

Microsoft ASP.NET Professional Projects

by Hersh Bhasin ISBN: 1931841217

Premier Press © 2002 (638 pages)

Teaches Web developers how to build powerful applications using the .NET
Framework and Microsoft’s ASP.NET.

Table of Contents

 Microsoft ASP.NET Professional Projects

 Part I - The ASP.NET Programming Environment

 Chapter 1 - Introducing ASP.NET

 Chapter 2 - Introducing ASP.NET Web Forms and Controls

 Chapter 3 - Using ADO.NET in the .NET Framework

 Chapter 4 - Data Binding

 Chapter 5 - Input Validation

 Chapter 6 - User Controls

 Chapter 7 - Custom Controls

 Chapter 8 - Business Objects

 Chapter 9 - Working with ASP.NET Web Services

 Chapter 10 - ASP.NET Applications

 Chapter 11 - Caching

 Chapter 12 - Tracing

 Chapter 13 - Security

 Part II - Projects

 Project 1 - A Personal Finance Manager

 Chapter 14 - The Design of the Personal Finance Manager

 Chapter 15 - Chart of Accounts

 Chapter 16 - Transactions

 Chapter 17 - The Trial Balance Report

 Project 2 - Web Services

 Chapter 18 - Creating a Generic Database Web Service

 Chapter 19 - Designing a Navigation System

 Chapter 20 - Incorporating Web Services in the Chart of Accounts Form

 Chapter 21 - Incorporating Web Services in the Transactions Form

 Chapter 22 - Incorporating Web Services in the Trial Balance

 Project 3 - Inventory Management System

 Chapter 23 - The Design of the Inventory Management System

 Chapter 24 - Inventory Masters

 Chapter 25 - Inventory Movements

 Chapter 26 - The Inventory Balances Report

 Project 4 - The GenEditAdd Control

 Chapter 27 - Using the GenEditAdd Control

 Chapter 28 - Extending the GenEditAdd Control

 Project 5 - Visual Studio.NET

 Chapter 29 - Displaying Database Data Using a Strongly-Typed DataSet

 Chapter 30 - Writing CRUD Applications with Visual Studio.NET

 Chapter 31 - Creating a Web Service Using Visual Studio.NET

 Part III - Appendixes

 Appendix A - Installing the Sample Database

 Appendix B - HailStorm

 Index

 List of Figures

 List of Tables

 List of Examples

Microsoft ASP.NET Professional Projects
Hersh Bhasin

© 2002 by Premier Press, Inc. All rights reserved. No part of this book may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system
without written permission from Premier Press, except for the inclusion of brief
quotations in a review.

The Premier Press logo, top edge printing, related trade dress and Professional Projects
are trademarks of Premier Press, Inc. and may not be used without written permission.
All other trademarks are the property of their respective owners.
Important: Premier Press cannot provide software support. Please contact the
appropriate software manufacturer's technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used
by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources
believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an ever-changing entity. Some facts
may have changed since this book went to press.

ISBN: 1-931841-21-7
Library of Congress Catalog Card Number: 2001096478

Printed in the United States of America
02 03 04 05 06 RI 10 9 8 7 6 5 4 3 2 1
Publisher Stacy L. Hiquet
Associate Marketing Manager Heather Buzzingham
Managing Editor Sandy Doell
Acquisitions Editor Kevin Harreld
Editorial Assistant Margaret Bauer
Technical Reviewer Mingyong Yang
Copy Editor Jenny Davidson
Interior Layout Marian Hartsough Associates
Cover Design Phil Velikan
Indexer Kelly Talbot
Proofreader Kim Cofer
Dedication

To my parents, my wife Ritu, and my daughter Ria
Acknowledgments

I thank my wife Ritu for motivating me to write this book and for painstakingly
proofreading, editing, and formatting all my manuscripts. I thank all my friends at Premier
Publishing who made this book possible. Thank you Kevin Harreld and Jody Kennen for
putting your trust in me, Elizabeth Agostinelli, Jenny Davidson and Brian Thompson for

wading through my work and fixing what was wrong and Mingyong Yang for reviewing
my source code and giving valuable suggestions.
About the Author
Hersh Bhasin has been consulting on Microsoft technologies for some nine odd years
and maintains a Web site on emerging technologies like .NET, SOAP, XML at
http://hersh.weblogs.com. He qualified as a Management Accountant from The
Chartered Institute of Management Accountants - UK (CIMA) and also obtained a
Bachelor of Science degree from the University of Punjab, India. He can be contacted at
hersh_b@yahoo.com

Part I: The ASP.NET Programming Environment

Chapter List
Chapter 1: Introducing ASP.NET
Chapter 2: Introducing ASP.NET Web Forms and Controls
Chapter 3: Using ADO.NET in the .NET Framework
Chapter 4: Data Binding
Chapter 5: Input Validation
Chapter 6: User Controls
Chapter 7: Custom Controls
Chapter 8: Business Objects
Chapter 9: Working with ASP.NET Web Services
Chapter 10: ASP.NET Applications
Chapter 11: Caching
Chapter 12: Tracing
Chapter 13: Security

Chapter 1: Introducing ASP.NET

Overview

ASP.NET is a radical evolution of ASP and its associated data access service, ADO,
which is now called ADO.NET. ASP suffered from many limitations—it was unstructured,
so the code intermingled with the presentation logic, which made applications difficult to
understand and maintain. Due to this limitation of ASP, code segregation was not
possible. You could not hand over the presentation logic to a Web designer and the code
to a developer and ask both to work simultaneously on the application. Unlike windows-
based application development, ASP did not have an inherent component or
programming model. ASP developers had to use a combination of markup languages,
scripting environments, and server platforms to get their work done. Tool support was
limited and although Visual InterDev introduced a Visual Basic type interface that
allowed you to drag and drop components such as text boxes and labels onto a form, it
was clunky and added tons of code to the form, which needless to say scared away most
developers from ever using this product.
ADO, the Data Access component of ASP, had been designed with a view to serving the
data access needs of client/server-based applications. Programming for the Web,
however, followed different rules. A client/server application had no need to optimize
database connections and a typical database operation would open a database
connection and leave it open until the looping operation of an ADO recordset was
complete. Database connections in a Web-based environment, however, were
expensive. Web programming required a disconnected way of manipulating data. Thus
the Remote Data Services (RDS) were born. With the advent of XML (eXtensible Markup
Language), the request/response paradigm became the order of the day. To keep up
with this message-based system of communication, HTTP support was added to RDS,
which allowed business logic to be called at the middle tier. XML follows a

heterogeneous and hierarchical data model (XMLDOM) whereas MDAC (Microsoft Data
Access Technologies) follows a relational model. To work with XML data we had to make
a choice between MSXML and MDAC. But ADO.NET solves this dilemma. XML support
is built at a very basic level and it is quite similar to working with "database" data. No
longer is choosing between MDAC and MSXML an issue.
Web forms, which will be discussed in Chapter 2, "Introducing ASP.NET Web Forms and
Controls," are the fundamental building blocks of ASP.NET. The concept of "Code
Behind" has been introduced, which is the process of writing pres entation logic and
script in separate files. Code Behind seeks to eliminate the clutter and "spaghetti" code
(spaghetti code is code where the scripting portion intermingles with the presentation
logic) that traditional ASP seemed to encourage. ASP.NET provides a server-based,
event-driven programming model similar to Visual Basic, which enables WYSIWYG tools
like Visual Studio to be used.
ASP.NET introduces two sets of controls, the HTML controls and the Web controls,
which are collectively known as "server controls." These controls render HTML for Web
browsers in addition to providing means of preserving state across round trips, detecting
the browser types (and rendering HTML accordingly), and serving as the building blocks
for composite controls. These controls reside on the server and output plain HTML to the
browser. Since all browsers can understand HTML, they are able to overcome the
classic cross-browser compatibility problem.
The HTML controls (textbox, form, button, and so on) are the normal HTML controls that
we have been using so far, with a new runat="server" attribute added. The sole use
of these controls is to provide a quick migration path to ASP.NET as any HTML control
can be converted to an ASP.NET control by adding the runat="server" attribute. The
Web controls, however, provide a high degree of abstraction and usefulness. Four types
of Web controls exist: Intrinsic controls, Rich controls, List Bound controls, and Validation
controls. Intrinsic controls are the ASP.NET versions of traditional HTML controls, such
as textboxes, buttons, and DropDownList. These controls have a special prefix of
ASP.NET that distinguishes them from the normal HTML controls and they also have a
runat ="server" attribute. Thus a textbox is created as follows:

<asp:TextBox id="Text1" runat="server"/>
The purpose of Web controls is to simplify the nomenclature of a control. Controls that
overlapped in their functionality have been reduced to a single control. Properties like
ForeColor, Font, BackColor, Enabled, and so on are consistent among controls.
The developer thus needs to remember one property setting that he can apply to all
controls.

Rich controls consist of the Calendar and AdRotator. The Calendar outputs HTML for
downlevel browsers (these are browsers that do not support DHTML) or DHTML for
uplevel browsers. The AdRotator displays rotating advertisements.
List bound controls are the subject matter of Chapter 4, "Data Binding." There are three
controls in this category: the DataGrid, the DataList and the DataRepeater. These
controls automate the task of displaying database data as lists and data grids. The
developer applies a number of templates to these controls to achieve a high degree of
customization. The DataGrid can even be used for in-place editing of data.
Validation controls, which are discussed in Chapter 5, "Input Validation," automate the
mundane activity of writing validation code. There are five validation controls and one
validation summary control. The validation controls are the
RequiredFieldValidator, RegularExpressionValidator,
CompareValidator, RangeValidator, CustomValidator, and the
ValidationSummary. The work of each of these controls is evident from its name. For
example, the RequiredFieldValidator does not allow the user to leave the required
field blank. Similarly, the RangeValidator verifies whether user input falls within a
specified range. It is a simple task to incorporate validation in an ASP.NET web form. All
you need to do is associate an input text box with the appropriate validation control.
ADO.NET, the latest avatar of ADO, is discussed in Chapter 3, "Using ADO.NET in the
.NET Framework." ADO has seen a massive overhaul (a complete rewrite would be a
better choice of words) in ADO.NET. The foundation of ADO—the recordset—has been
given the golden handshake. As noted above, the recordset understood only the

relational way of doing things, which was appropriate for handling database data. With
the advent of XML, which followed a heterogeneous and hierarchical data model, the
recordset had a hard time keeping up. A new object called the DataSet has been
introduced in ASP.NET. The DataSet is an in-memory copy of the database, complete
with tables, columns, relationships, constraints, and data. It allows relationships to exist
between multiple tables, analogous to a foreign-key relationship in a database. You can
navigate between tables based upon their relationships. The DataSet has some
outstanding qualities. For example, it can talk to a variety of datasources; it can receive
data from a database, an XML file, code, or user input. No matter what the source of the
data within the DataSet is, it is manipulated through the same set of standard APIs. The
DataSet is transmitted as an XML stream and can thus be passed between any objects
(not just COM objects) without interference from firewalls. To transmit an ADO
disconnected recordset from one component to another, COM marshalling had to be
used.
User controls, which are discussed in Chapter 6, "User Controls," are the evolution of the
server-side include files. Include files are static files. User controls, on the
other hand, provide object model support, which enables you to program against
properties and use methods. User controls work much like the ASP intrinsic controls in
that they can expose properties and methods. In Chapter 6, I design a user control that
automates building of the navigation links for a Web site based on the URLs specified in
an XML file.
ASP.NET has a very clean and elegant approach to authoring custom controls. In
Chapter 7, "Custom Controls," I discuss the process of authoring custom controls in
detail. I also show you how to build a component (which I call "GenEditAdd") that you
can use to extend the DataGrid's functionality. The DataGrid does not have the
functionality to insert records. Using the GenEditAdd component, you can automate the
process of record insertion. You can also use the GenEditAdd component in lieu of the
editing functionality provided by the DataGrid, which requires you to code a number of
events. The GenEditAdd component requires simple property settings and the code
generation is automatic.
Encapsulating business logic into components has always been an important part of both
Web and client/server applications. ASP.NET has greatly simplified the process of
registering components. If you have developed COM objects in the past, you must know
the pain involved in registering components. A component had to be registered using the
regsvr32 utility. If the component was modified, the entire Web server had to be stopped
in order to re-register the component. This was called "DLL Hell." In ASP.NET,
components are simply copied and pasted in the bin directory and no registry updates
are required. Chapter 8, "Business Objects," looks at this important topic.
Web service is the main protagonist of the .NET arena and the content of this book and
its projects reflect its importance. A web service is a combination of three things: a
function written in a .NET-compliant language, SOAP, and XML. When you need to
reuse logic in a number of places, the best way to do so is to write the code as a
function. A collection of functions that share some common goal can be combined into a
business object. For example, the four basic database operations are insert, delete,
update, and select. We can write a generic function for each operation and pack them
together in a business object called (say) DataBaseClass. Now this class, together
with its functions, can be initiated and called in any object that needs to use its
functionality. A web service is a Web-enabled business object, which is a collection of
functions that can be called over the Web. Functions written for a web service are written
as normal functions, and the only difference is that the functions are preceded with a
special tag that marks them as web services. A standard called SOAP (Simple Object
Access Protocol) sets out the rules that must be followed by the machine that makes a
function call and the machine that responds to that call by sending a resultset back. The
request and response is made in XML and the XML document follows the rules set out in
the SOAP standard. Exchanging information as XML enables a client application to call a
function on the server, regardless of what operating system each is running, what
programming language each is written in, or what component model is supported on
each. This is because XML is basically a text file that all machines can understand and
because SOAP uses HTTP, which is the most common Internet transfer protocol and

one that is used by essentially all Web browsers. Chapter 9 "Working with ASP.NET
Web Services," provides a detailed discussion on web services.
Chapter 10, "ASP.NET Applications," covers ASP.NET applications. An ASP.NET
application is an IIS virtual directory and its subdirectories. All of your Web application
files go into this folder. This folder has a special subdirectory called bin. All the compiled
business objects and web services reside here. When you want to register a new
component, you just copy and paste the DLL file in this folder (as opposed to using
regsvr32). This folder also contains two special files: web.config and global.asax. The
web.config file is an XML file that you use to configure various facets of the application.
For example, you can use it to set up and configure security, caching, or tracing. The
global.asax file contains application-level program directives, handlers for application
and session-level events, and declarations of objects that are globally accessible to all
parts of the application. In general, this file enhances the functionality that was provided
by the global.asa file in ASP.
Chapter 11, "Caching," deals with caching, which is the process of keeping frequently
visited Web pages in memory. The theory behind caching is that there are some items of
the Web site that are very expensive to construct and that such items should be created
once and then stashed away in memory for a fixed duration of time or until they change.
Subsequent calls to these resources will not re-create the resource but simply retrieve it
from the cache. Such items are typically resources that remain unchanged over a period
of time; for example, shopping lists or price lists.
Chapter 12, "Tracing," discusses tracing. Developers have often resorted to writing a
number of Response.Write() statements in the code to try to debug errant code.
When the problem is located, these debugging statements must be cleared out. This
method is cumbersome and error-prone, because you might accidentally remove code
along with the debugging statements. ASP.NET introduces an elgant way of writing such
debugging code. Debugging is enabled by adding a page-level directive (or by enabling it
in the web.config file). Debugging statements are then written using Trace.write()
instead of Response.Write(). When the form has been debugged, there is no need to
remove these statements from the body of the form. You can simply disable Trace and
these statements will not be displayed in the browser.
Security is discussed in Chapter 13. ASP.NET implements authentication through
authentication providers. These authentication providers are modules that contain code
required to authenticate the credentials of the requesting user. Three authentication
providers are currently available: Windows Authentication, Passport Authentication, and
Cookie Authentication. All three providers are discussed.
In Project 1 (Chapters 14 to 17), I show you how to build a Web-enabled personal
finance manager using ASP.NET web forms. This project is spread over four chapters. In
this project, I take a product that has its roots in the client/server era—a personal finance
accounting module—and revamp it for the Web. A personal finance manager is an
accounting application, such as Quicken or Microsoft Money that enables you to
maintain bank, cash, credit cards, and investment accounts. This project is designed to
be a production quality accounting application and makes use of stored procedures and
database triggers. It's comprised of web forms to maintain your chart of accounts,
transactions details and it even draws up a trial balance report.
The Internet brings some exciting possibilities to the traditional way of designing
applications. The various modules of an accounting application need no longer be
connected with "wire." Using ASP.NET and web services, we can design applications
that can send and receive data using the Internet and HTTP. In Project 2 (which spreads
over five chapters), I build generic database access services that can then be used to
interact with any database. This service has functionality to insert, update, delete, and
select records from a database. This web service accepts a database connection and a
valid SQL query as parameters. If the query is an action query (insert, update, or delete),
the appropriate action is performed. If the query is a select query (which returns a
resultset), a DataSet is returned to the calling object. This DataSet can then be used to
bind a control like a DataGrid. I demonstrate this service by incorporating it in the
personal finance manager that was developed in Project 1. This project also
demonstrates use of the navigation user control that was built in Chapter 6, "User
Controls." This navigation control builds the site navigation of the application using URLs
defined in an XML file.

The advantage of having a navigation system separate from the main application is that
you can add or delete links (by modifying the XML file) without having to change the Web
pages in the application.
In Project 3 (Chapters 23 to 26), I have taken another application that has traditionally
been a client/server application and revamped it for the Web. This is an inventory
management application. This application makes use of the database web service class
that was developed in Project 2. It also makes use of various stored procedures and
triggers.
In Project 4 (Chapters 27 and 28), I enhance the functionality of the custom control
GenEditAdd (which was initially developed in Chapter 7). The GenEditAdd control can be
used to insert or update database records. The DataGrid does not have the capability to
insert records, although it does have editing capabilities. The edit mode of the DataGrid
is quite cumbersome, as you have to code a number of events in the DataGrid for the
process to work. This control was developed to enhance the usefulness of the DataGrid.
It can be hooked up to a DataGrid to provide both editing and insertion capabilities in a
consistent manner. This control works by setting various properties and the code
generation is automated.
In Project 5 (Chapters 29 to 31), I discuss the important features of Visual Studio. In
Chapter 29, "Displaying Database Data Using a Strongly-Typed DataSet," I begin with
an overview of the important features of Visual Studio.NET, focusing on the various
wizards, tools and components available. I'll also show you how to use the typed
DataSet to display database information using the Visual Studio.NET drag and drop
features. In Chapter 30, "Writing CRUD Applications with Visual Studio.NET," I'll show
you how to interact with the database using Visual Studio.NET. I'll show you how to add,
delete, and update database rows. I'll also show you how to customize a DataGrid by
enabling paging and sorting from within the Visual Studio.NET. Finally, in Chapter 31,
"Creating a Web Service Using Visual Studio.NET," I'll show you how to develop and
consume web services with Visual Studio.NET.

Installing the .NET Framework SDK
The .NET SDK can be downloaded from the Microsoft download site at
http://msdn.microsoft.com/net/. It is quite a large download and you might want to
consider ordering a CD, which will ship at a nominal charge.

There are two versions available; a standard version or a premium version. The premium
version includes additional features like output caching, web farm session state, code
access hosting and support for four and above CPUs.
Installation is straightforward and involves running the setup.exe. If prompted, you
should update the Windows Installer Components. You should also apply the latest
patches for your Windows version. You should also update your version of MDAC
(Microsoft Data Access Components) to the latest version, which is currently version 2.7.
If the installer complains that ADO 2.7 is not installed, you can still proceed with the
installation by disregarding the complaint. You will be given a choice to install the SDK
samples. The samples are a rich source of information and you should choose to install
them. A named instance of the Microsoft Data Engine (MSDE) is installed along with the
samples and this contains the sample database.

Tip A limited-time evaluation copy of Microsoft SQL Server can be
obtained from
http://www.microsoft.com/sql/evaluation/trial/2000/default.asp. You
can also order this copy on a CD and only pay the cost of shipping.

After you have SQL Server up and running, install the ASP.NET QuickStart samples.
These samples are an excellent training resource on ASP.NET. To install these samples,
open the Microsoft NET Framework SDK/Samples and QuickStart
Tutorials link, which is added to your programs during the SDK installation and follow
the installation steps. Once the samples are installed, they can be accessed at
http://localhost/quickstart/default.aspx.

After you install the SDK, all you need is a text editor to write your scripts. You can also
order the Visual Studio CD set (again at a nominal charge) and use it to develop your
scripts. If you have the Visual Studio CDs, the Framework SDK is on the second CD.
I have discussed development with Visual Studio, where appropriate, and one entire
project (Project 5) is dedicated to exploring this development tool. I have left discussion
of Visual Studio till the end because I want my readers to be familiar with the internals of
ASP.NET before using the wizard-like tools of the Visual Studio IDE, which hides the
intricacies of code development. A text editor that
I highly recommend is TextPad, which is shareware and available at
http://www.textpad.com. You can also download the syntax definition file for .NET from
its site. This file will display various ASP.NET keywords in different colors.

Chapter 2: Introducing ASP.NET Web Forms and
Controls
ASP.NET forms are designed to overcome a number of shortcomings inherent in ASP
pages. In these pages the HTML elements and script code are necessarily intertwined
making the resultant page very cluttered. These pages are not easily edited with
WYSIWYG tools. ASP.NET improves on the ASP page and adds many interesting
enhancements to it. It provides a server-based, event-based programming model similar
to Visual Basic. It introduces a technique called "Code Behind," which allows the
developer to keep the script code in a file separate from the HTML markup. ASP.NET
introduces two sets of controls, the HTML controls and the Web Controls, which are
collectively known as "server controls." These controls render HTML for Web browsers in
addition to providing means of preserving state across round trips, detecting the browser
types (and rendering HTML accordingly), and serving as the building blocks for
composite controls. A round trip occurs whenever the user submits a form or an event
occurs that causes a post to the server; for example, the user fills out a text box on a
form and clicks on the submit button. The server processes the information passed onto
it and sends the page back to the client for display. The original state of the form is
maintained by ASP.NET. This means that when the user fills out a text box and submits
the form to the server, the text box will retain this information even after the round trip.
This is a welcome change from traditional ASP programming where the developer had to
take care of maintaining state, as the user-input values were lost after every post.

Basic Techniques

To create an ASP.NET form you simply save a text or HTML file with the .aspx
extension. No special tools are needed and you can use an editor like Notepad for the
job. You can also use Visual Studio.NET, a rapid application development environment
(RAD) that allows you to drag and drop controls onto a form.
ASP.NET forms also provide selective backward compatibility. For example, you can use
normal ASP code and mix script tags with HTML elements using the <% %> blocks. ASP
and ASP.NET applications can run side by side on the IIS without interference. However
ASP applications developed using the Visual Basic Scripting Edition will need to be
modified to port to ASP.NET.

In ASP.NET, script blocks are compiled and not interpreted, leading to enhanced
performance. Compiling the code involves converting the code instructions to the
machine language. In ASP.NET however, code is not compiled to machine language
directly. It is instead compiled to an intermediate language called Microsoft Intermediate
Language (MSIL or IL). IL code is further compiled to machine language using the JIT
compiler (just-in-time compiler). The JIT compiler compiles each portion of code as it is
called, instead of compiling the complete application in one go. This leads to faster start -
up time. The resultant compiled code is stored till the application exits and hence does
not have to be recompiled each time that portion of code gets called. Using this process,
it is expected that execution of IL code will be almost as fast as executing native
machine code.

State Management

Though you can use the script blocks, they do not lead themselves to a clean
programming environment. Consider the basic requirement of maintaining state in a
"post back" form. This is a form that accepts user input and "posts back" to itself. It
needs to remember the values entered so that, if the user makes a mistake, it can
display the values the user had earlier entered so that he can correct them.
Coding for such a form in the ASP environment has involved using the Response object
to extract the value and a <% =some variable %> block to display the passed value.
Here is an example:

State.asp

<html>

 <form method="post">

 <h3> Name: <input name="Name" type=text value="<%=Request.form("Name")%>">

 <input type = "submit" value = "Submit">

 </form>

</html>

In ASP.NET, state management is enabled automatically when you use server controls
within a form control as follows:

State.aspx

<html>

 <body style="background-color='beige'; font-family='verdana'; font-size='10pt'">

 <form method="post" runat=server>

 <h3> Name: <asp:textbox id="Name" runat="server"/>

 <asp:button text="Lookup" runat="server"/>

 </form>

 </body></html>

Note that the form automatically "remembers" input values. There are a few drawbacks
associated with using server controls for state management. You can only use the
"post" method and can only have a single form on your page.

Page Events
ASP.NET has object orientation at its heart. You can code various events in a Visual
Basic–like manner. As the form loads, the Page_Load event is fired, form controls
become available for use and, as the user continues to interact with the form, other
events are generated. The form unload event occurs when the page is unloaded. Due to
this event -based structure, a developer can finally start applying event-based coding
techniques to Web applications. Figure 2.1 shows you how to accept user-input values to
perform a calculation using these techniques.

Figure 2.1: Page Events.
Events.aspx

<%@ Page Language="vb" %>

<html>

 <head>

 <script Runat="server">

 Sub Calculate(src As Object, e As EventArgs)

 Amount.Text = Cstr(cint(qty.text)*cint(price.text))

 End sub

</script>

 </head>

 <body style="background-color='beige'; font-family='verdana'; font-size='10pt'">

 <h4> Page Events </h4>

 <form method="POST" runat="server">

 Qty:<asp:TextBox id="Qty" Runat="server"/>

 Price: <asp:TextBox id="Price" Runat="server"/>

 Amount:<asp:TextBox id="Amount" ReadOnly = "true" Runat="server"/>

 <asp:Button id="btnCalculate" Text="Calculate" OnClick="Calculate"
Runat="server"/>

 </form>

 </body>

</html>

At the top of the page, I specify that we are going to be using Visual Basic as the
scripting language with the @ Page Language declaration. Each object can be assigned
an id property. This enables me to extract property values for the object using its id
property. In this example, I am accessing the text property for the Price and Qty
textboxes instead of accessing the posted data using the response object. I put my code
in the OnClick event of the button, thus making use of the new event-based paradigm
of ASP.NET. Finally, note how I am able to set the ReadOnly property of the Amount
textbox simply by setting its property value to "true".

Code Behind

As mentioned earlier, a major limitation of ASP is the way the script code intermingles
with the HTML tags. This makes the separation of content from presentation difficult. The
page becomes difficult to maintain and, in shops where developers and designers work
together, segregation of tasks becomes impossible.
Code Behind is a technique to separate the content from the script. A form can become
really cluttered with script code and html tags. To reduce this clutter you can lift out all
the script code from a web form and put it in a separate file. If you are using Visual Basic
code, this file will have an extension of .vb and if you are using C#, .cs.
The first thing you do in a Code Behind file is to import namespaces. This is the first
construct in the Code Behind file. Namespaces can be thought of as including references
in a Visual Basic project. When you make a reference to a DLL in Visual Basic, you can
access the methods contained in that DLL. Similarly, by importing a namespace, you can
access all the functionality residing within that namespace in your web form. If you do not
use this declaration, you have to provide a fully qualified path when referring to a method
residing in a particular namespace. This fully qualified path name can become very long
(and a pain to type). Using the import directive allows you to directly refer to the method
by name. Here are some of the commonly used Namespaces:
§ The System namespace contains fundamental classes and base classes that

define commonly-used value and reference data types, events and event
handlers, interfaces, attributes, and processing exceptions.

§ The System.Collection namespace contains classes that define lists,
queues, arrays, hashtables and dictionaries.

§ The System.Web.UI.Control is the parent of all Web Form Controls. Three
commonly used controls belong to this namespace—Page, UserControl and
LiteralControl. Every ASP.NET page is compiled to the Page control by the
ASP.NET page framework.

§ The System.Web.UI.WebControl namespace contains classes that define
the ASP.NET server controls.

§ The System.Web.UI.HTMLControls namespace contains classes that define
HTML controls.

§ Namespaces like System.Data , System.Data.OleDb, System.Data.
SqlClient, System.XML are classes that deal with manipulating database, XML
and other data. I will look at these namespaces in Chapter 3.

I will be discussing these namespaces at various places in the book. In this chapter, I will
be discussing the System.Web.UI.WebControl namespace and the
System.Web.UI.HTMLControls namespace.

Note "Imports" is a Visual Basic construct. If you are using C#, you
will substitute "Using" for "Imports".

If you have included Web Controls in your .aspx form and want to refer to them in your
Code Behind file your import construct will look like the following:

Imports System

Imports System.Collections

Imports System.Web.UI

Imports System.Web.UI.WebControls

You then define a class. All your functions and subs go in this class. A Visual Basic Code
Behind file might look like this:

Imports System.Data

Public Class BaseClass

Inherits System.Web.UI.Page

Sub somesub()

 End Sub

 Function somefunction()

 End Function

End Class
Note that I have introduced the Inherits keyword here. The difference between the
Inherits and Imports keyword is that the Imports statement only brings in the
definition of a set of functionality, but does not actually make use of it. It is comparable to
including a reference in Visual Basic. The Inherits keyword is more dynamic. An
object that inherits certain functionality can also override and/or extend the parent
functionality.

This form becomes a base class and one that your aspx page will inherit from.
Inheritance is quite simple. You just have to put a statement at the top of the aspx form:

<%@Page Language="VB" Inherits="BaseClass" Src="nameofCodeBehind.vb" %>

Let's take a look at an example. We will take the Events.aspx file and split it into two
files: events_cb.aspx and events_cb.vb, the Code Behind file.

events_cb.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="events_cb.vb" %>

<html>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <form method="POST" runat="server">

 Qty:<asp:TextBox id="Qty" Runat="server"/>

 Price: <asp:TextBox id="Price" Runat="server"/>

 Amount:<asp:TextBox id="Amount" ReadOnly = "true" Runat="server"/>

 <asp:Button id="btnCalculate" Text="Calculate" OnClick="Calculate"
Runat="server"/>

 </form>

 </body>

</html>

Events_cb.vb

Imports System

Imports System.Collections

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

Inherits System.Web.UI.Page

'Each control used on events.aspx to be declared here with same id

Protected qty as textbox

Protected price as textbox

Protected amount as textbox

 Sub Page_Load(Source As Object, E As EventArgs)

 'this is the page load event

 'gets fired each time the page is loaded

 response.write("Page Load Event : -->fired
")

 if NOT (isPostBack)

 'the code here gets fired only one at page load

 'subsequent reloads do not fire it due to the not isPostBack construct

 response.write("The not isPostBack construct:--> ensures this does not get fired at
reloads")

 end if

 End Sub

 'This sub moved from the events.aspx form

 Sub Calculate(src As Object,e As EventArgs)

 Amount.Text = Cstr(cint(qty.text)*cint(price.text))

 End Sub

End Class

Let's discuss the example in detail:
1. I have defined a class called BaseClass in the Code Behind file and moved

the Calculate sub from the aspx form into this class. This class inherits
from the System.Web.UI.Page.

2. I will be extracting the text value of textboxes Qty and Price, multi- plying
the two, and putting the result in the Amount textbox. Since I need to access
the property values of these three textboxes from my Code Behind file, I
declare three textboxes with the same id in the Code Behind file like this:

3. Protected qty as textbox

4. Protected price as textbox

Protected amount as textbox
5. The Qty, Price, and Amount textboxes are WebControls since I have

initialized them with the asp: tag prefix. For example, the Qty textbox is
created as follows:

<asp:TextBox id="Qty" Runat="server"/>

Controls exist in the System.Web.UI.WebControls namespace hence I must
import this namespace before I can access their properties by code. This is
done by the import directive at the top of the page:

Imports System.Web.UI.WebControls
6. Finally, I have coded the Page_Load Event to display a message when it gets

fired. This event gets fired each time the page gets loaded.
At times we need to code events that get fired only at the initial page load and
not on subsequent reloads. For example, we can bind a Web Control to a
data source (I will be discussing data binding in Chapter 4) and want the
binding to occur only once at page load.
The isPostBack property of the page lets us determine if posting has
already occurred to the page. Thus we use the following construct to display a
message only on the first load of the page:

IF NOT (isPostBack)

 response.write("The not isPostBack construct:—>……")

 End If

Server Controls

There have been many attempts to encapsulate HTML rendering into controls. We have
had objects like VBXs, OLE controls, and ActiveX controls, all of which attempted to give
us a simple way to generate HTML. The problem with these controls is that they made
the presumption that the users accessing our sites would have the very latest browsers.
The server side controls introduced with ASP.NET make no such requirement of the
browser. They render pure HTML to the browser, thus overcoming the shortcoming of its
client side brethren. These server controls are fully encapsulated objects that expose
events, properties, and methods to programmatic access. They exist independent of the
web form on which they are drawn.

ASP.NET provides two sets of controls: HTML and Web Controls. HTML controls
correspond to traditional HTML controls with the same name. Web Controls provide
features such as automatic browser detection, a consistent object model, and data
binding capabilities.

HTML Controls
HTML controls belong to the System.Web.UI.HTMLControls namespace and derive from
the HTMLControl base class. They are initiated with the runat = "server" attribute.
For example, the following HTML creates an instance of a HTMLInputText named
textbox 1.

<Input type = "text" runat="server" id = "textbox1" value ="test">
These controls map directly to their HTML counterparts and are useful for providing
backward compatibility with ASP. These controls do not provide any abstraction like their
Web Control counterpart and do not automatically detect the requesting browser to
modify the HTML they render. The main use of these controls is to provide a quick
migration path to ASP.NET as existing HTML tags can be upgraded to server controls
just by supplying the runat = "server" attribute.
I have provided examples of various HTML controls in the following example with a
detailed discussion of each one afterwards. Figure 2.2 shows various HTML controls.

Figure 2.2: HTML Controls.
htmlControls.aspx

<%@ Page Language="vb" %>

<html>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <H2>HTML Controls</H2>

 <form method="POST" runat="server">

 HTMLAnchor Control

 <button id="Button1" style="font: 8pt verdana;background-color:lightgreen;border-
color:black;height=30;width:100" runat="server">

 HTMLButton

 </button>

 HTMLImage<img ID="Image1" src="/quickstart/aspplus/images/cereal1.gif"
runat="server"/>

 HTMLInputButton:

 <input type=submit value="Submit" runat=server/>

HTMLInputCheckBox:

 <input id="Check1" type=checkbox runat="server"/>

 HTMLInputHidden :(hidden)

 <input id="HiddenValue" type=hidden value="Initial Value" runat=server>

 HtmlInputImage:

 <input type=image id="InputImage1" src="/quickstart/aspplus/images/ mango.jpg"
runat="server"/>

:HtmlInputRadioButton:

 <input type="radio" id="Radio1" name="Mode" runat="server"/>Option 1

 <input type="radio" id="Radio2" name="Mode" runat="server"/>Option 2

HtmlInputText (password)

 <input id="Password" type=password size=40 runat=server>

HtmlInputText

 <input id="Name" type=text size=40 runat=server>

HTMLSelect :

 <select id="Name_sel" runat="server">

 <option>Hersh</option>

 <option>Ritu</option>

 <option>Ria</option>

 <option>Bhasin</option>

 </select>

 </form>

 </body>

</html>

1. HTMLForm

Corresponding HTML tag: <form>
Example:

<form method="POST" runat="server">
2. HTMLAnchor

Corresponding HTML tag: <a>

Example:

HTMLAnchor Control
3. HTMLButton

Corresponding HTML tag: <button>

Example:

<button id="Button1" style="font: 8pt verdana;background-
color:lightgreen;border-color:black;height=30;width:100" runat="server">

 HTMLButton </button>
4. HTMLImage

Corresponding HTML tag:

Example:

<img ID="Image1" src="/quickstart/aspplus/images/cereal1.gif"
runat="server"/>
5. HTMLInputButton

Corresponding HTML tag: <input type = "button">

Example:

<input type=submit value="Submit" runat=server/>
6. HTMLInputCheckBox

Corresponding HTML tag: <input type = "check">

Example:

<input id="Check1" type=checkbox runat="server"/>
7. HTMLInputHidden

Corresponding HTML tag: <input type = "hidden">

Example:

<input id="HiddenValue" type=hidden value="Initial Value" runat=server>
8. HTMLInputImage

Corresponding HTML tag: <input type = "image">

Example:

<input type=image id="InputImage1"
src="/quickstart/aspplus/images/mango.jpg" runat="server"/>
9. HTMLInputRadioButton

Corresponding HTML tag: <input type = "radio">

Example:

<input type="radio" id="Radio1" name="Mode" runat="server"/>Option
1

<input type="radio" id="Radio2" name="Mode" runat="server"/>Option
2

10. HTMLInputText (password)

Corresponding HTML tag: <input type = "password">

Example:

<input id="Password" type=password size=40 runat=server>
11. HTMLInputText

Corresponding HTML tag: <input type = "text">

Example:

<input id="Name" type=text size=40 runat=server>
12. HTMLSelect

Corresponding HTML tag: <select>

Example:

<select id="Name_sel" runat="server">

 <option>Hersh</option>

 <option>Ritu</option>

 <option>Ria</option>

 <option>Bhasin</option>

</select>

Web Controls
A Web Control is created by adding a prefix of asp before a control. This prefix is
actually a namespace of the run time control. The remainder of the tag is the name of the
run time control itself. Like the HTML controls these controls also contain a runat =
"server" attribute. This is an example of a textbox Web Control:

<asp:TextBox runat="server" id = textbox1 value ="test"/>

Since HTML controls can be used server side, we might question the need for another
set of controls that provide similar functionality. The idea with Web Controls is that it
simplifies the nomenclature of a control. Controls that overlapped in their functionality
have been reduced to a single control. For example, consider the three input controls in
the following:

<input id="Name" type=text size=40 runat=server>

<input id="Password" type=password size=40 runat=server>

<textarea id="TextArea1" cols=40 rows=4 runat=server />

Each of these controls are used for accepting input from the user, however, there is no
consistency. Web Controls provide a more logical solution.

<asp:TextBox id="Text1" runat="server"/>

<asp:TextBox id="Text2" TextMode="Password" runat="server"/>

<asp:TextBox id="Text3" TextMode="Multiline" rows="4" runat="server"/>
Now one control provides the functionality of three. This new syntax is much easier to
remember. Furthermore, the WebControl base class from which the Web Controls derive
implement functionality that is common to all Web Controls. Properties such as
ForeColor, Font, BackColor, Selected, Enabled, etc., are consistent among controls. The
developer thus needs to remember one property setting that he can apply to all controls.
These controls provide automatic browser detection. They can customize their
capabilities to match the calling browser requirements. As we will see in Chapter 4, Web
Controls like the DataGrid and DataList can be bound to a data source and can make
HTML rendering a breeze.

Web Controls are of the following types:
§ Intrinsic controls: The rationalized HTML controls like Text Boxes,

DropDownLists, etc., that start with asp: prefix.
§ ListBound controls: Controls that simplify the task of generating Html

for a repeating data source. These are controls like the DataGrid,
DataList, Repeater and DataReader.

§ Rich controls: These consist of the Calendar and AdRotator. The
Calendar outputs HTML for downlevel browsers or DHTML for uplevel
browsers. The AdRotator displays rotating advertisements.

§ Validation controls: These include controls such as Compare Validator,
Range Validator, RequiredField Validator, RegularExpression Validator,
Custom Validator and Validation Summary. These controls aim to
simplify the process of user input validation.

I will be discussing Intrinsic and Rich controls here. ListBound controls are discussed in
Chapter 3, "Using ADO.NET in the .NET Framework," and validation controls are the
subject matter of Chapter 5, "Input Validation."

Intrinsic Controls
There are a number of intrinsic Web Controls supplied with ASP.NET. These include
controls like TextBoxes, CheckBoxes, Radio Buttons, and DropDown Lists to name a
few. Figure 2.3 shows some of the intrinsic controls. I discuss these controls in detail in
this section.

Figure 2.3: Web Controls.

The script for creating these controls can be found in the Web_intrinsic.aspx file, the
listing of which follows.

Web_intrinsic.aspx

<%@ Import Namespace="System.Data" %>

<html>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <h3>Intrinsic Web Controls</h3>

 <form runat="server">

 Text Box:<asp:TextBox id="Text1" runat="server"/>

 Password :<asp:TextBox id="Text2" TextMode="Password" runat="server"/>

 MultiLine: <asp:TextBox id="Text3" TextMode="Multiline" rows="4" runat="server"/>

 <hr>

 Check Box

 <asp:CheckBox runat="server" Text="CheckBox1"
Checked="True"></asp:CheckBox>

 Radio Button

 <asp:RadioButton runat="server" Text="RadioButton1" GroupName="Group1"
Checked="true">

 </asp:RadioButton>

 <asp:RadioButton runat="server" Text="RadioButton2"
GroupName="Group1"></asp:RadioButton>

 <hr>

 CheckBoxLists

 <asp:CheckBoxList runat="server">

 <asp:ListItem Text="Choice1" Value="1" selected="true"/>

 <asp:ListItem Text="Choice2" Value="2" selected="true"/>

 </asp:CheckBoxList >

 RadioButtonList

 <asp:RadioButtonList runat="server" RepeatDirection= "horizontal">

 <asp:ListItem Text="Choice1" Value="1" selected="true"/>

 <asp:ListItem Text="Choice2" Value="2"/>

 </asp:RadioButtonList >

 <hr>

 DropDownList

 <asp:DropDownList runat="server">

 <asp:ListItem Text="Choice1" Value="1" selected="true"/>

 <asp:ListItem Text="Choice2" Value="2"/>

 </asp:DropDownList>

 ListBox

 <asp:ListBox runat="server" SelectionMode="Multiple">

 <asp:ListItem Text="Choice1" Value="1" selected="true"/>

 <asp:ListItem Text="Choice2" Value="2"/>

 </asp:ListBox>

 <hr>

 Button :<asp:Button runat="server" Text="Click Me"></asp:Button>

 LinkButton :<asp:LinkButton runat="server" Text="Click
Me"></asp:linkButton>

 ImageButton: <asp:ImageButton runat="server"
ImageUrl="gifcon.gif"></asp:ImageButton>

 Hyperlink : <asp:HyperLink runat="server" Text="HyperLink"

 NavigateUrl="web_intrensic.aspx"></asp:HyperLink>

 Image :<asp:Image runat="server" ImageUrl="gifcon.gif"></asp:Image>

 <asp:Panel runat="server"></asp:Panel>

 <hr>

 Table

 <asp:Table runat="server" GridLines="Both" BorderWidth="1px">

 <asp:TableRow>

 <asp:TableCell>Column1</asp:TableCell>

 <asp:TableCell>Column2</asp:TableCell>

 </asp:TableRow>

 <asp:TableRow>

 <asp:TableCell>Column3</asp:TableCell>

 <asp:TableCell>Column4</asp:TableCell>

 </asp:TableRow>

 </asp:Table>

 </form>

 </body>

</html>

I now discuss the various controls covered under this category.
§ Text Boxes

Textboxes accept input from users. They can be bound to data. A text box's
appearance can be controlled by its TextMode property. The TextMode property
can either be single-line, multi-line, or password. When it is set to multi-line, the
row's property controls how many lines of input can be accepted from the user.
Here are a few examples:

Text Box: <asp:TextBox id="Text1" runat="server"/>

Password: <asp:TextBox id="Text2" TextMode="Password" runat="server"/>

MultiLine: <asp:TextBox id="Text3" TextMode="Multiline" rows="4" runat="server"/>
§ CheckBox

A check box has the following properties:
o Checked: can be either true or false. When true, it is

in the checked state.
o Text: This is the text that gets displayed beside the check

box.

o AutoPostBack: If this property is true, it causes an
immediate postback to the server when the check box's
checked property is changed.

o TextAlign: Sets the alignment of the check box. Can be
left or right.

Example:
<asp:CheckBox runat="server" Text="CheckBox1" Checked =
"True">
</asp:CheckBox>

§ Radio Button

A radio button is similar to a check box. However, you can display a number of
radio buttons, relating them to the same group. The user will then only be able to
select one radio button from the group.

Example:

Radio Button

<asp:RadioButton runat="server" Text="RadioButton1" GroupName = "Group1"
Checked="true">

</asp:RadioButton>

<asp:RadioButton runat="server" Text="RadioButton2" GroupName="Group1">

</asp:RadioButton>
§ CheckBoxList

This control provides a multi-selection checked list. It has the following
properties:

o Selected Property: This property can be checked
to determine the selected item.

o RepeatDirection: Can be horizontal or vertical.
Specifies direction of control rendering.

o RepeatLayout: Can be Table or Flow. Table
means the list will be rendered within a table.
Flow renders it without a table structure.

Example:
<asp:CheckBoxList runat="server">
<asp:ListItem Text="Choice1" Value="1" selected="true"/>
<asp:ListItem Text="Choice2" Value="2" selected="true"/>
</asp:CheckBoxList >
§ RadioButtonList

This control provides a group of radio buttons, which allows only one selected
value. It has the following properties:

o Selected Property: This property can be checked
to determine the selected item.

o RepeatDirection: Can be horizontal or vertical.
Specifies direction of control rendering.

o RepeatLayout: Can be Table or Flow. Table
means that list will be rendered within a table.
Flow renders it without a table structure.

Example:
<asp:RadioButtonList runat="server" RepeatDirection= "horizontal">
<asp:ListItem Text="Choice1" Value="1" selected="true"/>
<asp:ListItem Text="Choice2" Value="2"/>
</asp:RadioButtonList >

§ DropDownList

The DropDownList displays only one item in a list at a time. It can be bound to a
data source.

Examples:

o Adding to the list using ListItem

<asp:DropDownList id= "dropdown" runat="server">

<asp:ListItem Text="Choice1" Value="1" selected="true"/>

<asp:ListItem Text="Choice2" Value="2"/>

</asp:DropDownList>
o Adding to the list using code
o Sub AddtoList()
o DropDown.Items.Add("choice1")
o DropDown.Items.Add("choice2")
o DropDown.Items.Add("choice3")

 End Sub
o Binding to a DataSource

o Sub Page_Load(sender As Object, e As
EventArgs)

o If Not IsPostBack Then

o Dim values as ArrayList= new ArrayList()

o values.Add ("Choice1")

o values.Add ("Choice2")

o values.Add ("Choice3")

o DropDown.DataSource = values

o DropDown.DataBind

o End If

End Sub
o Extracting the Selected Value

textbox1.text = DropDown.SelectedItem.Text
§ List Box

The List Box control renders a scrollable list of values. It allows either a single
option or multiple options to be selected. Multiple selection is enabled by setting
the SelectionMode property to "Multiple".
Examples:

§ Adding to the list using ListItem

§ <asp:ListBox id="list1" runat="server"
SelectionMode="Multiple">

§ <asp:ListItem Text="Choice1" Value="1"
selected="true"/>

§ <asp:ListItem Text="Choice2" Value="2"/>

</asp:ListBox>
o Adding to the list using code
o Sub AddtoList()
o List1.Items.Add("choice1")
o List1.Items.Add("choice2")
o List1.Items.Add("choice3")

End Sub
o Binding to a DataSource

o Sub Page_Load(sender As Object, e As
EventArgs)

o If Not IsPostBack Then

o Dim values as ArrayList= new ArrayList()

o values.Add ("Choice1")

o values.Add ("Choice2")

o values.Add ("Choice3")

o List1.DataSource = values

o List1.DataBind

o End If

End Sub
o Extracting the Selected Value

textbox1.text = List1.SelectedItem.Text
o Extracting Multiple values (when multi-selection is

enabled)

o Sub GetMultiples()

o Dim item As ListItem

o Dim s As String = ""

o For Each item In List1.Items

o If item.Selected Then

o s += item.Text + "
"

o End If

o Next

o Response.write(s)

End Sub
§ Button

Generates a standard 3D Push button used to submit the page back to the
server.
Example:

<asp:Button runat="server" Text="Click Me">
</asp:Button>

§ LinkButton

The LinkButton has a similar functionality as that of a Button control. It is also
used to submit a page back to the server. However, instead of a button, a link is
generated.

Example:

<asp:LinkButton runat="server" Text="Click Me">

</asp:linkButton>
§ ImageButton

The ImageButton renders a clickable image, which posts back to the server. Use
this control when you want to display a picture instead of a button.
Example:

<asp:ImageButton runat="server" ImageUrl="gifcon.gif">
</asp:ImageButton>

§ HyperLink
This control displays a hyperlink, which allows the user to navigate to other
URLs.
Example:

<asp:HyperLink runat="server" Text="HyperLink"
NavigateUrl="web_intrensic.aspx">
</asp:HyperLink>

§ Image
The Image control is used to display an image in the page.
Example:

<asp:Image runat="server" ImageUrl="gifcon.gif"></asp:Image>
§ Table

The Table control, along with TableRow and TableCell controls,
programmatically renders tables.
Example:

Table
 <asp:Table runat="server" GridLines="Both" BorderWidth="1px">
 <asp:TableRow>
 <asp:TableCell>Column1</asp:TableCell>
 <asp:TableCell>Column2</asp:TableCell>
 </asp:TableRow>
 <asp:TableRow>
 <asp:TableCell>Column3</asp:TableCell>
 <asp:TableCell>Column4</asp:TableCell>
 </asp:TableRow>
</asp:Table>

§ Panel
The Panel is used as a container for other controls. A number of controls can be
put within a panel tag and made visible or invisible simply by setting the
Visible property to true or false. In Figure 2.4 an example of a panel is given.

Figure 2.4: Panel.

panel.aspx

<%@ Page Language="vb" %>

<html>

 <head>

 <script Runat="server">

 Sub show(src As Object, e As EventArgs)

 detailsPanel.visible = "true"

 End sub

 Sub Hide(src As Object, e As EventArgs)

 detailsPanel.visible = "false"

 End sub

 </script>

 </head>

 <body style="background-color='beige'; font-family='verdana'; font-size='10pt'">

 <H2> Panel</H2>

 <form method="POST" runat="server">

 <asp:Panel id="detailsPanel" runat="server" Visible="false">

 Qty:<asp:TextBox id="Qty" Runat="server"/>

 Price: <asp:TextBox id="Price" Runat="server"/>

 Amount:<asp:TextBox id="Amount" ReadOnly = "true" Runat="server"/>

 </asp:panel>

 <asp:Button id="btnShow" Text="Show Panel" OnClick="Show" Runat="server"/>

 <asp:Button id="btnhide" Text="Hide Panel" OnClick="Hide" Runat="server"/>

 </form>

 </body>

</html>

In this example, the textboxes on the form are put within a Panel tag. The "Show"
function set the visible property of the panel to true. This has the effect of showing all

the textboxes on the form. Likewise the "Hide" function sets the visible property of the
panel to false and hides all the textboxes.

Rich Controls

There are two controls known as "Rich Controls" supplied with ASP.NET. It is expected
that more controls will soon be forthcoming. The AdRotator displays a sequence of
advertisements. The Calendar Control makes it easy to provide date and date navigation
functionality.

§ AdRotator
The AdRotator is a control that produces banner advertisements. Clicking on the
control navigates the browser to a specified URL. A different advertisement is
loaded each time the page is loaded in the browser.
You need to set up an XML file like the following:

Ads.XML
<Advertisements>
 <Ad>
 <ImageUrl>sos.gif</ImageUrl>
 <TargetUrl>www.someurl.com</TargetUrl>
 <AlternateText>Sos</AlternateText>
 <Keyword>sos</Keyword>
 <Impressions>80</Impressions>
 </Ad>

 <Ad>
 <ImageUrl>crylogo.gif</ImageUrl>
 <TargetUrl>www.someurl.com</TargetUrl>
 <AlternateText>crylogo</AlternateText>
 <Keyword>crylogo</Keyword>
 <Impressions>80</Impressions>
 </Ad>
</Advertisements>

The following properties are set in the XML file. Only the ImageUrl attribute is required;
others are optional.

ImageUrl: The url pointing to the advertisement to be displayed.

TargetUrl: The url to navigate to (when the advertisement is clicked).

AlternateText: The "ALT" attribute.

Impressions: The weight relative to the image to be displayed. The greater the weight,
the more times the ad will be displayed.
In Figure 2.5, you can see what the adRotator looks like.

Figure 2.5: AdRotator.

