Data Form Data
Set Class Ataard

 Web User HTML Page Frameset
Control
^

| A form for Web Applications
PJame: J Categories]

Open Cancel
Help

Click Open. When the new page appears in the VS. NET designer, drag a DropDownList control from
the Web Forms tab of the Toolbox, and place it somewhere in the upper left corner. Change its ID
property to CategoriesListBox, and its Height property to 150 px. We will populate this control later
by running a query against the Northwind database.

Adding the XML Query to Web.config
In the Web . conf ig file, insert another <add> element underneath <appSettings>, to contain the
query that we will call from our code:

odd key="CategoriesQuery"
value=" SELECT CategorylD, CategoryName FROM Categories FOR XML RAW"

The Code Behind Categories.aspx
In the code behind our web form, add the lines highlighted below:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using Systern.Web.ui;
using Systern.Web.UI.WebControls;
using Systern.Web.UI.HtmlControls;
using System.Configuration;
using System.Xml;
using System.Data.SqlClient;

namespace Wrox. ASPNET. SQL2 000 {
/// <summary>
/// Summary description for Categories.
/// </summary>
public class Categories : System. Web. UI . Page
{
protected System. Web. UI .WebControls .ListBox CategoriesListBox;

private void Page_Load(object sender, System. Even tArgs e)
{
// Get values from <appSettings> in web.config
string ConnectionString = Conf igurationSettings .AppSettings [

"SQLConnection"] .ToStringO ;
string XmlQuery = Conf igurationSettings .AppSettings

["CategoriesQuery"] .ToStringO ;

// Declare and instantiate SqlConnection object
SqlConnection _Connection = new SqlConnection (_ConnectionString)

// Declare and instantiate SqlCommand object
Sqlcommand _Command = new SqlCommand (_XmlQuery, _Connection) ;

// Open session to SQL Server _Connec
t i on . Open () ;

// Declare and instantiate XmlReader object XmlReader
_XmlReader=_Command . ExecutexmlReader () ;

// Loop through XmlNodes and fill ListBox control
while (_XmlReader . Read () }
{

string _ID=_XmlReader .GetAttribute ("CategorylD") ;
string _Name=_XmlReader .GetAttribute ("CategoryName") ;
Listltem _ListItent = new ListItem(_Name, _ID) ;
CategoriesListBox. Items.Add(_ListItem) ;

// Close XmlReader object
_XmlReader . Close () ;

// Close SqlConnection object
_Connection .Closet) ;

Web Form Designer generated code]

Here, we connect to SQL Server using a SqlConnection object. We then execute a SELECT statement
with a FOR XML RAW clause using the ExecutexmlReader method of the SqlCommand object, resulting
in an XmlReader object, which we loop through to populate the ListBox control.

252

SQL Server 2000 and SqIXml Managed Classes

Set this page as the start page, and hit F5. The page contains a populated listbox as seen below:

' Fte Edit View Favorites Tods Help " ** " i) _±] 41

-^Search jyFavorites ' | jMed>a ^J _JN- ^J ^ _j j
Address | ĵ http;//localhost/5QL2000/Categories.aspx jrj
(i>Go Unks ";

^
(Beverages j*|

IBeverag
ICondim
j||m|^|]
Dairy Pr
Grains/C
Meat/Pc
Produce y
Seafood

ss nts
jdScts
ereals
ultry

™ j::^ Local tntranef:

If we now view the HTML source of the page in our browser, we'll see that the dropdown contains both
the category name and the ID:

<select name="CategoriesListBox" id="CategoriesListBox"
style="height:175px;width:100px;Z-INDEX: 101;LEFT:30px;POSITION:absolute;TOP:30px">

<option value="1 ">Beverages</option>
<option value="2">Condiments</option>
<option value="3">Confections</option>
<option value="4">Dairy Products</option>
<option value="5">Grains/Cereals</option>
<option value="6">Meat/Poultry</option>
<option value="7">Produce</option>
<option value="8">Seafood</option>

</select>

We will add more features to this web form as we progress through this chapter.

SQLXML 3.0

In February of 2002, Microsoft made SQLXML 3.0 available for download, as part of Microsoft's
commitment to maintain XML support for SQL Server 2000. It provides developers even more power
for bridging the gap between hierarchical and relational data. The remainder of this chapter focuses on
the managed classes that ship with this version.

SQLXML 3.0 RTM is available at http://msdn.microsoft.com/sqlxml.

Benefits of SQLXML 3.0

So what does the SQLXML 3.0 release give the developer community? Below are a few of the possibilities:

Q Querying a relational database with SQL statements and returning XML

Querying a relational database using XPath

Updating relational data via XML

Applying an XSLT style sheet at query execution

Bulk-loading of huge XML documents into SQL Server 2000
Q

Querying SQL Server 2000 via Internet browser

Q Exploiting SQL Server 2000's XML features using .NET managed classes Our focus in

this chapter is on the new .NET classes that target the XML features of SQL Server 2000.

The SQLXML Managed Classes

All the managed classes we are interested in fall under the Microsoft . Data . SqlXml namespace.
Once SQLXML 3.0 is installed, our next step is to set a reference to it for our Visual Studio .NET
project, by following these steps:

1. Right-click References in Solution Explorer, and select Add Reference.

2 . On the .NET tab, double-click Microsoft. Data.SqIXml, as in the following screenshot:

Add Reference

Si
.NET j COM Projects

Version Path

IIEHost I5ymWrapper
Managed C# Compiler Microsoft
Visual Basic .NET Co,, Microsoft
Visual Basic .NET Co., Microsoft
Visual Basic .NET Ru.
IBBHBHlBISffilBB
Microsoft JScript Microsoft,
mshtml Microsoft,
stdformat Microsoft,
VisualBasic. Vsa
Mirrn<;nfr.Vi<;ilfllr

1.0.3300,0 c:\WIIWJT\Microsoft.NET\Fra,, .
1,0,3300.0 c \WINNT\Microsof t. NET\Fra...
7.0,3300.0 c: \WINNT\Microsoft, NET\Fra...
7.0,3300.0 c:\WINNT\Microsoft.NET\Fra...
7.0.3300.0 c:\WINNT\Microsoft.NET\Fra..,
7.0,3300.0 c:\WINNT\Microsoft.NET\Fra..

•aiHHHUiidimkiiiifflKJMi
7.0.3300,0 c: \WINNT\Microsof t. NET\Fra...
7.0.3300.0 C:\Program Files\Microsoft.M...
7.0.3300,0 C:\ProgramFiles\Microsoft.N...
7,0.3300.0 c:\WINNT'<Microsoft.NET\Fra,..
7.n.l"inri.n r^V'yTrjNT'iMirrnsnfh.NFT'iFfrt ,

Selected Components:
Cgm pone Source Remove

MrcrosoftData.SqKml .NET C:\Program Files\SQLXML 3.0\bi...

254

3. Click OK. The assembly is now referenced in our project, and we can use any of
the classes that it contains.

 SQL Server 2000 and SqIXml Managed Classes

Using SqIXmlCommand
The primary class in SQLXML 3.0 is SqIXmlCommand, which is designed to retrieve data from SQL
Server 2000 in XML format. There are many options for executing the queries, such as through T-SQL,
stored procedures, XPath, annotated schemas, and templates. The class also supports sending XML to
SQL Server for updating data a database.

Establishing a Connection
When using the SqIXmlCommand class, we cannot use the SQL Server .NET data provider, and instead
we need to pass in the OLEDB connection string from Web. conf ig to the SqIXmlCommand constructor.

Choosing the Command Type
As mentioned earlier, there are many options for accessing data with SqIXmlCommand. The following
table lists the enumerated values that can be assigned to the CommandType property of SqIXmlCommand:

CommandType
DiffGram

UpdateGram

Sql

XPath

Template

TemplateFile

Description

Executes a Dif fGram to modify data in the database.

Executes an UpdateGram to modify data in the database.

Executes a SQL command provided in the CommandText property.
This is the default value for this property. Example:
SELECT * FROM Customers FOR XML AUTO

Executes an XPath expression provided in the CommandText
property. Example:

Customer[@ID='ALFKI']

Executes an XML template specified in the CommandStream property.

Executes an XML template from the file path specified in
CommandText property.

Choosing an Execute Method
The SqIXmlCommand class supports several methods for executing a command, as described in the
following table:

Method Description

void ExecuteNonQuery () Executes a database operation that has no return
value. A typical application is when the
CommandType property is set to either Dif fGram,
UpdateGram, Template, or TemplateFile
(when the templates contain action statements
returning no XML).

Table continued on following page

Method Description

Stream ExecuteStream () Returns a Stream object containing the XML
response. Use this option when you want to work
with the returned data as a stream of bytes.

void ExecuteToStream (Stream) Sends the XML result of the query directly to the
specified Stream object. In an ASP.NET
application, the output stream can be set to the
OutputStream property of the HTTP Response
object.

XmlReader ExecuteXmlReader () Returns an XmlReader object containing the XML
response of the query.

Setting Other Properties
Let's now consider other key properties of the SqlXmlCommand class that we should be aware of.

BasePath
This property of type string is used to resolve relative location paths specified in the SchemaPath '
property, the XslPath property, or even external XML references in an XML template. As the name
suggests, it is the base file path for other properties set using relative paths. If BasePath is not set,
relative paths will be based on the current directory of the executing code.

ClientSldeXml
Set this Boolean property to true if you wish to accomplish one or both of the following tasks:

Q Use an existing stored procedure which is not set to return XML (with a FOR XML clause),
but have the results in XML format.

Q Move the XML conversion to the client side (which could be the middle tier). This can
reduce the load on the data server.

The default is false.

CommandStream
If the CommandType is Template, Dif f gram, or UpdateGram, this property can be set to contain the
respective Command as a stream. Thus, if the CommandType is set to an UpdateGram, we can set the
CommandStream to a stream containing the UpdateGram to execute.

CommandText
This is a string property containing the query to execute. Depending on the CommandType, this could
be an ad hoc T-SQL statement, the name of a stored procedure, or an XPath expression.

RootTag
Very few XML queries result in a well-formed XML document, because results are typically a set of
sibling elements, so a single document element is not present. By setting the RootTag property, we are
in effect enclosing the XML fragment in a top-level element with a name of our choice.

256

SQL Server 2000 and SqIXml Managed Classes

SchemaPath
This property is set to the path of a mapping schema if one is available. An example of this property in
use is pro vided in the ProductsTotal. aspx example later in the chapter.

XslPath
This property is set to the path of an XSLT style sheet. If specified, the transformation is processed on
the resultset at the time of query execution.

Hopefully, we are now fairly familiar with the syntax of the SqlXmlCommand class, so let's see it in action!

The DisplayEmployees.aspx Web Form

Add a new Web Form to our SQL2000 web application, and name it DisplayEmployees . aspx.
Using HTML view, remove all markup so that only the Page directive remains:

<%@ Page language="c#" Codebehind="DisplayEmployees.aspx.cs"
AutoEventWireup="false" Inherits="Wrox.ASPNET.SQL2000.DisplayEmployees" %>

In the previous chapter, we used an XSLT style sheet named EmployeeTransf orm. xslt in one of our
examples, and will come in useful in this project too. Add it as an existing item, placing it in the project
folder.

In the code file, DisplayEmployees.aspx.es, add the code highlighted below:

using System.Collections;
using System.ComponentModel;
using System. Data;
using Systern.Drawing;
using Sys tern. Web;
using System.Web. SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System. Web. UI. HtmlControls ;
using System.Configuration;
using Microsoft.Data.SqIXml;

namespace Wrox.ASPNET.SQL2000
{
/// <summary>
/// Summary description for DisplayEmployees.
/// </summary>
public class DisplayEmployees : Systern.Web.UI.Page
{

private void Page_Load(object sender, Systern.EventArgs e) {
// Get connection string from Web.config
string _ConnectionString = ConfigurationSettings.AppSettings[

"OLEDBConnection"] . ToStringO ;

// Declare and instantiate SqlXmlCommand object
SqlXmlCommand _Command = new SqlXmlCommand(_ConnectionString);

l IdJJLCI I

// Set SqlXmlCommand properties
_Command.BasePath = Server.MapPathf"/SQL2000/");
_Command.XslPath = "EmployeeTransform.xslt";
_Command.RootTag = "Root";
_Command.CommandText = "SELECT EmployeelD, LastName, FirstName FROM +

"Employees FOR XML AUTO, ELEMENTS";

// Generate HTML output
Response.Write("<html>") ;
Response.Write("<head>");
Response.Write("<title>Northwind Employees</title>");
Response.Write("</head>");
Response.Write("<body>");

// Execute query and send result to Response stream
_Command.ExecuteToStream(Response.OutputStream);

// Finish HTML output
Response.Write("</body>");
Response.Write("</html>");

Web Form Designer generated code]

In this code, we create a SqlXmlCommand object and set it to use a SELECT statement with a FOR XML
AUTO, ELEMENTS clause. We also indicate that the XML is to be transformed, by specifying
EmployeeTable.xslt in the XslPath property. Finally, we execute the command, placing the
transformed results directly into Response. OutputStream.

Set the new page as start up, and hit F5. The result is an HTML table containing values from the
Employees table of the Northwind database:

Davofo
Fuller
Leverling
Peacock
Buchanan
Suyama
King
Callahan
Dodsworth

Nancy
Andrew
Janet
Margaret
Steven
Michael
Robert
Laura
Anne

258

T̂".

SQL Server 2000 and SqIXml Managed Classes

A particularly interesting point here is that we did not need to declare any XML objects (such as
XmlDocument) in our code. We are able to perform the transformation without using the
XslTransf orm class thanks to the SqlXmlCommand object.

Using SqIXmlParameter
In many cases, we are interested in dynamic resultsets based on parameters in the query. The
SqIXmlParameter class is for providing parameter information for queries, be they T-SQL statements,
stored procedures, XPath expressions, or templates.

SqIXmlParameter Properties
The SqIXmlParameter class is easy to learn. It only has two properties as shown below:

G Name - This property is only used when dealing with XPath or template queries. The name
must begin with the @ character. For other query types, this property does not need to be set.

Q Value - This is the value of the parameter passed in.

Creating SqIXmlParameter Objects
We do not instantiate SqIXmlParameter objects directly. Rather we obtain a reference to an instance
of the object generated by the CreateParameter method of the SqlXmlCommand class.

The next sample demonstrates how to use SqIXmlParameter when calling a stored procedure.

The ProductTotals.aspx Web Form
Add a new Web Form to our SQL2000 web application named ProductTotals . aspx. Drag a Label,
a Button, a DropDownList, and a Panel from the Toolbox onto the page. Name them
CustomerLabel, ViewProductTotalsButton, CustomerDropDownList, and ResultPanel respectively,
and set the Text property for the Label to Customer, to View Product Totals for the Button, and
clear this property for the panel (by placing the cursor in the panel and deleting). Size and position the
controls as shown below:

gories.aspx
| Categories.aspx.es DisplayEmployees.aspx |

Display Employee
s.aspx.cs Product? otais.aspx1* ^ l>
X

...
Custome r 1 Unbound jrj .. '•
1

 View Product Totals
j ... :

 :

 ill

, Q Design] B HTML

Querying SQL Server using Annotated Schemas
To explore how to query SQL Server using an annotated schema, add a new schema by opening the Add
New Item dialog, and choosing XML Schema in the Templates pane. Give it the name
AnnotatedSchema.xsd, and enter the following for that file:

<?xml version="l.0" encoding="utf-8" ?>
<xs:schema id="AnnotatedSchema" elementFormDefault="qualified"
xmlns:xs="http: //www.w3 . org/2001/XMLSchema"
xmlns:sqlxml="urn:schemas-microsoft-corn:mapping-schema">
<xs:element name="Customer" sqlxml:relation="Customers">
<xs:complexType> <xs:sequence>

<xs:element name="CompanyName" type="xs:string" />
</xs:sequence>

<xs:attribute name="CustomerID" type="xs:string" />
</xs:complexType> </xs:element> </xs:schema>

The above schema is a mapping schema that we will use to query the Customers table in SQL Server. It
is a an XSD schema, with an annotation on the following element:

<xs:element name="Customer" s<jlxml:relation="Customers">

The relation annotation maps the resulting <Customer> element to the Customers table. The other
nodes defined in the schema will map by default to the column names they bear.

Creating the ProductTotalsTable.xsIt Style Sheet
We will create a new XSLT style sheet for our project that sorts the products a customer has ordered in
descending order by product total. Call it ProductTotalsTable .xslt, and add the following code:

<?xml version="l.0 " encoding="UTF-8" ?>
<xsl:stylesheet version="l.0"
xmlns:xsl="http:7/www.wB.org/1999/XSL/Transform">

<xsl:output method="html" />

<xsl:template match="/" >
<table style="border: thin solid">
<tr>
<th style="width:lOOpx,-background-color: #DDDDDD">Product</th> <th
style="width:100px;background-color: #DDDDDD">Total Quantity</th> </tr>
<xsl:apply-templates select="/*/row">

<xsl:sort select="@Total" data-type="number" order="descending" />
</xsl:apply-templates> </table> </xsl:template>

260

SQL Server 2000 and SqIXml Managed Classes

<xsl:template match="row">
<tr>

<tdxxsl :value-of select="@ProductName" /></td>
<tdxxsl :value-of select= "@Total" /></td> </tr>
</xsl:template>

</xsl:stylesheet> We will use the above style sheet in our code to

handle button click events.

Loading the CustomerDropDownList Control
In the code behind the ProductTotals . aspx page, add the highlighted code below:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using Systern.Web.UI.HtmlControls;
using System.10;
using System.Configuration;
using Systern.Xml;
using Microsoft.Data.SqIXml;

namespace Wrox.ASPNET.SQL2000 {
/// <summary>
/// Summary description for SalesByCategory.
/// </summary>
public class ProductTotals : Systern.Web.UI.Page
{
protected System.Web.UI.WebControls.Button ViewProductTotalsButton;
protected Systern.Web.UI.WebControls.DropDownList CustomerDropDownList;
protected System.Web.UI.WebControls.Label CustomerLabel;
protected System.Web.UI.WebControls.Panel ResultPanel;

private string _ConnectionString = null;
private string _BasePath = null;

private void Page_Load(object sender, System.EventArgs e) {
_ConnectionString =

ConfigurationSettings.AppSettings[
"OLEDBConnection"];

_BasePath = Server.MapPath("/SQL2000/");

if (HsPostBack) {
// Declare and instantiate SqlXmlCommand
SqlXmlCommand _Command = new SqlXmlCommand (_ConnectionString);

// Set SqlXmlCommand object properties
_Command.RootTag = "Customers"; _Command.BasePath =
_BasePath; _Command.SchemaPath =
"AnnotatedSchema.xsd" ; _Command.CommandType =
SqlXmlCommandType.XPath; _Command . CommandText =
"Customer";

XmlReader _XmlReader = _Cornmand.ExecuteXmlReader () ;

while (_XmlReader .Read()) {
if (_XmlReader.Name== "Customer ") {
string _CustomerID =
_XmlReader .GetAttribute ("CustomerlD") ;

CustomerDropDownList . Items. Add (new Listltem (XmlReader
.ReadElementString() , CustomerlD)) ;

// Close the XmlReader object
_XmlReader . Close () ;

The Page_Load code above uses an XPath expression to query the schema specified, and populates the
CustomerDropDownList control with customer names and values, ready for selection on our Web
Form.

The next step then is to display this list of products in descending order of quantity purchased when the
user clicks the ViewProductTotalsButton button:

private void ViewProductTotalsButton_Click(object sender,
System. EventArgs e)

{
// Declare and instantiate SqlXmlCommand object
SqlXmlCommand _Command = new SqlXmlCommand (_ConnectionString) ;

// Set SqlXmlCommand properties
_Command.BasePath = Server .MapPatht " /SQL2000/ ");
_Command.XslPath = "ProductTotalsTable.xslt" ;
_Command . RootTag = "Products";

262

SQL Server 2000 and SqIXml Managed Classes

In the next section of code, we set the ClientSideXml property to true, moving the process of
converting the relational data into XML onto the client. This allows us to call a stored procedure which
was not designed to return an XML response. Rather, we execute the stored procedure, and add the FOR
XML RAW clause to indicate the result should be in XML:

_Command.ClientSideXml = true;

// Create parameratized call to stored procedure
_Command.CommandText = "EXEC CustOrderHist ? FOR XML
RAW";

The CustOrderHist stored procedure (which already forms part of the Northwind sample database)
accepts one parameter for input. We set a placeholder for the parameter by using the '?' character after
the stored procedure name. The following lines provide a value for this parameter through a
SqlXmlParameter object:

// Create parameter for CustomerlD
SqlXmlParameter _CustomerID = Command.CreateParameter();
_CustomerID.Value=CustomerDropDownList.Selectedltem.Value;

Once we've set a value for the parameter, we are ready to execute the command. In this situation, we
opted for the ExecuteStream method, which we will place in a StreamReader object for processing:

// Create StreamReader object to hold
data StreamReader _StreamReader = new
StreamReader(

_Command.ExecuteStream());

// Place results in Panel object
ResultPanel.Controls.Add(new LiteralControl(

_StreamReader.ReadToEnd())};

unapter t

Displaying the ProductTotals.aspx Web Form
Set the new page as astart up, and hit F5. When the screen appears, choose a customer from the
dropdown, and click the button:

3 ProductTotals - Microsoft Internet Explorer
File Edit view Favorites Tools Help

->> jiJFavorites
'0Media

Address | j£) http://localhost/SQLZOOO/ProductTotals. aspx J-] o>Go ;
Links "

Customer [Alfreds Futterkiste
HAIfreds Futterkiste
JAna Trujillo Emparedados y hefados
Antonio Moreno aqueria T
[Around the Horn
^^JDJH[l||p^^j]j|p|jP
Blauer See Delikates^ n
Blondesddsl pere et fils
Bolido Comidas preparadas
Bon app'
Bottom-Dollar Markets
B's Beverages__________________ »

±J

SJ Oone r Local intranet

This produces a list of products sorted in descending order based on total units purchased:

 Address j^j http:j/loc3»xist/SQL2000/Producl:TQtals.as^

Customer I Berglunds snabbkop _*j
View Product Totals

g] Done

Product
Boston Crab Meat
Zaanse koeken Ipoh
Coffee Ehonbrau
Klosterbier Gumbar
Gumrnibarchen
Nord-Ost
Matjeshenng
Rossle Sauerkraut
Jack's New England
Clam Chowder
Tourtiere
Camembert Pierrot
Chai

75 61 60 51
50

50 50 40

y.

Eg Local intranet
•

264

SQL Server 2000 and SqIXml Managed Classes

Using SqIXmlAdapter
We have been demonstrating various ways up to this point for the retrieval and display of data. In most
real world applications, we also wish to update our SQL Server 2000 databases based on user input, and
this is a task that we can achieve quite simply thanks to the SqIXmlAdapter class.

SqIXmlAdapter Methods
The two key methods of the SqIXmlAdapter class are:

Q Fill - Used to initially fill a provided DataSet object.
D Update - Used to update data in SQL Server.

Much like the DataAdapter object seen in the other data providers, the SqIXmlAdapter can fill a
DataSet object with data. It is tailored for interacting with SQL databases using XML, and its Update
method synchronizes any changes with the underlying data source.

Summary

In this chapter, we had an opportunity to look at the exciting XML features of SQL Server 2000, and
how we can interact with them using the new managed classes that ship with SQLXML 3.0. We learned
that we can optimize our access to SQL Server 2000 by using the SQL Server .NET data provider
classes of the System. Data . SqlClient namespace. We also saw how this provider can assist in the
retrieval of XML data from SQL Server 2000.

We moved on to explore some of the possibilities for using two of the most important of the new .NET
classes that come with the SQLXML 3.0 package, namely:

Q SqlXmlCommand
a
SqlXmlParameter

We also had a quick look at SqIXmlAdapter, which can be used for making changes to a database
using XML. These three classes allow us to author .NET code that takes advantage of the XML features
provided by SQLXML 3.0, and provide a useful starting point for any ASP.NET applications that mix
XML functionality with relational data.

E-Business and XML

Exchanging data electronically is nothing new. Electronic Data Interchange (EDI) has been around for
over 20 years and has enabled many organizations to greatly streamline their processes and thus reduce
costs. Due to the complexity and substantial implementation costs involved however, the take-up of EDI
has been restricted to large organizations where the sheer volume of transactions justifies the expenditure.

In conjunction with the recent success of the Internet, XML, as a universal data format, has changed all
that. It is now a straightforward matter for even the smallest of enterprises to make their data available
for sharing, with almost every new application having some sort of support for XML.

Of course, it's not just a matter of having your data formatted in XML, you still have to move it about, and
the recent explosion in XML Web Services represents a suitably platform-independent mechanism for this.

In this chapter, we will take a closer look at the open standards on which the XML Web Services
programming model is built, namely SOAP, WSDL, and UDDI. (We'll define and explain these
acronyms below.) This is not intended to be a tutorial on how to build XML Web Services, as that is a
book in itself - well, several actually, such as Wrox Press's Professional ASP.NET Web Services (ISBN
1-86100-545-8) and Professional C# Web Services (ISBN 1-86100-439-7).

We will also take a look at the Global XML Web Services Architecture and see how Microsoft, with
IBM and VeriSign, are extending the XML Web Services specifications to make it more flexible,
reliable, and secure, through the new specifications of WS-Routing, WS-Referral, WS-Inspection,
WS-Security, and WS-License.

Finally, we will take a short tour of ebXML, the open global e-business framework sponsored by the UN and
OASIS, that builds on EDI to provide an extensive and integrated approach to electronic business
transactions and which, according to some analysts, is destined to become the dominant e-business standard.

Transacting with XML Web Services
Fundamentally, XML Web Services are centered on the sending and receiving of XML-based messages.
Sure, they expose programming logic, they do provide distributed computing capabilities, and yes they
can help integrate disparate legacy systems, but outwardly, a Web Service does little more than receive
and/or send out XML documents.

This all sounds rather simple and you might be wondering just why we need to complicate matters with
the alphabet soup that is SOAP, WSDL, and UDDI? Let's consider an example to see just what is
involved in a business transaction.

Suppose that you are applying for a loan for a new car and the finance company wishes to run a credit
check on you. With a suitable Web Service, they can send your name and other salient details over the
wire to a credit check company that carries out the check and returns your rating in a matter of seconds.
This is good for the credit check company because they can dramatically reduce the number of
call-center staff. It's also good for the finance company because they have reduced their own telephone,
faxing, and staffing bills and now they can offer loan applications and instant approvals via their web-
site; and it's good for the customer because they get to know pretty much instantly if they've got the loan.

So, to perform the credit check via Web Service, the finance company needs to know:

O That the credit check company's Web Service exists in the first place.
Q The details for invoking the Web Service - what transport protocol to use (HTTP, HTTPS,

FTP, SMTP) and the address where the Web Service lives. Most often, transactions take place
using HTTP or HTTPS to send the request and receive the response, and so this address would
be in the form of a URL.

Q The information the service needs to process the request, such as the name and social security
number of their prospective client, and how this information is formatted (we do know that it
will be an XML document).

Q Any additional information to send and where to put it in the request. For instance, the credit
check application may also require additional information to verify that the originator of any
request is authorized to use the facility.

Q The information the response will contain and how it is formatted.
Q How errors are reported, so that any problems encountered in the transaction can

be handled appropriately.

Transactions such as the one described here, while simple in terms of basic requirements, do in fact
carry a hefty infrastructure requirement. Were the two parties that wished to exchange data to build this
infrastructure from scratch, then they would be facing the same problems that have held back EDI.

Enter the Baseline Specifications of SOAP, WSDL, and UDDI. Together, they provide a framework for
transacting online that is platform-neutral, software-neutral, and vendor-neutral, so it doesn't matter that
the finance company is Windows-based and the credit check company runs Unix. These standards
define message formats including the format of any data passed between sender and receiver, fault
reporting procedures, and a method for finding organizations and the services they provide. Together
they form the foundation for XML Web Services and an understanding of each specification will greatly
aid your Web Services development.

So, let's take a closer look at each of the specifications.

268

E-Business and XML

SOAP - The Backbone of Electronic Messaging
SOAP is a protocol for the exchange of XML messages using common transport protocols such as
SMTP, FTP, and most notably HTTP. The latest version of SOAP is 1.2, which at the time of writing is a
Working Draft and can be viewed at http://www.w3c.org/2002/ws. If you look at that URL closely,
you'll see that the W3C has now placed SOAP specification development under the Web Services
Activity. This is a good indication of how SOAP is inextricably linked with XML Web Services.

The .NET Framework is SOAP 1.1 compliant and so we will concentrate on this version. However, you
will find a list of the differences between 1.1 and 1.2 at the end of this chapter and I will point out the
significant changes as we move through our discussion of SOAP.

Basic SOAP communication is essentially one-way, but as the SOAP specification points out,
applications are expected to, and of course do, combine these one-way communications to provide
request-response and more elaborate conversational communication mechanisms. SOAP also
distinguishes between remote procedure call (RFC) messages and document-style messages.

Remote Procedure Call (RPC) Messages
RFC is the most prevalent message type, as it has been designed to mimic the model of object methods
and parameters, and so is readily understood by developers. In RPC, the method name, its parameters,
and their values are serialized into an XML document and sent down the line to the remote procedure.
It de-serializes the message, executes the method, serializes the result, and sends it back to the client.
In .NET, with its use of proxy clients that actually handle all the SOAP message building, invoking a
remote procedure is virtually identical to calling a method on a local object.

The serialization and de-serialization of the method and its parameters is performed according to SOAP
encoding rules (often simply referred to as Section 5) described in Section 5 of the SOAP specification.
The theory goes that as the encoding rules are standard, then every standards-compliant SOAP client
will serialize and de-serialize any RPC message with exactly the same result enabling any client, be it
UNIX, Linux, AS/400 or mainframe to invoke, for example, a .NET-based Web Service.

Document-sty/e Messages
In an RPC call we cared little about the actual message, as it was just an XML representation of our
object method call. With document-style messages we are not invoking any remote procedures but
simply sending an XML document, the format of which we are totally responsible for, to a remote
location where it will be processed and we may receive an XML message in response.

The encoding style in document-style messages is said to be literal: in effect, there is none, messages are
passed as is to the remote location. This style of messaging is most suited to situations where we are dealing
with the movement of documents, such as being able to place a purchase order directly with a supplier.

SOAP Messaging Exchange Model
The SOAP specification extends the one-way communication model by introducing the concept of a
message path. The path starts at the initial sender and ends at the ultimate receiver; it may include none
or any number of Intermediaries (which are by implication also receivers and senders). The simplest,
and most common, message path contains only one sender and one receiver. Each stop on the path is
known as a SOAP Node and it must process the message.

The SOAP Message
A SOAP message follows a hierarchical structure, as appropriate for encoding as XML. Look at the
diagram below of a typical SOAP Message:

SOAP Envelope

SOAP Header
 Header Block: company-name

Header Block: request-number

SOAP Body

! Body sub-element: credit-check
Body sub-element:
Id-check <

The Envelope
The outermost element of a SOAP message is the SOAP Envelope, and is the top-level XML SOAP
element. As the name implies, it represents the message container and is mandatory. It always carries the
namespace attribute defining the version of SOAP being used. The Envelope element may contain a
single Header element (in which case it must be the first child) and must contain a single Body
element.

The Header
The <Header> element is optional and consists of one or more header blocks. The header blocks are
designed to extend SOAP's functionality by containing information that is not part of a document or
function call, but may be required for the additional processing of a message. For example, in our credit
check example, the header may contain the name and user ID of the finance company, so that the credit
check company can log the checks made by each of its clients.

Header Block Attributes
Header blocks can have the attributes actor or mustUnderstand. The actor attribute determines
which SOAP node is to process the header block information and allows header block information to b«
targeted at different nodes.

270

E-Business and XML

The actor attribute takes a URI as its value. There are four possibilities, as indicated below:

URI of actor Attribute Description

http://www.wS.org/2001/09/soap-e
nvelope/actor/next

specific URI, for example:
http://acmecredit.com/actor/accountMgr

blank

This special URI indicates that the header
must be processed only by the very first
receiver node
Must only be processed by node acting in
this role
Must only be processed by node assuming
role of ultimate receiver

The mustUnderstand attribute is a simple switch (0 is false, 1 is true) to specify whether the node
processing the header block must recognize it and is able to process it. If this attribute is 1, and any
node doesn't recognize it's meaning, then that node must raise a SOAP MustUnder stand fault (see
following section) and return processing immediately to the initial SOAP sender.

The Body
The body part of the message is known as the payload and is mandatory. It carries either a document or
the RFC call information and is constructed in the same way as the header, consisting of one or more
body blocks.

SOAP Faults
Fault blocks are the only predefined SOAP body block and, as their name suggests, are designed to pass
back error messages to the initial SOAP sender. Only one fault block can appear in a SOAP body and it
must contain a <f aultcode> (see list below) and a <f aultstring> - a descriptive error message - as
child elements. It can optionally include the elements <faultactor>, to identify the node that raised
the fault, and <detail>, a general-purpose element to contain application specific data. The <detail>
element may only be present if the fault occurred during the processing of the body and therefore an
application can determine whether the fault relates to the header or body by checking for the existence
of the <detail> element.

Fault Code Values
The <faultcode> element must contain one of the following values:

Value Meaning

VersionMismatch

MustUnderstand

The namespace on the envelope is invalid. This could
occur if the SOAP node is expecting a 1.1 namespace
and the envelope has a namespace that is not
http://www.w3.org/2001/09/soap-envelope.
A SOAP header block had the mustUnderstand
attribute set to true, but could not be processed by a
SOAP Node.

Value Meaning
Clien t The message was incorrectly formed (not valid XML),

or it did not contain the appropriate information. This
Sender in SOAP 1.2 IC/-VAO

indicates a problem with the initial SOAP sender and
will most likely require an application change.

Server The message could not be processed even though it is
properly formed and contains all the appropriate (Receiver in SOAP 1.2) ~ c . —,. r
information. Ihis may indicate a problem such as an
intermediary SOAP node that is not responding.

Using SOAP for RPC
SOAP has been designed to cater for both document-style message exchange, where the SOAP sender
and the SOAP receiver exchange XML documents, and RPC, where we are participating in a more
familiar function-call scenario.

There do not appear to be any hard and fast rules as to when to use document style and when to use
RPC and it will pretty much be up to you as to which you wish to implement. However, the RPC style
is most like the programming models we are used to and so we will discuss RPC a little further.