You initiate the adRotator component as follows:
adrotator.aspx

<html>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <h3>AdRotator Control</h3>

 <form runat=server>

 <asp:AdRotator id="ar1" AdvertisementFile="Ads.xml" BorderWidth="1" runat=server />

 </form>

 </body>

</html>

§ Calendar Control

The Calendar control allows the user to select a certain date, all days in a week
or month. It is very easy to set up; as simple as saying:

<asp:Calendar runat = "server"/>
This gives a no frills basic calendar. However, as in other controls, much of its
functionality can be customized. Here is an example.
Calendar.aspx

<%@ Page Language="VB" %>
<html>
 <head>
 <script runat="server">
 Sub myCal_OnSelectionChanged(Source As Object, E As EventArgs)
 Dim sel As Integer
 Dim i as integer
 Dim s as string
 sel = Mycal.SelectedDates.Count

 s = ""
 For i = 0 to sel-1
 'Beta 2 Code lowercase "d" gives shortdate
 'Uppercase "D" will give long date
 s = s + Mycal.SelectedDates.Item(i).ToString("d")
 next
 selDate.Text = s
 End Sub
 Sub mycal_OnVisibleMonthChanged(Source As Object, E As
MonthChangedEventArgs)
 selDate.Text = "Current Month " + " " + E.NewDate.ToString() _
 + " Previous Month : " + E.PreviousDate.ToString()
 End Sub
 </script>
 </head>
 <body style="background-color='beige'; font-family='verdana'; font -
size='10pt'">
 <form id="myForm" runat="server">
 <p>
 <asp:Label id="selDate" runat="server" />
 </p>
 <ASP:Calendar id="myCal" runat="server"

 BackColor="#666699" ForeColor="black"
 BorderWidth="2"
 BorderStyle="Solid" BorderColor="Black"
 CellSpacing=2 CellPadding=2
 ShowGridLines=true

 TitleStyle-BorderColor="#666699"
 TitleStyle-BorderWidth="3"
 TitleStyle-BackColor="DarkGray"
 TitleStyle-Height="50px"

 DayHeaderStyle-BorderColor="teal"
 DayHeaderStyle-BorderWidth="3"
 DayHeaderStyle-BackColor="teal"
 DayHeaderStyle-ForeColor="black"
 DayHeaderStyle-Height="20px"

 DayStyle-Width="50px"
 DayStyle-Height="50px"

 TodayDayStyle-BorderWidth="3"

 WeekEndDayStyle-BackColor="teal"
 WeekEndDayStyle-Width="50px"
 WeekEndDayStyle-Height="50px"

 SelectedDayStyle-BorderColor="firebrick"
 SelectedDayStyle-BorderWidth="3"

 OtherMonthDayStyle-Width="50px"
 OtherMonthDayStyle-Height="50px"

 OnSelectionChanged="myCal_OnSelectionChanged"
 OnVisibleMonthChanged="mycal_OnVisibleMonthChanged"
 runat="server"
 SelectionMode = "DayWeekMonth"/>
 </form>

 </body>
</html>

§ As you can see, you can control the TitleStyle, DayStyle,
DayHeaderStyle, TodayStyle, WeekEndDayStyle,
SelectedDayStyle, and OtherMonthStyle.

§ The SelectionMode Property: Allows user to select a certain date,
all days in a week or month as shown in Figure 2.6. The property
values can be:

None: No date selection allowed.

Day:Only a certain day can be selected.

DayWeek: A day or a complete week can be selected.

DayWeekMonth: A day, complete week, or whole month, can be selected. By default
this property is set to "Day."

Figure 2.6: Calendar.

§ OnSelectionChanged Event:
This event is fired each time the user makes a day, month, or week selection. I
have specified myCal_OnSelectionChanged sub to fire on this event. The
SelectedDates.Count method extracts the number of days selected. It can make
a single day (SelectionMode = "Day"), a complete Week (SelectionMode
= "DayWeek"), or a complete month (SelectionMode =
"DayWeekMonth").
I then look through the days selected and build a string which extracts the days
and displays it in a TextBox like the following:

For i = 0 to sel-1
 s = s + Mycal.SelectedDates.Item(i).ToString("d")
next
selDate.Text = s

§ OnVisibleMonthChanged Event:
This event gets fired each time a month is changed (say you switch from
January to February). I have specified the sub
cal_OnVisibleMonthChanged sub to fire on this event. This sub just
displays the current month and the previous month. The code for this follows:

Sub mycal_OnVisibleMonthChanged(Source As Object, E As
MonthChangedEventArgs)
 selDate.Text = "Current Month " + " " + E.NewDate.ToString() _
 " Previous Month : " + E.PreviousDate.ToString()
End Sub

Summary

ASP.NET controls encourage good programming habits. You can logically separate
presentation from code thus avoiding "spaghetti" code. These controls are consistent in
their nomenclature. We have to remember a core set of functionality that is applicable to
all controls. These controls can target any browser, handheld device, or cell phone as
they have the server generate the user interface and send out pure HTML to the
browser. Since every browser understands HTML we can write applications that can
target all client sites irrespective of their browser preferences.

Chapter 3: Using ADO.NET in the .NET Framework

Overview
ADO.NET is a technique whose time has come. If you reflect on ADO, and how it
evolved over time, you will realize that it was a child of the client-server era. It was
steeped in the connection-based method of handling data. A typical database access
operation would open a database connection and leave it open until the looping
operation of the recordset was completed. This method was not suitable for Web
programming which required a disconnected way of manipulating data. This was
because a connection-based data access methodology required a connection to be kept
alive for each client connection. Multiple clients demanding resources from a server
would very soon bring it to its knees. This led to the development of RDS (Remote Data
Services). With the advent of XML, the request/response paradigm became the order of
the day. To keep up with this message-based system of communication HTTP support
was added to RDS, which allowed business logic to be called at the middle tier. XML
data and database data however follow different data models. XML follows a
heterogeneous and hierarchical data model (XMLDOM) whereas MDAC (Microsoft Data
Access Technologies) follows a relational model. Developers were now faced with the
added complexity of choosing between MSXML and MDAC to work with XML data.

Bound controls were introduced in Visual InterDev. These controls were used to connect
to a datasource with limited programming effort. For example, you could drag and drop a
Bound control onto an ASP page and bind it to a datasource (by making a visual
property selection) in a Visual Basic style. This had one major drawback. Visual InterDev
generated a lot of script behind the scenes. This would turn away many of us from ever
using this technique.

These piecemeal changes being made to ADO were pushing it to its limits. The time had
come to rewrite this technology from the ground up and the result is ADO.NET.

ADO.NET has XML support built in at a very basic level and working with XML using this
technology is quite similar to working with database data. No longer is choosing between
MDAC and MSXML an issue. ADO.NET uses a disconnected way of working with
database data and avoids the performance penalty associated with ADO. It has
revitalized this concept of using bound controls and understands what it has to do in
relation to a Bound control without maintaining tons of script in supplementary files. In
fact it is so lean that you can use all the Bound controls and still use a basic editor like
Notepad for your development efforts. ADO is still available (if you should want to use it)
through the .NET COM interoperability services. However, programming in ADO.NET is
quite similar to ADO, thus developers will not be faced with a steep learning curve. There
are four basic things that we need to do with data. Query it, add to it, update it, and
delete from it. In the process we need controls to present data and make it available to
the user. In this chapter, I will discuss various facets of ADO.NET that allow us to
accomplish these requirements. I will commence with discussing the two protagonists of
the ADO.NET architecture; DataSets (the disconnected layer) and Managed Providers
(the connected layer).

The DataSet
The recordset has been retired. A new object has been introduced in ADO.NET, which is
called the DataSet. You can think of the DataSet as an in-memory copy of the database,
complete with tables, columns, relationships, constraints, and data. It allows for
relationships to exist between multiple tables, analogous to a foreign-key relationship in
a database. You can navigate between tables based upon their relationships. In ADO
one had to rely on SQL commands like Join to relate multiple tables and navigation
involved jumping sequentially from record to record.

A DataSet is not connected to any database and has no knowledge of the source of its
data. An ADO recordset is connected to the database through an OLE DB provider. In
ADO.NET, you communicate with the database through Command objects, the code of
which can be modified. A DataSet can talk to a variety of datasources. It can receive
data from a database, an XML file, from code, or user input. No matter what the source
of the data within the DataSet is, it is manipulated through the same set of standard
APIs.

Since DataSets are transmitted as an XML stream, DataSets can be passed between
any objects (not just COM objects) without interference from firewalls. To transmit an
ADO disconnected recordset from one component to another, COM marshalling had to
be used (marshalling is the process of gathering data from one more applications,
storing the data pieces in a memory buffer and converting it to the format that a receiving
application would understand).

A DataSet contains a table collection (the DataTables collection), which in turn contains
a column collection. A DataSet also contains a row collection, which contains all rows
retrieved from the datasource.

Managed Providers
A DataSet is "blind" as to where the data comes from or where it may go. It is the
responsibility of the Managed Providers to have knowledge to enable the DataSet to
interact with the datasource (which can be a database, an XML file, or user input). A
Managed Provider consists of Connection, Command, DataReader, and DataAdapter
classes. The connection and command objects are similar to their ADO namesakes. The
DataReader is like a forward, read-only recordset and the DataAdapter is the bridge
between the Managed Provider and the DataSet. I shall be dealing with each of these as
I go along.

There are two Managed Providers in ADO.NET:
§ A provider optimized for SQL Server 7 or higher.
§ An OLE DB provider for accessing data other than SQL Server 7 or higher

(though you can also use it for SQL Server).
The SQL Server provider provides direct access to a SQL Server using a protocol called
TDS (Tabular Data System). This provides enhanced benefits when using SQL server.
The OLE DB provider is more generic, and though it can be used with a SQL Server
database, it will not provide any performance enhancements.

In this chapter, I have mostly used the OLE DB provider. Using the SQL provider is quite
similar. In most cases, all you need to do is replace all occurrences of the word "OleDb"
with "Sql" and import the namespace System.Data.SqlClient instead of
System.Data.OleDb.

There are five basic steps involved in building a web form to interact with the data:
1. Import the relevant Namespaces.
2. Connect to the database using the Connection Object (SqlConnection or

OleDbConnection).
3. Populate the DataAdapter Object (SqlDataAdapter or

OleDbDataAdapter) with data from the datasource.

4. Populate a DataSet using the Fill method of DataAdapter.
5. Bind the server control like DataGrid to the DataSet.

I will build a web form to demonstrate these steps. This form will retrieve data from the
master's table and display the result in a grid format. Figure 3.1 shows what the outcome
will look like.

Figure 3.1: Interacting with Data.
MastersGrid.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <head>

 <H4>Masters Table</H4>

 <script language="VB" runat="server">

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 'Connection syntax

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET; User
ID=sa"

 myConnection = New OleDbConnection(ConnStr)

 'DataSetCommand

 SQL = "select * from Masters"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Masters")

 'Binding a Grid

 DataGrid1.DataSource=ds.Tables("Masters").DefaultView

 DataGrid1.DataBind()

 End Sub

 </script>

 </head>

 <body>

 <form runat=server>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

</html>

I will now discuss the script and introduce you to various steps involved in using
ADO.NET to interact with the database.

Namespace

Namespaces can be thought of as using references in Visual Basic. You need to put a
construct at the top of your page.

For the OLE DB provider, use the following:

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

For the SQL provider, use the following:

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqlClient" %>

The Connection Object

A connection is opened implicitly (as in the preceding example) when using a
DataAdapter or explicitly by calling the Open method on the connection as in the
following example:

OpenExplicit.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim SQL As String

 Dim ConnStr As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 try

 Dim mycommand As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 Response.Write("Opened Connection to " + MyConnection.ConnectionString + "
")

 catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 finally

 'Close the connection explicitly

 Response.Write("Closed Connection. It is important to close connections explicitly.")

 myConnection.Close()

 end try

 End Sub

 </script>

</html>

The DataAdapter Object

A DataSet has no knowledge of the datasource. It keeps track of the changes made to it
and systematically exposes it to the DataAdapter, which can then apply these changes
to the datasource in an optimistic manner.

Populating the DataAdapter object in ADO.NET is similar to populating a command
object in ADO. You pass the DataAdapter object a SQL query string and a connection
object such as in the following example:

SQL = "select * from Masters"

myCommand = New OleDbDataAdapter(SQL, myConnection)

You can see that the syntax for the DataAdapter looks exactly like the command object
syntax in ADO. The appropriate provider's DataAdapter object is populated with the
result of the SQL query statement. An ADO command can only accept one command at
a time, whereas the DataAdapter can be assigned update, delete, and insert commands.
These properties are used when the DataAdapter update method is called. An
update/insert/delete in the DataSet calls the appropriate update/insert/delete command
of the DataAdapter. We can associate a set of stored procedures to perform an update,
insert, or delete which will fire whenever the update method is called on the
DataAdapter.

The Fill method acts as the bridge between the datasource and the DataSet. It loads the
data stored in the DataAdapter into the DataSet. It requires two parameters: the DataSet
name, and the name of the table (in the DataSet) into which to load the data.

The syntax follows:

myCommand.Fill(ds, "Masters")

Finally the DataGrid is bound to the DataSet.

DataGrid1.DataSource=ds.Tables("Masters").DefaultView

DataGrid1.DataBind()

The Command Object
A command is a SQL query, a stored procedure, or a table name that is issued to the
database. The execution of the command can return results from the database and this
resultset can then be passed onto another object such as the DataReader or the
DataAdapter. This in turn can act as a datasource for a Bound control like the DataGrid.
The command can also be an "action" query like an insert, update, or delete query that
does not return any results. The command object for use with MS SQL Server is called
SqlCommand and for use with OLE DB providers is called OleDbCommand.

The command object is constructed by providing a SQL query and a connection object
as parameters to the command object. This is shown in the following example:

ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET; User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

sql = "delete from masters where code_display = 'test'"

Dim mycommand As New OleDbCommand(sql,myConnection)

myConnection.Open()

myCommand.ExecuteNonQuery()

myConnection.Close()

CommandType
The command object has a property called CommandType that is used to define the type
of command being sent to the database. There are three CommandTypes available.
These are the Text, StoredProcedure, and TableDirect types.
The Text CommandType is the default. This is a string of SQL text that is issued to the
database as in the following example (I did not explicitly specify the CommandType in
this example, as it is the default):

sql = "delete from masters where code_display = 'test'"

Dim mycommand As New OleDbCommand(sql,myConnection)
The StoredProcedure CommandType is used to execute a database-stored
procedure. You can pass parameters to the stored procedure using the parameters
collection of the command object (this will be discussed in detail later in this chapter) as
in the following example:

Dim myCommand As New OleDbCommand("p_authors", myconnection)

myCommand.CommandType = CommandType.StoredProcedure

objParam = myCommand.Parameters.Add("State", OleDbType.VarChar, 10)

objParam.Direction = ParameterDirection.Input

objParam.Value = "CA"
The TableDirect CommandType is used to provide a table name to the command
object as in the following example:

Dim myCommand As New OleDbCommand("Groups", myconnection)

myCommand.CommandType = CommandType.TableDirect

Executing Commands
The command object provides methods to execute the SQL statement, stored procedure
or return the records from a table name provided to it by the CommandType property.
There are three methods available. These are ExecuteNonQuery, ExecuteReader,
and ExecuteScalar. In addition the SqlCommand class provides two additional
methods. These are the ExecuteResultSet and ExecuteXmlReader. The
ExecuteResultSet is reserved for future use and is consequently not available for
use.

ExecuteNonQuery

This method is used when a result set is not to be returned from the database, for
example:

Dim mycommand As New OleDbCommand(_

 "UPDATE Masters Set Opening = 90 WHERE code_display = 'test'", myConnection)

myConnection.Open()

myCommand.ExecuteNonQuery()

myConnection.Close()

ExecuteReader
This method returns a SqlDataReader or OleDbReader object after executing the
command. The Reader object contains the resultset returned from the database and can
be used to bind a Bound control like the DataGrid as in the following example:

Dim myConnection As OleDbConnection

Dim dr As OleDbDataReader

Dim ConnStr As String

 'Connect

ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=Pubs; User
ID=sa"

myConnection = New OleDbConnection(ConnStr)

'command

Dim myCommand As New OleDbCommand("p_authors", myconnection)

myCommand.CommandType = CommandType.StoredProcedure

'Parameter object

Dim objParam As OleDbParameter

objParam = myCommand.Parameters.Add("State", OleDbType.VarChar, 10)

objParam.Direction = ParameterDirection.Input

objParam.Value = "CA"

'open the connection and execute the command

myconnection.Open()

'ExecuteReader returns a Reader

dr = myCommand.ExecuteReader()

'bind a grid

DataGrid1.DataSource=dr

DataGrid1.DataBind()

ExecuteScalar
The ExecuteScalar method is used to return a single result from the database (for
example the count of the number of records in a table) as in the following examples:

Dim mycommand As New OleDbCommand(_

"Select count(*) from masters", myConnection)

myConnection.Open()

myobject = myCommand.ExecuteScaler()

myConnection.Close()

Action Queries with the Command Object
Action queries are SQL statements like Insert, Update, and Delete, which return no data.
We use the Command object (OleDbCommand or SqlCommand) instead of the
DataAdapter object to run such queries. A connection must be explicitly opened when
using the Command object (whereas it is automatically opened when using the
DataAdapter). The command is issued by calling an ExecuteNonQuery method, which
returns the number of rows affected.
In the example that follows I will extend the MastersGrid discussed in the
MastersGrid.aspx example and add functionality to insert, delete, and update a record in
the Masters table. Figure 3.2 shows what the result will look like.

Figure 3.2: Action Queries.
ActionQueries.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub Show_Click(Sender As Object, E As EventArgs)

 Message.Text = "Masters Table Displayed... "

 ReBind

 End Sub

 Sub Insert_click(Sender As Object, E As EventArgs)

 try

 sql = "Insert into Masters(code_display,code_category,type)"

 sql = sql + "Values ('test',701,'E')"

 Dim mycommand As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 myCommand.ExecuteNonQuery()

 myConnection.Close()

 catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 End try

 rebind

 Message.Text = "Inserted test record... "

 End Sub

 Sub Delete_click(Sender As Object, E As EventArgs)

 sql = "delete from masters where code_display = 'test'"

 Dim mycommand As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 myCommand.ExecuteNonQuery()

 myConnection.Close()

 rebind

 Message.Text = "Deleted all test records..."

 End Sub

 Sub Update_Click(Sender As Object, E As EventArgs)

 try

 Dim mycommand As New OleDbCommand(_

 "UPDATE Masters Set Opening = 90 WHERE code_display = 'test'", _

 myConnection)

 myConnection.Open()

 myCommand.ExecuteNonQuery()

 myConnection.Close()

 catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 End try

 rebind

 Message.Text = "Updated all test records: Set closing balance = 90...! "

 End Sub

 Sub ReBind()

 SQL = "select * from Masters"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method to populate dataset

 myCommand.Fill(ds, "Masters")

 'Binding a Grid

 DataGrid1.DataSource=ds.Tables("Masters").DefaultView

 DataGrid1.DataBind()

 End Sub

 </script>

 <body>

 <h3>Action Queries</h3>

 <form runat=server>

 <asp:button text="Refresh" Onclick="Show_Click" runat=server/>

 <asp:button text="Insert" Onclick="Insert_Click" runat=server/>

 <asp:button text="Update" Onclick="Update_Click" runat=server/>

 <asp:button text="Delete" Onclick="delete_Click" runat=server/>

 <asp:label id="Message" runat=server/>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

</html>

You will note that the process of populating the DataSets and binding the grid is the
same as in the MastersGrid.aspx example. However, I have moved the variable
declarations outside the Page_Load event to give them global scope over the form. I
have also added four buttons for the insert, update, delete, and refresh functionality.
The if NOT (isPostBack) .. statement ensures that the grid is only loaded once
(on page load). We have four events that fire when the appropriate button is clicked. The
command syntax is straightforward. For example row deletion is achieved by the
following code:

Sub Delete_click(Sender As Object, E As EventArgs)

 sql = "delete from masters where code_display = 'test'"

 Dim mycommand As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 myCommand.ExecuteNonQuery()

 myConnection.Close()

 rebind

 Message.Text = "Deleted all test records..."

End Sub

You pass the OleDbCommand a SQL string and an active connection, open the
command, execute it, and then close it. Please note that it is very important to close the
connection or else you may inadvertently exhaust the connection limit while waiting for
the page instances to be garbage-collected.

Stored Procedures

In ADO.NET you can call stored procedures using the command object. You tell the
command object the name of the stored procedure and then add a parameter for each
input parameter required by the stored procedure. I also show you a "short-cut" method
of calling stored procedures in MS SQL Server, where you take advantage of using the
"Execute" keyword of T-SQL. Using this method, you can get away from the drudgery of
populating the parameter collection.
I will use a simple stored procedure called p_authors that accepts a single input
parameter called @state (you can find the code for the examples discussed in this
section in the ...samples\StoredProcedure subdirectory on the book's Web site at
www.premierbooks.com/downloads.asp). This stored procedure needs to be applied to
the pubs database.

p_authors

Create Procedure p_authors

@state varchar(10)

as

select * from authors where state = @state

Using the Parameters Collection
The command object exposes a Parameters collection that needs to be populated with
each of the parameters expected by the stored procedure. In the example that follows, I
show you how to call the stored procedure p_authors with a parameter of "CA". The
result returned by the database will include all authors in the state of California. I will then
bind this resultset to a DataGrid.

Parameters.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <head>

 <H4>Using Parameters</H4>

 <script language="VB" runat="server">

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim myConnection As OleDbConnection

 Dim dr As OleDbDataReader

 Dim ConnStr As String

 'Connect

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=Pubs; User
ID=sa"

 myConnection = New OleDbConnection(ConnStr)

 'command

 Dim myCommand As New OleDbCommand("p_authors", myconnection)

 myCommand.CommandType = CommandType.StoredProcedure

 'Parameter object

 Dim objParam As OleDbParameter

 objParam = myCommand.Parameters.Add("State", OleDbType.VarChar, 10)

 objParam.Direction = ParameterDirection.Input

 objParam.Value = "CA"

 Try

 'open the connection and execute the command

 myconnection.Open()

 'ExecuteReader returns a Reader

 dr = myCommand.ExecuteReader()

 Catch objError As Exception

 'display error details here and stop execution on error

 Exit Sub '

 End Try

 DataGrid1.DataSource=dr

 DataGrid1.DataBind()

 End Sub

 </script>

 </head>

 <body>

 <form runat=server>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

 </html>

You will note that I have specified the CommandType as StoredProcedure after
passing the name of the stored procedure as a parameter to the command object as
follows:

Dim myCommand As New OleDbCommand("p_authors", myconnection)

myCommand.CommandType = CommandType.StoredProcedure
I then add a parameter to the Parameters collection as follows:

Dim objParam As OleDbParameter

objParam = myCommand.Parameters.Add("State", OleDbType.VarChar, 10)

objParam.Direction = ParameterDirection.Input

objParam.Value = "CA"
The Add method takes three arguments; the name of the parameter, its type, and
optionally its size. The ParameterDirection property sets the direction of the
parameter. This can be Input, Output, InputOutput, or ReturnValue. Finally the
Value property is used to provide a value for the parameter.
The ExecuteReader method of the command object is used to execute the command.
This returns a Reader object, which is then used to bind a DataGrid.

Using the Execute Keyword to Call Stored Procedures
The process of populating the Parameters collection of the command object described
in the preceding section is quite code intensive. A short-cut way of calling stored
procedures in MS SQL Server is available. You can make use of the Execute keyword
of T-SQL to call a stored procedure.

Caution Note that this method will only work with MS SQL Server.

In the following example, I call the procedure p_authors using the Execute keyword:
Execute.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <head>

 <H4>Using execute Keyword</H4>

 <script language="VB" runat="server">

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 'Connect

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=Pubs; User
ID=sa"

 myConnection = New OleDbConnection(ConnStr)

 'DataSetCommand

 SQL = "Execute p_authors 'CA'"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Authors")

 'Binding a Grid

 DataGrid1.DataSource=ds.Tables("Authors").DefaultView

 DataGrid1.DataBind()

 End Sub

 </script>

 </head>

 <body>

 <form runat=server>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

</html>

Note that I make a call to the stored procedure p_authors and supply the required
parameters with a single SQL statement using the Execute keyword as follows:

 SQL = "Execute p_authors 'CA'"
The code now is quite compact, as I did not have to write script to populate the
Parameters collection of the command object.

DataViews

A DataView in ADO.NET is roughly equivalent to a database view. Different views can
be applied to a DataTable existing in the DataSet. For example, one view could show all
the rows in the table whereas another could show rows based on a selection criteria. List
bound controls like DataGrids and DropDownLists then use these views as their
datasource.

The Default View

Each DataTable has a default view assigned. In the MasterGrid.aspx example, the
DataGrid is bound to the following default view:

DataGrid1.DataSource=ds.Tables("Masters").DefaultView

This default view is a view containing all the rows and columns of the DataTable.

Applying Filters to Views
In this example, I will populate a DataSet, which contains all the rows in the Groups
table. I will then create a DataView which filters the Groups table in the DataSet for
records having the criteria code_value = 700. In the process I will introduce the
RowFilter and sort property of the DataView. Figure 3.3 shows a form with a button. If
you click on this button, the appropriate filter is applied and the code_display and the
code_value of all matching items are written out to the screen.

Figure 3.3: Filtering a DataView.
DataView.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub readDs(Sender As Object, E As EventArgs)

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 SQL = "select * from groups "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "groups")

 dv = new DataView(ds.Tables("groups"))

 '// Sort the view based on the code_display column

 dv.Sort = "code_display"

 '// Filter the dataview to only show customers with the lastname = Smith

 dv.RowFilter = "code_value = '700'"

 for i = 0 to dv.Count -1

 Response.Write(dv(i)("code_display").ToString + " - " + dv(i)("code_value").ToString())

 next

 End Sub

 </script>

 <body>

 <h3>DataView</h3>

 <form runat=server>

 <asp:button text="Read DataView" Onclick="readDs" runat=server/>

 </form>

 </body>

</html>

A connection is established to the database, and a DataSet is populated with all rows
from the Groups table. A DataView is defined to hold all the rows from the DataSet. The
sort command sorts the DataView according to the code_display. The RowFilter
method filters the DataView using the criteria "code_value= '700'". The DataView is
then iterated and the elements are displayed to the screen.

Reading the Rows and Columns Collection of a DataTable
In ADO a basic requirement was to read the "fields" collection of a recordset and display
the field name of a database table alongside the value of the field. I will show you how
this can be done in ADO.NET. I will read the Groups table and list out both the field
name and the value of a record as shown in Figure 3.4.

Figure 3.4: Reading rows and columns collection of a DataTable.
Collection.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(sender As Object, e As EventArgs)

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OledbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 SQL = "select * from groups where code_value = 700 "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "groups")

 dv = new DataView(ds.Tables("groups"))

 Dim t As DataTable

 t = dv.Table

 Dim r As DataRow

 Dim c As DataColumn

 Dim _cell as TableCell

 Dim _row as TableRow

 table = New Table()

 Controls.Add(table)

 For Each r in t.Rows

 For Each c in t.Columns

 _row = new TableRow() '<tr>

 'Label

 _cell = new TableCell() '<td>

 _cell.Controls.Add(new LiteralControl(c.ToString))

 _row.Cells.Add(_cell) '</td>

 'Value

 _cell = new TableCell() '<td>

 _cell.Controls.Add(new LiteralControl(r(c).ToString))

 _row.Cells.Add(_cell) '</td>

 Table.Rows.Add(_row) '</tr>

 Next c

 Next r

 End Sub

 </script>

 <form runat = "server">

 <h2> DataTable Columns & Rows </h2>

 <body style="background-color='beige'; font-family='verdana'; font-size='10pt'">

 <asp:Table id="Table" Font -Name="Verdana" Font-Size="8pt" CellPadding=5
CellSpacing=0 BorderColor="black"

 BorderWidth="1" Gridlines="Both" runat="server"/>

 </body>

 </form>

</html>

The Groups table in the DataSet is populated with the SQL query "select * from
groups where code_value = 700 ". A DataView is created on the Groups table
as follows:

dv = new DataView(ds.Tables("groups"))

This DataView is assigned to a DataTable. I then have two loops. The outer loop iterates
the row collection of the DataTable and the inner loop iterates the column collection. The
basic loop is as follows (I have removed all formatting elements like Table, TableRow,
and TableCell, so that I can explain better):

Dim t As DataTable

t = dv.Table

Dim r As DataRow

Dim c As DataColumn

Dim cell As TableCell

Dim row As DataRow

For Each r in t.Rows

 For Each c in t.Columns

 response.write(c.ToString)

 response.write(r(c).ToString)

 Next c

Next r
I am dynamically creating the Table (<table> tag), the TableRow (<tr>), and the
TableCell (<td>). Thus an opening Table <table> tag is created as follows:

table = New Table() 'supplies <table> tag

Controls.Add(table)

I want to display the column name as a non-editable label. I use the following syntax:

 _cell = new TableCell() 'Supplies <td> tag

_cell.Controls.Add(new LiteralControl(c.ToString))

_row.Cells.Add(_cell) 'supplies </td> tag
The TableCell() method takes care of supplying the <td> and </td> tags. c is the
field name and it is converted to a string using the ToString method.
LiteralControl adds a label. Thus the field name is displayed as a label.

I want to display the value of each field in an editable textbox. This is achieved by the
following code:

_cell = new TableCell() '<td>

Dim Box As New TextBox

Box.Text = r(c).ToString

_cell.Controls.Add(box)

_row.Cells.Add(_cell) '</td>

The new TableCell() and the Add(_Cell) provide the opening and closing table
data tags (i.e. <td> and </td>). I assign the column value to a textbox and add it to the
controls collection.

The DataReader

The DataSet provides a disconnect means of access to a datasource. At times we might
want a "quick and dirty" means of accessing a datasource. In such cases, a DataReader
can be used.

A DataReader supplies a read-only, forward-only data stream and like the legacy ADO
recordset, stays connected to the datasource. It can be used to return a recordset or
execute action queries (like update, insert, and delete) which do not return any data. It
holds one row in memory at a time as opposed to a DataSet, which holds a complete
table in memory. Using a DataSet can be an issue when large tables are loaded in
memory. If there are multiple users accessing the same machine at the same time, this
can lead to a serious memory drain. In such situations a DataReader should be used
instead of the DataSet.
A DataReader provides a simple method of iterating through the query. In the following
example (see Figure 3.5), I populate a DropDownList by iterating through the Groups
table using the DataReader.

Figure 3.5: DataReader.
DataReader.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 if NOT (isPostBack)

 FillList

 End if

 End Sub

 Sub FillList()

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 Dim dbRead AS OleDbDataReader

 Dim dbComm AS OleDbCommand

 SQL = "Select * from groups ORDER BY code_value"

 dbComm = New OleDbCommand(SQL,myConnection)

 myconnection.Open()

 dbRead=dbComm.ExecuteReader()

 While dbRead.Read()

 ddList.items.add(New ListItem(dbRead.Item("code_display")))

 End While

 End Sub

 </script>

 <body>

 <h3>DropDownList & Reader </h3>

 <form runat=server>

 <asp:DropDownList id="ddlist" runat="server"

 DataTextField = "code_display"/>

 </form>

</body>

</html>

The DataReader uses the OleDbCommand to populate the command object. After the
execute method is run, we can iterate dbRead (the DataReader) to populate the
DropDownList.

Data Relation

As mentioned earlier in this chapter, you can set up relationships between tables in the
DataSet. These relationships are akin to the primary-foreign key relationships, which
exist in a database. The advantage of defining a relationship is that you can now
navigate the relationship instead of navigating in a sequential manner as done previously
in ADO. In this style of navigation, a master record is first selected, and then based on
the relation key the row in the secondary table is accessed. Processing in the secondary
table continues until all secondary records with the same primary key are processed.
After this, the control moves back to the master table and another row is processed in a
similar manner. Let me explain this with an example.

DataRelation.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub readDs(Sender As Object, E As EventArgs)

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=pubs;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 'Populate authors table

 SQL = "select * from authors "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "authors")

 'Populate TitlesAuthor

 SQL = "select * from titleAuthor"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "titleauthor")

 'Define a relation based on the au_id

 'dc1 is the primary, dc2 is the secondary table

 Dim dc1 As DataColumn

 Dim dc2 As DataColumn

 dc1 = ds.Tables("Authors").Columns("au_id")

 dc2 = ds.Tables("titleauthor").Columns("au_id")

 Dim dr As DataRelation

 dr = New DataRelation("vRelation", dc1, dc2)

 ds.Relations.Add(dr)

 'Loop thru the relation

 Dim child() As datarow

 Dim r As datarow

 for each r in ds.Tables("Authors").Rows

 child = r.GetChildRows(ds.Relations("vRelation"))

 for i = 0 to UBound(child)

 Response.Write(child(i)("au_id").ToString)

 next

 next

 End Sub

 </script>

 <body>

 <h3>DataView</h3>

 <form runat=server>

 <asp:button text="Read Relation" Onclick="readDs" runat=server/>

 </form>

 </body>

</html>

In this example, I populate the DataSet ds with two tables from the Pubs database.
These are the author's table (the primary table) and the title Author table (the child table).
I then define a relationship (vRelation) between the two tables, based on the au_id key
in both tables. I then loop through all the records in the relationship. The external loop
iterates through the author's table, one row at a time. It picks up a row and then loops
through all child records in the titleauthor table, which have the same au_id. This is
done by the internal loop.

For example, you can use the select method of the DataSet to filter records:

Dim child() As DataRow = workTable.Select("au_id like 'A%'").

Like a database, the DataSet supports unique and cascading constraints. You can
enclose your code within a BeginEdit and EndEdit block. This in effect defers constraint
validation until the EndEdit method is called. Three values are stored for each row.
These are the original, current, and proposed values. The proposed value is the
intermediate value between the BeginEdit and EndEdit block. The currentvalue becomes
the originalvalue once the AcceptChanges method is called. Finally, the RejectChanges
method drops changes to the DataSet.

Summary
This chapter looked at working with ADO.NET. This new data access technology
involves working with DataSets and Managed Providers. I introduced data binding with
ADO.NET, and showed how action queries could be performed using ADO.NET.
DataViews and DataRelations were explained in detail. The next chapter extends this
knowledge, and shows you how to bind controls using ADO.NET.

Chapter 4: Data Binding
Controls can be bound to a datasource, much like Visual Basic Bound controls. Thus
controls like the DropDownList, CheckBoxList, and RadioButtonList can be bound to a
DataSet. ASP.NET has certain controls that render HTML based on repetitive data.
These controls are collectively referred to as "List Bound Controls." The controls
included in this category are the DataRepeater, the DataList, and the DataGrid.
Developers can apply various styles and set properties in an XSL template-like style.
There is a header template, a footer template, and an item template. As the names
imply, the header and footer templates control the header and footer sections
respectively. The item template is used to control repetitive data. In a DataGrid, the item
template is applied to columns. The item template can be further fine-tuned by
alternating it with a separator template. You can use these templates to apply different
colors to odd and even rows. The DataRepeater does not have editing capabilities,
though both the DataList and the DataGrid do. In addition, the DataGrid has advanced
paging and sorting capabilities.

Binding Controls
You can bind controls like the CheckBoxList, the RadioButtonList, the ListBox, and the
DropDownList to DataSets. Binding is as simple as specifying the datasource and
binding the control using the DataBind method. In the following example, I show you how
to bind a ListBox, a DropDownList, and a set of RadioButtons (a RadioButtonList) to the
data from the Groups table. The result appears in Figure 4.1.

Figure 4.1: Binding "selection" controls.
DataBind.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 bind

 end if

 End Sub

 Sub Bind()

 'DataSetCommand

 SQL = "select * from Groups"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Groups")

 list1.DataSource=ds.Tables("Groups").DefaultView

 list1.DataBind()

 rb.DataSource=ds.Tables("Groups").DefaultView

 rb.DataBind()

 dl.DataSource=ds.Tables("Groups").DefaultView

 dl.DataBind()

 End Sub

 Sub SubmitBtn_Click(sender As Object, e As EventArgs)

 Dim s As string

 s = "—-Selected List Item :" + list1.SelectedItem.Text

 s = s + "——Selected DropDownList : " + dl.SelectedItem.Text

 s = s + "——Selected RadioButton : " + rb.SelectedItem.Text

 Label1.Text = s

 End Sub

 </script>

 <body>

 <h3>Binding Controls </h3>

 <form runat=server>

 <asp:ListBox id="List1" DataTextField = "code_display" DataValueField = "code_value"
runat="server"/>

 <hr>

 <ASP:radiobuttonList

 repeatcolumns="4" repeatdirection="horizontal" repeatlayout="table"

 id="rb" datatextfield="code_display" DataValueField="code_value" runat="server"/>

 <hr>

 <asp:DropDownList id="dl" DataTextField = "code_display" DataValueField =
"code_value" runat="server"/>

 <hr>

 <asp:button Text="Submit" OnClick="SubmitBtn_Click" runat=server/>

 <asp:Label id=Label1 font-name="Verdana" font-size="10pt" runat="server" />

 </form>

 </body>

</html>

Binding involves specifying the DataSource and then using the DataBind method to
perform the actual bind, as in the following example:

list1.DataSource=ds.Tables("Groups").DefaultView

list1.DataBind()
CheckBoxLists and RadioButtonLists have a RepeatColumns and a
RepeatDirection property. RepeatColumns can be used to assign the number of
columns repeated in the direction specified by the RepeatDirection property. In the
preceding example I have set the RepeatColumns property to 4 and the
RepeatDirection property to be horizontal.
In the SubmitBtn_Click event, I use the SelectedItem.text property of each of
these selection controls (the ListBox, the DropDownList, and the RadioButtonList) to
display the item selected by the user.
Each of these controls has an AutoPostBack property, which can be set as true or
false, such as in the following:

<asp:ListBox id="List1" DataTextField = "code_display" DataValueField = "code_value"
runat="server" AutoPostBack = 'true" />
Setting this property to true will cause a post back to the server each time that a value
in the control is changed. The "if NOT (isPostBack)" statement ensures that the
controls are only bound once at the time of page_load.

The DataRepeater

The DataRepeater is used to render HTML for repeating data. It is completely template
driven and the following templates can be set for it:
§ ItemTemplate
§ AlternatingItemTemplate
§ SeparatorTemplate
§ HeaderTemplate
§ FooterTemplate

The ItemTemplate is the only required template and it defines the content and layout
of the list. The AlternatingItemTemplate defines the content and layout of
alternating items. The SeperatorTemplate is for items between the items and
alternating items. Finally, the HeaderTemplate and FooterTemplate determine the
rendering of the header and footer of the list, respectively. The DataRepeater has no
built-in styles and all HTML elements must be explicitly specified in the various
templates. For example, to give a tabular look, you would define the table tab in the
HeaderTemplate, the closing table tag in the FooterTemplate and the table row,
and table data tags in the ItemTemplate (and/or in the
AlternatingItemTemplate). In Figure 4.2, I render the Groups table in a tabular
format using the DataRepeater.

Figure 4.2: The DataRepeater.
Repeater.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "select * from Groups"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Groups")

 'Binding a Grid

 DataGrid1.DataSource=ds.Tables("Groups").DefaultView

 DataGrid1.DataBind()

 End Sub

 </script>

 <body>

 <h3> Data Repeater</h3>

 <form runat=server>

 <asp:Repeater id="DataGrid1" runat="server">

 <HeaderTemplate>

 <table border = 1>

 <tr>

 <td>Name</td>

 <td>Group</td>

 <td>Type</td>

 </tr>

 </HeaderTemplate>

 <ItemTemplate>

 <tr>

 <td> <%# Container.DataItem("code_display") %></td>

 <td><%# Container.DataItem("code_category") %></td>

 <td><%# Container.DataItem("type") %></td>

 </tr>

 </ItemTemplate>

 <AlternatingItemTemplate>

 <tr style="background-color: silver">

 <td> <%# Container.DataItem("code_display") %></td>

 <td><%# Container.DataItem("code_category") %></td>

 <td><%# Container.DataItem("type") %></td>

 </tr>

 </AlternatingItemTemplate>

 <FooterTemplate>

 </table>

 </FooterTemplate>

 </asp:Repeater>

 </form>

 </body>

</html>

This sample populates a DataSet with records from the Groups table. The opening table
tag is in the HeaderTemplate, and the closing table tag in the FooterTemplate. The
table data and table row tags are applied both in the ItemTemplate and the
AlternatingItemTemplate. Finally, every other row has a silver background due to
the style specified in the AlternatingItemTemplate.

DataGrid

The DataGrid control is used to create attractive, tabular layouts of data associated with
it. With the DataGrid control you can specify styles for the header row, the footer row, the
item rows the alternating rows and also create column level templates. The DataGrid
supports advanced features like in-line editing, sorting, and paging.
To introduce the DataGrid, I will build a form to add, update, and delete records in the
Masters table. I will then present a sequence of forms, each of which presents a new
facet of the DataGrid. In the end, I will have a form with editing capabilities. I will continue
working on this form in Project 1, and at the end I will have a full-fledged Maintenance
Form.

A Basic Grid
In the DataBind.aspx example, I showed you how to bind to a DataGrid and present the
results. The following statements in the Page_Load event do this:

DataGrid1.DataSource=ds.Tables("Masters").DefaultView

DataGrid1.DataBind()
The DataBind method causes the DataGrid to refresh its data. Bound controls will be
populated with data only when this method is called. This gives control to the developer
as he can now refresh data as needed, preventing unnecessary datasource access.
Typically, this method is called at Page_Load and then when it is required to refresh the
DataGrid. Calling this method at the page level (page.DataBind() or just
DataBind()) will cause all data binding expressions on the page to be evaluated.

You will observe that the resulting DataGrid is quite dull, so let's embellish it by applying
styles.

The Masters Grid with Style
Figure 4.3 shows what the Masters grid will look like after the application of styles.

Figure 4.3: Master1 DataGrid.

Our code is in Masters1.aspx, which has a Code Behind file called Masters1.vb.
Following the aspx form is an explanation.

Masters1.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="Masters1.vb" %>

<html>

 <head>

 <title>Masters DataGrid 1</title>

 </head>

 <body>

 <form runat=server>

 Chart of Accounts:

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt">

 <Columns>

 <asp:BoundColumn HeaderText="Account" DataField="code_display">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Group" DataField="category">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Type" DataField="type">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Opening" DataField="opening">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Closing" DataField="closing">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige"/>

 </asp:DataGrid>

 </form>

 </body>

</html>

The script of the Code Behind file, Masters1.vb is as follows:
Masters1.vb

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("masters").DefaultView

 Grid1.DataBind()

 End Sub

End Class

Let's dissect the code. The first thing you will note is that I told the DataGrid not to
automatically generate columns by turning off the AutoGenerate attribute. I then set
the Font, BackColor, ForeColor, CellPadding, and CellSpacing properties.
Next, I set the property tags of the DataGrid to specify the columns to be displayed. You
will note that this is an XML-like tag setting. Finally, note that the DataGrid has a
HeaderStyle with which I customize the header row, an ItemStyle which is used to
render the ForeColor of all elements to DarkSlateBlue, and an
AlternatingItemStyle which I use to render every other row's BackColor to
Beige.

The Editable Masters Form
I now add editing capabilities to the grid. The grid will now have a link called "edit," which
will take you to the edit mode when clicked on. Figure 4.4 shows what the DataGrid
looks like at this stage.

Figure 4.4: Masters2 DataGrid.

Two new links, with the captions "OK" and "Cancel," will appear at this stage. We can
either accept the updates by clicking "OK," or leave the data as it was by selecting
"Cancel." Figure 4.5 shows what the form will look like in edit mode.

Figure 4.5: Masters2 DataGrid in Edit Mode.
Masters2.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="masters2.vb" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim code_display As String

 Dim code_category As String

 Dim type As String

 Dim opening As String

 Dim closing As String

 Dim myTextBox As TextBox

 'This is the key value: Retrieved from the DataKey, since it's a read only field

 Dim code_value as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_name")

 code_display = mytextbox.text

 myTextBox = E.Item.FindControl("edit_group")

 code_category = mytextbox.text

 myTextBox = E.Item.FindControl("edit_type")

 type = mytextbox.text

 myTextBox = E.Item.FindControl("edit_opening")

 opening = mytextbox.text

 myTextBox = E.Item.FindControl("edit_closing")

 closing = mytextbox.text

 'Now execute stored procedure

 sql = "Execute p_masters " + code_value + ", '" + code_display + " ',"

 sql = sql + code_category + ", '" + type +"' ," + opening + "," + closing

 RunSql(sql)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 </script>

 <body style="font: 10pt verdana">

 <form runat="server">

 <h3>Chart of Accounts </h3>

 <asp:Label id="Message" runat="server"/>

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 DataKeyField="code_value">

 <Columns>

 <asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Click to Edit"

 HeaderStyle-Wrap="false"/>

 <asp:BoundColumn HeaderText="Account #" ReadOnly="true"
DataField="code_value"/>

 <asp:TemplateColumn HeaderText="Name" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_display") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_name" Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Group" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_category") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_group" Text='<%# Container.DataItem("code_category") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Type" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("type") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_type" BorderStyle="None" Readonly="True" Text='<%#
Container.DataItem("type")

 %>'runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Opening" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("opening") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_opening" Text='<%# Container.DataItem("opening") %>'
runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Closing" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("closing") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_closing" BorderStyle="None" Readonly="True"

 Text='<%# Container.DataItem("closing") %>' runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 </asp:DataGrid>

 </form>

 </body>

</html>

Masters2.vb is the Code Behind file for this form. Here is its listing:
Masters2.vb

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("masters").DefaultView

 Grid1.DataBind()

 End Sub

 '——————— New Events (additions to Masters1.vb)—————————————-

 Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub RunSql(sql as string)

 'This is a placeholder for the functionality we will code in Masters3.vb

 response.write(sql)

 End Sub

End Class

I need to explain quite a number of things here, so I will run down the code contained in
the files Masters2.aspx and Masters2.vb one step at a time.
Look at the tags that create the DataGrid in the aspx file. The first column that I have
specified is the EditCommandColumn. This is an ASP.NET generated column and it
creates the "Edit" link button. When in Edit mode it creates the "OK" and "Cancel"
buttons. There are three events (OnEditCommand, OnCancelCommand,
OnUpdateCommand) that correspond to these buttons. I have coded three functions that
get fired when these events get executed (Grid1_edit, Grid1_Cancel,
Grid1_update).
Template columns are used to organize a DataGrid's columns , much like an XSL
template. It allows the developer to set the properties for the column. Each column can
have two templates: An ItemTemplate and an EditItemTemplate. An
ItemTemplate displays the value of the column in a read-only manner. When the grid
goes into the Edit mode, the EditItemTemplate is displayed, and you can change the
column value. Think of the ItemTemplate and EditItemTemplate as two separate
controls (with separate ids). The following code shows what the "Name" column looks
like:

<asp:TemplateColumn HeaderText="Name" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_display") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_name" Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </EditItemTemplate>

</asp:TemplateColumn>

The Container means the parent control, which in this case is the grid. I am binding
the label to the code_display DataItem of the grid.
The grid needs to be told which row is being edited. This is done by setting the
EditItemIndex property of the DataGrid to the index of the button that was clicked as
in the Grid1_edit event. To cancel the editing just set the EditItemIndex to -1 as
in the Grid1_cancel event. Note that in each case I have to rebind the DataGrid for
the changes to take effect.
The Grid1_update event gets fired when the "OK" button is clicked. I have written a
stored procedure, p_masters, which takes care of the business of adding and updating
rows. I will discuss this procedure in detail in Chapter 5, "Input Validation." For the
moment, it is sufficient to know that the call syntax is as follows:

Execute p_masters @code_value, @code_display, @code_category, @type,
@opening, @closing.
When I pass the procedure a code_value (the primary key), it updates the record with
that code_value with the new values. If I pass it a null code_value, it inserts a new
record.

Using a stored procedure is a great way to encapsulate the insert/update functionality.
Your form becomes very lean; it is now only concerned with extracting appropriate
values and passing them onto the stored procedure. The stored procedure can do
validation, multiple table updates, and much more.

I will not actually call the procedure but I will build the syntax and write it to the screen.
Also note that I am only dealing with the "update" mode. I will incorporate the record
addition and deletion functionality and work with real calls to the procedure.
In the "DataGrid Tag" I specified that the DataKeyField was equal to the
"code_value". This is the primary key and it is extracted as follows:

Dim code_value as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString
In the EditItemTemplate of each column, I gave each column a unique id. Thus, the
name column had an id = edit_name when in Edit mode. I find this control using the
FindControl method and assign it to a textbox, where I can access its text property.

Dim myTextBox as textbox

Dim code_value as string

myTextBox = E.Item.FindControl("edit_name")

code_display = mytextbox.text

To build the stored procedure call, I build the following string:

sql = "Execute p_masters " + code_value + ", '" + code_display + " ',"

sql = sql + code_category + ", '" + type +"' ," + opening + "," + closing
Using the Execute keyword I am telling our database to execute a SQL command
(specified in the sql string). I find this syntax very convenient to use. You could call the
stored procedures using the command object and setting the parameters to be passed to
the stored procedure. However, I find that I need to write much longer code that way, as I
have to write a line of code for each parameter. Here, I can make the procedure call in
two lines of code.

Caution The use of the Execute keyword to run a stored procedure will
only work with MS SQL Server databases. In order to call a
stored procedure in other databases, you need to use the
Command object, set its CommandType property to
StoredProcedure and use the Parameters property to
access input and output parameters and return values.

Sorting and Paging

The DataGrid includes features that allow you to set up sorting and paging functionality.
When the sorting functionality is enabled, links appear under the column header names.
When you click on a column link, that column sorts the grid.

The paging functionality of the DataGrid allows you to set the number of records that can
be displayed per page. Users can then navigate to different recordsets by clicking on the
paging links that appear at the bottom of the DataGrid. Th ese links can appear as
numeric links or VCR-type "next" and "previous" buttons.
I will base my discussion on an example I have developed, the code of which is
contained in the file PagingSorting.aspx and its associated Code Behind file
PagingSorting.vb. These files can be found in the samples folder for this chapter on the
book's Web site at www.premierpressbooks.com/downloads.asp .

Sorting
The DataGrid allows you to sort the columns by clicking on a link below the columns.
Setting the AllowSorting property to true triggers this built-in mechanism and it is as
follows:

<asp:DataGrid id="Grid1" runat="server"

 AllowSorting="true"

 OnSortCommand="MyDataGrid_Sort">
When this property is set to true, the DataGrid renders the column captions with a
LinkButton. If you now click on a column, the OnSortEvent is fired. This event
contains the following code:

Sub MyDataGrid_Sort(sender As Object, e As DataGridSortCommandEventArgs)

 SortField = e.SortField

 ReBind

End Sub
The SortField variable is a Public (string) variable that holds the name of the column
by which the DataGrid is to be sorted. It is first set in the Page_Load event and later
whenever the user clicks on a sortable column. The Page_Load setting is as follows:

Public SortField As String

Sub Page_Load(Source As Object, E As EventArgs)

 If NOT (isPostBack)

 If SortField = "" Then

 SortField = "code_display"

 End If

 ReBind

 End If

End Sub
The rebind function uses the SortField to sort the DataView to which the DataGrid is
bound. It refreshes the DataGrid to reflect the rows sorted by the new sort field in the sub
called Rebind as follows:

Sub ReBind()

 'DataSetCommand

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "masters")

 'Sort accounding to sortField

 Dim dv2 As DataView

 dv2 = ds.Tables("masters").DefaultView

 dv2.Sort = SortField

 Grid1.DataSource= dv2

 Grid1.DataBind()

End Sub
You need to set the SortField property in the column templates. For example for the
code_display column to participate in sorting, you have to set the template as follows:

<asp:BoundColumn HeaderText="Account" DataField="code_display"
SortExpression="code_display">

 <HeaderStyle Width="150px">

 </HeaderStyle>

</asp:BoundColumn>

Paging in DataGrid

The DataGrid has a built-in pager control which displays a user-defined number of pages
per page and also numeric or "next/previous" buttons at the bottom of the DataGrid.
Clicking on these links displays the next set of pages and so on. To enable paging you
set a number of properties as follows:

<asp:DataGrid id="Grid1" runat="server"

 AllowPaging="True"

 PageSize="5"

 PagerrStyle-Mode="NumericPagesi"

 PagerrStyle-HorizontalAlign="Right"

 PagerrStyle-NextPageTText="Next"

 PagerrStyle-PrevPageTText="Prev"

 OnPageIIndexChanged="MyDataGrid_Page"&>
The AllowPaging property must be set to true to enable paging. The PageSize
property sets the number of records per page. A PageSize of 5 implies that only five
records per page will be shown. If you leave out the PagerStyle-
Mode="NumericPages" property then instead of numeric links at the bottom you get
two links; next and previous. The PagerStyle-NextPageText and the
PagerStyle-PrevPageText properties are descriptive captions for these two links
and they can be any text you want.
You are required to code one event. This is the OnPageIndexChanged event, which
fires off the MyDataGrid_Page event. You simply call the rebind function in this event
as follows:

Sub MyDataGrid_Page(sender As Object, e As DataGridPageChangedEventArgs)

 ReBind

End Sub

Here is the compete source listing:
PagingSorting.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="PagingSorting.vb" %>

<html>

 <head>

 <title>Masters DataGrid 1</title>

 </head>

 <body>

 <form runat=server>

 Sorting and Paging

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 AllowPaging="True"

 PageSize="5"

 PagerStyle-Mode="NumericPages"

 PagerStyle-HorizontalAlign="Right"

 PagerStyle-NextPageText="Next"

 PagerStyle-PrevPageText="Prev"

 OnPageIndexChanged="MyDataGrid_Page"

 AllowSorting="true"

 OnSortCommand="MyDataGrid_Sort"

 >

 <Columns>

 <asp:BoundColumn HeaderText="Account" DataField="code_display"
SortExpression="code_display">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Group" DataField="category"
SortExpression="category">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Type" DataField="type">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Opening" DataField="opening">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Closing" DataField="closing">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige"/>

 </asp:DataGrid>

 </form>

 </body>

</html>

The Code Behind for this form is as follows:
PagingSorting.vb

Imports System

Imports System.Collections

Imports System.Text

 Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Public SortField As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 If SortField = "" Then

 SortField = "code_display"

 End If

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "masters")

 'Sort accounding to sortField

 Dim dv2 As DataView

 dv2 = ds.Tables("masters").DefaultView

 dv2.Sort = SortField

 Grid1.DataSource= dv2

 Grid1.DataBind()

 End Sub

 Sub MyDataGrid_Page(sender As Object, e As DataGridPageChangedEventArgs)

 Grid1.CurrentPageIndex = e.NewPageIndex

 ReBind

 End Sub

 Sub MyDataGrid_Sort(sender As Object, e As DataGridSortCommandEventArgs)

 SortField = e.SortExpression

 ReBind

 End Sub

End Class

The DataList

The DataList is completely template-driven. The following templates can be applied to
the DataList:
§ ItemTemplate
§ AlternatingItemTemplate
§ SeparatorTemplate

§ SelectedItemTemplate
§ EditItemTemplate
§ HeaderTemplate
§ FooterTemplate

Using these templates you can apply various styles to the header, footer, items, and
alternating items. The templates work just as they do in the Data Repeater. The
difference is that you can define an "EditItemTemplate" at item level as in a
DataGrid. This gives editing capabilities to the DataList. Where the DataList differs from
the DataGrid is that you can specify the "RepeatDirection" and "RepeatColumns"
properties. With the RepeatDirection property you can either render the datasource
in a horizontal or vertical direction. With the RepeatColumns property you can control
the number of columns that are rendered in a specified direction. In the example that
follows, I build a web form, which derives its data from the Groups table. It renders
columns, three across, and has editing functionality. Figure 4.6 shows what it looks like.
Figure 4.7 shows what the DataList looks like in Edit mode.

Figure 4.6: The DataList.

Figure 4.7: DataList in Edit Mode.
GroupsDlist.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="GroupsDlist.vb" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub DataList_UpdateCommand(sender As Object, e As DataListCommandEventArgs)

 Dim sql As string

 Dim code_display As String

 Dim type As String

 Dim myTextBox As TextBox

 myTextBox = E.Item.FindControl("edit_display")

 code_display = mytextbox.text

 myTextBox = E.Item.FindControl("edit_type")

 type = mytextbox.text

 'Now execute stored procedure

 response.write("Execute some procedure @name=" + code_display + "@type=" + type)

 End Sub

 </script>

 <body style="font: 10pt verdana">

 <form runat="server">

 <h3>Groups (DataList) </h3>

 <asp:Label id="Message" runat="server"/>

 <asp:DataList id="Grid1" runat="server"

 BorderColor="black"

 BorderWidth="1"

 GridLines="Both"

 CellPadding="3"

 CellSpacing="0"

 Font-Name="Verdana"

 Font-Size="8pt"

 Width="800px"

 HeaderStyle-BackColor="#aaaadd"

 AlternatingItemStyle-BackColor="Gainsboro"

 EditItemStyle-BackColor="lightgreen"

 OnEditCommand="DataList_EditCommand"

 OnUpdateCommand="DataList_UpdateCommand"

 OnCancelCommand="DataList_CancelCommand"

 RepeatColumns="3" RepeatDirection="horizontal" RepeatMode="Table" >

 <HeaderTemplate>Name</HeaderTemplate>

 <ItemTemplate>

 <asp:LinkButton id="button1" runat="server" Text="Edit" CommandName="edit" />

 <%# Container.DataItem("code_display") %>

 </ItemTemplate>

 <EditItemTemplate>

 Name:

 <asp:Label id="Label1" runat="server" Text='<%#
Container.DataItem("code_display") %>' />

 Group:

 <asp:TextBox id="edit_display" runat="server" Text='<%#
DataBinder.Eval(Container.DataItem,

 "code_display") %>' />

 Type:

 <asp:TextBox id="edit_type" runat="server" Text='<%#
DataBinder.Eval(Container.DataItem, "type") %>' />

 <asp:LinkButton id="button2" runat="server" Text="Update"
CommandName="update" />

 <asp:LinkButton id="button3" runat="server" Text="Cancel"
CommandName="cancel" />

 </EditItemTemplate>

 </asp:DataList>

 </form>

 </body>

</html>

GroupsDlist.vb is the Code Behind file for this form. It contains the following code:
GroupsDlist.vb

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 As Datalist

 Protected Message as label

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "select * from Groups"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Groups")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("Groups").DefaultView

 Grid1.DataBind()

 End Sub

 Sub DataList_EditCommand(sender As Object, e As DataListCommandEventArgs)

 Grid1.EditItemIndex = e.Item.ItemIndex

 rebind

 End Sub

 Sub DataList_CancelCommand(sender As Object, e As DataListCommandEventArgs)

 Grid1.EditItemIndex = -1

 rebind

 End Sub

End Class

The DataList derives its data from the DataSet ds. The function Rebind populates the
DataList with data. In the ItemTemplate I define a template for LinkButton which
displays a link called "edit". An "Edit" CommandName has been defined on the
LinkButton. When clicked the CommandName tells the DataList that it is in Edit mode.
Once in Edit mode, the DataList automatically generates the "update" and "cancel" links.
Clicking on the "edit," "update," or "cancel" links fires the "DataList_EditCommand",
"DataList_UpdateCommand", or "DataList_CancelCommand" respectively. The
EditItemIndex property of the DataList is set to the index of the clicked button in the
DataList_EditCommand event. The EditItemIndex is set to -1 in the cancel event.
In the update command (DataList_UpdateCommand) I build a SQL string in a manner
similar to the one discussed in the DataGrid. This is a placeholder for an actual stored
procedure call. I have specified the RepeatColumns="3" and RepeatDirection=
"horizontal" properties in the DataList tag. This generates 3 columns across in the
horizontal direction.

I use the DataBinder.Eval() method to bind the columns. This method takes three
arguments: the naming container for the data item, the data field name, and a format
string. The datacontainer for a DataList (and DataGrid) is always
Container.DataItem. You can apply formatting to the bound column such as in the
following:

<%# DataBinder.Eval(Container.DataItem, "IntegerValue", "{0:c}") %>

Binding to XML Data
XML is an integral part of ASP.NET so it is very simple to bind a list control to an XML
datasource. Figure 4.8 shows an example.

Figure 4.8: Binding to XML Data.
navXML.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<html>

 <head> Reading XML </head>

 <script language="VB" runat="server">

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim ds As New DataSet

 Dim fs As filestream

 Dim xmLStream As StreamReader

 fs = New filestream(Server.MapPath("more.xml"), FileMode.Open, FileAccess.Read)

 xmlStream = new StreamReader(fs)

 ds.ReadXML(XmlStream)

 DataGrid1.DataSource=ds.Tables("article").DefaultView

 DataGrid1.DataBind()

 End Sub

 </script>

<body>

 <form runat=server>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

</body>

</html>

I use the filestream method to open the XML file (more.xml) in a "read" mode and
populate the StreamReader with the contents. I then use the ReadXML method of the
DataSet to read the XML data into the DataSet. Once in the DataSet, I can manipulate
the data in a manner similar to database tables. Finally, I bind the "article" element
of the XML file to a DataGrid.

Implementing a Master-Detail Relationship
A master-detail type of relationship is when one to many relationships exist between two
tables. The master table rows are shown in one portion of the form. Clicking on a master
row displays all detail rows in another location of the form. I will show you how to
implement a master-child relationship using the authors, titles, and titleauthor
tables of the Pubs database. The Authors details are displayed with a "Select" link.
Clicking on this hyperlink displays details about the books written by the selected author.
This relationship is implemented using a DataGrid. Figure 4.9 illustrates what it looks
like.

Figure 4.9: Master Child Relationship.
MasterChild.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="MasterChild.vb" %>

<html>

 <head>

 <title>DataGrid Samples - Step 3</title>

 </head>

 <body>

 <h1> Master Child Example </h1>

 <form runat=server>

 <table width="95%">

 <tr>

 <td valign="top">

 Authors:

 <asp:DataGrid id="authorsGrid" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 DataKeyField="au_id"

 OnSelectedIndexChanged="Grid_Select"

 >

 <Columns>

 <asp:ButtonColumn Text="Select" CommandName="Select"/>

 <asp:BoundColumn HeaderText="ID" DataField="au_id">

 <HeaderStyle Width="100px"> </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Name" DataField="au_name">

 <HeaderStyle Width="150px"></HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="State" DataField="state">

 <HeaderStyle Width="50px"></HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 <SelectedItemStyle BackColor="PaleGoldenRod" Font-Bold="true">

 </SelectedItemStyle>

 </asp:DataGrid>

 </td>

 <td valign="top">

 <asp:Panel id="detailsPanel" runat="server" Visible="false">

 <table border="0" cellspacing="0" cellpadding="2" width="100% style="font-family:
verdana; font-size: 8pt">

 Titles:

 <td colspan="2">

 <asp:DataGrid id="titlesGrid" runat="server"

 AutoGenerateColumns="false"

 ShowFooter="true"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan" CellPadding="2"
CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 >

 <Columns>

 <asp:BoundColumn HeaderText="ID" DataField="title_id">

 <HeaderStyle Width="100px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Title" DataField="title">

 <HeaderStyle Width="250px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Published" DataField="pubdate"

 DataFormatString="{0:MMM yyyy}">

 <HeaderStyle Width="100px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Price" DataField="price"
DataFormatString="{0:c}">

 <HeaderStyle Width="50px">

 </HeaderStyle>

 <ItemStyle HorizontalAlign="Right">

 </ItemStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true">

 </HeaderStyle>

 <FooterStyle BackColor="Tan">

 </FooterStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 </asp:DataGrid>

 </td>

 </table>

 </asp:Panel>

 </tr>

 </table>

 </form>

 </body>

</html>

The Code Behind for this form is MasterChild.vb:
MasterChild.vb

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected AuthorsGrid as DataGrid

 Protected titlesGrid as DataGrid

 Protected detailsPanel as Panel

 Public currentAuthor as object

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=pubs;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub FillDs

 sql = " select * , au_lname + ',' + au_fname as au_name"

 sql = sql + " From authors a, titles t, titleauthor ta"

 sql = sql + " Where a.au_id = ta.au_id AND t.title_id = ta.title_id"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Authors")

 End Sub

 Sub ReBind()

 FillDs

 'Binding a Grid

 AuthorsGrid.DataSource=ds.Tables("Authors").DefaultView

 AuthorsGrid.DataBind()

 End Sub

 Sub Grid_Select(sender as Object , e as EventArgs)

 Dim vIndex As Integer

 Dim vkey As string

 vIndex = AuthorsGrid.SelectedIndex

 vkey =AuthorsGrid.DataKeys(vIndex).ToString

 UpdateSelection(vkey)

 End Sub

 Sub UpdateSelection(vkey as string)

 Dim myConnection2 As OleDbConnection

 Dim myCommand2 As OleDbDataAdapter

 Dim ds2 As New DataSet

 Dim ConnStr2 As String

 Dim SQL2 As String

 Dim itemcount As Integer

 sql2 = " select * , au_lname + ',' + au_fname as au_name"

 sql2 = sql2 + " From authors a, titles t, titleauthor ta"

 sql2 = sql2 + " Where a.au_id = ta.au_id AND t.title_id = ta.title_id"

 sql2 = sql2 + " AND a.au_id = '" + vkey + "'"

 myCommand2 = New OleDbDataAdapter(SQL2, myConnection)

 myCommand2.Fill(ds2, "Authors")

 'Bind the Grid

 titlesGrid.DataSource=ds2.Tables("Authors").DefaultView

 titlesGrid.DataBind()

 itemcount = titlesGrid.Items.Count

 if itemcount >= 1 then

 detailsPanel.Visible = true

 Else

 detailsPanel.Visible = false

 response.write("No rows found")

 end if

 End Sub

End Class

The Master-Grid implementation is comprised of two DataGrids: the AuthorsGrid and
the titlesGrid. The AuthorsGrid is bound to a query, which is a join between the
Authors, titles, and TitleAuthors table. The query is as follows:

sql = " select * , au_lname + ',' + au_fname as au_name"

sql = sql + " From authors a, titles t, titleauthor ta"

sql = sql + " Where a.au_id = ta.au_id AND t.title_id = ta.title_id"
I have created a ButtonColumn with CommandName = "select". The "select"
CommandName informs the DataGrid that an item has been selected and fires the
"OnSelectedIndexChanged" event, which in turn fires the "Grid_Select" function.

The Grid_Select function retrieves the au_id (the DataKeyField) of the row that has
changed and calls the UpdateSelection function. The UpdateSelection function
binds the titlesGrid with the following query:

sql2 = " select * , au_lname + ',' + au_fname as au_name"

sql2 = sql2 + " From authors a, titles t, titleauthor ta"

sql2 = sql2 + " Where a.au_id = ta.au_id AND t.title_id = ta.title_id"

sql2 = sql2 + " AND a.au_id = '" + vkey + "'"
This query limits the original query to the selected author only. Note that the
titlesGrid is enclosed within a Panel which has an id of DetailsPanel, which is
initially invisible. The UpdateSelection binds the titlesGrid and makes the Panel
visible. This in turn displays the detail records.

Summary

I have covered quite a lot of ground in this chapter. I have shown how the "list bound"
controls are bound to a datasource. Practical examples of using the DataRepeater, the
DataList, and DataGrid were provided. Working with XML datasources was also
explained. Further chapters in this book build on these concepts and the project section
of the book shows how to use them in actual applications.

Chapter 5: Input Validation

Overview

Input validation is a dull, dreary task. I don't see too many developers getting excited
about writing validation code. However, the value of good validation techniques cannot
be discounted. Without appropriate validation, our script routines would break, and we
would get garbage in our database. ASP.NET makes the task of implementing validation
routines a breeze. Implementing a validation routine is as simple as creating a validation
control and telling it what control to validate.

The ASP.NET team did detailed research of a number of data entry forms. They found
that most validation tasks revolved around the following activities:
§ Checking for "regular expressions" such as ZIP codes and telephone numbers
§ Comparing two users' input values
§ Checking for required fields
§ Checking if a given input falls within a range of values

In addition they found that the user could be informed of a wrong input value
immediat ely. Also, all wrong input values could be summarized and shown together.
Armed with this knowledge they set out to develop an object that could encompass all
these activities and take the yoke of writing validation code off our necks. Writing such
an object in an ActiveX environment would have meant overloading the functionality of
all the requirements listed above into a single component that behaved differently in
different modes. However, the .NET framework allowed them to create six controls that
all inherit from a common object (BaseValidator). Each object specializes in providing
certain functionality. Since the scope of each object is focused, it is a lean, but very
effective control. The following list shows the controls they came up with:
§ RequiredFieldValidator
§ RegularExpressionValidator
§ CompareValidator
§ RangeValidator
§ CustomValidator
§ ValidationSummary

There are five validation controls and one ValidationSummary control. The work of
the first four validation controls is evident from their names. You can write your own
validation function and associate it with the CustomValidator. Finally, the
ValidationSummary control presents a summary of all the errors on the page in one
location.

A Two-Pronged Approach to Validation

A good validation approach requires that you validate user input both at the client and
server side. Client side validation is nice to have. Users get immediate feedback of illegal
input values. The downside of client side validation is that it is quite cumbersome to
implement using just HTML 3.2. Scripting languages and DHTML make this task easy.
However, this makes an assumption that users will use browsers that support these
technologies. This is not a valid assumption to make. Using only client side validation
can also pose a security risk. It is quite easy to tamper, replace, or bypass a script page.
It is for this reason that the validation controls use a two-pronged approach. They use
the client side validation to provide immediate feedback and then repeat the validation at
server side. Client side validation is automatic with Internet Explorer 4.0 and above. For
script-disabled browsers, validation is carried out server side.

The client side validation has number of features. An immediate feedback (say an error
message in red) is given to users regarding illegal entries, which goes away after the
error is rectified. If an error is trapped at the client side, a post back to the server is
avoided. The validation summary updates itself, again without a post back. No ActiveX
objects or applets are used to implement the client side functionality as the logic is
contained in a JScript library.

Validation Controls
I have created a Web page with a sample of each validation control. I shall be using this
in my discussions. Figure 5.1 displays the result of the validate.aspx code.

Figure 5.1: Validation controls.
validate.aspx

<%@ Page language="VB" %>

<html>

 <head>

 <script runat=server>

 Sub ServerValidate (sender As Object, value As ServerValidateEventArgs)

 Dim num As Int32 = Int32.Parse(value.Value)

 response.write(num)

 if num= "10" then

 value.IsValid = True

 else

 value.IsValid = False

 end if

 End Sub

 public sub OnSubmit(source as Object, e as EventArgs)

 if Page.IsValid then

 ' Check before update to database

 end if

 end sub

 </script>

 <title>Validating with ASP+ Controls</title>

 </head>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <h2>ASP .NET Control Validation</h2>

 <hr>

 <asp:ValidationSummary runat=server headertext="There were errors on the page:" />

 <form RunAt="server">

 Required Field :

 Name : <input type=text runat=server id=txtName>

 <asp:RequiredFieldValidator runat=server

 controltovalidate=txtName

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator>

 <hr>

 Password:<asp:TextBox id="txtPassword" RunAt="server"/>

 Confirm:<asp:TextBox id="txtConfirm" RunAt="server"/>

 <asp:CompareValidator

 id="cvPassword"

 ControlToValidate="txtPassword"

 ControlToCompare="txtConfirm"

 Type="String"

 Operator=Equal

 Display="dynamic"

 ErrorMessage="The password does not match the confirm password!"

 RunAt="server">

 *

 </asp:CompareValidator>

 <hr>

 Range Validator

 IQ (180 - 265):<asp:TextBox id="iq" RunAt="server"/>

 <asp:RangeValidator

 id="rvIQ"

 ControlToValidate="iq"

 Display="dynamic"

 ErrorMessage="IQ must be between 180 and 265 to run this example"

 MinimumValue=180

 MaximumValue=265

 Type="Integer"

 RunAt="server">

 </asp:RangeValidator>

 Regular Expression:

 validation expression : [0-9]{3}\s[0-9]{3}-[0-9]{4}

 Example : 214 345-0458

 Phone:<asp:TextBox id="txtPhone" RunAt="server" />

 <asp:RegularExpressionValidator

 id="revPassword"

 ControlToValidate="txtPhone"

 Display="dynamic"

 ValidationExpression="[0-9]{3}\s[0-9]{3}-[0-9]{4}"

 ErrorMessage="Phone number must be xxx xxx-xxxx"

 RunAt="server">

 </asp:RegularExpressionValidator>

 <hr>

 Custom Validation:

 Must be the number 10

 <asp:TextBox id=Text11 runat="server" />

 <asp:CustomValidator id="CustomValidator1" runat="server"

 ControlToValidate="Text11"

 OnServerValidate="ServerValidate"

 Display="Static"

 Font-Name="verdana" Font-Size="10pt">

 This field must be the number 10!

 </asp:CustomValidator>

 <hr>

 <input type=submit runat=server id=cmdSubmit value=Submit
onserverclick=OnSubmit>

 </form>

 </body>

 </html>

Required Field

The required field validation control ensures that specified fields get filled in. The
example of a required field is as follows:

Name : <input type=text runat=server id=txtName>

<asp:RequiredFieldValidator runat=server

 controltovalidate=txtName

 errormessage="Name is required.">*

</asp:RequiredFieldValidator>
The user is supposed to fill out the txtName textbox. If he leaves it blank and hits the
submit button, an error is displayed ("Name is required") by the ValidationSummary
control. An asterisk (*) is also displayed next to the textbox. The ControlToValidate
property specifies the ID of the control to validate, which in this case is txtName.

Compare Validator
The CompareValidator compares the content of two controls and if they don't match,
reports an error. A typical use of the CompareValidator is to match a password and a
password reentry value. The following is an example:

Password:<asp:TextBox id="txtPassword" RunAt="server"/>

 Confirm:<asp:TextBox id="txtConfirm" RunAt="server"/>

 <asp:CompareValidator

 id="cvPassword"

 ControlToValidate="txtPassword"

 ControlToCompare="txtConfirm"

 Type="String"

 Operator=Equal

 Display="dynamic"

 ErrorMessage="The password does not match the confirm password!"

 RunAt="server">

 *

 </asp:CompareValidator>

Here I am comparing two fields. If they don't match, a * is displayed and the error
message "The password does not match the confirm password!" is displayed by the
validation control when the submit button is clicked. You can specify the data type of the
values and the comparison operator.

1. If you get rid of the * in the CompareValidator tag, the error
message is displayed instead of the * to provide immediate feedback
to the user.

2. The Type property can be of the following:
§ String
§ Integer
§ Double
§ DateTime
§ Currency

3. The Operator property can be of the following:

§ Equal
§ NotEqual
§ GreaterThan
§ GreaterThanEqual
§ LessThan
§ LessThanEqual
§ DataTypeCheck

4. The Display property can be of the following:
§ None. Indicates that no inline error message should be

displayed. However, the control will still get evaluated
and the validation control will display the error as a
summary.

§ Dynamic. Indicates that the control will take page space
when the error text is displayed resulting in page
layout change. This is useful when multiple validation
controls are attached to a single control.

§ Static. Indicates that space will be reserved for the full
error message. In this case the page layout will not
change when the error message is displayed.

5. A CompareValidator is valid if blank.

Range Validator
You use the RangeValidator control to check if the user input falls within a specified
range. In the example that follows, the RangeValidator checks if the input IQ falls
within 180–265.

Range Validator

IQ (180 - 265):<asp:TextBox id="iq" RunAt="server"/>

<asp:RangeValidator

 id="rvIQ"

 ControlToValidate="iq"

 Display="dynamic"

 ErrorMessage="IQ must be between 180 and 265 to run this example"

 MinimumValue=180

 MaximumValue=265

 Type="Integer"

 RunAt="server">

</asp:RangeValidator>
The RangeValidator has the ControlToValidate, Display, and Type properties,
which have already been discussed. In addition it has a MinimumValue and a
MaximumValue property. These are the upper and lower bounds of the range within
which a user input must fall. The RangeValidator is valid if blank.

Regular Expression
The RegularExpressionValidator is the most powerful of all the controls. It checks
for user input against a pattern of characters specified by the developer. Regular
Expressions have syntax of their own. For example, to ensure that a telephone number
is entered in the format "xxx xxx-xxxx," you could enter this regular expression "[0-
9]{3}\s[0-9]{3}-[0-9]{4}". This means that the first three characters should fall within 0 to
9, followed by a blank space (\s), followed by three characters which also fall between 0
to 9, followed by a dash, and then four characters which fall within 0 to 9. You can use
this control to check valid e-mail identifications, ZIP codes, and in fact any user-defined
pattern. I shall be looking at the Regular Expression syntax later in this chapter. The
following is an example of the RegularExpressionValidator, which checks that a
telephone number is of the pattern "xxx xxx-xxxx."

Phone: <asp:TextBox id="txtPhone" runat="server" />

<asp:RegularExpressionValidator

 id="revPassword"

 ControlToValidate="txtPhone"

 Display="dynamic"

 ValidationExpression="[0-9]{3}\s[0-9]{3}-[0-9]{4}"

 ErrorMessage="Phone number must be xxx xxx-xxxx"

 runat="server">

</asp:RegularExpressionValidator>
You will note that the RegularExpressionValidator has the
ControlToValidate, Display, and ErrorMessage properties. These properties
have the same connotation as the other validation controls. The Validation property is
where you set the regular expression pattern. The RegularExpressionValidator is
valid if blank.

A Regular Expression Pattern Primer

A regular expression is a sequence of characters that provides a pattern (or template)
against which to match a value input by the user.

Pattern Matching

The pattern "Hersh" matches string combinations of characters "Hersh" appearing
together and in that order. "Her.h" would match "Herjh," "Hersh," and "Herdh." The
decimal point matches any character except the newline character.

Now suppose you wanted to precede "Hersh" with a digit falling within the range 0–9,
you would say "[0-9]Hersh." The "[xyz]" brackets represent a character set and any of
the enclosed characters are matched. The pattern "[a-z]" represents lower case
alphabets whereas "[a-zA-Z]" includes all uppercase and lowercase alphabets. To
search for digits in a string, use "[0-9]."

Repetition Matching

Suppose you wanted to find all occurrences of "book" and "books." You would use the
pattern "book?." The question mark matches the preceding character 0 or 1 times (i.e. it
will only look at one more character after "book" and concatenate it to "book"). Now
suppose we wanted to go beyond the one character limit imposed by the question mark
and search for "book" followed by anything. We would use the "*", and our pattern will
look like "book*." This will return words like "booked," "bookiee," "bookworm," etc.

The expression "{n}" matches against the target string exactly n times. For example,
"p{2}" will match "happy" but not "hop."

Position Matching

Suppose you wanted to find words which started with "Gr," you would use the caret
symbol and your pattern would be "^Gr." This would match words like "Great," "Grate,"
"Grr," etc. The caret symbol matches the start of the line.

The dollar symbol ($), on the other hand, matches the end of the line. Thus if you wanted
to find words ending with "d" your pattern would be "d$" and this would fetch words like
"had," "bad," "lad," etc.

Custom Validation
The CustomValidator can be used to extend the functionality of the validation
controls by performing validation using custom functions and routines. This is particularly
useful in cases when you need to access database information as part of the validation
routines. You can define a server function and optionally a client side function that gets
called by the CustomValidator. The functions on both client and server side would be
similar. There is no need of having elaborate client side routines, as the client side
checks can easily be side-stepped by a malicious user. You should only use client side
routines to give immediate feedback to users when an illegal entry is made. The real
validation functionality should be maintained server side.

The following is an example:

Custom Validation:

Must be the number 10

<asp:TextBox id=Text11 runat="server" />

 <asp:CustomValidator id="CustomValidator1" runat="server"

 ControlToValidate="Text11"

 OnServerValidate="ServerValidate"

 Display="Static"

 Font-Name="verdana" Font-Size="10pt">

 This field must be the number 10!

 </asp:CustomValidator>

In this example the user is supposed to enter the number 10. Input of any other number
causes an error state and the client side custom error function gets fired. When the
submit button is pressed, the server side error function gets fired.

Server Side Functionality
The server side function is specified by the OnServerValidate property. This has
been set to fire the function ServerValidate, which is as follows:

Sub ServerValidate (sender As Object, value As ServerValidateEventArgs)

 Dim num As Int32 = Int32.Parse(value.Value)

 response.write(num)

 if num= "10" then

 value.IsValid = True

 else

 value.IsValid = False

 end if

End Sub
This simply checks if the number entered is 10. If not, it returns false.

Client Side Functionality
The client side functionality is maintained by the property
ClientValidationFunction. This has been set to fire the custom function
ClientValidate. This can be a function written in JScript or VBScript. I show a
skeleton function in the following code:

<script language = javascript >

 <!--

 function ClientValidate(source,value) {

 // Put some client side code here

 }

 //-->

</script>
The code in this function gets fired each time the user enters something in the field and
tabs out. It will return true or false, which will in turn toggle the error state on or off.
For older browsers or when the client validation has been turned off, this function will not
get called. The CustomValidation control automatically checks the browser
capabilities and renders HTML accordingly. However, you should always enclose the
client side script in HTML comments so that older browsers ignore it. Two parameters
are passed into the client function (which correspond to parameters passed to the server
function). These are the client validator element and the value of the control specified by
the ControlToValidate. In the client side function you can choose to ignore these
parameter definitions in your function call. Finally, the CustomValidator is valid if
blank.

The ValidationSummary Control
The final control is the ValidationSummary control. This control accumulates values
from the errormessage property of all the validation controls on the page and displays
them together. You can place the validation control anywhere on the page. You can also
control how the errors are displayed (bulleted, plain list, etc). The following is an
example:

<asp:ValidationSummary runat=server

 displaymode ="bulletlist"

 showsummary = "true"

headertext="There were errors on the page:" />

The validation control has the following properties:
§ HeaderText. This is the caption of the errors list.
§ DisplayMode. This can be List (separated by
), BulletList (default-

separated by), and SingleParagraph (un-delimited, all in one para).
§ ShowSummary. True (default) or False. If set to false, only HeaderText is

displayed.
§ ShowMessageBox. True or False (default). When set to true, shows a pop-up

message box instead of the summary.

The IsValid Property
The IsValid property is a page property, which evaluates to true if no errors were
encountered or false if errors were found. It is important to check this property before
making updates, etc., to the database. The following is how a submit handler might look:

Public sub OnSubmit(source as object, e as eventargs)

 If Page.IsValid then

 'proceed to update database

 End if

End Sub

Disabling Client Side Validation
At times you may want to disable client side validation. You might have code that needs
to be executed server side only and client side validation might be unnecessary, or you
might have too few input fields to justify client side validation. To disable client side
validation you use a Page Directive "clienttarget = downlevel". It looks like the
following:

<%@ Page Language = "vb" clienttarget = "downlevel" %>

The default value for this directive is "auto" meaning that you get client side validation for
Internet Explorer 4.0 and above only.

Summary

The validation controls take out the drudgery of writing validation code. They are
intelligent beasts and can render HTML based on the browser type. They are a welcome
addition to our toolbox and I will be making extensive use of them in later chapters.

Chapter 6: User Controls
"Code Behind" techniques involved separating the visual portion and the scripting portion
into separate forms. The web form basically inherited the code classes into the page. A
user control, however, can be a self-contained entity, comprised of both the graphical
interface and scripting code. A user control has the functionality (and simplicity) of legacy
ASP Server Side Includes. However, include files are static files whereas user controls
provide an object model support, which allows you to program against properties and
use methods. They work much like the ASP.NET intrinsic controls, and like intrinsic
controls they can expose properties and methods. You need to choose a single
language when writing ASP.NET web forms. User controls circumvent this restriction as
you can have controls written in different languages on the same Web page. They can
also be used more than once on the same page without having any naming conflicts.
This is because each control resides on its own namespace.
A user control file is a simple text file, saved with the extension ascx. It should not
contain the <html> and <body> and the <form> tags. The page that calls the user
object will apply these tags. Any existing web form can be converted to a user control
with slight modifications.

Creating a Simple User Control
I will now create a user control, which displays the single line of text, "This is a Test
Control," when invoked. See Figure 6.1 for an example.

Figure 6.1: Simple user control.

1. Create a file and save it with the name simpleUC1.ascx.
2. Add a single line of text in this file "This is a Test Control."
3. Create a web form simpleUC1.aspx and add the following tags:

simpleUC1.aspx

<%@ Register TagPrefix="Hersh" TagName="test" Src="SimpleUC1.ascx"
%>

<html>

 <body style="background-color='beige'; font-family='verdana'; font-
size='10pt'">

 <Hersh:test runat = server />

 </body>

</html>

4. Run the web form in your browser.

The register directive registers the control with the Web page. I have given the user
control a TagPrefix of "Hersh". This can be any name. The TagName is the alias to
the user control. We use this to refer to the control. You can see in this simplified
example that the user control behaves much like an include file.

Exposing Properties

Visual Basic.NET and C# provide a useful way of assigning and retrieving values
through accessor and mutator functions. Instead of the Let, Set, and Get statements in
VB 6.0 (which are now unsupported), you just need a single Property block that would
contain a Set and Get block. In this example I have a "message" property block as
follows:

Public Property message As String

 Get

 Return Txt.Value

 End Get

 Set

 Txt.Value = Value

 End Set

End Property
The accessor functions (the Get functions) get called when values are requested from
the message property. Similarly, the mutator function (the Set function) gets called when
values are assigned to the message property.
A user control can expose properties, which can then be set by the user. The contents of
the user control can thus be encapsulated so that the user is not exposed to the inner
working of the component. In the following example, my user control is comprised of a
single textbox to which I pass a string "Message passed from web form." Figure 6.2
shows what the output of the web form looks like.

Figure 6.2: Exposing properties in user controls.
simpleUC2.aspx

<%@ Register TagPrefix="Hersh" TagName="test" Src="SimpleUC2.ascx" %>

<html>

<body style="background-color='beige'; font-family='verdana'; font-size='10pt'">

 <form runat="server">

 <Hersh:test runat = server message="Message passed from web form" />

 </form>

 </body>

</html>

The user control form contains the following code:
simpleUC2.ascx

<script language="VB" runat="server">

 Public Property message As String

 Get

 Return Txt.Value

 End Get

 Set

 Txt.Value = Value

 End Set

 End Property

</script>

<input id="Txt" size="50" type="text" runat="server">

User controls reside on their own namespace. This means that the variable names
specified for a user control will not clash with another user control, intrinsic control, or
even the page variables.
It is recommended that you expose properties instead of Public variables. Properties
allow data hiding, can be versioned, and are supported by visual designers such as
Visual Studio.NET. I have defined a property called message, which assigns the passed
message text to the textbox.

Designing a Navigation System for Your Web Site with a
User Control

Each time a new Web page is added to your site, you need to update all the web forms
in the site to update the navigation structure. Site navigation should be kept separate
from your web forms. When I build a site, I keep all my links in an XML file. I then merge
my "navigation" XML file with my "main" XML file and render them by applying
stylesheets. I used to do this using a combination of MSXML and XSL stylesheets and
was pleasantly surprised to find that implementing the same functionality in ASP.NET
was a breeze.

I maintain my site links in an XML file with the following structure:
nav.XML

<Siteinfo>

 <site>

 <sitename>Home</sitename>

 <siteurl>default.aspx </siteurl>

 </site>

 <site>

 <sitename>Masters</sitename>

 <siteurl>masters.aspx</siteurl>

 </site>

</Siteinfo>

The user control that I developed can be placed on any web form with an invocation like
the following:

Navigation.aspx

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

<html>

 <head>

 <style>

 a { color:black;

 text-decoration:none;}

 a:hover { color:red;

 text-decoration:underline;}

 </style>

 </head>

 <body style="background-color='white'; font-family='verdana'; font-size='10pt'">

 <form runat=server>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7

 />

 </form>

 </body>

</html>

This displays a navigation menu, which looks like Figure 6.3.

Figure 6.3: Navigation Menu.

The user control is contained in the file nav.ascx. A Web page that calls the control will
register it with a directive like the following:

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

The control is then instantiated with the following tags:

<form runat=server>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7

 />

</form>
Note that the component resides within the form tags on the calling page. Also note that
it sets three properties, which are vGridLines, vBorderColor, and vCellPadding.

The following list discusses the user control:
1. Passing parameters from the Web Page to the Component: The User

Component declares three Public variables to receive the three passed
variables as follows:

2. PUBLIC vGridLines As GridLines
3. PUBLIC vBorderColor as String

PUBLIC vCellPadding As Integer
4. Reading the XML File into a DataSet: In the page_load event, the

XML file is read and stored in a DataSet. A DataGrid is bound to the
DataSet and its GridLines, BorderColor, and CellPadding attributes are
set with the passed variables.

5. Sub Page_Load(Source As Object, E As EventArgs)

6. Dim ds As New DataSet

7. Dim fs As filestream

8. Dim xmLStream As StreamReader

9. fs = New filestream(Server.MapPath("nav.xml"),
FileMode.Open, FileAccess.Read)

10. xmlStream = new StreamReader(fs)

11. ds.ReadXML(XmlStream)

12. fs.Close()

13. dlist.DataSource=ds.Tables("site").DefaultView

14. dlist.DataBind()

15. dlist.GridLines = vGridLines

16.
dlist.BorderColor=System.Drawing.Color.FromName(vBorderColor)

17. dlist.CellPadding=vCellPadding

End Sub
18. Setting the BorderColor Property: The BorderColor property

references a data type of system. To convert a string to a color I have
used the FromName method. This method takes a string and converts it
to type color. Thus I have declared vBorderColor as a string, such as in
the following:

PUBLIC vBorderColor as string

To set the BorderColor property I have used the following code:

dlist.BorderColor=System.Drawing.Color.FromName(vBorderColor)
19. The DataList: The DataList displays the navigation links. I have defined

a hyperlink control to render the links, and this is bound to the SiteUrl tag
of the XML file.

<asp:DataList runat=server id="dlist"

 RepeatDirection="horizontal"

 RepeatMode="Table"

 Width="100%"

 BorderWidth="1"

 Font-Name="Verdana"

 Font-Size="8pt"

 HeaderStyle-BackColor="#aaaadd"

 SelectedItemStyle-BackColor="yellow"

 ItemStyle-BackColor="antiquewhite"

 AlternatingItemStyle-BackColor="tan"

 >

 <ItemTemplate>

 <asp:HyperLink runat="server"

 Text= '<%# Container.DataItem("sitename") %>'

 NavigateUrl= '<%# Container.DataItem("siteurl") %>' />

</ItemTemplate>

</asp:DataList>

You can see how simple the implementation is. Keeping our links in a separate XML file
allows us to modify the Navigation structure of the Web site without having to change all
the web forms.

The following is the complete listing of the user control:
nav.ascx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Drawing" %>

 <script language="VB" runat="server">

 'Public Variable for each exposed Property

 PUBLIC vGridLines As GridLines

 PUBLIC vBorderColor As String

 PUBLIC vCellPadding As Integer

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim ds As New DataSet

 Dim fs As filestream

 Dim xmLStream As StreamReader

 fs = New filestream(Server.MapPath("nav.xml"), FileMode.Open, FileAccess.Read)

 xmlStream = new StreamReader(fs)

 ds.ReadXML(XmlStream)

 fs.Close()

 dlist.DataSource=ds.Tables("site").DefaultView

 dlist.DataBind()

 dlist.GridLines = vGridLines

 dlist.BorderColor=System.Drawing.Color.FromName(vBorderColor)

 dlist.CellPadding=vCellPadding

 End Sub

 </script>

 <asp:DataList runat=server id="dlist"

 RepeatDirection="horizontal"

 RepeatMode="Table"

 Width="100%"

 BorderWidth="1"

 Font-Name="Verdana"

 Font-Size="8pt"

 HeaderStyle-BackColor="#aaaadd"

 SelectedItemStyle-BackColor="yellow"

 ItemStyle-BackColor="antiquewhite"

 AlternatingItemStyle-BackColor="tan"

 >

 <ItemTemplate>

 <asp:HyperLink runat="server"

 Text= '<%# Container.DataItem("sitename") %>'

 NavigateUrl= '<%# Container.DataItem("siteurl") %>' />

 </ItemTemplate>

</asp:DataList>

Summary

User Controls can encapsulate both presentation and code logic. In this chapter we built
a very useful component that encapsulates the site navigation logic of Web site. We saw
that user controls are simple to create and that any web form can be encapsulated into a
user control with slight modifications.

Chapter 7: Custom Controls

Overview

Control development has often been compared to developing components for a
manufactured product. Assembling a manufactured product on an assembly line involves
assembling various components together to create the final product. In a similar manner,
software controls are created that encapsulate generic functionality. These controls are
then combined with other software components to build the final software product. The
ASP.NET server controls, the DataList, the DataGrid, and the DataRepeater are
examples of such software controls.

Controls have been around for a long time. We have seen a rapid proliferation of ActiveX
controls and Java Applets in recent years. A major limitation in these technologies is that
not all sites support these technologies. The advent of new generation products like
handheld devices and cell phones make the matter more complicated. We can no longer
assume that our target audience will always have the technology to support and run the
controls we create. The ASP.NET server controls seek to address this problem by
having the server render code as pure HTML that all browsers can understand.

ASP.NET provides a clean way of developing Custom Controls. In this chapter, I will
provide you the basics of developing such controls. I will start with building a simple
control, which will give an overview of the process. Then I will develop a very useful
Custom Control, which is a generic add/modify control. A DataGrid does not have
capabilities to add a record. In the web forms that I have built so far in this book, I have
added textboxes and code to incorporate this functionality. The Custom Control that I will
build will accept a SQL Query string as a property setting and will automatically generate
a form to add records to the database, complete with field labels. You will pass it the
name of a stored procedure and the control will call it with the required parameters to
create a record. This control will also have an edit mode. You can hook the control up to
a DataGrid and use it instead of the editing functionality of the DataGrid. The advantage
of using this control for editing is that you do not have to code any of the events of the

DataGrid. I will introduce this topic with a simple control written first in Visual Basic and
then in C#.

A Simple Control in Visual Basic
This control will simply display a "Hello World" message. Though this control is simple to
create, it compiles into a working DLL and demonstrates the various steps involved in its
creation. The source code for this sample can be found in the HelloWorld subfolder on
the book's Web site at www.premierpressbooks.com/downloads.asp .

Step 1: Create a Class File

Using Notepad, create a Visual Basic class file and save it with the extension .vb.
hello.vb

Imports System

Imports System.Web

Imports System.Web.UI

Namespace Hersh

 Public Class Hello: Inherits Control

 Protected Overrides Sub Render(Output As HtmlTextWriter)

 Output.Write("<H1>Hello World</H1>")

 End Sub

End Class

End Namespace

The following is a discussion on various aspects of the code:
1. Namespaces: Namespaces is a way of grouping together related

classes, interfaces, structures, enumerations, and delegates under
one name. It can also be thought of as a shortcut way of referring to
long names. Namespaces can be nested, and a source file can have
as many namespaces as needed. In this example, the class hello
resides in the namespace Hersh. In the calling web form I will register
the namespace with the following directive:

<%@ Register TagPrefix="Hersh" Namespace="Hersh" Assembly="hello"
%>

The control will be called as follows:
<Hersh:Hello runat=server />
2. Imports: The import directive is another shortcut that allows one to

use namespaces without providing a fully qualified path. The
namespace required by a server side control are System,

System.Web, System.Web.UI, and
System.Web.UI.WebControls.

§ The System namespace contains core system classes
and services like class activation and serialization.

§ The System.Web contains services related to web
services like HttpRequest and HttpResponse.

§ The System.Web.UI namespace includes services like
control management and cascading stylesheet
management.

§ The System.Web.UI.Control namespace includes
the definition of the control class for building the
control. The control class includes properties,
methods, and events common to all server controls in
an ASP.NET page. ASP.NET supports inheritance, so
a new control can inherit from the control class by
using the Inherits keyword. Functions in a "parent"
class can be overridden to provi de specific
functionality in the descendent class.

§ Public: Note that I have declared the hello class to
be public. A public class can be instantiated by
anybody whereas a private class can only be
instantiated by other classes within the same
namespace.

§ The Render Function: The hello class inherits from the
control class, which contains the Render function.
The Render function determines what our control will
look like. I want to control the output of the control, so I
override the function and use the write method of the
HtmlTextWriter object to output the string "hello
world" to the browser.

Render takes a single argument of type HtmlTextWriter,
which abstracts the task of streaming HTML to the browser.
This class has the functionality of automatically generating
element tags, attributes, and styles. Other functions in this
class are methods like WriteLineNoTabs,
WriteBeginTag, and WriteEndTag to name a few.

Step 2: Create the DLL
Create a "bin" folder in wwwroot (or the root directory of your application folder) and
execute the makevb.bat file (make sure that the outdir variable points to your bin
folder). This file has the following commands:

makeVb.bat

set outdir=g:\AspNetSamples\bin\hello.DLL

set assemblies=System.dll,System.Web.dll

vbc /t:library /out:%outdir% /r:%assemblies% hello.vb

pause

This should create hello.dll in the bin folder. Component registration in ASP.NET has
greatly improved. Previously, a component had to be registered using the registration
tool (regsvr32.exe). Now all you need to do is copy the DLL into the bin folder. To update
the component, just copy the revised DLL file into the bin folder. No entries are made in
the registry and if you need to unregister the component, just delete it from the bin
directory.

The bin is a special directory that the .NET runtime examines to identify and locate
namespaces. The .NET runtime examines the metadata of assembly files placed in the
bin directory from which it knows where to locate the namespace specified on the web
forms. Metadata for an object records information required to use the object. Typically,
this information includes the name of the object, names of all the fields of the object, and
their types and details of all member functions including parameter types and names.

Assembly is the method of packaging all the files required for an object in one complete
package. The .NET compiler compiles code to an intermediate form called "IL"
(intermediate language). The assembly contains "IL," metadata, and other files in one
comprehensive package. Each application can have its own bin folder. The components
present here are local to that application.

Step 3: Create the Web Form
hellovb.aspx

<%@ Register TagPrefix="Hersh" Namespace="Hersh" Assembly="hello" %>

<html>

 <body>

 <Hersh:Hello runat=server />

 </body>

</html>

I have used the Register directive to register the functionality existing in the
namespace Hersh. Now, it is a simple task to initiate the class by using the tag
<Hersh:Hello runat=server />.

Creating a Simple Control in C#
I will now discuss building a control in C#. This control will also render "Hello World" to
the browser. However, this time I will define a property called message, which I will use
to display the string "Hello World". The control will also display the system date and time.
The source code for this sample can be found in the HelloWorld subfolder on the book's
Web site at www.premierpressbooks.com/downloads.asp .

Step 1: Create a Class File
helloC.cs

using System;

using System.Web.UI;

using System.ComponentModel;

namespace CustomControls

{

 public class FirstC : Control

 {

 private String message = "";

 public virtual String Message

 {

 get

 {

 return message;

 }

 set

 {

 message = value;

 }

 }

 protected override void Render(HtmlTextWriter writer)

 {

 writer.Write(" "+ this.Message + "
" +

 "The server date and time : " +

 System.DateTime.Now +

 "");

 }

 }

}

This code is almost similar to the Visual Basic code. There are slight syntax differences,
which are noted in the following:

1. "Using" instead of "Imports"
Visual Basic: Imports System
C# : using System;

2. NameSpace

Visual Basic:

NameSpace Hersh

'Some Code here

End NameSpace

C# :

NameSpace{

//Some code here

}
3. Inherits

Visual Basic: Public Class Hello: Inherits Control
C#: public class FirstC : Control

A property called message is defined as that which has get and set assessor methods.
The string "Hello World" is passed using this property.

Step 2: Create the DLL

The following commands compile the control to a dll:
makec.bat

set outdir=G:\AspNetSamples\bin\helloc.DLL

set assemblies=System.Web.dll

csc /t:library /out:%outdir% /r:%assemblies% helloC.cs

pause

A control called helloc.dll should be created in the bin directory.

Step 3: Create the Web Form

Now create the web form that will call this control as follows:
HelloC.aspx

<%@ Register TagPrefix="Custom" Namespace="CustomControls" Assembly="helloc"%>

<html>

 <body>

 <form method="POST" runat=server>

 <Custom:FirstC Message= "Hello World in C#" runat=server/>

 </form>

 </body>

</html>

The control resides in the namespace CustomControls. The following initiates the
control and passes it the string "Hello World" in C#":

<Custom:FirstC Message= "Hello World in C#" runat=server/>

The Generic Edit/Add Custom Control
There is a history behind this control. In ASP, there was no easy way to display database
data in the browser. We had to write code to open a database connection, feed a
recordset with the data from the database, and then iterate the recordset to render the
data as HTML. Many brains in the ASP community set about to develop generic routines
to automate the task of rendering database data to the browser. Alan Saldanha wrote a
primer in which he described the design of such a generic tool. Eli Robillard built a
brilliant tool based on his theory and made it available as freeware on his site
(http://www.ofifc.org/Eli/ASP/GenericArticle.asp). Eli named this tool Genericdb and it
was comprised of a series of ASP pages. All you had to do to output a database table (or
the result of a SQL query) to the browser was to build a "config" file in which you
specified various variables like the table name, the DSN, the display fields, etc., and a
beautiful grid-like table was created. This table looked like the DataGrid in ASP.NET and
like it, had alternating color style, paging, sorting, etc. Eli called this page the "Lister."
This grid had three links: add, delete, and modify. Clicking on these links allowed you to
add, update, or delete a record. Roman Koch developed EDITOR.ASP
(http://www.4guysfromrolla.com/webtech/110999-1.shtml) after he saw Genericdb.
This was a "no-frills" version on Genericdb, written as a series of function calls. He was
able to pack a basic "Lister" and "Editor" into a single 10k file.
The ASP.NET DataGrid provides the "Lister" functionality of the Genericdb. In other
words, it displays a list of records that can then be modified by clicking on an edit link.
The Edit mode of the DataGrid is equivalent to the "Editor" functionality of Genericdb.
However, this functionality is not automatic. You need to code a number of DataGrid
events (for example, the OnEditCommand, OnUpdateCommand, OnCancelCommand,
etc.), read the modified values, and send the updated values back to the database.
Another drawback of the Edit mode is that the layout of the grid in this mode is
horizontal. We might want a vertical layout, which is more common in web forms.

There is no "insert" mode in the DataGrid. If you want to incorporate "insert" functionality
in your Web pages you must fall back to the traditional method of building a user input
form by adding textboxes on the page. These considerations led me to write the
GenEditAdd custom control. This control can be hooked up to a DataGrid, and it
provides both the "edit" and "insert" functionality in a consistent manner. You do not
have to code any events; just set a few properties and you are done.
I suggest you compile and experiment with the GenEditAdd control first. You will find the
sample files for this control in the GenEditAdd_final subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp . I will go into a detailed discussion of it
later. You will need the Masters table in your database to test it out. If you have not set

up the example database, do so now as specified in Appendix A. The following is how
you test it:

1. Run the bat file mGenEditAdd.bat: This will compile and put the control
(GenEditAdd.DLL) in the bin folder under wwwroot. Be sure to modify
this file to point to your bin folder

2. Open masters.aspx and run it through IIS.
The masters.aspx form contains a DataGrid. Just look at the visual appearance at the
moment. I will discuss the code later. This web form displays all the records from the
Masters table. There are three links attached to each row. These are the add, edit, and
delete links. Figure 7.1 shows what it looks like.

Figure 7.1: The Lister.

Clicking on the edit link activates the GenEditAdd control in the Edit mode. I can make
modifications and hit the update button. This will save the changes to the database.
Figure 7.2 shows the GenEditAdd control in Edit mode.

Figure 7.2: The GenEditAdd control in the Edit mode.

Clicking the add link activates the control in the Add mode. Figure 7.3 shows the
GenEditAdd control in Add mode.

Figure 7.3: The GenEditAdd control in the Add mode.

The control automatically builds a procedure call to the stored procedure p_masters and
passes it the appropriate parameters. I will discuss this procedure in Chapter 15, "Chart
of Accounts." For now, know that this procedure is responsible for both inserting and
updating a masters record. If we need to modify a record, I send it the primary key of the
record to be modified as a parameter. The code_value is the primary key of the
Masters table. Thus, to update a record with code_value of 3, I call the stored
procedure as follows:

Execute p_masters @code_display='Visa Card ', @code_category=604, @type='A',
@closing=700, @code_value=3
If we want to insert a new record, I send a null value as the code_value to this
procedure as follows:

Execute p_masters @code_display='Test', @code_category=1, @type='', @closing=10,
@code_value=NULL

I do not have to manually build this string as the GenEditAdd control reads the user input
to extract the input values, as well as the database fields collection to get the column
names. It automatically builds this procedure call string, and posts it to the database.

The Config File
The DataGrid in the Masters web form has two hyperlink columns: one for the edit link
and the other for the add link. These links navigate to the config_masters.aspx form. The
edit link passes it the primary key of the record (code_value in this case) as follows:

<asp:HyperLinkColumn Text="Edit" DataNavigateUrlField="code_value"
DataNavigateUrlFormatString="config_masters.aspx?code_value={0}"/>
The add link passes it a code_value of zero as follows:

<asp:HyperLinkColumn Text="Add" DataNavigateUrlField="code_value"
DataNavigateUrlFormatString="config_masters.aspx?code_value=0"/>
The config_masters.aspx is the form where the GenEditAdd control resides. Each
DataGrid that wants the edit and add functionality will define a separate config form. This
form contains the GenEditAdd control and a number of property settings for this
component. The code_value passed to this form is extracted in the page load event.
Various properties are also set here. Take a look at the following list:

The Config_Masters.aspx form

<%@ Register TagPrefix="Hersh" Namespace="Generic_chap7"
Assembly="GenEditAdd_Chap7" %>

<html>

 <script language="VB" runat="server">

 Sub page_load(sender As Object, e As EventArgs)

 if NOT (isPostBack)

 Dim sql As string

 Dim ls_CodeValue As string

 ls_CodeValue = Request.QueryString("code_value")

 SQL = "Select * from masters"

 Gen.sql = SQL

 if cint(ls_codeValue) = 0 then

 Gen.Where = ""

 else

 Gen.where= " Where code_value =" + ls_CodeValue

 end if

 Gen.display = "111110"

 Gen.KeyField = "code_value"

 Gen.KeyValue = ls_codeValue

 Gen.procedure = "p_masters"

 Gen.ExitPage = "masters.aspx"

 end if

 End Sub

 </script>

 <body>

 <form runat = "server" >

 <Hersh:GenEditAdd_Chap7 id = "Gen" runat=server

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;" />

 </form>

 </body>

</html>

In this form, the GenEditAdd control is first registered with the following page directive:

<%@ Register TagPrefix="Hersh" Namespace="Generic_chap7"
Assembly="GenEditAdd_Chap7" %>
The control is then created with the id of Gen.