First, let's look at an example:

<?xml version='1.0' ?>
<env:Envelope xmlns: env="http://schemas.xmlsoap.org/soap/envelope/">

<env:Header>
<auth:authentication xmlns:auth="http://www.creditcheck.com/auth">
<userid>1234567890</userid>

</auth:authentication>
</env:Header> <env:Body>
<m:checklndividual

env:encodingstyle="http://www.w3.org/2001/12/soap-encoding"
xmlns:m="http://www.creditcheck.com/checklndividual" >

<firstName>John</firstName> <lastName>Smith</lastName>
<ssn>123-456-789-012</ssn> </m:checklndividual> </env:Body> </env:Envelope>

This is what a SOAP message invoking the credit check service that we mentioned earlier could look
like. We translate the interface into XML: the method name is checklndividual and three
parameters provide name and social security number details. We also need to pass a userid to enabu
the service to perform basic authentication but because this is not part of the function call, this
information is coded in a header block.

The service returns checkResult, a flag indicating whether the check was OK or not. The service also
returns requestlD in a header block, so that requests can be logged and tracked by the finance company-1

272

E-Business and XML

The response from the credit check service would be something like this:

<?xml version='1.0' ?>
<env:Envelope xmlns:env=" http://schemas.xmlsoap.org/soap/envelope">
<env:Header>
<req:requestID xmlns:req="http://www.creditcheck.com/requestID">
1234-39090-0

</req:requestID>
</env:Header>
<env:Body>

<m:checklndividualResponse
env:encodingstyle="http://www.w3.org/2 001/12/soap-encoding"

xmlns:m="http://www.creditcheck.com/checklndividual" >
<checkResult>l</checkResult> </m:check!ndividualResponse> </env: Body>
</env:Envelope>

As you can see, in the body block, the literal Response has been added to the method name.

Using SOAP over HTTP
HTTP is the dominant transport protocol for SOAP messages simply because it is so prevalent with
virtually every organization and application being able to make use of HTTP, especially as port 80 is
often the only port left open on a firewall. The request and response pattern of HTTP POST makes it
ideally suited for RFC calls.

The URI in the HTTP request identifies the location of the service. SOAP makes no requirements on
the syntax of the URI other than it must be a valid URI. The HTTP Content-Type header must be set
to text/xml (or application/soap for SOAP 1.2).

Here is an example of an HTTP POST for the check credit service:

POST /Charging HTTP/1.1
Host: www.checkCredit.com
Content-Type: application/soap; charset="utf-8"
Content-Length: 1234 <?xml version='1.0' ?>
<env:Envelope xmlns:env=" http://schemas.xmlsoap.org/soap/envelope ">

<env:Header>

</env:Header>
<env:Body>
<m:checklndividual>

</m:checklndividual>
</env:Body>
</env:Envelope>

Using SOAP over E-Mail
As previously mentioned, SOAP is not tied exclusively to HTTP but is designed to work with any
transport protocol. One obvious alternative to HTTP is the mail protocol SMTP. Sending our credit
check request over SMTP may look something like this (although SOAP does not actually specify any
bindings, that is what needs to appear in an e-mail header and body, for SMTP):

From: online.application@theloancompany.com To:
creditcheck@checkcredit.com Subject:
Individual Credit Check Date: Fri, 1 Dec 2002
10:30:00 GMT
Message-Id: <JHELJLBBOJDGMPNDPFINIEIBCAAA@theloancompany.com>
<?xml version='1.0' ?>
<env:Envelope xmlns:env=" http://schemas.xmlsoap.org/soap/envelope">

<env:Header>

</env:Header>
<env: Body>
<m:checklndividual>

</m:check!ndividual>
</env:Body>
</env:Envelope>

SOAP Security
There are going to be times when the data we are exchanging is sensitive and needs some level of
protection. As a messaging format, the SOAP specification deliberately avoids issues related to security,
and leaves those details entirely in our hands.

The general approach to securing SOAP data exchange has been to secure the transmission, rather than
the message itself, which usually means utilizing a combination of certificates, SSL, and Basic
Authentication. As most of your SOAP messages will pass over HTTP, this is far from disastrous and
uses technologies that we are all familiar with. Therefore, the only real disadvantage, apart from the
increased time in processing an HTTPS request, is that the technique has to be replicated for each
sender/receiver node pairing. How big a problem this presents will depend on how you set up your service.

For the purists among you, though, there is a shimmering light on the horizon. In fact, there are two
shimmering lights: XML Signature and XML Encryption. These specifications are currently only in
Working Draft, so I won't spend too much time on them, other to say that they provide a standard way
to digitally sign and encrypt XML messages. This allows the receiver to authenticate the sender of the
message, to ensure that the message has not been tampered with during transport, and to encrypt the
response message for the entire message path.

Encoding, Serialization, and Proxies
Firstly, let's get some definitions out of the way:

Q Serialization is the translation of an object to, in this case, an XML

representation. Q Encoding is the set of rules for performing the serialization.

274

E-Business and XML

p Proxies are classes that reside on the client that mimic the properties and methods of a class
o TI a remote machine

v- ur use of encoding, serialization, and proxies will vary depending on the type of SOAP message
you e sending. In a document-style message it is likely, although not definite, that you won't make use
of uem at all. As you are simply sending an XML document to a service, the chances are that no

rjalizati-on will be required: the encoding is said to be literal and the service will treat the message
simply as an XML document.
An RPC message is very different. In ASP.NET, we use a proxy on the client to mirror the methods of
the servic e, thus by calling a method on our local proxy we in fact invoke the remote method on the
service. To invoke the method on the service, the proxy converts the method and its parameters to
XML (in this case a SOAP message) and sends the message to the Service.

For example, in our proxy, the credit check service method would be invoked as:

Checklndividual (string firstName, string lastName, string ssn) As

String When serialized into a SOAP RFC call, it would look like this:

<env ; Body>
<m : Checklndividual

env:encodingStyle="http: //www.w3 .org/2001/12/soap-encoding"
xmlns :m="http: //www. creditcheck. com/ Checklndividual" > <f

irstName>John</f irstName> -<lastName>Smith</lastName> <ssn>123 -456-7 89
-012</ssn> </m : Checklndividual> </en\r:Body>

The Web Service follows the reverse procedure, receiving the SOAP message, de-serializing the XML,
and making the appropriate call. The results are packaged up and sent as the SOAP response in a
similar fashion.

Encoding defines a set of rules for Serialization and so long as the same rules are used to serialize and
de-serialize, then not only can we make these remote calls but the platform on which the client and the
service resides is largely irrelevant. In this case, as in most cases, we are using SOAP-encoding as
defined by the URI in the encodingStyle attribute.

In order to correctly serialize the parameters for RFC calls, we are going to have to specify the data
type. SOAP-encoding includes all the primitive and simple types defined in the XML Schemas
definition (for more on schemas see http://www.w3.org/XML/Schema) as well as multiple references and
compound types.

Multiple References
When the same piece of information appears more than once, references allow the information to be
coded once but referenced multiple times by using an id attribute. For example, Wrox Books are often
multi-authored so a snippet of an XML document listing some books could look like this:

<e: Books xmlns :e="http: //www. wrox.com/books"> <e:Book
xmlns : e="http: //www. wrox.com/books" ->
<title>Professional SOAP</title>

Chapter 8

outhor href="#al"/>
<author href="#a2"/>
outhor href="#a3"/> </e:Book> <e:Book

xmlns:e="http://www.wrox.com/books" >
<title>Professional XML</title>
outhor href="#al"/> </e:Book> <e:Book

xmlns:e="http://www.wrox.com/books" >
<title>Professional XML Web Services</title>
<author href="#a2"/>
outhor href="#a3"/> </e:Book> <e:Person

xmlns:e="http://www.wrox.com/books" id="al" >
<name>Author One</name>
<email>al@wrox.com</email> </e:Person> <e:Person

xmlns:e="http://www.wrox.com/books" id="a2" >
<name>Author Two</name>
<email>a2@wrox.com</email> </e:Person> <e:Person

xmlns:e="http://www.wrox.com/books" id="a3" >
<name>Author Three</name>

<email>a3@wrox.com</email>
</e:Person> </e:Books>

The href attribute can also point to an external reference by providing a URL.

Multiple references can dramatically reduce the size of a message that may be desirable if performance
considerations are paramount.

SOAP'S Compound Types
SOAP encoding has two compound types: struct and array. The SOAP specification defines these
types as follows:

Type Name SOAP Specification
s t r u c t A struct is a compound value in which the accessor name is the only distinction

between member values, and no accessor has the same name as any other.
ar ray An array is a compound value in which ordinal position serves as the only

distinction among member values.

Arrays
Arrays appear as an ordered sequence of elements that usually have a name that indicates their d type,
although this is not necessary. The type of the elements is determined by the enc : arrayTyP6 attribute
on the accessor, an xsi : type attribute on the actual element, or by the element name. J result it is
perfectly legitimate to have arrays where the members are of different types. Here the arrayType is set
to anyType to allow for multiple data types for the members of the array:

276

E-Business and XML

<enc:Array xmlns:enc="http://www.w3.org/2001/12/soap-encoding"
xmlns :xs="http: //www.w3 . org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
enc:arrayType="xs:anyType[3]"> <thing
xsi:type="xs:string">Chris</thing> <thing
xsi:type="xs:date">9/15/1968</thing>
<thing xsi : type="xs :anyURI">http: //www.wrox. com/authors/chrisk/</thing>

</enc:Array>

Or without the XML Schema namespace:

<enc:Array xmlns:xs="http://www.wS.org/2001/XMLSchema"
xmlns:enc="http://www.w3.org/200I/12/soap-encoding"

enc:arrayType="xs:anyType[3]" > <enc:string>Chris</enc:string>
<enc:date>9/15/1968</enc:date>
<enc:anyURI>http://www.wrox.com/authors/chrisk/</enc:anyURI>

</enc :Array>

The enc: arrayType attribute defines the type of the elements as well as the dimension of the array. An

array can be an array of structs, for example:

<enc:Array xmlns:enc="http://www.w3.org/200I/12/soap-encoding"
xmlns:xyz="http://example.org/2001/06/Orders"

enc:arrayType="xyz:Order[2]"> <0rder>
<Product>Apple</Product>
<Price>l.56</Price>
</Order> <Order>

<Product>Peach</Product>
<Price>l.48</Price> </Order>
</enc:Array>

It can also be a multi-dimensional array:

<enc:Array xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:enc="http://www.w3.org/2001/12/soap-encoding"

enc:arrayType="xs:string[2,3]" >
<item>rowlcoll</item>
<item>rowlco!2</item>
<item>rowlco!3</item>
<item>row2coll</item>
<item>row2co!2</item>
<item>row2co!3</item>

</enc:Array>

Here the enc : arrayType attribute specifies the dimensions of the array.

Partially Transmitted and Sparsely Transmitted Arrays
As the multiple references feature illustrates, a high priority of the designers of SOAP was increasing
performance, in particular by reducing the size of messages wherever possible. Partially transmitted and
sparsely transmitted arrays are further examples of this emphasis. Both allow portions of an array to be
serialized: partially transmitted arrays allow you start at an offset whilst sparsely transmitted arrays
allow you to explicitly specify which elements you are sending.

In this example, we use a partially transmitted array to send the fourth and fifth elements of a
six-element array:

<enc:Array xmlns:enc="http://www.w3.org/2001/12/soap-encoding"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

enc:arrayType="xs:s tring[6]"
enc:offset="[3]" > <item>The

fourth element</item> <item>The fifth
element</item> </enc:Array>

The enc: offset attribute indicates how far from 0 we are in the array.

Here we use a sparsely transmitted array to send just the second and fourth elements of an array of strings:

<enc:Array xmlns:enc="http://www.w3.org/2001/12/soap-encoding"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
enc:arrayType="xs:string[6]">

<item enc:position="[1]">The second element</item>
<item enc:position="[3]">The fourth element</item>
</enc:Array>

The enc: position attribute is added to the member elements to signify their position within the
array. Don't forget that arrays are zero-based so the fourth element is at position 3!

Differences between SOAP 1.1 and SOAP 1.2
At the time of writing, SOAP 1.2 is in Working Draft. ASP.NET's Web Service support is 1.1 compliant
and WSDL binds to 1.1 but for completeness we will have a look the current major differences between
SOAP 1.1 and SOAP 1.2 (in addition to the different namespace of course):

Q SOAP 1.2 does not permit any element after the body.
G SOAP 1.2 defines the new <Misunderstood> header element for conveying information

on a mandatory header block that could not be processed.
3 SOAP 1.2 provides two new fault codes MustUnderstand and DTDNotSupported.
Q SOAP 1.2 defines two new actor roles, none and anonymous, together with a more detailed

processing model on how these behave.
Q In the SOAP 1.2 HTTP binding, the SOAPAction header is not required, and a new HTTP

status code 427 has been sought from IANA for indicating cases where it is needed.

278

E-Business and XML

Q In the SOAP 1.2 HTTP binding, the Content-type header is application/soap
rather than text/xml as required by SOAP 1.1.

Q SOAP 1.2 provides a finer grained description of the use of the various 2xx, 3xx, 4xx HTTP
status codes.

G SOAP 1.2 has removed the 'dot' notation for fault codes, which are now simply of the
form env: name, where env is the SOAP envelope namespace.

Q SOAP 1.2 replaces client and server fault codes with Sender and Receiver
Q SOAP 1.2 provides a <response> element for PvPCs.
Q SOAP 1.2 provides several additional fault codes in the RFC namespace.

Of immediate impact to ASP.NET users are two HTTP binding changes. As ASP.NET is 1.1 compliant it
will not accept a request unless the SOAPAction header is present, and the Content-type HTTP
header is text/xml.

Describing Web Services with WSDL
Imagine going into a fast food restaurant, walking up to the counter, looking up and there's nothing
there. No pictures and no menu listing the tasty snacks available. So you start guessing and each time you
guess the person serving you just chirps cheerfully, "We don't do that, sorry!"

It might sound like some surreal comedy sketch, but it illustrates an important point about Web
Services. Only knowing the URI for a Web Service is like being in this situation; you know where the
restaurant is, but you have no idea what functions are available or what the input and output parameters
are. What we need is a menu - a way of describing a Web Service, telling us all we need to know in
order to use it; and we want it in XML so that it can easily be integrated into other applications such as
automated proxy builders.

Web Services Description Language, WSDL (often pronounced "whizz-dull", which seems like an
oxymoron to me!), is an XML grammar that does all this and more. It is a joint initiative of IBM and
Microsoft, and although it is currently at the lowly status of a W3C Note, it is rapidly gaining
recognition as the de facto standard.

The W3C Note describes WSDL as follows:

"WSDL is an XML format for describing network services as a set ofendpoints operating on messages
containing either document-oriented or procedure-oriented information. The operations and messages
are described abstractly, and then bound to a concrete network protocol and message format to define an
endpoint. Related concrete endpoints are combined into abstract endpoints (services). WSDL is
extensible to allow description ofendpoints and their messages regardless of what message formats or
network protocols are used to communicate, however, the only bindings described in this document
describe how to use WSDL in conjunction with SOAP 7.1, HTTP GET/POST, and MIME."

Abstract and Concrete
The most important concept in WSDL is that of abstract definitions and concrete descriptions.

The abstract definitions describe the functions or methods, their parameters, document descriptions (if
this is a document-style exchange rather than RFC), and data type definitions for the Web Service. They
are considered abstract because everything they describe is platform-neutral.

The concrete descriptions detail the physical implementation, generally specifying that such and such
function call maps to such and such URI.

The separation of the abstract and the concrete provides tremendous flexibility. It is entirely feasible
that an abstract definition can be shared between multiple service providers, each with their own
concrete descriptions. In fact, what may well happen is that we get a Web Services equivalent of the
BizTalk initiative (let's call it WebSTalk and you read it here firstl). The WebSTalk initiative could be a
grouping of organizations that offer the same type of Web Service, getting together to agree a standard
abstract definition that consumers can confidently integrate into their applications because it is
independent of the service provider.

For example, say all the online brokerage companies agree an abstract definition for a stock quote
service. We use this to integrate the service into our application and we initially implement with the
concrete descriptions provided by 'The PayAsYouGoQuotes Company'. This seems like a good idea
because we aren't sure how many quote enquiries we will be making. Down the track, we find that we
are making so many quote enquiries that it would be better to use 'The YearlySubscriptionQuote
Company'. All we would need to do is change the concrete descriptions to use the new service provider.
There's no need to worry about how to call the functions with the new provider, or the format of the
response because they are the same.

WSDL Structure
Let's consider the elements that make up a WSDL document, the function they perform and how they
relate to each other. We will use the WSDL document from one of the services described in the Web
Services Case Study as an example, but first let's take a look at a diagram that illustrates the key
relationships within a WSDL document

280

E-Business and XML

Relationship between elements In a WSDL document <types >
<message>

<schema> I <part>

<eletnent>

<part>

 <element>

Abstract Definitions Concrete Descriptions
t <service>

<port>

As we have already discussed, the document is split
into abstract definitions and concrete descriptions. In
the concrete descriptions, we have a <service>
element that represents a Web Service. It contains a
<port> for each implementation of the service (SOAP,
HTTP-GET, HTTP-POST) and is linked to a
<binding> element. The <binding> element provides
information specific to the implementation (for
example for a SOAP implementation it has the
SOAPAction) and it is linked to a <portType> in the
abstract definitions. The <operation> in the
<binding> is also linked to an <operation> in the <portType>.

In the abstract definitions, the <portType> element contains <operation> elements that, in turn,
contain two child elements, <input> and <output>. Each of these is linked to a <message> element
and defines the format of the input and output to the operation, or service. The <message> element
consists of one or more <part> elements that are linked to <element>s in the <schema> element,
which can be found in the <types> element.

Let's take a closer look at the elements. We will split them into the root element, abstract definition
elements, and concrete description elements.

Root Element
The root element of a WSDL document is the <def initions> element. As you can see, it specifies
certain global namespace declarations. It may also have a name attribute (a recurring theme in WSDL
elements), although Visual Studio WSDL files are not generated with one:

L/napier o

<?xml version="l.0" encoding="utf-8"?>
<definitions xmlns:s="http:7/www.wS.org/2001/XMLSchema"
xmlns :http="http: //schemas .xmlsoap.org/wsdl/http/ "
xmlns :mime="http: //schemas .xmlsoap.org/wsdl/mime/ "
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns :soapenc="http: //schemas .xmlsoap.org/soap/encoding/"
xmlns:sO="http://terapuri.org/" targetNamespace="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/ ">

Abstract Definition Elements

< types >
This is where specific data types are defined, preferably using XSD. As we will see later in our
discussion of the <import> element, the <types> section can be, and often is, hived-off into a
separate document.

<types>
<s:schema attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://tempuri.org/">
<s:element name="p_i!temID" type="s:int" />
<s:element name="getItemResult" nillable="true">
<s:complexType mixed="true"> <s:sequence>

< s:any /> </s:sequence>
</s:complexType>
</s:element> </s:schema>
</types>

<message>
The <message> element provides a definition for the data being sent to or received from a Web
Service. It consists of one or more <part> elements. <message> elements are uniquely identified
through the use of a name attribute.

<message name="getItemSoap!n">
<part name="p_iItemID" element="sO:p_i!temID" />

</message> <message name="getItemSoapOut">
<part name="get!temResult" element="sd:get!temResult" />

</message>

<part>
The <part> element describes the datatype for a message. It consists of a name attribute, so that it
can be uniquely identified, and an element attribute that will generally contain a reference to an
<element> defined in our schema in the <types> element.

282

E-Business and XML

<portType>
A <portType> defines a set of operations and their messages and again uses a name attribute as a
unique identifier. WSDL considers there to be four types of operation (see table below) with the type
determining the operation's messaging requirements. There can be multiple <operation>s in a
<portType> but each <operation> must be one of the four types. An <operation> consists of a
combination of <input>, <output>, and <fault> elements: the type of operation as detailed in the
following table determines the inclusion and ordering of these elements:

Type Description Required Child Elements

One-way Web Service receives a message <input>
Request- response Web Service receives a message and

sends a reply
<input>, <output>,
<fault> (optional)

Solicit-response Web Service sends a message and
expects a reply

<output>, <input>,
<fault> (optional)

Notification Web Service sends a message
without a request

<output>

The <input> and <output> elements have a message attribute that directly relates to the name
attribute of a previously defined <message> element. So, from the above table, a request-response
operation type will consist of an <input> element, an <output> element, and an optional <fault>
element, in that order:

<portType name="CatalogueServiceSoap">
<operation name="getltem">

<input message="sd igetltemSoapIn" />
<output message="sO igetltemSoapOut" /> </
opera tion> </portType>

The <operation> element has a name attribute and an optional parameterOrder attribute. The
latter contains a whitespace-delimited list of message names indicating the order of the parameters. This
attribute is really aimed at imitating methods in RFC situations.

Concrete Description Elements
The concrete descriptions describe the physical implementation of the service. As you will see, the
descriptions are a mix of WSDL elements and extensibility elements specific to the protocol that is used
to invoke the service, generally SOAP. We will be discussing SOAP Binding in the next section, so here
we will just concentrate on the WSDL elements.

A <binding> element defines the message formats and protocol details for a particular <portType>
child of the <portTypes> element of the abstract definitions. A <portType> can have multiple
bindings if, for example, the service is to be made available on a number of different protocols. A
<binding> element can only relate to one protocol. Here's an example:

<binding name="CatalogueServiceSoap" type="sO:CatalogueServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="getltem">
<soap:operation soapAction="http://tempuri.org/getltem" style="document"/>
<input>
<soap:body use="literal" />

</input> <output>
<soap:body use="literal" />

</output> </operation> </binding>

Although we are concentrating on SOAP in this chapter, for comparison here is a <binding> element
which describes invoking the service with HTTP GET:

<binding name="CatalogueServiceHttpGet"
type="sO:CatalogueServiceHttpGet"> <http:binding verb="GET" /> <operation
name="getltem">

<http:operation location="/getltem"
/> <input>

<http:urlEncoded />
</input> <output>

<mime:content part="Body" type="text/xml" />
</output> </operation> </binding>

The type attribute on the <binding> element contains the name of the <portType> and a name
attribute to uniquely identify the <binding>. The example above includes the protocol in the binding
name, which is generally good practice. Each <binding> element has an <operation> child element that
directly relates to an <operation> element in the <portType>. An <operation> element contains an
<input> and <output> element that use the protocol's extensibility elements to describe the physical
format of ingoing and outgoing messages for that binding.

<serv/ce>
A <service> element groups together <port>s and, in keeping with all other elements, uses a name
attribute as a unique identifier. In example, there this is a service for invocation via SOAP and HTTP GET

<service name="CatalogueService">
<port name="CatalogueServiceSoap" binding="sO:CatalogueServiceSoap">

<soap:address location=
"http://localhost/E-commerceEngine/CatalogueService.asmx" />
</port>
<port name="CatalogueServiceHttpGet" binding="sO:CatalogueServiceHttpGet":
<http:address location=
"http://localhost/E-commerceEngine/CatalogueService.asmx" />

</port> </service>

284

E-Business and XML

We can add <documentation> elements as children of <service> elements, as with any other WSDL
element, to provide some limited form of documentation within the WSDL document. The <port>
element specifies a single endpoint address, such as a URI, for the <binding> element named by the
binding attribute. There can be multiple <port> elements for a <service> and the address is defined
by a protocol extensibility element.

SOAP Binding
WSDL has been specifically designed to allow it to describe the consumption of a Web Service over any
protocol, hence the frequent occurrence of extensibility elements in the concrete descriptions. We are
primarily interested in services that use SOAP, so we will now focus on how WSDL binds with that protocol.

First though, what exactly do mean by binding? We know that in order to send a SOAP message we
need certain information: the location (URI or e-mail address) of the endpoint or recipient, a value for
the SOAPAction HTTP header (don't forget, in SOAP 1.1 this is mandatory, in SOAP 1.2. it is not), and
definition of the SOAP headers to be included in the Envelope. Binding allows us to specify this
information in the WSDL file and so enables applications to automatically generate valid SOAP
messages from a WSDL document.

Let's go back to our example and look again at the concrete descripti

<binding name="CatalogueServiceSoap" type="sO:CatalogueServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="getltem">
<soap:operation soapAction="http://tempuri.org/getltem" style="document"/>
<input>
<soap:body use="literal" />

</input> <output>
<soap:body use="literal" />

</output> </operation> </binding>
<service name="CatalogueService">
<port name="CatalogueServiceSoap" binding="sO:CatalogueServiceSoap">
<soap:address location=
"http://localhost/E-commerceEngine/CatalogueService.asmx" />

</port> </service>

<soap:blnding>
The <soap :binding> element is an immediate child of <binding> and identifies which version of
SOAP we are using and the style of messaging. The element has two attributes, style which indicates
whether the binding is document-style or RFC (if it is not present then document is assumed) and,
transport to hold the namespace of the SOAP version. As you can see we are using SOAP 1.1.

<soap:operation >
The <soap: operation> element is an immediate child of <operation> and provides information
specific to this <operation>. The style attribute here is the same as on the <soap:binding>
element defaulting to document style if not present. The soapAction attribute specifies an absolute
URL to be placed in the SOAPAction HTTP header and should only be absent if the HTTP protocol is
being used. (Remember in SOAP 1.2. the SOAPAction is not required, although it is not an error to
specify it.)

<soap:body>
The <soap: body> element appears as a child of the input and output elements. It determines how the
message parts appear in the SOAP body. If the call is document-style then the message appears directly
under the body element. If the call is RPC, then each message part appears under a wrapper that has the
same name as the method. Which message parts appear in the body is determined by a
whitespace-delimited list of names in the optional parts attribute. Each name either references an
<element> in the abstract definitions <types> element or an <element> in a concrete description
schema.

If the attribute is not coded then it is assumed that all parts appear in the body. Encoding of the message
body is determined by the use and encodingStyle attributes. The use attribute can be either literal
or encoded. If it is encoded, then the encodingStyle attribute must be present and contain a
reference to the encoding rules that have been used to serialize the call.

<soap:address>
The <soap:address> element sits inside the <service> <port> element and specifies an address for
an endpoint (URI). It must be valid for the transport protocol declared in the <soap:binding>, for
example a URL for HTTP, or an e-mail address for SMTP. Only one <soap:address> element can
appear as a child of the <port> element and it must specify only one address.

Two other extensibility elements not related to <binding> and <service> can also be specified, as
described next.

<soap:fault>
The <soap: f ault> element defines the format of a SOAP Fault Details element, using the name
attribute to relate the <soap: fault> to the <wsdl: fault> defined for the operation. The use,
encodingStyle, and namespace attributes are all as for the <soap:body> element, except that, as
headers do not contain parameters, a style attribute value of document is assumed.

<soap:/ieader>
The <soap:header> element defines the header blocks that may be transmitted in the header elern of
the SOAP Envelope. The use, encodingStyle, and namespace attributes are all the same as f the
<soap :body> element with the exception that, as headers do not contain parameters, a styl« attribute
value of document is assumed.

The header type is related to the relevant message part via the message and part attributes. If
is set to literal then the part may also include definitions for the <soap:actor> and the
<soap :mustUnderstand> attributes.

The SOAP specification dictates that all header errors must be returned as faults inside the header
element. The <soap :headerf ault> element allows the format of a header fault to be defined.

286

E-Business and XML

Using the <import> Element
The <import> element allows the WSDL for a particular Web Service to be split over several
documents, which improves readability, but more importantly allows various parts of a document to be
included in other documents. As we have already seen, this could enable a single abstract definition to
be included in multiple WSDL documents, each having a different concrete description.

For our example, the abstract definition WSDL file could look like this:

<?xml version="l.0" encoding="utf-8"?> <defi.niti.ons xmlns :s=http:
//www.w3 .org/2001/XMLSchema
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns : tm= "http: /
/microsoft. com/wsdl/mime/textMatching/ "
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:sO="http://tempuri.org/" targetNamespace="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"> <types>

<s:schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://tempuri.org/"> <s:element name="p_iItemID"
type="s:int" /> <s:element name="getItemResult" nillable="true">
<s:complexType mixed="true"> <s:sequence>

<s:any /> </s:sequence>
</s:complexType> </s:element>
</s:schema> </types> <message
name="get!temSoapIn">
<part name="p_i!temID" element="sO:p_i!temID" />

</message> <message name="get!temSoapOut">
<part name="getItemResult" element="sO:get!temResult" />

</message>
<portType name="CatalogueServiceSoap">
<operation name="getltem">

<input message="sO:getItemSoap!n" /> <output
message="sOrgetltemSoapOut" /> </operation>
</portType> </definitions>

This would be saved and made available at the URL http://tempuri.org/catalogueservice.WSdl. A
service provider could then produce their own WSDL for this service by importing the above abstract
definition and appending their own specific concrete descriptions:

<?xml version="l.0"?>
definitions xmlns:s="http://www.wS.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns :mime=" http: //schemas .xmlsoap. org/wsdl/mime/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns :
soapenc="http://schemas.xmlsoap.org/soap/encoding"/
xmlns:defs="http://tempuri.org/catalogueservice/definitions"/>

<import namespace="http://tempuri.org/catalogueservice/definitions"
location="http://tempuri.org/catalogueservice.wsdl"/>

<binding name="CatalogueServiceSoap" type="defs:CatalogueServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="getltem">
<soap:operation soapAction="http://tempuri.org/getItern"
style="document" />

<input>
<soap:body use="literal" />

</input> <output>
<soap:body use="literal" />

</output> </operation> </binding>
<service name="CatalogueService">

<port name="CatalogueServiceSoap"
binding="sO:CatalogueServiceSoap"> <soap:address location=

"http://localhost/E- commerceEngine/CatalogueService.asmx" />
</port> </service> </definitions>

You'll notice that the namespaces are distinct in both files so that we won't have any clashes. Notice also
how a new namespace of def s has been added. The URI for the def s namespace matches the
namespace attribute on the <import> element that has the location of the definition document. The
only other change is that the <binding> element's type attribute is now qualified using the new def s
namespace.

Discovering Organizations and Services using UDDI
In all our discussions so far, we have assumed that we already know of the existence of a particular Web
Service. When dealing with trading partners, this will generally be the case, although there is a school of
thought that envisages that when Organization A is looking to expand its business, it hops onto the
Internet looking for Organization B in the appropriate field. When Organization B is found,
Organization A checks what services it provides, builds applications to interact with the Web Services
which provide the desired functionality, and the two then start interacting.

The discovery of Web Services seems to be most relevant for software providers: those organizations that
provide Web Services that can be integrated into your own applications just as you probably have done u
the past with third-party COM objects. Whatever are the motives for the initiative, Microsoft, IBM, and
Ariba have gotten together to produce UDDI, for Universal Description, Discovery, and Integration.
Today the UDDI community is definitely gaining momentum and boasts over 300 member companies.

288

E-Business and XML

UDDI is in essence a registry containing pertinent information about organizations and the services they
provide. The registry is often described as the "phone book of Web Services" with "white pages" giving
organization location and contact details; "yellow pages" classifying the organization using a number of
different classifications and taxonomies; and "green pages" containing all the necessary technical
information to start using a service (usually a WSDL file).

You can interact with the UDDI registry in two ways, either by going to one of its administration sites
(such as http://uddi.microsoft.com) or by using one of the 30 functions exposed by UDDI Web Services.
You might want to use the UDDI Web Service to automatically register your organization, for example,
rather than going through the online process manually.

You can find out more about UDDI, including detailed references on its data structures and API, at
http://uddi.org.

How Microsoft and IBM are extending Web Services
XML Web Services may be the golden child on the block right now, and new Web Services are
springing UP daily, but they do have drawbacks, particularly when it comes to security, routing
(configuring paths for messages to travel down), message reliability (that is guaranteeing delivery), and
transactions.

If companies were to try to produce solutions to these limitations as and when required, then not only
would the cost of implementing Web Services be greatly increased, but the goal of creating a standard
platform and approach for exposing functionality would become much harder to achieve. In a bid to try
to provide a standard approach to resolving these limitations, Microsoft and IBM have come up with
what they call the Global XML Web Services Architecture that builds on the baseline specifications of
SOAP, WSDL, and UDDI to provide a far more robust and reliable framework.

The new Architecture has been designed to be modular, general purpose, distributed, (that is, without a
need for a central location) and, most importantly, standards-based. It consists of five new specifications
that are described next.

WS-Security and WS-License
The purpose of this specification is to provide a set of SOAP extensions that can be used separately or
together to build secure Web Services by enabling the passing of security information (credentials), the use of
XML-Signa'ure to ensure message integrity, and the use of XML-Encryption for message confidentiality.

Credentials
Organizations use credentials to positively identify each other before they start transacting. WS-Security
can be used to exchange many different types of credentials, providing a standard mechanism to pass
credentials from one organization to another. WS-Security does not rely on any particular technology.

Here is an example of a credential header in a SOAP message, taken from the WS-Security
draft specification:

<S:Header>
<m:path xmlns:m="http://schemas.xmlsoap.org/rp">

<m:action>http://fabrikam.org/getQuote</m:action>

Id ̂ J LCI

<m: tosoap: //f abrikam. org/stocks</m: to>
<m:from>mailto:johnsmithSfabrikam.com</m:from>
<m:id>uuid:84b9f5dO-33fb-4a81-b02b-5b760641cld6</m:id>
</m:path> <wsse:credentials

xmlns:wsse="http://schemas.xmlsoap.org/ws72002/01/secext">
<wsse:binaryLicense wsse:valueType="wsse:x509v3"

wsse:encodingType="xsd:base64Binary"
xsi : type= "wsse : BASE64_BINARY_LICENSE" >

MIIEZzCCA9CgAwIBAgIQEmtJZcOrqrKh5i

RnSNBe8DQveqD6a3gUACyZ6XVe3u
</wsse:binaryLicense> </wsse:credentials>
</S:Header>

WS-License is very closely related to WS-Security and describes license types and how they can be
placed within the <credentials> tag. Specifically, WS-License describes how to encode X.509
certificates and Kerberos tickets.

Message Integrity
Message integrity is about ensuring that a message has not been tampered with en route to the receiver.
WS-Security uses XML-Signature to sign an envelope with the specification permitting messages to
contain multiple signatures. Multiple signatures could be crucial in a scenario that involves a message
passing through many intermediate nodes where each node may be making changes to the message and
resigning the message with its own key. Now the final recipient of the message can check the signatures
to ensure that the not only has the message maintained its integrity but that it has traveled the correct
path and be seen by all the necessary nodes.