<Hersh:GenEditAdd_Chap7 id = "Gen" runat=server ConnStr = "Provider=SQLOLEDB;
Data Source=(local); Initial Catalog=ASPNET;User ID=sa;" />
The GenEditAdd control requires certain properties to be set and these are set in the
Page_Load event. The following tables show the properties of the GenEdit- Add
component:

1. Property SQL

Meaning The SQL String without the
Where Clause

Example Select * from Masters

2. Property Where

Meaning If the Where property is
provided, GenEditAdd displays
the Edit mode. If it is blank, it
displays the insert mode. The
where clause is built
dynamically in the config form
based on the passed
code_value as follows:

ls_CodeValue =
Request.QueryString("code_v
alue")
SQL = "Select * from masters"
Gen.sql = SQL
If cint(ls_codeValue) = 0 Then
Gen.Where = ""
Else
Gen.where= " Where
code_value =" +
ls_CodeValue
End If

If a code_value of zero is
passed in the query string, the
Where property is set to blank,
thus displaying the control in
the insert mode. If the Where
property is provided, a where
clause is built and the control
displays in the Edit mode.

3. Property Display

Meaning This is a string of 0s and 1s.
Zero means don't show a field
and 1 means show it. Say the
masters table has four fields.
The string 0101 would mean
hide the first and third fields and

1. Property SQL

show the second and forth.

Example 0101

4. Property KeyField

Meaning The primary key field name

Example code_value

5. Property KeyValue

Meaning The value of the primary key

Example 2 (this will be passed to the
config form from the calling
form)

6. Property Procedure

Meaning The stored procedure to be
called for inserting/updating a
record

Example p_masters

7. Property ExitPage

Meaning This creates a hyperlink on the
top of the edit/add form which
allows you to navigate back to
the calling form.

Example masters.aspx

8. Property ConnStr

Meaning The Connection String

Example "Provider=SQLOLEDB;
Data Source=(local);
Initial
_ Catalog=ASPNET;User
ID=sa;"

As you can see there are eight properties that need to be set for the GenEditAdd
component. The code of the control resides in the file GenEditAdd.vb. I will now start
building it and discuss the theory of building custom controls as I go along.

Building the Control
The complete source code for this custom control resides in the file GenEdit-
Add_chap7.vb. There is a fair amount of code in this file and some theory that needs to
be explained. I have thus decided to break the topic in a series of steps. I will be building
intermediate code files, compiling it, explaining some aspects of the control until I build
the final control in the file GenEditAdd_chap7.vb. You will find the code for these steps in
the subfolder called "steps" on book's Web site at
www.premierpressbooks.com/downloads.asp .

Step 1: The Edit Mode
I have not started building the control in this step. Step1.aspx is a simple aspx form that
shows how I build a user input form in the Edit mode of the control. For GenEditAdd to

display in Edit mode, we must pass it a SQL string as well as a "Where" clause. This is
hardcoded in this web form, but will be converted to properties in the GenEditAdd
control. Figure 7.4 shows the output generated by the form.

Figure 7.4: The GenEditAdd component in the Edit mode.
Step1.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(sender As Object, e As EventArgs)

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Dim Where As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 SQL = "select * from groups "

 Where = "where code_value = 700"

 myCommand = New OleDbDataAdapter(SQL + Where, myConnection)

 myCommand.Fill(ds, "groups")

 dv = new DataView(ds.Tables("groups"))

 Dim t As DataTable

 t = dv.Table

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 For Each r in t.Rows

 For Each c in t.Columns

 response.write(c.ToString + ": ")

 response.write(r(c).ToString + "
")

 Next c

 Next r

 End Sub

 </script>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <asp:Table id="Table" Font-Name="Verdana" Font-Size="8pt" CellPadding=5
CellSpacing=0 BorderColor="black"

 BorderWidth="1" Gridlines="Both" runat="server"/>

 </body>

</html>

Note that I have a SQL statement and a "Where" clause as follows:

SQL = "select * from groups "

Where = "where code_value = 700"

I load a DataSet with the data returned from this query and assign it to a DataView. This
DataView is assigned to a DataTable, which allows me to iterate the DataColumn
collection (the inner loop) for each DataRow (the outer loop) as follows:

dv = new DataView(ds.Tables("groups"))

Dim t As DataTable

t = dv.Table

Dim r As DataRow

Dim c As DataColumn

Dim cell as TableCell

Dim row as DataRow

For Each r in t.Rows

 For Each c in t.Columns

 response.write(c.ToString() + ": ")

 response.write(r(c).ToString() + "
")

 Next c

Next r
I get the column name (c.ToString) and will display it as a label in the GenEdit- Add
control. I obtain the value of the column (by r(c).ToString) and in the GenEditAdd
control, which we will build in Step 3, this will be displayed inside a textbox which can be
modified by the user.

Step 2: The Add Mode

I have still not started building the control. Step2.aspx is a web form that explains the
code in the add mode. In this mode, I do not supply the "Where" clause. The "SQL"
clause is still required, as I must read the columns collection to extract the column
names and display them as the labels against fields. Here is Step2.aspx.

Step2.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(sender As Object, e As EventArgs)

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 SQL = "select * from groups "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "groups")

 dv = new DataView(ds.Tables("groups"))

 Dim t As DataTable

 t = dv.Table

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell as TableCell

 Dim row as DataRow

 For Each c in t.Columns

 response.write(c.ToString() + "
 ")

 Next c

 End Sub

 </script>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <asp:Table id="Table" Font-Name="Verdana" Font-Size="8pt" CellPadding=5
CellSpacing=0 BorderColor="black"

 BorderWidth="1" Gridlines="Both" runat="server"/>

 </body>

</html>

In the insert mode, I need only iterate the DataColumns collection. Figure 7.5 shows the
output from this form.

Figure 7.5: The Add Mode.

Step 3: The First Build
We are now ready to start building the control. Before we do that, let's build a web form,
which will allow us to test the control as we are building it. The code for this step can be
found in the ...GenEditAdd\Steps\step3 subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp .

GenTestStep3.aspx

<%@ Register TagPrefix="Hersh" Namespace="Generic_chap7_step3"
Assembly="GenEditAdd_Chap7_step3" %>

<html>

 <script language="VB" runat="server">

 Sub page_load(sender As Object, e As EventArgs)

 if NOT (isPostBack)

 Dim vsql As string

 Gen.sql = "select * from masters"

 Gen.where= " Where code_value = 1"

 Gen.display = "111110"

 Gen.KeyField = "code_value"

 Gen.KeyValue = "1"

 Gen.procedure = "p_masters"

 Gen.ExitPage = "GenTestStep3.aspx"

 end if

 End Sub

 </script>

 <body>

 <form runat = "server" >

 <Hersh:GenEditAdd_Chap7 id = "Gen" runat=server

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial
Catalog=ASPNET;User ID=sa;" />

 </form>

 </body>

</html>

This web form simply initiates the GenEditAdd control and sets its eight properties. The
user control will display in the Edit mode as we are passing it a "where" clause. To
display it in the add mode, just pass a blank value for the where clause.
In this step, we make the first build of the control. The code resides in the file Step3.vb
and it should be compiled by running Step3.bat. Edit the bat file so that the outdir
variable points to your bin folder. I shall list out the code file and then discuss it.

Step3.vb

Option Strict Off

Imports System

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Data

 Imports System.Data.OleDb

Namespace Generic_Chap7_step3

 Public Class GenEditAdd_Chap7 : Inherits Control : Implements INamingContainer

 Private ls_display as string

 Private ls_where as string

 Private ls_sql as string

 Private ls_ConnStr as string

 Private ls_keyField as string

 Private ls_keyValue as string

 Private ls_procedure as string

 Private ls_exitpage as string

 Private lt_datatable as datatable

 Private ls_mode as string

 Protected mytbl as table

 Public Property Mode as string

 Get

 Return Cstr(ViewState("ls_mode"))

 End Get

 Set

 ViewState("ls_mode") = value

 End Set

 End Property

 Public Property ExitPage as string

 Get

 Return Cstr(ViewState("ls_exitpage"))

 End Get

 Set

 ViewState("ls_exitpage") = value

 End Set

 End Property

 Public Property t as datatable

 Get

 Return lt_datatable

 End Get

 Set

 lt_datatable = value

 End Set

 End Property

 Public Property KeyField as string

 Get

 Return Cstr(ViewState("ls_keyfield"))

 End Get

 Set

 ViewState("ls_keyfield") = value

 End Set

 End Property

 Public Property KeyValue as string

 Get

 Return Cstr(ViewState("ls_keyvalue"))

 End Get

 Set

 ViewState("ls_keyvalue") = value

 End Set

 End Property

 Public Property Procedure as string

 Get

 Return Cstr(ViewState("ls_procedure"))

 End Get

 Set

 ViewState("ls_procedure") = value

 End Set

 End Property

 Public Property display as string

 Get

 Return Cstr(ViewState("ls_display"))

 End Get

 Set

 ViewState("ls_display") = value

 End Set

 End Property

 Public Property Where as string

 Get

 Return Cstr(ViewState("ls_where"))

 End Get

 Set

 ViewState("ls_where") = value

 End Set

 End Property

 Public Property SQL as string

 Get

 Return Cstr(ViewState("ls_sql"))

 End Get

 Set

 ViewState("ls_sql") = value

 End Set

 End Property

 Public Property ConnStr as string

 Get

 Return Cstr(ViewState("ls_ConnStr"))

 End Get

 Set

 ViewState("ls_ConnStr") = value

 End Set

 End Property

 Protected Overrides Sub CreateChildControls()

 Dim dv As DataView

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim vSql As string

 If Where.Length < 1 then

 vSql = SQL

 mode = "insert"

 Else

 vSql = SQL + Where

 mode = "update"

 End If

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(vSql, myConnection)

 myCommand.Fill(ds, "vtable")

 dv = new DataView(ds.Tables("vtable"))

 Dim Fields As Integer

 'Dim t As DataTable

 t = dv.Table

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 Dim Fieldscount As integer

 Dim s As string

 Dim vdisplay As string

 vDisplay = Display + "00"

 FieldsCount = 0

 s = "Back"

 me.Controls.Add(new LiteralControl(s))

 me.Controls.Add(new LiteralControl("<table bgcolor ='antiquewhite' style='font: 8pt
verdana'>"))

 me.Controls.Add(new LiteralControl("<tr>"))

 If mode = "insert" then

 me.Controls.Add(new LiteralControl("<td colspan='2' bgcolor='#aaaadd'
style='font:10pt verdana'>Add a New

 Record:</td>"))

 Else

 me.Controls.Add(new LiteralControl("<td colspan='2' bgcolor='#aaaadd'
style='font:10pt verdana'>Edit

 Record:</td>"))

 End if

 me.Controls.Add(new LiteralControl("</tr>"))

 If mode = "update" then

 For Each r in t.Rows

 For Each c in t.Columns

 'Don't show this field

 IF vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 me.Controls.Add(new LiteralControl("<tr>"))

 'label

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(c.ToString))

 me.Controls.Add(new LiteralControl("</td>"))

 'value

 me.Controls.Add(new LiteralControl("<td>"))

 Dim Box As New TextBox

 Box.Text = r(c).ToString

 Box.ID = c.ToString

 me.Controls.Add(box)

 me.Controls.Add(new LiteralControl("</td>"))

 end if

 FieldsCount = FieldsCount + 1

 Next c

 Next r

 Else ' Insert Mode

 For Each c in t.Columns

 IF vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 me.Controls.Add(new LiteralControl("<tr>"))

 'label

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(c.ToString))

 me.Controls.Add(new LiteralControl("</td>"))

 'value

 me.Controls.Add(new LiteralControl("<td>"))

 Dim Box As New TextBox

 Box.ID = c.ToString

 me.Controls.Add(box)

 me.Controls.Add(new LiteralControl("</td>"))

 End if

 FieldsCount = FieldsCount + 1

 Next c

 End If

 me.Controls.Add(new LiteralControl("</tr>"))

 me.Controls.Add(new LiteralControl("</Table>"))

 '------add button

 Dim AddButton As New Button

 if mode = "insert" then

 AddButton.Text = "Add"

 else

 AddButton.Text = "Update"

 end if

 Me.Controls.Add(AddButton)

 End Sub

 End Class

End Namespace

Properties and Namespaces

I have imported various namespaces in my component. These are the following:
§ System
§ System.Web
§ System.Web.UI
§ System.Web.UI.WebControls
§ System.Data
§ System.Data.ADO

Defining properties for the control is a neat way of allowing users to supply desired
values to the control. Properties are implemented by defining accessor (get) and mutator
(set) functions and a local variable. The GenEditAdd control uses eight property values
as discussed above and two properties that are of internal use. Thus there are a total of
ten property values.

I have thus declared ten local variables as follows:

Private ls_display as string

Private ls_where as string

Private ls_sql as string

Private ls_ConnStr as string

Private ls_keyField as string

Private ls_keyValue as string

Private ls_procedure as string

Private ls_exitpage as string

Private lt_datatable as datatable

Private ls_mode as string

The ten properties are as follows:
§ Display
§ Where
§ SQL
§ ConnStr
§ KeyField
§ KeyValue
§ Procedure
§ ExitPage
§ DataTable
§ Mode (insert/edit)

The DataTable and Mode properties are used internally by the control and the user
does not set them. You will note that I have used the ViewState property with each of
these. Thus the SQL property looks like the following:

Public Property SQL as string

 Get

 Return Cstr(ViewState("ls_sql"))

 End Get

 Set

 ViewState("ls_sql") = value

 End Set

End Property
The properties that are set by the users are stored in a "StateBag." The ASP.NET
framework will save the state of the control when it is destroyed and restore it when it is
created. The ViewState property gets the stored property from the state bag. If we
don't use the state property, we will lose the property values each time a post-back
occurs.

Control Composition
The simple control that I created in the start of this chapter is called a "Noncomposite
Control." This was because I had to control the rendering of HTML to the browser, which
I did by overriding the control's Render method and taking charge of the rendering. The
GenEditAdd is called a composite control because it is composed of standard ASP.NET
controls like textboxes and buttons.
The GenEditAdd control inherits from the control class. This class has an overrideable
method called CreateChildControls. The purpose of this method is to create child
controls on the form. There are two types of controls that I add to the form. These are
LiteralControls and TextBoxes. Anytime I want to add a label or write out a string
containing HTML formatting, I use the LiteralControl. For example, to add a starting table
tag, I add the following LiteralControl using the method called controls.Add:

me.Controls.Add(new LiteralControl("<table bgcolor ='antiquewhite' style='font: 8pt
verdana'>"))
I also add a number of textboxes to build the input form. I will be coming back to this
later. I identify the mode the control is in. This can be the update or insert mode and the
property called Mode is updated accordingly. This is done by the following code:

If Where.Length < 1 then

 vSql = SQL

 mode = "insert"

Else

 vSql = SQL + Where

 mode = "update"

End If
If the Where property is less than one character, the Mode property is set to "insert," else
the Mode property is "update" and the where clause is added to the SQL statement.
If the Mode property is update, I iterate the DataRows and DataColumns collections as
explained in Step 1, otherwise I just iterate the DataColumns collection as explained in
Step 2. A number of textboxes are added to the form to receive the user input as follows:

Dim Box As New TextBox

Box.Text = r(c).ToString

Box.ID = c.ToString

me.Controls.Add(box)
Note that I give each textbox a unique id so that I can refer to it in code. This id is the
name of the database column. The textboxes are enclosed within table data (<td>) tags.
The table (<table>), table row (<tr>), and table data (<td>) tags are all created using
LiteralControls.
I can specify the fields to display by setting the Display property. Suppose my
database fields are code_value, code_display, type, opening, and closing. I do
not want to display the code_value field as I do not want the user to be able to change
the primary key. Also, I do not want to display the type field (this is set automatically by
the stored procedure p_masters and the user should not be allowed to change it) and the

closing balance field (a database trigger will automatically update this field. This
trigger, which is on the transactions table, will be explained later in the book). Hence, I
will set the Display property to be 01010. Remember, a zero means hide the field and
a one means show it. In the body of the control, I pad the Display property with a
number of zeros as follows:

vDisplay = Display + "00"
I do this just in case the user forgets to provide this value. A null Display property will
crash the control. I then evaluate the property as follows:

If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField Then

 'Do Nothing

Else

 'Proceed

End if
The chars method extracts the value of a string at a specified position. This position is
provided by the FieldsCount variable, which I am incrementing in the loop. If the
extracted character at the position provided by the FieldsCount variable is equal to
zero or the column is the KeyColumn, then the control doesn't do anything. Otherwise, it
creates a textbox with the appropriate id. Finally, I add a button that will display with a
caption of "Update" in the edit mode and "Insert" in the insert mode.

The InamingContainer

Run the test web form GenTestStep3.aspx. View the source in the browser. The
following is an extract of what you should see:

Back

<Table bgcolor ='antiquewhite' style='font: 8pt verdana'>

 <tr><td colspan='2' bgcolor='#aaaadd' style='font:10pt verdana'>Edit Record:</td></tr>

 <tr>

 <td>

 code_display

 </td>

 <td>

 <input name="Gen:code_display" type="text" value="Cash in Hand
"id="Gen_code_display" />

 </td>

 </tr>

 <tr>

 <td>

 code_category

 </td>

 <td>

 <input name="Gen:code_category" type="text" value="604" id="Gen_code_category"
/>

 </td>

 </tr>

 <tr>

 <td>

 type

 </td>

 <td>

 <input name="Gen:type" type="text" value="A" id="Gen_type" />

 </td>

 </tr>

 <tr>

 <td>

 closing

 </td>

 <td>

 <input name="Gen:closing" type="text" value="0" id="Gen_closing" />

 </td>

 </tr>

</Table>

<input type="submit" name="Gen:ctrl31" value="Update" />
Note that each textbox has an id attribute. For example, the code_display has an id
of Gen_code_display. I had supplied the id of code_display in the body of the
code. However, the name Gen was provided by the control on its own accord. This
means all the textboxes (each having a unique id) reside within the parent control called
Gen, and thus have this name prefixed to its id.
I told the ASP.NET runtime that GenEditAdd was an InamingContainer when I said
that it Implements InamingContainer at the top of my code file. This is all that I
need to do for the control to participate in ID and state management.
To see this for yourself, delete the Implements InamingContainer directive so that
the code now says the following:

Public Class GenEditAdd: Inherits Control

Compile Step3.vb (by running step3.bat). Now run GenTestStep3.aspx and view the
source of the generated HTML, as follows:

Back

<table bgcolor ='antiquewhite' style='font: 8pt verdana'>

 <tr><td colspan='2' bgcolor='#aaaadd' style='font:10pt verdana'>Edit Record:</td></tr>

 <tr>

 <td>

 code_display

 </td>

 <td>

 <input name="code_display" type="text" value="Cash in Hand " id="code_display"
/>

 </td>

 </tr>

 <tr>

 <td>

 code_category

 </td>

 <td>

 <input name="code_category" type="text" value="604" id="code_category" />

 </td>

 </tr>

 <tr>

 <td>

 type

 </td>

 <td>

 <input name="type" type="text" value="A" id="type" />

 </td>

 </tr>

 <tr>

 <td>

 closing

 </td>

 <td>

 <input name="closing" type="text" value="0" id="closing" />

 </td>

 </tr>

</Table>

<input type="submit" name="ctrl37" value="Update" />
Note that now you don't see the prefix of Gen before the textbox ids. If you make any
changes to the input fields and hit "Update" you lose your changes when a post-back
occurs (i.e., the state is not maintained now).

Step 4: GenEditAdd Custom Control
In this step, I wrap up the GenEditAdd control. The final code contained is in the file
GenEditAdd.vb. You will find the source files for this step in the
...GenEditAdd\Steps\Step4 subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp . Compile the GenEditAdd component
by running the bat file mGenEditAdd.bat.

Handling Events
The GenEditAdd control contains a button called AddButton. When this button is clicked,
I need to make a call to my stored procedure, sending it the changed/new values so that
it can update or insert a new record. I code an event Handler to do this job.
EventHandlers are attached to a button by attaching delegates to the events raised by
the child controls. I have done this for the AddButton control as follows:

AddHandler AddButton.Click, AddressOf AddBtn_Click
All this is telling the ASP.NET runtime is that when the AddButton is clicked, fire off the
method AddBtn_click. This method contains the code required to build the procedure
call. The following is the method:

Private Sub AddBtn_Click(Sender As Object, E As EventArgs)

 'Build the procedure call

 Dim s As String

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 Dim column As string

 Dim Value As string

 Dim Fieldscount As integer

 Dim vdisplay As string

 vDisplay = Display + "000000000000000000000000000000000000000"

 FieldsCount = 0

 s = "Execute " + procedure + ""

 If mode = "update" Then

 For Each r in t.Rows

 For Each c in t.Columns

 If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField Then

 Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

 If c.DataType.ToString = "System.String" Then

 s = s + " @" + column + "='" + value + "', "

 Else

 s = s + " @" + column + "=" + value + ", "

 End If

 End If

 FieldsCount = FieldsCount + 1

 Next c

 Next r

 s = s + "@" + KeyField + "=" + KeyValue

 me.Controls.Add(new LiteralControl(s))

 RunSql(s)

 Else

 For Each c in t.Columns

 If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField Then

 Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

 If c.DataType.ToString = "System.String" Then

 s = s + " @" + column + "='" + value + "', "

 Else

 s = s + " @" + column + "=" + value + ", "

 End If

 End If

 FieldsCount = FieldsCount + 1

 Next c

 s = s + "@" + KeyField + "=NULL"

 me.Controls.Add(new LiteralControl(s))

 RunSql(s)

 End If

End Sub
The code in this event handler follows similar logic regarding the insert and update
modes as discussed in Steps 1 and 2. A procedure call string is built and depending on
the mode, the code_value parameter is a null (insert mode) or equals the primary key
of the record that needs to be updated (update mode). The string that is built is written
out on the screen as a LiteralControl, so that you can see what is being submitted to the
database. Finally, the string is passed on to our old friend RunSql, which does the
actual job of interacting with the database. The following is the RunSql method:

Sub RunSql(vSql as string)

 try

 Dim s As string

 Dim myConnection As OleDbConnection

 myConnection = New OleDbConnection(ConnStr)

 Dim mycommand As New OleDbCommand(vsql,myConnection)

 myconnection.Open()

 myCommand.ExecuteNonQuery()

 myconnection.Close()

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 Dim s As string

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 s = "

SQL Error.Details follow:
" & errString

 me.Controls.Add(new LiteralControl(s))

 Catch myException as Exception

 me.Controls.Add(new LiteralControl("Exception: " + myException.ToString()))

 End try

End Sub

I have included two aspx forms that you can use to test out the control in the insert and
update modes. These forms are called GenTestStep4_insert.aspx and
GenTestStep4_update.aspx.

This concludes the discussion on the GenEditAdd Custom Control. Here is the complete
code listing for your viewing pleasure:

GenEditAdd.vb

Option Strict Off

Imports System

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Data

Imports System.Data.OleDb

Namespace Generic_Chap7

 Public Class GenEditAdd_Chap7 : Inherits Control : Implements INamingContainer

 Private ls_display as string

 Private ls_where as string

 Private ls_sql as string

 Private ls_ConnStr as string

 Private ls_keyField as string

 Private ls_keyValue as string

 Private ls_procedure as string

 Private ls_exitpage as string

 Private lt_datatable as datatable

 Private ls_mode as string

 Protected mytbl as table

 Public Property Mode as string

 Get

 Return Cstr(ViewState("ls_mode"))

 End Get

 Set

 ViewState("ls_mode") = value

 End Set

 End Property

 Public Property ExitPage as string

 Get

 Return Cstr(ViewState("ls_exitpage"))

 End Get

 Set

 ViewState("ls_exitpage") = value

 End Set

 End Property

 Public Property t as datatable

 Get

 Return lt_datatable

 End Get

 Set

 lt_datatable = value

 End Set

 End Property

 Public Property KeyField as string

 Get

 Return Cstr(ViewState("ls_keyfield"))

 End Get

 Set

 ViewState("ls_keyfield") = value

 End Set

 End Property

 Public Property KeyValue as string

 Get

 Return Cstr(ViewState("ls_keyvalue"))

 End Get

 Set

 ViewState("ls_keyvalue") = value

 End Set

 End Property

 Public Property Procedure as string

 Get

 Return Cstr(ViewState("ls_procedure"))

 End Get

 Set

 ViewState("ls_procedure") = value

 End Set

 End Property

 Public Property display as string

 Get

 Return Cstr(ViewState("ls_display"))

 End Get

 Set

 ViewState("ls_display") = value

 End Set

 End Property

 Public Property Where as string

 Get

 Return Cstr(ViewState("ls_where"))

 End Get

 Set

 ViewState("ls_where") = value

 End Set

 End Property

 Public Property SQL as string

 Get

 Return Cstr(ViewState("ls_sql"))

 End Get

 Set

 ViewState("ls_sql") = value

 End Set

 End Property

 Public Property ConnStr as string

 Get

 Return Cstr(ViewState("ls_ConnStr"))

 End Get

 Set

 ViewState("ls_ConnStr") = value

 End Set

 End Property

 Protected Overrides Sub CreateChildControls()

 Dim dv As DataView

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim vSql As string

 If Where.Length < 1 then

 vSql = SQL

 mode = "insert"

 Else

 vSql = SQL + Where

 mode = "update"

 End If

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(vSql, myConnection)

 myCommand.Fill(ds, "vtable")

 dv = new DataView(ds.Tables("vtable"))

 Dim Fields As Integer

 'Dim t As DataTable

 t = dv.Table

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 Dim Fieldscount As integer

 Dim s As string

 Dim vdisplay as string

 vDisplay = Display + "00"

 FieldsCount = 0

 s = "Back"

 me.Controls.Add(new LiteralControl(s))

 me.Controls.Add(new LiteralControl("<table bgcolor ='antiquewhite' style='font: 8pt
verdana'>"))

 me.Controls.Add(new LiteralControl("<tr>"))

 If mode = "insert" then

 me.Controls.Add(new LiteralControl("<td colspan='2' bgcolor='#aaaadd'
style='font:10pt verdana'>Add a New

 Record:</td>"))

 Else

 me.Controls.Add(new LiteralControl("<td colspan='2' bgcolor='#aaaadd'
style='font:10pt verdana'>Edit

 Record:</td>"))

 End if

 me.Controls.Add(new LiteralControl("</tr>"))

 If mode = "update" then

 For Each r in t.Rows

 For Each c in t.Columns

 'Don't show this field

 IF vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 me.Controls.Add(new LiteralControl("<tr>"))

 'label

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(c.ToString))

 me.Controls.Add(new LiteralControl("</td>"))

 'value

 me.Controls.Add(new LiteralControl("<td>"))

 Dim Box As New TextBox

 Box.Text = r(c).ToString

 Box.ID = c.ToString

 me.Controls.Add(box)

 me.Controls.Add(new LiteralControl("</td>"))

 end if

 FieldsCount = FieldsCount + 1

 Next c

 Next r

 Else ' Insert Mode

 For Each c in t.Columns

 IF vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 me.Controls.Add(new LiteralControl("<tr>"))

 'label

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(c.ToString))

 me.Controls.Add(new LiteralControl("</td>"))

 'value

 me.Controls.Add(new LiteralControl("<td>"))

 Dim Box As New TextBox

 Box.ID = c.ToString

 me.Controls.Add(box)

 me.Controls.Add(new LiteralControl("</td>"))

 End if

 FieldsCount = FieldsCount + 1

 Next c

 End If

 me.Controls.Add(new LiteralControl("</tr>"))

 me.Controls.Add(new LiteralControl("</Table>"))

 '------add button

 Dim AddButton As New Button

 if mode = "insert" then

 AddButton.Text = "Add"

 else

 AddButton.Text = "Update"

 end if

 AddHandler AddButton.Click, AddressOf AddBtn_Click

 Me.Controls.Add(AddButton)

 Dim cancel As New Button

 cancel.Text = "Cancel"

 Me.Controls.Add(cancel)

 End Sub

 Private Sub AddBtn_Click(Sender As Object, E As EventArgs)

 'Build the procedure call

 Dim s As String

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 Dim column As string

 Dim Value As string

 Dim Fieldscount As integer

 Dim vdisplay As string

 vDisplay = Display + "000000000000000000000000000000000000000"

 FieldsCount = 0

 s = "Execute " + procedure + ""

 If mode = "update" then

 For Each r in t.Rows

 For Each c in t.Columns

 IF vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

 If c.DataType.ToString = "System.String" Then

 s = s + " @" + column + "='" + value + "', "

 Else

 s = s + " @" + column + "=" + value + ", "

 End If

 End IF

 FieldsCount = FieldsCount + 1

 Next c

 Next r

 s = s + "@" + KeyField + "=" + KeyValue

 me.Controls.Add(new LiteralControl(s))

 RunSql(s)

 Else

 For Each c in t.Columns

 IF vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

 If c.DataType.ToString = "System.String" Then

 s = s + " @" + column + "='" + value + "', "

 Else

 s = s + " @" + column + "=" + value + ", "

 End If

 End IF

 FieldsCount = FieldsCount + 1

 Next c

 s = s + "@" + KeyField + "=NULL"

 me.Controls.Add(new LiteralControl(s))

 RunSql(s)

 End if

 End Sub

 Sub RunSql(vSql as string)

 try

 Dim s As string

 Dim myConnection As OleDbConnection

 myConnection = New OleDbConnection(ConnStr)

 Dim mycommand As New OleDbCommand(vsql,myConnection)

 myconnection.Open()

 myCommand.ExecuteNonQuery()

 myconnection.Close()

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 Dim s As string

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 s = "

SQL Error.Details follow:
" & errString

 me.Controls.Add(new LiteralControl(s))

 Catch myException as Exception

 me.Controls.Add(new LiteralControl("Exception: " + myException.ToString()))

 End try

 End Sub

 End Class

End Namespace

Using the GenEditAdd Custom Control
I will now show you how to hook up the GenEditAdd control to a DataGrid and use it to
add, edit, and delete records in the masters table. Th e code for this discussion can be
found in the …GenEditAdd\GenEditAdd_final subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp .
Each DataGrid that uses this control needs a "config" file. I have discussed the
config_masters.aspx file earlier in this chapter and this is the config file used in this
example. The DataGrid residing on the Web page "masters.aspx" requires two Hyperlink
columns: one for the add mode and the other for the Edit mode. These Hyperlinks
navigate to the config file and pass on a code_value of 0 in case of the add mode or a
valid primary key in case of the edit mode as follows:

<property name="Columns">

 <asp:HyperLinkColumn Text="Edit" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value={0}"/>

 <asp:HyperLinkColumn Text="Add" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value=0"/>

</property>

The following is the complete code listing of Masters.aspx.
Masters.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Register TagPrefix="Hersh" Namespace="Generic_chap7"
Assembly="GenEditAdd_Chap7" %>

<%@Page Language="VB" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASPNET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("masters").DefaultView

 Grid1.DataBind()

 End Sub

 Sub RunSql(sql as string)

 'Catch Control Validator errors

 if not page.isvalid then

 response.write("Stored Procedure did not execute")

 rebind

 exit sub

 end if

 try

 Dim mycommand2 As New OleDbCommand(sql,myConnection)

 myconnection.Open()

 myCommand2.ExecuteNonQuery()

 myconnection.Close()

 'turn off editing

 Grid1.EditItemIndex = -1

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 Response.write("SQL Error.Details follow:

" & errString)

 Catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 End try

 rebind

 End Sub

 Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim code_value As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = "Delete from masters where code_value = " + cstr(code_value)

 RunSql(sql)

 End Sub

 </script>

 <head>

 <title>Masters DataGrid 1</title>

 </head>

 <body>

 <form runat=server>

 Chart of Accounts:

 <table width="95%">

 <tr>

 <td valign="top">

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="code_value">

 <Columns>

 <asp:HyperLinkColumn Text="Edit" DataNavigateUrlField="code_value"

DataNavigateUrlFormatString="config_masters.aspx?code_value={0}"/>

 <asp:HyperLinkColumn Text="Add" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value=0"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete"
HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Account" DataField="code_display">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Group" DataField="category">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Type" DataField="type">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Opening" DataField="opening">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Closing" DataField="closing">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true"/>

 <ItemStyle ForeColor="DarkSlateBlue"/>

 <AlternatingItemStyle BackColor="Beige"/>

 </asp:DataGrid>

 </td>

 </tr>

 </table>

 </form>

 </body>

</html>

Summary
The GenEditAdd component that we built in this chapter allows us to provide editing
and insert functionality to a DataGrid. The DataGrid does not have a built-in Insert mode
and the GenEditAdd custom control fills this void. This control also replaces the Edit
mode of the DataGrid (which was not automatic and required us to code a number of
events). In the process of building this control I explained the theory underlying building
custom controls. In Project 3, we will enhance this control to provide additional
functionality as DropDown lists, required fields, read-only fields, and descriptive captions
for column names.

Chapter 8: Business Objects
Business Objects are a library of functions and classes that can be used in any project.
Commonly used code is encapsulated in a Business Object. This object serves as a
"service" class to another object. It is instantiated as required and destroyed after use. A
Business Object does not have any user interface.

The Bin Directory

If you have developed COM objects in the past you must know of the pain involved in
registering components. A component had to be registered using the regsvr32.exe utility.
If the component was modified, the entire Web server had to be stopped in order to re-
register the component. ASP.NET has simplified the process of registering components.
The components are simply copied and pasted in the bin directory. No registry updates
are required, and to unregister you simply delete the component file from the bin
directory. The original components may be replaced even when the Web server is
running. ASP.NET allows all existing requests to complete and directs new requests to
the new component.

Namespaces and Assemblies
Developers can group the internal code components (classes and interfaces) in
namespaces. Such a logical organization also prevents collisions with classes written by
other developers. A namespace provides a shortcut for referring to long class names.
The Imports directive (Visual Basic.NET) and the using directive (in C#) are shortcuts
that allow one to use namespaces without providing a fully qualified path.

The metadata for an object records information required to use the object. Typically, this
information includes the name of the object, names of all the fields of the object, and
their types and details of all member functions including parameter types and names.

An assembly allows for packaging applications into one comprehensive unit. Code
compiled by the .NET compiler is converted to an intermediate form, called "IL." An
assembly will contain all the IL, the metadata, and other required fi les.

Each assembly has a manifest, which contains information pertaining to the identity of
the assembly (that is, name and version information) and other files contained in the
assembly.

A Simple Business Object in Visual Basic
I will now build a simple object, which has one property and one method. The user sets
the property message, and the method called test returns it to the calling form. The
source code for this example can be found in the\basic\vb sub- folder on the book's
Web site at www.premierpressbooks.com/downloads.asp .

1. Build the Component
2. Imports System
3. Imports System.Text
4. Imports Microsoft.VisualBasic
5. Namespace BasicObjVb
6. Public Class BasicVb
7. Private ls_message as string
8. Public Sub New()
9. MyBase.New()
10. ls_message = ""
11. End Sub
12. Public Property message as string
13. Get

14. Return ls_message
15. End Get
16. Set
17. ls_message = value
18. End Set
19. End Property
20. Public Function test() as string
21. Dim SB As StringBuilder
22. SB = New StringBuilder(ls_message)
23. SB = SB.Append("..returned from function test")
24. test = SB.ToString()
25. End Function
26. End Class

End Namespace
This class is called BasicVb and it resides in the namespace BasicObjVb. It
has one property called message, which, as usual, has a Set method, a Get
method, and a local variable called ls_message. In a property syntax, the
Get method is used to return the value stored in the local variable back to the
calling object whereas the calling object writes to this property using the Set
method.
The object has a Constructor event. This is the Sub new(). The
Constructor event is fired as soon as the object is created. I have initialized
the local variable ls_message to a single space in this event. Finally, I have
a function called Test that returns a string. I use the StringBuilder class
to build the returned string. This class has various methods for string
manipulation. Some of its methods are Append, Replace, Remove, and
ToString. I assign the message property to the StringBuilder and then
use its Append method to add another string to it.
27. Compile the Object

This is done by running the following DOS command:

vbc /t:library /out:g:\aspnetsamples\bin\BasicObjVb.dll BasicObj.vb
28. Build a Web Form

Finally, you build a web form to test out the component. Figure 8.1 shows
what the output looks like:

Figure 8.1: Simple Business Object.
BasicObj.aspx

<%@ Import Namespace="BasicObjVb" %>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(Sender As Object, E As EventArgs)

 Dim s As string

 Dim Comp As BasicVb

 Comp = New BasicVb()

 Comp.Message = "Hello World"

 s = Comp.test()

 response.write(s)

 End Sub

 </script>

</html>

In the web form, I import the BasicObjVb namespace with the import directive. I then
declare a component of type BasicVb and assign Hello World to its message property. I
call its test function, which returns the string that I store in a local variable called "s."
Finally, I render this string to the browser using response.write.

A Simple Component in C#
I will now show you how to build the same object in C#. The source code for this
example can be found in the\basic\c subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp.

1. Build the Component
BasicObjC.cs

namespace BasicObjC {
 using System;
 using System.Text;
 public class BasicC{
 private String ls_message;
 public BasicC()
 {
 //constructor
 ls_message = null;
 }
 public string message
 {
 get
 {
 return ls_message;
 }
 set
 {
 ls_message = value;
 }
 }

 public String test()
 {
 StringBuilder SB = new StringBuilder(ls_message);
 SB.Append(" From test function...");
 return SB.ToString();
 }
 } //class
} //namespace

Except for syntax changes, writing an object in C# is quite similar to writing it
in Visual Basic. Note that the constructor in this case is the public method
BasicC(). This is a public method with the same name as the class name.
2. Compile the Object

Run the bat file BasicObjC.bat which contains the following DOS commands:

csc /t:library /out:g:\aspnetsamples\bin\BasicObjC.dll BasicObjC.cs

This places the DLL file in the bin folder.
3. Build the Web Form

Finally, build an aspx form to test out the control.
BasicObjC.aspx

<%@ Import Namespace="BasicObjC" %>

<html>

 <script language="C#" runat="server">

 public void Page_Load(Object sender, EventArgs E)

 {

 BasicC comp = new BasicC();

 comp.message = "Hello World";

 String s = comp.test();

 display.InnerHtml = s;

 }

 </script>

 <h3>A Simple C# Component</h3>

 <h5>Object Output: </h5>

 <div id="display" runat="server"/>

</html>

Partitioning Services Between Web Forms and Components
The typical usage of a web form is to render HTML or XML pages to the browser. Since
web forms reside on the server, can they be thought of as being business objects? In a
component world, the answer would usually be negative. A web form contains both the
presentation logic and business logic on the same page. A business object, on the other
hand, is free from all presentation elements. It can be thought of as an object that
provides services to another form. As a good servant, it is called whenever needed and
dismissed when its need is over. This service analogy is also the reason that business
objects are referred to as service classes. There are a number of advantages to using
business objects. Some of these are summarized in the following:
§ Promotes encapsulation: You encapsulate frequently used functionality into

an object and expose just its properties and methods to the outside world.
For example, most web forms require database access and manipulation

routines. Instead of writing script in each page for database connection
routines, we can create a business object that does this work for us. This
object will expose properties and methods to the outside world and a user
will not need to know its inner workings.

§ Easy maintenance: Encapsulated code residing in one business object is far
easier to maintain than code that is distributed over numerous Web pages.
If our business logic changes, we just need to modify our business object
and the consumers of the object need not do anything at all. This is
analogous to cascading stylesheets. Suppose you want to change the
definition of an H1 tag. You just do it in one place and the change is
cascaded to all the pages that use that tag.

§ Improves with reuse: One of the OO fundamentals is that codes reuse,
refine, and improve the code. As more and more users test the object, the
object is debugged thoroughly and increasing reliance can be placed on it.
This promotes code reuse because developers can gradually build a tried
and tested function library, which can then be shared with other developers.

A Database Class
I will now show you how to build a database class. This class will contain commonly
used functionality for working with a database. It will include properties to set a database
connection string and pass the object a SQL statement, which will be applied to the
database. The SQL statement can return data (as in a SELECT statement) or perform
action queries like update, insert, delete, or call a stored procedure, which returns no
data. It will have two methods for applying the SQL statement to the database. The first
method will return a DataView, which can be used to bind a control. The second method
is a generic function to apply "action" SQL statements to the database. I will show you
how to build the class, first in Visual Basic.NET, then in C#.

The Database Class in Visual Basic.NET
I start by building the component in Visual Basic.NET. The source code for this example
can be found in the\SQLClass\ SqlClassvb subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp .

1. The SQL Property: This is the SQL string that is passed by the user to
this object. This can be any valid SQL statement. It is defined using
the Set and Get methods and has an associated local variable
ls_sql.

2. Private ls_sql as string
3. Public Property SQL as string
4. Get
5. Return ls_sql
6. End Get
7. Set
8. ls_sql = value
9. End Set

 End Property
10. The ConnStr Property: This is the property that is passed the

connection string by the user. It is implemented using the Set and
Get methods and a local variable ls_connstr.

11. Private ls_ConnStr as string

12. Public Property ConnStr as string

13. Get

14. Return ls_ConnStr

15. End Get

16. Set

17. ls_ConnStr = value

18. End Set

 End Property
19. Function Populate: This function returns a DataView, which can be

used to bind a control.

20. Public Function Populate() As DataView

21. Dim dv As DataView

22. Dim i As integer

23. Dim myConnection As OleDbConnection

24. Dim myCommand As OleDbDataAdapter

25. Dim ds As New DataSet

26. myConnection = New OleDbConnection(ConnStr)

27. myCommand = New OleDbDataAdapter(SQL, myConnection)

28. myCommand.Fill(ds, "vTable")

29. Populate = ds.Tables(" vTable").DefaultView

End Function
This function uses the passed connection string to create a new
OleDbConnection. The OleDbDataAdapter is used to populate a DataSet
(and table vTable) using the passed SQL statement. The default view of
table vTable is returned to the calling object.

30. Function RunSQL: We have met this function in earlier chapters. This
is a generic function, which can be used to apply an "action" query to
the database. Action queries are queries that do not return data. You
can also use this function to run stored procedures that don't return
data by calling them with the execute statement. For example, the
statement Execute p_masters parameter a, parameter b,
etc. will execute the stored procedure p_masters. The procedure
p_masters could be a procedure that inserts a row in the Masters
table.

31. Function RunSql(vsql as string) as String

32. Dim Message As string

33. try

34. Dim myConnection As OleDbConnection

35. myConnection = New OleDbConnection(ConnStr)

36. Dim mycommand As New
OleDbCommand(vsql,myConnection)

37. myconnection.Open()

38. myCommand.ExecuteNonQuery()

39. myconnection.Close()

40. Catch ex As OleDbException

41. Dim errItem As OleDbError

42. Dim errString As String

43. For Each errItem In ex.Errors

44. errString += ex.Message + " "

45. Next

46. Message = "SQL Error.Details follow:

" & errString

47. Catch myException as Exception

48. message = "Exception: " + myException.ToString()

49. End try

50. RunSql = message

End Function
51. The Constructor Function: The constructor function gets fired each

time the object is initiated. I initialize the two properties to a space in
this function.

52. Public Sub New()

53. MyBase.New()

54. ls_sql = ""

55. ls_ConnStr = ""

End Sub

The following is the complete listing of the database class:
SQLClass.vb

Imports System

Imports System.Data

Imports System.Data.OleDb

Imports System.Text

Namespace SQLNameSpace

 Public Class SQLClass

 Private ls_sql as string

 Private ls_ConnStr as string

 Public Sub New()

 MyBase.New()

 ls_sql = ""

 ls_ConnStr = ""

 End Sub

 Public Property SQL as string

 Get

 Return ls_sql

 End Get

 Set

 ls_sql = value

 End Set

 End Property

 Public Property ConnStr as string

 Get

 Return ls_ConnStr

 End Get

 Set

 ls_ConnStr = value

 End Set

 End Property

 Public Function Populate() As DataView

 Dim dv as DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "vTable")

 Populate = ds.Tables("vTable").DefaultView

 End Function

 Public Function test() as string

 Dim SB As StringBuilder

 SB = New StringBuilder(ls_sql)

 SB = SB.Append("..returned from function test")

 test = SB.ToString()

 End Function

 Function RunSql(vsql as string) as String

 Dim Message As string

 try

 Dim myConnection As OleDbConnection

 myConnection = New OleDbConnection(ConnStr)

 Dim mycommand As New OleDbCommand(vsql,myConnection)

 myconnection.Open()

 myCommand.ExecuteNonQuery()

 myconnection.Close()

 Catch ex As OleDbException

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + " "

 Next

 Message = "SQL Error.Details follow:

" & errString

 Catch myException as Exception

 message = "Exception: " + myException.ToString()

 End try

 RunSql = message

 End Function

 End Class

End Namespace

Compiling the Database Class

I have provided a bat file, which compiles the database class to a DLL. The following is
the listing of the file SQLClass.bat:

set outdir=g:\aspnetsamples\bin\SQLClass.dll

set assemblies=System.dll,System.Web.dll,System.Data.dll,System.XML.dll

vbc /t:library /out:%outdir% /r:%assemblies% SQLClass.vb

pause

Running this file will compile and place SQLClass.dll in the bin folder.

Testing the Database Class

I have provided a web form, which tests the functionality of the database class.
Figure 8.2 shows what it looks like.

Figure 8.2: Testing the database class.

The following is the code listing:
TestVbClass.aspx

<%@ Import Namespace="SQLNameSpace" %>

<html>

 <script language="VB" runat="server">

 Dim Comp As SQLClass

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 Comp = New SQLClass()

 Comp.ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial
Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub Show_Click(Sender As Object, E As EventArgs)

 Message.Text = "Masters Table Displayed... "

 ReBind

 End Sub

 Sub Insert_click(Sender As Object, E As EventArgs)

 sql = "Insert into Masters(code_display,code_category,type)"

 sql = sql + "Values ('test',701,'E')"

 Comp.RunSql(sql)

 rebind

 Message.Text = "Inserted test record... "

 End Sub

 Sub Delete_click(Sender As Object, E As EventArgs)

 sql = "delete from masters where code_display = 'test'"

 Comp.RunSql(sql)

 rebind

 Message.Text = "Deleted all test records..."

 End Sub

 Sub Update_Click(Sender As Object, E As EventArgs)

 sql = "UPDATE Masters Set Opening = 90 WHE RE code_display = 'test'"

 Comp.RunSQL(sql)

 rebind

 Message.Text = "Updated all test records: Set closing balance = 90...! "

 End Sub

 Sub ReBind()

 Comp.SQL = "select * from Masters"

 DataGrid1.DataSource=Comp.populate()

 DataGrid1.DataBind()

 End Sub

 </script>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <h3>

 A DataBase Class in Visual Basic

 </h3>

 <form runat="server">

 <asp:button text="Refresh" Onclick="Show_Click" runat="server" />

 <asp:button text="Insert" Onclick="Insert_Click" runat="server" />

 <asp:button text="Update" Onclick="Update_Click" runat="server" />

 <asp:button text="Delete" Onclick="delete_Click" runat="server" />

 <asp:label id="Message" runat="server" />

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

</html>

1. Initiating the Object: The object is initiated in the page_load event

of the web form and the connection string passed to it is as follows:
2. Sub Page_Load(Source As Object, E As EventArgs)
3. Comp = New SQLClass()
4. Comp.ConnStr = "Provider=SQLOLEDB; Data Source=(local);

Initial Catalog=ASPNET;User ID=sa;"
5. if NOT (isPostBack)
6. rebind
7. end if

End Sub
8. The ReBind function passes a SQL query to the object and binds a

DataGrid to the DataView returned by the object as follows:

9. Sub ReBind()

10. Comp.SQL = "select * from Masters"

11. DataGrid1.DataSource=Comp.populate()

12. DataGrid1.DataBind()

End Sub
13. The Insert_click event executes an insert statement against the

database using the RunSQL function of the object.

14. Sub Insert_click(Sender As Object, E As EventArgs)

15. sql = "Insert into Masters(code_display,code_category,type)"

16. sql = sql + "Values ('test',701,'E')"

17. Comp.RunSql(sql)

18. ReBind

19. Message.Text = "Inserted test record... "

End Sub
20. The Update_Click event executes an update statement against the

database using the RunSQL function.

21. Sub Update_Click(Sender As Object, E As EventArgs)

22. sql = "UPDATE Masters Set Opening = 90 WHERE
code_display = 'test'"

23. Comp.RunSQL(sql)

24. ReBind

25. Message.Text = "Updated all test records: Set closing balance =
90...! "

End Sub
26. The Delete_click event executes a delete statement using the

RunSQL function.

27. Sub Delete_click(Sender As Object, E As EventArgs)

28. sql = "delete from masters where code_display = 'test'"

29. Comp.RunSql(sql)

30. ReBind

31. Message.Text = "Deleted all test records..."

End Sub

The Database Class in C#
In the following section, I include a complete listing of the database class written in C#.
Except for syntax changes, this class is similar to the Visual Basic.NET class discussed
in the preceding section, hence I have not gone into a detailed discussion of the code.
The source code for this example can be found in the\SqlClass\ SqlClassC subfolder
on the book's Web site at www.premierpressbooks.com/downloads.asp .

SQLClassC.cs

namespace SQLNameSpaceC

{

 using System;

 using System.Data;

 using System.Data.OleDb;

 using System.Text;

 public class SQLClassC

 {

 private String ls_connStr;

 private String ls_sql;

 public String ConnStr

 {

 get

 {

 return ls_connStr;

 }

 set

 {

 ls_connStr = value;

 }

 }

 public String SQL

 {

 get

 {

 return ls_sql;

 }

 set

 {

 ls_sql = value;

 }

 }

 public DataView Populate()

 {

 //for queries that return data

 //and for binding controls

 OleDbConnection myConnection = new OleDbConnection(ConnStr);

 OleDbDataAdapter myCommand = new OleDbDataAdapter(SQL, myConnection);

 DataSet ds = new DataSet();

 myCommand.Fill(ds, "vTable");

 return ds.Tables["vTable"].DefaultView;

 }

 public String RunSQL(string vsql)

 {

 try

 {

 OleDbConnection myConnection = new OleDbConnection(ConnStr);

 OleDbCommand mycommand = new OleDbCommand(vsql, myConnection);

 myConnection.Open();

 mycommand.ExecuteNonQuery();

 myConnection.Close();

 }

 catch(Exception e)

 {

 string ret = "Exception: " + e.ToString() ;

 }

 return("OK");

 }

 public String test()

 {

 StringBuilder SB = new StringBuilder(ls_connStr);

 SB.Append(" ," + ls_sql);

 return SB.ToString();

 }

 }

}

Compiling the C# Class

The database class is compiled into a dll and placed in the bin folder, as in the following:
SQLClassC.bat

set outdir=g:\aspnetsamples\bin\SqlClassC.dll

set assemblies=System.dll,System.data.dll

 csc /t:library /out:%outdir% /r:%assemblies% SqlClassC.cs

pause

Testing the C# Class
This web form tests the Populate and RunSQL methods of the C# database class.

TestcClass.aspx

<%@ Import Namespace="SQLNameSpaceC" %>

<html>

 <script language="C#" runat="server">

 SQLClassC comp = new SQLClassC();

 public void Page_Load(Object sender, EventArgs E)

 {

 comp.SQL = "Select * From Masters";

 comp.ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial
Catalog=ASPNET;User ID=sa;";

 bind();

 string sql = "Insert into Masters(code_display,code_category,type)";

 sql = sql + "Values ('test',701,'E')";

 comp.RunSQL(sql);

 }

 public void Insert_Click(Object sender, EventArgs E)

 {

 string sql = "Insert into Masters(code_display,code_category,type)";

 sql = sql + "Values ('test',701,'E')";

 comp.RunSQL(sql);

 bind();

 }

 public void Update_Click(Object sender, EventArgs E)

 {

 string sql = "UPDATE Masters Set Opening = 90 WHERE code_display = 'test'";

 comp.RunSQL(sql);

 bind();

 }

 public void Delete_Click(Object sender, EventArgs E)

 {

 string sql = "delete from masters where code_display = 'test'";

 comp.RunSQL(sql);

 bind();

 }

 public void bind()

 {

 DataGrid1.DataSource=comp.Populate();

 DataGrid1.DataBind();

 }

 </script>

 <body>

 <h3>SQL Class in C# </h3>

 <form runat=server>

 <asp:button text="Insert" onclick ="Insert_Click" runat=server/>

 <asp:button text="Update" Onclick="Update_Click" runat=server/>

 <asp:button text="Delete" Onclick="Delete_Click" runat=server/>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

</html>

Summary

Developing business objects is an important topic. Well-encapsulated code is easy to
maintain, refines with reuse, and can be shared easily among developers. It is a great
way of separating presentation from code.
Database manipulation functions are a prime candidate for encapsulation in Business
Objects. This chapter developed generic functions to apply SQL statements and queries
to the database. These functions were capable of returning data, applying "action"
queries such as insert, update, and delete, and executing stored procedures.

Chapter 9: Working with ASP.NET Web Services

Overview

Developing applications has come to mean developing for the Web. Developing server
applications that run on any operating system that can host HTTP applications has
become the goal. The two technologies that have come to the forefront are SOAP and
XML. Functionality residing in a Business Object can be accessed using the SOAP
protocol and exchanged as XML data and the technology that makes this happen is web
services.
The simplest way to describe web services is that it is a library of useful functions,
encapsulated within a Business Object that is accessed using SOAP and XML. Actually,
we can also use HTTP Get and Post to transport the data. However, Get and Post are
limited to sending and receiving name/value pairs of data whereas we can use SOAP to
serialize complex structures, such as ASP.NET DataSets, complex arrays, custom types,
and XML nodes. SOAP is a standard for encoding inter-machine function calls in XML.
Exchanging information as XML enables a client application to call a function on the
server, regardless of what operating system each is running, what programming
language each is written in, or what component model is supported on each. This is
because XML is basically a text file, which all machines can understand, and because
SOAP uses HTTP, which is also the most common Internet transfer protocol and one
that is used by essentially all Web browsers.
Application-to-application communication is not a new idea. Technologies, such as
DCOM, RPC, and MSMQ (Microsoft Message Queue Service) already exist to enable
this type of communication. The major limitation of these technologies is that it works
from one similar system to another. A DCOM system works well for Microsoft-only
systems and requires a DCOM client and a DCOM server. These technologies require
one to buy into and commit to a particular architecture. We cannot have the situation
where any Internet client makes a function call on any server. Another limitation of these
technologies is that they have problems communicating over corporate firewalls. SOAP
uses HTTP and can pass through firewalls.
Web services are an easy concept to understand. A Business Object is called a service.
Such an object is a non-visual object that contains a number of functions, grouped
together according to some logical classification. It is called a "service" because it seeks
to "serve" another object, which can be an HTML form, a web form, or any other objects
that can "initiate" it. As a good servant, it stays around for as long as the calling object
requires it and is then dismissed. In ASP.NET you write a web service as you would
write a normal Business Object and the only difference is that the functions are preceded
with a special <WebMethod()> attribute that marks them as web services.

Web services may be third-party application libraries that can be invoked over the
Internet. Examples of web services might include shipment tracking (similar to the
functionality provided by the FedEx site), credit card verification, and a spell checker.

Web services brings some exciting possibilities to the traditional way of designing
applications. Using ASP.NET and web services, we can design applications that can
send and receive data using Internet and HTTP. Consider an accounting application.

Traditionally, accounting applications have been developed around the client/server
model. The modules (Financial Accounting, Inventory, Invoicing, and so on) share a
central database and are connected to each other with some sort of a network protocol.
Using web services, the various modules of an accounting application need no longer be
connected with "wire."

Take the example of a manufacturing company that has its inventory location in one
state and its finance department in another. The financial and inventory records need to
be integrated, so a central database is used. In a traditional client/server model, the
financial accounting software, inventory software, and the central database would be
hooked together by some sort of satellite link. In our web services model, however, we
use Internet (HTTP) as our link. Data would be exchanged over the Internet (HTTP)
using XML and the SOAP protocol. Both the modules could be written in different
programming languages and could work off different operating systems. Because they
talk SOAP and XML, they can both access a central repository of functions, which
interacts with the database.

Writing a Simple Web Service
To demonstrate the techniques involved in creating web services, I have built a web
service, which has two simple functions called TestFunction() and add(). The
function TestFunction() returns a message string based on the Boolean variable
passed to it. The function add() returns the addition of two integers passed to it. To
build the service, I have used a simple text editor and saved the file with an .asmx
extension. The source file is called BasicService.asmx and can be found in the ...
\Basic\GetPost subfolder of the samples folder for this chapter on the book's Web site.

BasicService.asmx

<%@ WebService Language="VB" Class="TestService"%>

Imports System

Imports System.Web.Services

Public Class TestService: Inherits WebService

 <WebMethod()> Public Function TestFunction (vInput as Boolean) As String

 If (vInput = TRUE) Then

 TestFunction = "It is the truth..."

 Else

 TestFunction = "False!False!False"

 End if

 End Function

 <WebMethod()> Public Function add(a as integer, b as integer) as string

 add = cstr(a+b)

 End function

End Class

The WebService attribute informs ASP.NET to expose the code as a web service and
the language directive chooses Visual Basic.NET as our compiling language. The class
attribute specifies the class, which will handle the incoming function calls. In this case it
is the TestService class. The System and System. Web namespaces contain
prefabricated features that I need in the web service, so I import them using the
Imports directive. The TestService class inherits from the WebService class. An
inherited class can override and/or extend functionality of its parent class. When
importing a namespace, you cannot extend the functionality of the imported class,
whereas with inheriting, you can extend the functionality.
I now add functions to my new class. I have two functions in the TestService class.
These are the functions TestFunction and Add. The process of defining functions is
no different from the normal Visual Basic function definition syntax. However, you add a
new attribute <WebMethod()> to methods that you want to expose as web services.
ASP.NET exposes all methods with this attribute as web services.

Testing the Service
ASP.NET contains prefabricated support for testing the functionality of the web service. If
I open the TestService.asmx file in my browser, through IIS (that is, a fully qualified URL
that goes through a localhost), I see the page shown in Figure 9.1. This page reads the
asmx file and presents a way to test all the functions marked as WebMethods. I can test
the TestFunction method or the add method by supplying the requisite parameters.
The result of the function call is displayed as XML via the GET protocol.

Figure 9.1: Testing the service.

The WSDL Contract

The Web Services Description Language (or WSDL in short) contract is an XML-based
file, which fully describes a web service. It is similar to the type library of a COM object. A
type library contains information pertaining to the component's unique identifier (the
CLSID), the interfaces implemented by the component, and the method signature of
each interface. In a similar manner the WSDL file (or contract) is a file that shows all the
methods contained in a web service, the parameters they expect, and the protocols
supported. A type library can only be used with Microsoft systems since it is Microsoft
specific whereas the WSDL contract being an XML file, can be used with non-Microsoft
systems.
This file is a "contract" with the outside world, which specifies what the web service is
capable of doing. When you view the TestService.asmx file through IIS, you can click on
the hyperlink Service Description and you will view the XML file, which contains

the contract. You can also obtain the contract by appending the fully qualified URL of the
asmx file with a ?WSDL string. For example,
http://localhost/test/TestService.asmx?WSDL. The WSDL file specifies what protocols
are available to a calling client and provides information regarding how the function call
should be made. The WSDL file for the methods TestFunction and Add has sections
for accessing the Web Service using the SOAP, HTTP Post, or HTTP Get protocols.
Further, it tells us how we should make the call and what parameters to pass to the
functions.

Though a detailed knowledge of the WSDL contract is not required, I analyze its
important element tags below.

<operation>
Each method of the web service is operation of the web service. Thus methods like
the Add and TestFunction are both operations. According to the WSDL
specification "Operation is an abstract description of an action supported by the service."

<definitions>
The <definitions> element is the root element of the WSDL document. All other
elements reside within its tag boundaries. Its attributes define the target namespace and
other namespace definitions.

<service >
The <service > element tag states the name of the web service that the WSDL
contract describes. The web service that I have just created resides in the
TestService class and the <name> attribute for this web service is this class name.
This is evident from the following extract of the WSDL contract.

<service name="TestService">

</service>

<port>
Within the <service > element tag, the WSDL contract specifies the different ports on
which the web service is accessible. The address of the web service (for each protocol)
is provided here as a fully qualified URL. The location of the web service on my local
machine is provided as:

http://localhost/AspNetSamples/9_Samples/Basic/GetPost/BasicService.asmx

The relevant extract from the WSDL contract for the SOAP protocol is as follows:

<service name="TestService">

 <port name="TestServiceSoap" binding="s0:TestServiceSoap">

 <soap:address location="http://localhost/AspNetSamples/

 9_Samples/Basic/GetPost/BasicService.asmx" />

 </port>

</service>
You can make the web service accessible through multiple ports. This web service is
accessible through SOAP, HTTP GET, and HTTP Post. You can note from the WSDL
contract that the <http:address/> element tag is quite similar to the
<soap:address> element tag listed above. On my machine it is as follows:

<http:address location="http://localhost/AspNetSamples/

9_Samples/Basic/GetPost/BasicService.asmx" />

<message>
Communication with a web service involves making a request (a function call) and
getting a response back from the web service. Consequently, you will note that each
function described in the WSDL contract has an In (request) and an Out (response)
message element tag for each protocol. For example, there are a total of six In/Out
element tags for the Add method (one pair each for the SOAP, HTTP GET, and HTTP
Post).
The <part> element tag corresponds to the parameter or return value from the remote
procedure call. The following extract shows the parameters expected by the Add method
when using the HTTP GET protocol.

<message name="addHttpGetIn">

 <part name="a" type="s:string" />

 <part name="b" type="s:string" />

 </message>

<message name="addHttpGetOut">

 <part name="Body" element="s0:string" />

</message>
The <message> element tag needs the <operation> element tag to actually identify
the input and output messages as follows:

<operation name="add">

 <input message="s0:addHttpGetIn" />

 <output message="s0:addHttpGetOut" />

</operation>

<binding>
Finally the WSDL contract needs to specify how the web service expects the data to be
encoded. For example the TestFunction requires a Boolean parameter (vInput)
which can be represented as -1, 1 or True. The <binding> element tag specifies
that we will be abiding by the SOAP specification which contains predefined rules for
such situations as follows:

<binding name="TestServiceSoap" type="s0:TestServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />

</binding>

Calling the Service Using HTTP Get
In this section, I will make a call to the web service using the HTTP Get protocol. Let's
take a look at the WSDL portion that describes the HTTP Get protocol for the function
TestFunction. The relevant extract is as follows:

WSDL extract for HTTP Get

<message name="TestFunctionHttpGetIn">

 <part name="vInput" type="s:string" />

</message>

<message name="TestFunctionHttpGetOut">

 <part name="Body" element="s0:string" />

</message>

This tells us that the test function requires a single parameter value called vInput.

The request is to be made as a string and the response will be returned as XML.
Appending a question mark, the function name, together with the required parameters
after the fully qualified name of the web service form will make the request. This call is
made as follows:

http://localhost/path name/basicservice.asmx/TestFunction?vInput=TRUE
The source code for this example (basicHTTPGet.html) can be found in the
...\basic\GetPost subfolder of the samples folder for this chapter on the book's Web site.
Please note that all the file location paths should be modifi ed to point to your application
folder. Figure 9.2 shows a sample call to the TestFunction method.

Figure 9.2: A call to the web service using the HTTP Get protocol.
basicHTTPGet.html

<html >

 <head>

 </head>

 <body>

 <H4>HTTP GET Example</H4>

 <a href="http://localhost/ASPNETSamples/

 9_Samples/basic/GetPost/basicservice.asmx">

 WSDL Contract

 <a href="http://localhost/ASPNETSamples/9_Samples/basic/

 GetPost/basicservice.asmx/TestFunction?vInput=TRUE">

 TestFunction?vInput=TRUE

 <a href="http://localhost/ASPNETSamples/9_Samples/basic/

 GetPost/basicservice.asmx/TestFunction?vInput=FALSE">

 TestFunction?vInput=False

 </body>

</html>

Clicking on any of the function links calls the TestFunction and passes to it the
appropriate input parameter. For example, clicking on the vInput = "True" link
passes true to the TestFunction. The web service returns the response in XML as
follows:

<?xml version="1.0" encoding="utf-8" ?>

<string xmlns="http://tempuri.org/">It is the truth...</string>

Calling the Service Using HTTP Post
In this section, I will make a call to the web service using the HTTP Post protocol. Let's
take a look at the WSDL portion that describes the HTTP Post protocol for the function
TestFunction. The relevant extract is as follows:

WSDL extract for HTTP Post

<message name="TestFunctionHttpPostIn">

 <part name="vInput" type="s:string" />

 </message>

<message name="TestFunctionHttpPostOut">

 <part name="Body" element="s0:string" />

</message>

In order to call the TestFunction using the HTTP Post protocol, I need to pass the
parameter vInput to the web service via an input control residing within form tags. A
sample web form that makes this request is shown in Figure 9.3 and its listing is shown
below. Please note that the <action> attribute of the <form> tag should be modified to
point to your application folder. The source code can be found on the ... \Basic\GetPost
subfolder of the samples folder for this chapter at
www.premierpressbooks.com/downloads.asp .

Figure 9.3: A call to the web service using the HTTP Post protocol.
basicHTTPPost.html

<html>

 <head>

 </head>

 <body>

 <h1>HTTP Post Example</h1>

 <hr>

 <form METHOD="POST" ACTION="http://localhost/ASPNETSamples/

 9_Samples/basic/GetPost/basicservice.asmx/TestFunction">

 <blockquote>

 <p><input TYPE="RADIO" NAME="vInput" VALUE="True" CHECKED>

 True <input TYPE="RADIO" NAME="vInput" VALUE="False">

 False

 </p>

 </blockquote>

 <input TYPE="SUBMIT" VALUE="Submit Form">

 </form>

 <hr>

 </body>

</html>

Calling Services Using SOAP
SOAP is the most important transport protocol. You will note above that the Get and
Post protocols are limited to sending and receiving name/value pairs of data. SOAP is
important because we can serialize complex structures like DataSets, complex arrays,
custom types, and XML nodes with it. A client makes a SOAP call by sending a message
encoded in SOAP's XML vocabulary and transmits it to the server over HTTP. This
message has an outer envelope, within which there is an optional header and a required
body. The body contains the function name and the parameters that are to be passed to
the function. Each of these elements is prefixed with an XML namespace
(http://schemas.xmlsoap.org/soap/envelope).
A SOAP request for the TestFunction could be as follows:

<?xml version="1.0"?>

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope"

 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

 <SOAP:Body>

 <TestFunction>

 <vInput>True</vInput>

 </TestFunction>

 </SOAP:Body>

</SOAP:Envelope>
The SOAP request is "posted" to a "SOAP Listener" on the server. The listener is
typically the web services form. The communication between the client and server is by
HTTP, though in theory you could use transfer mechanisms like sockets, message
queuing, or e-mail. The SOAP Listener executes the function called and returns the
response in XML. A successful response is enclosed within an element tag, which has
the name of the original method and a suffix of response. Thus, the response to the
TestFunction would be enclosed within an element tag TestFunctionResponse.
The SOAP Body of the response could look like the following:

<?xml version="1.0"?>

<SOAP:Envelope xmlns:SOAP=http://schemas.xmlsoap.org/soap/envelope

 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

 <SOAP:Body>

 <TestFunctionResponse>

 <return>it is the truth</return>

 </TestFunctionResponse>

 </SOAP:Body>

</SOAP:Envelope>
Luckily, we do not have to go into all the intricacies of setting up infrastructures of
communicating using SOAP and XML. ASP.NET takes care of all that. You generate a
proxy of your web services form using the wsdl.exe utility provided by ASP.NET. This
tool reads the WSDL file and generates a proxy using the language of your choice.
Whenever the client makes a call to a function, the proxy generates an HTTP request
and sends it to the server. When the response is received, the proxy parses and returns
the result. I will now show you how to implement the SOAP protocol in ASP.NET. I will
follow a step-by-step approach. The sample files for this example can be found in the
.../basic/soap subfolder of the samples folder on the book's Web site at
www.premierpressbooks.com/downloads.asp.

1. Create the Web Service file. I have already created the
BasicService.asmx file, so I will just copy it to the folder.

2. Create the WSDL file. Open BasicService.asmx so that it goes through
IIS (such as http://localhost/your virtual directory/BasicService.asmx).
Click on the Service Description hyperlink. Save the resultant
file as basicService.wsdl. Note that you can also do the same thing by
browsing to http://localhost/your virtual
directory/BasicService.asmx?wsdl.

Caution You do have to re-create this WSDL file even though there is a
WSDL file in the sample folder. This file is specific to the
application folder on my machine and you have to replace this file
with your application folder-specific WSDL file as described above.

3. Run mbasicService.bat. This bat file does two tasks. First, it makes a
proxy using the command-line utility wsdl.exe, which comes with the
.NET SDK. It reads the description of the web services from the WSDL
file and creates a proxy class with the extension of .vb (since we are
using Visual Basic). This class has the class name specified in the
asmx file. Thus, my proxy class is called Testservice.vb. I then compile
the proxy class and put the resultant DLL (BasicService.dll) in the bin
folder. If everything goes well, you should have two new files created.
The proxy file TestService.vb (in the local folder) and the
BasicService.dll (in the bin folder). Visual Studio automates this task of
creating a proxy, and later in this chapter I shall be looking at creating
a web service using Visual Studio. Figure 9.4 shows the output from
the console at this stage.

Figure 9.4: Compiling the proxy.
mbasicService.bat

REM ------Make Proxy--------

wsdl.exe /l:VB /n:NameSpaceHersh /out:TestService.vb BasicService.Wsdl

REM ------Compile Proxy--------

Rem Remember to change outdir variable to point to your bin folder

set outdir=g:\AspNetSamples\bin\BasicService.dll

set assemblies=System.dll,System.Web.dll,System.Data.dll,

System.Web.Services.dll,System.Xml.dll

vbc /t:library /out:%outdir% /r:%assemblies% TestService.vb

pause

4. Test the service. I have created a simple web form to test the service.
This form calls the TestFunction and passes the parameter true to

the web service. The return value from the function is written out to the
screen. This is shown in Figure 9.5.

Figure 9.5: Testing using the SOAP protocol.
basicSoap.aspx

<html>

 <script language="VB" runat="server">

 Protected Sub Page_Load(Src As Object, E As EventArgs)

 Dim t As New NameSpaceHersh.Testservice

 Dim s As string

 s = t.testfunction(true)

 message.text = "Return from function : " + s

 End Sub

 </script>

 <body style="font: 10pt verdana; background-color:beige">

 <center>

 <h2>Testing Soap Proxy</h2>

 <p />

 <form runat="server">

 <asp:Label id="Message" runat="server"/>

 </form>

 </center>

 </body>

</html>

Creating a Web Service Using Visual Studio

Building a web service with Visual Studio.NET (VS .NET in short) involves creating a
new web services project and adding methods and properties to a web services class
form (i.e. an asmx form). This section builds a web service with Visual Studio.NET and
demonstrates the use of the integrated VS debugger. A subsequent section will build a
Visual Studio.NET project to consume the web service developed here.

You will find the source code for this example in the VSService subfolder of the samples
folder for this chapter. To install the sample files on your machine, create a new web
service project and import the sample files into the new project. This will create the
required application virtual folder on your machine.

1. Start Visual Studio.NET.
2. Select File/New/Project. Figure 9.6 shows VS.NET at this stage.

Figure 9.6: New project.
3. Select Visual Basic Projects from the left pane and Web Service from the

right. Figure 9.7 shows VS.NET at this stage.

Figure 9.7: New Web Service.
4. Type in VSService for the name. You might get a Web Access

Failed dialog box as shown in Figure 9.8.

Figure 9.8: Web Access Failed dialog box.

Click on OK and Visual Studio.NET will then use file access to open the
solution.
5. Visual Studio.NET generates a new Solution, which creates a references

folder and four files. The web.config is an XML file, which contains
various configuration options (for example, session timeout interval), and

which controls the web service at runtime. The file .disco is an XML file
used for dynamic discovery of web services by clients. This means that
when we want to use this service in another project, we navigate to this
file and VS.NET adds a reference to the service for us. The file
globals.asax is where project-wide event handlers (like
ApplicationStart and ApplicationEnd) reside. Figure 9.9
displays the four files in the solution explorer.

Figure 9.9: The Solution pane displaying the four default files.
6. Right -click on Service1.asmx and select Open. If you open this file in

Notepad, you will note that this file makes a callout to code that resides
in another file (Service1.vb) as follows:

7. <%@ WebService Language="vb"
Codebehind="Service1.asmx.vb"

8. Class="VSService.Service1" %>
Add the two functions TestFunction() and add() within the class module
as follows:

<WebMethod()> Public Function TestFunction (vInput as Boolean) As
String

 If (vInput = TRUE) Then

 TestFunction = "It is the truth..."

 Else

 TestFunction = "False!False!False"

 End if

End Function

<WebMethod()> Public Function add(a as integer, b as integer) as string

 add = cstr(a+b)

End Function
Figure 9.10 displays VS.NET in the code view at this stage.

Figure 9.10: Creating the web service.
9. Right -click on the Solution VSService and choose Build as shown in

Figure 9.11 (you can also just press F5).

Figure 9.11: Building the solution.
10. Test the service by right-clicking on Service1.asmx and selecting View

in Browser. You will see the default test page as shown in Figure 9.12
and can test the functions by supplying the required parameters.

Figure 9.12: Testing the functions.

11. Visual Studio.NET includes a powerful debugger. You can set
breakpoints and step through code by pressing F8. To use the debugger,
open Service1.asmx and set a breakpoint by double-clicking on the left
side (gray) pane, outside the code area. A red dot will appear at the point
where the pane is clicked. This is shown in Figure 9.13.

Figure 9.13: Setting a breakpoint.
Start the Debug mode by pressing F5. If prompted for a debug folder, choose
any folder not in wwwroot (for example c:\test). The default test page will now
be presented. Supply the parameters for the function being debugged. The
debugger will bring you back to the breakpoint line. If you bring your mouse
on a parameter and leave for a second, you will be able to see the parameter
passed as shown in Figure 9.14. Step through the code by pressing F8.

Figure 9.14: Using the debugger.
12. Browse to the bin folder in VSService folder. Note that a compiled DLL

called VSService.dll already exists in this folder. Visual Studio.NET
created the proxy and compiled it for us.

Calling the Web Service from a Web Form

In this section, I will build a client application, which will use the web service developed in
the preceding section. This application is a VS Web Application and is created as
explained in the following steps.

1. Start Visual Studio.NET.
2. Select File/New/Project.

3. Select Visual Basic Projects from the left pane and ASP.NET
Web Application from the right as shown in Figure 9.15. Type in
VSClient for the project name.

Figure 9.15: New Project pane.
4. Drag three textboxes, three labels, and one button onto the form. Right-

click on an empty portion of the form and select Properties. Make sure
that the Page Layout property is GridLayout. With GridLayout you
are able to drag the controls and position them visually on the form.
Change the Text properties of three labels to read Parameter A and
Parameter B and Result, respectively, and ID properties of the three
textboxes to read Param1 and Param2, and ResultAdd respectively.
This form should look like the one displayed in Figure 9.16.

Figure 9.16: Design of the web form.
5. You need to add a reference to the VSService in order to use it in this

application. To do this, select Project/Add Web Reference from the
main menu or right-click on the project name (VSClient) in the Solution
window and select Add Web Reference. On the left side of the window
click on the hyperlink Web Reference on Local Web Server. This
should show us all the discovery files (*.disco or *.vsdisco) from which
we can select VSService.vsdisco. You might get a Directory
Listing Denied message. In this case, type the full IIS path of the

VSService.vsdisco file and press Enter. You will see the Add Web
Reference window as shown in Figure 9.17.

Figure 9.17: Adding a Web reference.
Visual Studio.NET will discover the web service and display results as shown
in Figure 9.18.

Figure 9.18: Web service discovery.
Now click on the VSService.vsdisco hyperlink and then click on the Add
Reference button at the bottom right of the window. A reference to the web
service is added in the Solution Explorer as shown in Figure 9.19.

Figure 9.19: Reference to web service in Solution Explorer.
6. Add the following code behind the click event of the button:

7. Private Sub Button1_Click(ByVal sender As System.Object, _

8. ByVal e As System.EventArgs) Handles Button1.Click

9. Dim s As String

10. Dim t As New localhost.Service1()

11. s = t.add(CInt(Param1.Text), CInt(Param2.Text))

12. ResultAdd.Text = s

End Sub
13. Now build and view the application in the browser by pressing F5. You

will see the form as shown in Figure 9.20. Supply input values to the two
textboxes Param1 and Param2 and click on the button. The click event
of this button will make a call to the add method of the web service which
returns the result of the addition. This gets displayed in the ResultAdd
textbox.

Figure 9.20: Testing the Add function.

Using WebService Behavior to Make Function Calls

I want to show you how to make function calls using another methodology provided by
Microsoft. This is the WebService Behavior. Remember that SOAP is a protocol and

ASP.NET is just a tool to implement it. SOAP is basically all about sending and receiving
XML packets over HTTP. I do not need to depend on a tool to start using SOAP.
However, having access to a prefabricated function library helps, because then I don't
have to reinvent the wheel. The ASP.NET implementation of SOAP requires the
existence of a proxy, whereas the WebServices Behavior does not. Both are sound
technologies and my intent in presenting the WebServices Behavior is to enhance your
SOAP toolkit, and in the process, present another way of using SOAP.
The WebService Behavior is implemented with a lightweight HTML Components (HTC)
file as an attached behavior that can be used with Internet Explorer 5.0 and above. The
file WebServices.HTC can be downloaded from Microsoft's Web site at
http://msdn.microsoft.com/workshop/author/webservice/webservice.htc. This file is put in
the folder containing the Web page using the behavior. The web services can then be
called using client-side JavaScript.

I have created a sample web service (behavior.asmx) to test out this technique. This file,
together with the HTC file WebService.htc and two HTML files (populate.html and
add.html) can be found in the behavior subfolder of the samples folder for this chapter.
The web service contains two simple functions. The first is the add function, which we
met in the preceding sections. The second function, populate, is a bit more interesting.
As I had mentioned earlier, a web service using the SOAP protocol could be used to
serialize an ASP.NET DataSet and I demonstrate this here. The Populate function
takes as input parameters a connection string and a SQL Select query string. It returns
back a DataSet containing the rows returned from the database after running the Select
query. Here is the code extract for this function:

<WebMethod()> Public Function Populate(ConnStr as string, SQL as string) As DataSet

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "vTable")

 Populate = ds

End Function

The complete listing for the web service is as follows:
Behavior.asmx

<%@ WebService Language="VB" Class="Behavior"%>

Imports System

Imports System.Web.Services

Imports System.Data

Imports System.Data.OleDb

Imports System.Text

Public Class Behavior: Inherits WebService

 <WebMethod()> Public Function TestFunction (vInput as Boolean) As String

 If (vInput = TRUE) Then

 TestFunction = "It is the truth..."

 Else

 TestFunction = "False!False!False"

 End if

 End Function

 <WebMethod()> Public Function add(a as integer, b as integer) as string

 add = cstr(a+b)

 End Function

<WebMethod()> Public Function Populate(ConnStr as string, SQL as string) As DataSet

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "vTable")

 Populate = ds

 End Function

End Class

The HTML form that makes a call to the Populate method of the web service is called
Populate.html. Within this form, I make a call to the Populate function by passing to it a
connection string and the SQL query (Select * from Groups) as input parameters.
The method returns all the records from the groups table in XML format. Although I do
not show it here, you can use an XSL stylesheet to render the returned XML. Figure 9.21
shows the response received from the Populate method call:

Figure 9.21: Calling the Populate function using Behavior.

The code listing of Populate.html is as follows:
Populate.html

<html>

 <head>

 <script>

 var idCall = null;

 function init() {

 WebServices.useService("behavior.asmx?WSDL","myService");

 var vcn= "Provider=SQLOLEDB; Data Source=(local);" ;

 vcn= vcn + "Initial Catalog=ASPNET;User ID=sa;";

 var vSQL = "select * from Groups" ;

 idCall = WebServices.myService.callService("Populate",vcn, vSQL);

 }

 function WebServices_OnResult() {

 if (idCall == event.result.id)

 if (!event.result.error)

 txtResult.value = event.result.value.xml ;

 else

 txtResult.value = event.result.errorDetail.string;

 }

 </script>

 </head>

 <body onload="init()">

 <div id="WebServices"

 style="behavior:url(webservice.htc)"

 onresult="WebServices_OnResult()">

 </div>

 Result:

 <textarea id="txtResult" style="width:100%" rows="10"></textarea>

 </body>

</html>

The WebService Behavior is attached to an element using the Style attribute. It is given
an ID of WebServices so that it can be referenced from script.

<div id="WebServices"

 style="behavior:url(webservice.htc)"

 onresult="WebServices_OnResult()">

</div>
The Use method of the WebService maps the web service URL to a friendly name
myservice. This alias can then be used to reference the web service in code, as in the
following:

WebServices.useService("SQLService.asmx?SDL","myService").
The Populate function of SQLService.asmx expects two parameters: the connection
string and the SQL string. These are stored in the variables vcn and vSQL respectively
and passed on to the function, as in the following:

idCall = WebServices.myService.callService("Populate",vcn, vSQL)
The callService method initiates an asynchronous communication between the
WebService Behavior and the web service. The OnResult event fires when the result of
the call is received back as XML data packets. The following code then obtains the result
and displays it in the text area of the screen.

Function WebServices_OnResult() {

 If (idCall == event.result.id)

 If (!event.result.error)

 txtResult.value = event.result.value.xml ;

 Else

 txtResult.value = event.result.errorDetail.string;

}
The add() method of the web service accepts two integers as input parameters and
returns an addition of the passed values as shown below:

Public Function <WebMethod()> add(a as integer, b as integer) as string

 add = cstr(a+b)

End Function
The file AddFunction.html shows you how a call can be made to the add() function
of the web service. The following is the listing of the file:

AddFunction.html

<html>

 <head>

 <script language="JavaScript">

 var idCall = null;

 function init() {

 WebServices.useService("behavior.asmx?WSDL","myService");

 var vcn= "Provider=SQLOLEDB; Data Source=(local);" ;

 vcn= vcn + "Initial Catalog=ASPNET;User ID=sa;";

 var vSQL = "select * from Groups" ;

 idCall = WebServices.myService.callService("add",5,16);

 }

 function WebServices_OnResult() {

 if (idCall == event.result.id)

 if (!event.result.error)

 txtResult.value = event.result.value ;

 else

 txtResult.value = event.result.errorDetail.string;

 }

 </script>

 </head>

 <body onload="init()">

 <div id="WebServices"

 style="behavior:url(webservice.htc)"

 onresult="WebServices_OnResult()">

 </div>

 Result:

 <textarea id="txtResult" style="width:100%" rows="10"></textarea>

 </body>

</html>

This function call is similar to the Populate function call except that the event result is a
value instead of XML.

Enabling Access Data Sources Across Domains
A common problem posted on XML/SOAP user groups is getting an access denied
error from Internet Explorer while trying to call a web service across domains. This is
because when using SOAP across domains, the Access data sources across
domains option of Internet Explorer should be either Enabled or Prompt.
To do this, choose Tools, Internet Options. Then select the Security tab. For
the Internet settings, ensure that the option Access data sources across
domains is either Enabled or Prompt, as per the screen shown in Figure 9.22.

Figure 9.22: Enabling the Access data sources across domains option of IE.

Summary
This chapter presented one of the most important topics in ASP.NET—web services.
Although application-to-application communication techniques, such as DCOM, RPC,
and MSMQ exist, they have not been very successful, because they required one to buy
into a particular technology. Web services, on the other hand, are based on SOAP and
XML, both of which can be understood by all machines and operating systems. In this
chapter, I showed you how to use web services using a simple text editor as well as
Visual Studio 7. I also showed you how to call web services using web service
Behaviors. In Project 2 (Chapters 18 through 22), I will show you how to build a database
web service that will have generic functions for adding, updating, deleting, and selecting
records from the database.

Chapter 10: ASP.NET Applications
An ASP.NET application corresponds to a virtual directory. All ASP.NET objects included
in the same virtual directory comprise an ASP.NET application. These objects can be
pages, web services, configuration files, global application files, assemblies, and
application services such as security.

Creating a Virtual Directory
To create a new virtual directory in IIS under Windows NT, start Internet Service
Manager. Right -click on an existing directory and choose New and then Virtual Directory
(shown in Figure 10.1).

Figure 10.1: New virtual directory in IIS.

Promoting an Existing Folder to Be a Virtual Directory

You can promote an existing directory to be a virtual directory as follows:
1. Right -click on the folder that you want to make a virtual directory.
2. Under Application Settings, click the Create button next to the disabled

Default Application textbox (shown in Figure 10.2).

Figure 10.2: Create button.

3. The Create button will now be named Remove and the Name field will
be enabled. The virtual directory is now ready (shown in Figure 10.3).

Figure 10.3: Remove button.

Creating a New Virtual Directory in Personal Web Server under Windows 2000

To create a virtual directory in Personal Web Server under Windows 2000, do the
following:

1. Start Personal Web Server and click on the Advanced button (shown
in Figure 10.4).

Figure 10.4: New virtual directory in Personal Web Server.

2. Click on Add, browse to the folder, and give it a name under the Alias
box.

The Global.asax File
The Global.asax file is quite similar in concept to the Global.asa file in ASP. Like
Global.asa, the Global.asax file handles "application-level" logic through application
events such as Application_Start, Application_End, Session_Start, and
Session_End, to name a few. This file is dynamically parsed and compiled into a .NET

Framework class the first time any resource within its application namespace is
requested. This file cannot be requested directly by users, hence its contents are
protected. The Global.asa and Global.asax files can coexist in the same virtual directory.
This is to provide backward compatibility to ASP developers—ASP applications continue
to use the Global.asa, whereas ASP.NET applications use Global.asax. However, the
two files cannot share application and session state variables.
When you change the Global.asax file, the ASP.NET framework detects the change,
completes all pending requests, and fires the Application_OnEvent event and
reboots the application, which in turn clears all state information. This process is invisible
to the user, who does not experience any downtime.
The Global.asax file has two events that are fired each time a request (or a postback) is
made. These are the Application_BeginRequest and the
Application_EndRequest events. Code that must be executed at the beginning of
each page can be placed in the Application_BeginRequest event. Figure 10.5
shows an example application that uses the Global.asax file. You can find the code in
the "samples" folder for this chapter under the subfolder called "events." Please note that
you must place the Global.asax file in the root directory of the virtual directory.

Global.asax

<script language="VB" runat="server">

 Sub Application_Start(Sender As Object, E As EventArgs)

 ' Do application startup code here

 End Sub

 Sub Application_End(Sender As Object, E As EventArgs)

 ' Clean up application resources here

 End Sub

 Sub Session_Start(Sender As Object, E As EventArgs)

 Response.Write("Session Start Fired...
")

 End Sub

 Sub Session_End(Sender As Object, E As EventArgs)

 ' Clean up session resources here

 End Sub

 Sub Application_BeginRequest(Sender As Object, E As EventArgs)

 Response.Write("<h3> Global.asax Demo</h3>")

 Response.Write("Begin Request Fired...
")

 End Sub

 Sub Application_EndRequest(Sender As Object, E As EventArgs)

 Response.Write("End Request Fired...
")

 End Sub

</script>

Here is a Web page that calls it.
GlobalTest.aspx

<html>

 <script language="VB" runat="server">

 Sub Page_Load(Sender As Object, E As EventArgs)

 Response.Write("Page.Load Fired...
")

 End Sub

 Sub Session_End(Sender As Object, E As EventArgs)

 Session.Abandon()

 Response.Redirect("GlobalTest.aspx")

 End Sub

 </script>

 <body>

 <form runat="server">

 <input type="submit" Value="Refresh " runat="server"/>

 <input type="submit" OnServerClick="Session_End" Value="End Session"
runat="server"/>

 <hr>

 </form>

 </body>

</html>

When the page is requested, the following sequence of events occurs:
1. Application_BeginRequest fires.
2. Session_Start fires.
3. Page Load fires.
4. Application_EndRequest fires.

Figure 10.5 shows this.

Figure 10.5: Initial request.

When the page is refreshed, the following sequence of events occurs:
1. Application_BeginRequest fires.
2. Page Load fires.
3. Application_EndRequest fires.

Figure 10.6 shows this.

Figure 10.6: Page refresh.

When the session is abandoned, the following sequence of events occurs:
1. Application_BeginRequest fires.
2. Session_Start fires.
3. Page Load fires.
4. Application_EndRequest fires.

When the session is abandoned, a new session is created and the Session_Start
event is fired again. Figure 10.7 shows this.

Figure 10.7: Session abandoned.

Locking and UnLocking methods provide a safeguard against data corruption when
multiple users are trying to update the same variable. The syntax for this is
straightforward as shown in the following example:

<%

 Application.Lock()

 Application("hits") = CType(Application("hits") + 1, Int32)

 Application.UnLock()

%>
When a page finishes execution or times out or an unhandled error occurs, the
Application object is automatically unlocked.
Storing data in Application objects should be used wisely because significant
resources, which might be put to better use elsewhere, might be absorbed. The
Application object is not maintained across Web farms or Web gardens, which might
be a limitation if you use these techniques.

Application or Session-Scoped Objects

You can define .NET Framework classes or classic COM components with either an
appinstance, session, or application scope using the object tag. The appinstance scope
implies that the object is specific to one instance of HttpApplication and is not shared.

<object id="id" runat="server" class=".NET Framework class Name"
scope="appinstance"/>

<object id="id" runat="server" progid="Classic COM ProgID" scope="session"/>

<object id="id" runat="server" classid="Classic COM ClassID" scope="application"/>

Global.asax and Application State
You can store variables with application-level scope in the Global.asax file. The following
example shows you how to store a DataView in an application variable, which can then
be used throughout an application. The code for this example is available in the
"..samples\Application" subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp .
First code the Application_Start event of the Global.asax file as follows:

Global.asax

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<script language="VB" runat="server">

 Sub Application_Start(Sender As Object, E As EventArgs)

 ' Do application startup code here

 Dim dv As DataView

 Dim i As integer

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=ASP NET;User
ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 SQL = "select * from groups "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "groups")

 dv = new DataView(ds.Tables("groups"))

 Application("Source") = dv

 End Sub

</script>

I have extracted rows from the Groups table and populated a DataView with the
resultset. I have then stored this DataView in an application variable called source.
Note that I had to import System.Data and the System.ADO namespaces as I have to
interact with the database.
I can now use the source application variable to populate a DataGrid in a web form as
follows:

ApplicationState.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(Src As Object, E As EventArgs)

 Dim Source As DataView = Application("Source")

 vSpan.InnerHtml = Source.Table.TableName

 vGrid.DataSource = Source

 vGrid.DataBind()

 End Sub

 </script>

 <body>

 <h3>DataSource in Application_OnStart</h3>

 <h4> Table: </h4>

 <ASP:DataGrid id="vGrid" runat="server"

 Width="900"

 BackColor="#ccccff"

 BorderColor="black"

 ShowFooter="false"

 CellPadding=3

 CellSpacing="0"

 Font-Name="Verdana"

 Font-Size="8pt"

 HeaderStyle-BackColor="#aaaadd"

 MaintainState="false"

 />

 </body>

</html>

Figure 10.8 shows what the output looks like.

Figure 10.8: Application state.

Session State
While the Application object has not changed much from the previous versions of
ASP, the Session object has seen a major updating. A session variable is a key-value
pair that can be set and read for the duration of a user's session. For example, you can
store a value in a session variable as follows:

Session("Name") = "Hersh Bhasin"

This session variable can then be accessed on a Web page as follows:

Dim ls_name As string

ls_name = Session("Name")

Each session is assigned a unique key, which is stored as an HTTP cookie and sent to
the server on each request. The server reads the key and reestablishes the server state.
The problem with this implementation is that clients might reject cookies for privacy or
security reasons, which in turn disables state management. Another problem is that the
state management is linked with the Web server (IIS) and when the Web server is
recycled or fails, state information is lost. The third disadvantage is that each ASP server
maintains its own state and unless the user returns to the same server, state will be lost.
This would be the case where ISPs use proxy load balancing solutions.

ASP.NET solves these problems. The ASP.NET session state is process independent.
This means that even if the Web server goes down or is restarted, state will still be
maintained. The session content can alternatively be serialized to a SQL Server
database and the state information can be reloaded after a machine failure. Using
session variables has always been a problem on Web farms where multiple servers
handle user requests. This is not a problem anymore. By moving to an out-of-process
model, ASP.NET enables servers in the farm to share a session state process.

Session state settings are handled by settings in the web.config file. This file will be
discussed in greater detail later in this chapter. The default file (called machine.config) is
located in the ...\Framework\[Version]\ folder of the windows folder (for example the
WinNt\Framework\[Version]\ folder). Each application can have its own web.config file
and the settings specified there override the default machine.config file.

Six settings can be applied to configure session state (<sessionState>). These are
§ mode: This can be InProc, SQLServer, and StateServer. The InProc

stands for in-process and is the traditional ASP state management setting.
There are two types of out-of-process modes: memory-based
(StateServer) and SQL Server–based (SQLServer). I will be dealing
with these in detail later.

§ cookieless: This can be either True or False. The default is false. True
implies that this mode is enabled.

§ timeout: Length of time that a session is considered valid.
§ sqlConnectionString: Used with the SQL Server mode. Specifies the

connection string to the ASP.NET state management database.
§ StateConnectionString: Used when the mode is StateServer. This identifies

the TCP/IP address and port of the Windows NT Service that provides the
state management facilities.

I have created a test web form that I will be using in my discussion. This form has two
simple functions, one for setting a session state variable and the other for retrieving the
value of this variable. Here is what the code looks like:

Session.aspx

<html>

 <Script runat="server">

 Sub AddSession(sender As Object, e As EventArgs)

 Session("MySession") = text1.Value

 message.text = "Session Variable stored as : " +Session("MySession").ToString()

 End Sub

 Sub CheckVariable(sender As Object, e As EventArgs)

 If Session("MySession") = "" Then

 message.text = "Session Data has been erased"

 Else

 message.text = "Stored Session Variable is : " + Session("MySession").ToString()

 End If

 End Sub

 </Script>

 <body style="font: 10pt verdana; background-color:ivory">

 <h1> Session State </h1>

 <form runat=server>

 <input id=text1 type=text runat=server>

 <asp:Button id="Add" text="Add Session Variable" onclick="addSession" runat="server"
/>

 <asp:Button id="Check" text="Check Session Variable" onclick="checkVariable"
runat="server" />

 <hr>

 <asp:label id="message" runat="server" />

 </form>

 </body>

</html>

In-Process Mode

The in-process mode is the way ASP has always handled state management. State is
managed within the process and is lost when the process is recycled. You might
question the need for this mode when you have the out-of-process modes available,
which are undoubtedly more efficient. The reason is performance. Out-of-process modes
add additional overhead required to marshal data back and forth between processes or
SQL Server. The following are the steps you will take to set up state management in this
mode:

1. In web.config, set the mode attribute of sessionState to InProc (this is
the default). When this setting is chosen, the only other web.config
settings used are timeout and cookieless.

2. <configuration>
3. <system.web>
4. <sessionState
5. mode="InProc"
6. cookieless="false"
7. timeout="20"
8. />
9. </system.web>

</configuration>
10. Run Session.aspx. Store a session state value. Stop and restart the

IIS using the command-line utility iisreset, which ships with IIS5 as
follows:

C:\iisreset [computername] /RESTART (or simply issue the command
iisreset from the command prompt)
11. Click the Check Session Variable button. You will have lost the

session variable.
The code for this example is included in the ...\samples\sessionstate\inprocess subfolder
for this chapter on the book's Web site at
www.premierpressbooks.com/downloads.asp .

Out-of-Process Mode

Out-of-process mode maintains state in a separate process. This mode gives the
reliability of a separate process with the performance advantage of reading and writing
from memory. This state should be used when performance is important but when you
can't guarantee which server a user uses to request an application. Here are the steps to
set up this mode:

1. In web.config, set the mode attribute of sessionState to
"StateServer." This tells ASP.NET to look for the ASP.NET state
service at the server and port settings specified in the web.config file,
which in this case is the local server.
2. <configuration>
3. <system.web>
4. <sessionState
5. mode="StateServer"
6. stateConnectionString ="tcpip=127.0.0.1:42424"
7. sqlConnectionString="data source=127.0.0.1;user

id=sa;password="
8. cookieless="false"
9. timeout="20"
10. />
11. </system.web>

</configuration>
12. The ASP.NET SDK includes Windows NT service called

aspnet_state, which is used by ASP.NET for out-of-process state
management. Start this service by running this at the command
prompt:

net start aspnet_state
Figure 10.9 shows what you will see.

Figure 10.9: Starting ASPState service.

13. Run Session.aspx. Store a session state value. Stop and restart the
IIS using the command-line utility iisreset.

14. Click the Check Session Variable button. You will note that you have
retained the Session variable.

The code for this example is included in the ...\samples\sessionstate\OutofProcess
subfolder for this chapter on the book's Web site at
www.premierpressbooks.com/downloads.asp .

SQL Server Mode

This mode should be used when reliability considerations are paramount. The database
can be clustered for handling server failures. The trade-off is performance as this mode
is slower than out-of-process. You can set up this mode as follows:

1. Create the ASPState Database by applying the file InstallSqlState.sql
provided with ASP.NET and located at
....\Microsoft.NET\Framework\[version]\ folder with the utility osql.exe
as follows:

osql –S [server name] –U [user] –P [password] < InstallSqlState.sql
You can also directly open this file in the SQL Query Analyzer tool (ISQL) of
Microsoft SQL Server and execute it. (I find this method better because I don't
have to remember passwords, server names, and so on. I can just log on with
system administrator rights and execute the script.)
This process will create a database called ASPState, which contains 16
stored procedures and two tables in tempdb. These are
AspStateTempSessions and AspStateTempApplications. Now you must stop
and restart SQL Server as some startup procedures were created which need
to run.
A script to uninstall the ASPState database is also provided. This script is
called UninstallSqlState.sql.

2. In the configuration file, set the mode attribute of sessionState to
"SQLServer".

3. <configuration>

4. <system.web>

5. <sessionState

6. mode="SQLServer"

7. stateConnectionString ="tcpip=127.0.0.1:42424"

8. sqlConnectionString="data source=127.0.0.1;user
id=sa;password="

9. cookieless="false"

10. timeout="20"

11. />

12. </system.web>

</configuration>
13. Run Session.aspx. Store a session state value. Stop and restart the

IIS using the command-line utility iisreset.
14. Click the Check Session Variable button. You will note that you have

retained the Session variable.
15. Connect to the tempdb database and run the following queries:

16. select * from AspStateTempSessions

select * from AspStateTempApplications
You will see that the data stored in the SQL server tables AspStateTempSessions and
AspStateTempApplications. Note that a unique session id is stored in the database.
Figure 10.10 is a sample of the output.

Figure 10.10: State maintained in SQL Server.

We could further enhance the reliability of storing session state by clustering SQL
Servers so that if one server becomes unavailable, another one replicating it takes over.

Cookieless State

This feature of the ASP.NET session state allows clients who turn off cookies to take
advantage of the session state. In this mode, the session id is "munged" into the URL as
follows:

http://localhost/(hmxz0d5554l1bt45faqudj55)/Application/Sessione.aspx
All you have to do to enable this state is set the cookieless attribute to true as
follows:

<configuration>

 <system.web>

 <sessionState

 mode="StateServer"

 stateConnectionString ="tcpip=127.0.0.1:42424"

 sqlConnectionString="data source=127.0.0.1;user id=sa;password="

 cookieless="false"

 timeout="20"

 />

 </system.web>

</configuration>

All modes are supported for cookieless sessions.

The Configuration File

ASP.NET can be configured using two configuration files. These are the machine.config
and the web.config files. Each machine has a single machine.config file that holds the
default configuration information. Each application can have its own optional web.config
file and when such a file exists, it overrides the default machine.config file located in the
WinNt\Framework\[Version]\ folder. The "local" web.config file can have only the sections
it needs. These sections then override the default machine.config file. The sections not
specified in the local web.config file are read from the machine.config file. These
configuration files are an XML-based text file. A sample configuration file with two
settings is shown here:

<configuration>

 <system.web>

 <sessionState

 mode="StateServer"

 stateConnectionString ="tcpip=127.0.0.1:42424"

 sqlConnectionString="data source=127.0.0.1;user id=sa;password="

 cookieless="false"

 timeout="20"

 />

 <appSettings>

 <add key="dsn" value ="Bhasin;uid=sa;pwd=''"/>

 </appSettings>

 </system.web>

</configuration>
This file cannot be accessed directly from a browser. The above example shows a file
with two configuration sections <sessionState> and <appSettings>. I have already
discussed the sessionState section. I will now discuss some other sections contained in
this file.

<Configuration>

This is the root element and all configuration sections must be contained within the
Configuration tags.

<appSettings>

The appSettings section allows you to use the web.config file as an ini file. You can store
application-wide settings here. For example, you can store the DSN name here, which
then becomes available to all the pages in the application. The way to do so follows.

In web.config, set this setting as follows:

<appSettings>

 <add key="dsn" value ="Bhasin;uid=sa;pwd=''"/>

</appSettings>
This section has one sub-element, which is add. The add sub-element supports two
attributes: key and value. The key is the name of the variable you store in the value
attribute. You can have as many add sub-elements as you require.

On a Web page you will extract the stored value, using Visual Basic.NET as follows:
AppSettingVb.aspx

<html>

 <script language="VB" runat="server">

 Sub Page_Load(Src As Object, E As EventArgs)

 Dim dsn As String = ConfigurationSettings.AppSettings("dsn")

 response.write(dsn)

 End Sub

 </script>

</html>

You can find this code in the ...\samples\configFile\configAppSettings folder on the
book's Web site at www.premierpressbooks.com/downloads.asp .

Here is the code in C#:
AppSettingC.aspx

<script language="C#" runat="server">

 public void Page_Load(Object sender, EventArgs e)

 {

 String s = ConfigurationSettings.AppSettings["dsn"];

 dsn.InnerHtml =s;

}

</script>

The DSN entry in web.config is:

<Compilation>
This section has one attribute (debug) and two subsections (<compilers> and
<assemblies>). The debug attribute is a boolean setting that can be True or False.
Setting it to True will compile in debug mode, which is slower and should be turned off in
production sites.

In the compiler section, you set the language and extension attributes for each language
you will use. Say you associate extension "vb" with the language Visual Basic. All web
forms with this extension will have Visual Basic as the default scripting language and you
now do not have to declare this language in page directives or script tags.
The <assemblies> subsection enables you to specify which assemblies you want to
include when compiling a resource. If you remember from previous chapters, when
creating business objects (Chapter 8) and custom controls (Chapter 7), we had to
include various assemblies in the bat files which compiled the objects we created.
Instead of doing that, we can specify these assemblies here. Remember, however, that
we still need to import these assemblies in Web pages using page directives. The
<assemblies> sub-element has three more sub-elements: add, remove, and clear.
The add sub-element adds assemblies and you can use the * to add all assemblies
located in the /bin directory. Remove removes an assembly reference and the clear
sub-element removes all references contained in or inherited from the main config.web.

<compilation debug="false" explicit="true" defaultLanguage="vb">

 <compilers>

 <compiler language="c#;cs;csharp" extension=".cs"
type="Microsoft.CSharp.CSharpCodeProvider,

 System,Version=1.0.2411.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
/>

 </compilers>

 <assemblies>

 <add assembly="mscorlib"/>

 <add assembly="System, Version=1.0.2411.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"/>

 <add assembly="*"/>

 </assemblies>

</compilation>

<Custom Errors>

ASP.NET provides a lot of helpful information when an error occurs, and while this may
be helpful to the developers, it might scare the users of the site. The Custom Error
setting allows you to specify a custom error page, which displays your custom error
messages. You can also redirect specific errors (say 404 or 500 errors) to separate
custom error pages.

The custom error section has two attributes. These are:
§ defaultRedirect: Specify your custom error page here.
§ mode: This can be On, Off, or RemoteOnly. The On mode redirects

all errors to the custom error page. The Off mode turns off custom
errors, and the RemoteOnly mode turns on the custom errors only for
remote users—if you are on the same server and generate an error,
you see the full details of the error. This option is helpful because the
developers see the complete details of the error whereas users of the
site see only the custom errors.

I will now show you how to create a custom error page. You can find the code in
the..samples\configFile\CustomErrors subfolder on the book's Web site at
www.premierpressbooks.com/downloads.asp.

web.config for Custom Errors

<configuration>

 <system.web>

 <customErrors mode="On" defaultRedirect="HandleError.aspx" >

 </customErrors>

 </system.web>

</configuration>

I have specified my custom error file to be HandleError.aspx, the listing of which is as
follows:

HandleError.aspx

<%@Page Language="VB"%>

<html>

 <head>

 <style>

 body {font-family:Tahoma,Arial,sans-serif; font -size:10pt}

 </style>

 </head>

 <body>

 <h3>Default Custom Error Page</h3>

 There was an error in the page

 Return to the previous page

 </body>

 </html>

I have created a test page and I try to navigate to a non-existent page in this file, thus
generating an error. Here is the listing:

ErrorTest.aspx

<html>

 <head>

 <script language="VB" runat="server">

 Sub cause_error(Source As Object, E As EventArgs)

 Response.Redirect("NonExistantPage.aspx")

 End Sub

 </script>

 <form runat="server">

 <asp:Button id="Error" text="Cause Error" onclick="cause_error" runat="server" />

 </form>

 </head>

</html>

The <customError> section supports one subsection: the <error> sub-element. You
can use sub-element to redirect specific error numbers to their own custom error pages.
For example:

<configuration>

 <system.web>

 <customErrors mode="On" defaultRedirect="HandleError.aspx" >

 <error statusCode = "500" redirect ="500Error.aspx"/>

 </customErrors>

 </system.web>

</configuration>

All errors with a status code of 500 will now be redirected to the custom error page
500Error.aspx.