Message Confidentiality
It is more than likely that the information contained in an electronic transaction is sensitive. For that
reason, encryption of the message so that unauthorized eyes can't view it is almost a pre-requisite.
WS-Security uses XML-Encryption to ensure that confidential parts of a message remain so.

For more about the WS-Security specification, go to:

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security.asp.

WS-/nspect/on
WS-Inspection is an XML grammar that provides the locations of descriptive documents for a Web
Service at the point of service - such as WSDL documents. Therefore, if you knew the address of a Web
Service, you could access the WS-Inspection document on the server to find out all you need to know
about it and any other available Web Services.

WS-Inspection is little more than a collection of pointers to files in other locations, and supports the
referencing of existing repositories, such as UDDI, so as to eliminate the duplication of information. The
WS-Inspection specification gives the following example of an inspection document for two services:

290

E-Business and XML

<?xml version="1.0"?>
<inspection xmlns="http://schemas.xmlsoap.org/ws72001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">
<service>

<abstract>A stock quote service with two descriptions</abstract>
<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"

location="http://example.com/stockquote.wsdl"/>
<description referencedNamespace="urn:uddi-org:api">
<wsiluddi:serviceDescription

location="http://www.example.com/uddi/inquiryapi"> <wsiluddi :
serviceKey>4FA28580-5C39-HD5-9FCF-BB3200333F79
</wsiluddi:serviceKey> </wsiluddi:serviceDescription>
</description> </s ervice> <service>
<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"

location="ftp://anotherexample.com/tools/calculator.wsdl"/> </s
ervice> <link

referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
location="http://example.com/moreservices.wsil"/> </inspection>

Let's have a look at the document in more detail. We start off with the <inspection> document-element:

<?xml version="1 - 0"?>
<inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">

An <inspection> element must contain at least one <service> element or at least one <link>
element. In this example we have one of each. First, the <service> contains an optional <abstract>
element, providing a location for some descriptive text about the service:

<abstract>A stock quote service with two descriptions</abstract>

This is followed by the <description> elements. A <description> gives us details of where further
details about the service can be found. The ref erencedNamespace attribute identifies the type of
document or service being described and the location attribute gives us, not surprisingly, a URI for
the details. In this first <description>, we are describing the location of a WSDL document:

<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://example.com/stockquote.wsdl"/>

In the second description element, the ref erencedNamespace attribute indicates that we are making a
reference to a UDDI entry. You'll notice that the description element no longer has a location attribute
but instead has a <serviceDescription> child. This is an example of UDDI binding and basically
provides us with a <serviceKey> with which we can query UDDI, either manually or via its Web
Service API, to retrieve a service description.

<description referencedNamespace="urn:uddi-org:api">
<wsiluddi:serviceDescription
location="http://www.example.com/uddi/inquiryapi">

<wsiluddi:serviceKey>4FA28580-5C39-llD5-9FCF-BB3200333F79
</wsiluddi:serviceKey>
</wsiluddi:serviceDescription>

</description>

</service>

Finally, we have a <link> element. This element simply points us in the direction of another
Inspection document that contains information on similar or related services:

<link referencedNamespace=
"http://schemas.xmlsoap.org/ws/2001/10/inspection/"
location= "http: / /example. com/moreservices . wsil" />

</inspection>

This is only a very simple example of Inspection and UDDI binding: for more details, you should
consult the WS-Inspection specification at
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-inspection.asp.

WS-Routing
The path a SOAP message takes on its way from sender to receiver is not defined by SOAP but by the
transport protocol (such as HTTP). In a message path that contains intermediary nodes, SOAP can only
define which parts of the message are for which nodes; it cannot define in which order those nodes are
to be accessed. WS-Routing has been created to allow us to specify the messaging routes from the
sender to the receiver, including intermediaries, and optionally specify a return path, all within the
SOAP message structure.

For example, let's say that we had a purchase order that needed to go to accounts, inventory, and finally
delivery. The SOAP message complete with WS-Routing might look like this:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header>

<m:path xmlns:m="http://schemas.xmlsoap.org/rp/">
<m:action>http://www.example.org/PostOrder</m:action>
<m: to>soap: //www. example . org/Delivery</m: to> <m:fwd>
<m:via>soap://www.example.org/Accounts</m:via> <m:via>
soap://www.example.org/Inventory:/m:via> </m:fwd>

<m:from>mailto:henrikn@microsoft.com</m:from>
<m:id>uuid:84b9f5dO-33fb-4a81-b02b-5b760641cld6</m:id>
</m:path> </S:Header> <S:Body>

</S:Body>
</S:Envelope>

292

E-Business and XML

The <action> element is very similar to the SOAPAction found in HTTP Headers and defines the
'intent' of the message. The <to> element identifies the final recipient of the message, and the <via>
element identifies the intermediate nodes. The <f rom> element identifies who or what is responsible for
the message and although it can be any valid URI, it is generally an e-mail address. The <id> element
uniquely identifies the message.

By freeing SOAP from the need to use transport protocols such as HTTP that generate their own
message paths, a SOAP message that uses WS-Routing can use transport protocols such as TCP and
UDP and have total control of the intermediate nodes and their order in the message path. Find out
more about WS-Routing at http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp.

WS-Referral
If we cast our minds back to our discussion of SOAP, we will recall that a message passes between
SOAP nodes that assume a specific role, and process the SOAP message header according to the actor
attributes. We have also seen that WS-Routing gives us the opportunity to specify in which order the
SOAP Nodes will process the message. WS-Referral takes message paths a step further by providing a
means by which the SOAP Nodes - and therefore the message path - can be dynamically manipulated
by adding, deleting, or querying the Nodes.

The WS-Referral Specification provides the following example:

<r :ref xrnlns: r="http: //schemes .xmlsoap.org/ws/2001/10/referral">
<r:for>

<r:exact>soap://example.org/examplel</r:exact>
<r:prefix>soap://example.org/example/examplel</rrprefix>

</r:for> <r:if>
<r:ttl>43200000</r:ttl>

</r:if> <r:go>
<r: via>soap://example.com/mirror</r:via>

</r:go>
<r:refld>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</r:refId>
<r:desc>

<r:refAddr>http://example.com/references/2001/10/1234.xml</r:refAddr>
</r:desc> </r:ref>

This WS-Referral file is specifying that if the SOAP node currently processing the message has the role of
" soap: / /example . org/examplel" or a role name starting with the string "soap:
//example .org/example/examplel" then, if the referral is less than 12 hours old, go via the
SOAP node "soap: //example . com/mirror". Note that the time given in the <ttl> element (for
'time to live') is in milliseconds.

More information on WS-Referral can be found at
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-referral.asp.

Collaborative Electronic Business with ebXML
We have just seen how Microsoft and IBM propose to extend the basic XML Web Services architecture
to provide a more flexible, robust, and secure environment for business transactions. As you can
imagine, Microsoft and IBM are not the only players in this particular field and we will end this chapter
with a brief look at what many predict will be the dominant business communication standard, ebXML.

What is ebXML?
As you have may have guessed, ebXML, takes its name from the phrase "electronic business XML".
With its roots in EDI, ebXML is jointly sponsored by UN/CEFACT (United Nations Center for Trade
Facilitation and Electronic Business) and OASIS (the Organization for the Advancement of Structural
Information Standards), and provides an extensive XML-based framework for conducting business
electronically. To quote the ebXML homepage (http://WWW.ebxml.org):

"ebXML is a set of specifications that together enable a modular electronic business framework. The
vision ofebXML is to enable a global electronic marketplace where enterprises of any size and in any
geographical location can meet and conduct business with each other through the exchange of
XML-based messages."

ebXML provides a standard by which organizations:

Q Identify common business transactions
Q Define message schemas to represent these business transactions
Q Publish information about themselves and the services they offer
Q Discover information about other organizations and their services
G Facilitate the negotiation of terms between organizations before engaging in business
Q Define the method for transporting massages
Q Define security and reliability mechanisms

As you can see, while ebXML shares much in common with XML Web Services, service discovery,
service description, message formats, and message transmission (ebXML has adopted SOAP as its
messaging protocol), it attempts to encompass a whole lot more. While XML Web Services concentrate
more on the implementation, ebXML delves straight into actually describing an organization's functions
to provide a framework for electronic - and therefore automatic - negotiation and contract brokering.

Most of the top companies are involved in ebXML, with the notable exception, it seems, of Microsoft.

It is also interesting to note that IBM is keeping a foot in both camps, being a major sponsor of UDDI as
well as an ebXML participant. Industry pundits and experts alike are expecting big things for ebXML
and many seem to think that it will be the dominant protocol for business interaction within five years.
In this chapter, we can barely brush the surface of what is a highly involved subject.

If you wish to learn more about ebXML, go to the ebXML web site at
http://www.ebXML.org, or get hold of a copy of Professional ebXML Foundations
(Wrox Press, ISBN 1-86100-590-3).

294

E-Business and XML

The ebXML Model
In order to make ebXML as flexible as possible, the model used for describing transactions is split into
two separate views: the Business Operation View (BOV) and the Functional Services View (FSV).

The BOV provides details on the business aspects of a transaction, while the FSV specifies, in the words
of the ebXML Technical Architecture Specification, the "mechanistic needs of ebXML": that is, how it
can be physically implemented.

The FSV is viewed as a reference for software vendors to help them build ebXML compliant software
and it is pretty much a given that organizations wishing to implement ebXML-based transactions are
more likely to use 3rd-party ebXML solutions rather than custom building their own solution.

Key ebXML Components
Organizations need a method for discovering each other and accessing information about an
organization and the services that it provides or can engage in. The ebXML Registry allows the
discovery of other organizations, while the ebXML Repository holds data (in XML form) including:

Q Business Processes - generally an XML document (although it can be UML) that
formally describes an organization's activities

Q The Core Library
Q Collaboration Protocol Profiles
Q The Business Library

This is a very similar setup to UDDI and it is likely that there will soon be a push to allow ebXML
registries to talk to UDDI registries and vice versa.

Core Library
The Core Library consists of a collection of components provided by the ebXML initiative that may be used
to create bigger components. For example, an organization's business process may be built using one or more
components from the Core Library. Core components represent business information that is common across
departments and industries and are stored in the registry as XML documents. A bank account identification
consisting of a account name and an account number is one example of a core component.

Collaboration Protocol Profile (CPP)
This document contains all the salient details about an organization and the business processes and
transactions it supports. It provides general details such as contact information and industry
classification as well as information specific to the business processes such as interface requirements and
Messaging Service requirements.

Collaboration Protocol Agreement (CPA)
A. CPA defines the Business Processes that two or more organizations have agreed to engage in and the
Interface and Messaging Service requirements for those processes (such as transport protocol, message
formats, security). This information is derived from each organization's CPP document. The Messaging
Service will then use the CPA to ensure that all exchanges adhere to what the parties involved agreed.

unapier a

The ebXML Functional Phases
The ebXML initiative defines three Functional Phases in the creation and implementation of an ebXML
application, as described here. First a diagram to illustrate the phases and their steps:

COMPANY A

Build local System
Implementation

Register Implementation Details
Register COMPANY A Profile

%;^

Implementation Phase
The first phase deals with the creation of an ebXML compliant application:

1m Organization A downloads copies of ebXML specifications and the Core Library.

2 . Organization A deploys an ebXML compliant application either by custom building, or
by buying an off-the-shelf solution.

3 . Organization A publishes its own Collaboration Protocol Profile to the ebXML registry.
This allows other organizations to review Organization A's ebXML capabilities and
supported business transactions.

Discovery and Retrieval Phase
This phase involves the discovery of ebXML related resources:

4 . Organization B searches the Registry and finds Organization A's entry.

296

E-Business and XML

5 . Organization B sends a request to Organization A, to start using one or more of
Organization A's published transactions (Organization B will also need to have an
ebXML application). Organization B submits a Collaboration Protocol Agreement to
Organization A, outlining the transactions they will engage in, the messaging
requirements, contingency plans, and security requirements.

Run-time Phase
This is the final step in the process:

6 . Organization A accepts the CPA. The two organizations start exchanging ebXML
messages using the ebXML Messaging Service.

The ebXML Messaging Service
Trading partners exchange ebXML messages using the ebXML Messaging Service. The service is
transport protocol independent, and supports one-way and request/response (either synchronous or
asynchronous) messaging. While the messaging service defines the format for all messages, it does not
restrict the content of the payload, and for situations where multiple messages are exchanged, it can
sequence the payloads.

Rules for how Messaging takes place are contained in the Collaboration Protocol Agreement and the
Messaging Service ensures that these rules are followed. Security, for example, may be defined in the CPA. If
any of the rules are violated then the Messaging Service will raise the error and deliver it appropriately.

An ebXML Example Scenario
This example, taken from the ebXML Technical Architecture Specification, shows the steps that two
trading partners take to enable them to start transacting using ebXML:

Q Each partner creates a Collaborative Protocol Profile (CPP). The CPP references at least one
business process from the ebXML registry and at least one message definition. The CPP defines
which transactions the partner wishes to engage in, the transport protocol that the partner
supports and any other requirements the transaction has such as the use of encryption, validation,
and authentication.

Q The partners acknowledge each other's CPP and use them to create a Collaborative Protocol
Agreement (CPA).

Q The partners implement the respective part of the CPP by either exposing a business service
interface, or upgrading a legacy system so that it can engage in the agreed transactions and
create messages that conform to the agreed definitions, such that the exchange may occur on the
agreed technical platform (with the specified transport protocol, security considerations, and so
on).

Q The partners start exchanging messages in accordance with the rules laid down in the CPA.

oi ia[JLCI o

Summary
This has been a long and theory-heavy chapter and I wouldn't be surprised if it took a couple of coffees
to get through it (I'm not going to tell you how many it took to write it!) but you should now have at
least a basic understanding of the standards that drive XML Web Services.

While you are unlikely to ever need to code a SOAP message or a WSDL document by hand, thanks to
the proliferation of tools and the excellent support for XML Web Services in ASP.NET, this basic
understanding will be invaluable in designing, building, and debugging your applications.

You will also have some idea of what the future holds for XML Web Services, as Microsoft and its
partners evolve the Global Architecture, plugging the gaps in the current architecture, particularly
security, and extending XML Web Services to become an indispensable business tool.

We also looked at ebXML, the global initiative for electronic business; and herein lies a problem.
Although not a direct competitor to XML Web Services, as it approaches electronic business from a
different and more encompassing angle, there is enough crossover, particularly with repositories and
messaging, to create a dilemma for organizations wishing to develop electronic business applications.

It seems likely that both technologies will develop side by side. Organizations, particularly those that
have already utilized EDI, will probably use ebXML for their inter-organization communication, where
the modeling of processes and the ability to manage a relationship through electronic agreements will
quickly offset the initial implementation costs. XML Web Services look likely to flourish in the
distributed computing and application integration arena. Using third-party Web Services in much the
same way as we have used COM and enabling disparate applications to communicate by exposing
functionality as a Web Service potentially offers tremendous capabilities.

How long, I wonder, before the average e-commerce site is nothing more than a presentation layer on
top of a Web Service e-commerce engine situated somewhere? With no extensive programming, no
need for a database and no need to worry about the infrastructure, you could quite happily host your site
on any $ 10-a-month, 50MB hosting plan.

Lastly, it used to be said that the only two certainties in life are death and taxes. Perhaps we should add
one more to that list: just when you think you have a web technology licked, they go and change it, or
release something completely different. The pace of change is staggering (and, for us old mainframe
programmers, this is what makes web development almost exciting!); so promise me that you will add at
least one Web Services and one ebXML web site to your browser favorites because what we've covered
in this chapter is merely the tip of a very, very big iceberg.

In the next chapter, we will be taking a look at some emerging XML-Related technologies; enjoy!

298

XQuery

In this chapter, we're going to take a look at an emerging XML technology that's likely to become
relevant to ASP.NET developers in the near future: XQuery. We're not going to take a heavy,
theoretical approach, but more of a practical one: after taking a taking a quick look at its development
and how it's intended to work, we'll download a set of demonstration classes from the Microsoft web site,
and put together a small ASP.NET web application to get a feel for how it may be used.

XQuery 1.0

W3C status at the time of writing: W3C Working Draft, www.w3.org/XML/Query

XQuery is an XML querying language devised by the W3C to provide flexible, SQL-like query facilities
for extracting data from virtual (dynamically generated) and real (existing) XML documents or
document collections. Among its main aims are that it should be easily readable, and easy to use.

XQuery is not an entirely new technology. Rather, it has grown from a mix of earlier query languages,
including a specification called Quilt. In turn, Quilt itself was built using concepts from other existing
languages:

Q From XPath 1.0 and XML Querying Language (XQL), it took a path expression
syntax suitable for hierarchical documents.

Q From XML-Querying Language (XML-QL) it borrowed the notion of binding variables and
then using the bound variables to create new structures.

Q From SQL came the idea of clauses based on keywords to provide a pattern for
restructuring data (the SELECT-FROM-WHERE pattern).

Chapter 9

Q From the Object Querying Language (OQL), it took the notion of a functional
language composed of several different kinds of expressions that can be nested with full
generality.

Q Quilt was also influenced by other XML query languages such as Lorel and YATL.

In December 1998, the Query Language Workshop (QL'98) was hosted by the W3C in Boston, Mass.
This led to the formation of a new working group (WG) called the XML Query Language Working Group,
and shortly after that Quilt was proposed to the WG. This proposal was adopted as the basis for
development of XQuery 1.0. So far, the list of specifications published by the XML Query Language
WG includes the following:

XQuery 1.0: An XML Query Language

XQuery 1.0 Formal Semantics

XML Query Requirements

XML Query Use Cases

XML Syntax for XQuery 1.0
(XQueryX)

This is the entry document, and reading its introduction
will give you a general idea of what XQuery is. It goes on
to describe in detail all of the expression types that you
can use in your XQuery queries.
This document contains the formal semantics for XQuery.
Contains all of the requirements that form the basis for
the development of XQuery.
Contains a set of practical query examples, and their
solutions in XQuery. The set is classified into use cases.
Each use case addresses a specific application area.
This document describes the XML-based version of
XQuery, XQueryX.

XQuery is closely related to XPath. As you may know, XPath was originally a part of XSL, but is now
considered to be a separate technology in its own right. It's used in other W3C language standards, such
as XSLT 1.0 and XPointer 1.0, and it was the subject of Chapter 4 of this book. XQuery is also closely
related to XSLT 1.0 - the working groups behind both are now collaborating on the development of
XPath 2.0 and XSLT 2.0. In the near future, XPath 2.0 will be an integral part of both XQuery 1.0 and
XSLT 2.0.

XQuery has two defined syntaxes. The first is the so-called "human-readable" syntax called XQuery; the
second is entirely based on the XML standard, and is called XQueryX. The latter is tailored for
XML-aware automated processes, while the former is to be used by you, the developer.

302

XQuery (Human-Readable) Syntax
XQuery is not an XML 1.0 application, because the queries do not adhere to the XML rules, as we'll see
in some examples later on. Depending on the input query and the given XML source document, the
queries you write will produce XML fragments, or well-formed documents.

The following list details some of the principal and extended forms of XQuery syntax, taken from the
example that comes later in the chapter.

Expressions The expressions used in XQuery include primary, path, sequence, arithmetic,
comparison, and logical expressions. They contain language-specific keywords,
symbols, and operands.
An example of a path expression is:

document("Orders")/root/Orders[CustomerlD = $a/CustomerID]

Here, the variable $a contains a customer node, which means that this expression
will evaluate to a list of the orders that have been placed by that customer.

Constructors In XQuery, constructors are used to generate XML structures. There are
constructors for elements, attributes, CDATA sections, processing instructions, and
comments.
An example of a constructor for an XML element is:

<orderdetails>

<customer> { $a/* } </customer>

</orderdetails>

This will place the <orderdetails> element into the output of the query; the use of
braces "{" and "}" is necessary here to be able to insert the result of an expression
between the elements. If this is not done, the expression will be treated as text, and
will not be executed against the XML source.

Table continued on following page

FLWR
Expressions

This probably X Query's most powerful expression type. FLWR (pronounced
"flower") expressions are capable of performing iterations and binding variables to
intermediate result values. Its name stands for its four clauses: the FOR, LET, WHERE,
and RETURN clauses. A FLWR construct can contain multiple FOR clauses, which is
extremely useful when joining multiple documents.
An example query that features a FLWR expression is:

<orderdetails>

FOR $c IN document("OrderDetails")
/root/Order_x0020_Details[OrderID = $b/OrderID]

RETURN
<d3>
<OD> { $c/OrderID, $c/ProductID, $c/Quantity } </OD>

FOR $d IN document("Products")
/root/Products[ProductID = $c/ProductID]

RETURN <P> { $d/ProductID, $d/UnitPrice,
$d/ProductName } </P>

</d3>

</orderdetails>

Note that this query contains two nested FLWR expressions. Note also that a space
in a SQL table name, like "Order Details", is represented as
"Order_x0020_Details" in the code. This is done to conform to the XML rule
that an element name cannot contain spaces.

Sorting
Expressions

Sorting expressions are used to control the order of a sequence of elements. In
X Query, the order in which a set of elements that's been returned from a FLWR
construct appears in the document can be specified through a SORTBY clause.
An example of a sorted query is:

304

<orderdetails>

FOR $d IN document("Products")
/root/Products[ProductID = $c/ProductID] RETURN <P>

{ $d/ProductID, $d/UnitPrice, $d/ProductName }

SORTBY(ProductName DESCENDING)

</orderdetails>

The SORTBY clause accepts an ASCENDING or DESCENDING keyword, where
ASCENDING is the default. There are other keywords that can be used as well.

XQuery

Conditional
Expressions

X Query's conditional expressions, IF, THEN, and ELSE, make it possible to
execute parts of a query depending on the results of a test. The test expression
evaluates to a Boolean TRUE or FALSE value.
An example query is:

<orderdetails>
{
FOR $a IN document ("Customers") /root/Customers
WHERE $a/CompanyName="Alfreds Futterkiste"

RETURN
IF ($a/CustomerID)
THEN

<customer> $a/* </customer>

ELSE

<customer>There is no customer named "Alfreds
Futterkiste" in the database. </customer>

</orderdetails>

Later on, we'll create an application that makes use of all of the expression types mentioned above. It is,
however, beyond the scope of this chapter to explain every form of the XQuery syntax in detail. For
that purpose, the W3C site (www.w3c.org/TR/XQuery) is highly recommended.

Implementations of XQuery
The XML Query Language working group maintains a list of early XQuery implementations, of which
the most interesting, stable, and specification-compliant ones are listed below. (To see the complete list,
see www.w3c.org/XML/Queryttproducts.)

IPSI-XQ:
http://ipsi.fhg.de/oasys/
projects/ipsi-xq/index_e.html

IPSI-XQ features an online demonstration, and a download
that you can try out for yourself. It's implemented using Java.

Microsoft:

http://xqueryservices.com
Microsoft's XQuery demonstration has an online component
where you can try your own queries or run the given
examples. You can also download a set of managed classes
for use in the .NET Framework. This gives you the ability to
create your own .NET applications that use XQuery.

Oracle:
http://otn.oracle.com/tech/xml/
xmldb/htdocs/querying_xml.html

This implementation doesn't have an online demonstration,
but you can download and install a Java-based XQuery
prototype for use with the Oracle9i database.

Table continued on following page

Software AG:
http://developer.softwareag.com/
tamino/quip

Software AG has developed an XQuery implementation
called Quip, available for download from the site. Quip is
developed using a highly functional language called Haskell.
Quip can be used to query the company's XML database,
called Tamino.

X-Hive:
http://217.77.130.189:8080/
demos/xquery/index.html

X-Hive features a good online demonstration: you can browse
the XML documents used for testing, and you can specify
your own queries or use the given examples. Sadly, there's no
downloadable demo.

Of these, the only one with direct relevance to the subject of this book is Microsoft's demonstration,
which comprises two components:

Q A downloadable class library (get it at http://xqueryservices.com/setup/xquery.msi)
consisting of a set of managed classes that can be programmed against using the .NET
Framework SDK. These classes allow us to apply XQuery expressions (called XQueries from
this point on) to selected arbitrary documents from within your web applications.

Q The demonstration page, which is built on top of Microsoft's existing XQuery class library,
at http://xqueryservices.com.

Microsoft's .NET Classes for XQuery
In order to execute queries over an arbitrary collection of XML documents from within your ASP.NET
web application, you must first download and install the XQuery Demo class library from the location
above. Make sure you have a clean .NET development server - that is, a machine that doesn't have a
beta installed, as this blocks installation of the XQuery Demo.

The XQuery Demo class library consists of the four classes shown in the following diagram:

T
System. Xml
System.Xml.Xsl
(further processing)

In this scheme, the XML document that you want to run XQueries against is loaded into an instance ot
XQueryDocument. With this object, it is possible to create an instance of XQueryNavigator, which is
similar to XPathNavigator - it enables navigation through one or more XML source documents.

The XQueries that you want to run against XML documents are first placed in XQueryExpression
objects, during which process a run-time check on their syntax is made. After that, the queries can be
run against objects of type XQueryNavigatorCollection, which are collections of
XQueryNavigators. In this way, it's possible to run queries over several XML documents at the same

time. The output generated by an XQueryNavigator object is pure XML.

306

XQuery

It is possible to have more than one XQueryNavigatorCollection object, which is useful
when (for example) you have more than one database, or you want to split one database up into
separate virtual XML databases.

A Sample ASP. NET Project using XQuery
Let's see how XQuery could be used in an ASP.NET project by creating an application to retrieve the
current orders of any customer in the SQL Server Northwind sample database, and display the
customer's details together with some order details.

This project uses SQLXML and SQL Server 2000 to set up a virtual XML database, and then runs
XQueries over the selected customer. The results are in XML format, so we'll use XSLT to present them
on the user's screen. Note that although XQuery will eventually support updates (to databases and
documents), this is still in development, and therefore not something that we can play with right now.

First of all, we'll need a way to create a virtual XML database. If you have SQL Server 2000, a good
option is to use SQLXML 3.0, which dramatically extends the XML capabilities of that product.

Setting up the Project in VS.NET
Setting up the new project is easy. Open Visual Studio .NET, create a new C# ASP.NET Web
Application named XQuerySearchEngine, and delete WebForml. aspx. Then, right-click on the
project in Solution Explorer, and add the OrderSearch.aspx, and OrderSearch2 .aspx files from the
downloaded chapter code with the Add Existing Item... option.

As stated earlier, the application also makes use of SQLXML 3.0 - specifically, its ability to extract SQL
data over HTTP in XML format. This makes it possible to convert a relational database into an XML
database. Before going any further, make sure that you've installed SQLXML 3.0 from
http://msdn.microsoft.com/downloads/default.asp7URLWdownloads/sample.asp7urk/msdn-files/027/
001/824/msdncompositedoc.xml.

After installing SQLXML, but before configuring it for the project, create a new project subdirectory
called xml\templates using Solution Explorer, and add the following files. These will be used to
execute stored procedures in the Northwind database, creating XML documents for us to run XQueries
against.

Q GetAllCustomers.xml
Q GetAllData.xml
Q GetAllOrderDetails.xml
Q GetAllOrders.xml
a GetAllProducts.xml
Q GetCustomers.xml

Next, we need to configure SQLXML. Run SQLXML's Configure IIS Support and open the computer
folder. There, right click on Default Web Site, and choose the New I Virtual Directory option to open
the New Virtual Directory Properties dialog, which has six tabs:

®

New Virtual Directory Properties HE3!
al [Security] Data Source | Settings | Virtual Names Advanced)

tuai Directory Name
„..„.„„ The name through which users wHi access the database. Sf|
For example, if you specify "Nofthwind", users wi8 be able ®— • ' to
access the database by navigating to: ;
"http://mysefveF/Northwird" :

Northwind
\
cai Path

The full path to the actual directory that contains the ; files
you want to make accessible thfough this virtual :
directory.
 ;

C. \\ netpub\wvvwr oot^XQ ueryS eafchEngine\xml Browse.

Qenei

•• Vi
Lc

H
I
1

OK | Cancel |
Apply 1

1 . In the General tab, enter the name Northwind, and set the path to the xml project
subdirectory that you just created (probably
C:\Inetpub\wwwroot\XQuerySearchEngine\xml).

2. Switch to the Security tab, and type in the required credentials for your SQL Server installation.

3 . On the Data Source tab, specify the server, and choose the Northwind database.

4 . On the Settings tab, leave the default options as they are (so that only Allow template
queries is checked).

5 . Then, in the Virtual Names tab, add a new name called templates (of type template) point
it to the project's xml\templates subdirectory, and save it.

6 . Leave the options in the Advanced tab at their default settings.

7 . Click Apply, and OK.

308

XQuery

Now, create another project subdirectory, and call it xsl. This will contain the XSL stylesheets for the
presentation of the XML results returned by the X Queries, so copy orderdetails . xsl and
orderdetails2 .xsl into it.

The next step is to add a reference to the Microsoft .Xml .XQuery.dll to your project using the Add
Reference dialog, as shown in the figure below:

.NET COM | Protects |
Component Name Version 1 Path QMicrosoft. VisualStudio. VCCod. .
Microsoft. VisualStudio. VCProlect
Microsoft. VisualStudio. VCProj. .
Microsoft. Vsa Microsof t. Vsa . Vb .
CodeDOMPr . . .

7.0.3300.0
7,0,3300.0
7.0.3300.0
7.0.3300.0
7.0.3300.0

E:\Program Files\Microsoft Vis..
E:\Program Files\Microsoft Vis..
E:\Program FilesVkrosoft Vis..
C :\WINNT\Microsoft ,NET\Fra . .
C : \WINNT\Microsoft ,NET\Fra . .

Microsoft_VsaVb
mscorcfg mscorlib
msdatasrc
msddslmp

7.0.3300.0
1.0.3300.0
1.0.3300.0
7,0.3300,0
7.0.3300.0
7.n.3^nn.n

C ; \WINNT\Microsof t . NET\Fra .
C:\WINNT\Microsoft.NET\Fra. .
C :\WINNT\Microsoft .NETiFra . .
C:\ProgramFiles\Microsoft.N...
C ; (program Files\Microsoft ,N, , .
filPrnnrflm FilftslMirrnsnfr.N. .

zl

Refected Components:
...J ..

Microsoft.Xml.XQuery.dll .NET E:\Program Files\XQuery
Demo\Microsoft.Xml.XQuery.dll J

Cancel Hdp

Creating the XQueryNavigatorCollection Object
Everything's now ready for us to begin writing some C# code, starting with the code-behind page,
Global. asax. cs. Add the following namespace declarations at the top of the file, just before the
namespace XQuerySearchEngine line:

// Added namespaces
using System.Xml;
using Microsoft.Xml.XQuery;

Then, add the following variable declarations just after the public class Global declaration:

// Declare variables string
strUrlXmlTemplateCustomers; string
strTJrlXmlTemplateOrders; string
strUrlXmlTemplateOrderDetails; string
strUrlXmlTemplateProducts;

string strNavNameCustomers;
string strNavNameOrders; string
strNavNameOrderDetails; string
strNavNameProducts;

string strUrlXmlTemplateAllData;
string strNavNameAllData;

The first four string variables will be used to store the URLs that point to the stored-procedure-running XML
templates. These variables, like the others in this list, will be hard-coded to keep the demonstration simple.

The second group of four strings will be assigned with the names of the four corresponding XQueryNavigator
objects that will be created later, when the corresponding URL is requested and the XML formatted data
is returned.

The last two strings will be used for the creation of one big XQueryNavigator object, which will contain
data in XML format from all the tables together.

Still in Global. asax. cs, add the following code to the Application_Start event handler:

protected void Application_Start(Object sender, EventArgs e) {
// Define the SQL Template URLs and their related collection names
strUrlXmlTemplateCustomers =

"http://localhost/northwind/templates/GetAllCustomers.xml";
strUrlXmlTemplateOrders =

"http: //localhost/nor thwind/templates/GetAllOrders .xml";
strUrlXmlTemplateOrderDetails =

"http: //localhost/northwind/templates/GetAllOrderDetails.xml" ;
strUrlXmlTemplateProducts =

"http: //localhost/northwind/templates/GetAHProducts.xml" ;

strNavNameCustomers = "Customers";
strNavNameOrders = "Orders";
strNavNameOrderDetails = "OrderDetails";
strNavNameProducts = "Products";

strUrlXmlTemplateAHData =
"http: / / localhost/nor thwind/ templates /GetAllData. xml";

strNavNameAHData = "AllData";

// Create an XQueryNavigatorCollection object and fill it with four //
Northwind tables: Customers, Orders, Order Details, and Products
XQueryNavigatorCollection navCol = new XQueryNavigatorCollection();

// Add the Customers navigator to the collection
XQueryDocument docl = new XQueryDocument (StrUrlXmlTemplateCustomers,

StrNavNameCustomers);
navCol.AddNavigator(docl.CreateNavigator ());

// Add the Orders navigator
XQueryDocument doc2 = new XQueryDocument(StrUrlXmlTemplateOrders,

StrNavNameOrders);
navCol.AddNavigator(doc2.CreateNavigator());

// Add the Order Details navigator
XQueryDocument doc3 = new XQueryDocument(StrUrlXmlTemplateOrderDetails,

StrNavNameOrderDetails);
navCol.AddNavigator(doc3.CreateNavigator());

310

XQuery

// Add the Products navigator
XQueryDocument doc4 = new XQueryDocument (strUrlXmlTemplateProducts,

strNavNameProducts) ;
navCol .AddNavigator (doc4 .CreateNavigator ()) ;

// Try it another way and create one big navigator with all the data
XQueryNavigatorCollection navColAD = new XQueryNavigatorCollection() ;

// Add the Customers, Orders, Order Details, and Products tables in one go
XQueryDocument doc5 = new XQueryDocument (strUrlXmlTemplateAHData,

strNavNameAHData) ;
navColAD. AddNavigator (doc5 .CreateNavigator ()) ;

// Create and store the doc object for filling the drop-down list box XmlDocument
doc = new XmlDocument () ; doc .Load(strUrlXmlTemplateCustomers) ; Application
["doc"] = doc;

// Store the navCol XQueryNavigatorCollection object in the Application
Application! "navCol"] = navCol;

// Store the navColAD XQueryNavigatorCollection object in the Application
Application! "navColAD"] = navColAD;

What's going on in this code? Well, first of all, the strings are assigned with URLs and navigator names,
as described above. Then, each XML template is loaded into an XQueryDocument object in turn, and
the CreateNavigator method of the latter is called to create an XQueryNavigator object.