<Globalization>

The Globalization subsection has five attributes. These are:
§ requestEncoding: This is the default encoding for all requests.
§ responseEncoding: This is the default encoding for all responses.
§ fileenCoding: This is the default encoding for all .aspx, asmx, and

aspc files.
§ culture: This is the default culture used to process requests. This is

information regarding language, calendar, and writing system. For

example, English = en. Information pertaining to cultures can be
found under the namespace System.Globalization in the
CultureInfo class.

§ uiCulture: This is the default culture to lookup resources and also
expects a CultureInfo value like en.

Here is an example:

<globalization

 fileEncoding="iso-8859-1"

 requestEncoding="iso-8859-1"

 responseEncoding="iso-8859-1"

 culture="en"

 uiCulture="en"/>

<httpHandlers>
httpHandlers allow you to map incoming requests to .NET Framework classes that
can handle those requests. For example:

<httpHandlers>

 <add verb="*" path="*.aspx" type="System.Web.UI.PageHandlerFactory" />

</httpHandlers>
This setting tells the .NET Framework that all requests for the file with an extension of
aspx should be handled by the .NET Framework class
System.Web.UI.PageHandlerFactory.

As you can see, this section has three attributes. These are:
§ verb: This attribute tells the .NET runtime to process the request

using a GET, POST, or PUT, or all three separated by a comma (an *
implies the same thing).

§ path: The path to a file (or a set of files with the same extension) that
needs to be processed.

§ type: The name of the assembly or class that will handle the request.

You can write your own httpHandlers. Suppose that you want to deny access to web
forms called default.aspx. You would first write a simple class to handle requests to this
form as follows:

handler.vb

Imports System.Web

Namespace Hersh

 Public Class CustomHandlerVB : Implements IHttpHandler

 Public Sub ProcessRequest(Context As HttpContext) Implements
IHttpHandler.ProcessRequest

 Context.Response.Write("Sorry! Access to this resource is Denied...")

 End Sub

 Public ReadOnly Property IsReusable As Boolean Implements
IHttpHandler.IsReusable

 Get

 Return true

 End Get

 End Property

 End Class

End Namespace

A custom HTTP Handler is created using the IHttpHandler interface. This interface
contains only two methods: IsReusable and ProcessRequest. The IsReusable
method tells the HTTP factory whether the same instance can be used to serve multiple
requests, and ProcessRequest takes the HttpContext instance as a parameter
which, in turn, makes the response and request intrinsics-accessible. In the preceding
example, the request data is ignored and a string is sent back as a response.

You should now compile this class as follows:
make.bat

set outdir=g:\aspNetSamples\bin\CustomHandlerVB.dll

set assemblies=System.Web.dll

vbc /t:library /out:%outdir% /r:%assemblies% handler.vb

pause

Make sure that the outdir parameter points to your local /bin directory.

Add the following section to the web.config file:

<configuration>

 <system.web>

 <httpHandlers>

 <add verb="*" path="default.aspx"
type="Hersh.CustomHandlerVB,CustomHandlerVB" />

 </httpHandlers>

 </system.web>

</configuration>

Finally test it out by trying to open a file called default.aspx through IIS. You will get a
message that says "Sorry! Access to this resource is denied. . . ."
The complete source for this example is provided in the ...samples\configfile\httpHandler
subfolder on the book's Web site at www.premierpressbooks.com/downloads.asp.

<httpModules>

This section enables you to configure HTTP modules for your application. Most of the
classes and assemblies that you will need are included by default. You can use this
section to add your own handlers.

<httpModules>

 <add name="OutputCache" type="System.Web.Caching.OutputCacheModule,
System.Web, Version=1.0.2411.0,

 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

 <add name="Session" type="System.Web.SessionState.SessionStateModule,
System.Web,

 Version=1.0.2411.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

 <add name="WindowsAuthentication"
type="System.Web.Security.WindowsAuthenticationModule,

 System.Web, Version=1.0.2411.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

</httpModules>

<processModel>

This subsection allows you to configure the process model of your Web applications. A
number of settings can be configured. For example:

<processModel

 enable="true"

 timeout="Infinite"

 idleTimeout="Infinite"

 shutdownTimeout="0:00:05"

 requestLimit="Infinite"

 requestQueueLimit="5000"

 restartQueueLimit="10"

 memoryLimit="60"

 webGarden="false"

 cpuMask="0xffffffff"

 userName="SYSTEM"

 password="AutoGenerate"

 logLevel="Errors"

 clientConnectedCheck="0:00:05"

 comAuthenticationLevel="Connect"

 comImpersonationLevel="Impersonate" />

The meaning of the attributes is as follows:
§ enable: The Boolean which specifies whether this element is

enabled.

§ timeout: The number of minutes after which a new IIS worker
process is launched to replace the current one.

§ idleTimeout: The number of minutes the worker process can
remain idle before timing out.

§ shutdownTimeout: The number of minutes a worker process has to
gracefully shut down before it is killed.

§ requestLimit: The number of requests a worker process can
handle before it is shut down and a new one is created.

§ requestQueueLimit: The number of requests allowed to
accumulate in the request pool before it is signaled that the worker
process is bad and a new process is started to replace it.

§ memoryLimit: The percentage of memory that can be used before
the process is shut down and restarted.

§ cpuMask: For Web gardens, it controls the number of processes.
§ WebGarden: For Web gardens, it controls cpu affinity.

You might want to experiment with different settings of the memoryLimit to try to
increase site performance. A server with low memory would reach the default setting of
memoryLimit (40 percent) very rapidly, which would cause the process to be restarted
and stopped in a loop.

Summary
In this chapter, you learned about the concept of applications in an ASP.NET setting.
You also learned about the Global.asax file and its implications in maintaining variables
with application scope. Maintaining variables in the Session State has undergone a
radical change in ASP.NET and those issues were addressed. Finally you learned more
about the web.config file and its major subsections. Two important subsections of the
web.config file are expanded upon in separate chapters. The topics are tracing, which is
discussed in Chapter 12, and security, which is discussed in Chapter 13.

Chapter 11: Caching

Overview

Caching is an important technique in building Web sites that are fast and efficient. The
theory behind caching is that there are some items of the Web site that are very
expensive to construct and that such items should be created once and then stashed
away in memory for a fixed duration of time or until they change. Subsequent calls to
these resources will not re-create the resource but simply retrieve it from the cache.
Such items are typically resources that remain unchanged over a period of time—for
example, shopping lists and price lists. The ASP.NE T framework itself uses caching.
When an initial request is made for an ASP page, it is compiled as an instance of the
page class and cached on the server. Subsequent requests for this page loads the
cached version until the page is modified or the caching period expires. At that time, the
cache is updated with the changes.

ASP.NET supports the following two types of caching:
§ Output Caching
§ Data Caching

Output caching is the process of caching an entire page. This technique is useful for
sites with heavy traffic where frequently accessed pages are stashed away in the cache.
For caching to work, the page requested by different users must be identical in all
respects. If requests are not for identical pages, the pages cannot be pulled out from the
cache but must be regenerated for each request. For this reason, output caching works
with GET requests (and query strings) but not with POST. With a GET request, the ASP
runtime can look at the querystring, and all requests with identical querystrings receive a

cached version of the resource. Data caching involves identifying objects or data on a
page that are expensive to construct and caching only those objects.

Output Caching

A simple page directive at the top of a web form accomplishes output caching as follows:

<%@ OutputCache Duration="10" %>

This directive means that the page will be remembered for 10 seconds. The first request
for this page will store the page in the cache, and after that for ten seconds any number
of users requesting this page will be served the cached page. This will, in turn, improve
the site performance drastically. The following is an example:

MastersGrid.aspx

<%@ OutputCache Duration="60" VaryByParam="none" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <head>

 <H4>Masters Table</H4>

 <script language="VB" runat="server">

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 'Connection syntax

 ConnStr = "Provider=SQLOLEDB; Data Source=(local);"

 ConnStr = ConnStr + " Initial Catalog=ASPNET; User ID=sa"

 myConnection = New OleDbConnection(ConnStr)

 'DataSetCommand

 SQL = "select * from Masters"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Masters")

 'Binding a Grid

 DataGrid1.DataSource=ds.Tables("Masters").DefaultView

 DataGrid1.DataBind()

 'Display the creation time

 TimeMsg.Text = DateTime.Now.ToString()

 End Sub

 </script>

 </head>

 <body style="background-color='beige'; font-family='verdana'; font -size='10pt'">

 <form runat=server>

 <asp:DataGrid id="DataGrid1" runat="server" />

 <i>Last generated on:</i> <asp:label id="TimeMsg" runat="server"/>

 </form>

 </body>

</html>

This web form binds a DataGrid to a DataSet, which is populated initially from the
database. All subsequent page requests for the next 10 seconds are met from the cache.
The "last generated" time shows you the time the page was initially generated.
Subsequent browser refreshes (for the next 10 seconds) show the same time, indicating
that the page is being served from the cache. If a querystring matches in all respects,
then the page is rendered from the cache; otherwise, it is re-created as the following
example shows:

querystring.aspx

<%@ OutputCache Duration="60" VaryByParam="none" %>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(Src As Object, E As EventArgs)

 Dim querystring As String

 querystring = Request.QueryString("name")

 nameMsg.text = querystring

 TimeMsg.Text = DateTime.Now.ToString()

 End Sub

 </script>

 <body>

 <h3>QueryString & the Output Cache</h3>

 <table cellspacing="0" cellpadding="3" rules="all"

 style="background-color:#AAAADD;

 border-color:black;border-color:black;width:700px;border-collapse:collapse;">

 <tr>

 <td>Hersh</td>

 <td>Bhasin</td>

 <td>John</td>

 <td>Smith</td>

 <td>Bob</td>

 </tr>

 </table>

 <i>name:</i> <asp:label id="nameMsg" runat="server"/>

 <i>Last generated on:</i> <asp:label id="TimeMsg" runat="server"/>

 </body>

</html>

In this example, the form posts back to itself and passes back a querystring, which
contains a person's name. A time is displayed at the bottom, which shows when the
page was created. If you select a name initially, it creates the timestamp at the bottom. If
you now reselect it, the time remains unchanged, showing that the page was extracted
from the cache. If you select a different name, the time changes again (because the
querystring changes).

Page Data Caching

ASP.NET provides a robust caching engine that we can use to cache specific objects.
Whereas output caching involved caching an entire page, data caching involves caching
certain objects on the page, which are expensive to construct, and would thus benefit

from being cached. The ASP.NET cache is private to each application, and its lifetime is
the lifetime of the application. It is global to an ASP.NET application and is thread-safe
as it implements automatic locking, thus concurrent users can access it. Its syntax is
much like the application and session objects as the following code shows:
§ Adding values to the cache:

Cache("MyKey") = "SomeValue"
§ Or alternatively you can use the following:

Cache.Insert("MyKey","SomeValue")
§ Extracting values from the cache:

Dim ls_string as string

Ls_string = Cache("MyKey")
§ Removing values from the cache:

Cache.Remove("MyKey")

File and Key Dependencies

Web sites will often store information in XML files. Some of these files will not need to be
changed for a period of time. For example, a product catalog, or price list, would only
change when a new product is added or modified. It would be a waste of resources to
generate such files dynamically each time that they are requested. Developers have
often resorted to batch updates of such files (a fresh copy of the XML file is regenerated
each time a change is made to the file and stored on the server). Requests are then
directed to this static file. This process, however, requires manual intervention, with all its
associated problems. ASP.NET caching techniques enable you to set up a link or
"dependency" between the XML file and the file stored in the cache so that each time the
XML file is changed, the cache will be refreshed, else all requests for this file will be met
from the cache.
Consider the site navigation user control that was developed in Chapter 6, "User
Controls." I built a user control, which read an XML file that contained the site's
navigation links and built the site navigation menu. Now the site navigation structure is
fairly static; that is, I want to show the same navigation structure to all users, and it is a
waste of resources to dynamically create it for each user request. Thus, I can safely
cache the site navigation data and only refresh the cache if I change the site navigation
XML file. I will now modify the control described in Chapter 6 to take advant age of
caching. The source code for this example can be found in the dependencies subfolder
on the book's Web site at www.premierpressbooks.com/downloads.asp . The
following is the XML file that holds my site navigation links:

nav.xml

<Siteinfo>

 <site>

 <sitename>Home</sitename>

 <siteurl>default.aspx</siteurl>

 </site>

 <site>

 <sitename>Masters</sitename>

 <siteurl>masters.aspx</siteurl>

 </site>

 <site>

 <sitename>Transactions</sitename>

 <siteurl>Transactions.aspx</siteurl>

 </site>

 <site>

 <sitename>Trial Balance</sitename>

 <siteurl>trialbalance.aspx</siteurl>

 </site>

</Siteinfo>

The user control is modified so that a dependency is set up between the cache and the
XML file, as follows:

nav.ascx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Drawing" %>

 <script language="VB" runat="server">

 'Public Variable for each exposed Property

 PUBLIC vGridLines As GridLines

 PUBLIC vBorderColor as String

 PUBLIC vCellPadding As Integer

 Sub Page_Load(Src As Object, E As EventArgs)

 If Not IsPostBack

 LoadData()

 End If

 End Sub

 Sub LoadData

 Dim ds As New DataSet

 Dim fs As filestream

 Dim xmLStream As StreamReader

 Dim Source as DataView

 Source = Cache("MyData")

 If Source is Nothing

 fs = New filestream(Server.MapPath("nav.xml"), FileMode.Open, FileAccess.Read)

 xmlStream = new StreamReader(fs)

 ds.ReadXML(XmlStream)

 fs.Close()

 Source = New DataView(ds.Tables(0))

 'cache it for future use

 Cache.Insert("MyData", Source, New
CacheDependency(Server.MapPath("nav.xml")))

 ' we created the data explicitly, so advertise that fact

 CacheMsg.Text = "Dataset created explicitly"

 Else

 CacheMsg.Text = "Dataset retrieved from cache"

 End If

 dlist.DataSource=Source

 dlist.DataBind()

 dlist.GridLines = vGridLines

 dlist.BorderColor=System.Drawing.Color.FromName(vBorderColor)

 dlist.CellPadding=vCellPadding

 End Sub

 </script>

 <asp:DataList runat=server id="dlist"

 RepeatDirection="horizontal"

 RepeatMode="Table"

 Width="100%"

 BorderWidth="1"

 Font-Name="Verdana"

 Font-Size="8pt"

 HeaderStyle-BackColor="#aaaadd"

 SelectedItemStyle-BackColor="yellow"

 ItemStyle-BackColor="antiquewhite"

 AlternatingItemStyle-BackColor="tan"

 >

 <ItemTemplate>

 <asp:HyperLink runat="server"

 Text= '<%# Container.DataItem("sitename") %>'

 NavigateUrl= '<%# Container.DataItem("siteurl") %>' />

 </ItemTemplate>

 </asp:DataList>

 <i><asp:label id="CacheMsg" runat="server"/></i></p>

Navigation.aspx is the web form that uses the following component.
Navigation.aspx

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

<html>

 <head>

 <style>

 a {color:black;

 text-decoration:none;}

 a:hover {color:red;

 text-decoration:underline;}

 </style>

 </head>

 <body>

 <form runat=server>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7

 />

 </form>

 </body>

</html>

Most of this code should look familiar because I discussed it in Chapter 6. I have moved
the code for populating the data from the page_load event to the LoadData function.
The LoadData function first looks at the cache. If it finds data there, it uses it to bind the
DataList and displays a message to this effect; otherwise, it reads the XML file to get the
data and displays a message telling you that it created the DataSet explicitly. Hence,
when you first run the web form that uses this control (navigation.aspx), you should get a
message saying, "Dataset created explicitly." If you now press the browser refresh
button, the dataset is refreshed from the cache and you get the message, "Dataset
retrieved from cache."

I have created a dependency between the cache and the XML file, nav.xml, as follows:

Cache.Insert("MyData", Source, New CacheDependency(Server.MapPath("nav.xml")))

Now whenever the nav.xml file is modified, the DataSet will be re-created. To test this
out, modify nav.xml, save it, and refresh the navigation.aspx (don't close and re-run—
just press the browser refresh button). You will receive a message that tells you that the
DataSet was created explicitly. Please be warned that clicking on the links on the
navigation bar will generate an error. This is because we try to navigate to nonexistent
web forms.

Summary

The ASP.NET cache can provide substantial performance benefits if used wisely. The
manual batch update processes of updating static XML files that are only occasionally
modified can now be avoided by setting up a dependency between the XML file and the
data cache. This avoids the problems and pitfalls associated with manual intervention.

Chapter 12: Tracing

Overview
When writing code, it is often helpful to output the values of variables for debugging
purposes. ASP developers have often resorted to outputting such variable values using
Response.Write() statements. The problem with this approach is that these
debugging statements need to be cleaned out before putting the application into
production. ASP.NET provides a more elegant solution with its tracing services. Instead

of Response.Write(), you use Trace.Write() or Warn.Write() (which outputs
messages in red) to write out debugging statements. When you want to put the
application in production, you need not delete these debugging statements but just
disable Trace for a particular page or for the complete application. ASP.NET provides
two levels of tracing services: page-level and application-level tracing.
Page-level tracing applies tracing to a single page and is enabled using a Trace =
"true" attribute on the top-level Page directive. The Trace output will be shown at the
bottom of the page. Application-level tracing is enabled using a "trace" section in the
configuration file at the application root directory and this enables trace log output for
every page within an application. However, a page-level directive may disable trace for a
particular page and that page would be excluded from the trace. The details can be
obtained using a utility called trace.axd. The Trace class supports two overloaded
methods. These are Trace.Write() and Trace.Warn().These methods are similar
except that Trace.Warn() displays output in red. The following are the prototypes for
these methods:

Visual Basic.NET

Public Sub [Warn | Write](category As String, message As String, errorInfo As Exception)

End Sub

Public Sub [Warn | Write](category As String, message As String)

End Sub

C#

public void [Warn | Write](String category, String message, Exception errorInfo)

public void [Warn | Write](String category,String message)

For example, you could add the following statement on the page_load event of the
page:

Trace.Write("My Trace", "This is Page Load")
The trace output is displayed in a tabular format and the first column of this table is
Category and the next Message. Hence, in the above case, My Trace will be
displayed under the Category column and This is Page Load under the Message
column. It is possible to sort the output table by the Category so that you can see all
messages belonging to the My Trace category together.

Page-level Tracing

To enable Tracing for a page, the following directive is added at the top of a page:

<%@Page Language="VB" Trace="True"%>
You can use the TraceMode attribute to sort by category as follows:

<%@Page Language="VB" Trace="True" TraceMode="SortByCategory"%>

To sort by time (the default):

<%@Page Language="VB" Trace="True" TraceMode="SortByTime"%>
Within the body of the page, you would have a number of Trace.Write() or
Trace.Warn() statements. Trace_page.aspx provides an example.

Trace_page.aspx

<%@Page Language="VB" Trace="true" TraceMode="SortByCategory"%>

<html>

 <script language="VB" runat="server">

 Sub Page_Load(objSource As Object, objArgs As EventArgs)

 Trace.Write("My Trace", "This is Page Load")

 End Sub

 </script>

 <body>

 Some body matter.... <p />

 <%

 Trace.Write("My Trace", "This is in the Body")

 %>

 </body>

 <%

 Trace.Write("My Trace", "OK this is the end..")

 %>

</html>

Figure 12.1 shows the output generated.

Figure 12.1: Page-level tracing.

Application-level Tracing
I discussed the web.config file in Chapter 10. This file has a Tracing section that is used
to set application-wide tracing. For example:

<configuration>

 <system.web>

 <trace

 enabled="true"

 pageOutput="false"

 requestLimit="20"

 traceMode="SortByCategory" />

 </system.web>

</configuration>

This section has the four following attributes:
1. Enabled = True or False: This setting enables or disables

application-wide tracing. Page-level tracing will override this setting for
pages where it is set.

2. PageOutput = True or False: When set to true, trace output is
displayed at the bottom of the page. When set to false, no output is
displayed. To see the output, the utility trace.axd is used.

3. RequestLimit = some integer: The total number of requests to
keep cached in memory on a per-application basis.

4. TraceMode = SortByCategory or SortByTime: The user can
specify categories when using Trace.Write(). For example,
Trace.Write("My Trace", "This is Page Load") can see
trace output grouped by categories when the TraceMode is set to be
SortByCategory. The SortByTime is the default.

In the samples directory of this folder, I have included a web.config file and a web form
called trace_application.aspx to demonstrate application tracing. The web.config file has
been described above and trace_application.aspx is the same Web page that I
discussed in the context of page-level tracing (trace_page.aspx). The only difference is
that there is no page directive at the top of the page; tracing is controlled through the
web.config file. Remember that you need to create a virtual path for the folder where you
place the web.config file and the trace_application.aspx web form.

First, run the trace_application.aspx with the PageOutput setting set to true. You will
see the trace output at the bottom of the file as before. Now set the PageOutput setting
to false and run the form. You will note that no output is displayed. To see the trace
output you must use trace.axd. This is done by simply request- ing trace.axd in the same
application directory that the request for the sample application was made. For example,
my application folder is called ASPVirtual and I would request trace.axd by specifying a
URL of http://Localhost/ ASPVirtual/trace.axd. Figure 12.2 shows the resultant output.
In Figure 12.2 you will note that we are presented with a list of traces to view and we can
simply click on a particular trace to view all the details about that trace. The resultant
output will be identical to the output obtained from page-level tracing.

Figure 12.2: Using Trace.axd to see the trace output.

Disabling Tracing

When you are ready to deploy the application in production, you should explicitly disable
trace.axd by adding the following entry in the HttpHandlers section of config.web:

<HttpHandlers>

 <add verb="*" path="trace.axd" type="System.Web.Handlers.TraceHandler" />

 <remove verb="*" path="trace.axd"/>

</HttpHandlers >
There is no need to delete the various Trace.Write() statements within the body of
the web forms in the application.

Summary
Tracing is a very useful debugging tool. In the past, we had to write a number of
Response.Write() statements in the body of a web form to debug problematic code.
When the application was ready to be deployed we had to get rid of these statements.
This was time-consuming and bug prone because we might delete a line of code with the
Response.Write() statements. Tracing avoids these problems because there is no
need to remove debugging statements from the web form. You can simply turn off
tracing and the debugging statements will not be displayed.

Chapter 13: Security

Overview

Security plays a very important role in Internet applications. Unauthorized users need to
be restricted from sensitive portions of the Web sites and authorized users granted
access to sections of the site based on their "roles." ASP.NET in conjunction with IIS
provides excellent security features.
Security in ASP.NET involves authentication and authorization. Authentication is the
process of checking the user credentials (name and password) against authorities called
authentication providers. If the credentials are verified, the user is considered
authenticated. Once authenticated, the authorization process determines whether the
user has rights to access the requested resource. ASP.NET can also execute code using
the identity of the user. This is known as impersonation. Security is thus a three-step
process (the third step—impersonation—is optional):
§ User Authentication: This involves verification of the user credentials like

name and password and checking against "authentication providers."
§ User Authorization: This is the process of determining whether an authorized

user has access to the resource requested.
§ User Impersonation: This is when the application executes code using the

identity of the client making the request.

ASP.NET implements authentication through authentication providers. These
authentication providers are modules that contain code required to authenticate the
credentials of the requesting user. Three authentication providers are currently available:
windows authentication, passport authentication, and forms authentication.

Windows authentication is used in conjunction with IIS authentication. IIS provides
authentication using Basic, Digest, or Integrated Windows Authentication. Configuring
these authentication options is similar to the way we did it under ASP using the IIS MMC.

Passport authentication is a centralized authentication service provided by Microsoft that
offers a single sign-in and core profile services for member sites.

Forms-based authentication service uses cookies to authenticate users and allows an
application to do its own credential verification. Unauthenticated requests are directed to
an HTML login form. The user supplies his credentials and submits the page. The
application authenticates the request against a password repository stored in a
database, an XML file, or the web.config file. If the user is authenticated, the system
issues a cookie containing the credentials in some form or a key for reacquiring the
identity. Subsequent requests are issued with the cookie in the request headers.
To activate the authentication services and select the authentication provider, you must
configure the <authentication> element in the <security> section of the
web.config file. This file was discussed in Chapter 10. Here is a sample security section
of a configuration file:

//web.config file

<configuration>

<system.web>

 <security>

 <authentication mode="[Windows/Forms/Passport/None]">

 </authentication>

 </security>

</system.web>

</configuration>

After the user is authenticated using any of the authentication providers above, you can
further restrict his access based on NTFS's access control list or by permissions on the
resources specified in the web.config file. ASP.NET supports role-based security. Users

can be authenticated based on their NT user/group accounts or on custom-defined
user/group information specified in either a database or a text file.

Form-Based Authentication

The form-based authentication is the most flexible approach of the three because it
allows you to design your own HTML login forms and have more overall control over the
authentication process. I will discuss this approach with two examples. The first is a
simplified example, which stores usernames and passwords in the web.config file. This
will give you a very quick insight into the cookie-based authentication process. The
second example is more functional and is relevant to production sites in which I show
you how to authenticate passwords against credentials stored in a database table.

A Simple Example of Form-Based Authentication
This example contains three files: web.config, default.aspx, and login.aspx. These files
are included in the "simple" folder of the samples folder of this chapter on the book's
Web site at www.premierpressbooks.com/downloads.asp . You should create an IIS
virtual folder (to mark it as an ASP.NET application) and place these three files there.

The web.config's security section is configured as follows:
web.config

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms name=".ASPXUSERDEMO" loginUrl="login.aspx" protection="All"
timeout="60">

 <credentials passwordFormat="Clear" >

 <user name="hersh" password="bhasin"/>

 <user name="joe" password="smith"/>

 <user name="test" password="user"/>

 </credentials>

 </forms>

 </authentication>

 <authorization>

 <deny users="?" />

 </authorization>

 <globalization requestEncoding="UTF -8" responseEncoding="UTF -8" />

 </system.web>

</configuration>

Note that this file has three sections: authentication, authorization, and identity. The
meaning of various elements are discussed below:

<authentication mode>
As discussed earlier, authentication mode can be Windows (the default), Forms,
Passport, or None.

<forms>
<forms name=".ASPXUSERDEMO" path = "/" loginUrl="login.aspx" protection="All"
timeout="60" />
The name setting gives the name of the cookie, the loginurl specifies the name of the
aspx login form, which in this case is login.aspx . The path attribute specifies the path
for which the cookie is valid and path = "/" indicates the complete site. The
protection attribute can be All, None, Encryption, or Validation. All is the default
and uses both encryption and data validation.

<credentials>
<credentials passwordFormat="Clear/SHA1,MD5">:

We store the credentials (meaning usernames and passwords) of the users allowed to
access our application in this section. It is not required that we store credentials here, so
I will explain how credentials can be stored in a database in the subsequent example.
The passwordFormat setting can be Clear, SHA1, or MD5. Clear means that the
passwords are stored as clear text and user passwords are compared directly against
this value without further transformation. SHA1 and MD5 indicate the hashing algorithms
to be used on the passwords. The SHA1 encryption method stores the password in the
SHA1 Digest and the MD5 in the MD5 hash digest. Passwords are normally stored in a
database. To protect the passwords from prying eyes, they can be encrypted (using
SHA1 or MD5 hashing algorithms). This can be done using the
HashPasswordForStoringInConfigFile method defined in the
FormsAuthentication class. This method accepts the password string and the
encryption methods and returns the encrypted password. Here is an example:

encrypt.aspx

<%@ Import Namespace="System.Data" %>

<html>

 <head>

 <script language="VB" runat="server">

 Sub Page_Load(Src As Object, E As EventArgs)

 Dim SHA1Password As string

 Dim MD5Password As string

 SHA1Password = FormsAuthentication.HashPasswordForStoringInConfigFile
("Hersh","SHA1")

 MD5Password = FormsAuthentication.HashPasswordForStoringInConfigFile
("Hersh","MD5")

 response.write("Password in SHA1 Format : " + SHA1Password + "

")

 response.write("Password in MD5 Format : " + MD5Password)

 End Sub

 </script>

 </head>

</html>

In this example, I have encrypted the username Hersh using the two methods. Here is
the result:

Password in SHA1 Format: BBB0E8F21D0747A3A4927477F86886F1AE6FBE78

Password in MD5 Format: 52F79F51B8A443BC6F915A585BB0C1FF
Typically, you will store the encrypted password in the database or the web.config file.
The .HashPasswordForStoringInConfigFile method can only encrypt passwords
and cannot be used to decrypt it. You can use the .NET cryptography APIs available at
System.Security.Cryptography namespaces to encrypt and decrypt the data.
DevPower Solutions offer a free version of the .NET cryptography component at
http://www.devpower.com/Encrypt.NET .

The username and password subsection specifies the legal users of the application and
their passwords.

<authorization>
The authorization section has an <allow> and a <deny> section that you can use to
allow or deny user access. For example, to deny access to users with anonymous
identity you can use the special identity "?" as follows:

<deny users="?" />.
To allow access to all users, you can use the "*" identity as follows:

<allow users = "*"/>
The loginurl setting of the cookie subsection specifies the login form to use, which is
the form login.aspx. This form has the following code:

Login.aspx

<%@ Import Namespace="System.Web.Security " %>

<html>

 <script language="VB" runat=server>

 Sub Login_Click(Src As Object, E As EventArgs)

 If FormsAuthentication.Authenticate(UserName.Value, UserPass.Value)

FormsAuthentication.RedirectFromLoginPage(UserName.Value,PersistCookie.Checked)

 Else

 Msg.Text = "Sorry Invalid username or password : Please try again"

 End If

 End Sub

 </script>

 <body>

 <form runat=server>

 <h3>Login Page</h3>

 <table>

 <tr>

 <td>User Name:</td>

 <td><input id="UserName" type="text" runat=server/></td>

 <td><ASP:RequiredFieldValidator ControlToValidate="UserName" Display="Static"
ErrorMessage="*"

 runat=server/></td>

 </tr>

 <tr>

 <td>Password:</td>

 <td><input id="UserPass" type=password runat=server/></td>

 <td><ASP:RequiredFieldValidator ControlToValidate="UserPass" Display="Static"
ErrorMessage="*"

 runat=server/></td>

 </tr>

 <tr>

 <td>Persistent Cookie:</td>

 <td><ASP:CheckBox id=PersistCookie runat="server" /> </td>

 <td></td>

 </tr>

 </table>

 <asp:button text="Login" OnClick="Login_Click" runat=server/>

 <p>

 <asp:Label id="Msg" ForeColor="red" Font-Name="Verdana" Font-Size="10"
runat=server />

 </form>

 </body>

</html>

The body of this form has two textboxes: UserName and UserPassword and one
checkbox: PersistCookie. When this checkbox is checked, the cookie is persisted;
that is, the cookie information is not lost when the browser is closed.
When the user clicks on the login button, the login_click event is fired. This event
first uses the authenticate method of the FormsAuthentication class to
authenticate the user credentials. If the user is authenticated, the
RedirectFromLoginPage method is used to store the cookie (and if the
PersistCookie checkbox is checked, to persist the cookie) and to redirect the user
back to the page that was actually requested by the user.

The default.aspx form is the form that the user originally requests, and after the login
process, gets to see. This is its listing:

default.aspx

<%@ Import Namespace="System.Web.Security " %>

<html>

 <script language="VB" runat=server>

 Sub Page_Load(Src As Object, E As EventArgs)

 msg.Text = "Welcome, " + User.Identity.Name

 End Sub

 Sub Signout_Click(Src As Object, E As EventArgs)

 FormsAuthentication.SignOut()

 Response.Redirect("login.aspx")

 End Sub

 </script>

 <body>

 <h3>Using Cookie Authentication</h3>

 <form runat=server>

 <h3><asp:label id="msg" runat=server/></h3>

 <asp:button text="Signout" OnClick="Signout_Click" runat=server/>

 </form>

 </body>

</html>

In the page load event of this page, I access the user's name using the User class as
follows:

msg.Text = "Welcome, " + User.Identity.Name
The User class is available intrinsically from a Web page and has three methods:
IsAuthenticated, Name, and Type. The IsAuthenticated method returns a
Boolean specifying whether the user has been authenticated. The Name method returns
the username, and the Type method returns the type of authentication used.
Finally, clicking on the signout button clears the cookie using the SignOut method of the
FormsAuthentication class as follows:

Sub Signout_Click(Src As Object, E As EventArgs)

 CookieAuthentication.SignOut()

 Response.Redirect("login.aspx")

End Sub
Figure 13.1 is the screenshot of the login page. Figure 13.2 is the screenshot of a
successful login.

Figure 13.1: The login page.

Figure 13.2: A successful login.

Using a Database to Store Passwords
In this example, I will show you how you can use form-based authentication with the
passwords validated against a database table. I will store the passwords in an access
database called security.mdb. This implementation will comprise of three files:
web.config, default.aspx, and login.aspx. These files can be found in the "advanced"
folder of the samples folder of this chapter on the book's Web site at
www.premierpressbooks.com/downloads.asp . The web.config and default.aspx files
are identical to those discussed in the earlier example, with the exception that we do not
store the user credentials in the web.config file. The only file that is different is the
login.aspx file, the listing of which is below:

login.aspx (database version)

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Import Namespace="System.Web.Security " %>

<html>

 <script language="VB" runat=server>

 Sub Login_Click(Src As Object, E As EventArgs)

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Dim dv As DataView

 ConnStr = "PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=" &
server.mappath("security.mdb")

 myConnection = New OleDbConnection(ConnStr)

 'DataSetCommand

 SQL = "select * from passwords"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "passwords")

 dv = new DataView(ds.Tables("passwords"))

 dv.Sort = "UserName"

 dv.RowFilter = "UserName = '" + UserName.Value + "' and password = '" +
UserPass.Value +"'"

 if dv.count >=1 then

 FormsAuthentication.RedirectFromLoginPage(UserName.Value,
PersistCookie.Checked)

 Else

 Msg.Text = "Sorry Invalid username or password : Please try again"

 End if

 End Sub

 </script>

 <body>

 <form runat=server>

 <h3>Login Page</h3>

 <table>

 <tr>

 <td>User Name:</td>

 <td><input id="UserName" type="text" runat=server/></td>

 <td><ASP:RequiredFieldValidator ControlToValidate="UserName" Display="Static"
ErrorMessage="*"

 runat=server/></td>

 </tr>

 <tr>

 <td>Password:</td>

 <td><input id="UserPass" type=password runat=server/></td>

 <td><ASP:RequiredFieldValidator ControlToValidate="UserPass" Display="Static"
ErrorMessage="*"

 runat=server/></td>

 </tr>

 <tr>

 <td>Persistent Cookie:</td>

 <td><ASP:CheckBox id=PersistCookie runat="server" /> </td>

 <td></td>

 </tr>

 </table>

 <asp:button text="Login" OnClick="Login_Click" runat=server/>

 <p>

 <asp:Label id="Msg" ForeColor="red" Font-Name="Verdana" Font-Size="10"
runat=server />

 </form>

 </body>

</html>

In this example, I populate a DataSet with rows from the passwords table of
security.mdb. I then assign the default view of this DataSet to a DataView and filter for
the username and password supplied by the user as follows:

dv.Sort = "UserName"

dv.RowFilter = "UserName = '" + UserName.Value + "' and password = '" +
UserPass.Value +"'"
Finally, I check for the number of rows returned by using the count property of the
DataView. If the count > 1 then I log the user in; otherwise, I reject his credentials as
follows:

if dv.count >=1 then

 FormsAuthentication.RedirectFromLoginPage(UserName.Value,
PersistCookie.Checked)

Else

 Msg.Text = "Sorry Invalid username or password : Please try again"

End if

Passport Authentication Provider

Passport Authentication is a centralized authentication service provided by Microsoft
offering a single sign-in and core profile services for member sites. If you have an
account on Hotmail, passport is being used to authenticate you.
At the time of this writing, Microsoft had just released information and a White Paper on
Hailstorm. This product is a major technology component of Microsoft's .NET vision and
will include Web versions of Hotmail, MSN Messenger, and the Passport user
authentication product. The gist is that Passport will be like an Internet passport. Your
critical personal information will be stored at a central location and you will have full
control over it. Hence you will use the same password and username over all partner
sites. Your personal information will not have to be re-keyed in at these sites. The same
would apply to your address book and your bookmarks. These would be accessible from
any computer over the Web, and would be created only once. I have discussed various
issues pertaining to Hailstorm in Appendix B.

The general process of implementing the Passport authentication service is as follows:
1. Download and install Passport SDK from

http://www.passport.com/business. You will need to register and pay
fees for the SDK.

2. Set up Passport as the authentication mode in the configuration file as
follows:

3. <configuration>

4. <system.web>

5. <security>

6. <authentication mode ="Passport">

7. </authentication>

8. </security>

9. </system.web>

</configuration>
10. Implement Passport authentication and authorization following the

directions in the Passport documentation.

Passport requires that users of a site be registered with Passport. Users can register by
creating Hotmail or MSN accounts or by going directly to the password site and
registering there. When a user requests a protected resource and the request does not
contain a valid Passport ticket (cookie), the server returns a 302 error message and
redirects the user to the Passport Login service. Encrypted parameters about the original
request are passed on to Passport with the query string. Passport presents a login form
to the user, who supplies the required credentials and does a postback using SSL
(Secure Socket Layers). The login server of Passport authenticates the user and
redirects him back to the original URI with the authentication ticket encrypted in the
query string. The originating server detects the absence of the cookie and the presence
of the ticket on the query string and issues an authentication cookie. Subsequent
requests for the resource at the site are authenticated using the supplied ticket.

Windows-Based Authentication

Windows - or IIS-based authentication is straightforward. You just enable IIS basic
authentication in the IIS MMC, set up the users allowed to access a particular Web
application, and set up windows as the authentication mode in the configuration file.

Enabling Basic Security Authentication

The following example is using Windows NT.
1. Open IIS MMC. Right-click on Default Web Site and select

Properties/Directory Security/Edit.
2. Check the Basic Authentication checkbox, as shown in Figure 13.3.

Figure 13.3: Enabling Basic security.

Setting Permissions

You now need to set up ACL (access control lists) based on users or groups for your
application.

1. Go to the physical folder (not virtual folder) of the application. Right-
click and select the Security tab. On Windows NT you will see the
screen shown in Figure 13.4.

Figure 13.4: Setting permissions in Windows NT.

2. Set up the ACL based on users or groups for your application.

Edit the Web.config File

Modify the security section of the web.config file to enable Windows authentication as
follows:

<configuration>

 <system.web>

 <security>

 <authentication mode ="Windows">

 </authentication>

 </security>

 </system.web>

</configuration>
When a user tries to access a resource in the application, he is asked to log in, as shown
in Figure 13.5.

Figure 13.5: Windows-based login.

Summary
ASP.NET, combined with IIS, provides commendable security features. The form-based
security features provide the greatest amount of flexibility and the examples provided in
this chapter can be successfully applied to production sites. The Passport authentication
provider still needs to be tested for user acceptance. At the time of this writing,
companies like American Express, Click Commerce, eBay, Expedia.com, and Groove
Networks had adopted this provider to meet their authentication needs. Given Microsoft's
vision of Passport playing a pivotal part in the .NET design, many more companies are
sure to follow. I further discuss Passport, together with Hailstorm, in Appendix B.

Part II: Projects

Project List
Project 1: A Personal Finance Manager
Project 2: Web Services
Project 3: Inventory Management System
Project 4: The GenEditAdd Control
Project 5: Visual Studio.NET

Project 1: A Personal Finance Manager

Chapter List
§ Chapter 14: The Design of the Personal Finance Manager
§ Chapter 15: Chart of Accounts

§ Chapter 16: Transactions
§ Chapter 17: The Trial Balance Report

Project 1 Overview

A Personal Finance Manager is an accounting application like Quicken or Microsoft
Money that enables you to maintain bank accounts, cash, credit cards, and investment
accounts. You record all your deposits and expenses and the system generates many
reports that help you to monitor your financial health.

An accounting application is composed of many modules, each performing certain
specific tasks. A Personal Finance Manager handles cash, bank accounts, credit cards,
and other financial transactions. An Inventory module records movement of inventory
items, an Accounts Receivable module records customer transactions, and an Accounts
Payable module records supplier transactions. These modules need to talk to each
other. For example, when a customer buys some goods, the Financial Accounting
module needs to reflect the monetary value of the purchase, and the Inventory module
needs to be updated with the physical movement of the inventory items.

Traditionally, accounting applications have been developed around the client/server
model. The modules share a central database and are connected to each other with
some sort of a network protocol.

The Internet brings some very exciting possibilities to the traditional way of designing
applications. The various modules of an accounting application need no longer be
connected with wire. Using ASP.NET and web services, we can design applications that
can send and receive data using the Internet and HTTP.

In this Project, I want to show you how to build a Web-Enabled Personal Finance
Manager using ASP.NET web forms (we will extend this to incorporate web services
later in the book). Its design is steeped in the double entry system of accounting. You
can easily extend the concepts developed in this chapter to build other accounting
modules. In fact, each new module is actually a new web form that will be very similar to
the one that we design here.

Chapter 14: The Design of the Personal Finance
Manager
The Personal Finance Manager is based on the double entry system of accounting. I will
explain the relevant theory as I go along. In order to run the application, you need to
create a Microsoft SQL Server database called ASPNET and install various database
objects in it. Appendix A, "Installing the Sample Database," outlines the steps required to
accomplish this. The Personal Finance Manager uses five database tables. These are
the groups, masters, tr_header, transactions, and the tblSelection tables.
An update, delete, and insert trigger is associated with the transactions table. This
application also makes use of two stored procedures. These are the p_masters and the
p_transactions stored procedures.

Groups
There are four basic groups and two types in financial accounting. The groups are
Assets, Liabilities, Income, and Expenses, and the two types are Debits and Credits.
Each group is either of type "Debit" or type "Credit." Assets and Expenses are Debit
types, and Income and Liabilities are Credit types. Table 14.1 outlines the relationship
between Types and Groups.

Table 14.1 Relationship between Types and Groups

Group Debit
Type

Credit
Type

Asset x

Liability x

Income x

Expense x

Financial transactions are classified under these groups (or subgroups under these
groups). This allows you to prepare a Balance Sheet, a Profit and Loss statement, or a
cash flow statement from your financial data. The purpose of each of these reports is as
follows:
§ A Trial Balance is a report that shows all debit accounts on one side and all

credit accounts on the other. The sum of all credit balances should always
match the sum of all debit balances. The Trial Balance is the basis of
preparing the Profit and Loss account and the Balance Sheet.

§ Subtracting all Expenses from Income derives a Profit or Loss figure. Thus:
Profit or (Loss) = Income - Expenses

§ The Balance Sheet is a report that shows Assets plus Inventory on one side
and Liabilities + Profit or Loss (as derived above) on the other. These two
sides should be equal.

The Groups Table

I have provided some predefined groups that you can use in defining your Chart of
Accounts. Each Master Account in your Chart of Accounts will specify a group to which it
belongs. When you want to prepare a report like Balance Sheet or Profit and Loss, you
will do a summation based on groups. Thus, if you want to find out the total expenditure,
you would write a query as follows:

"Select sum (closing) from masters where code_category = '700'".
Here '700' is the code_category ("Group") for expenditure accounts.
You can use the groups table as it is. Table 14.2 is the definition of the groups table.

Table 14.2 The Groups Table Definition

Column Type Length Description

id char 3 "G" (group)
or "R"
(reserved
group)

code_display char 30 Descriptive
Name

code_value integer Primary
Value

code_category integer Parent
Group

type char 1 "A","L", "I",
"E"

Table 14.3 lists out the predefined groups included in the groups table.

Table 14.3 The Predefined Groups

id code_display code_value code_category type

Table 14.3 The Predefined Groups

id code_display code_value code_category type

R Capital account 1 L

R Long term loans 2 L

R Current
liabilities

3 L

R Fixed assets 4 A

R Investments 5 A

R Current assets 6 A

R Revenue
accounts

7 M

R Branch/divisions 8 A

R Reserves and
surplus

9 L

R Secured loans 201 2 L

R Unsecured
loans

202 2 L

R Duties taxes
payable (bs)

300 3 L

R Provisions 301 3 L

R Sundry creditors 302 3 L

R Bank od & limits 303 3 L

R Deposits
(assets)

601 6 A

R Advances
(assets)

602 6 A

R Sundry debtors 603 6 A

R Cash in hand 604 6 A

R Bank accounts 605 6 A

R Sales account 700 7 I

R Purchase
account

701 7 E

R Income account 702 7 I

R Duties and
taxes paid (p/l)

703 7 E

R Expenditure
account

704 7 E

R Advances -
excise a/cs

60200 602 A

R Expenses
(direct)

70400 704 E

Table 14.3 The Predefined Groups

id code_display code_value code_category type

R Expenses
(indirect)

70401 704 E

Note the coding structure of this table. The primary groups have a code_value (the
primary key value) of 1 to 9. Each subgroup under the primary group has a code_value
of 100 multiplied by the code_value of the parent group. Each sub-group account in
the same level has a sequential code value. Take the Revenue account classification.
Revenue account, which is the base account group for all Profit and Loss items, has a
code_value of 7. The Sale, Purchase, Income, Duties & Taxes paid and
Expenditure accounts all fall under the Revenue account classification. Hence they
have code_values of 700,701,702,703,704 respectively. Again the Expenses
(direct) account has a code_value of 70400. This is because it falls under the
Expenditure group which has a code_value of 704.
This method of code classification allows us to build queries that get all records for a
given group or subgroup. As I will tell you in a moment, each master account in the Chart
of Accounts is associated with a group. Each master account has a closing balance
field that is updated each time a transaction takes place. Suppose we wanted to find the
sum of the closing balance for all revenue accounts. The SQL query for this is: "Select
sum(closing) from masters where code_category = 7". Now suppose we
wanted to get all the expenditure accounts. The SQL query for this would be: Select *
from masters where substring(convert(varchar(13),code_value),1,3)
= '704'. If we apply this same query against the groups table we will get
Expenditure account, Expenses (direct) and Expenses (indirect).
Similarly to get only the Expenses (direct) records, we would say Select * from
masters where substring(convert(varchar(13),code_value),1,5) =
'70400'.

The Masters Table
A master account must be created for each Income, Expense, Asset, and Liability
account that you want to use. This is called the Chart of Accounts. The masters table
holds this information. Each master account must be associated with a group from the
groups table. You specify the group in the code_category field of the masters table.
Each account has a closing field. This field holds the closing balance of that account
at any given time. This field is automatically updated by triggers on the transactions
table. You use this field for displaying the closing balances in the Trial Balance, Profit &
Loss, and the Balance Sheet. Table 14.4 is the definition of the masters table.

Table 14.4 The Masters Table

Column Type Length Description

code_value integer Identity,
Primary
Value

code_display char 30 Descriptive
Name

code_category integer Group

type char 1 A, L, I, E

closing money Closing
Balance

opening money Opening

Table 14.4 The Masters Table

Column Type Length Description

Balance

The Transactions Header Table
The tr_header table records the header information for the transactions. This is
information like date, narration, document number, and so on. The primary key of the
tr_header is the document number (doc_no). Table 14.5 is the definition of the
tr_header table.

Table 14.5 The tr_header Table

Column Type Length Description

Id char 3 Voucher
Type
("Bank",
"Sales",
"Purchases"
)

date datetime Voucher
Date

doc_no int Primary Key

narr varchar 150 Narration

ref varchar 15 Reference

The Transactions Table
This transaction information will be stored in the transactions table. There will be a
debit and a credit transaction entry for each deposit or withdrawal. The primary key of
the transactions table is the document number and the serial number (doc_no + sn).
Table 14.6 gives the description of the transactions table.

Table 14.6 The Transactions Table

Column Type Length Description

doc_no integer Primary Key

sr_no money Primary Key

code_value integer n/a First
Masters a/c
Debited or
Credited

dr_amount money n/a Debit
Amount

cr_amount money n/a Credit
Account

posted_to integer n/a Second
Masters a/c
Debited or
Credited

The tr_header and the transactions tables are related on the doc_no field in each
table. There exists a one-to-many relationship between the two tables.

TblSelection Table
The tblSelection table has a structure as shown in Table 14.7.

Table 14.7 The tblSelection Table

Column Type Length Description

Selection Varchar 50 Records
user
account
selection

This table has a single column called selection. This table is used with the
Transactions web form that will be developed in Chapter 16. It is used to record the
account selection made by a user.
Figure 14.1 shows the database schema for this application.

Figure 14.1: The database schema for the Personal Finance Manager application.

Chapter 15: Chart of Accounts
In this chapter, I will build a web form that will be responsible for maintaining the
masters table. The maintenance functionality will include procedures to list, add,
modify, and delete master records.

Inserting and Updating Master Records
The logic for the insertion or deletion of records from the masters table is encapsulated
in the stored procedure p_masters. All the fields of the masters table are passed to
this procedure as input parameters. I introduced the p_masters stored procedure in
Chapter 4, "Data Binding," and showed how it was called from either a DataGrid or a
DataList.
The code_value is the primary key of the masters table. If a null code_value is
passed to the procedure, it builds an insert SQL action query using the passed
parameters. Otherwise it updates the masters table record which has the same
code_value as the one passed to the stored procedure.
In the case of a new record creation, the stored procedure assigns an account type to
the record. As explained in Chapter 14, "The Design of the Personal Finance Manager,"
this account type can be A,L,I, or E. This account type is determined by looking up
the type column in the groups table. To look up this value, you can pass either the
code of the group (the @code_category parameter) or the descriptive name of the
group (the @group_name parameter) to the stored procedure. If the @group_name
parameter is provided the group details are looked up as follows:

SELECT @grtype = type ,

@grCode_value = code_value

from Groups

WHERE code_display = rtrim(@group_name)
If this parameter is not supplied, the code_category parameter should be supplied and
this is used to look up the group details as follows:

SELECT @grtype = type ,

@grCode_value = code_value

from Groups

 WHERE code_value = @code_category
The following is the complete listing of p_masters:

Stored Procedure p_masters

create procedure p_masters

@code_value integer = null,

@code_display varchar(30),

@code_category integer = NULL ,

@type char(1)= NULL,

@opening money = 0 ,

@closing money =0,

@group_name varchar(30) = NULL

as

/***

This procedures creates or updates a new master record. If a null

code_value is passed, a record is inserted else the record is updated. You can

pass either the code of the group or the descriptive name of the group.

Example passing the code of the group (604):

execute p_masters 1,' Petty Cash a/c' ,604, 'A',0,0 ,NULL

Example passing the name of the group(Cash a/c):

p_masters 1,'Petty Cash a/c' ,604, 'A',0,0,'Cash a/c'

***/

DECLARE @flag integer

DECLARE @oldType as char(1)

DECLARE @grCode_value integer

DECLARE @grType as char(1)

IF isnull(@code_value,0) = 0

------------If code value = 0 then INSERT a new record ------------

 BEGIN

 IF Datalength(@group_name) > 1

 ----If the group_name is provided look up group

 ------details using the descriptive name

 Begin

 --Get Group Details

 SELECT @grtype = type ,

 @grCode_value = code_value

 from Groups

 WHERE code_display = rtrim(@group_name)

 End

 Else

 ---If a numeric code_value of the group is provided,

 ---look up the group details using it

 Begin

 SELECT @grtype = type ,

 @grCode_value = code_value

 from Groups

 WHERE code_value = @code_category

 End

 Insert into masters(code_category,code_display,type,opening,closing)

 Values(@grCode_value ,@code_display,@grtype,

 isnull(@opening,0),isnull(@closing,0))

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

ELSE

------------UPDATE a record if a code_value is passed------------

 BEGIN

 Update masters

 Set code_category = @code_category,

 code_display = @code_display,

 --type = @type, don't allow update of type

 opening =@opening,

 closing =@closing

 Where code_value =@code_value

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

SELECT 0

 GOTO doreturn

doerror:

Return - 100

doreturn:

RETURN 0

GO

The Masters Web Form
The Masters web form is the form that adds, updates, and deletes rows from the
masters table. In Chapter 4, I built the Masters form, step by step, and my last step was

to build Masters2.aspx. I built a call to the stored procedure p_masters but did not
actually execute it. Instead I wrote out the procedure call syntax to the screen.
Masters2.aspx did not have any addition or deletion capabilities. In this section, I will
enhance this form so that I can add, delete, and update records to the masters table.
Figure 15.1 shows what the form looks like.

Figure 15.1: The Masters web form.

Figure 15.2 shows what it looks like in Add mode. Figure 15.3 shows what it looks like in
Edit mode.

Figure 15.2: The Masters web form in the add mode allows creation of new records.

Figure 15.3: The Masters web form in the edit mode allows you to modify existing records.

I explained most of this script in Chapter 4 while discussing Masters2.aspx, so I will only
describe the additions to this form here.