XQueryNavigatorCollection navCol = new XQueryNavigatorCollection();

// Add the Customers navigator to the collection
XQueryDocument docl = new XQueryDocument(strUrlXmlTemplateCustomers,

strNavNameCustomers);
navCol.AddNavigator(docl.CreateNavigator());

In this way, two XQueryNavigatorCollection objects are created and filled with XML data. The first
collection consists of four navigators, each containing all of the available data from one of the four Northwind
tables: Customers, Orders, OrderDetails, and Products. The second collection contains one big navigator
that contains all of the data from all four tables:

XQueryNavigatorCollection navColAD = new XQueryNavigatorCollection();

// Add the Customers, Orders, Order Details, and Products tables in one go
XQueryDocument doc5 = new XQueryDocument (strUrlXmlTemplateAHData,

strNavNameAHData) ;
navColAD.AddNavigator(doc5.CreateNavigator());

Finally, we store the two collections in the ASP.NET Application object, so that we can get to them
later. We also load the "customers" template into an ordinary XML document object, so that we can use
it to populate a drop-down listbox in our application's user interface, and store that too.

// Create and store the doc object for filling the
drop-down list box XmlDocument doc = new XmlDocument();
doc.Load(strUrlXmlTemplateCustomers); Applicationf"doc"] = doc;

// Store the navCol XQueryNavigatorCollection object in the
Application Application!"navCol"] = navCol;

// Store the navColAD XQueryNavigatorCollection object in the
Application Application["navColAD"] = navColAD;

In a moment, we'll see how these navigator collections are accessed at page level, and how the returned
XML data is transformed and displayed. Before that, you need to copy the image files minus . gif and
plus . gif to a new project subdirectory called images. Finally, the web pages include a small
JavaScript function for opening each order's details. Create a last new project subdirectory called inc,
and copy the orderdetails . j s file into it using Solution Explorer.

This file is embedded into the HTML on the page by using the following <script> element, which you
can see if you open the HTML view of OrderSearch2 . aspx:

<script language=JavaScript src="inc/orderdetails.js"
</script>

type=text/jscript>

In Solution Explorer, the project should now look like this:

l References
•a Microsoft.Xml.XQuery
*Q System
•Q System.Data
-a System.Drawing ;

-Q System.Wob :
-O System,XML £3
images :-~ gjQ minus.gif

SI plus.gif
-tt*c

^ orderdetails.)s

312

^3 templates
j GetAltCustornefs.xmi 3
GetAflData.xml 5
GetAllOrderDetails.xml 3
GetANOrders.xml 5
GetAlProducts.xml 3
GetCustomers.xml

|J order details, xsi
 ^ orderdetafcZ.xsl

t
:....

ASsemblyInfo.es Global, asax
OrderSearch.aspx j ĵ Order
Sear chZ.aspx [j^ Web.config

^J XQuerySearchEngine.vsifeco

XQuery

It ought not be necessary to modify Web. conf ig, as extra permissions for the ASPNET account are not
needed in this case. But if you want to (say) save and view the result of an XQuery, you'll need to add
the following lines to your Web. conf ig file:

<?xml version="l.0" encoding="utf-8" ?>
<configuration>

<system.web>

<!-- SECURITY SETTINGS
Setting impersonate="true" allows for application execution with the
same account with which the thread created by IIS runs, therefore not
applying .NET Security rules. NOTE: You need this ONLY when (for example)
saving the XQuery result tree to a disk file!

— >
<identity impersonate="true" />

</system.web>

</configuration>

The code that requires this account impersonation is included but commented out in the
OrderSearch. aspx and OrderSearch2 . aspx pages. It looks like this:

XmlTextWriter writerl = new XmlTextWriter(
Server.MapPath("/XQuerySearchEngine/XQuery_output.xml") ,
System.Text.Encoding.UTP8) ;

writerl.Formatting = Formatting.Indented;
writerl.Indentation = 2; doc.Save(writerl);
writerl.Close();

Getting back to the code that we willbe using in this demonstration, run the SQL script that's included
in the download material. The file is called SP_XQuerySearchEngine. sql, and it creates five new
stored procedures in the Northwind database. It will come as little surprise that these are named
GetAllCustomers, GetAllData, GetAllorderDetails, GetAllOrders, and GetAllProducts.

Chapter 9

We're finished! Set the start page to OrderSearch.aspx, and compile and run the project. The
browser should show the following - once all of the initial compilation has been completed, of course:

I 3 XQuery Demo - Microsoft Internet Explorer
H[I G 1File gdit View Favorites Tools Help
i^^l
^•* Bad; ~ «4 • ^ J^ -^ ^Search JJFavorites ^"Media ^ -^j- _$ ^ _^?j J*^
1 Links **

Address |||[) http://localhost/XQuerySearchEngine/OrderSearch.aspx
»J ji'Go

XQuery Search Engine 1

Customer's Company Name: 1 Alfreds Futterkiste
- «
1
••-•}

£l

filtone
'

1 @ Local Intranet
<

Pressing the Find Order Details by Customer button will then result in the following:

131 XQuery - Microsoft Internet Explorer HiIE3l
r ~ ~ - p ... -n-

— —
FavoHtes Tools Help
ifiUittldftHKBlMHIMfej-'* ' ^' ^ ^ -d
S

Inks w

Address |s^http://kKalhost/XQuerySearchEnoJne/OrderSearch.sspx
jrj J/GO

XQuery Search Engine

Customer's Company Name: (Alfreds Futterkiste

jf| i d d il b

(••Eu<cimnHV ID Couqimiy Name Contiict

ALFKI Alfreds Futterkiste Maria Anders 030-0074321
030-007(

S545

10643 ffl

Product ID E

Product ID I

ffl Product ID

1997-08-25X00:00:00 1997-09-22700:00:00

1997-09-02100:00:00 2 : 28 (Rossle Sauerkraut) : 39 (Chartreuse

verte) : 46 (Spegesild)

9.46

MQDone 1 ! 1 ills Local intranet
j

314

XQuery

Analyzing the XQuery
Let's have a closer look at the code that produces this web page. You'll find the handler for the Find
Order Details by Customer button on the code-behind page OrderSearch.aspx.es. It looks like this:

private void Buttonl_Click(object sender, System.EventArgs
e) {

// Executes the XQuery Search on the XQueryNavigatorCollection
// using an XML Web Server Control
if(IstCustomer.Selectedltem != null)
{

selectedCustomer = IstCustomer.Selectedltem;
}
if("" != selectedCustomer.Value)
{
string strXQueryl = "<orderdetails> { FOR $a IN

document(\"CustomersX")/root/Customers WHERE $a/CompanyName=\"" +
selectedCustomer.Value + "\" RETURN <dl> <customer> { $a/CustomerID, $a/CompanyName,
$a/ContactName, $a/Phone, $a/Fax } </customer> { FOR $b IN
document(\"OrdersV)/root/Orders[CustomerlD = $a/CustomerID] RETURN <d2> <0> { $b/OrderID,
$b/OrderDate, $b/RequiredDate, $b/ShippedDate, $b/Freight } </0> { FOR $c IN document
(\"OrderDetailsX") /root/Order_x0020_Details[OrderlD = $b/OrderIDj" RETURN <d3> <OD>
{ $c/OrderID, $c/ProductID, $c/Quantity } </OD> { FOR $d IN
document(\"ProductsX")/root/Products[ProductID = $c/ProductID] RETURN <P> { $d/ProductID,
$d/UnitPrice, $d/ProductName } </P> } </d3> } </d2> } </dl> } </orderdetails>" ,-

// Compile the XQuery (this checks for any errors)
XQueryExpression exprl = new XQueryExpression(strXQueryl);
// Run the XQuery
XQueryNavigator navl = exprl.Execute(navCol);

if(true == navl.HasChildren) {
// Port the XML result for saving and display
XmlDocument doc = new XmlDocument();
doc.LoadXml(navl.ToXml());
// View the result as HTML in the XML Web Server Control, XmlOD
XmlOD.Document = doc;
XmlOD.TransformSource = "xsl\\orderdetails.xsl"; }

else {
// Customer does not have any current order
XmlDocument docn = new XmlDocument();
docn.LoadXml ("<rootxnoOrder>This Customer currently " +

"does not have any order .</noOrderx/root>");
XmlOD.Document = docn;
XmlOD.TransformSource = "xsl\\noOrder.xsl";

It might look messy, but because the XQuery in strXQueryl is a one-line string, no concatenation is
required, resulting in superior performance. It's a well-structured XQuery that can be rewritten rather
more legibly as:

<orderdetails> {
FOR $a IN document (\"Customers\ ") /root/Customers
WHERE $a/CompanyName=\ " " + selectedCustomer .Value + "\"
RETURN
<dl>
<customer>

{ $a/CustomerID, $a/CompanyName, $a/ContactName, $a/Phone, $a/Fax }
</customer> {
FOR $b IN document (\"0rders\ ") /root/Orders [CustomerlD = $a/CustomerID]
RETURN
<d2>
<0> { $b/OrderID, $b/OrderDate, $b/RequiredDate,

$b/ShippedDate, $b/Freight </0> { }
FOR $c IN document (\ "OrderDetailsV) /root/

Order_x0020_Details[OrderID = $b/OrderID]
RETURN <d3>

<OD> { $c/OrderID, $c/ProductID, $c/Quantity } </OD> {
FOR $d IN document (\ "ProductsX ") /root/

Products [ProductID = $c/ProductID]
RETURN <P> { $d/ProductID, $d/UnitPrice, $d/ProductName } </P> }

</d3> }
</d2>

</orderdetails>

The approach being used here is based on querying the first navigator, which represents the
Customers table. Then with the resulting data, the second table, Orders, is queried, and so on.

Running the Query and Styling the Output
The XQuery is compiled and run over the collection of navigators as follows:

// Compile the XQuery (this checks for any errors) XQueryExpression
exprl = new XQueryExpression (strXQueryl);

// Run the XQuery
XQueryNavigator navl = exprl .Execute (navCol) ;

316

XQuery

Then, the data in XML format that's returned is passed on to an XSL stylesheet:

if (true == navl .HasChildren) {
// Port the XML result for saving and display
XmlDocument doc = new XmlDocument () ;
doc . LoadXml (navl . ToXml ()) ;

// View the result as HTML using the XML Web Server Control
XmlOD . Document = doc ;
XmlOD. Trans formSource = "xsl \\orderdetai Is .xsl" ; }

else {
// Customer does not have any current order
XmlDocument docn = new XmlDocument () ;
docn. LoadXml ("<rootxnoOrder>This Customer currently does not have any

order .</noOrderx/root>") ;

XmlOD . Document = docn;
XmlOD. Transf ormSource = "xsl\\noOrder .xsl" ;

Here, the i f construct determines whether the XML returned contains any orders by checking whether
the XML result tree has any child elements: navl .HasChildren. If so, the XML result tree is assigned
to the XML web server control on our ASPX page. A typical XML result tree starts like this:

<?xml version="l . 0" encoding="utf-8" ?>
<orderdetails> <dl>

<customer>
<CustomerID>ALFKI</CustomerID>

<CompanyName>Alfreds Futterkiste</CompanyName>
<ContactName>Maria Anders</ContactName> <Phone>030-
007432 l</Phone> <Fax>030-0076545</Fax> </customer>
<d2> <0>

<OrderID>10643< /Order ID>
<OrderDate>1997-08-25TOO : 00 : 00</OrderDate>
<ReguiredDate>1997-09-22TOO : 00 : 00</RequiredDate>
<ShippedDate>1997-09-02TOO : 00 : 00</ShippedDate>
<Freight>29 .46</Freight> </0> <d3> <OD>
<OrderID>10643</OrderID>
<ProductID>28</ProductID>
<Quantity>15< /Quant ity> </OD> <P>
<ProductID>28</ProductID>

onapier

<UnitPrice>45.6</UnitPrice> <ProductName>R6ssle
Sauerkraut</ProductName>

</d3>

</d2> /dl>
</orderdetails>

Then, the OrderDetails . xsl XSL stylesheet is assigned to the control, and invoked before returning
the result to the client. The XSL stylesheet looks like this:

i
<?xml version='1.0' ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ms="urn:schemas-microsoft-com:xslt" version="l.0">

<xsl:output method="html" indent="yes" />

<xsl:template match="/">
<xsl:apply-templates select="orderdetails/dl" />

</xsl:template>

<xsl:template name="dl" match="dl">
<table cellpadding="3" cellspacing="0" border="l" width="600"> <tr>
<td>

<table cellpadding="3" cellspacing="0" border="0" width="600"> <tr>
<th align="center" bgcolor="Lightblue">

Customer ID</th>
<th align="center" bgcolor="Lightblue">

Company
Name</fontx/th> <th align="center"
bgcolor="Lightblue">
Contact Name</fontx/th>
<th align="center" bgcolor="Lightblue"> <font
color ="white">Phone</fontx/th> <th
align="center" bgcolor="Lightblue">
Fax</th>

</tr> <tr>
<td align="center">
<xsl:value-of select="customer/CustomerlD" />

</td> <td align="center">
<xsl:value-of select="customer/CompanyName" />

</td> <td align="center">
<xsl:value-of select="customer/ContactName" />

</td> <td align="center">
<xsl:value-of select="customer/Phone" />

</td>

318

<td align="center">
<xsl:value-of select="customer/Fax" /> </td> </tr>

</table> </td> </tr> </table>

<table cellpadding="3" cellspacing="0" border="l"

width="600"> <tr> <td>
<table cellpadding="3" cellspacing="0" border="0"

width="600"> <tr>
<th align="center" bgcolor="Lightgreen">

0rder
ID</fontx/th> <th align="center"
bgcolor="Lightgreen">
0rder Date</th> <th

align="center" bgcolor="Lightgreen">
Reguired Date</fontx/th> <th

align="center" bgcolor="Lightgreen">
Shipped Date</fontx/th> <th

align="center" bgcolor="Lightgreen">
< font color= "white" >Freight< / f ontx / th> </tr>

<xsl:apply-templates select="d2"> <xsl:sort
select="O/OrderID" /> </xsl:apply-templates>
</table> </td> </tr> </table> </xsl:template>

<xsl:template name="d2" match="d2">
<tr>

<td align="center" bgcolor="cornsilk">
<xsl:value-of select="0/OrderID" />

</td> <td align="center"
bgcolor="silver">

<xsl:value-of select="O/OrderDate" />
</td> <td align="center" bgcolor="silver">

<xsl:value-of select="0/RequiredDate" />
</td> <td align="center" bgcolor="silver">

<xsl:value-of select="0/ShippedDate" />
</td> <td align="center" bgcolor="silver">
<xsl:value-of select="O/Freight" /> </td>

</tr> <tr>
<td colspan="5">

XQuerv

320

<xsl:apply-templates select="d3">
<xsl:sort select="OD/ProductID" />

</xsl:apply-templates> </td> </tr>
</xsl:template>

<xsl:template name="d3" match="d3">
<xslrparam name="OrderID-ProductID"

select="concat(OD/OrderlD,'-',OD/ProductID)" />
<tr>
<td colspan="5" onmouseover="this.style.cursor='hand'"
onclick="ToggleOrder('{$OrderID-ProductID}')"> <irag

SRC="images/plus.gif" /> Product ID:
<xsl:value-of select="OD/ProductID" />
 (<xsl:value-of select="P/ProductName" />) </td>
</tr> <tr>

<td colspan="5">
<table cellpadding="3" cellspacing="0" width="100%"

id="{$0rderID-ProductID}" style="display:none" border="l">
<tr>
<td bgcolor="cornsilk" width="15%">

Quantity </td> <td
bgcolor="cornsilk" width="15%">
Unit Price </td> <td

bgcolor="cornsilk" width="70%">
Product Name </td>

</tr> <tr> <td>
<xsl:value-of select="OD/Quantity" />

</td> <td>
<xsl:value-of select="P/UnitPrice" />

</td> <td>
<xsl:value-o£ select="P/ProductName" /> </td> </tr>

</table> </td> </tr>
</xsl:template>

</xsl:stylesheet>

XQuery

Here, the XML is processed using a few XSL templates, but the approach is again quite straightforward.
The first template matches the root element of the XML source, and then control is passed on to the
next template:

<xsl:template match="/">
<xsl:apply-templates select="orderdetails/dl" />

</xsl:template>

Upon entering the second template, the current node is set to orderdetails/dl. In this template, the
upper and lower <table> are built, each using a combination of an outer and an inner table. The outer
tables have a border set to "1", and the inner ones to "0". Thus, the thin gray lines drawn around the
two tables shown on the screen come from the outer table, giving the page a nicer look.

Inside the inner table, after inserting the header row (which is simply hard-coded), the <td> tags are
filled in sequence by selecting values from our XML source, using XPath expressions. Here's an
example of that process (the XPath expressions are shown in bold):

<tr>
<td align="center">
<xsl:value-of select="customer/CustomerID" />

</td> <td align="center">
<xsl:value-of select="customer/CompanyName" />

</td>

</tr>

The JavaScript function ToggleOrder, which is used to 'open' each order to show more details, needs
its argument to be a unique value. In this case, the XSLT function concat is used to form that unique
value by first selecting the OrderlD, and then adding the value of the ProductID to it. This procedure
is necessary because a product can appear twice in a given customer's orders, so the ProductID alone
is not a sufficient differentiator. If you don't also specify the OrderlD, a conflict in the script may occur.
The unique argument value is created as follows:

<xsl:param name="OrderID-ProductID"
select="concat(OD/OrderlD,'-',OD/ProductID)" />

<tr>
<td colspan="5" onmouseover="this.style.cursor='hand'"

onclick="ToggleOrder('{$OrderID-ProductID}')">
 Product
ID: <xsl:value-of select="OD/ProductID" />
 (<xsl:value-of select="P/ProductName" />)

 An <xsl :param> element is used here to concatenate the OrderlD with each ProductID, making
the compound ID unique. The <td> tag is wired to the onclick event that triggers the ToggleOrder
function. The outcome is that clicking on the '+' and '-' icons has the effect that we've all come to
expect.

Summary

That concludes our quick tour of XQuery 1.0. You've seen what XQuery is, and we looked at its
background, and at its intended purpose. Furthermore, we've explored some of the syntax used in XQuery
expressions, and taken a closer look at the class library that Microsoft has developed for its demonstration
of XQuery. Finally, we saw how XQuery can be used with ASP.NET and its rich XML support.

The XQuery specification is still a working draft, and there are many issues still to be resolved - it is to
be hoped, for example, that support for updating databases and documents will indeed be added.
However, it is likely to be some time before XQuery 1.0 reaches W3C recommendation status, and the
current development of XPath 2.0 and XSLT 2.0 will only add to this delay.

What is clear is that Microsoft is committed to integrating XQuery in one or more of its future products.
A good guess is that XQuery will likely be supported in SQLXML (as another option to turn SQL
Server into a XML database), MSXML (to give another option for querying and transforming XML
besides the XPath-XSLT combination), and VS.NET (for example, an XQuery Query Builder with
IntelliSense support) once (or perhaps even before) it has reached W3C recommendation status.

322

Performance

As the Internet continues to improve in appeal and accessibility, there is an increasing need to extract
the maximum output from our hardware and software. Improving performance not only allows us to
support ever more complex web applications, but those applications can themselves support greater
numbers of users. Designing an application with performance in mind from the start is essential, and
performance analysis needs to form an integral part of each and every development iteration cycle. This
will help ensure that, when an application finally sees the light of day, we avoid comments such as,
"Well, it looks great, but it's a bit slow" - a sure sign that the application isn't (yet) worth a cent in a
production environment.

Although scalability is closely related to application performance, it should be noted that first you need
to improve application performance as much as you can; then, you can check if any scaling is necessary
of your current hardware. You can either decide to scale up (by adding processors or memory) or scale out
(by adding servers). This is however outside the scope of this chapter.

Since ASP.NET is a brand-new programming environment, our trusty old ASP 3.0 performance tips and
tricks don't apply anymore. Hopefully though, this chapter will provide a good head start in this area.
Naturally, given the remit of the book, we'll be concentrating on applications that involve XML (and
related technologies), but many of the points will apply equally to other areas of ASP.NET development.

We'll be doing this by:

Q Looking at general approaches to performance improvement in ASP.NET applications

Q Investigating specific tools in ASP.NET that can improve the response of our

applications
Q Demonstrating the performance testing tool that forms part of the Enterprise edition of Visual

Studio .NET: Application Center Test

unapier xu

To illustrate the topics covered, we'll use, and extend, the XQuery example from the previous chapter.
Thus we'll be working with an application that involves XML, XPath, XSL, XSLT, and XQuery - it will
use related namespace classes at different levels (page, session, and application level), and a Web
Service will be added to the mix (which we'll run both locally and remotely). These applications will
then be subject to a load-test using Application Center Test (ACT) and the results compared.

Before we get stuck into the example, let's begin by looking at some general tactics for developing
efficient ASP.NET applications.

Improving ASP.NET Application Performance

There are a few important things to keep in mind when designing any application in ASP.NET.
Specifically, the following subjects deserve special attention:

a Caching

Q Data Access

Q Working with strings

There are many other factors which can impact performance and are worthy of attention during the
development phase, namely: buffering, language independence, Interop Services, garbage collection,
pre-compilation, Web Controls, viewstate, session state, process model, and threading. Since these do
not directly involve XML and are merely system-dependent factors however, we won't look at them in
this chapter.

Caching

ASP.NET has some really neat caching capabilities for optimizing application performance. They are:

Q Output Caching
Q Fragment Caching
Q Cache API
Q Document Caching

By default, page caching is turned off in an ASP.NET web page, due to its disconnected nature. Each
page request results in the Page object being instantiated, processing the request, and then when the
result is sent back to the client, the object is destroyed. When caching is turned on however, the page (or
items on page) is kept on the server. These cached items can then be used for subsequent requests, either
from the originating, or from another user.

Output caching is the caching of the static (X)HTML document corresponding to an ASP.NET web page,
and it can give significant (if not massive) performance boosts. This type of caching is like serving up
static web pages; the only difference is that caching uses machine resources. If the pages only contain
static data, it would be better to generate them on a stage server and then copy them onto the web
server. This way you get the best performance the web server can give you. If the pages do change, but
if the change frequency is low, you can always opt for updating them using a batch web page generation
process, running it every once in a while.

326

Performance

 Fragment caching is used when you can't cache the whole page. Here caching can be applied to user
controls, data objects, and even page fragments. This approach can help a lot in optimizing your web
application, but it requires setting up a performance measuring and registration service with the
capability to compare accurately new test results with older results. In .NET, you can cache page
fragments using the OOutputCache directive.

Finally, custom caching can be performed using the Cache API. This API supports caching any object,
along with any dependencies, expiration, and user callbacks on expiration. Caching an object
temporarily is possible using an expiration time, say 5 seconds. This cached item lives then for 5
seconds on the server. Any request made during these 5 seconds is responded to with the cached data.
After that, the cache is updated with the next request.

Document caching is useful when, for example, performing XSLT transforms. ASP. NET can cache static
XSL style sheets with a significant resultant performance boost. Note that this option cannot be applied
when generating XSL style sheets dynamically. Of course, document caching is not limited to
stylesheets; in principle any document would qualify if caching would result in better performance.

The downside is that caching consumes resources (memory), so it is generally not a good idea to cache
every page or user control, but only those that are most frequently used, or provide the biggest benefit.
Guidance here should come from classifying what resources each control or page needs, and then only
caching items where a large amount of resources is needed for concurrent requests. Performance testing
for each development cycle iteration provides an overall guideline here. In general, it is best to use the
appropriate user control or data object for its intended purpose. The more functionality a control or
object has, the more overhead it causes on the web server, thus resulting in lower performance.

Another general rule is to make use of the ASP.NET Page . IsPostback property whenever possible, as
in this example taken from the XQuerySearchEngine project from the download material for this
chapter:

private void Page_Load(object sender, System. EventArgs e)
{

// Get the docl Application object
XmlDocument docl = (XmlDocument) (Application! "docl"]) ;

if (IPage. IsPostBack) {
// Fill the DropDownBox - create a Node list and then loop through it
XmlNodeList oNodeList = docl .SelectNodes (" //CompanyName") ;

foreach(XmlNode ond in oNodeList)
1 s tCus tomer . I terns . Add (ond . InnerXml) ;

// Get the navCol Application object
navCol = (XQueryNavigatorCollection) (Application! "navCol"]) ;

Chapter 10

The Page . IsPostBack property avoids unnecessary processing on a round trip, as it is set to true
when a previously opened page is posted back to the server, for instance in response to a button click.
The code above uses it to ensure the IstCustomer dropdown is only filled with data the first time the
page is requested. If we were not to check this property, the dropdown would be appended with the
same list every time the page is requested, which of course is not what we want. The ViewState
property will maintain the contents of the dropdown during server roundtrips. Note that the
XQueryNavigatorCollection object (assigned to navCol) is created every time the page is
processed, but its value is held in an application variable, and all we do here is set a new object instance.
The actual work, like accessing the database and creating the collection navigator object, occurs in the
Global. asax file, when a user requests a page in the web application for the first (and only the first)
time.

We'll be looking at this topic later in this chapter, when we come to discuss the demo web application.
Specifically, we'll look at a case where an XSL style sheet is cached with a resultant improvement in
overall application performance. This is especially useful where multiple users request the same web
page and XSL stylesheet, but supply different data for presentation.

Data Access

Accessing data stores from a web page can involve a significant performance hit, as it requires one or
more server roundtrips. This generally means external network access (as in practice the web server and
database server will be separate), sometimes over long distances over a private company's network, or
even over the Internet.

When getting data in XML format, there are several good options to choose from. One good fast option
is to use SQLXML 3.0's SQL Template Query functionality. Basically a virtual directory is set up which
contains the query templates. The templates themselves are XML files that contain one or more SQL
queries or stored procedures.

These queries or stored procedures produce conventional recordsets, but when the clause FOR XML
AUTO, ELEMENTS (or in any other FOR XML form) is used in the query, SQL Server generates and
returns an XML document corresponding to the recordset. You run the templates by requesting a
template URL on the Web Server. This request is then translated to a database call by SQL Server,
which returns the XML to the caller over HTTP. The default encoding used by SQLXML is UTF-8.

If our database server is heavily loaded (for example, this can happen when the database is heavily
queried by various clients, or web servers), we can opt for processing the XML on the client - which in
this case, is the Web Server. This can be done programmatically, as the following example illustrates.
The following Template Query formats the XML on the server side:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query client-side-xml="0"> SELECT * FROM Employees
FOR XML AUTO </sql :query> </ROOT>

328

Performance

and this one carries out the XML formatting on the client side:

<ROOT xmlns : sql="urn: schemas-microsoft-com: xml-sql ">

<sql:query client-side-xml="l">
SELECT * FROM
Employees FOR XML
AUTO </sql:query>
</ROOT>

The client-side-xml attribute tells SQL where to make the final transformation - on the server
("0"), or on the client ("1").

There are a few things to be aware of when using either client-side or server-side XML formatting. The
most important are:

Q Queries that generate multiple row sets are not supported in client-side XML formatting, and
they require server-side formatting.

G GROUP BY and aggregate functions are only supported by client-side XML formatting. If
the formatting is on the server-side, an error is generated because SQL Server 2000 does not
support GROUP BY or aggregate functions for queries with FOR XML.

The downside of this approach is that, despite creating a separate layer for data extraction, the structural
database information is still kept inside the stored procedures. More specific, although stored procedures
hide database information from the user, and are compiled objects, they do contain information that
relates to the structure of the database. If the database structure changes, the stored procedure may need
to be updated also. This, in turn, can affect the way the XML recordset is created, which finally can
affect the output generated by an XSL Transformation. So, in the end, you may need to update the
whole chain of documents, including your XSL Stylesheet.

To address this, a second option is to use XDR or XSD Schemas. Using XPath, we can extract the XML
from the database via a mapping schema, and then easily perform an XSLT transform on it. This allows
us to keep the application code independent of the database design, because design details are held
inside the mapping schema, including relational information. The drawback of this approach is that
creating the mapping schema can be a laborious task. Another reason that it is not being used here is
that XPath is in some ways limited in power compared to SQL. The limitations include recursion queries,
and related to recursion, static variable assignment. A SQL query is also much more readable than an
XPath expression.

A third method is to use ADO.NET and the .NET System.Data namespace. This namespace contains
classes for querying and updating databases, as discussed in Chapter 6. The data obtained can be passed
to an XmlDataDocument, which then can be used for XSL transformations.

A good article for you to read and be able to compare the above mentioned three methods, both in
performance and development time, is SQL Server 2000 and XML - Developing XML-Enabled Data
Solutions for the Web by Scott Hewlett and Darryl Jennings, MSDNMagazine, January 2002. It can be
found at http://msdn.microsoft.com/msdnmag/issues/02/01/SQLXML/SQLXML.asp.

Working with Strings

When working with strings, such as when performing concatenation, it is recommended that the
StringBuilder class be used (the .NET namespace is System.Text). This class is much more
efficient in its use of resources, when compared to the String class (from the System namespace). This
is because the String class creates new objects every time an operation is performed (that is, every
time when one of its methods is used), while StringBuilder does not.

Concatenating many strings in a loop for instance, can have a real hit on the performance of an
application, and using StringBuilder in such a case would consume much less resources and be far
more efficient, mitigating the performance penalty. An example of where StringBuilder would be of
real benefit would be an XML processor module; where textual input such as the XML source and the
XSL style sheet is manipulated to produce the output result tree.

Performance Monitoring in ASP.NET

Now we've looked at some general approaches to efficient ASP.NET application development, let's now
have a look at some specific tools that ASP.NET gives us to improve and monitor performance.

Before we can collect reliable and useful performance data, we must of course be sure that the
application is bug free and functionally correct, and to this end the trace facility implemented in the
System. Web class library can be a great help. Tracing code paths within an application may not only
highlight errors, but it can help identify potential improvements in command execution - so enhancing
the responsiveness of our code.

In this part of the chapter we'll be looking at:

G Using the trace facility
G Measuring performance in ASP.NET with profiling services, performance counters, sampling,

and the Application Center Test tool

Our first task, however, is to define some measures of performance.

An Aside - What is Application Performance?
Basically, there are two ways to measure application performance. The first is Machine Throughput,
measured in requests per second. The other is Response Time, which has two measures: Time To First
Byte (TTFB), which is the time between sending the request and receiving the first byte of the response,
and Time To Last Byte (TTLB), the time between sending the request and receiving the last byte of the
response. These times are measured in milliseconds.

330

Performance

 Http
Web

Client Request Server
r ----------------

1
0 ms ••

15ms 42 ms E

Z±^=— i. I Time To Time To
 First Byte Http Last Byte

j
_
LissRespons

e

TTFB provides a measure of the processing time on the server, when page buffering is turned on (in IIS
5.0, this is the default), and it also includes transmission time. Page buffering must be turned on to force
the web server to process the complete response, and therefore be able to measure the real TTFB time.
Note here that the server is most probably already processing another request by the time the client
receives the first byte. This influences the time period between the TTFB and TTLB.

TTLB indicates the time it took the server to process the complete request, including returning the
complete result to the client. Therefore, TTLB represents the overall response time and can be used to
determine any latency problems on the server. Latency problems in this case represent wasted time on
the server, in other words, the server takes too long to completely process requests.

Trace Facility

To assist in the process of functional for testing our web applications, ASP.NET offers a tracing facility
that traces coding paths through the application. Note that turning the Trace facility on means adding
some overhead, and is only meant as an aiding method in the process of optimizing your web
application.

In ASP prior to .NET, developers are accustomed to making frequent use of Response . Write in a
page in order to aid debugging. The developer would remove them all when the page has been
determined error-free. There are many obvious problems with such an approach, such as the time
consumed by going through the code searching for all occurrences, and the need to reinstate them,
should an error surface once the application is in production.

ASP.NET's solution is Trace .Write, which we can simply use in place of Response .Write, and
which can be set to write output to the client by the following page directive at the top of an ASP.NET page:

<%@ Page Trace="false|true" %>

Setting the above attribute to false results in all Trace .Write statements being completely ignored.
The trace facility is implemented in the namespace System.Web, by the TraceContext class, and its
two methods called Warn and Write. Both generally accept two parameters, but have an overloaded
method that takes a third parameter. The two first parameters are category and message, where
category defines the category name to write to, and message sets the text to write. The additional
parameter of the overloaded method is errorlnf o, which contains information about the exception
that occurred. This is very useful if we need more details at run time on what exactly is going wrong
when tracing a faulty code path.

The TraceTest ASP.NET C# project from the chapter download material demonstrates how we can
use the trace facility at page level. Set up the folder containing this project on your hard drive as a
virtual directory in IIS, and open it by double-clicking the csproj file.

The project contains just one Web Form, called Trace . aspx. This is a very simple page, as we can see
in the code-behind file. All the code there is contained in the event handler for clicks on Buttonl:

private void Buttonl_Click(object sender, System.EventArgs
e) {

Trace.Warn("Entering Buttonl_Click()","This is red text (Warning)");

int a = 4;
int b = 3;
Trace.Write("Inside Buttonl_Click() a: ", a.ToString());
Trace.Write("Inside Buttonl_Click() b: ", b.ToString());

Labell.Text = (a + b).ToString();

Trace.Warn("Leaving Buttonl_Click()", "This is also red text (Warning)");

If we look at the HTML view for the page, we'll see the Trace attribute on the Page directive at the top
of the page. If we set this attribute to false (the default value), we disable tracing, and when we run the
project we'll just see the intended output:

http: //localhost/TraceTest/Trace. aspx

332

Performance

Now enable tracing by setting the Trace attribute to true, and restart the project:

[JASP.NET Trace Test -
M crosoft Internet Explorer .lo i ls

•MM

- ^ W K
J} '^Search jig Favorites
$Meda i, j H ••

j Address || ĵ http://localhost/TraceTest/Trace.aspx
JLJ i^50

. Links **i
Sum 4

+ 3= . |
 1

llReciuest Details

Session Id: 5htbfpmvsmcv5z55pauml255 Request Type: GET
Time of Request: 12/06/2002 12:37:32 Status Code: 200
Request Encoding: Unicode (UTF-8) Response Encoding: Unicode (UTF-8)

1 Trace Information
Category Message From Flrst(s) From Last(s)
aspx.page Begin Init
aspx.page End Init 0.000202 0.000202
aspx.page Begin PreRender 0.000334 0.000132
aspx.page End PreRender 0.000455 0.000120
aspx.page Begin SaveViewStat e 0.013021 0.012567

: aspx.page End SaveVie ate wSt 0.01447B 0,001457
aspx.page Begin Render 0.014603 0,000125
aspx.page End Render 0.030B60 0.016257

fgjDone" ^ ~ : j|| Local intranet

The information that we see here is arranged into the following categories:

Q Request Details
G Trace Information

Q Control Tree
Q Cookies Collection
Q Headers Collection
Q Server Variables

These are all fairly self-explanatory. The Trace Information section details the processes that have been
traced through up to the current point of processing. Now click the button labeled Sum 4 + 3 =, and
this section will be appended with the details of the steps that are invoked, including the Trace .Warn
and Trace .Write method calls that we added to the code inside the click event handler:

oft Internet Explorer BBBB y JQljCJ
1 Pile EdS View
Favorftes Tools Help H^Back - * - 9 J
3 -.^Search _jj Favorites '|«j?Medi3 ^ __j- _Jf

__] j
AdCfress]|£] http://localho5t/TraceTe$t/"rrace.aspx
jrj ^Go

inks "
 Sum 4 +3
= ___ j I?
|

 —

[•Request Details
Session Id: 5htbfpmvsmcv525Spauml255

R T
PO TS —I

Time of Request: 12/06/2002 12:47:05 200
Request Encoding: Unicode (UTF-8) Response Encoding:

Unicode (UTF-8)
II I race information

Category Message Frem First(s) From
Last(0aspx.page Begin Init

aspx.page End Init 0,000154 0.000154
aspx.page Begin LoadViewState 0.000280 0.000126
aspx.page End LoadViewState 0.000894 0.000614
aspx.page Begin ProcessPostData 0.002501 0.001607
aspx.page End ProcessPostData 0.002669 0.000168
aspx.page Begin ProcessPostOata Second Try 0.002791 0.000122
aspx.page End ProcessPostData Second Try 0.002901 0.000110
aspx.page Begin Raise ChangedEvents 0.003006 0.000105
aspx.page End Raise ChangedEvents 0.003112 0.000106
aspx.page Begin Raise PostBackEvent 0.004065 0.0009S3
Entering Buttonl_Ciick() Th is red text is (Warning) 0.004196 0,000131
Inside Buttonl_click() a 4 0.004311 0.000115
inside Button l_clickO D 3 0,004423 0.000112
LBdvinq B nl_iitto j-l!ck:'; This is also red text (Warning') 0.004543
aspx.page End Raise PostBackEvent 0.005310 0.000766
aspx.page Begin PreRender 0.005705 0.000396
aspx.page End PreRender O.OOSB32 0,000127
aspx.page
a«nv nan» Begin SaveViewState 0.007467 0.001635

n nnnp7H
J

|iJ30QRe
\ • \ $-|f Local intranet #

Note that the trace information is always added to the end of the page. The column From First(s)
indicates the total time elapsed in seconds, while the column From Last(s) indicates the time elapsed
relative to the last time measuring event.

ASP.NET's trace facility opens up a whole range of possibilities for tracing code paths through an
application. The information it provides can be invaluable for streamlining applications, and it is very
simple to turn on and off.

VV'e can also turn on tracing at application level, in the Web. conf ig file:

<configuration>
<system.web>
<trace enabled="true"

</system.web>
</configuration>

requestLimit="40" localOnly="false"/>

Trie attribute reguestLimit sets the maximum number of requests on a per-application basis that
should include tracing information, and localOnly determines if the trace output should only appe'
on the web server. If tracing is enabled at application level, setting the Page directive's attribute T: to
false will override it for that page

Now we've got the functional tests and debugging phases out of the way, it's time to move on to looK
ways to measure performance.

334

Performance

(Measuring Performance in ASP.NET

So when our application, functionally speaking, fulfills its design brief and achieves its stated aims, we
can concentrate on tuning it up so that it works as fast as possible, under the given circumstances.
Remember that the final performance should always be kept in mind during development, and analyzed
at the end of each development iteration.

Before gathering performance information, we must first think carefully about what information will be
useful, and how to administrate it.

We'll need to compile our performance testing history, so that we can compare new tests with old ones.
We also need to record details of the test configuration, so that we can check that tests are comparable
with the previous ones.

So, to make our application run faster, we first need to gather information about its run-time behavior
under ASP.NET. For this, there are a few advanced ways in which we can measure performance and
profile our application in ASP.NET. In short, they are:

Q Profiling Services
Q Performance Counters
Q Analyzing performance with Sampling
Q Application Center Test (ACT)

Application Center Test, a feature of VS.NET Enterprise Architect, is the most valuable of these, and so
will be subject to a closer investigation than the others.

Profiling Services
ASP.NET Profiling Services provide a means for gathering performance data for an application at run
time, which can be used to streamline it and improve performance.

Profiling Services are implemented using a classic COM server, which implements a profiling service.
The COM server consists of two interfaces: ICorProf ilerCallBack, and ICorProf ilerlnf o. You
might ask why plain old COM is being used here in the brave new world of the .NET Framework. Well,
the main reason is probably because it will not interfere with the .NET Framework, and instead works
in an unmanaged space, allowing it to peep inside an application, and get the data it needs, whenever
the programmer needs it. Also, as a COM component, the Profiler application is quite independent of
the Framework, and any problems there will not affect it, and vice versa.

Take a look at the following simple diagram showing how the Profiling Services work:

.NET Application Profiler Application
(COM Server)

< > I
ICorProfilerlnfoO OICorProfilerCallBack

<> I
Common Language Runtime (CLR)

The COM Interface ICorProf ilerCallBack has methods for all the event types (listed below) that
can be fired inside the CLR during run time. When an event happens, the CLR calls the appropriate
method of the COM Interface ICorProf ilerCallBack.

For example, if you would like to know how long a function takes to execute and return its result,
simply invoke the Profiler, and measure the time between the function load and leave events (formally
called FunctionEnter and FunctionLeave).

Invoking the Profiler is remarkably easy: we simply set the values of two environment variables. The
first, Cor_Enable_Prof iling, indicates that the CLR should connect to a profiler by a non-zero
value. The second, Cor_Prof iler, is a string specifying either the CLSID or the ProgID of the profiler
to use. For instance, we could set it on the command line like so:

By CLSID:
>set Cor_Profiler={32E2F4DA-1 BEA-47ea-88F9-C5DAF691 C94A}

By ProgID:
>set Cor_Proflier="MyProfiler"

The Profiling Services can do many things for us, much more in fact than merely profiling an
application. ICorProf ilerCallBack methods can be grouped into the following categories:

Q CLR startup and shutdown events
Ql Application domain creation and shutdown events
Q Assembly loading and unloading events
Q Module load/unload events
Q COM VTable (which is a structure in the header of every class object that contains the

memory addresses of the actual code associated with the properties and methods implemented
in the interface) creation and destruction events

Q JIT compiles, and code pitching events
Q Class load/unload events
Q Thread birth/death/synchronization
Q Routine entry/exit events
Q Exceptions
Q Transitions between managed and unmanaged execution
Q Transitions between different Runtime contexts
Q Information about Runtime suspensions
Q Information about the Runtime memory heap and garbage collection activity

It would be too exhaustive to explain the methods contained in each category, but every method is
detailed in the Profiling.doc Word document, along with additional related information. It should be
located in the C: \ProgramFiles\Microsoft Visual Studio .NET\FrameworkSDK\Tool
Developers GuideXdocs directory by default.

336

Performance

Matt Prietek's MSDN article at
http://msdn.microsoft.com/msdnmag/issues/01/12/hood/hood0112.asp has more
information on getting started with the .NET Profiling API and the DNProfiler Tool.

Profiling Services is a very powerful way of obtaining specific information about an application's
performance, highlighting bottlenecks, wrong code routes, and more. In the next section, we look at a
different way of gathering performance information, .NET Performance Counters.

Performance Counters
Performance counters are objects that give another way of profiling a program by supplying
performance data provided by applications, services, and drivers during execution. Windows 2000
provides a host of performance objects, counters, and instances.

We can add counters to a program using the Performance utility in Admin Tools. With the System
Monitor selected in the left hand tree view, click the plus button on the toolbar that appears along the
top of the right-hand pane to bring up the Add Counters dialog:

Add Counters
f* Use local computer counters &

Select counters from computer:

JV\GRAYAREA
Performance object:
I Processor
i All counters
(° Select counters horn list

Add
Close

Explain

<~ AI instances
(° Select instances from fet:

% DPC Time %
Interrupt Time %
Privileged Time

0

 % User Time APC
Bypasses/sec DPC
Bypasses/sec

ASP.NET offers a wide range of performance counters. Some provide information about a specific piece
of hardware, others about what is happening during code execution.

There are two basic categories of ASP.NET performance objects available: ASP.NET and ASP.NET
Applications. The first is a set of counters that give information about the global ASP.NET installation.
The second provides counters that give application-specific information. This lets us easily separate
performance data for each application running on the server, to see which is causing the headache.

In addition, each ASP.NET installation has a set of performance counters specific to the installed
version, which have names similar to two categories already mentioned, but with the version number
tacked on at the end. For example, my computer has these four ASP.NET categories:

Performance object:
JASP.NET Apps vt0.3705.0
.NET CLR Remotin g
.NET CLR Security
ACS/RSVP Service
Active Se ver Pages r
ASP.NET
ASP.NET Applications
MHJilifcBBgSlBa
ASP.NE vl.0.3705.0 T
Browse r
Cache
Distributed T on CoordinaU ransacti
FTP Service

There are quite a few counters and instances available as the above list shows, and thus we need a clear
idea of what information we would like monitored in order to satisfy our performance test, and then add
relevant counters to our profiling or performance tool.

In our case, measuring the performance of a web application, the following counters are most useful for
determining overall performance:

Performance Object Counter Instance

Processor % Processor Time _Total
Memory Available Bytes N/A

Memory Pages/sec N/A

ASP.NET Worker Process Restarts N/A

ASP.NET Requests Queued N/A

ASP.NET Requests Rejected N/A

ASP.NET Application Requests/Sec _Total

ASP.NET Application Requests Executing _Total

ASP.NET Application Errors Total _Total

ASP.NET Application Sessions Active _Total

We'll look at each of these now.

The % Processor Time Counter
The % Processor Time Counter indicates the percentage of time that the processor spends executing
non-idle threads. A level of 0% indicates the processor is not occupied with useful tasks, and a level o
100% means that the processor is dedicating its full processing power to requesting threads. At this le
processor queuing may occur.

When there are multiple processors installed, you can select an instance for each. If you test on the U
machine, then CPU usage reflects all current activities, including database access and other activities
that might not form part of the processing of a request.

338

Performance

Typical optimal values of this counter should be about 70-90% when running a web application at its
fflaximum demand, meaning that the processor still has some processing power left when the amount of
requests go up when in production. A web application that is continuously above 90% is considered too
loaded and should be either scaled up (by adding processors or memory) or scaled out (adding servers).

rhe Available Bytes Counter
The Available Bytes Counter indicates the amount of physical memory, in bytes, currently free on the
computer - it is not an average. It is the sum of the space detailed on the Zeroed, Free, and Stand By
memory lists. Only Free memory is ready for use. Zeroed memory has been overwritten with zeroes to
prevent other processes reading data from a previous process. Finally, Stand By memory is in the
process of being freed from a process's allocated set, but can still be recalled for use.

The amount of memory available indicates how much resources are consumed by an application. High
memory usage can indicate that an application is not scalable perhaps, or that the amount of available
RAM is insufficient.

The Pages/sec Counter
The Pages/sec Counter shows a count of the memory pages that must be read from or written to disk in
order to supply the application with the data it needs (these are known as 'hard page faults'). If this
number is too high, it indicates that the system is too busy reading and writing to disk, with consequent
response delays. The displayed value is a mean, obtained by evaluating the difference between the
values of the last two samples, and dividing it by the sample interval.

As said, high values indicate a high level of disk access, which in turn could mean that virtual memory is
set too low, or that the application is poorly designed, such that, for example, it allocates too little memory
for concurrent operations. In such cases, caching pages or objects could help alleviate the problem.

The Worker Process Restarts Counter
The Worker Process Restarts Counter measures the number of times the ASP.NET worker process,
aspnet_wp.exe, has had to restart on the machine. .NET supports automatic restarts of working
processes. If a worker process restarts, it indicates that there was a problem during its execution. It is
costly in terms of performance, and should therefore be fully investigated if it occurs.

In .NET, you can configure the way automatic worker process restarts are handled by looking at the
<processModel> element in the machine. conf ig file.

The Requests Queued Counter
The Requests Queued Counter gives the number of requests currently waiting to be processed. When
requests are being queued it means either that the CPU has reached maximum capacity, or that all
available threads are being used. If, however, CPU usage is low, you can increment the maximum
number of threads available to ASP.NET - this is part of the process of tuning your web server.

In .NET, the maximum number of threads can be increased by setting the maxWorkerThreads and
maxIoThreads attributes of the <processModel> element in the machine, conf ig file.

The Requests Rejected Counter
The Requests Rejected Counter simply tells us the number of requests that have been rejected because
the request queue was full. This generally means that the capacity to process them is at its upper limit.
Generally, scaling up (increasing hardware on the server) or scaling out (spreading load over more
servers) will help alleviate this problem.

The Requests/Sec Counter
The Requests/Sec Counter is concerned with the number of requests executed per second. It is the main
indicator for overall performance of the application or web server. The higher it is, the better. In
Application Center Test, this counter is the most important of all, as we'll see later on.

The Requests Executing Counter
The Requests Executing Counter simply counts the number of requests currently executing. This
counter tells us the level of activity currently on the web server.

The Errors Total Counter
As its name implies, the Errors Total Counter quantifies the total number of errors that have occurred
and if not zero, indicates that the application is not functioning correctly. This counter should always be
zero at all times, and any error should be investigated right away, as it will slow down performance and
may well indicate a flaw in the application's functionality.

The Sessions Active Counter
The Sessions Active Counter indicates the current number of sessions currently active. Sessions
normally represent resource usage. A high level of active sessions means a high amount of resources in
use, thus reducing the scalability of your application.

Using Counters
We can programmatically access these performance counters through the Perf ormanceCounter class
of the System. Diagnostics namespace, and it is easy to add a performance counter object to a
VS.NET project with Server Explorer. Each computer listed under the Servers node has a Performance
Counter node, which expands to list all available categories, which in turn expand to display the
counters in that category:

340

Performance

X

H©! % M
El' ^ Data Connections »
6- S^ Servers

a- g GRAYAREA
fi J3 STEELYGLINT

fi «J« Crystal Services
H m Event Logs
|i| N^ Message Queues
B - E3 Performance Counters
i 61 BJ ACS/RSVP Service

H Ei Brows er
Lt E3 Cache _
a O Distributed Transaction ordinator Co
S Q Http Indexing Service '

U S% Cache hits '
S % Cache misses

Active ies quer
I •• • Si Cache items ;

S Current requests queued ;
Queries per minute :

Si Total cache accesses 1 ;
ĵ|g Total cache accesses 2

Si Total queries
Si Tota' requests rejected :

j i- E3 IAS Accounting Clients
i a- f^ IAS Accounting Server
I B 0 IAS Authentication Clients
1 |±i._ tpa iiq i, .hhonMrafinn ^gyec __ 1

% Server Explorer J? Toolbox j

We add an object for one of these counters by simply dragging it (or an instance if applicable) onto a
page. The performance counter object does not have a user interface so it will be placed in the
component tray at the bottom of the page:

LJ performanceCounterl

Q Design EJ HTML

 Another way to add a performance counter object to a project is to choose the Perf ormanceCounter
object from the Components tab of the Toolbox. A third method is to programmatically declare a
Performance Counter Object.

The last two methods do not define exactly which counter is used, and we need to set that afterwards.
Hence, the first method can be the simplest, as we can look at each category and see the counters
available together with their instances.

Analyzing Performance with Sampling
Sampling gives the ability to analyze performance in a more specialized way. It involves measuring
certain performance counters at certain defined intervals. The results obtained can be presented in
certain ways, for instance as an average.

A profiling tool can make extensive use of sampling performance counters. These tools allow us to look
right inside an application and watch each block or even each instruction code line execute. A very
detailed report can be generated from the information obtained, to help identify and eliminate
bottlenecks in an application.

Application Center Test
Application Center Test (ACT) is a testing tool originally developed and shipped with Microsoft's
Application Center. A cut-down version of the tool is shipped with Enterprise editions of Visual
Studio .NET, for functional, performance, and load testing during development.

ACT's predecessor is the well-known Web Application Stress (WAS) tool, which allows us to stress a web
application to a certain load, as expressed in number of threads or concurrent requests.

It can be freely downloaded from http://webtool.rte.microsoft.com/. The site also provides a lot of
information about its usage, and how to interpret the obtained results. Note though, that WAS is
designed to test performance in a three-tier traditional ASP web environment, running on Windows NT4
or 2000. WAS is not meant to be used with ASP.NET - ACT is.

ACT has more functionality than WAS (as we'll see later on), such as the ability to pass parameter
values to newly requested pages. It is also integrated into the VS.NET IDE, although not yet as
integrated as it could be. You cannot, for example, add performance counters to a script in an ACT
project loaded in VS.NET, nor can you see the graphical displays of ACT's results. For both these things,
you have to open the project in the standalone version of ACT.

In the remainder of the chapter, we'll use the standalone version of ACT to generate test scripts, adding
performance counters to each, and run some performance tests with different concurrent client connections.

Testing ASP.NET Web Applications with ACT I

To demonstrate ACT, we'll use two ASP.NET web applications that demonstrate a variety of code
techniques that we can compare and contrast with ACT. The project folders for each application need
to be set as a Virtual Directory in IIS, as does the Northwind folder, which contains the SQL templates.

The northwind virtual directory needs to be set up with SQLXML 3.0's "Configure IIS Support", as
described in Chapter 9, under the section Setting up the project using VS.NET. All the other project
directories are activated using Internet Service Manager (ISM), once they have been copied. Note also
that the local server local host has been used when running the templates. You can run them on another
SQL 2000 Server with SQLXML 3.0 installed, if you wish.

Lastly, run the SP_XquerySearchEngine. sql script on the Northwind database, to create the stored
procedures that our XQueries invoke.

342

Performance

The Applications

Q The first application (xQuerySearchEngine) is the same that we looked at in detail in the
previous chapter. It contains two Web Forms that each use one application-level variable
defined in Global. asax. The first variable is of type XQueryNavigatorCollection, and
contains four independent navigators. The second variable contains a single big navigator.
Both variables hold the four Northwind tables Customers, Orders, OrderDetails, and
Products.

Q The second application (XQuerySearchEngineWS) consumes the XML Web Service
created in the WS_XQuerySearchEngine project (see Chapter 8 for more information on
Web Services) to run queries. The application uses two Web Forms to call into one of two web
methods of the XML Web Service, to run X Queries on the data that the Web Service stores in
two navigator collections which contain all data from all four Northwind tables.

Let's have a look at some of the application code. Basically, each application creates the navigator
collections in the same way, although the Web Service does this slightly differently compared to
XQuerySearchEngine. XQuerySearchEngine uses application-level variables set in Global. asax
as shown below:

protected void Application_Start(Object sender, EventArgs
e) {

// Define the SQL Template URLs and their related
collection names strUrlXmlTemplateCustomers =

"http: //localhost/northwind/templates/GetAllCustomers.xml";
strUrlXmlTemplateOrders =

"http://localhost/northwind/templates/GetAllOrders.xml";
strUrlXmlTemplateOrderDetails =

"http://localhost/northwind/templates/GetAllOrderDetails.xml";
strUrlXmlTemplateProducts =

"http://localhost/northwind/templates/GetAllProducts.xml";
strNavNameCustomers = "Customers"; strNavNameOrders =
"Orders"; strNavNameOrderDetails = "OrderDetails";
strNavNameProducts = "Products";

strUrlXmlTemplateAHData =
"http://localhost/northwind/templates/GetAllData.xml";

strNavNameAHData = "AllData";

// Create an XQueryNavigatorCollection object and fill it with
four // Northwind tables: Customers, Orders, Order Details,
and Products XQueryNavigatorCollection navCol = new
XQueryNavigatorCollection() ;

// Add the Customers navigator to the collection
XQueryDocument docl = new XQueryDocument(strUrlXmlTemplateCustomers,

s t rNavNameCu s t ome r s) ;
navCol.AddNavigator(docl.CreateNavigator());

// Add the Orders navigator
XQueryDocument doc2 = new XQueryDocument(strUrlXmlTemplateOrders,

StrNavNameOrders);
navCol.AddNavigator(doc2.CreateNavigator());

// Add the Order Details navigator
XQueryDocument doc3 = new XQueryDocument (strUrlXmlTemplateOrderDetails,

strNavNameOrderDetails) ;
navCol .AddNavigator (doc3 .CreateNavigator ()) ;

// Add the Products navigator
XQueryDocument doc4 = new XQueryDocument (strUrlXmlTemplateProducts,

strNavNameProducts) ;
navCol .AddNavigator (doc4 .CreateNavigator ()) ;

// Try it another way and create one big navigator with all the data
XQueryNavigatorCollection navColAD = new XQueryNavigatorCollection ();

// Add the Customers, Orders, Order Details, and Products tables in one go
XQueryDocument doc5 = new XQueryDocument (strUrlXmlTemplateAHData,

strNavNameAHData) ;
navColAD. AddNavigator (doc5 .CreateNavigator ()) ;

// Create and store the doc object for filling the drop-down list box XmlDocument
doc = new XmlDocument () ; doc . Load (strUr IXmlTemplateCustomers) ; Application!
"doc"] = doc;

// Store the navCol XQueryNavigatorCollection object in the Application Application
["navCol "] = navCol ;

// Store the navColAD XQueryNavigatorCollection object in the Application
Application! "navColAD"] = navColAD;

First, the URLs for the query templates are set up, together with their corresponding Navigator
Collection names. Next, have a closer look at the following code sample:

// Add the Customers navigator to the collection
XQueryDocument docl = new XQueryDocument (strUr IXmlTemplateCustomers,

strNavNameCustomers) ;
navCol .AddNavigator (docl .CreateNavigator ()) ;

Here, the first highlighted line loads the document pointed by the URL. This document contains a SQL
template. But this template is not returned - instead, SQL handles the HTTP request, and starts
processing the template. Since this template contains a SQL query, it is run against the database, which
if you recall was specified in the northwind virtual directory, set up with SQLXML 3.0's "Configure IIS
Support". The result of the query, in this case an XML result tree, is then returned to the
XQueryDocument class. If an error were encountered during the execution of the query, SQL would return
them also in XML format, so that the application can gracefully handle them rather than simply crashing.

The second highlighted line shows how the Navigator collection item is created using the
CreateNavigator method of the XQueryDocument class.

This process of creating navigators within the collection objects is then continued, and finally, when this
is done, two application objects are created, one for filling the Customers dropdown listbox, and the
other for the first Navigator Collection, which then contains four navigators.

344

Performance

After that, one more big navigator is created, containing all the data from four database tables retrieved
in one template query. From this navigator collection object, another application object is created.

Both application objects created in Global . asax are now ready for use and are accessible by any user
who makes a page request from the web application.

The Web Service (ws_XQuerySearchEngine) also creates an XML virtual database in Global .asax
using exactly the same code, so we won't look at that again. The only difference is that the first
application variable, used to fill the Customers dropdown listbox is not implemented in the Web
Service project, but in the consuming project, XquerySearchEngineWS. The Web Service exposes two
methods: the first, SearchNavColl, queries the four independent navigators, and the other,
SearchNavCol4, queries the single navigator containing all XML data. The code for both of them is as
follows:

[WebMethod (Description=" Searches an XQueryNavigatorCollection object with one big Navigator
containing all data from the Northwind tables Customers, Orders, OrderDetails, and
Products.")]
public string SearchNavColl (string strXQuery) {

try
{
XQueryExpression expr = new XQueryExpression (strXQuery) ;

// Get the navColAD Application object
navColAD = (XQueryNavigatorCollection) (Application ["navColAD"]);

// Run the XQuery
XQueryNavigator nav;
nav = expr .Execute (navColAD) ;

if ("" != nav. Value) {
return nav. ToXml () ; }

else
{
// Customer does not have any orders...
return "<orderdetails>This Customer does not have any orders.

</orderdetails>" ;

catch (Exception e) {
// Return error message
return "Error occurred in: " + e . Source + " ; " + e. Message;

[WebMethod(Description=" Searches an XQueryNavigatorCollection object with four
Navigators, each containing all data from the Northwind tables Customers, Orders,
OrderDetails, and Products.")] public string SearchNavCol4 (string strXQuery)

unapter lu

try
{
XQueryExpression expr = new XQueryExpression (strXQuery) ;

// Get the navCol Application object
navCol = (XQueryNavigatorCollection) (Application ["navCol"]);

// Run the XQuery
XQueryNavigator nav;
nav = expr .Execute (navCol) ;

if ("" != nav. Value) {
return nav . ToXml () ; }

else
{
// Customer does not have any orders
return "<orderdetails>This Customer does not have any orders.

</orderdetails>" ; } }
catch (Exception e) {
// Return error message
return "Error occurred in: " + e. Source + " ; " + e. Message;

Both methods parse and build an XQuery expression, as the following line shows:

XQueryExpression expr = new XQueryExpression (strXQuery);

This is then run over the requested navigator collection, obtaining a result in XML format. This result is
returned to the calling application as a string. During the expression build, the query string is checked
for any syntax errors. For example, if you test this method in VS. NET pressing F5, and try to execute
the following query:

<orderdetails> {
FOR $a IN document ('Customers ') /root/Customers
WHERE $a/CompanyName= 'Alfreds Futterkiste'
RETURN <customer> ($a/CustomerID, Sa/CompanyName, $a/ContactName,

$a/Phone, $a/Fax }
</customer> </orderdetails>

where the last closing brace between the closing XML tags </customer> and </orderdetails> has
been forgotten, the output shown by VS. NET is:

<?xml version="l . 0" encoding= "utf -8 " ?>
<string xmlns="http: //tempuri .org/ ">Error occurred in: Microsoft .Xml .XQuery;

' expected . < /string>

346

Performance

Note also that when testing a Web Service in VS. NET, the input string does have a limit. For example,
if you try to execute the query that is used to query the four-navigator collection object in our demo
application, it will generate a syntax error because the string is being cut off at a certain length.

Now, let's have a look at how the X Queries are run, and how the result is transformed and displayed.
The first application does it like this:

private void Buttonl_Click (object sender, Sys tern. Event Args
e) {

// Executes the XQuery Search on the XQueryNavigatorCollection
// using an XML Web Server Control
if (IstCustomer .Selectedltem != null)
{
selectedCustomer = IstCustomer . Selectedltem;

}

if ("" != selectedCustomer .Value) {
string strXQueryl;

strXQueryl = "<orderdetails> { FOR $a IN
document (\ "Customers \ ") /root/Customers WHERE $a/CompanyName=\ " " +
selectedCustomer .Value + "\" RETURN <dl> <customer> { $a/CustomerID,
$a/CompanyName, $a/ContactName, $a/Phone, $a/Fax } </customer> { FOR $b
IN document (\ "Orders \ ") /root/Orders [Customer ID = $a/CustomerID] RETURN
<d2> <0> { $b/OrderID, $b/OrderDate, $b/RequiredDate, $b/ShippedDate,
$b/Freight } </O> { FOR $c IN
document (\ "OrderDetailsX ") /root/Order_x0020_Details [OrderlD = $b/OrderID]
RETURN <d3> <OD> { Sc/OrderlD, $c/ProductID, $c/Quantity } </OD> { FOR $d IN
document (\ "ProductsV) /root/Products [ProductID = $c/ProductID] RETURN <P>
{ $d/ProductID, $d/UnitPrice, $d/ProductName } </P> } </d3> } </d2> } </dl> }
</orderdetails>" ;

 // Compile the XQuery
// This checks for any errors
XQueryExpression exprl = new XQueryExpression (strXQueryl);

// Run the XQuery
XQueryNavigator navl ;
navl = exprl .Execute (navCol) ;

if (true == navl .HasChildren) {
// Port the XML result for saving and display
XmlDocument doc = new XmlDocument () ;
doc . LoadXml (navl . ToXml ()) ;

//To save the XQuery result for viewing, uncomment these lines:
// XmlTextWriter writerl = new XmlTextWriter (Server .MapPath(
/ / " /XQuerySearchEngine/XQuery_output . xml "
// System. Text. Encoding. UTF8) ;
// writerl .Formatting = Formatting. Indented;
// writerl . Indentation = 2;
// doc. Save (writerl);
// writerl . Close () ;

// View the result as HTML using the XML Web Server Control
XmlOD . Document = doc ;
XmlOD. Trans formSource = "xsl\\orderdetails .xsl" ; }

else
{
// Customer does not have any current orders
XmlDocument docn = new XmlDocument () ;
docn . LoadXml ("<rootxnoOrder>This Customer does not have any orders.

</noOrderx/root>") ;

XmlOD . Document = docn;
XmlOD. Trans formSource = "xsl \\noOrder .xsl" ;

The query expression is quite unreadable, so I'll repeat it here in a more human-readable form:

<orderdetails>
{
FOR $a IN document (\ "CustomersX ") /root/Customers
WHERE $a/CompanyName=\ " " + selectedCustomer . Value + "\"
RETURN
<dl>
<customer> { $a/CustomerID, $a/CompanyName, $a/ContactName, $a/Phone,

$a/Fax } </customer> {
FOR $b IN document (VOrdersV) /root/Orders [CustomerlD = Sa/CustomerlD]
RETURN
<d2>
<0> { $b/OrderID, $b/OrderDate, $b/RequiredDate, $b/ShippedDate,

$b/Freight } </O> {
FOR $c IN document (\ "OrderDetails\ ") /root/Order_x0020_Details [

OrderlD = $b/OrderID]
RETURN <d3>

<OD> { $c/OrderID, $c/ProductID, $c/Quantity } </OD> {
FOR $d IN document (\ "ProductsV) /root/Products [

ProductID = $c/ProductID]
RET N <P> { $d/ProductID, $d/UnitPrice, $d/ProductName } </P> } UR

</d3> }
</d2> }

</dl> }
</orderdetails>

348

Performance

When the button is clicked, the XQuery is compiled and run over the requested navigator collection,
and the XML result returned is transformed and displayed using an XSL style sheet. There is also some
code added to write the XML result to a file for checking, but this code is commented here - if you
want to use it just uncomment those lines. Check if the path is correct and if the account used to run the
application has write permission (by default, the ASP.NET account does not have it, and must be
changed by setting <identity impersonate="true" /> in the file web.config, after the
<system.web> element. Do take care with this as this affects application security), and with each
button click, the XML result is persisted to disk.

Let's compare this with the XQuerySearchEngineWS application; this gets the data through the Web
Service's web methods, but from then on the code is the same:

private void Buttonl_Click(object sender, System. EventArgs
e) {

// Executes the XQuery Search on the XQueryNavigatorCollection Web
Service
// using an XML Web Server Control
if (IstCustomer . Selectedltem != null)
{
selectedCustomer = IstCustomer . Selectedltem;

if (" " !=
selectedCustomer .Value) {

string strXQuery;

strXQuery = "<orderdetails> { FOR $a IN
document (\ "CustomersV) /root/Customers WHERE $a/CompanyName=\ " " +
selectedCustomer .Value + " \ " RETURN <dl> <customer>
{ $a/CustomerID, Sa/CompanyName, $a/ContactName, $a/Phone, $a/Fax }
</customer> { FOR $b IN document (V'OrdersV) /root/Orders [CustomerlD
= $a/CustomerID] RETURN <d2> <0> { $b/OrderID, $b/OrderDate,
$b/RequiredDate, $b/ShippedDate, $b/Freight } </0> { FOR $c IN
document (\ "OrderDetailsX ") /root/Order_x0020_Details [OrderlD = $b/OrderID]
RETURN <d3> <OD> { $c/OrderID, $c/ProductID, $c/Quantity }
</OD> { FOR $d IN document (\ "ProductsX ") /root/Products [ProductID =
$c/ProductID] RETURN <P> { $d/ProductID, $d/UnitPrice,
$d/ProductName } </P> } </d3> } </d2> } </dl> }
</orderdetails>" ;

localhost .WS_XQuerySearchEngine ws =
new localhost .WS_XQuerySearchEngine
() ,-

// Port the XML result for saving and display
XmlDocument doc = new XmlDocument () ;
doc .LoadXml (ws. SearchNavCol4 (strXQuery)) ;

// View the result as HTML using the XML Web Server Control
XmlOD. Document = doc;
XmlOD.Transf ormSource = "xsl\\orderdetails .xsl" ;

When the button is clicked, the Web Service is accessed to obtain the XML resulting from the XQuery
expression passed in as a string parameter to one of the two web methods, in this case SearchNavCol4.

Now that we know how the applications work, we can start to set up a test machine, and get to work
with ACT. I have used a desktop PC, a Dell GX240 with a single Intel Pentium 4 CPU running at 1.5
GHz, and equipped with 256 MB of RAM, and a 20 GB HD. To set up the machine, I applied the
following software installation procedure - note that the order in which the software is installed is
important, because some components depend on others already being installed:

Q Windows 2000 Server SP2, without any change

a SQL 2000 Server with SP1
Q Windows Installer Service 2.0
a MSXML 4.0 RTM SP1

a SOAP Toolkit 2.0 SP2
Q SQLXML 3.0 RTM
a MDAC 2.7
a .NET Framework SDK 1.0 RTM with SP1 applied
Q MS XQuery Demo 1.0
Q If you test through a firewall, install MS Proxy Client 2.0 or the ISAServer Client (if you

install this, check the Bypass proxy server for local addresses option in Internet options to
ensure that the proxy will not interfere the tests in any way)

Q Set up the directories containing the XquerySearchEngine, XquerySearchEngineWS,
and WS_XQuerySearchEngine applications as Virtual Directories using Internet Services
Manager. ASP.NET will compile when the first HTTP Request is received. Also, as said before,
don't forget to first set up and test the virtual directory northwind for the SQL Query templates,
using SQLXML 3.0's "Configure IIS Support" program. Then, test the Web Service before using
it in VS.NET by pressing F5, and making use of the example queries.

The first two and the proxy client for the final point are commercial products, but the rest is freely
downloadable from the Microsoft MSDN site (apart from the XQuery demo which can be found at
http://xqueryservices.com/Setup/xquery.msi).