Update Logic
The Sub Grid1_Update handles the Update logic. This function is fired when the grid
is activated in the Edit mode. In Chapter 4, I discussed building the SQL action query
string that makes a call to the stored procedure p_masters.

Grid1_Update

Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim code_display As String

 Dim code_category As String

 Dim type As String

 Dim opening As String

 Dim closing As String

 Dim myTextBox As TextBox

 'This is the key value : Retrieved from the DataKey, since it's a read only field

 Dim code_value as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_name")

 code_display = mytextbox.text

 myTextBox = E.Item.FindControl("edit_group")

 code_category = mytextbox.text

 myTextBox = E.Item.FindControl("edit_type")

 type = mytextbox.text

 myTextBox = E.Item.FindControl("edit_opening")

 opening = mytextbox.text

 myTextBox = E.Item.FindControl("edit_closing")

 closing = mytextbox.text

 'Now execute stored procedure

 sql = "Execute p_masters " + code_value + ", '" + code_display + " ',"

 sql = sql + code_category + ", '" + type +"' ," + opening + "," + closing

 RunSql(sql)

End Sub

This SQL query string is passed on to the function RunSql that does the actual work of
executing the SQL statement. Note that I extract the primary key (code_value) and
pass it on to the procedure. The existence of a valid code_value tells the procedure to
issue an update statement. If you pass it a null code_value, it will issue an insert
statement.

Adding Records
Three textboxes and one button have been added to the form. These controls reside on
a panel that has an id of AddPanel. In the aspx form, I have added HTML comments to
show where the section begins and ends.

Insert Logic Is the Form

<! ----- insert row logic------------>

<asp:Panel id="AddPanel" runat="server" Visible="false">

 <table style="font: 8pt verdana">

 <tr>

 <td colspan="2" bgcolor="#aaaadd" style="font:10pt verdana">

 Add a New Account:</td>

 </tr>

 <tr>

 <td nowrap>Name: </td>

 <td><asp:TextBox id="acode_display" runat="server" /></td>

 <td>

 <asp:RequiredFieldValidator runat="server"

 controltovalidate=acode_display

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td nowrap>Group: </td>

 <td>

 <asp:DropDownList DataTextField = "code_display"

 DataValueField = "code_value" id="acode_category" runat="server" />

 </td>

 </tr>

 <tr>

 <td nowrap>Opening Value: </td>

 <td><asp:TextBox id="aopening" value = "0" runat="server" /></td>

 </tr>

 <tr>

 <td style="padding-top:15">

 <asp:Button id="SubmitDetailsBtn" text="Submit"

 onclick="add_Click" runat="server" />

 </td>

 </tr>

 </table>

</asp:Panel>

<! ------------Insert Logic ends-------->

A button having an id of AddShow displays a caption "Add Account" on the web form.
Clicking this button fires the add_show Sub. This Sub simply sets the visible property
of the panel to true. When the panel is visible, all the controls on the panel also become
visible. At this point, all the textboxes are ready for accepting user input. The insert logic
is handled by the function add_click. It builds a SQL query string by extracting the text
properties of various textboxes. The following is the Sub:

The add_click Sub

Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 If acode_display.text = "" or acode_category.SelectedItem.Text = "" then

 response.write("Incomplete information")

 exit sub

 end if

 SQL = "Execute p_masters @code_value=NULL,"

 SQL = SQL + " @code_display = '" + acode_display.text + "' , @group_name = '"

 SQL = SQL + acode_category.SelectedItem.Text + "' , @type = NULL ,"

 SQL = SQL + " @opening =" + aopening.text + ", @closing = 0"

 RunSql(sql)

 'reset values

 acode_display.text = ""

 aopening.text = ""

 hidePanel()

End Sub

Note that we are passing a NULL code_value to the procedure. This fires an insert
statement. This SQL query string is passed on to the function RunSql, which does the
actual work of executing the SQL statement.

Delete Mode
The Delete mode is activated when the user clicks on the delete link. I simply build a
delete SQL action query and pass it on to the function RunSql that actually executes
this query.

Sub Grid1_delete

Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim code_value As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = "Delete from masters where code_value = " + cstr(code_value)

 RunSql(sql)

End Sub

The RunSql Function
This is a generic function that can execute a SQL action query. The SQL query is passed
to it as a parameter. The Grid1_update Sub, the Add_click Sub, and the
Grid1_delete Sub make use of this function to update, add, or delete a record. This
function opens a database connection, executes the query using ExecuteNonQuery,
and finally closes the connection. It catches OleDbExceptions and other exceptions and
writes them out to the screen in red.

Sub RunSql

Sub RunSql(sql as string)

 try

 Dim mycommand2 As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 myCommand2.ExecuteNonQuery()

 myConnection.Close()

 'turn off editing

 Grid1.EditItemIndex = -1

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 Message.Text = "SQL Error.Details follow:

" & errString

 Message.Style("color") = "red"

 Catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 Message.Style("color") = "red"

 End try

 rebind

 response.write(sql)

End Sub

The following is the complete code listing:
Masters3.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="masters3.vb" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim code_display As String

 Dim code_category As String

 Dim type As String

 Dim opening As String

 Dim closing As String

 Dim myTextBox As TextBox

 'This is the key value : Retrieved from the DataKey, since it's a read only field

 Dim code_value as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_name")

 code_display = mytextbox.text

 myTextBox = E.Item.FindControl("edit_group")

 code_category = mytextbox.text

 myTextBox = E.Item.FindControl("edit_type")

 type = mytextbox.text

 myTextBox = E.Item.FindControl("edit_opening")

 opening = mytextbox.text

 myTextBox = E.Item.FindControl("edit_closing")

 closing = mytextbox.text

 'Now execute stored procedure

 sql = "Execute p_masters " + code_value + ", '" + code_display + "',"

 sql = sql + code_category + ", '" + type +"' ," + opening + "," + closing

 RunSql(sql)

 End Sub

 Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 If acode_display.text = "" or acode_category.SelectedItem.Text = "" then

 response.write("Incomplete information")

 exit sub

 end if

 SQL = "Execute p_masters @code_value=NULL,"

 SQL = SQL + " @code_display = '" + acode_display.text + "' , @group_name = '"

 SQL = SQL + acode_category.SelectedItem.Text + "' , @type = NULL ,"

 SQL = SQL + " @opening =" + aopening.text + ", @closing = 0"

 RunSql(sql)

 'reset values

 acode_display.text = ""

 aopening.text = ""

 hidePanel()

 End Sub

 Sub add_show(Source As Object, E As EventArgs)

 AddPanel.visible = true

 End Sub

 Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim code_value as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = "Delete from masters where code_value = " + cstr(code_value)

 RunSql(sql)

 End Sub

 </script>

 <body style="font: 10pt verdana">

 <form runat="server">

 <asp:ValidationSummary runat=server headertext="There were errors on the page:" />

 <asp:HyperLink runat="server" Text="Trial Balance" NavigateUrl="TrialBalance.aspx">

 </asp:HyperLink>

 <asp:HyperLink runat="server" Text="Transactions" NavigateUrl="selection.aspx">

 </asp:HyperLink>

 <asp:HyperLink runat="server" Text="Home" NavigateUrl="default.aspx">

 </asp:HyperLink>

 <h3>Chart of Accounts </h3>

 <asp:Label id="Message" runat="server"/>

 <asp:Button id="Addshow" text="Add Account" onclick="add_show" runat="server" />

 <table width="95%">

 <tr>

 <td valign="top">

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="code_value">

 <Columns>

 <asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Edit"

 HeaderStyle-Wrap="false"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete"

 HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Account #" ReadOnly="true"

 DataField="code_value"/>

 <asp:TemplateColumn HeaderText="Name" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:RequiredFieldValidator runat=server

 controltovalidate=edit_Name

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator>

 <asp:TextBox id="edit_name"

 Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Group" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("category") %>'

 runat="server" />

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_group" BorderStyle="None"

 Readonly="True" Text='<%# Container.DataItem("code_category") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Type" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("type") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_type" BorderStyle="None"

 Readonly="True" Text='<%# Container.DataItem("type") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Opening" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("opening") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_opening"

 Text='<%# Container.DataItem("opening") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Closing" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("closing") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_closing" BorderStyle="None"

 Readonly="True" Text='<%# Container.DataItem("closing") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true">

 </HeaderStyle >

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 </asp:DataGrid>

 </td>

 <td valign="top">

 <!---- insert row logic-------->

 <asp:Panel id="AddPanel" runat="server" Visible="false">

 <table style="font: 8pt verdana">

 <tr>

 <td colspan="2" bgcolor="#aaaadd" style="font:10pt verdana">

 Add a New Account:</td>

 </tr>

 <tr>

 <td nowrap>Name: </td>

 <td><asp:TextBox id="acode_display" runat="server" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=acode_display

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator></td>

 </tr>

 <tr>

 <td nowrap>Group: </td>

 <td><asp:DropDownList DataTextField = "code_display"

 DataValueField = "code_value" id="acode_category"

 runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Opening Value: </td>

 <td><asp:TextBox id="aopening" value = "0" runat="server" /></td>

 </tr>

 <tr>

 <td style="padding-top:15">

 <asp:Button id="SubmitDetailsBtn" text="Submit" onclick="add_Click"

 runat="server" />

 </td>

 </tr>

 </table>

 </asp:Panel>

 <!------Insert Logic ends -------->

 </td>

 </tr>

 </table>

 </form>

 </body>

</html>

Masters3.vb is the Code Behind file and is as follows:
Masters3.vb (Code Behind)

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label

 Protected acode_category as dropdownlist

 Protected AddPanel as Panel

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 Connstr = Connstr + " Initial Catalog=ASPNET;User ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("masters").DefaultView

 Grid1.DataBind()

 SQL = "Select * from groups order by code_display"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "groups")

 'populate drop down list

 acode_category.DataSource=ds.Tables("groups").DefaultView

 acode_category.DataBind()

 hidePanel()

 End Sub

 Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub hidePanel()

 If AddPanel.visible = true then

 AddPanel.visible = false

 end if

 End Sub

 Sub RunSql(sql as string)

 try

 Dim mycommand2 As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 myCommand2.ExecuteNonQuery()

 myConnection.Close()

 'turn off editing

 Grid1.EditItemIndex = -1

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 Message.Text = "SQL Error.Details follow:

" & errString

 Message.Style("color") = "red"

 Catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 Message.Style("color") = "red"

 End try

 rebind

 response.write(sql)

 End Sub

End Class

Chapter 16: Transactions

Overview
The Personal Finance Manager maintains cash, bank, and credit card transactions. Each
transaction will always have two effects: a debit entry and a credit entry. Debits and
credits are applied according to some basic accounting rules. A detailed discussion of

these rules is beyond the scope of this book. However, I shall outline the rules that are
relevant to creating transaction entries in the Personal Finance Manager. The Personal
Finance Manager deals with two basic transactions—deposits and withdrawals. The
rules for these are summarized in Table 16.1.
Table 16.1 Rules for Deposits and Withdrawals

Transaction Debit Credit

Deposit Bank,
Cash or
Credit
Card

Income
(exam
ple:
Salary
or
Interes
t)

Withdrawal Expense
(exampl
e: Rent
or
Utilities)

Bank,
Cash
or
Credit
Card

Inserting and Updating Transactions
Like the masters table, I have a procedure that inserts or updates a transaction's entry
in the tr_header and the transactions table. This is the procedure p_trans, the
listing of which is as follows:

Stored Procedure p_trans

create procedure p_trans

@date datetime ,

@ref varchar(30) = NULL,

@dr_amount money = 0,

@cr_amount money =0,

@posted_to integer,

@id char(3),

 @doc_no integer = NULL,

@narr varchar(150) = NULL

as

/**

Author: Hersh Bhasin

This procedure creates or modifies a transaction record.

Each transaction record will have a entry in tr_header and

two records (a debit and a credit record) in the tranasaction table.

Usage:

To Insert a record:

call with a null doc_no to insert

example : exec p_trans @date="01/01/2001", @ref="test",

@code_value = 1, @dr_amount = 10, @cr_amount=0,

@posted_to = "Sales a/c" ,@id="RPT",@doc_no=Null

To modify a record:

call with an existing doc_no:

example : exec p_trans @date="01/01/2001", @ref="test",

@code_value = 1, @dr_amount = 10, @cr_amount=0,

@posted_to = "Sales a/c" ,@id="RPT",@doc_no=50

**/

DECLARE @ll_doc integer

DECLARE @ret integer

DECLARE @code_value integer

/*

Get the selected cash/bank account:

The user makes a selection from selection.aspx

and tblselection is updated with the code_value

*/

Select @code_value = selection from tblSelection

BEGIN TRANSACTION

IF isnull(@doc_no,0) = 0

 --INSERT—

 BEGIN

 —SafeGuard : Check if tranaction with same ref# exists. If so do not insert

 select @ret = count(*) from tr_header where ref = @ref

 if @ret > 0

 BEGIN

 --raiserror (53000, 1,16)

 GOTO doerror

 END

 Select @ll_doc = isnull(max(doc_no),0)+1 from tr_header

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

ELSE

 ------UPDATE ------------

 BEGIN

 SELECT @ll_doc = @doc_no

 Delete from transactions where doc_no = @doc_no

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 Delete from tr_header where doc_no = @doc_no

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

 BEGIN

 INSERT INTO tr_header (id, date,ref, doc_no ,narr) VALUES

 (@id, isnull(@date,getdate()),@ref, @ll_doc, @narr)

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 INSERT INTO transactions (doc_no, dr_amount, cr_amount,

 code_value, sr_no,posted_to)

 VALUES

 (@ll_doc, isnull(@dr_amount,0), ISNULL(@cr_amount,0),

 @code_value, 1 ,@posted_to)

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 INSERT INTO transactions (doc_no, dr_amount, cr_amount,

 code_value, sr_no, posted_to)

 VALUES

 (@ll_doc, ISNULL(@cr_amount,0),ISNULL(@dr_amount,0),

 @posted_to, 2 ,@code_value)

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

END

COMMIT TRANSACTION

SELECT 0

GOTO doreturn

doerror:

Rollback TRANSACTION

doreturn:

RETURN 0

SELECT -100

go

This procedure gets called from a DataGrid whenever a new transaction is added or an
existing transaction is modified. To add (insert) a new record, you will pass an null
document number (i.e. doc_no = null) to the stored procedure. In this case, the
procedure selects the maximum doc_no, increments it by one and stores it in the
variable @ll_doc. A tr_header record, having a doc_no equal to @ll_doc, is
created with the passed parameters.
To modify (updat e) an existing transaction, you pass the doc_no of the transaction to be
modified to the procedure. The procedure stores the passed document number to the
variable @ll_doc. It then deletes the transactions with this doc_no because they will be
re-created with the passed parameters.
You might wonder why we have to delete and then reinsert the records instead of using
an update statement. The reason for this process is that there are triggers associated
with this table, which updates the closing balance field in the masters table (I will
discuss the triggers in the next section). If you modify the account to which the
transaction is debited or credited (say you want to change the transaction account from
Rent to Utilities), you will have to reinstate the Rent account closing balance to its state
prior to the transaction. You will also have to update the closing balance of the Utilities
account to reflect this transaction. This is simple to accomplish if you delete and reinsert
the transaction. The delete trigger on the transactions table will reinstate the Rent
account to its original value. The insert trigger on the transactions table will update
the closing balance figure of the Utilities account with the transaction amount.
For both the insert and the update modes, the procedure then creates two equal and
opposite transactions in the transactions table. The doc_no field for both the
transaction records is the number stored in the variable @ll_doc. The two Master
accounts affected are specified by the @code_value parameter and the @posted_to
parameter. The first transaction is given a sn of 1, the second a sn of 2 (if you
remember, the primary key of the transactions table is doc_no + sn. This
procedure in effect creates two records that have the same doc_no but sequential
sn's, thus creating two unique records). The dr_amount and the cr_amount in the
first transaction are switched and made the cr_amount and the dr_amount in the
second transaction. In this way, this procedure creates an equal debit and credit
transaction.

Updating the Closing Balance Field in the Masters Table
I have an insert, update, and delete trigger on the transactions table. Each time a
record is added, deleted, or updated, these triggers update the closing balance field of
the appropriate account. The advantage of this technique is that we have the closing
balances ready at any time and our reports can be compiled quickly. If I did not follow

this technique, each time I have to display a report, I would have to sum the debits and
credits in the transactions table. In a large database, where I have to add hundreds
of rows, my session would time out, and such an application would be impossible to
implement. The triggers are as follows:
insert_mstr is an insert trigger on the table transactions. Its code is as follows:

insert_mstr

CREATE TRIGGER insert_mstr ON transactions for insert as

Declare @sql varchar(200)

DECLARE @mtype char(1)

DECLARE @amount money

SELECT @mtype = masters.type

FROM masters, inserted

WHERE (masters.code_value = inserted.code_value)

SELECT *

into #temp

from inserted

If @mtype = 'A' or @mtype = 'E'

 BEGIN

 SELECT @amount = ISNULL(#temp.dr_amount,0) - ISNULL(#temp.cr_amount,0)

 FROM #temp

 END

ELSE

 BEGIN

 SELECT @amount = ISNULL(#temp.cr_amount,0) - ISNULL(#temp.dr_amount,0)

 FROM #temp

 END

UPDATE MASTERS

SET closing = closing + @amount

FROM masters, #temp WHERE (masters.code_value = #temp.code_value)

update_mstr is an update trigger on the table transactions. Its code is as follows:

update_mstr

CREATE TRIGGER update_mstr ON transactions for update as

Declare @sql varchar(200)

DECLARE @mtype char(1)

DECLARE @amount money

SELECT @mtype = masters.type

FROM masters, inserted

WHERE (masters.code_value = inserted.code_value)

SELECT *

into #temp

from inserted

SELECT *

into #t2

from deleted

If @mtype = 'A' or @mtype = 'E'

 BEGIN

 SELECT @amount = ISNULL(#temp.dr_amount,0)

 - ISNULL(#temp.cr_amount,0)

 - ISNULL(#t2.dr_amount,0) + isnull(#t2.cr_amount ,0)

 FROM #temp, #t2

 WHERE #temp.code_value = #t2.code_value

END

ELSE

 BEGIN

 SELECT @amount = ISNULL(#temp.cr_amount,0)

 - ISNULL(#temp.dr_amount,0)

 - ISNULL(#t2.cr_amount,0) + isnull(#t2.dr_amount ,0)

 FROM #temp, #t2

 WHERE #temp.code_value = #t2.code_value

 END

UPDATE Masters

SET Closing = Closing + @amount

FROM masters, #temp WHERE (masters.code_value = #temp.code_value)

delete_mstr is a delete trigger on the table transactions. Its code is as follows:

delete_mstr

CREATE TRIGGER delete_mstr ON transactions for delete as

Declare @sql varchar(200)

DECLARE @mtype char(1)

DECLARE @mmonth char(3)

DECLARE @amount money

DECLARE @mstr_amount money

SELECT *

into #temp

from deleted

UPDATE Masters

SET Closing = isnull(Closing,0)-

(ISNULL(t.dr_amount,0)-ISNULL(t.cr_amount,0))

FROM masters m, #temp t

WHERE m.code_value = t.code_value

AND m.type in("A","E")

UPDATE Masters

SET Closing = isnull(Closing,0)-

(ISNULL(t.cr_amount,0) - ISNULL(t.dr_amount,0))

FROM masters m, #temp t

WHERE m.code_value = t.code_value

AND m.type in("I","L")

Discussion on the Triggers
Microsoft SQL Server maintains an inserted and a deleted table that is used with
triggers. An inserted table is a SQL Server table that holds the inserted values in case
of an insert statement or the updated values in case of an update statement. A deleted
table is a Microsoft SQL Server table that holds the original values in case of an update
statement or the deleted value in case of a delete statement. These tables have the
same fields as the table it references, which in this case is the transactions table. We
can join the inserted or deleted table with any other table. This is the logic followed by
the triggers on an insert, update, or delete.
§ Each of these triggers looks at the type (that is, "A", "L", "I", "E").
§ If the Masters type is a debit type (that is, A or E), the formula for the closing

balance is:

Closing balance = dr_amount-cr_amount
§ If the type is credit, the formula for the closing balance is:

Closing balance = cr_amount - dr_amount
Table 16.2 summarizes the formula for the closing balance calculations used by these
three triggers.

Table 16.2 Closing Balance Calculations

Action Trigger Formula for updating Masters
closing balance

Insert insert_mstr For A, E: closing+
(inserted.dr_amount -
inserted.cr_amount)
For I, L: closing+
(inserted.cr_amount -
inserted.dr_amount)

Update update_mstr A, E:
closing+(inserted.dr_amo
unt -
inserted.cr_amount)
(deleted.dr_amount -
deleted.cr_amount)
I,L :
closing+(inserted.cr_amo
unt -

Table 16.2 Closing Balance Calculations

Action Trigger Formula for updating Masters
closing balance
inserted.dr_amount)-
(deleted.cr_amount -
deleted.dr_amount)

Delete delete_mstr For A, E : closing -
(deleted.dr_amount -
deleted.cr_amount)
For I, L : closing -
(deleted.cr_amount -
deleted.dr_amount)

Transaction Maintenance

Transaction maintenance involves adding, modifying, and deleting transactions. This
implementation comprises two web forms, one Code-Behind form, and one stored
procedure. These are as follows:

1. The Selection Web Form (selection.aspx).
2. The Transactions Web Form (transactions.aspx) and the Code-Behind

form (transactions.vb).
3. Stored Procedure (p_trans).

The Selection Form

The Selection form is a simple form that displays a drop-down list of all the bank, cash,
or credit card master accounts defined in the system. The user chooses the appropriate
financial account that he wants to work with and clicks on a Submit button. This takes
him to the Transactions web form where the actual processing takes place.
Figure 16.1 shows what the Selection form looks like.

Figure 16.1: The Selection form allows you to select a bank or cash account.

The code listing of the Selection form is as follows:
Selection.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub SubmitBtn_Click(sender As Object, e As EventArgs)

 Session("TheSelectionText")= Selection.SelectedItem.Text

 Session("TheSelectionValue")= Selection.SelectedItem.Value

 Response.Redirect("Transactions.aspx")

 End Sub

 Sub ReBind()

 'DataSetCommand

 SQL = "Select * from masters where code_category in (604,605) "

 SQL = SQL + " order by code_display"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Masters")

 Selection.DataSource=ds.Tables("Masters").DefaultView

 Selection.DataBind()

 End Sub

 </script>

 <body>

 <h3>Financial Account Selection</h3>

 <form runat="server" >

 Select Cash or Bank Account :<asp:DropDownList

 DataTextField = "code_display"

 DataValueField = "code_value" id="selection" runat="server" />

 <asp:Button text="Go" runat="server" OnClick="SubmitBtn_Click" />

 </form>

 </body>

</html>

The Selection form presents a drop-down list of all the cash, bank, or credit card
accounts defined in the system (that is, master accounts with code_category of 604
or 605). This form posts to the Transactions form, and in the page_load event of this
form, the passed code_value is extracted.

The Transaction Form
The Transactions web form is similar to the Masters web form. It enables users to add
and modify records. The add functionality is provided by textboxes, residing on a panel
which is made visible when the Add button is clicked. A DataGrid implements the
"modify" functionality. Figure 16.2 shows what the form looks like. Figure 16.3 shows
what it looks like in Add mode.

Figure 16.2: The Transactions form.

Figure 16.3: The Transactions form in Add mode.

page_load Event
The page_load event creates a new connection to the database. It then extracts the
code_value passed to it from the Selection form and stores it into the variable code.
This is the primary key of the master's record selected by the user. It then calls the
UpdateSelection function with this value.

Transactions.aspx Page_Load Event

Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 Dim code as string, display as string

 code = Session("TheSelectionValue")

 title.text = Session("TheSelectionText")

 if code = "" then

 response.redirect("selection.aspx")

 end if

 UpdateSelection(code)

 rebind

 end if

End Sub

The UpdateSelection Function
The tblSelections table contains a single column called selection. The
code_value of the account selected by the user is stored here. This value will later be
used in the function ReBind to bind the DataGrid. The following is the script of the
function:

Sub UpdateSelection

Sub UpdateSelection(vselection)

 sql = "delete from tblSelection "

 sql = sql + " insert into tblSelection(selection)"

 sql = sql + " values('" + vselection + "')"

 runSql(sql)

End Sub

The Rebind Function
The ReBind function binds the DataGrid to a SQL query, first at the Page_Load event,
and then whenever the data changes and the grid needs to be refreshed. The following
is the script of the function:

Sub ReBind

Sub ReBind()

SQL = " select m.code_value,m.code_display,t.*, h.* ,"

 sql = sql + "(select code_display from masters where code_value = t.posted_to) "

 sql = sql + " as posted_display "

 sql = sql + " from tr_header h,transactions t, masters m "

 sql = sql + " where t.doc_no = h.doc_no "

 sql = sql + " and m.code_value = t.code_value"

 sql = sql + " and m.code_value = (select selection from tblSelection)"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method to populate dataset

 myCommand.Fill(ds, "transactions")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("transactions").DefaultView

 Grid1.DataBind()

 'populate account selection drop down list which is

 'visible in the add mode

 SQL = "Select * from masters where code_value <> "

 SQL = SQL + " (select selection from tblSelection)"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "masters")

 aposted_display.DataSource=ds.Tables("masters").DefaultView

 aposted_display.DataBind()

 addshow.visible = true

Notice how the code_value is extracted from the tblSelection table in the last line
of the query.

sql = sql + "and m.code_value = (select selection from tblSelection)".
The UpdateSelection function had previously inserted the selected code_value in
the table tblSelection. This function populates an OleDbDataAdapter with the SQL
query, and the Fill method of the OleDbDataAdapter populates the Transactions table
of the DataSet with the rows existing in the OleDbDataAdapter. The DataGrid Grid1 is
then bound to the default view of the Transactions table of the DataSet. The addshow
button is made visible. Clicking on this button, in turn, makes the panel visible and the
user can then add a transaction.

The Add Mode
When the addshow button is clicked, the add_show Sub is fired. This Sub simply sets
the visible property of the panel AddPanel to visible. This, in turn, makes all the
controls residing on this panel visible.

Sub add_show

Sub add_show(Source As Object, E As EventArgs)

 AddPanel.visible = true

End Sub

The input controls for the Insert mode have been marked in Transactions.aspx within
HTML comment blocks Insert Logic Starts and Insert Logic Ends. Each
control has an associated id property, which will be used later to refer to the control.

There is a RequiredFieldValidator attached to the Date and ref columns. The
ref needs to be a unique field. The stored procedure p_trans, which gets called when
a transaction needs to be added to the database, checks to see whether this field is
unique. If not, the procedure will not do anything and will return an error condition. The
add_click button is fired when the user clicks on the submitDetails button. This
Sub builds a SQL execute query and passes it on to the RunSql function, which in turn
executes it. The following is the script for the add_click button:

Sub add_click

Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 sql = "Execute p_trans @date = '" + adate.text + "' ,"

 sql = sql + "@ref= '" + aref.text + "', @dr_amount = "

 sql = sql + adr_amount.text + ",@cr_amount = "

 sql = sql + acr_amount.text +" , @posted_to = '"

 sql = sql + aposted_display.SelectedItem.value + "' ,"

 sql = sql + "@id = 'RPT', @doc_no = NULL" + ", @narr= '"

 sql = sql + anarr.text + "'"

 RunSql(sql)

 rebind()

 hidePanel()

End Sub

The hidePanel function simply hides the panel (by setting its visible property to 0)
and sets the values of all the textboxes to "".

The Update Mode
The DataGrid is activated in the Edit mode when the edit link is clicked. The user
makes the appropriate changes and clicks on the Ok link. This fires off the
Grid1_Update function. The primary key value and other textboxes' values are
extracted and a SQL procedure call string is built. This string is passed onto the RunSql
function, which makes the actual procedure call.

Sub Grid1_Update

Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim vdate As String

 Dim ref As String

 Dim code_value As String

 Dim dr_amt As String

 Dim cr_amt As String

 Dim posted_display As String

 Dim id As String

 Dim narr As String

 Dim myTextBox As TextBox

 'This is the key value : Retrieved from the DataKey, since it's a read only field

 Dim doc_no as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_date")

 vdate = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_ref")

 ref = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_dr_amt")

 dr_amt = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_cr_amt")

 cr_amt = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_posted_display")

 posted_display= trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_narr")

 narr = trim(mytextbox.text)

 'Now execute stored procedure

 sql = "Execute p_trans @date = '" + vdate+ "' ,@ref= '"

 sql = sql + ref + "', @dr_amount ="

 sql = sql + dr_amt + ",@cr_amount = "

 sql = sql + cr_amt +" , @posted_to = " + posted_display + " ,"

 sql = sql + "@id = 'RPT', @doc_no = " + doc_no + ", @narr= '" + narr+ "'"

 RunSql(sql)

 rebind()

End Sub

Function RunSql

This is a generic function, which executes a SQL Action statement against the database.
This is the same function that we discussed in relation to the Masters web form and the
code is exactly the same.

The Delete Mode
I have created a ButtonColumn which has a CommandName of "Delete" as follows:

<asp:ButtonColumn Text = "Delete", CommandName = "Delete", HeaderText =
"Delete"/>.
In the DataGrid tag, I have specified the OnDeleteCommand to fire the Grid1_delete
function. This function gets fired each time the user clicks on the delete hyperlink. The
Grid1_delete function sends a SQL delete query to the RunSql function, which
deletes all tr_header and transactions records having a document number equal
to the clicked doc_no.

The Delete Sub

Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim doc_no as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = " Delete from transactions where doc_no = " + cstr(doc_no)

 sql = sql + " Delete from tr_header where doc_no = " + cstr(doc_no)

 RunSql(sql)

 rebind()

End Sub

Here is the complete code listing.
transactions.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="transactions.vb" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim vdate As String

 Dim ref As String

 Dim code_value As String

 Dim dr_amt As String

 Dim cr_amt As String

 Dim posted_display As String

 Dim id As String

 Dim narr As String

 Dim myTextBox As TextBox

 'This is the key value : Retrieved from the DataKey, since it's a read only field

 Dim doc_no as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_date")

 vdate = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_ref")

 ref = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_dr_amt")

 dr_amt = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_cr_amt")

 cr_amt = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_posted_display")

 posted_display= trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_narr")

 narr = trim(mytextbox.text)

 'Now execute stored procedure

 sql = "Execute p_trans @date = '" + vdate+ "' ,@ref= '"

 sql = sql + ref + "', @dr_amount ="

 sql = sql + dr_amt + ",@cr_amount = "

 sql = sql + cr_amt +" , @posted_to = " + posted_display + " ,"

 sql = sql + "@id = 'RPT', @doc_no = " + doc_no + ", @narr= '" + narr+ "'"

 RunSql(sql)

 rebind()

 End Sub

 Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 sql = "Execute p_trans @date = '" + adate.text + "' ,"

 sql = sql + "@ref= '" + aref.text + "', @dr_amount = "

 sql = sql + adr_amount.text + ",@cr_amount = "

 sql = sql + acr_amount.text +" , @posted_to = '"

 sql = sql + aposted_display.SelectedItem.value + "' ,"

 sql = sql + "@id = 'RPT', @doc_no = NULL" + ", @narr= '"

 sql = sql + anarr.text + "'"

 RunSql(sql)

 rebind()

 hidePanel()

 End Sub

 Sub add_show(Source As Object, E As EventArgs)

 AddPanel.visible = true

 End Sub

 Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim doc_no As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = " Delete from transactions where doc_no = " + cstr(doc_no)

 sql = sql + " Delete from tr_header where doc_no = " + cstr(doc_no)

 RunSql(sql)

 rebind()

 End Sub

 </script>

 <body style="font: 10pt verdana">

 <asp:ValidationSummary runat=server

 headertext="There were errors on the page:" />

 <form runat="server">

 <h3> Transactions for Account #

 <asp:Label id="title" runat="server"/>

 </h3>

 <asp:HyperLink runat="server" Text="Financial Account Selection "

 NavigateUrl="selection.aspx"></asp:HyperLink>

 <asp:HyperLink runat="server" Text="Masters" NavigateUrl="masters3.aspx">

 </asp:HyperLink>

 <asp:HyperLink runat="server" Text="Trial Balance" NavigateUrl="TrialBalanc e.aspx">

 </asp:HyperLink>

 <asp:HyperLink runat="server" Text="Home" NavigateUrl="default.aspx">

 </asp:HyperLink>

 <table width="95%">

 <tr><td>

 <asp:Button id="Addshow" visible = "false" text="New Transaction"

 onclick="add_show" runat="server" />

 </td></tr>

 <hr>

 <tr>

 <td valign="top">

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="doc_no">

 <Columns>

 <asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Edit"

 HeaderStyle-Wrap="false"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete" HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Doc #" ReadOnly="true" DataField="doc_no"/>

 <asp:TemplateColumn HeaderText="Ref" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("ref") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_ref" Text='<%# Container.DataItem("ref") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Date" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("date") %>'runat="server" />

 </ItemTemplate>

 <EditItemTemplate >

 <asp:TextBox id="edit_date" BorderStyle="None" Readonly="True"

 Text='<%# Container.DataItem("date") %>' runat="server" />

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Payee" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("posted_display") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_posted_display"

 Text='<%# Container.DataItem("posted_to") %>'

 runat="server" ReadOnly="true" BorderStyle="None" />

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Narration" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("narr") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_narr" Text='<%# Container.DataItem("narr") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Deposit" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("dr_amount") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_dr_amt"

 Text='<%# Container.DataItem("dr_amount") %>' runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Payment" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("cr_amount") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_cr_amt"

 Text='<%# Container.DataItem("cr_amount") %>' runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font -Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 </asp:DataGrid>

 </td>

 <td valign="top">

 <! ----insert row logic------------>

 <asp:Panel id="AddPanel" runat="server" Visible="false">

 <table style="font: 8pt verdana">

 <tr>

 <td colspan="2" bgcolor="#aaaadd" style="font:10pt verdana">

 Add a New Transaction:</td>

 </tr>

 <tr>

 <td nowrap>Date (Required): </td>

 <td><asp:TextBox id="adate" runat="server" value = "" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=adate

 errormessage="Date is required.">*

 </asp:RequiredFieldValidator></td>

 </tr>

 <tr>

 <td nowrap>Reference (Required/ must be unique): </td>

 <td><asp:TextBox id="aref" value = "" runat="server" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=aref

 errormessage="A unique reference # is required.">*

 </asp:RequiredFieldValidator></td>

 </tr>

 <tr>

 <td nowrap>Account Posted To: </td>

 <td><asp:DropDownList DataTextField = "code_display"

 DataValueField = "code_value" id="aposted_display" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Narration: </td>

 <td><asp:TextBox id="anarr" value = "" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Deposit Amount: </td>

 <td><asp:TextBox id="adr_amount" value = 0 runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Payment Amount: </td>

 <td><asp:TextBox id="acr_amount" value = 0 runat="server" /></td>

 </tr>

 <tr>

 <td style="padding-top:15">

 <asp:Button id="SubmitDetailsBtn" text="Submit" onclick="add_Click"

 runat="server" />

 </td>

 </tr>

 </table>

 </asp:Panel>

 <!--------Insert Logic ends ------>

 </td>

 </tr>

 </table>

 <hr>

 <asp:Label id="Message" runat="server"/>

 </form>

 </body>

</html>

Transactions.vb is the Code Behind file. It has the following code:
Transactions.vb (Code Behind)

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label, title as label

 Protected aposted_display as dropdownlist, selection as dropdownlist

 Protected AddPanel as Panel

 Protected adate as TextBox, aref as TextBox, adr_amount as TextBox

 Protected acr_amount as TextBox , anarr as TextBox

 Protected addshow as button

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local);

 ConnStr = ConnStr + " Initial Catalog=ASPNET;User ID=sa;" "

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 Dim code as string, display as string

 code = Request.Form("Selection")

 title.text = code

 if code = "" then

 response.redirect("selection.aspx")

 end if

 UpdateSelection(code)

 rebind

 end if

 End Sub

 Sub ReBind()

 SQL = " select m.code_value,m.code_display,t.*, h.* ,"

 sql = sql + "(select code_display from masters where code_value = t.posted_to) "

 sql = sql + " as posted_display "

 sql = sql + " from tr_header h,transactions t, masters m "

 sql = sql + " where t.doc_no = h.doc_no "

 sql = sql + " and m.code_value = t.code_value"

 sql = sql + " and m.code_value = (select selection from tblSelection)"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method to populate dataset

 myCommand.Fill(ds, "transactions")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("transactions").DefaultView

 Grid1.DataBind()

 'populate account selection drop down list

 ' which is visible in the add mode

 SQL = "Select * from masters where code_value <> "

 SQL = SQL + " (select selection from tblSelection)"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "masters")

 aposted_display.DataSource=ds.Tables("masters").DefaultView

 aposted_display.DataBind()

 addshow.visible = true

 End Sub

Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub RunSql(vsql as string)

 try

 'sql = "Execute p_test " + vkey

 Dim mycommand2 As New OleDbCommand(vsql,myConnection)

 myConnection.Open()

 myCommand2.ExecuteNonQuery()

 myConnection.Close()

 'turn off editing

 Grid1.EditItemIndex = -1

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 Message.Style("color") = "red"

 Response.write("DataBase Error :" + errString)

 Catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 Message.Style("color") = "red"

 Finally

 message.text = vsql

 end try

 End Sub

 Sub hidePanel()

 if AddPanel.visible = true then

 AddPanel.visible = false

 'reset values

 adate.text = ""

 aref.text = ""

 adr_amount.text = ""

 acr_amount.text = ""

 anarr.text = ""

 end if

 End Sub

 Sub UpdateSelection(vselection)

 sql = "delete from tblSelection "

 sql = sql + " insert into tblSelection(selection)"

 sql = sql + " values('" + vselection + "')"

 runSql(sql)

 End Sub

End Class

Chapter 17: The Trial Balance Report

Overview

The Trial Balance is the main accounting report and is the basis for all other financial
reports like the balance sheet, the profit and loss, and the cash flow statement. This
report presents the closing balance of all master accounts in a tabular layout with the
debit accounts on one side and the credit accounts on the other. The Acid test to show
that all our transaction entries are correct is ensuring that the Trial Balance's debits and
credits match.
Figure 17.1 shows what the Trial Balance web form looks like.

Figure 17.1: The Trial Balance.

The Trial Balance web form is comprised of two DataGrids. The first gets the detail rows
of the Trial Balance and is bound to the following query:

SELECT code_display, closing,

 dr_amount = CASE type

 WHEN 'A' THEN closing

 WHEN 'E' THEN closing

 ELSE 0

 END,

 cr_amount = CASE type

 WHEN 'I' THEN closing

 WHEN 'L' THEN closing

 ELSE 0

 END

FROM Masters

I need to show debits and credits in two separate columns; hence, using a case
statement I separate the debits and credits. Remember that assets and expenses are of
type debit and liabilities and income are of type credit. The second grid displays the
grand total of all debits and credits. This is bound to the following SQL query:

SELECT 'Total' as nothing,

 (Select sum(closing) From masters where type in('A','E')) as dr_total ,

 (Select sum(closing) From masters where type in('I','L')) as cr_total

Here is the complete code listing for the TrialBalance.aspx web form.
TrialBalance.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html>

 <script language="VB" runat="server">

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 myConnection = New OleDbConnection(ConnStr)

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 'DataSetCommand

 sql = "SELECT code_display, closing, "

 sql = sql + " dr_amount = CASE type WHEN 'A' THEN "

 sql = sql + " closing WHEN 'E' THEN closing ELSE 0 END, "

 sql = sql + " cr_amount = CASE type WHEN 'I' "

 sql = sql + " THEN closing WHEN 'L' THEN closing ELSE 0 END "

 sql = sql + " From Masters"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 'use Fill method of DataSetCommand to populate dataset

 myCommand.Fill(ds, "Masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("Masters").DefaultView

 Grid1.DataBind()

 'totals

 sql = "SELECT 'Total' as nothing ,"

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('A','E')) as dr_total , "

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('I','L')) as cr_total "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "totals")

 'Binding a Grid

 Grid2.DataSource=ds.Tables("totals").DefaultView

 Grid2.DataBind()

 End Sub

 </script>

 <body>

 <h3>Trial Balance </h3>

 <form runat=server>

 <asp:HyperLink runat="server" Text="Masters"

 NavigateUrl="masters3.aspx"></asp:HyperLink>

 <asp:HyperLink runat="server" Text="Transactions"

 NavigateUrl="selection.aspx"></asp:HyperLink>

 <asp:HyperLink runat="server" Text="Home"

 NavigateUrl="default.aspx"></asp:HyperLink>

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt">

 <Columns>

 <asp:BoundColumn HeaderText="Account" DataField="code_display">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Debit Amount" DataField="dr_amount" >

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Credit Amount" DataField="cr_amount" >

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="teal" ForeColor="white" Font-Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 </asp:DataGrid>

 <!----Totals //------>

 <asp:DataGrid id="Grid2" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt">

 <Columns>

 <asp:BoundColumn HeaderText="" DataField="nothing">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <Columns>

 <asp:BoundColumn HeaderText="" DataField="dr_total">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="" DataField="cr_total" >

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <ItemStyle BackColor="teal" foreColor="white" Font-Bold="true">

 </ItemStyle>

 </asp:DataGrid>

 </form>

 </body>

</html>

Project 1 Summary

In this Project, I took a traditional client/server application and revamped it for the Web.
Applications that work off the Web offer significant advantages over their client/server
brethren. This accounting application is totally wireless. You don't need to lay out
network cables to connect it to the database. You will notice that I have relegated most
of the script processing to stored procedures and triggers. This has enabled me to have
a very thin web form.
In Project 2 of this book, I will incorporate web services in this application. I can then
harness the full power of the Web as well as that of a client/server product.

Project 2: Web Services

Chapter List
§ Chapter 18: Creating a Generic Database Web Service
§ Chapter 19: Designing a Navigation System
§ Chapter 20: Incorporating Web Services in the Chart of Accounts Form
§ Chapter 21: Incorporating Web Services in the Transactions Form
§ Chapter 22: Incorporating Web Services in the Trial Balance

Project 2 Overview

The Personal Finance Manager described in the preceding project showed how we can
Web-enable an accounting application and make it accessible through the Internet. The
consequences of this approach are far-reaching. Consider the case of a car
manufacturer who has a large number of ancillary companies manufacturing
components, such as air filters, wind screens, tires, and so on. These ancillary
companies are spread all over the world. This car manufacturer uses "Just in Time"
manufacturing techniques and the ancillary companies only produce (and ship) as much
as can be consumed by the manufacturer in a given period. This removes the necessity
of holding inventory both by the supplier and the car manufacturer. Say an overseas
company manufactures air filters for the car manufacturer. It will need day-to-day
information on the air filter requirements of the car manufacturer and will manufacture
them accordingly. To do this, the overseas company needs access to the daily
production requirements of the car manufacturer, who, in turn, requires access to the
production and inventory records of the supplier. Do we need to set up a satellite link
between the companies to enable their databases to communicate?

A retail chain has store locations all over the U.S. Each time a customer makes a
purchase at the store, the item sold must be removed from inventory and the dollar
amount of the purchase incorporated in the financial books as a sale. Suppose all the
constituent stores of the chain read and write to one central database. Do we set up
network infrastructure between all the stores for the communication to take place? And,
at what cost?

In both the preceding scenarios, we need to set up lines of communication between
databases located in distant locations. Traditionally, we would have to set up network
communication infrastructure to make this happen. However, using web services, we can
link them using the Internet.

The basic requirement of an application that interacts with a database is to select, insert,
update, and delete records from the database. Using web services, we can encapsulate
the database interaction logic as a series of methods that are called over the Internet.
When we have the ability to interact with the database over the Web, we don't require
expensive satellite or "wire" links between applications and databases.
The Personal Finance Manager developed in the previous project was tightly coupled to
the ASP.NET technology and worked in the browser. Tools such as Visual Basic.NET
and C# enable us to build applications that are user-friendly and have a rich user
interface. For example, users have grown accustomed to seeing toolbars, MDI (multiple
document interface), and other graphical niceties, which a browser is not able to provide.
Won't it be nice to build applications using one of these tools and still be able to
communicate over the Internet? We would then be able to build applications with a rich
graphical user interface and not have to worry about setting up elaborate network
systems for communication. Web services enables us to do just that. As I will show you
in this project, we can build generic database access services which can then be us ed
with an application built in Visual Basic.NET, C#, or ASP.NET. I will show you how to use
this web service with the Personal Finance Manager using ASP.NET. You can develop a
feature-rich application (with all the associated graphical niceties) in Visual Basic.NET or
C# and still use this web service.

Chapter 18: Creating a Generic Database Web
Service

Overview
In Chapter 8, I showed you how to create a generic database business object for
communicating with a database. This object had useful functions for executing action

queries, such as insert, update, and delete as well as a generic routine for returning a
DataSet, based on any user-supplied SQL query. This DataSet then could be used to
bind an ASP.NET server control. I will now show you how to convert this business object
into a web service. Various accounting modules can then use the functionality provided
by the service. In Figure 18.1, I show how the two projects developed in this book (the
Personal Finance Manager module and the Inventory module, which will be developed in
Part IV) interact with the web service. The supporting example files for this example are
located in the folder samples\SqlService of this chapter on the book's Web site at
www.premierpressbooks.com/downloads.asp .

Figure 18.1: Interacting with the web service.

I will now walk you through the process of creating the web service. This comprises a
number of steps, as follows:

1. Create the web service asmx file: Use NotePad to create a file called
SQLService.asmx, which has the following script:

SQLService.asmx

<%@ WebService Language="VB" Class="SQLService"%>
Imports System
Imports System.Web.Services
Imports System.Data
Imports System.Data.OleDb
Imports System.Text

Public Class SQLService: Inherits WebService
 <WebMethod()> Public Function TestFunction (vInput as Boolean) As
String
 If (vInput = TRUE) Then
 TestFunction = "It is the truth..."
 Else
 TestFunction = "False!False!False"
 End if
 End Function

 <WebMethod()> Public Function add(a as integer, b as integer) as string
 add = cstr(a+b)
 End function

 <WebMethod()> Public Function Populate(ConnStr as string, SQL as string)
As DataSet
 Dim dv As DataView
 Dim i As integer

 Dim myConnection As OleDbConnection
 Dim myCommand As OleDbDataAdapter
 Dim ds As New DataSet
 myConnection = New OleDbConnection(ConnStr)
 myCommand = New OleDbDataAdapter(SQL, myConnection)
 myCommand.Fill(ds, "vTable")
 'Populate = ds.Tables("vTable").DefaultView
 Populate = ds
 End Function

 <WebMethod()>PUBLIC Function RunSql (ConnStr as string, vsql as string)
as String
 Dim Message As string
 try
 message = "Success"
 Dim myConnection As OleDbConnection
 myConnection = New OleDbConnection(ConnStr)
 Dim mycommand As New OleDbCommand(vsql,myConnection)
 myConnection.Open()
 myCommand.ExecuteNonQuery()
 myConnection.Close()
 Catch ex As OleDbException
 Dim errItem As OleDbError
 Dim errString As String
 For Each errItem In ex.Errors
 errString += ex.Message + " "
 Next
 Message = "SQL Error.Details follow:

" & errString
 Catch myException as Exception
 message = "Exception: " + myException.ToString()
 End try
 RunSql = message
 End Function
End Class

This is exactly the same code that I developed in Chapter 8, hence I am not
discussing it in detail here. The differences are that this file has an .asmx
extension, the class inherits from WebService, a WebService attribute is
added to the form header, the System.Web.Services namespace is
imported and each function is prefixed with a <WebMethod()> tag. The
WebMethod tag indicates to the ASP.NET run time that the method in
question can be called over the Web.
2. Create the WSDL file: Open SQLService.asmx so that it goes through IIS

(such as http://localhost/your virtual directory/SQLService.asmx). Click
on Show WSDL. Save the resultant file as SQLService.wsdl. Note that
you can do the same thing by browsing to http://localhost/your virtual
directory/SQLService.asmx?wsdl.

3. Create and compile the proxy: Run msqlProxy.bat, which will create the
proxy SQLService.vb in the local folder and compile the DLL
SQLService.dll to the bin folder.

msqlProxy.bat

REM ------------Make Proxy------------

wsdl.exe /l:VB /n:NameSpaceHersh /out:SqlService.vb SqlService.wsdl

REM ------------Compile Proxy------------

Rem Remember to change outdir variable to point to your bin folder

set outdir=g:\AspNetSamples\bin\SQLService.dll

set
assemblies=System.dll,System.Web.dll,System.Data.dll,System.Web.Service
s.dll,System.Xml.dll

vbc /t:library /out:%outdir% /r:%assemblies% SQLService.vb

pause

4. Test the service: The form that I have written to test the service is

SQLService.aspx, which has the following code:
SQLService.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Import Namespace="NameSpaceHersh" %>

<html>

 <script language="VB" runat="server">

 Dim SQL as string, vcn as string

 Sub Page_Load(Source As Object, E As EventArgs)

 vcn= "Provider=SQLOLEDB; Data Source=(local); Initial
Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub Show_Click(Sender As Object, E As EventArgs)

 Message.Text = "Masters Table Displayed... "

 ReBind

 End Sub

 Sub Insert_click(Sender As Object, E As EventArgs)

 sql = "Insert into Masters(code_display,code_category,type)"

 sql = sql + "Values ('test',701,'E')"

 RunSQL(sql)

 rebind

 Message.Text = " ..Inserted test record... "

 End Sub

 Sub Delete_click(Sender As Object, E As EventArgs)

 sql = "delete from masters where code_display = 'test'"

 RunSQL(sql)

 rebind

 Message.Text = "...Deleted all test records..."

 End Sub

 Sub Update_Click(Sender As Object, E As EventArgs)

 sql = "UPDATE Masters Set Opening = 90 WHERE code_display = 'test'"

 RunSQL(sql)

 rebind

 Message.Text = "...Updated all test records: Set closing balance = 90...! "

 End Sub

 Sub ReBind()

 Dim t As NameSpaceHersh.SqlService = New
NameSpaceHersh.SqlService()

 Dim vsql as string

 Dim ds as DataSet

 vSQL = "select * from Masters"

 ds = t.Populate(vcn, vSql)

 DataGrid1.DataSource=ds.Tables("vTable").DefaultView

 DataGrid1.DataBind()

 End Sub

 Function RunSQL (vSQL as String)

 Dim t As NameSpaceHersh.SqlService = New
NameSpaceHersh.SqlService()

 t.RunSQL(vcn,vSQL)

 End Function

 </script>

 <body>

 <body style="font: 10pt verdana; background-color:beige">

 <form runat=server>

 <h4> ASP .NET Web Services </h4>

 <asp:button text="Refresh" Onclick="Show_Click" runat=server/>

 <asp:button text="Insert" Onclick="Insert_Click" runat=server/>

 <asp:button text="Update" Onclick="Update_Click" runat=server/>

 <asp:button text="Delete" Onclick="Delete_Click" runat=server/>

 <asp:label id="Message" runat=server/>

 <asp:DataGrid id="DataGrid1" runat="server" />

 </form>

 </body>

</html>

In the Page_load event, I specify the connection string as:

vcn= "Provider=SQLOLEDB; Data Source=(local); _

Initial Catalog=ASPNET;User ID=sa;"
The Sub ReBind calls the Populate function of the web service and passes
it the query "select * from Masters" as well as the connection string. The
Populate function returns a DataSet, the default view of which is bound to a
DataGrid as follows:

Sub ReBind()

 Dim t As NameSpaceHersh.SqlService = New
NameSpaceHersh.SqlService()

 Dim vsql as string

 Dim ds as DataSet

 vSQL = "select * from Masters"

 ds = t.Populate(vcn, vSql)

 DataGrid1.DataSource=ds.Tables("vTable").DefaultView

 DataGrid1.DataBind()

End Sub

Note that this is a pretty nifty way of calling queries that return data. You can
pass any SQL query (the query may be a join on multiple tables) and get a
DataSet back, which can then be manipulated in any way. I can also connect
to any database as I am passing the database connection string to the
function.
I have three buttons and associated click events which pass an insert, an
update, and a delete statement respectively to the RunSQL function on the
form, which in turn calls the RunSQL function of the web service. Here are the
three functions:

Sub Insert_click(Sender As Object, E As EventArgs)

 sql = "Insert into Masters(code_display,code_category,type)"

 sql = sql + "Values ('test',701,'E')"

 RunSQL(sql)

 rebind

 Message.Text = " ..Inserted test record... "

End Sub

Sub Delete_click(Sender As Object, E As EventArgs)

 sql = "delete from masters where code_display = 'test'"

 RunSQL(sql)

 rebind

 Message.Text = "...Deleted all test records..."

End Sub

Sub Update_Click(Sender As Object, E As EventArgs)

 sql = "UPDATE Masters Set Opening = 90 WHERE code_display =
'test'"

 RunSQL(sql)

 rebind

 Message.Text = "...Updated all test records: Set closing balance = 90...!
"

End Sub
The local RunSQL function calls the RunSQL function of the web service and
passes it the SQL string and the connection string. The web service function
then executes the action query.