When copying or moving project directories for use in VS.NET, it can happen that the virtual directory
that was originally used to run the project is not correct anymore. When VS.NET shows you the next
screen, even after you have created the virtual application using the Internet Service Manager (ISM),
check the first option, as shown here:

350

Performance

Web Access Failed
The default Web access mode for this project is set to file share, but the project folder at
'http;//localhost/XQuerySearcnEngine' cannot be opened with the path 'E:\www\web\XQuerySearchEngine'. The
error returned was:

Unable to open Web project 'XQuerySearchEngine', The fite path 'E:\www\web\XQuerySearchEngine'
does not correspond to the URL 'http /̂localhostyXQuerySearchEngine'. The two need to map to the
same server location. HTTP Error 404; Object Not Found

What would you Ike to do?
(• Retry using a different file share path

Location: I E:\www\web\XQuerySearchEngine
f~ Try to open the project witti FrontPage Server Extensions r

work off line

Cancel Help

After choosing the first option, use the browse button to navigate to the correct location path of the
project, and click OK.

Creating Tests

ACT was used to run various tests on the applications. My system does not represent a production
testing environment because the machine houses all three tiers locally - the database, the Web Server
(IIS and ASP.NET), and the ACT testing tool. Depending on the production environment envisaged,
these would normally be set up on different machines, with ACT running on a separate machine to
prevent its own resource demands adding 'noise' to the test results.

New test scripts are easy to set up in ACT. We create new test scripts with the New Test Wizard, which
records a web session, or sets up skeleton test scripts to which we can add to create custom tests.

Getting Started
with Microsoft
Application Center Test

Application Center Test enables
you to gather performance
information and make capacity

Application Center Test Basics

Creating a Test
Application Center Test provides :
methods of capturing trie most irr
in your Web application. Use the
best meets your accuracy needs.
Center Test offers different test t

When recording a web session, it generates a corresponding script in VBScript. It is quite possible to
modify generated scripts afterwards for particular needs.

ft ACT_XQuerySearchEngine -

F8e Edit View Actions Help

] Tests
\ XQSEcs] XQSEcs2 j
XQSEvb Hi XQSEvb2 S
XQSEcsws H
XQ5Ecsws2 jfj
XQSEvbws i
XQSEvbwsZ \
XQSEcsws2e gl
XQSEvbws2e [My
Results ffl Sil Users

Once we've completed the web session that we want to record, we stop the recording, and name the test
script, which then appears in the right-hand windowpane. Note that in the previous screenshot, the test
scripts were already present. Before we run each test script though, we need to make sure that it is set up
correctly. To do this, open the property page by right-clicking the test and choosing Properties:

XQSEcs Properties

General j Users | Counters |

Configure the amount, duration, and other settings for this test.

Test load level
Simultaneous browser connections:

Test duration
(* Run test for a specific duration:

Warm up time (seconds):
Run lime (dd:hh:mffi:ss):

10

o-M

("* Run test a specific number of times:

Advanced.,.

Cancel Hefp

The General tab lets us set the load level for the test in terms of concurrent browser connections (to
simulate multiple users requesting the page at once), and the duration of the test, as a time or by
specifying the iterations to run. Also, we can specify a warming up time (used to gradually increase
server load, thereby simulating a more realistic test), to damp the effect of the sudden load change as the
web server starts up, which would otherwise skew the results.

The Users tab lets us choose between automatically generating users or specifying particular ones in the
left pane. In this case, we can use the default behavior and have ACT automatically generate users. We
can also manually generate users by selecting Actions I Generate Users, or even import users by
selecting Actions I Import Users, and then opening a comma delimited file (. txt or . csv).

The Counters tab lets us define the interval between collecting the counter values. I set this to 5
seconds, and added the following counters in the counter area:

352

Performance
ttEDTIMDCE6P\Processor(_Total)\% Processor Time
\\EDTIMD026P\Memory\AvailableBytes
\\EDTIMD026P\Memory\Pages/sec \\EDTIMD026P\ASP.NET\Worker

Process Restarts \\EDTIMDC26P\ASP.NET\RequestsQueued
\\EDTIMD026P\ASP, NET\Requests Rejected
\\EDTIMD026P\ASP.NET Applications(_Total_)\Requests/Sec
\\EDTIMD026P\ASP.NET Applications(_Total_)\Requests Executing
\\EDTIMD026P\ASP.NET Applications(_Total_j\Errors Total
\\EDTIMD026P\ASP.NET Applications(_Total_)\Sessions Active

Add or remove performance counters for the Web server, test
clients, or other computers you want to monitor during test runs,

Add.,. Remove

J Cancel Help

In fact, counters added to a test are recorded in an XML document, like this one
(perfCounters-XQSEcs .xml):

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE PerfCounters> <PerfCounters>

<Counter name="\\localhost\Processor(_Total)\% Processor Time"/>
<Counter name="\\localhost\Memory\Available Bytes"/>
<Counter name="\\localhost\Memory\Pages/sec"/>
<Counter name="\\localhost\ASP.NET\Worker Process Restarts"/>
<Counter name="\\localhost\ASP.NET\Reguests Queued"/>
<Counter name="\\localhost\ASP.NET\Requests Rejected"/>
<Counter name=

"\\localhost\ASP.NET Applications (__ Total) \Requests/Sec"/>
<Counter name=

"\\localhost\ASP.NET Applications (_ Total _) \Requests Executing" />
<Counter name=

"\\localhost\ASP.NET Applications (__ Total) \Errors Total"/>
<Counter name=

"\\localhost\ASP.NET Applications! _ Total _) \Sessions Active"/>
</PerfCounters>

This document is another example of the widespread use of XML in new software products. ACT also
uses XML for the test result reports, and for the test properties. Just open the
ACT_XQuerySearchEngine project, where you can examine each of the listed files.

unapier

Now, let's see what ACT can do for us when trying to optimize our Web Application.

The ACT_XQuerySearchEngine Project

The ACT_XQuerySearchEngine project from the chapter download material aims to demonstrate the
use of ACT, and to demonstrate that different implementations of the same application can affect
overall performance in different ways. If you open it now, you'll find that it contains the following
prerecorded tests:

Test Name Description

XQSEcs

XQSEvb

XQSEcs2

XQSEvb2

XQSEcsws

XQSEvbws

XQSEcsws2

XQSEvbws2

This test comprises four HTTP Requests to the XQuerySearchEngine
project, using the navigator collection with four separate navigators:

Q requests the /XQuerySearchEngine/OrderSearch.aspx file
with the GET method

Q gets the /XQuerySearchEngine/inc/orderdetails.js script file
G this is the request when the button " Find Order Details

by Customer" is pressed; it gets the
/XQuerySearchEngine/OrderSearch.aspx page again,
passing the viewstate in oRequest . Body

Q when the results are returned, this request gets the gif file at
/XQuerySearchEngine/ images/plus .GIF

This is the same test, but run on the VB.NET version of the above project,
XQuerySearchEngineVB. It calls the corresponding files, adding the name
suffix " . vb".

This test is similar to the first project, XQuerySearchEngine, but the four
requests are done at the project files with the name suffix "2", thereby
addressing the navigator collection with one big navigator.

Same test as XQSEvb, but addressing the project files with suffix "2", thus
using the singular big navigator collection.

Same as the XQSEcs script, but it uses a "WS" suffix, thereby using the Web
Service client, which in turn accesses the Web Service to query the
4-navigator collection.

Same as the XQSEvb script, but it uses the "VBWS" suffix, and thus uses the
VB version of the Web Service client, which in turn accesses the Web
Service to query the 4-navigator collection.

Same as the XQSEcsws script, but is makes requests to the
OrderSearch2WS . aspx page; therefore it uses the Web Service to query
the singular big navigator collection.

Same as the XQSEvbws script, but making a request to the
OrderSearch2VBWS . aspx page, thus using the Web Service to query the
singular big navigator collection.

354

Performance

Test Name Description

XQSEcsws2e Same as XQSEcsws2, but this time the Web Service is installed on another
server, thereby demonstrating the possibility of remote access.

XQSEvbws2e Same as XQSEvbws2, but also accessing the Web Service on a remote machine.

When you open this project, the above tests will appear in the left-hand tree view. As you click on each
test in the tree view, the right pane shows the VBScript that will be executed when that test is run:

fg ACT_XQuerySearchEngine - Microsoft Application Center Test - [Tests r XQSEcs]
fie E* View Actions
Help
j g=|y| li ijail gj
B ^ ACT_XQuerySearchEngine

B-% ests T

Click to add notes

S XQSECS2 Si
XQ5Evb g|
XQSEvb2 |l
XQSEcsws [|
XQSECSWS2 j| |
XQSEvbws gj
XQSEvbws2 j
XQSEcstvs2e I,
XQSEvb«s2e 3
Results ! Users

Option Explicit
Din fEnableDelays
fEnableDelays = False
Sub SendRequestlO

Din oConnection, oRequest, oResponse, oHeaders,
strStatusCode If fEnableDelays - True then Test.Sleep <0>
Set oConnection = Test.CreateConnection<"localhost", 80, false) If
(oCo nnection is Nothing) Then

connection to localhost" Else Test.Trace "Error: Unable to create Set oRequest - Test.CreateRequest
oRequest.Path = "/XQuerySearchEngine/OrderSearch.aspx"
oRequest.Uerb = "GET"

"
oRequest.HTIPUersion • "HTTP/1.0

ders = oRe uest.Headers set oHea q oHeaders.Renoueflll
oHeaders.Add "flccept", "inage/gif, inageXx-xbitnap, inage/jpeg

j«J

The scripts specify localhost as the target machine, so you'll need to change that to the target server
name if you're running the tests remotely.

The test scripts are regular VBScript files, such as XQSEcs . vbs shown above, containing a number of
subroutines, each one representing an HTTP Request. There is also a Main subroutine that calls each
Request subroutine in turn:

Sub MainO
call SendRequestl()
call SendRequest2()
call SendRequest3()
call SendRequest4()

End Sub

The command Main, appearing right at the end of the script, starts the test run. Let's take a look at the
code of the SendRequestl subroutine (of the file XQSEcs . vbs) in a little more detail:

Sub SendRequestl()
Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode If
fEnableDelays = True then Test.Sleep (0)

Set oConnection = Test.CreateConnection("localhost", 80, false) If
(oConnection is Nothing) Then

Test.Trace "Error: Unable to create connection to localhost" Else
Set oRequest = Test.CreateRequest
oRequest.Path = "/XQuerySearchEngine/OrderSearch.aspx"
oRequest.Verb = "GET" oRequest.HTTPVersion = "HTTP/1.0"
set oHeaders = oRequest.Headers oHeaders.RemoveAll
oHeaders.Add "Accept", "image/gif, image/x-xbitmap, image/jpeg," _ +
"image/pjpeg, application/vnd.ms-powerpoint," _ +
"application/vnd.ms-excel, application/msword, */*" oHeaders.Add
"Accept-Language", "en-us" oHeaders.Add "User-Agent", "Mozilla/4.0
(compatible; MSIE 6.0;"

+ "Windows NT 5.0; .NET CLR 1.0.3705)"
'oHeaders.Add "Host", "localhost" oHeaders.Add "Host",
"(automatic)" oHeaders.Add "Cookie", "(automatic)" Set
oResponse = oConnection.Send(oRequest) If (oResponse
is Nothing) Then

Test.Trace "Error: Failed to receive response for URL to " _
+ "/XQuerySearchEngine/OrderSearch.aspx"

Else
strStatusCode = oResponse.ResultCode End

If
oConnection.Close End

If End Sub

The first line determines if the process has to pause (sleep) for a specified amount of milliseconds (in this
case, the test always results in false as the test variable is set to false at the beginning of the test script):

If fEnableDelays = True then Test.Sleep (0) Then, the connection to the web

server is opened, and the request is created by setting various properties:

Set oConnection = Test.CreateConnection("localhost", 80,
false) If (oConnection is Nothing) Then

Test.Trace "Error: Unable to create connection to
localhost" Else

Set oRequest = Test.CreateRequest
oRequest.Path = "/XQuerySearchEngine/OrderSearch.aspx"
oRequest.Verb = "GET"
oRequest.HTTPVersion = "HTTP/1.0"
set oHeaders = oRequest.Headers
oHeaders.RemoveAll
oHeaders.Add "Accept", "image/gif, image/x-xbitmap,

image/jpeg," _ + "image/pjpeg,
application/vnd.ms-powerpoint," _ +
"application/vnd.ms-excel, application/msword, * /*"

oHeaders.Add "Accept-Language", "en-us"
oHeaders.Add "User-Agent", "Mozilla/4.0 (compatible; MSIE

6 . 0 ; " _ + "Windows NT 5.0; .NET CLR 1.0.3705)"

356

Performance

1oHeaders.Add "Host", "localhost"
oHeaders.Add "Host", "(automatic)"
oHeaders.Add "Cookie", "(automatic)"

Then, the request is sent by executing the following line of code:

Set oResponse = oConnection.Send(oRequest) The web server processes

the request, and finally returns the result in the oResponse object:

If (oResponse is Nothing) Then
Test.Trace "Error: Failed to receive response for URL to "

+ "/XQuerySearchEngine/OrderSearch.aspx"
Else

strStatusCode = oResponse.ResultCode End
If

Finally, the connection object is closed, and the request subroutine is ended:

oConnection.Close
End If

The next request, SendRequest2, is a request for the client JavaScript file, orderdetails . j s, which
runs on the client when the plus sign is clicked on one of the orders.

Any parameters needed for a subsequent request can be passed along in ACT, as the following example
of SendRequest3 shows - note that not all code is shown, for readability:

Sub SendRequest3()
Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode If
fEnableDelays = True then Test.Sleep (5219)
Set oConnection = Test.CreateConnection("localhost", 80, false) If
(oConnection is Nothing) Then

Test.Trace "Error: Unable to create connection to localhost" Else
Set oRequest = Test.CreateRequest
oRequest.Path = "/XQuerySearchEngine/OrderSearch.aspx"
oRequest.Verb = "POST"
oRequest.HTTPVersion = "HTTP/1.0"
oRequest.EncodeBody = False
set oHeaders = oRequest.Headers
oHeaders.RemoveAll
oHeaders.Add "Accept", "image/gif, image/x-xbitmap, image/jpeg," _ +

"image/pjpeg, application/vnd.ms-powerpoint," +
"application/vnd.ms-excel, application/msword, */*"

oHeaders.Add "Referer",
"http://localhost/XQuerySearchEngine/OrderSearch.aspx"

oHeaders.Add "Accept-Language", "en-us"
oHeaders.Add "Content-Type", "application/x-www-form-urlencoded"
oHeaders.Add "User-Agent", _ "Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.0; .NET CLR 1.0.3705)"

1oHeaders.Add "Host", "localhost"
oHeaders.Add "Host", "(automatic)"
oHeaders.Add "Pragma", "no-cache"
'oHeaders.Add "Cookie", "ASP.NET_SessionId=xizuom55qgfd5y55nlgOrp45"
oHeaders.Add "Cookie", "(automatic)" oHeaders.Add "Content-Length",
"(automatic)"
oRequest.Body = "__VIEWSTATE=dDwtMTYOODE3MDkl03Q8O2w8aTwxPj s%2B02w8"
oRequest.Body = oRequest.Body _

+ "dDw7bDxpPDM%2BOz47bDxOPHQ803A8bDxpPDA%2B02k8MT47aT"
oRequest.Body = oRequest.Body _

+ "YXpkPjs%2BPjs%2BOzs%2BOz4%2BOz4%2BOz6EG5n5jATKuVSw"

oRequest.Body = oRequest.Body _
+ "qLETuoAcmabYMQ%3D%3D&lstCustomer=Alfreds+Futterkis"

oRequest.Body = oRequest.Body _
+ "te&Buttonl=Pind+Order+Details+by+Customer" Set

oResponse = oConnection.Send(oRequest) If (oResponse is Nothing)
Then

Test.Trace "Error: Failed to receive response for URL to " _
+ "/XQuerySearchEngine/OrderSearch.aspx"

Else
strStatusCode = oResponse.ResultCode End

If
oConnection.Close End If

End Sub

The first line;

If fEnableDelays = True then Test.Sleep (5219)

lets the process sleep for 5,219 milliseconds if the test variable would resolve to true, but as said, this
feature has not been used here.

Then, as with the other requests, a new connection to the web server is attempted, and when successful,
the request's properties are set:

Set oConnection = Test.CreateConnection("localhost", 80, false) If
(oConnection is Nothing) Then

Test.Trace "Error: Unable to create connection to localhost" Else
Set oRequest = Test.CreateRequest
oRequest.Path = "/XQuerySearchEngine/OrderSearch.aspx"
oRequest.Verb = "POST"
oRequest.HTTPVersion = "HTTP/1.0"
oRequest.EncodeBody = False
set oHeaders = oRequest.Headers
oHeaders.RemoveAll
oHeaders.Add "Accept", "image/gif, image/x-xbitmap, image/jpeg," _ +

"image/pjpeg, application/vnd.ms-powerpoint," _ +
"application/vnd.ms-excel, application/msword, */*"

oHeaders.Add "Referer", _
"http://localhost/XQuerySearchEngine/OrderSearch.aspx"

358

Performance

oHeaders.Add "Accept-Language", "en-us"
oHeaders.Add "Content-Type", "application/x-www-form-urlencoded"
oHeaders.Add "User-Agent", _

"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.0.3705)"
'oHeaders.Add "Host", "localhost" oHeaders.Add "Host", "(automatic)"
oHeaders.Add "Pragma", "no-cache"

For example, here the header is assigned a cookie, containing the ASP.NET Sessionld:

1oHeaders.Add "Cookie",

"ASP.NET_SessionId=xizuom55qgfd5y55nlgOrp45" and then another cookie, containing the

viewstate information:

oHeaders.Add "Cookie", "(automatic)"
oHeaders.Add "Content-Length", "(automatic)"
oReguest.Body = "_ VIEWSTATE=dDwtMTYOODE3MDkl03Q802w8aTwxPjs%2BO2w8"
oRequest.Body = oRequest.Body _

+ "dDw7bDxpPDM%2BOz47bDxOPHQ803A8bDxpPDA%2B02k8MT47aT"
oRequest.Body = oRequest.Body _

+ "YXpkPjs%2BPjs%2BOzs%2BOz4%2BOz4%2BOz6EG5n5jATKuVSw"

Note that next the parameter passed is resolved to the value of the Customer dropdown listbox, which
was selected before the button Find Order Details by Customer was clicked:

oRequest.Body = oRequest.Body _
+ "qLETuoAcmabYMQ%3D%3D&lstCustomer=Alf reds+Futterkis"

oRequest.Body = oRequest.Body _
+ "te&Buttonl=Find+Order+Details+by+Customer"

Then, the request is sent to the web server:

Set oResponse = oConnection.Send(oRequest) Then,

the web server's response is processed:

If (oResponse is Nothing) Then
Test.Trace "Error: Failed to receive response for URL to "

+ " /XQuerySearchEngine/OrderSearch.aspx"
Else

strStatusCode = oResponse.ResultCode End
If

Then, the connection is closed, and the request subroutine ends:

oConnection.Close End
If

This explanation is representative to all the tests run with ACT with regard to this demo.

unapter lu

The Test Results

ACT records reports in XML format. The project properties are also saved in XML format.

Now run the test, by clicking the Start Test button in the horizontal toolbar. A test screen will show up,
and after a while the test starts to run. Click the Show Details button to see the results graph being
created in real time while the test continues, as the screenshot of the XQSEcs test shows below:

in- Test Status XQSEcs
Status: The test is now running.

00:00:03:46 74RPS
341 Total R.equests

Stop Test « Hide Details

Graph I Status I
100 150 200

250 300
Test Time (sees)

For example, this graph shows us that after an initial delay (which is caused by system start up, and really
should be ignored as has been mentioned before in this chapter), the graph is dynamically created and the X-
and Y-axis are adjusted automatically when the test progresses. This is a really cool feature of ACT, and a
big improvement compared to the old WAS Tool, as this tool lacked graphical output completely.

Another thing to note in this graph is that various test items are shown, like Requests/sec, HTTP
errors/sec, DNS errors/sec, Socket errors/sec, and in this case GRAYAREA RPS. The first, Requests/sec,
indicates the throughput of the web server and is considered a principal indicator of general web
application performance. The other parameters are important also and are self-explanatory-In this case, the
HTTP errors/sec (red line) indicates there were quite a few errors during the HTTP requests made, possibly
indicating a web server's incapacity to respond adequately and within time limits

360

Performance

Once all the tests have been run with different concurrent browser connections, for example 1, 2, 4, 8,
16, 32, and 64, we can start to browse the results and see what graphs ACT can generate to help us
compare them.

With ACT, it is possible to create many different types of graphs. Many of them are of little relevance to
what is actually needed. In general, you as the tester are the one who has to (and can) make the decision
as of which types are relevant to the purposes of the performance test being done.

For example, an interesting graph is displayed if we click the Results node in the left-hand pane and
choose Graphs from the Report listbox in the upper right corner. You'll see something like this:

fe ACT XQuerySearchEngine - Microsoft Application Center Test
File Edit View Actions Help

.JflJ.x|

I ACT_XQuerySearchEn
| Tests g XQSEcs

i XQSECS2
g| XQSEvb

JXQSEvb2 if,
XQSEcswS S
XQSECSWS2 gj
XQSEvbws

i XQSEvbws2
B XQSEcsws2e
g XQSEvbws2e

Users
Default Users Group

report-XQSEcs2-Apr 13, 2002 12-45-04
report-XQSEcs2-Apr 13, 2002 12-42-33
report-XQSEcs2-Apr 13, 2002 12-40-09
report-XQSEcs2-Apr 13, 2002 12-37-41
report-XQSEcs2-Apr 13, 2002 12-35-20
report-XQ5Ecs2-Apr 13, 2002 12-32-37

Report'

Requests/sec (avg) vs. Test Runs

|
S 50'

Requests/sec for XQSEcs2

2 3 4 5 6 7

Test Runs

Done INUM |

In the above graph, only the reports for the XQSEcs2 test run have been selected and displayed.

Now deselect all the test runs, and then open all the tests in turn from top to bottom, selecting only the
ones that have the suffix "2" (either C# or VB), and see how the new graph is created. The final result
should resemble the following figure:

Requests/sec avg) vs. Test Runs
4

^ i ,
« \ J

 i
60- S

t

\

(

 \

 S

H

 r

I i

f
L

\

t
-

{ J
-

i S

\

 s^
 I* 5

8

J
*

1

i
?

>
i

*
N

/ CV * g — Bequests/sec fa XQSEvbws2e
^^-Requests/secfoa-XQS£csws2e •4*-
Requests/'sec for XQ SE vbws2
-i>-Requests/'secfotXQSEcsws2
-»-Requesti/secfo(XQSEvb2 ^
Requerfs/sec for XQS£cs2

4 I 0 r \ a

 2 6 7 S 9 10111 21314151617181920212223242526272829303132333435363738394041424344

Test Rune

The above graph shows us the following. On the Y-axis, the requests per second are shown in the range from 0
to 100. On the X-axis, the Test Runs are shown, in the order that you select them in the Test Run windowpane.

From the graph we can observe how the various tests ran using different implementations and
languages. For example, there's not much difference in using C# and VB, which is of course predictable
when you know that .NET run-time code does not depend heavily on the language used.

What is more interesting here to note is that the throughput in the first two test runs is much higher than
the rest of the four test runs. Remember that the first two used the singular navigator collection, created
in the Global. asax of the project, and that the other four tests used the Web Service to access the
singular navigator collection and run the query expression. This means that the Web Service does add
some overhead to the application and bogs down general application performance.

Another thing to note is that with increasing concurrent users, the general throughput is not affected
very much, and is variable; in some cases it first decreases and then increases as the load increases, but
in other cases it is vice versa, or only increases.

Last thing to note here is that accessing the Web Service locally or remotely has very little effect on the
general performance, but as can be seen, it does have a small negative effect.

What to learn from this? Well, in general, do not use Web Services if not absolutely necessary, as they
add overhead to the application and therefore can decrease significantly general application
performance (RPS).

Another useful graph can be created by combining all the C# tests into a single graph of requests per
second versus test runs:

362

Performance

Requests/sec (avg) vs. Test Runs

 < \ > >

 N

>

-
«

?

1 co

1

 i r
1

r
1

S

r
-
1

H

H

1

—
 '_

*
it

>
>

/ > \
Hfc* Requests/sec lot XQSEcsws •N-
Requests/sec for XQSEcs
•^VRequesis/'sec fojXQSEcsws2e
-^Requests/sec fot XQSEcsws2 -*-
Requests/sec fofXQS£cs2

40- !

:
M

M

N

•

 i r
t

H

N t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 Test Rune
 The first test run shows the results of the XQSEcs script, which used the four-navigator collection to

execute the query expression and display the results. It has a very low throughput, a little below 10.

Then, the next test shows the results of the XQSECS2 script, which queried the singular navigator
collection, and as you can see it has a much higher throughput, which lies around 80. Then, the next
test shows us the results of the XQSECSWS script, showing a low throughput again, which resembles the
first test, XQSEcs. It uses the Web Service, and obviously the overhead added by the Web Service is (in
this case) not of importance since the results are almost the same.

The fourth test shows us the results of the XQSEcsws2 script, which should be compared with the
second test, XQSEcs2. Here, the only new factor is that the script is using the Web Service locally to
query the navigator collection. The last test, XQSECSWS2, shows a similar graph to the XQSECSWS2, but
with a slightly lower throughput, because of the Web Service being accessed remotely.

Another worthwhile chart plots TTFB and TTLB results against test runs. The following screenshot
shows the sort of thing we'll see if we select all test runs performed:

Time to last byte - TTLB (avg) vs. Test Runs

 » 1

+ 3
mV **

3 '
1 1 M * °
 q

4 l""""li"""l' <?

y

0 TTFB(msecs]loiXQSEvbws2e 0-
TTLB (msecsl l«XQSE»bws2e »
TTFB (msecs) lotXQSEctwiZe +
TTLB tmsecs] ioXQSEcsws2e -
TTFB(msecs)faXOSEvt»«2 —
TTLB (msecs) toXQSEvbws2 X
TTFB (rnsecs) lor XQSEvbm &
TTLB (msec!) foXQSEvbws a
TTFB (msec!) lor XQSEcsws2 4
TTLB(msecs|fi»XBSEc!i«2 +
TTFB (msecs) lorXQSEcsws -»
TTLB (msecs) lor XQSEcsws —
TTFB (msecs) lorXOSEvbS ®< TTLB
(msecs) for XQSEvb2 * TTFB
(msecs) (or XQSE»b - TTLB
(msecs) [otXQSEvb A TTFB
(msecs) («XaSEcs2 X TTLB
(msecs) lotXdSEcs2 o 1 1 l'FrffisJjj!$£l"i 1 IJTv>fcc>J-4-4-l-i-4-P'̂ B

1 23456789iatia349S7iaid1222'222^aS03
Test saM ssontasMHMMisiBzstsffiEaiiiEreasB

Rum

unapier _LU

You may recall that the TTFB is the time it takes the web server to process the request with page
buffering turned on. You also may remember that the TTLB is the time that takes the web server to
complete a request, including having returned the response back to the client.

With this in mind, the first thing to be noticed from this graph is that the lower the outcomes, the better
the result is. So, in general, the scripts that used the singular navigator collection have the lowest
response time, therefore allowing a higher throughput (RPS).

Furthermore, although it is maybe a bit difficult to see in this graph, the TTFB is almost equal to the
TTLB time, indicating that returning the response to the client takes almost no time.

Then, comparing each test run, it becomes clear that, as we have seen in earlier graphs, the introduction
of the Web Service, locally, does have a considerable negative effect on the maximum throughput. Also,
remotely accessing the Web Service as can be seen in the last two graph lines on the right side increases
even more the time that it takes for the web server to respond.

Finally, the performance counters data can be displayed, but there is no graph generated. If you want
graphs displayed, use the Performance monitor program, add the counters, run it on the web server, and
take screenshots from it while running the load tests. You can also log the monitor session, and then use
the resulting text file to produce the graphs you need. ACT does generate a useful report though, as can
be seen in the following figure:

...—*.,.!.I..,..,..—......Li.
Ffe E* View Actions Help

B ^
ACT_XQuerySearchEngi
ne ^ T e s t s port-XQSEcs-Apr 13, 2002 12-27-41

eport-XQSEcs-Apr 13, 2002 12-25-12
eport-XQSEcs-Apr 13, 2002 12-22-51
eport-XQSEcs-Apr 13, 2002 12-18-58

XQSEcs
XQSECS2
XQSEvb
XQ5Evb2
XQ5ECSWS
XQ5Ecsws2
XQSEvbws

report-XQ5Ecs2-Apr 13, 2002 12-12-33
report-XQSEcs2-Apr 13, 2002 12-40-09
report-XQSEcs2-Apr 13, 2002 12-37-41

XQSEvb«s2
XQSEcs ws2e
XQSEvbws2e

Users
ACT_XQuerySearchEngine: XQSEcs2

Application Center Test
Overview: Performance Counters

report-XQSEcs2-Apr 13, 2002 12-45-04 Test Name:
Test Run Name:
Test Started:
Test Duration:
Test Iterations:
Test Notes:

4/13/2002 12:43:02 PM
00:00:02:00
2,593

\\EDTIMD026P\Processor\<Vb Processor Time_Total
Minimum:
Maximum:
Average:
25th Percentile
50th Percentile
75th Percentile

0.00 98.70
91.20
94.99 95.57
96.64

In this screenshot, you can see some interesting results from the performance counters. The minimum,
maximum, and average are displayed for each counter, together with three Percentiles. There is no
graph displayed here though.

364

Performance

If you have installed the ACT project directory from the chapter's download material, you can have a
look for yourself at the graphs that are shown when you click on the Summary option of the Report
Overview. For example, interesting graphs show up where the requests are plotted against time and
when including different test runs.

Finally, I installed the XML Web Service on another machine (Dell GX110, Intel PHI CPU 800MHz, 128
MB RAM, and a 20 GB HD) with exactly the same software configuration indicated earlier in this chapter.
The results were, compared with the other two tests with the Web Service running locally, as follows:

Requests/sec (avg) vs. Test Runs

 J^SH

1 ; . i .

 / 1 sI 1

 ! N\ / n

t L

*

1 i i

\ \ MI /

s

1! vi 1

1
•

-*- Requests/sec for XQSf vbws2e

•^Requests/sec for XQSEvbws2 -tV-

Requests/see forXQSEcsws2e ^-

Requests/sec forXQS£csws2

•"fr-Requests/see for XQSEcsws

4 M

y
<

M

>

 4 i 9 1d 11 12131415161718192021 22232425262

Test Runs
7 28 29 30 31 32 33 34 35 36

!

You can clearly see here that performance is best (read the highest Requests Per Second, or RPS) when using
C#, and when running XQueries over the single big navigator collection. The test runs where the XML Web
Service was remotely accessed performed a bit less well, because this introduces network access.

For contrast, the results of the test where the four-navigator collection was used were also included
(XQSEcsws, the first one shown), the change to using one big navigator improved application
performance dramatically. This shows again how ACT can really help decide between alternative
techniques when we are faced with a choice.

Summary

The chapter started off with a general discussion of the factors that affect application performance, and
looked at some key ways to improve performance in XML ASP.NET applications. These included
caching, data access, and working with strings. We moved on to look at ASP.NET's very powerful and
effective trace facility, which provides a view right into the heart of the ASP.NET processing engine,
and can be very useful for pinpointing areas of an application that require streamlining.

After this, we briefly summed up the other avenues that are available for measuring performance in
ASP.NET, namely profiling services, performance counters, and analyzing performance with sampling.
Lastly, we took a detailed look at Application Center Test (ACT), from setting up the test machine,
creating and running the test scripts, through to interpreting the ACT test results.

I hope the chapter has given a useful overview of how the performance of an application can be measured
and improved. I also hope that it's underlined the importance of this issue: it's one which should never be
overlooked if we are to make professional production-standard web applications that we can be proud of.

A Web Services Case Study - An
E-Commerce Business Engine

In Chapter 8 we looked at e-business and XML, and developed an appreciation of the standards that
underpin XML Web Services. In this chapter we're going to build on that foundation and examine a
simplified e-commerce business engine, which is exposed as a Web Service. Over the course of the case
study we'll be pulling together a number of previously encountered topics - we'll use a wide variety of
the .NET XML classes, including transformations and serialization, as well as performing a fair amount
of manipulation of the XmlDocument. Additionally we'll be making great use of the Xml interface
provided by the DataSet class.

Since this case study makes use of a number of classes and style sheets, we won't be exhaustively
listing every line of code; what we will be doing is explaining the design of the engine, highlighting
interesting aspects of its implementation, and illustrating how it can be used. Full working code,
including database scripts, is available from www.wrox.com.

Over the course of this study we'll:

Q Describe the design of the e-commerce engine

Q Set up a small trial database

Q Highlight and discuss the most important sections of code in the engine itself

Q Implement a simple front-end (an online shop) to demonstrate use of the engine

Before we dive into the practical details though, let's just pause and briefly consider why we should care
about XML Web Services.

Web Services - For All?

XML Web Services are a cornerstone of the .NET Framework and they come into their own their own in
two main areas:

Q Distributed

computing Q

Application integration

The former allows us to access common functionality no matter where it is located, be it internal or external to
our organization; the latter allows us to provide interfaces to different systems, (in particular legacy systems),
providing them with an efficient and relatively easy method to communicate with each other.

XML Web Services represents a mechanism that takes Microsoft's DNA architecture to a new level. Not
only can we easily split our presentation, business logic, and data layers, but we can distribute them as
well. There is no longer any need to have all our application's components running in the same
environment: they could be on different servers within our organization, or provided by an organization
on the other side of the world. We can now build our applications by simply consuming any amount of
third-party functionality exposed as XML Web Services without any need to download and install a
COM package.

Let's make a bold prediction: we are about to witness the age of business engine applications that have
all the business logic and data access but none of the presentation layer. Their functionality will be
delivered as a collection of Web Services to be consumed as the purchaser sees fit, be it via browser,
cell phone, PDA, or whatever.

We may choose to install the engine on our own servers or we may prefer to simply access the engine on
an Application Service Provider's servers. That way we don't have to worry about software updates, the
infrastructure, or availability. And with all our major applications, our accounting package, our CRM
software, our document management system, all running as Web Service based engines, we can provide
a common custom interface to them all via the organization's intranet, extranet, and Internet. Did I
forget to mention we could easily offer global access to internal applications?

Although this may make it sound like the benefits are all for the big end of town, the economies of scale
offered by this approach offer benefits for us all. Now that the application service provider can employ
totally new business models (for example pay-per-use), software that has previously been beyond the
means of smaller organizations, due to initial costs and the infrastructure requirements, can now be
utilized. Furthermore, it can all be accessed through that small organization's very own presentation
layer. Thus, the software accessed may be highly personalized and yet consistent with that organization's
other applications.

An E-Commerce Illustration
To show how this future may be implemented, we're going to investigate how to build a simple e--
commerce business engine. Essentially, the engine will provide the functionality required to support an
online shopping application. However, unlike traditional approaches, we, as service providers, are not
going to provide a front-end presentation layer and nor will our hypothetical small business customers,
the online storeowners, install our code on their servers. They, or their trusty web developer, will
simply build the presentation layer that calls up whatever functionality they require.

368

A Web Services Case Study - An E-Commerce Business Engine

In this scenario the small business is freed from detailed concerns about servers, databases, or th«
development language of the engine. The functions are accessed by Web Services, so, as long as their
chosen platform can make a valid XML Web Services request, then they can run on whatever platform
takes their fancy.

Of course, if they have a server with the .NET platform installed then we could just sell them the engine
and they could install it on their own infrastructure. This may be the preferred approach for B2B
scenarios where trading partner's applications are doing most of the talking, but for now we are going to
assume that the engine will run on our servers.

So, let's turn our attention to the design of the e-commerce engine.

The E-Commerce Engine

The e-commerce engine is going to provide centralized functionality associated with a standard
e-commerce site and has been split into three distinct services:

Q Catalogue

service Q Basket

service Q Order

service

Each one of these services provides the basic methods you would expect of a simple online store- For
example, the catalogue service allows you to retrieve the catalogue hierarchy for building menus, return
a list of products for a category, and get the details for a product.

The client accesses these basic methods by invoking the method of the appropriate service through
SOAP. Since there are over 70 implementations of SOAP, as well as the obvious support for Web
Services in .NET, the client has a wide choice of platforms. They can also use Internet Explorer 6.0 (via
its Web Service behavior) and as Office XP products also offer the ability to consume Web Services,
implementation does not have to involve the traditional web site.

We can visualize a system using the e-commerce engine as follows:

Application Service
Provider (ASP)

Client

As you can see, the customer of the service really doesn't have to build too much. The functionality is
all provided by the Web Services and the data is housed in the engine's databases. No matter what the
platform, the client is really building an enhanced presentation layer: the data layer and almost all the
business logic layer are being housed in the e-commerce engine.

For example, to show a list of products for a category, the client makes a SOAP call to the catalogue
service, passing it the category name. The Web Service queries the database, retrieves the list of
products as an XML document, and returns this document to the client. The client can then either use
an XSLT stylesheet to render the HTML page, or programmatically pull the product information out of
the XML document and format it to HTML. All the while the data is stored centrally, as is the
functionality, and with most SOAP toolkits the process is virtually the same as, say, calling the methods
of a COM component.

The customer (or service consumer) has a dramatically reduced infrastructure requirement because the
application they are running is very simple. In fact, the client only needs to have access to an ISP that
can provide a hosting package that allows scripting (with no database required, IIS hosting that allows
ASP pages is available at the moment for under $10 a month), and they can build an e-commerce
application that is as complicated as the e-commerce functionality will allow.

Of course the engine could be used in a number of different scenarios, three of which are:

Business to Customer
The most likely scenario, as already alluded to, is that it will be used by third parties who create their
own presentation layer, be this in ColdFusion, or via a VB6 application, an ASP.NET web application,
or a traditional ASP web site. Here the traditional COM-based development is just being replacing witt
a Web Service development, although we now have the distinct advantage of not having to worry about
storing the data.

370

A Web Services Case Study - An E-Commerce Business Engine

Business to Business - Portal
A business could use the engine to provide catalogue information to a retail portal. Rather than
constantly having to send catalogue details, the portal could display a list of the business's products by
consuming the catalogue service to generate the category pages.

Bus/ness to Business - Supply Chain
Where a business has customers of varying sizes, the engine could help in providing a means to
delivering order processing to a wide variety of platforms and applications. The business's larger trading
partners may want to use their own applications to perform the generation of an order, and thus can
consume the catalogue service to get catalogue details, and the order service to post an order.

For smaller customers, the business may create a web site for ordering, in which case it can make full
use of all the services, or produce a simple Excel spreadsheet that could automatically update itself with
catalog information and could even post an order.

Demonstrating the Concept

Our main aim in this study is to investigate how XML and XML Web Services can be used to meet
practical needs. Obviously real world e-commerce applications are quite complex in order to meet the
demands of error handling, high functionality, scalability, and so forth - here we are just going to
concentrate on the overall approach to show how the concept may be realized. Even this simple study
generated a substantial amount of code so, within the body of the chapter, we'll concentrate on the most
interesting code from the application, which is included in full in the book's download material.

The case-study code consists of three main parts:

Q Description of a very simple database (here described for Access, but the download also
contains SQL Server set-up scripts)

Q A description of the most interesting parts of the implementation of the Web Services -
the ECommerceEngine project

Q A brief discussion of a web application that can consume the Web Services provided by
the engine - the EComConsumer project

As we may expect from previous discussions, the engine's functionality is delivered via three services:

a The CatalogueService a

The BasketService Q The

OrderService

To give a taste of what lies ahead, let's look at the functionality that those services will provide.

y i i t-i ij t_<1

Cata/ogueServ/ce

Method Description

getHierarchy

getCategory

getItern

searchltems

Returns an XML document containing the menu hierarchy

Returns an XML document containing category details, parent
and child categories, and items for the category

Returns an XML document containing item details and parent
category details for the specified item

Returns an XML document containing the results of searching
categories and items for the search string

BasketService

Method Description

getBasket

createBasket

listBaskets

addltem

removeItern

updateltem

Returns an XML document containing the specified basket's details

Returns an integer containing the basket ID of the new basket

Returns an XML document containing a list of baskets (uses an
age check

Adds an item to a basket (if the item already in basket then
quantity is updated).

Removes an item from the basket

Updates the quantity on an item (if 0 then item is removed)

OrderServ/ce

Method

createOrder

addCustomerlnfo

addShippinglnfo

1i stOrdersByDays

listOrdersByCustomer

getOrder

Description

Creates a new order from an existing basket - returns the order ID

Adds customer information such as billing address to order

Adds shipping information to order

Returns an XML document containing all the orders placed in
the last n days

Returns an XML document containing all the orders for a
customer ID

Returns an XML document containing the details for the
specified order

372

A Web Services Case Study - An E-Commerce Business Engine

Obviously, these are far from exhaustive lists for the functionality required for a commercial application
(for example we haven't provided any methods for back-end administration of the application), but
there should be more than enough to get us through and demonstrate the principle of distributed
business engines.

So the first task is to set up the database backend.

The Database

Which database we use for the engine is a matter of personal preference. The example described here
uses Microsoft Access 2000 (e-commerce.mdb is provided in the code download), simply because it is
widely available but, as the calls to the data all generate their own SQL, it's a simple matter of changing
the connection string to change the database.

We obviously wouldn't go 'public' with an Access backend, we'd probably want to use SQL Server 2000
and exploit SQLXML (as described earlier in this book) but we don't want to get too bogged down in
database specifics.

The database is very simple and has the following form:

OrderRef
OrderCreationDate
CustomerlD

•rderTotal
irderDetail

CategorylD
CategoryName

iategoryDescription
ParentCategorylD

The tables are set up as described below:

Basket

Field Type Indexed

BasketID autonumber yes - unique

BasketCreationDate datetime yes

BasketDe tails memo

Category

Field Type Indexed

CategorylD autonumber ye
s

- unique
CategoryName text (50) ye

s

CategoryDescription memo ye
s

ParentCategorylD number ye
s

Category/tern

Field Type Indexed

CategorylD number yes

ItemID number yes

Item

Field Type Indexed

ItemID autonumber ye
s

- unique
SKU text (20) ye

s

ItemName text (50) ye
s

ItemDescription memo ye

s

ItemPrice currency

Order

Field Type Indexed

OrderlD autonumber yes - unique
OrderRef text(20) yes

OrderCreationDate datetime yes

CustomerlD number yes

OrderTotal currency
OrderDetail memo ____ J

The Categoryltem table enables a 'many-to-many' relationship with the Category and Item tabl<
Also notice that the Category table has a ParentCategorylD column that allows a 'one-to-many
relationship with the categories. Apart from these, the database is clearly simplified and quite
deliberately doesn't include all the relationships one might require for a fully functional service.

374

A Web Services Case Study - An E-Commerce Business Engine

Now we're ready for the main event - implementing the Web Services.

Building the Services

Before we start on the services contained in the ECommerceEngine project it's appropriate to comment
on the development environment you may wish to use. While Visual Studio .NET is wonderful for
building Web Services, you might also want to have a few dedicated XML tools handy for creating and
testing stylesheets, as Visual Studio.NET seems a bit light in that department.

The XMLSpy IDE (www.xmlspy.com) provides an excellent environment for working on any
XML-based document (the Schema creation graphical interface is particularly useful for fast schema
development), and the Xslerator product (www.marrowsoft.com) provides excellent tools for creating and
testing XSLT documents.

The main purpose of this section is to examine the code in the ECommerceEngine project, and to
achieve that we'll be:

Q Examining the CatalogueService class - the methods, highlights of the code, and some
of the XSLT stylesheets

Q Testing the CatalogueService
O Looking at the methods and interesting code in the BasketService

and OrderService classes

We will cover the CatalogueService in some detail, so that you can see how the service fits together,
how we can test it, and how we can consume it - this will mean we can move through the other two
services a little faster.

The CatalogueService

As we saw in our summary table, the CatalogueService provides some basic methods for working
with a catalogue providing methods to retrieve its category hierarchy, a category and its associated items,
an item, and the result of a search.

The Methods
The various methods always return an XmlDocument and all make use of XSLT transformations in
order to make the results a bit more presentable and, in the case of the hierarchy, useful.

Method
Input

Output Comments

getHierarchy
none

XmlDocument
containing the
menu hierarchy

Retrieves a list of categories
from the Category table and
then uses an XSLT style sheet to
nest them according to their
ParentCategorylD.

Table continued on following page

Method Input Output Comments

getCategory

getltem

searchltems

CategorylD
(int)

ItemID int

SearchString
(string)

XmlDocument
containing
category
details, parent,
and items for
the category

XmlDocument
containing
item details
and parent
category
details for the
specified item

XmlDocument
containing the
categories and
items whose
name, or
description,
contain the
search string

Builds a DataSet containing
the results of four queries.
Uses the GetXml method to
load the data into an
XmlDocument. This document
is then transformed to a more
logical format using an XSLT
stylesheet.

Builds a DataSet containing
the results of two queries. Uses
the GetXml method to load
the data into an XmlDocument.
Transforms the document to a
more logical format using an
XSLT stylesheet.

Builds a DataSet containing
the results of two queries. Uses
the GetXml method to load
the data into an XmlDocument.
A new element is created to
hold the search information
before the document is
transformed using an XSLT
stylesheet.

Apart from looking at all four methods, here we'll also cover the XSLT stylesheets used by the
getCategory and getHierarchy methods.

Implementing the Methods of the CatalogueService

Let's step through the code in CatalogueService. asmx. cs and pick out the more interesting bits.

Firstly we have our namespace references, including those related to Web Services and XML:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Diagnostics;
using System.IO;
using System.Text ;
using System.Web;
using System.Web.Services;
using System.Web.Services.Description;
using System.Web. Services . Protocols;

376

A Web Services Case Study - An E-Commerce Business Engine

using System.Xml; using
System.Xml.XPath; using
System.Xml.Xsl;

Next we have the initial declaration and the connection string to the database (here the Access database):

namespace ECommerceEngine {
/// <summary>
/// Provides access to the catalogue
/// Method Description
/// getCategory Retrieves the category, it's child and parent categories
/// and it's Items
/// getltem Retrieves the item and its parent categories
/// getHierarchy Retrieves the category hierarchy
/// search Retrieves a list of categories and items that match search
/// string
/// </summary>
[SoapDocumentService(Use=SoapBindingUse.Literal,

ParameterStyle=SoapParameterStyle.Bare)]
public class CatalogueService : System.Web.Services.WebService
{
string sSource = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=G:/Databases/e-commerce.mdb;";

Our aim is to deal with as clean XML as possible, so we are going to use document style SOAP calls,
and the parameters should have the minimum of extra elements wrapped around them.

The first method we're going to look at is the getCategory method.

The getCategory Method
The getCategory method returns an XML document containing the category details, details of any
parent and child categories, and a list of items that are in this category:

[WebMethod] public XmlDocument getCategory(int
p_iCategoryID)
{
string sSQL = "SELECT Category.* FROM Category WHERE CategorylD = " +

p_iCategoryID.ToString();

XmlDocument objXmlDocument = new XmlDocument();
DataSet objDataSet = new DataSet();

OleDbConnection objConnection = new OleDbConnection(sSource);
objConnection.Open();

// get the category information
OleDbDataAdapter objAdapter = new OleDbDataAdapter(sSQL,objConnection);

Chapter 11___

The DataSet is first filled with the category details:

objAdapter.Fill (objDataSet,"Category"); Then we add the list of items

in this category (using a join on the Categoryltem table):

// get the items for obj category
sSQL = "SELECT Item.* FROM Categoryltem INNER JOIN Item ON

Categoryltem.ItemID = Item.ItemID WHERE Categoryltem.CategorylD
= " + p_iCategoryID.ToString();

OleDbDataAdapter objAdapter2 = new OleDbDataAdapter(sSQL,objConnection);
objAdapter2.Fill (objDataSet,"Item");

Next, we get the list of parent categories (this time we join the category table to itself):

// get the parent category for obj category
sSQL = "SELECT ParentCategory.* FROM Category INNER JOIN Category AS

ParentCategory ON Category.ParentCategorylD =
ParentCategory.CategorylD WHERE Category.CategorylD = " +
p_iCategoryID.ToString();

OleDbDataAdapter objAdapterS = new OleDbDataAdapter(sSQL,objConnection);
objAdapters.Fill (objDataSet,"ParentCategory");

Finally the list of child categories is added:

// get the parent category for obj category
sSQL = "SELECT Category.* FROM Category WHERE ParentCategorylD = " +

p_iCategoryID.ToString();
OleDbDataAdapter objAdapter4 = new OleDbDataAdapter(sSQL,objConnection);
objAdapter4.Fill (objDataSet,"ChildCategory");

The DataSet XML is then loaded into an XmlDocument using the GetXml method. This allows us to
load only the data XML, dropping the Schema XML that is also held in a DataSet:

objXmlDocument.LoadXml (objDataSet.GetXml());

The resultant XML is not in the format that we want, so we transform it to a new format using an
XSLT stylesheet:

XslTransform objXslTransform = new XslTransform();
XPathNavigator objXPathNavigator = objXmlDocument.CreateNavigator();

objXslTransform.Load (Server.MapPath("createCategorylnfo.xslt"));
XmlReader objXmlReader = objXslTransform.Transform

(objXPathNavigator,null);

The XmlReader now has the result of the transformation. We'll create a new XmlDocument, load in the
contents of the XmlReader, and then return the document to the consumer:

378

A Web Services Case Study - An E-Commerce Business Engine

XmlDocument objXmlDocument2 = new XmlDocument () ;
objXmlDocument2 .Load (objXmlReader) ; return
objXmlDocument2 ;

The XSLT transformation is a straightforward re-organization of the document so that it is in a more
logical format - we'll look at the createCategorylnfo .xslt stylesheet at the end of this section.

The get/tern Method
The second method we'll look at is getltem - this method performs a very similar function to
getCategory. Here an XmlDocument containing item details and a list of parent categories
is returned:

[WebMethod]
public XmlDocument getltem (int p_iItemID) {
string sSQL = "SELECT Item.* FROM Item WHERE ItemID = " +

p_iItemID.ToString() ,-

XmlDocument obj XmlDocument = new XmlDocument ();
DataSet objDataSet = new DataSet ();

OleDbConnection objConnection = new OleDbConnection(sSource) ;
objConnection.Open() ;

// get the item information
OleDbDataAdapter objAdapter = new OleDbDataAdapter (sSQL, objConnection) ;
objAdapter .Fill (objDataSet, "Item") ;

// get the categories for obj item
sSQL = "SELECT Category.* FROM Categoryltem " +

"INNER JOIN Category ON Categoryltem. CategorylD =
Category. CategorylD " + " WHERE Categoryltem. ItemID = " +
p_i!temID.ToString() ;

OleDbDataAdapter objAdapter2 = new OleDbDataAdapter (sSQL, objConnection) ;
obj Adapter 2 .Fill (objDataSet, "Category") ;

ob j XmlDocument .LoadXml (objDataSet .GetXml ()) ;
XslTransform objXslTransf orm = new XslTransform() ;
XPathNavigator objXPathNavigator = ob j XmlDocument . CreateNavigator () ;

objXslTransform.Load (Server .MapPath("createltemlnfo. xslt")) ;
XmlReader objXmlReader = objXslTransf orm. Transform

(objXPathNavigator, null) ;

XmlDocument objXmlDocument2 = new XmlDocument () ;
objXmlDocument2.Load (objXmlReader) ,-return
objXmlDocument2;

-L.L

The searchltems Method
In the third method, searchltems, an XmlDocument is generated containing a list of items and
categories whose name or description contains the passed search string:

[WebMethod] public XmlDocument search(string
p_sSearchString)
{

string sSQL = "SELECT Item.* FROM Item " +
" WHERE (ItemName LIKE '%" + p_sSearchString + "%') OR

(ItemDescription LIKE '%" + p_sSearchString + "%')";

XmlDocument objXmlDocument = new XmlDocument();
DataSet objDataSet = new DataSet();

OleDbConnection objConnection = new OleDbConnection(sSource);
objConnection.Open();

// get the item information
OleDbDataAdapter objAdapter = new OleDbDataAdapter(sSQL,objConnection);
objAdapter.Fill (objDataSet,"Item");

// get the categories for obj item
sSQL = "SELECT Category.* FROM Category WHERE (CategoryName LIKE '%" +

p_sSearchString + "%') OR (CategoryDescription LIKE '%" +
p_sSearchString + "%')";

OleDbDataAdapter objAdapter2 = new OleDbDataAdapter(sSQL,objConnection);
objAdapter2.Fill (objDataSet,"Category");

objXmlDocument.LoadXml (objDataSet.GetXml());

Up to this point the code has been very similar to the previous methods; however, in this method, we
want to add a new element to the XmlDocument before it is reformatted. This element is called
<Search>, and it contains, not surprisingly, the details of the search.

Firstly, we need to use the CreateElement method to create the new element:

XmlElement objXmlElement = objXmlDocument.CreateElement("Search");

Now we can set the attributes. First the search criteria:

objXmlElement.SetAttribute ("criteria",p_sSearchString);

Next, how many matches we found. Remember that the input parameters to SetAttribute are both
strings, so any other data types need to be converted to a string first!

objXmlElement.SetAttribute ("itemsMatched",
objDataSet.Tables["Item"].
Rows.Count.ToString());

objXmlElement.SetAttribute ("categoriesMatched",
objDataSet.Tables["Category"].
Rows.Count.ToString());

380

A Web Services Case Study - An E-Commerce Business Engine

Now add the element as a child of the DocumentElement :

objXmlDocument . DocumentElement . AppendChild (objXmlElement) ;

XslTransform objXslTransform = new XslTransform() ;
XPathNavigator objXPathNavigator = ob j XmlDocument .CreateNavigator ();

objXslTransform. Load (Server .MapPath ("createSearchlnf o.xslt")) ;
XmlReader objXmlReader = objXslTransform. Transform

(objXPathNavigator, null) ;

XmlDocument objXmlDocument2 = new XmlDocument ();
objXmlDocument2 .Load (objXmlReader) ; return obj
XmlDocument 2 ;

The getHierarchy Method
Our final method is getHierarchy. This returns an XmlDocument containing the category hierarchy, that
is all the categories listed as children of their parents. Such a hierarchy, may for example, have the form:

<Hierarchy>
<Category>
<CategoryID>l</CategoryID>
<CategoryName>Childrens Clothes</CategoryName>
<Category>
<CategoryID>ll</CategoryID>
<CategoryName>Boys</CategoryName>
<Category>
<CategoryID>lll</CategoryID>
<CategoryName>Boys 0-2</CategoryName>
</Category> <Category>
<CategoryID>112</CategoryID>
<CategoryName>Boys 3-7</CategoryName>
</Category>

</Category>
<Category>
<CategoryID>12</CategoryID>
<CategoryName>Girls</CategoryName>
<Category>
<CategoryID>121</CategoryID>
<CategoryName>Girls 0-2</CategoryName>

</Category>
<Category>
<CategoryID>122</CategoryID>
<CategoryName>Girls 3-7</CategoryName>

</Category>

</Category>
</Category>
</Hierarchy>

Here we are going to generate the hierarchy by dumping the categories to an XmlDocument, and then
use an XSLT stylesheet to rearrange the order for us. Again, the method is very similar to the previous
three, with the action taking place in the XSLT stylesheet (discussed later). This stylesheet takes a flat
list of Category elements and produces the nested hierarchy desired.

[WebMethod] public XmlDocument
getHierarchy ()

string sSQL = "SELECT Category.* FROM Category";

XmlDocument obj XmlDocument = new XmlDocument (); DataSet
objDataSet = new DataSet ();

OleDbConnection objConnection = new OleDbConnection (sSource) ; obj
Connection. Open () ;

// get the item information
OleDbDataAdapter objAdapter =

new OleDbDataAdapter (sSQL, objConnection) ;
objAdapter .Fill (objDataSet, "Category") ;

// load the XmlDocument with the categories obj
XmlDocument. LoadXml (objDataSet .GetXml ()) ;

// produce the nested hierarchy by transforming
XslTransform objXslTransform = new XslTransform() ;
XPathNavigator objXPathNavigator = obj XmlDocument . CreateNavigator () ;

obj XslTransform. Load (Server .MapPath("createCategoryHierarchy .xslt")) ;
XmlReader objXmlReader = objXslTransform. Transform

(objXPathNavigator, null) ;

XmlDocument objXmlDocument2 = new XmlDocument ();
objXmlDocument2 .Load (objXmlReader) ; return
objXmlDocument2 ;

Now we've finished looking at the methods, let's investigate the stylesheets associated with the
getCategory method (createCategorylnf o .xslt), and the getHierarchy method
(createCategoryHierarchy. xslt).

382

! A Web Services Case Study - An E-Commerce Business Engine

createCategorylnfo.xsIt
As we said previously, the XSLT transformation is just to re-organize the document into a more logical
format. As we are generating an XML document, we set the xsl: output method accordingly:

<?xml version="l.0" encoding="UTF-8" ?>
<xsl:stylesheet version="l.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" /> The root element of the GetXml () method is NewDataSet.

We want to replace that with Catalogue:

<xsl:template match="NewDataSet">
<xsl:element name="Catalogue">

To ensure the ordering of the elements, we'll be specific about picking them out. We are going to group
the ParentCategory, ChildCategory, and Item nodes under appropriate parents. The parents are
only created if their respective children are in the document.

<xsl:apply-templates select="Category" />
<xsl:if test="ParentCategory">
<xsl:element name="ParentCategories">
<xsl:apply-templates select="ParentCategory" />

</xsl:element> </xsl:if> <xsl:if test=" hildCategory"> C
<xsl:element name="ChildCategories">
<xsl:apply-templates select="ChildCategory" />

</xsl:element> </xsl:if> <xsl:if test="Item">
<xsl:element narae="Items">

<xsl:apply-templates select="Item" />
</xsl:element> </xsl:if> </xsl:element>
</xsl:template>

The following two templates copy the Category, ParentCategory, ChildCategory, and Item
nodes to the new document:

<xsl:template match="Category | ParentCategory | ChildCategory | Item">
<xsl:copy>
<xsl:apply-templates select="node()" />

</xsl:copy>
</xsl:template>

<xsl:template match="Category/* | ParentCategory/* | ChildCategory/* |
Item/*">

<xsl:copy>
<xsl:apply-templates select="node()" />

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Although not strictly necessary, it is a good idea to create an XML Schema for the XML result. It not
only makes it easier to test the service (you can validate that your input XML and output XML are as
expected) but can also help with the service's WSDL file.

createCategoryHierarchy.xsIt
This stylesheet does all the hard work for the getHierarchy method to produce a nested hierarchy. It
only contains three templates: one to match the root node and give us a starting point, one to copy
nodes, and the other, a named template, that performs the work including recursively calling itself.

<?xml version="l.0" encoding="UTF-8" ?>
<xsl:stylesheet version="l.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/">
<Hierarchy>

We've opened our new root node, now let's call our workhorse template, passing it the Category node
with a ParentcategorylD of 0 as this must be our top Category. Note that only the first Category
that satisfies this match will be processed; any others will be ignored.

<xsl:call-template name="Category">
<xsl:with-param name="objCategory"

select="//Category[ParentCategoryID=0]" />
</xsl:call-template> </Hlerarchy>

</xsl:template> Our workhorse template selects, and outputs, the <Category>

elements correctly nested:

<xsl:template name="Category">

The template expects a parameter called thisCategory and represents the current <Category> node
being processed:

<xsl:param name="thisCategory" /> An internal

variable is created to store the current CategorylD:

<xsl:variable name="objCategorylD">
<xsl:value-of select="$objCategory/CategoryID" />

</xsl:variable>

384

A Web Services Case Study - An E-Commerce Business Engine

Now we create a new element called <Category>, and copy all the child nodes of the
current <Category>:

<xsl:element name="Category">
<xsl:apply-templates select="$objCategory/node()" />

To find and process the children of the current <Category>, we use a <xsl: f or-each> statement
and search the entire document for <Category> elements whose child element ParentcategorylD
equals the CategorylD of the current <Category>:

<xsl:for-each select="//Category[ParentCategoryID=$objCategorylD]">

The workhorse template is recursively called with a parameter of the child node. This, in effect, builds
each branch of the hierarchy to its conclusion as it goes:

<xsl:call-template name="Category">
<xsl:with-param name="objCategory" select="." />

</xsl:call-template> </xsl:for-each> </xsl:element>
</xsl:template>

Our simple template to perform the copy of a node is:

<xsl:template match="node()">
<xsl:copy>

<xsl:value-of select="." />
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Recursive templates are extremely powerful and, despite the fact that they are extremely easy to get
wrong, are well worth investigation (see for example, resources such as
www.topxml.com/xsl/articles/recurse).

The advantages of putting this kind of logic into a stylesheet are that it makes our program code much
smaller and less cluttered, and the logic itself is easy to test as a self-contained unit.

Testing the CatalogueService

Now we've covered the CatalogueService code, let's build it and navigate to
CatalogueService. asmx, in a browser. We should get the following screen:

unapier 11

• qetHierarchv

Address j.a&j http;//localhost/ECommerceEngine/CatalogueService.asmx

The following operations are supported, For a formal definition, please review the S(.'ryjcg^)esc:rjiptign. •

ge.tl.tg.oi.

This web service is using http://tempuri.org/ as its default namespace.
Recommendation: Change the default namespace before the XML Web service is made public.
Each XML Web service needs a unique namespace in order for client applications to distinguish it from other services on the
Web. http://tempuri.org/ is available for XML Web services that are under development, but published XML Web services should
use a more permanent namespace.
Your XML Web service should be identified by a namespace that you control. For example, you can use your company's Internet

j'
1

This screen presents us with a list of the methods that are available (basically any public method in the
class that is preceded with the WebMethod attribute) in the service. Clicking on getltem should bring
up the following screen:

FavoFfc Edit

s^Back

-Address

rites Tools
.j) J) -J
j http://localhost/ECommerceEngine/Catalogue5ervice.asmx?op=getItem

pJJ|).&_
••f

386

CatalogueService
Click .here for a complete list of operations.

getltem
Test

To test the operation using the HTTP GET protocol, click the 'Invoke' button.
Parameter Value
pJItemID: |

SOAP
The following is a sample SOAP request and response, The placeholders shown need to be replaced with actual values.
POST /EConsnerceEngine/CatalogueService . asmx HTTP/ 1.1
Host: localhost
Content-Type: text/xrol; charset=utf-8
Content-Length: length
SOAP Act ion: "http ;//tetnpuri . or g/get Item"
<?xntl version""1.0" encoding="utr-B"?>

A Web Services Case Study - An E-Commerce Business Engine

This screen gives us a simple way of testing our method, as well as details of what the SOAP request and
response documents look like and what the HTTP bindings should be.

Entering a value into the p_i!temID input box (like 21), that corresponds to an ItemID in the Item
database table should induce, after clicking the Invoke button, a new window to pop up like so:

I '3http: , localhost/ECommerceEngine/CatalogueService.asmx/getItetfi?p iltemlD^ZI - Microsoft In
Fte Edit View

fiy Favorites
srceEngine/CatalogueService, asmx/getItem?pJItemID-21

Tools Help

So, clicking the Invoke button invoked the getltem method of our CatalogueService by submitting
a form to the CatalogueService page, with a form action of the URL of the service and a form
method of GET.

For example, the HTML form to call the getltem method of the CatalogueService is:

<form action= http: //localhost/ECommerceEngine/CatalogueService.asmx/
getltem method="GET">

<input type="text" name="p_itemID" size="50">
</form>

While this is straightforward, the limitations of using HTTP GET or HTTP Post to test are immediately
seen if a string like "bananas" is entered as a p_iltemlD: here all we get back is a block of text containing
a list of .NET-generated error messages, none of which mean very much to the client trying to access the
web service. Thus we don't have any error handling in this situation.

Fortunately, SOAP gives us a much more controlled, and most importantly, standard, approach to
returning errors by using the <SOAP: fault> nodes (see Chapter 8 for a more detailed look at SOAP).

Another disadvantage of using the HTTP GET and POST methods is that they cannot handle complex
types, as you are restricted to name-value pairs. This means that you cannot pass structures or arrays
using POST or GET, so, for example, passing an order that includes header information and item details,
is impossible.

If we want to properly test our services and get more controlled error messages back, we need to use a
SOAP-based test harness ..

jjhttp://localhost/EC

<?xml version=Ml,Q" encoding="utf-8" ?>
<Catabgue>
- <Item>

<ItemID>21</Item!D>
<SKU>11321</SKU>
<ItemName>Triumph</ItemName>
<ItemDescription>Three-in-one heater, exhaust fan and light. Suits all bathrooms
to heights of 2.4m</ItemDescription>

<ItemPrice>250</!t mPrice> </Item> e
- <ParentCategorie5>

Chapter 11

Building a SOAP Test Harness
Building a simple SOAP-based application to test our services can easily be done in an Internet
Explorer HTML page. In the code download, testHarness2 .htm, gives us a suitable test harness and
has the following appearance:

I W^OAP Tetter Microsoft Internet Explorer .101 xi

; Rte £<St View Favorites Tods Help ' •» * 0 H fS ! | 'U Search ry

Favor i tes ^Med ia i j , ^- « f r SJ - 3 f i
Address ||[} C:\ECommerceEngineOlcHtestHarness2.htm
»J

f>Go Links
"

Test Web Service

http://localhost/ECommerceEngine/CatalogueService.asmx

http://tempuri.org/getltem
<?xml version="1.0" encoding="utf-8"?>
±. <soap: Envelope xmlns xsi="http: //www.
w3.org/2001/XMLSchema-instance" xmlns xsd="http://www.
w3.org/2001/XMLSchema" xmlns soap="http://schemas.
xmlsoap.org/soap/envelope/"> <soap:Body> <p_iItemID
xmlns="http://tempuri.org/">bananas</p_iItemID> </soap:Body>
•»•

<?xml version="1.0H
encoding="utf-8H?> ,*
<soap:Envelope xmlns: soap="http://schemas.
xmlsoap.org/soap/envelope/"> — <soap: Body>
esoap:Fault> <faultcode>soap : Client </faultcode>
<faultstring>Syst em, Web. Services. Pro tocols.SoapException:
Server was unable to read request, — >
j»

1

Web Service URL

SOAP Action
SOAP Request

SOAP Response

[Invoke |

B
................ i ; a My Compeer ^

The harness uses the MSXML2 .XMLHttp object to send a SOAP Request to a Web Service and display
the response. Here's the function that performs the call:

Function testSOAPO

Dim oHttp ' As MSXML2 .XMLHttp

Set oHttp = CreateObject("MSXML2.XMLHttp")

oHttp.Open "POST",frmTest.txtURL.value,false
oHttp.SetRequestHeader "Content-type","text/xml"
oHttp.SetRequestHeader "SOAPAction",frmTest.txtSOAPAction.value
oHttp.Send frmTest.txtSOAPRequest.value

frmTest.txtSOAPResponse.value = oHttp.ResponseText

testSOAP = false End Function

388

A Web Services Case Study - An E-Commerce Business Engine

As we can see, it is quite straightforward - it just opens the URL, sets a couple of Http Headers and then
sends the request. This is a synchronous call, meaning that the function will wait until a response is
returned by the service.

To use the harness, simply enter the URL of the service and then cut and paste the SOAP Action and
SOAP Request XML from the operation test page (for example the getltem page we saw previously)
and click Invoke.

Invoking the Web Service with a p_iltemlD of "bananas" will yield the following type of output:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body> <soap:Fault>
<faultcode>soap:Client</faultcode>
<faultstring>System.Web.Services.Protocols.SoapException: Server was
unable to read request. —> System.Exception: There is an error in
XML document (4, 63). —> System.FormatException: Input string
was not in a correct format.
at System.Number.Parselnt32(String s, NumberStyles style, NumberFormatlnfo info) at
System.Xml.XmlConvert.Tolnt32(String s) at XmlSerializationReaderl .Read5_getltem()

at System.Xml.Serialization.XmlSerializer.Deserialize(XmlReader xmlReader) at
System.Web.Services.Protocols.SoapServerProtocol.ReadParameters() at
System.Web.Services.Protocols.SoapServerProtocol.ReadParameters() at System.
Web.Services. Protocols. WebServiceHandler.lnvoke() at
System.Web.Services.Protocols.WebServiceHandler.CoreProcessRequestQ
</faultstring> <detail /> </soap:Fault> </soap:Body> </soap:Envelope>

It's pretty much the same information as we got when using the HTTP Get, except that this time it is
wrapped in a SOAP Fault element. The faultcode is set to soap:Client, which tells us that it is the
SOAP Request that was at fault (at least we can rest easy!). Of course, the f aultstring is a little long
winded, although embedded in all the messages that .NET has generated, is the reason for this calamity:

Input string was not in a correct format.

In our commercial version of the engine we might pre-process the SOAP Request, check its validity, and
generate our own more meaningful and less verbose messages, but that's a little beyond the scope of this
case study.

So, by now we've gone through the first service, the CatalogueService. We've seen how we can
retrieve information from the database and, using XSLT, transform it into more manageable formats, and
dipped our toe ever so slightly into the more advanced techniques of XSLT such as recursive templates.
We also pondered the testing of our service using the operation detail page and a very basic SOAP-based
test harness that we built ourselves.

Chapter 11

Now we will take a less-detailed look at the other services that make up our engine, before looking at
how our customers might build applications to consume them.

The BasketService

The BasketService provides the functionality to select, edit, and maintain a list of items with
methods that are pretty much as you would see in a traditional e-commerce web site (although, as we've
said previously, in a very simplified manner). The basket details are all held in a single column,
BasketDetails, as an XmlDocument, so any actions on an item are all preformed by retrieving this
column, moving it to an XmlDocument, manipulating the document, and then storing it back in the table.

Method Input Output Comments

getBasket

createBasket

listBaskets

addltem

BasketI
D (int)

none

Days
(int)

ItemID
(int)
Qty (int)

XmlDocument
containing the
specified
basket's details

(int) BasketID of
the new basket

XmlDocument
containing a list of
baskets

none

Retrieves the BasketDetail
column from the appropriate row
and loads this straight into an
XmlDocument for returning to the
client.

Creates a new row in the Basket
table. Re-reads the table to get the
new BasketID.

Builds a DataSet of the baskets
that are older than the passed
number of days. As we only want
to change the name of the
DocumentElement for this list, an
XmlDocument is loaded with the
new name, a DocumentFragment
is loaded via the GetXml () method,
and then the InnerXml of the
fragment is moved to the
document.

Retrieves the BasketDetail
column from the appropriate row
and loads the value into an
XmlDocument. A check is made to
see if an Item node exists with this
ItemID - if it does then the
quantities are added, if not then a
new Item element is created,
populated, and added to the
XmlDocument. The itemCount
attribute is updated before the
XML is stored back into the
BasketDetail column.

390

A Web Services Case Study - An E-Commerce Business Engine

Method Input Output Comments

removeItern

updateltem

ItemlD
(int)

ItemlD
(int)
Qty
(int)

none

Retrieves the BasketDetail
column from the appropriate row
and loads the value into an
XmlDocument. The Item is
located and the element removed.
The itemCount attribute is
updated before the XML is stored
back into the database table.

Retrieves the BasketDetail
column from the appropriate row
and loads the value into an
XmlDocument. The Item is
located - if the new quantity is 0
then the element is removed,
otherwise the old quantity is
overwritten with the new quantity.

 We won't go through the entire code for this service - we'll just pick out some of the highlights.

The BasketService - Selected Code
Here we'll just be looking at the listBaskets method, where we use document fragments, and the
addltem method, as an example of manipulating and storing the basket details as an XmlDocument.
Again, the database connection string for the service is placed at the top of the class.

The listBaskets Method
In the listBaskets method we make use of document fragments and the very useful InnerXml
property to create an XmlDocument with only a name change on DocumentElement. We could have
done this via an XSLT stylesheet, but there was less coding to do it in the service code itself:

[WebMethod] public XmlDocument listBaskets(int
p_iAge!nDays)

string sSQL = "SELECT Basket.BasketID, Basket.BasketCreationDate " + "FROM
Basket WHERE (BasketCreationDate <= (DateO - " +
p_iAge!nDays.ToString() + ")) " + "ORDER BY BasketCreationDate,
BasketID";

XmlDocument objXmlDocument = new XmlDocument();
DataSet objDataSet = new DataSet();

OleDbConnection objConnection = new OleDbConnection(sSource);
objConnection.Open();

OleDbDataAdapter objAdapter = new
OleDbDataAdapter(sSQL,objConnection);

objAdapter.Fill (objDataSet,"Basket");

Chapter 11

We have populated our DataSet with the list of baskets. Now we load the XmlDocument with only a
single element:

objXmlDocument .LoadXml ("<Baskets/>") ;

Next, we create a document fragment and use it to store the DataSet data XML. Document fragments
have no load () method, so the easiest way to populate them is to set their InnerXml property:

XmlDocumentFragment objXmlFragment;
objXmlFragment = objXmlDocument .CreateDocumentFragment () ;
objXmlFragment . InnerXml = ob j DataSet .GetXml ();

Now we need to move across all the Basket elements. These are held as children of the top node in the
DocumentFragment, which means we can't simply copy the fragment across to the document. We can
copy all the children in one hit, however, by setting the InnerXml property of the DocumentElement
to the InnerXml property of the top node in the fragment. Remember, InnerXml contains the XML
for all descendants of the node, and OuterXml, which is a read-only property, includes the InnerXml
plus the XML for the node itself.

objXmlDocument . DocumentElement . InnerXml =
objXmlFragment .ChildNodes . Item(O) . InnerXml;

Finally, we set the basketCount attribute on the DocumentElement to a count of the Basket nodes
in the document:

objXmlDocument . DocumentElement . SetAttribute
("basketCount" , objXmlFragment. SelectNodes (" //Basket") . Count .
ToString ()) ;

return objXmlDocument;

The add/tern Method
As we are only retrieving a single column for a single row, and because this column already contains
XML, we are going to use the slimmer DataReader class to retrieve the basket details:

[WebMethod]
public XmlDocument addltemfint p_iBasketID, int p_i!temID, int p_iQty) {
// get the basket

string sSQL = "SELECT Basket . BasketDetail FROM Basket WHERE BasketID
= " + p_iBasketID. ToString ();

OleDbDataReader ob j DataReader ;
OleDbConnection objConnection = new OleDbConnection(sSource) ;
obj Connection. Open () ,-

// get the basket detail
OleDbCommand objCommand = new OleDbCommand (sSQL, objConnection) ;

392

A Web Services Case Study - An E-Commerce Business Engine

objDataReader = objCojnmand.ExecuteReader
() ,-objDataReader. ReadO ;

We then create an XmlDocument and load it with the value of the BasketDetails column. We use the
ToString method to ensure that we are providing the proper data type to the LoadXml method:

// load it into an XmlDocument
XmlDocument objXmlDocument = new XmlDocument();
obj XmlDocument .LoadXml (objDataReader .GetValue (0) .ToStringO) ;
objDataReader.Close();

Once the details are loaded, we check to see if an Item element already exists for the ItemlD. If it
doesn't (that is SelectSingleNode returned a null value), then a new Item element is created. If it does
then the quantities are added:

// check to see if this item id is already in basket XmlNode
objItemNode; objItemNode =

objXmlDocument.DocumentElement.SelectSingleNode("Item[ItemID=" +
p_i!temID. ToStringO + "]");

if (objItemNode == null) {
// not there BO let's create it
XmlElement objItemElement;
objItemElement = objXmlDocument.CreateElement("Item");

To retrieve the appropriate details from the Item table for populating the new Item element we use the
following SQL. To make it easier, we also return two values that don't exist in the table, Qty
and LineValue:

sSQL = "SELECT ItemlD,SKU,ItemName,ItemPrice, " +
P_iQty. ToStringO + " AS Qty, " + p_iQty. ToString () + "
* ItemPrice AS LineValue " + "FROM Item " + "WHERE ItemlD
= " + p_iItemID.ToString();

objCommand.CommandText = sSQL; objDataReader =
objCommand.ExecuteReader();
objDataReader.Read(); XmlElement objNewElement;

To create an Item element, we create and append a new element for each object in the DataReader
Fields collection. Each new element's nodename is set to the field name and its text value (the
InnerText property) is set to the value of the field, converted to a string. This will also create elements
for the two additional values we added to the SQL statement, Qty and LineValue :

for (int iField = 0; iField < objDataReader.FieldCount;
iField++) {

objNewElement = objXmlDocument.CreateElement
(objDataReader.GetName(iField));

objNewElement.InnerText =

objDataReader .GetValue (iField) . ToStringO ;
objItemElement -AppendChild (objNewElement) ;

objDataReader .Close () ;

Our new Item element is now populated, so we'll append it to the DocumentElement and then reset
the value of the itemCount attribute:

objXmlDocument .DocumentElement .AppendChild (objItemElement) ;
int iltemCount = objXmlDocument .DocumentElement .ChildNodes .Count ;
objXmlDocument . DocumentElement . SetAttribute

("itemCount" , iltemCount .ToString()) ; }
else

If the Item element already exists then we are just going to update the Qty and LineValue elements:

// just add the new quantity to existing quantity
int iQty = int . Parse(objItemNode. SelectSingleNode ("Qty") . InnerText)

+ P_iQty;
float iPrice =

float .Parse (obj I temNode. SelectSingleNode ("ItemPrice") .InnerText) ; float
iLineValue = iPrice * p_iQty;

Don't forget, the InnerText property is a string, so we have to use the ToString method to convert
our Qty and LineValue variables to a string type, otherwise setting the InnerText property will fail:

obj ItemNode. SelectSingleNode ("Qty") .InnerText = iQty. ToString () ;
obj ItemNode. SelectSingleNode ("LineValue") .InnerText =

iLineValue . ToString
() ; }

objXmlDocument .DocumentElement . SetAttribute ("basketTotal" ,
getBasketTotal (objXmlDocument) .ToStringO) ;

To store the basket detail XML we set up the SQL to populate the BasketDetail column with the
OuterXml property value from the DocumentElement. We use OuterXml here, as we want to include
all the XML for the document:

sSQL = "UPDATE Basket SET BasketDetail = ' " +
objXmlDocument .DocumentElement .OuterXml. ToString () + "'
WHERE BasketID = " + p_iBasketID. ToString ();

obj Command. CommandText = sSQL; obj
Command . ExecuteNonQuery () ;

obj Connection. Close () ;
return objXmlDocument;

394

A Web Services Case Study - An E-Commerce Business Engine

That's it for the BasketService. By storing the basket details in a piece of XML (really a string or text
field in our database table) and by manipulating that XML, the basket changes. Therefore we are able to
keep the basket to a single table and have a very simple method of displaying the basket by returning a
single column and transforming its contents with an XSLT stylesheet.

The OrderService

The OrderService provides some basic functionality for creating an order and then adding
information to that order. Like the BasketService, it uses a single table to store the order information,
with the order details (that is which items have been ordered) being stored as a string of XML data.

Method Input Output Comments

createOrder

addCustomerlnfo

BasketID (int)

OrderlD (int) none
CustomerClass

Uses a DataReader to retrieve
the BasketDetails for the
BasketID. An XmlDocument is
loaded with an order skeleton; a
DocumentFragment is loaded
with the BasketDetails
XML. The basket items are
copied across to the
OrderDetails node in the
XmlDocument and the
OrderTotal computed before
the order is inserted into the
Order table. The table is reread
to get the OrderlD, which is
then passed back to the client.

Orderl
D (int)

The order details are retrieved
and loaded into an
XmlDocument. The
CustomerClass is serialized
and the resultant XML appended
to the DocumentElement of the
order XmlDocument. The
OuterXml is then stored back in
the database table.

This is an overloaded
addOrderlnf o method.

Table continued on following page

Method Input Output Comments

addShippinglnfo

listOrdersByDays

listOrdersByCustomer

getOrder

OrderlD
(int)
Shipping
Class

Days
(short)

Customer
ID (int)

OrderlD
(int)

XmlDocument
containing all
the orders
placed in the
last n days

XmlDocument
containing all
the orders for a
CustomerlD

XmlDocument
containing the
details for the
specified order

The order details are
retrieved and loaded into an
XmlDocument. The
ShippingClass is
serialized and the resultant
XML appended to the
documentElement of the
order XmlDocument. The
OuterXml is then stored
back in the database table.

This is an overloaded
addOrderlnf o method.

A DataSet is created that
contains all the orders that
have been created in the last
n days. By the familiar
technique of moving the
XML to a
documentFragment the
DocumentElement name is
changed.

This is an overloaded
listOrders method.

A DataSet is created that
contains all the orders that
relate to a particular
CustomerlD. The
DocumentElement name is
changed by moving the
DataSet data XML to a
DocumentFragment and
copying the child nodes over.

This is an overloaded
listOrders method

The OrderDetails
column of the appropriate
row in the Order table is
loaded into an
XmlDocument, which is
returned to the client.

396

A Web Services Case Study - An E-Commerce Business Engine

The OrderService - Selected Code
In OrderService, we made use of overloading methods. Although we can overload methods in Web
Service code, we cannot make them available with the same name and let .NET figure out which of the
overloaded methods to invoke.

We have to provide unique method names, which is achieved by coding a MessageName on the
[WebMethod] attribute as follows:

[WebMethod(MessageName="listOrdersByDays")] public
XmlDocument listOrders(short p_iAge!nDays)

[WebMethod(MessageName="listOrdersByCustomer")]
public XmlDocument listOrders(int p_iCustomerID)

Here we have overloaded methods for listOrders: one which takes an age in days, with a datatype of
short, and one which takes a CustomerlD as an integer.

However, a client invoking these methods would use the MessageName, not the method name. For
example, to invoke the listOrders (short p_iAge!nDays) method a client would use:

Protocol URL SOAPAction

SOAP /E-commerceEngine/OrderService.asmx http://tempuri.org/listOrdersByDays

HTTP- IE-
GET commerceEngine/OrderService.asmx/list

OrdersByDays?p_jAgelnDays=
HTTP- IE-
POST commerceEngine/OrderService.asmx/list

OrdersByDays

The methods addCustomerlnf o and addShippinglnf o are also overloaded, both having the method
name addOrderlnf o. These methods also make use of the serialization class to convert a passed class
into XML for appending to the OrderDetail XML.

We'll take a closer look at the addOrderlnf o method to see this in action.

The addCustomerlnfo Method
The MessageName on the [WebMethod] attribute lets us give this overloaded method a unique identity:

[WebMethod(MessageName="addCustomerlnfo")]
public void addOrderInfo(int p_iOrderID, CustomerClass p_objCustomer)
{
// get the order

string sSQL = "SELECT Order.OrderDetail " +

"FROM [Order] WHERE OrderlD = " + p_iOrderID.ToString();

OleDbDataReader objDataReader;

OleDbConnection objConnection = new OleDbConnection(sSource);
objConnection.Open();

// get the order detail
OleDbCommand objCommand = new OleDbCommand (sSQL,objConnection);
objDataReader = objCommand.ExecuteReader();
objDataReader.Read();

// create and load XmlDocument
XmlDocument objXmlDocument = new XmlDocument();
objXmlDocument.LoadXml (objDataReader.GetValue(0).ToString());

objDataReader.Close();

The OrderDetail XML is now loaded into an XmlDocument. Next, we create a DocumentFragment
that will hold the result of our serialization:

// create an xml document fragment
XmlDocumentFragment objXmlDocFrag =

objXmlDocument.CreateDocumentFragment();

When we create our XmlSerializer we have to tell it what class we will be serializing. In this case, it's
the CustomerClass:

//Serialize the customer class
XmlSerializer objXmlSerializer = new

XmlSerializer(typeof(CustomerClass));

We need somewhere to serialize to, so we will also create a StringBuilder and StringWriter:

StringBuilder objStringBuilder = new StringBuilder() ; StringWriter
objStringWriter = new StringWriter(objStringBuilder);

We serialize the passed customer data and put it in the StringWriter:

objXmlSerializer.Serialize (objStringWriter,p_objCustomer);

The resultant string of XML is then moved into an XmlDocument and has its attributes removed
(mostly namespace declarations) before being copied over to the Order XmlDocument:

// load serialized class into a document
XmlDocument objXmlDocument2 = new XmlDocument() ;
objXmlDocument2.LoadXml(objStringWriter.ToString());
objXmlDocument2.DocumentElement.RemoveAllAttributes();

// now insert the contents from document2

398

A Web Services Case Study - An E-Commerce Business Engine

objXmlDocument .DocumentElement . InnerXml =
objXmlDocument .DocumentElement . InnerXml +
objXmlDocument2 .DocumentElement .OuterXml;

The updated order XML is then stored back in the database table:

// update the order
sSQL = "UPDATE [Order] " +

" SET Customer ID = " + p_obj Customer .CustomerlD. ToStr ing () +
" , " + " OrderDetail = ' " +
objXmlDocument .DocumentElement .OuterXml + "'" +
" WHERE Order ID = " + p_iOrderID;

obj Command. CommandText = sSQL; ob j
Command . ExecuteNonQuery () ;

objConnection .Close () ;

The serialization classes (namespace System. Xml . Serialization) are extremely useful for
converting between non-XML data and XML. .NET uses the deserialize method in Web Services
for converting the parameters in SOAP Requests to their code-friendly data-types and then the
Serialize method to create the Response. In fact, we are actually serializing what .Net has already de-
serialized to make the SOAP parameters acceptable for our method!

In our method, the serializer takes the CustomerClass:

public class CustomerClass {
public int CustomerlD;
public string FirstName;
public string LastName;
public AddressClass BillingAddress;

public class AddressClass {
public string Linel;
public string Line2 ;
public string Line3;
public string Locality;
public string State;
public string Zip;
public string Country;

and converts it to this XML:

<CustomerClass>
<CustomerID />
<FirstName />
<LastName />
<BillingAddress>

<Linel />
<Line2 />
<Line3 />
<Locality />
<State />
<Zip />

<Country />
</BillingAddress>
</CustomerClass>

The Online Shop - A Consuming Example

As the main drive of this case study was to build the engine, this example is going to be brief, and will
just serve to indicate how to consume the services of the engine we have just considered.

We are going to build a very simple online store for the imaginary Light n Heat Online Shop implementing
functions from just two of our services - the CatalogueService and the BasketService.

The application is going to be an ASP.NET Web Application involving a couple of simple ASP.NET
pages that utilize transformations to render the pages from the XML returned by the service methods.
We'll be looking at two ASP.NET pages:

Q Catalogue.aspx, which will consume the

CatalogueService Q Basket. aspx, which consumes the

BasketService

Before we look at the ASP.NET pages, we firstly need to consider how the pages will reference the
services we've just considered. While there are a number of ways of doing this (via .vsdisco files etc.),
we'll leave that topic for detailed Web Services books, and use the simple method of adding the
individual Web Service files manually.

To do this, right-click on the project in the Solution Explorer pane of Visual Studio .NET and select
Add Web Reference. This will bring up the following screen:

400

A Web Services Case Study - An E-Commerce Business Engine

•a
I Available references

e\p$ you to locate
rif^ri? Weft S^r-ires ~^d ;jse th?m in your -appiicatians,
The Web Services available front the current Web page
are listed in the Available Reference* pane, To find
Web Service you can brow?* to a Web Service
description page (.asmx or .wsd!), a discovery page
(.disco or .vsdisco), or to the service directory sites
listed beiow.
Web Service Directories:

WB&l:

Query the UDDI Business Registry to find companies
and production Web Services.

Test Microsoft UDDI Directory
Locate test Web Services to use during development.

From here navigate to the appropriate . asmx file, which will bring up a screen showing the methods
available to consumers of that Web Service. In this example we add the Catalogueservice reference
first - easily achieved by clicking the Add Reference button.

Ja 1 Address; I http;//localhost/ecommerceengine/catalogueservice,asmx
• • • • • • •MMMMMTn " "

Available references;
Web Services

M] http;//localhost/ecommerceengine/catalogueservice.asmx?wsdl The following operations are supported. For a
formal definition, please review the Service
DescH View Documentation

This web service is using
http://tempuri.org/ as its default
namespace.
Recommendation: Change the default
namespace before the XML Web service is
made public.
Each XML Web service needs a unique namespace
in order for client applications to distinguish it from
other services on the Web, http://tempuri.org/ is
available for XML Web

The effect of this is to add a Web References folder under the project, and within this folder will be a
further sub-folder - Localhost - that contains auto-generated proxy files that will handle the calling of
the appropriate service.

Since we'll also be using the BasketService in this section, the process for adding a web reference
needs to be repeated with BasketService.asmx being addressed. Interestingly this will add another
sub-folder under the Web References folder - localhostl - that will contain the proxy class for the
BasketService.

Solution 'ECornrnerceEngine' (2 projects)

IB? EComConsumer EJ3" Qfl References

%] catalogueservice.
disco %] catalogueservice.

wsdl
i EB- g) Reference. map

f i l£ localhostl
%| basketservice. disco %|
basketservice, wsdl H- jfy
Reference. map

Ss Solution Explorer | 3fJ Class View

Of course this discussion (quite deliberately) skates over exactly what is happening when we add these
references, and what the proxy classes are doing. All we are going to concern ourselves with is that,
after adding those references, we have auto-generated classes that allow us to invoke the
Catalogueservice, using the SOAP protocol as though it were just another class in our application.

So, let's build an ASP.NET page to consume the Catalogueservice and display our products.

Consuming Catalogueservice

This will be an extremely simple page, which will allow us to display the catalogue hierarchy in the
left-hand column, with the catalogue details in the right. We'll call it catalogue. aspx and it will look
something like this:

402

A Web Services Case Study - An E-Commerce Business Engine

.lalxi
1 Ffe B* View

Favorites 4 - -8aek - « t

Toots

Help • _aJFav«fte5 -g dta ^ j&* ^ ^ «J & rMe

' Address j^j http;//locdhost/EComConsumer/cal:alcigue,aspi.;'cat«gory-ll 2 {*Go Imte

The Light n Heat Online Shop
|
Search

Home Home
Tastic

SmartSwitch Welcome to the Light n Heat Online Store.

Panel S Name And DescriptionKU Price
Portable 11321 Triumph $250.00
Wall-Mounted Three-in-one heater, exhaust fan and light.
Space Suits all bathrooms to heights of 2.4m
Semi-recessed 12305 Easy Duct (275VV) $350.00

Fan and Light
Combos Three-in-one heater, exhaust fan and light.

Suits all bathrooms to heights of 2.7m
Heated Towel 72160 Atlantic F17 $500.00
Rails 1000 Watt Electric Panel Heater silentwith

operation and integral thermostat
73045 Radiant $750.00

Powerful 2000 watt radiant heater with two
heat setti and carry handle for easy ngs
porta bility

76020 Reaal $1,100.00
Instant fan-boosted heat with ±1

ffiW~~ ; |̂ Local htranet

The catalogue. aspx ASP.NET page looks like this:

<%@ Page language="c#" Codebehind="catalogue.aspx.es" AutoEventWireup="false"
Inherits="EComConsumer.catalogue" %>
<HTML>
<HEADxlink rel= "stylesheet" href ="style.css"x/HEAD>
<BODY>

<table width="100%">
<tr>
<td class="banner" colspan="2" valign="center" align="middle">
The Light n Heat Online Shop </td>

</tr> <tr>
<td align="middle">
<form action="catalogue.aspx" method="post">

<input type="text" size="10" maxlength="30" name="txtSearch"> <input
type="submit" value="Search"> </form> </td> <td align="right">

<% if (Session["basketID"] != null) {%>
Show Basket <% } %>

</td> </tr> <tr>
<!-- hierarchy -->
<td id="myHierarchy" width="150" valign="top" align="left">

J.-L

<% showHierarchy(); %>
</td>
<!-- details --> <td id="myDetails" valign="top"
align="middle">

<% showDetail(); %> </td>
</tr> </table> </BODY>
</HTML>

This is very basic HTML with a couple of embedded ASP.NET statements to output the hierarchy and
the catalogue detail.

The code behind, in the catalogue. aspx. cs file, is shown next. First we add some standard references:

using System.Xml; using Sys
tern. Xml .XPath ; using
Systern.Xml. Xsl;

namespace EComConsumer

/// <summary>
/// Summary description for catalogue.
/// </summary>
public class catalogue : Systern.Web.UI.Page

public catalogued

Page.Init += new System.EventHandler(Page_Init);

private void Page_Load(object sender, Systern.EventArgs e)

Then the methods - the showDetail method takes the XmlDocument passed back from the
CatalogueService and using an XSLT stylesheet transforms it to HTML. The first step is to
instantiate the proxy class for the CatalogueService:

public void showDetail()

localhost.CatalogueService objCatalogueService =
new localhost.CatalogueService0;

XmlDocument objCatalogue = new XmlDocument();

string sStyleSheet = "";

We check the QueryString property to see if we are making an item request, a category request, or a
search request. Then the appropriate method in the CatalogueService proxy is invoked, the result
loaded straight into an XmlDocument, and the style sheet that we will use to display the results is set:

404

A Web Services Case Study - An E-Commerce Business Engine

if (Request. QueryString[" item"] != null) {
obj Catalogue . LoadXml (obj CatalogueService . get I tern

(int .Parse (Request . QueryString ["item"])) .OuterXml) ;
sStyleSheet = " itemOutput .xslt" ;

if (Request .QueryString ["category"] != null) {
objCatalogue . LoadXrol (objCatalogueService . getCategory

(int. Parse (Request .QueryString ["category"])) .OuterXml) ;
sStyleSheet = "categoryOutput .xslt" ;

if (Request .Form ["txtSearch"] != null) {
objCatalogue . LoadXml (objCatalogueService . searchltems

(Request .Form ["txtSearch"] .ToString ()) .OuterXml);
sStyleSheet = "searchOutput .xslt" ;

Next we set up the transformation (as long as a stylesheet has been selected):

// Check that stylesheet has been set
if (sStyleSheet =="")
{
//It hasn't so write prompt
Response. Write ("<p>Please select a category from the menu</p>"); }

else {

//It has so transform the XML using the set stylesheet XPathNavigator
objCatalogueNav = objCatalogue. CreateNavigator (); XslTransform
objTransform = new XslTransformf) ;

objTransform.Load (Server .MapPath(sStyleSheet)) ;

Then we transform the XML, sending the resultant HTML straight to the Response stream (and therefore,
the browser):

obj Trans form. Trans form (objCatalogueNav, null, Response. Output) ;

The showHierarchy method is very similar, retrieving the XML for the hierarchy and sending the
transformed HTML directly to the browser:

public void showHierarchy ()

// Get XML for this category or Item
localhost .CatalogueService objCatalogueService = new

localhost. CatalogueService () ;
XmlDocument objCatalogue = new XmlDocument () ;

4AK

string sStyleSheet = " " ;
obj Catalogue. LoadXml (objCatalogueService.getHierarchy () .OuterXml) ;
sStyleSheet = "showHierarchy .xslt ";

XPathNavigator objCatalogueNav = obj Catalogue. CreateNavigator ();
XslTransform objTransf orm = new XslTransformf) ;

obj Trans form. Load (Server .MapPath(sStyleSheet)) ;

obj Trans form. Trans form (objCatalogueNav, null, Response. Output) ;

As you will have noticed, the code accesses four XSLT style sheets to create the HTML for the page:
one for the hierarchy (showHierarchy. xslt), one for the search results (searchOutput .xslt), one
for the category display (categoryOutput .xslt), and one for the item display (itemOuput .xslt).

Implementing a Basket

Now that we have the catalog working and are able to navigate around the categories and the items, so
we can select products to buy we'll implement a basket - basket. aspx. Its HTML is almost identical to
that in catalogue. aspx except that showDetail () has been replaced with showBasket ().

Let's pick out just a few parts of the code behind for discussion. In the Page_Load method, we check
for an action in the QueryString and take the appropriate action:

private void Page_Load(object sender, System.EventArgs e)
{

localhostl.BasketService objBasketService =
new localhostl.BasketService();

// check the action to see what we need to do switch
(Request .QueryString["action"])

When it is add, we check if we have a basketID in a Session object, and if we don't we'll invoke the
createBasket method before invoking the addltem method:

case "add" :
if (Session! "basketID"] == null) {
Session ["basketID"] = objBasketService . createBasket (); }

objBasketService. addltem (
int. Parse (Session! "basketID"] .ToStringO) ,

int .Parse (Request .Form ["txt I temID"]) , int .Parse
(Request .Form ["txtQty"])) ; break;

406

A Web Services Case Study - An E-Commerce Business Engine

When the action is update, we check to see if the quantity is 0. If it is then we invoke the removeltem
method, otherwise we invoke the udpateltem method:

case "update" :
if (Session! "basketID"] != null) {
int iQty = int. Parse (Request. Form["txtQty"] -ToString());
if (iQty == 0)
{
objBasketService.reraoveltem (

int. Parse (Session ["basketID"] .ToString()) , int. Parse
(Request. Form[" txtltemID"])) ; }
else
{
objBasketService.updateltem (

int. Parse (Session ["basketID"] .ToStringO) , int. Parse (Request.
Form [" txtltemlD"]) , iQty) ; } } break ;

The showBasket method invokes the getBasket method to return an XmlDocument containing the
basket details and then uses a style sheet to transform the XML to HTML. Once again, the
transformation output is sent straight to the browser.

Note that here when we instantiate the proxy class for the BasketService, we have to reference
localhostl. Of course to avoid worrying about which localhostX folder we are referencing, we
could add appropriate using statements to the page, although for simplicity we haven't here.

public void showBasket ()

// Get XML for this category or Item
localhostl. BasketService obj BasketService =

new localhostl. BasketService () ;
XmlDocument objBasket = new XmlDocument () ;

obj Basket . LoadXml (obj BasketService . getBasket (
int. Parse (Session! "basketID"] .ToString ())) .OuterXml) ;

XPathNavigator objBasketNav = objBasket .CreateNavigator () ;
XslTransform objTransform = new XslTransform() ;
obj Trans form. Load (Server .MapPatht "showBasket .xslt")) ;

obj Trans form. Trans form (objBasketNav, null, Response. Output) ;

The showBasket .xslt does a little more work than its counterparts in catalogue .aspx, so we'll
take a closer look at the style sheet:

<?xml version="l.0" encodings"UTF-8" ?>
<xsl:stylesheet version="l.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"> <xsl:output method="html" />

Things start to happen when we match on Basket:

<xsl:template match="Basket">
<p align="left" class="detailTitle">Basket
Details</p> <p align="left">

<table width="90%" border="0" cellpadding="2"
cellspacing="2"> <thead> <tr>
<th>SKU</th>
<th>Item</th>
<th>Qty</th>
<th>Price</th>
<th>Total</th> </tr>
</thead> <tbody>

<xsl:apply-templates select="Item"/>
<tr class="tblRowO">

<td colspan="4"
align="right">Total</td> <td
align="right">$<xsl:value-of select=

11 format-number (@basketTotal, '###, ##0.00 ') "/></td> </tr>
</tbody> </table> </P> </xsl:template>

In the Item template, we are going to hook up the ItemName as a link to the item detail page and
create a form around each quantity, so we kick-off the adjusting of a quantity with an onchange event:

<xsl:template match="ltem">
<tr class="tblRowl"> <td
valign="top">

<xsl:value-of select="SKU" />
</td> <td valign="top">

<xsl:attribute name="href">
catalogue.aspx?item=<xsl:value-of select="ItemID" />
</xsl:attribute>
<xsl:value-of select="ItemName" />
 </td> <td valign="top"

align="right">

A form is generated around the quantity field: a QueryString is used on the action URL so that
basket. aspx knows that this is an update. The hidden field is used to relay to basket. aspx the
ItemID of the item we want to update:

408

A Web Services Case Study - An E-Commerce Business Engine

<form method="post" action="basket.aspx?action=update">
<input type="hidden" name="txt!temID"> <xsl:attribute
name="value">
<xsl:value-of select="ItemID"/> </xsl:attribute> </input>

<input type="text" name="txtQty" size="3" maxlength="3"
onchange="submit()'

<xsl:attribute name="value">
<xsl:value-of select="Qty" />

</xsl:attribute> </input> </form> </td>

<td valign="top" align="right"> Use the f

ormat-number function to format our prices:

$<xsl:value-of select="format-number(ItemPrice,' # # # , # # 0 . 0 0 ') " />
</td> <td valign="top" align="right">
$<xsl:value-of select="format-number(LineValue,' # # # , # # 0 . 0 0 ') " />

</td> </tr>
</xsl:template>

</xsl:stylesheet>

The above style sheet produces the following output:

The Light n Heat Online Shop
Home

Tastic
SmartSwitch
Easy Duct

Heater s
Panel
Portable
Wall-Mounted
Space
Semi-recessed
Space

Fan and Light
Combos Heated
Towel Rails

Basket Details

Item
Triumph

73093
Ultimate

10174
Hotline

SK
U Qty Price

$250,00

$550.00

$1,400.00

Total

Total

$1,000.00

$1,100.00

$1,400.00

$3,500.00

I ig local (rtranet

Now we have catalogue navigation with basket capabilities and, although we could go on, this should
provide enough insight for further experimentation.

Summary

Web Services continue to be the major talking point in web development today and probably rightly so.
If you can get beyond the stock quote (the "Hello World" of this particular area), you can see that they
really do have enormous potential for distributed computing and application integration. In this case
study we have looked a distributed computing approach that is only possible with Web Services: the
majority of the business-logic layer and the data layer are running remotely on servers that could be
located anywhere in the world with only the presentation layer, that is the user interface (in our
consumer example, a web site) operating locally.

What makes this all possible is the use and adoption of XML coupled with ever increasing bandwidth.
XML is now the predominant format for data exchange between organizations and all the major Web
Services specifications, SOAP, WSDL, and UDDI, use XML as their grammar. .NET does its part by
making the building and consuming of Web Services as straightforward as programming with regular
classes and COM components.

We have tried to cover a fair amount of ground quickly in this case study to show the possibilities of this
type of approach, but obviously we have really only scratched the surface. Also bear in mind that Web
Services are still evolving as attempts are made to add transactional capabilities, security, and enhanced
messaging such as guaranteed delivery.

There are a great many improvements that could be made to the engine if time and scope allowed. We
have not attempted to restrict access to our service, provide any transaction support, or caching, and our
error handling has been left to SOAP and is, therefore, extremely generic. As already mentioned, such
an engine would not be implemented commercially using a database such as Microsoft Access 2000
-with its far-reaching support for XML, SQL Server 2000 would be the first choice with its ability to
return XML directly from a SQL query and its updategram capabilities.

If this case study has in any way whet your appetite for Web Services, and we certainly hope that it has,
then we would strongly urge you to take a look at a dedicated Web Services title such as Professional
ASP.NET 1.0 Web Services with VB.NET(ISEN 1-86100-775-2) also from Wrox Press.

410