Function RunSQL (vSQL as String)

 Dim t As NameSpaceHersh.SqlService = New
NameSpaceHersh.SqlService()

 t.RunSQL(vcn,vSQL)

End Function

Web services is an important element of ASP.NET. The techniques developed in this
chapter show how the process of database interaction can be abstracted and
encapsulated as a web service. In the subsequent chapters of this project (Chapters 19
through 22), I will explain how the techniques developed in this chapter can be applied to
an accounting application.

Chapter 19: Designing a Navigation System

Overview
In Chapter 6, you designed an XML-based site navigation system. You developed a user
control which when placed on a Web page generated the navigation links. Figure 19.1
shows what the navigation links look like.

Figure 19.1: Navigation links.

The navigation links were stored in an XML file. I will briefly review the user control here
because I am going to use it on every form of the project.

Navigation Links

The navigation links of this project are stored in the file nav.xml.
Nav.xml

<Siteinfo>

 <site>

 <sitename>Home</sitename>

 <siteurl>default.aspx</siteurl>

 </site>

 <site>

 <sitename>Masters</sitename>

 <siteurl>masters3.aspx</siteurl>

 </site>

 <site>

 <sitename>Transactions</sitename>

 <siteurl>selection.aspx</siteurl>

 </site>

 <site>

 <sitename>Trial Balance</sitename>

 <siteurl>Trialbalance.aspx</siteurl>

 </site>

</Siteinfo>

Each link to be displayed is enclosed within the site node, which has two elements: the
site name and the site URL. My user control will display each of these URLs at the top of
each page.

The User Control
The user control is described in Chapter 6. To reiterate, you can assign it the
GridLines, BorderColor, and CellPadding properties. It reads the XML file and
binds a DataList to it. The DataList displays the links that you see on each page. Here is
the code:

nav.ascx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Drawing" %>

 <script language="VB" runat="server">

 'Public Variable for each exposed Property

 PUBLIC vGridLines As GridLines

 PUBLIC vBorderColor as String

 PUBLIC vCellPadding As Integer

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim ds As New DataSet

 Dim fs As filestream

 Dim xmLStream As StreamReader

 fs = New filestream(Server.MapPath("nav.xml"), FileMode.Open, FileAccess.Read)

 xmlStream = new StreamReader(fs)

 ds.ReadXML(XmlStream)

 fs.Close()

 dlist.DataSource=ds.Tables("site").DefaultView

 dlist.DataBind()

 dlist.GridLines = vGridLines

 dlist.BorderColor=System.Drawing.Color.FromName(vBorderColor)

 dlist.CellPadding=vCellPadding

 End Sub

 </script>

 <asp:DataList runat=server id="dlist"

 RepeatDirection="horizontal"

 RepeatMode="Table"

 Width="100%"

 BorderWidth="1"

 Font-Name="Verdana"

 Font-Size="8pt"

 HeaderStyle-BackColor="#aaaadd"

 SelectedItemStyle-BackColor="yellow"

 ItemStyle-BackColor="antiquewhite"

 AlternatingItemStyle-BackColor="tan"

 >

 <ItemTemplate>

 <asp:HyperLink runat="server"

 Text='<%# Container.DataItem("sitename") %>'

 NavigateUrl= '<%# Container.DataItem("siteurl") %>' />

 </ItemTemplate>

 </asp:DataList>

Using the Control

Each Web page must register the control by using the following declaration at the top of
each page:

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

Within the page, the control is invoked as follows:

<!------ Navigation Start------------>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7 />

<!------ Navigation Ends------------->

Chapter 20: Incorporating Web Services in the
Chart of Accounts Form

Overview
The Personal Finance Manager built in Project 1 of this book used the Masters.aspx web
form (together with its Code Behind form, Masters.vb) to interact with the masters
database table. This web form was developed in chapter 15 (Chart of Accounts). In this
chapter, I will modify this web form so that it can use the SQLService web service. I will
need to change two methods residing in the Code Behind form Masters.vb in order to
use the web service. These methods are the ReBind and the RunSql methods, both of
which interact with the database.
The ReBind() method was used to bind a DataGrid and a DropDownList control to a
database table. The following is the code snippet of the ReBind function, which I am
going to change:

The Original ReBind Method

Sub ReBind()

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("masters").DefaultView

 Grid1.DataBind()

 SQL = "Select * from groups order by code_display"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "groups")

 'populate drop down list

 acode_category.DataSource=ds.Tables("groups").DefaultView

 acode_category.DataBind()

 hidePanel()

End Sub

To use the web service, I have changed this to what is shown in the following code
snippet:

The Mmodified ReBind Method that Uses the Web Services

Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 ' Bind Grid

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'populate drop down list

 SQL = "Select * from groups order by code_display"

 ds = t.Populate(ConnStr, SQL)

 acode_category.DataSource=ds.Tables("vTable").DefaultView

 acode_category.DataBind()

 hidePanel()

End Sub

In the modified ReBind method, I call the web service method called Populate twice,
each time passing it a connection string and a SQL query. A DataSet containing the
result set is returned from the function, which I use to bind the DataGrid and
DropDownList control respectively.
The second function that I need to modify is the RunSql function. This function is used
to add, delete, or update a row. The appropriate event handlers pass to this function a
SQL action query or a stored procedure name with the appropriate parameters. The
original code snippet is listed below:

The Original RunSql Method

Sub RunSql(sql as string)

 try

 Dim mycommand2 As New OleDbCommand(sql,myConnection)

 myConnection.Open()

 myCommand2.ExecuteNonQuery()

 myConnection.Close()

 'turn off editing

 Grid1.EditItemIndex = -1

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 Message.Text = "SQL Error.Details follow:

" & errString

 Message.Style("color") = "red"

 Catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 Message.Style("color") = "red"

 End try

 rebind

 response.write(sql)

End Sub

The following code extract shows the modified version of this function:
Modified Version of the RunSql Method

Sub RunSql(vSQL as string)

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 Rebind

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

End Sub

This function calls the RunSql function of the web service and passes it the connection
string as well as the SQL action query/procedure call as parameters. If the
procedure/query was executed successfully, the string Success is returned from the
function. Otherwise, the appropriate error string is returned, which is displayed in the
browser.

I include the complete listing of the Code Behind file, Masters.vb, after modifying the two
methods as discussed above. There is no change made to the web form Masters.aspx.

Masters3.vb

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label

 Protected acode_category as dropdownlist

 Protected AddPanel as Panel

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 ' Bind Grid

 SQL = "select m.*, g.code_display as category "

 SQL = SQL + "from masters m, groups g "

 SQL = SQL + " where m.code_category = g.code_value"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'populate drop down list

 SQL = "Select * from groups order by code_display"

 ds = t.Populate(ConnStr, SQL)

 acode_category.DataSource=ds.Tables("vTable").DefaultView

 acode_category.DataBind()

 hidePanel()

 End Sub

 Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub hidePanel()

 if AddPanel.visible = true then

 AddPanel.visible = false

 end if

 End Sub

 Sub RunSql(vSQL as string)

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 Rebind

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

 End Sub

End Class

Chapter 21: Incorporating Web Services in the
Transactions Form

Overview
In Chapter 16, I built the Transactions web form (Transactions.aspx together with the
Code Behind form Transactions.vb) for the Personal Finance Manager. In this chapter, I
will modify this form so that it uses the SQLService web service for its database
interaction.
I will have to modify the ReBind and the RunSql methods, both of which reside in the
Code Behind file called Transactions.vb. The aspx form Transactions.aspx remains
unchanged.
The ReBind method binds a DataGrid and a DropDownList control to a database table.
Here is the original method that I will change.

The Original ReBind Method

Sub ReBind()

 sql = " select m.code_value,m.code_display,t.*, h.* ,"

 sql = sql + "(select code_display from masters where code_value = t.posted_to) "

 sql = sql + " as posted_display "

 sql = sql + " from tr_header h,transactions t, masters m "

 sql = sql + " where t.doc_no = h.doc_no "

 sql = sql + " and m.code_value = t.code_value"

 sql = sql + " and m.code_value = (select selection from tblSelection)"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "transactions")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("transactions").DefaultView

 Grid1.DataBind()

 'populate account selection drop down list

 ' which is visible in the add mode

 sql = "Select * from masters where code_value <> "

 sql = sql + " (select selection from tblSelection)"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "masters")

 aposted_display.DataSource=ds.Tables("masters").DefaultView

 aposted_display.DataBind()

 addshow.visible = true

End Sub

To use the SQLService web service, I have changed this to the following:
The Modified ReBind Method

Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 SQL = " select m.code_value,m.code_display,t.*, h.* ,"

 sql = sql + "(select code_display from masters where "

 sql = sql + " code_value = t.posted_to) as posted_display "

 sql = sql + " from tr_header h,transactions t, masters m "

 sql = sql + " where t.doc_no = h.doc_no "

 sql = sql + " and m.code_value = t.code_value"

 sql = sql + " and m.code_value = (select selection from tblSelection)"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'populate account(add mode) selection drop down list

 'SQL = "Select * from masters"

 SQL = "Select * from masters where code_value <> "

 SQL = SQL + " (select selection from tblSelection)"

 ds = t.Populate(ConnStr, SQL)

 aposted_display.DataSource=ds.Tables("vTable").DefaultView

 aposted_display.DataBind()

 addshow.visible = true

End Sub

In this function, I call the web service method Populate twice, each time passing to it
the connection string and a SQL query as parameters. A DataSet containing the
database rows is returned from the function, which I use to bind the DataGrid and
DropDownList control respectively.
The second function that I need to modify is the RunSql function. This function is used
to add, delete, or update a row. The appropriate event handlers pass to this function a
SQL action query or a stored procedure name with appropriate parameters. This is the
original code snippet:

The Original RunSql Function

Sub RunSql(vsql as string)

 try

 Dim mycommand2 As New OleDbCommand(vsql,myConnection)

 myConnection.Open()

 myCommand2.ExecuteNonQuery()

 myConnection.Close()

 'turn off editing

 Grid1.EditItemIndex = -1

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 Message.Style("color") = "red"

 Response.write("DataBase Error :" + errString)

 Catch myException as Exception

 Response.Write("Exception: " + myException.ToString())

 Message.Style("color") = "red"

 Finally

 message.text = vsql

 end try

End Sub

Sub hidePanel()

 if AddPanel.visible = true then

 AddPanel.visible = false

 'reset values

 adate.text = ""

 aref.text = ""

 adr_amount.text = ""

 acr_amount.text = ""

 anarr.text = ""

 end if

End Sub

Here is the modified version of this function:
Modified Version of the RunSql Function

Sub RunSql(vsql as string)

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 Rebind

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

End Sub

This function calls the RunSql function of the web service and passes it a connection
string as well as a SQL action query/procedure call string as input parameters. If the
procedure/query was executed successfully, the string Success is returned from the
function. Otherwise, the appropriate error string is returned, which is displayed in the
browser.

Here is the listing of the modified Code Behind form Transactions.vb:
Transactions.vb

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

 Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label, title as label

 Protected aposted_display as dropdownlist, selection as dropdownlist

 Protected AddPanel as Panel

 Protected adate as TextBox, aref as TextBox, adr_amount as TextBox

 Protected acr_amount as TextBox , anarr as TextBox

 Protected addshow as button

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 Dim code As string, display As string

 code = Session("TheSelectionValue")

 title.text = Session("TheSelectionText")

 if code = "" then

 response.redirect("selection.aspx")

 end if

 UpdateSelection(code)

 rebind

 end if

 End Sub

 Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 SQL = " select m.code_value,m.code_display,t.*, h.* ,"

 sql = sql + "(select code_display from masters where "

 sql = sql + " code_value = t.posted_to) as posted_display"

 sql = sql + " from tr_header h,transactions t, masters m "

 sql = sql + " where t.doc_no = h.doc_no "

 sql = sql + " and m.code_value = t.code_value"

 sql = sql + " and m.code_value = (select selection from tblSelection)"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'populate account(add mode) selection drop down list

 sql = "Select * from masters where code_value <> "

 sql = sql + " (select selection from tblSelection)"

 ds = t.Populate(ConnStr, SQL)

 aposted_display.DataSource=ds.Tables("vTable").DefaultView

 aposted_display.DataBind()

 addshow.visible = true

 End Sub

 Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub RunSql(vsql as string)

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 Rebind

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

 End Sub

 Sub hidePanel()

 if AddPanel.visible = true then

 AddPanel.visible = false

 'reset values

 adate.text = ""

 aref.text = ""

 adr_amount.text = ""

 acr_amount.text = ""

 anarr.text = ""

 end if

 End Sub

 Sub UpdateSelection(vselection)

 sql = "delete from tblSelection "

 sql = sql + " insert into tblSelection(selection)"

 sql = sql + " values('" + vselection + "')"

 runSql(sql)

 End Sub

End Class

Chapter 22: Incorporating Web Services in the Trial
Balance

Overview
In this chapter, I will modify the TrialBalance.aspx web form built in Chapter 17 (The Trial
Balance Report) so that it can use the SQLService service. I need to modify the ReBind
function that was used to bind two DataGrid controls to two DataView controls. Here is
the code listing of the original function that I will modify:

The Original ReBind Function

Sub ReBind()

 sql = "SELECT code_display, closing, "

 sql = sql + " dr_amount = CASE type WHEN 'A' THEN "

 sql = sql + " closing WHEN 'E' THEN closing ELSE 0 END, "

 sql = sql + " cr_amount = CASE type WHEN 'I' "

 sql = sql + " THEN closing WHEN 'L' THEN closing ELSE 0 END "

 sql = sql + " From Masters"

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "Masters")

 'Binding a Grid

 Grid1.DataSource=ds.Tables("Masters").DefaultView

 Grid1.DataBind()

 'totals

 sql = "SELECT 'Total' as nothing ,"

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('A','E')) as dr_total , "

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('I','L')) as cr_total "

 myCommand = New OleDbDataAdapter(SQL, myConnection)

 myCommand.Fill(ds, "totals")

 'Binding a Grid

 Grid2.DataSource=ds.Tables("totals").DefaultView

 Grid2.DataBind()

End Sub

To use the SQLService service, I have changed this to the following:
The Modified ReBind() Function

Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 sql = "SELECT code_display, closing, "

 sql = sql + " dr_amount = CASE type WHEN 'A' THEN "

 sql = sql + " closing WHEN 'E' THEN closing ELSE 0 END, "

 sql = sql + " cr_amount = CASE type WHEN 'I' "

 sql = sql + " THEN closing WHEN 'L' THEN closing ELSE 0 END "

 sql = sql + " From Masters"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'totals

 sql = "SELECT 'Total' as nothing ,"

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('A','E')) as dr_total , "

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('I','L')) as cr_total "

 ds = t.Populate(ConnStr, sql)

 Grid2.DataSource=ds.Tables("vTable").DefaultView

 Grid2.DataBind()

End Sub

I call the web service method Populate twice, each time passing the connection string
and the SQL query. A DataSet containing the database rows is returned from the
function, which I use to bind the two DataGrid controls.

Here is the complete listing of the revised TrialBalance.aspx:
The Modified TrialBalance.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

<html>

 <script language="VB" runat="server">

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 sql = "SELECT code_display, closing, "

 sql = sql + " dr_amount = CASE type WHEN 'A' THEN "

 sql = sql + " closing WHEN 'E' THEN closing ELSE 0 END, "

 sql = sql + " cr_amount = CASE type WHEN 'I' "

 sql = sql + " THEN closing WHEN 'L' THEN closing ELSE 0 END "

 sql = sql + " From Masters"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'totals

 sql = "SELECT 'Total' as nothing ,"

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('A','E')) as dr_total , "

 sql = sql + " (Select sum(closing) From masters "

 sql = sql + " where type in('I','L')) as cr_total "

 ds = t.Populate(ConnStr, sql)

 Grid2.DataSource=ds.Tables("vTable").DefaultView

 Grid2.DataBind()

 End Sub

 </script>

 <head>

 <style>

 a { color:black;

 text-decoration:none;}

 a:hover { color:red;

 text-decoration:underline;}

 </style>

 </head>

 <body style="font: 10pt verdana; background-color:ivory">

 <!—— Navigation Start———————>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7 />

 <!—— Navigation Ends———————>

 <h3>Trial Balance </h3>

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt">

 <Columns>

 <asp:BoundColumn HeaderText="Account" DataField="code_display" >

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Debit Amount" DataField="dr_amount">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Credit Amount" DataField="cr_amount">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="teal" ForeColor="white" Font-Bold="true">

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemStyle BackColor="Beige">

 </AlternatingItemStyle>

 </asp:DataGrid>

 <!——Totals //——>

 <asp:DataGrid id="Grid2" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt">

 <Columns>

 <asp:BoundColumn HeaderText="" DataField="nothing">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <Columns>

 <asp:BoundColumn HeaderText="" DataField="dr_total">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="" DataField="cr_total">

 <HeaderStyle Width="150px">

 </HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <ItemStyle BackColor="teal" foreColor="white" Font-Bold="true">

 </ItemStyle>

 </asp:DataGrid>

 </body>

</html>

Project 2 Summary

Running an accounting application from a browser has many advantages. I can easily
access financial information from anywhere. I do not have to set up network
infrastructure to enable various accounting modules to talk to each other. The drawback
of a browser-based application is that I am not able to provide a rich GUI interface that
users have come to expect from a desktop application. However, if I encapsulate my
database access and manipulation routines in a web service, I can use development
languages such as Visual Basic.NET or C# to develop the GUI front end and use web
services to interact with the database over the Internet. In this project, I showed you how
to do this. I developed a web service to interact with the database and modified the
Personal Finance Manager to use it. Because this book is on ASP.NET, we used this
language as our development language. You could have easily used Visual Basic.NET
or C# to develop the user interface and used the web service developed in this project to
interact with the database.

Project 3: Inventory Management System

Chapter List
§ Chapter 23: The Design of the Inventory Management System
§ Chapter 24: Inventory Masters
§ Chapter 25: Inventory Movements
§ Chapter 26: The Inventory Balances Report

Project 3 Overview

An Inventory Management System enables you to record movements in inventory.
Inventory movements are of two basic types: movements inward and movements
outward. Inventory purchases and returns from customers or from the shop floor (in the
case of manufacturing companies) are examples of movements inward whereas sales,
returns to suppliers, or issues to the shop floor (in the case of manufacturing companies)
are examples of movements outward.

Good inventory management is one of the most essential functions in an organization.
Effective inventory management entails maintaining just the right inventory balance in
stock because overstocking can tie up scarce working capital in inventory, and under-

stocking can lead to lost sales. The Inventory Management System provides
management data pertaining to movements of inventory and stock balances at any given
time.
Traditionally, Inventory Management Systems have been client/server-based. As in the
Personal Finance Management system discussed in Part I, we will use web services and
ASP.NET to develop a Web-enabled Inventory Management System.

Chapter 23: The Design of the Inventory
Management System

Overview
You need to create an MS SQL Server database called ASP.NET and execute the
provided file Create.sql (this file is included in the database folder on the book's Web site
at www.premierpublishingbooks.com/asp) using the SQL Query Manager (isql) utility
of MS SQL Server. Appendix A outlines the steps required to accomplish this.

The Inventory Management System requires the following database objects:
Tables

1. stock_master
2. stock_detail
3. tr_header

Triggers
1. update_stk: Update trigger on stock_detail
2. insert_stk: Insert trigger on stock_detail
3. delete_stk: Delete trigger on stock_detail

Stored Procedures
1. p_stock_masters
2. p_stock_trans

The Inventory Masters Table
An inventory master account must be created for each inventory item that you want to
use. Each account has a closing field. This field holds the closing balance of that
inventory item at any given time. This field is automatically updated by triggers on the
stock_detail table. You use this field for displaying the closing balances in reports.
Table 23.1 provides the definition of the inventory masters table.
Table 23.1 The stock_master Table

Column Type Length Description
code_value integer Identity,

Primary
value

code_display char 30 Descriptive
name

rate money

uom varchar 10 Unit of
measureme
nt

closing money Closing
balance

opening money Opening

Table 23.1 The stock_master Table

Column Type Length Description

balance

The Transactions Header Table
The tr_header table records the "header" information for an inventory transactions.
This is information like date, narration, document number, and so on. The primary key of
the tr_header is the document number (doc_no). Note that the Inventory
Management System shares the tr_header table with the Personal Finance Manager.
If we build an invoicing module, we would need to enter transactions in both the
transactions table and the stock_detail table. For example, when recording a
sale we would need to record a credit to the sale account, a debit to a bank account, and
also record a stock "out" movement. In this case we would have a single tr_header
record and have multiple entries in the transactions and stock_detail table that
are all tied to the tr_header record based on a unique document number (doc_no).
Table 23.2 defines the tr_header table.

Table 23.2 The tr_header Table

Column Type Length Description

Id char 3 Voucher
type
("Bank",
"Sales",
"Purchases"
)

date datetime Voucher
date

doc_no int Primary key
narr varchar 150 Narration
ref varchar 15 Reference

The stock_detail Table
This stock movement information will be stored in the stock_detail table. You will
record inventory additions and depletions in this table. The primary key of this table is the
document number and the serial number (doc_no + sn). Table 23.3 provides a
description of the stock_detail table.

Table 23.3 The stock_detail Table

Column Type Length Description

doc_no integer Primary key
sr_no money Primary key
code_value integer Inventory

account
qty_in money Quantity in
qty_out money Quantity out

The tr_header and the stock_detail tables are related through the doc_no field in
each table. There exists a one-to-many relationship between the two tables. The

stock_detail table has an insert, an update, and a delete trigger defined. The
purpose of these triggers is to update the closing balance field of the stock_master
table after every insert, update, or deletion. I will be discussing these triggers in Chapter
25.
The stored procedures p_stock_masters and p_stock_trans are responsible for
inserting and updating inventory master and detail records. I will discuss
p_stock_masters in Chapter 24 (Inventory Masters) and p_stock_trans in Chapter
25.

Supporting Components
In this project, I will use various components built in earlier chapters of this book. In
particular, I will use the database web service developed in Chapter 18 and the
navigation system developed in Chapter 6 and used in Chapter 19.
The SQLService web service component is available in the\SQLService sub-folder of
the Project 3 samples folder on the book's Web site at
www.premierpress.com/downloads.asp. To install the web service, perform the
following steps:

1. Create the WSDL file by opening SqlService.asmx so that it goes
through IIS (such as http://localhost/your virtual directory/SqlService.
asmx). Click on "Service Description." Save the resultant file as
SQLService.sdl. Note that you can also do the same thing by browsing to
http://localhost/your virtual directory/SqlService.asmx?wsdl.

2. Run mSqlproxy.bat. This should put SQLService.dll in the bin directory
(and SQlService.vb in the current directory). Remember to modify the
"outdir" variable in the bat file to point to your bin folder.

3. Run the web form SQLService.aspx and test the services.

The samples folder of this part contains three files which relate to the Navigation
component. These files are:

1. nav.ascx
2. nav.xml
3. navigation.aspx

nav.ascx is the user control file. Nav.xml is an xml file that contains the site links for this
application and navigation.aspx is web form that is provided so that you can test out this
user control.

The site links included in the file nav.xml are as follows:
Nav.xml

<Siteinfo>

<site>

<sitename>Home</sitename>

<siteurl>default.aspx</siteurl>

</site>

<site>

<sitename>Inventory Masters</sitename>

<siteurl>Stockmasters.aspx</siteurl>

</site>

<site>

<sitename>Inventory Transactions</sitename>

<siteurl>stockTrans.aspx</siteurl>

</site>

 <site>

<sitename>Inventory Balances</sitename>

<siteurl>Stockbalances.aspx</siteurl>

</site>

</Siteinfo>

Figure 23.1 shows the database schema for this application.

Figure 23.1: The database schema for the Inventory Management System.

Chapter 24: Inventory Masters
The stock_master table stores the master accounts for the inventory system. This
table holds information such as inventory item name, rate, unit of measure, opening
balance, and closing balance. The web form that I build in this chapter is the interface
between the user and the database, and it enables one to insert, update, and delete
records from the stock_master table. I use a DataGrid to list the database records.
The insert functionality is implemented by adding a number of textboxes on a panel
residing on the web form. In both the Edit and Insert modes, the DataGrid calls a
database stored procedure p_stock_masters and passes it the field values as input
parameters.

Stored Procedure p_stock_masters
The stored procedure p_stock_masters is called from the DataGrid and receives all
the field values as input parameters. This procedure handles both the insert and update
functionality. The code_value is the primary key of the stock_master table. If a null
code_value is passed to the procedure, it inserts a new stock record with the passed
parameters; otherwise, it updates the stock record identified by the passed primary key.
The following is the complete listing of p_stock_masters:

Stored Procedure p_stock_masters

create procedure p_stock_master

@code_value integer = null,

@code_display varchar(30),

@rate money = 0 ,

@uom char(10),

@opening money = 0,

@closing money =0

as

/*

This procedures creates or updates a new stock master record.

 If a null code_value is passed, a record is inserted

else the record is updated.

example:

Exec p_stock_master

@code_value = null,

@code_display = "Lux Soap",

@rate = 2 ,

@uom ="pcs",

@opening = 0,

@closing =0

*/

DECLARE @flag integer

IF isnull(@code_value,0) = 0

--INSERT--

BEGIN

 Insert into stock_master(code_display,rate,uom,opening,closing)

 Values(@code_display,@rate,@uom,isnull(@opening,0),isnull(@closing,0))

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

END

ELSE

--UPDATE__

BEGIN

 Update stock_master

 Set code_display = @code_display,

 rate = @rate,

 uom = @uom,

 opening =@opening,

 closing =@closing

 Where code_value =@code_value

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

END

SELECT 0

GOTO doreturn

doerror:

Return - 100

doreturn:

RETURN 0

GO

This stored procedure accepts four input parameters. These correspond to the number
of columns displayed by the DataGrid. The DataGrid just gathers the information the
user enters and passes it on to this stored procedure. Delegating database interaction to
a stored procedure has a number of advantages over executing a SQL query directly
from a DataGrid. The stored procedure resides in the database as compiled code and is
thus more efficient than a query. I can use temporary tables to simplify my scripting logic.
Stored procedures enable me to update multiple tables with ease. The most important
advantage is that it completely encapsulates the insert and update logic. If I need to
modify this logic, I do not need to change any code in the DataGrid, thus the code
maintenance becomes easier. This stored procedure has two modes: Insert and Update.
The procedure first checks for the code_value. If the code_value passed to it is
Null, it builds an insert statement with the passed parameters. Otherwise, it updates the
record having the primary key equal to the passed code_value.

The Inventory Masters Web Form
The Inventory Masters web form is the form that adds, updates, and deletes rows to the
stock_masters table. This form makes a call to the stored procedure
p_stock_masters to insert or update inventory records. Figure 24.1 shows what this
looks like.

Figure 24.1: The Inventory Masters web form.

Figure 24.2 shows the Inventory Masters web form in Add mode. Figure 24.3 shows the
Inventory Masters web form in Edit mode.

Figure 24.2: The Inventory Masters web form in the Add mode.

Figure 24.3: The Inventory Masters web form in the Edit mode.

The web form StockMasters.aspx, and its Code-Behind form StockMasters.vb, contain
the required code. The site navigation for this project is handled by the navigation user
control discussed in Chapter 6, "User Controls." It is registered at the top of the
StockMasters.aspx web page as follows:

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

This user control is initiated within the Web page as follows:

<!------ Navigation Start------------->

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7 />

 <!------ Navigation Ends------------->
A DataGrid on the web form handles the display and editing of the records from the
stock_master table as follows:

<asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="code_value"

 AllowPaging="True"

 PageSize="20"

 PagerStyle-Mode="NumericPages"

 PagerStyle-HorizontalAlign="Right"

 PagerStyle-NextPageText="Next"

 PagerStyle-PrevPageText="Prev"

 OnPageIndexChanged="MyDataGrid_Page"

 AllowSorting="true"

 OnSortCommand="MyDataGrid_Sort"

 <Columns>

 <asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Edit"

 HeaderStyle-Wrap="false"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete"

 HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Account #" ReadOnly="true"

 DataField="code_value"

 SortExpression="code_value" />

 <asp:TemplateColumn HeaderText="Name"

 SortExpression="code_display">

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:RequiredFieldValidator runat=server

 controltovalidate=edit_Name

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator>

 <asp:TextBox id="edit_name"

 Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Rate" SortExpression="rate" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("rate") %>' runat="server" />

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_rate" Text='<%# Container.DataItem("rate") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="uom" SortExpression="uom" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("uom") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_uom" Text='<%# Container.DataItem("uom") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Opening" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("opening") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_opening"

 Text='<%# Container.DataItem("opening") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Closing" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("closing") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_closing" BorderStyle="None" Readonly="True"

 Text='<%# Container.DataItem("closing") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 </Columns>

 <HeaderStyle BackColor="Gray" ForeColor="White" Font-Bold="true"/>

 <ItemStyle ForeColor="DarkSlateBlue"/>

 <AlternatingItemStyle BackColor="Beige"/>

</asp:DataGrid>
The EditCommandColumn is the ASP.NET generated column, which creates the Edit,
OK, and Cancel link buttons. It is created as follows:

<asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Edit"

 HeaderStyle-Wrap="false"/>

I have specified three commands in the DataGrid that correspond to these buttons.
These are the following:

OnEditCommand="Grid1_Edit"

OnCancelCommand="Grid1_Cancel"

OnUpdateCommand="Grid1_Update"
When the Edit link is clicked, the Grid1_Edit function is fired. This event contains the
following code:

Sub Grid1_E dit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

End Sub
The DataGrid needs to be told which row is being edited. This is done by setting the
EditItemIndex property of the DataGrid to the index of the button that was clicked in
the above code snippet. Clicking on the Cancel button fires the Grid1_Cancel function.
This function simply sets the EditItemIndex property of the DataGrid to –1, as in the
following script:

Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

End Sub

Note that in both the cases, I call the ReBind function. This function rebinds the
DataGrid to the data source so that the DataGrid is updated with the changes that the
user makes. The Inventory Master web form makes use of the populate function of the
SQLService web service to bind to a DataGrid. This function is passed the SQL Query,
and the connection string and a DataSet is received back from it. The default view of this
DataSet is used to bind the DataGrid.

The ReBind Function

Sub RunSql(vSQL as string)

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 end if

 response.write (vsql)

 Rebind

End Sub

The Sub Grid1_update handles the Update logic. This function is fired when the grid is
in the Edit mode. A SQL query string is built dynamically, which calls the
p_stock_masters stored procedure with a document number. (Remember, we call the
procedure with a null document number to effect an insert and pass it a valid document
number to effect an update.)

Grid1_update

Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim code_display As String

 Dim rate As String

 Dim uom As String

 Dim opening As String

 Dim closing As String

 Dim myTextBox As TextBox

 'This is the key value:

 'Retrieved from the DataKey, since it's a read only field

 Dim code_value as string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_name")

 code_display = mytextbox.text

 myTextBox = E.Item.FindControl("edit_rate")

 rate = mytextbox.text

 myTextBox = E.Item.FindControl("edit_uom")

 uom = mytextbox.text

 myTextBox = E.Item.FindControl("edit_opening")

 opening = mytextbox.text

 myTextBox = E.Item.FindControl("edit_closing")

 closing = mytextbox.text

 'Now execute stored procedure

 sql = "Execute p_Stock_master @code_value ="

 sql = sql+code_value+", @code_display = '"+code_display+"',@rate="

 sql = sql+rate+", @uom='"+uom +"' ,@opening ="+opening+",@closing="+closing

 RunSql(sql)

End Sub

This SQL string is passed on to the function RunSQL that does the actual work of
executing the SQL statement. Note that I extract the primary key (code_value) and
pass it on to the procedure. The existence of a valid code_value tells the procedure to
issue an update statement. If you pass it a null code_value, it will issue an insert
statement.

Adding Records
Three textboxes and one button have been added to the form. These controls reside on
a panel with the id AddPanel. In the aspx form, I have added HTML comments to show
where the section begins and ends.

Insert Logic in the Form

<!------ insert row logic-------->

<asp:Panel id="AddPanel" runat="server" Visible="false">

 <table style="font: 8pt verdana">

 <tr> <td colspan="2" bgcolor="#aaaadd" style="font:10pt verdana">

 Add a New Account:</td></tr>

 <tr>

 <td nowrap>Name: </td>

 <td><asp:TextBox id="acode_display" runat="server" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=acode_display

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td nowrap>Rate: </td>

 <td><asp:TextBox id="arate" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Unit: </td>

 <td><asp:TextBox id="auom" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Opening Value: </td>

 <td><asp:TextBox id="aopening" value = "0" runat="server" /></td>

 </tr>

 <tr>

 <td style="padding-top:15">

 <asp:Button id="SubmitDetailsBtn" text="Submit"

 onclick="add_Click" runat="server" />

 </td>

 </tr>

 </table>

</asp:Panel>

<!------------Insert Logic ends -------->

A button (id = AddShow) displays with the caption Add Account on the web form.
Clicking on this button fires the add_show Sub. This Sub simply sets the visible
property of the panel to true. Once the panel is visible, all the controls on the panel also
become visible. At this point, all the textboxes are ready for accepting user input. The
insert logic is handled by the function add_click. It builds a SQL string by extracting
the text properties of various textboxes. The following is the Sub:

The add_click Sub

Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 if acode_display.text = "" then

 response.write("Incomplete information")

 exit sub

 end if

 SQL = "Execute p_stock_master @code_value=NULL,@code_display='"

 SQL = SQL+ acode_display.text + "',@rate="

 SQL = SQL+arate.Text+",@uom="+auom.text+",@opening="+aopening.text

 RunSql(sql)

 'reset values

 acode_display.text = ""

 aopening.text = ""

 arate.text = ""

 auom.text = ""

 hidePanel()

End Sub

Note that we are passing a NULL code_value to the procedure. This fires an insert
statement. This SQL query string is passed on to the function RunSQL, which does the
actual work of executing the SQL statement.

Delete Mode
The Delete mode is activated when the user clicks on the delete link. I have created a
delete ButtonColumn as follows:

<asp:ButtonColumn Text="Delete" CommandName="Delete" HeaderText="Delete"/>
I have associated an OnDeleteCommand with this button as follows:

<asp:DataGrid id="Grid1" runat="server"

OnDeleteCommand = "Grid1_delete"

--- >
In the Grid1_Delete event, I simply build a delete statement and pass it on to the
function RunSQL, which applies the query against the database.

Sub Grid1_delete

Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim code_value As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = "Delete from stock_master where code_value = " + cstr(code_value)

 RunSql(sql)

End Sub

The RunSql Function
This is a generic function, which executes a SQL Action statement against the database.
The SQL query statement is passed to it as a parameter. The Grid1_update Sub, the
Add_click Sub, and the Grid1_delete Sub call this function to update, add, or
delete a record. This function calls the RunSql function of the web service and passes it
the connection string, as well as the SQL action query/procedure call. If the
procedure/query was executed successfully, the string Success is returned from the
function. Otherwise, the appropriate error string is returned, which is displayed in the
browser.

Sub RunSql

Sub RunSql(vSQL as string)

 Dim ConnStr As String

 Dim SQL As String

ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

 response.write (vsql)

 Rebind

End Sub

Sorting
The DataGrid enables you to sort the columns by clicking on a link below the columns.
Setting the AllowSorting property to true triggers this built-in mechanism, as follows:

 <asp:DataGrid id="Grid1" runat="server"

 AllowSorting="true"

 OnSortCommand="MyDataGrid_Sort">
When this property is set to true, the DataGrid renders the column captions with a
linkbutton. If you now click on a column, the OnSortEvent is fired. This event contains
the following code:

Sub MyDataGrid_Sort(sender As Object, e As DataGridSortCommandEventArgs)

 SortField = e.SortField

 ReBind

End Sub
The SortField variable is a Public (string) variable, which holds the name of the
column, and by which the DataGrid is to be sorted. It is initially set to the
code_display column in the page_load event as follows:

Sub Page_Load(Source As Object, E As EventArgs)

 If NOT (isPostBack)

 If SortField = "" Then

 SortField = "code_display"

 End If

 ReBind

 End If

End Sub
You need to set the SortExpression attribute in the column templates. For example,
for the rate column to participate in sorting, you have to set the template as follows:

<asp:TemplateColumn HeaderText="Rate" SortExpression ="rate" >

</asp:TemplateColumn>
Each time the user clicks on a "sortable" column, the MyDataGrid_Sort Sub is fired.
The SortField variable again gets set in this method.

Sub MyDataGrid_Sort(sender As Object, e As DataGridSortCommandEventArgs)

 SortField = e.SortExpression

 ReBind

End Sub
The ReBind function uses the SortExpression attribute to sort the DataView (which
in turn binds the DataGrid), and refreshes the DataGrid to reflect the rows sorted by the
new sort field, as follows:

Sub ReBind()

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 ' Bind Grid

 SQL = "Select * from stock_master"

 ds = t.Populate(ConnStr, SQL)

 Dim dv2 As DataView

 dv2 = ds.Tables("vTable").DefaultView

 dv2.Sort = SortField

 Grid1.DataSource= dv2

 Grid1.DataBind()

 hidePanel()

End Sub

Paging in DataGrid

The DataGrid has a built-in pager control, which displays a user-defined number of
pages per page, and also numeric or next/previous buttons at the bottom of the
DataGrid. Clicking on these links displays the next set of pages. To enable paging, you
set a number of properties as follows:

<asp:DataGrid id="Grid1" runat="server"

 AllowPaging="True"

 PageSize="3"

 PagerStyle-Mode="NumericPages"

 PagerStyle-HorizontalAlign="Right"

 PagerStyle-NextPageText="Next"

 PagerStyle-PrevPageText="Prev"

 OnPageIndexChanged="MyDataGrid_Page">
The AllowPaging property must be set to true to enable paging. The PageSize
property sets the number of records per page. A PageSize of 3 implies that only three
records per page will be shown. If you leave out the PagerStyle-
Mode="NumericPages" property, then instead of numeric links at the bottom, you get
two links: next and previous. The PagerStyle-NextPageText and the
PagerStyle-PrevPageText properties are descriptive captions for these two links
and they can be any text you want. You are required to code one event. This is the
OnPageIndexChanged event, which fires off the MyDataGrid_Page event. You simply
call the ReBind function in this event as follows:

Sub MyDataGrid_Page(sender As Object, e As DataGridPageChangedEventArgs)

 ReBind

End Sub

Here is the complete listing of StockMaster.aspx.
StockMaster.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="stockmasters.vb" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

<html>

 <script language="VB" runat="server">

 Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim code_display As String

 Dim rate As String

 Dim uom As String

 Dim opening As String

 Dim closing As String

 Dim myTextBox As TextBox

 'This is the key value:

 'Retrieved from the DataKey, since it's a read only field

 Dim code_value As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_name")

 code_display = mytextbox.text

 myTextBox = E.Item.FindControl("edit_rate")

 rate = mytextbox.text

 myTextBox = E.Item.FindControl("edit_uom")

 uom = mytextbox.text

 myTextBox = E.Item.FindControl("edit_opening")

 opening = mytextbox.text

 myTextBox = E.Item.FindControl("edit_closing")

 closing = mytextbox.text

 'Now execute stored procedure

 sql = "Execute p_Stock_master @code_value ="

 sql = sql+code_value+", @code_display = '"+code_display+"',@rate="

 sql = sql+rate+", @uom='"+uom +"' ,@opening ="+opening+",@closing="+closing

 RunSql(sql)

 End Sub

 Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 if acode_display.text = "" then

 response.write("Incomplete information")

 exit sub

 end if

 SQL = "Execute p_stock_master @code_value=NULL,@code_display='"

 SQL = SQL+ acode_display.text + "',@rate="

 SQL = SQL+arate.Text+",@uom="+auom.text+",@opening="+aopening.text

 RunSql(sql)

 'reset values

 acode_display.text = ""

 aopening.text = ""

 arate.text = ""

 auom.text = ""

 hidePanel()

 End Sub

 Sub add_show(Source As Object, E As EventArgs)

 AddPanel.visible = true

 End Sub

 Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim code_value As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = "Delete from stock_master where code_value = " + cstr(code_value)

 RunSql(sql)

 End Sub

 Sub MyDataGrid_Page(sender As Object, e As DataGridPageChangedEventArgs)

 Grid1.CurrentPageIndex = e.NewPageIndex

 ReBind

 End Sub

 Sub MyDataGrid_Sort(sender As Object, e As DataGridSortCommandEventArgs)

 SortField = e.SortExpression

 ReBind

 End Sub

 </script>

 <head>

 <style>

 a { color:black;

 text-decoration:none;}

 a:hover { color:red;

 text-decoration:underline;}

 </style>

 </head>

 <body style="font: 10pt verdana; background-color:ivory">

 <form runat="server">

 <asp:ValidationSummary runat=server

 headertext="There were errors on the page:" />

 <!—— Navigation Start———————>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7 />

 <!—— Navigation Ends———————>

 <h3>Inventory Masters </h3>

 <asp:Label id="Message" runat="server"/>

 <asp:Button id="Addshow" text="Add Account" onclick="add_show" runat="server" />

 <table width="95%">

 <tr>

 <td valign="top">

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="code_value"

 AllowPaging="True"

 PageSize="20"

 PagerStyle-Mode="NumericPages"

 PagerStyle-HorizontalAlign="Right"

 PagerStyle-NextPageText="Next"

 PagerStyle-PrevPageText="Prev"

 OnPageIndexChanged="MyDataGrid_Page"

 AllowSorting="true"

 OnSortCommand="MyDataGrid_Sort">

 <Columns>

 <asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Edit"

 HeaderStyle-Wrap="false"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete"

 HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Account #" ReadOnly="true"

 DataField="code_value" SortExpression="code_value" />

 <asp:TemplateColumn HeaderText="Name"

 SortExpression="code_display">

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:RequiredFieldValidator runat=server

 controltovalidate=edit_Name

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator>

 <asp:TextBox id="edit_name"

 Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Rate" SortExpression="rate" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("rate") %>' runat="server" />

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_rate" Text='<%# Container.DataItem("rate") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="uom" SortExpression="uom" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("uom") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_uom" Text='<%# Container.DataItem("uom") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Opening" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("opening") %>' runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_opening"

 Text='<%# Container.DataItem("opening") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Closing" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("closing") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_closing" BorderStyle="None" Readonly="True"

 Text='<%# Container.DataItem("closing") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 </Columns>

 <HeaderStyle BackColor="Gray" ForeColor="White" Font-Bold="true"/>

 <ItemStyle ForeColor="DarkSlateBlue"/>

 <AlternatingItemStyle BackColor="Beige"/>

 </asp:DataGrid>

 </td>

 <td valign="top">

 <!---- insert row logic-------->

 <asp:Panel id="AddPanel" runat="server" Visible="false">

 <table style="font: 8pt verdana">

 <tr>

 <td colspan="2" bgcolor="#aaaadd" style="font:10pt verdana">

 Add a New Account:</td>

 </tr>

 <tr>

 <td nowrap>Name: </td>

 <td><asp:TextBox id="acode_display" runat="server" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=acode_display

 errormessage="Name is required.">*

 </asp:RequiredFieldValidator></td>

 </tr>

 <tr>

 <td nowrap>Rate: </td>

 <td><asp:TextBox id="arate" value = "0" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Unit: </td>

 <td><asp:TextBox id="auom" value = "pcs" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Opening Value: </td>

 <td><asp:TextBox id="aopening" value = "0" runat="server" /></td>

 </tr>

 <tr>

 <td style="padding-top:15">

 <asp:Button id="SubmitDetailsBtn" text="Submit"

 onclick="add_Click" runat="server" />

 </td>

 </tr>

 </table>

 </asp:Panel>

 <!--------Insert Logic ends ------>

 </td>

 </tr>

 </table>

 </form>

 </body>

</html>

Stock_masters.vb is the Code Behind file.
StockMasters.vb

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label

 Protected AddPanel as Panel

 Public SortField As String

 Sub Page_Load(Source As Object, E As EventArgs)

 If NOT (isPostBack)

 If SortField = "" Then

 SortField = "code_display"

 End If

 rebind

 End If

 End Sub

 Sub ReBind()

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 ' Bind Grid

 SQL = "Select * from stock_master"

 ds = t.Populate(ConnStr, SQL)

 Dim dv2 As DataView

 dv2 = ds.Tables("vTable").DefaultView

 dv2.Sort = SortField

 Grid1.DataSource= dv2

 Grid1.DataBind()

 hidePanel()

 End Sub

 Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub hidePanel()

 if AddPanel.visible = true then

 AddPanel.visible = false

 End if

 End Sub

 Sub RunSql(vSQL as string)

 Dim ConnStr As String

 Dim SQL As String

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

 response.write (vsql)

 Rebind

 End Sub

End Class

Chapter 25: Inventory Movements
The Inventory Management System records movements of inventory items. You can add
to the inventory by purchasing stock, by inventory returns from customers, by return of
unused materials from the shop floor (in the case of manufacturing units), and so on.
You can reduce inventory by sales, issues to shop floor, supplier returns, and so on. The
web form that we will build in this chapter will be responsible for recording stock
additions and depletions. Each stock movement (addition or depletion) has a "header"
entry, which is recorded in the tr_header table and a "detail" entry, which is recorded
in the stock_detail table. A DataGrid on the web form lists all available movements
and also allows editing of any particular movement. A number of TextBox controls
residing on a panel on the form provide the functionality to add stock movements. Both
the Insert and the Update modes gather the user inputs and pass them on to the stored
procedure p_stock_trans, which encapsulates the insert and update logic.

Inserting and Updating Transactions
The stored procedure p_stock_trans handles both the insert and update logic. It has
seven input parameters that are passed to it by the DataGrid or the record addition form.
To insert a new inventory movement, you pass a null document number (doc_no) to
this procedure and to modify an existing movement, you pass it the document number of
the inventory movement.

Stored Procedure p_stock_trans

create procedure p_stock_trans

@date datetime ,

@ref varchar(30) = NULL,

@qty_in money = 0,

@qty_out money =0,

@id char(3),

@doc_no integer = NULL,

@narr varchar(150) = NULL,

 @code_value integer

as

/*

call with a null doc_no to insert, a valid doc_no to update

Example :

Execute p_stock_trans

@date =getdate() ,

@ref = test1,

@qty_in = 10,

@qty_out =0,

@id ="STK",

@doc_no = NULL,

@narr = "Test Entry"

*/

DECLARE @ll_doc integer

DECLARE @ret integer

BEGIN TRANSACTION

 --To insert a new movement, pass doc_no =NULL to procedure--

 IF isnull(@doc_no,0) = 0

 BEGIN

 --SafeGuard: Check if tranaction with same ref# exists.

 --If so dont insert

 select @ret = count(*) from tr_header where ref = @ref

 if @ret > 0

 BEGIN

 GOTO doerror

 END

 Select @ll_doc = isnull(max(doc_no),0)+1 from tr_header

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

 ELSE

 ------To UPDATE pass the doc_no------

 BEGIN

 SELECT @ll_doc = @doc_no

 delete from stock_detail where doc_no = @doc_no

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 delete from tr_header where doc_no = @doc_no

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

 BEGIN

 INSERT INTO tr_header (id, date,ref,doc_no ,narr)

 VALUES (@id, isnull(@date,getdate()),@ref,@ll_doc, @narr)

 IF @@ERROR != 0

 Begin

 GOTO doerror

 END

 INSERT INTO stock_detail (doc_no, qty_in, qty_out, code_value, sr_no)

 VALUES (@ll_doc, isnull(@qty_in,0), ISNULL(@qty_out,0), @code_value, 1)

 IF @@ERROR != 0

 Begin

 GOTO doerror

 End

 END

COMMIT TRANSACTION

SELECT 0

GOTO doreturn

doerror:

Rollback TRANSACTION

doreturn:

RETURN 0

SELECT -100

To add (insert) a new record, you will pass a null value to @doc_no parameter of the
stored procedure. In this case, the procedure selects the maximum doc_no from the
tr_header table, increments it by one, and stores it in the variable @ll_doc.
To modify (update) an existing stock detail transaction, you pass an existing document
number to the @doc_no parameter of the stored procedure. In this case, the procedure
stores the passed document number to the variable @ll_doc. It then deletes the
stock_detail records transactions having this doc_no, as they will again be re-
created with the passed parameters. This process of deleting and reinserting the

stock_detail records enable the delete and insert triggers associated with the
stock_detail table to fire. As will be explained in the next section, this process
updates the closing balance field of the appropriate stock_master record. Finally, for
both the insert and update modes, a row is created in the tr_header table having a
document number equal to the value stored in the variable @ll_doc. A row is also
created in the stock_detail table with the passed parameters.

Triggers on the stock_detail Table
The stock_detail table has an insert, an update, and a delete trigger. These triggers
update the closing balance field of the stock_master table to reflect the most
current stock balance. The closing stock balance is thus current after every stock
movement. These triggers are listed below.
The insert_stk trigger is an insert trigger on the stock_detail table. Its code is as
follows:

Insert_stk

CREATE TRIGGER insert_stk ON stock_detail for insert as

DECLARE @sql varchar(200)

DECLARE @mtype char(1)

DECLARE @bal money

SELECT *

into #temp

from inserted

 BEGIN

 SELECT @bal = ISNULL(#temp.qty_in,0) - ISNULL(#temp.qty_out,0)

 FROM #temp

 END

 UPDATE stock_master

 SET closing = isnull(closing,0) + @bal

 FROM stock_master, #temp

 WHERE (stock_master.code_value = #temp.code_value)

The update_stk trigger is an update trigger on the table stock_detail. Its code is as
follows:

Update_stk

CREATE TRIGGER update_stk ON stock_detail for update as

Declare @sql varchar(200)

DECLARE @mtype char(1)

DECLARE @bal money

SELECT *

into #temp

from inserted

SELECT *

 into #t2

 from deleted

 BEGIN

 SELECT @bal = ISNULL(#temp.qty_in,0) - ISNULL(#temp.qty_out,0)

 -(ISNULL(#t2.qty_in,0) - ISNULL(#t2.qty_out,0))

 From #temp, #t2

 Where #temp.code_value = #t2.code_value

 END

 UPDATE stock_master

 SET closing = isnull(closing,0) + @bal

 FROM stock_master, #temp WHERE (stock_master.code_value = #temp.code_value)

The delete_stk trigger is an update trigger on the table stock_detail. Its code is as
follows:

delete_stk

CREATE TRIGGER delete_stk ON stock_detail for delete as

DECLARE @sql varchar(200)

DECLARE @mtype char(1)

DECLARE @bal money

SELECT *

 into #temp

 from deleted

UPDATE stock_master

 SET Closing =Closing-

 (ISNULL(#temp.qty_in,0) - ISNULL(#temp.qty_out,0))

 FROM stock_master, #temp

 WHERE (stock_master.code_value = #temp.code_value)

These triggers make use of the Microsoft SQL Server deleted and inserted tables to
access the before and after values of the fields. An inserted table is a SQL Server
table, which holds the inserted values in case of an insert statement, or the updated
values in case of an update statement. A deleted table is a Microsoft SQL Server
table that holds the original values in case of an update statement or the deleted
value in case of a delete statement. These tables have the same fields as the table it
references, which, in this case, is the stock_detail table. These triggers simply apply
an arithmetic formula to arrive at the closing balance. Table 25.1 describes the
calculations performed by each trigger in calculating the closing balance.
Table 25.1 Closing Balance Calculations

Action Trigger Closing balance
formula

Insert insert_stk closing +
(inserted.qty_
in -
inserted.qty_o
ut)

Update update_stk closing +
(inserted.qty_
in -
inserted.qty_o
ut) minus
(deleted.qty_i
n -
deleted.qty_ou
t)

Delete delete_stk closing -
(deleted.qty_i
n -
deleted.qty_ou
t)

Inventory Transactions

Inventory Transaction maintenance involves adding, modifying, and deleting
transactions. The following objects are involved in this Sub system:

1. The Inventory Transactions web form (StockTrans.aspx) and the Code-
Behind form (StockTrans.vb)

2. The stored procedure (p_stock_trans)

The Inventory Transactions Form
The Inventory Transactions web form enables users to add and modify inventory
transaction records. The add functionality is provided by TextBox controls, residing on a
panel that is made visible when the Add button is clicked. A DataGrid implements the
modify functionality. This form is quite similar to the stock_masters form that we built
in Chapter 24, "Inventory Masters." The DataGrid and the Add portion of the form are set
up as described in that chapter.
Figure 25.1 shows what the form looks like.

Figure 25.1: The Inventory Transactions form.

Figure 25.2 shows the Inventory Transactions Form in Add mode. Figure 25.3 shows the
Inventory Transactions Form in Edit mode

Figure 25.2: The Inventory Transactions form in Add mode.

Figure 25.3: The Inventory Transactions form in Edit mode.

The ReBind Function
The ReBind function binds the DataGrid to a SQL query, first in the Page_load event,
and then whenever the data changes and the Grid needs to be refreshed. Sub ReBind
shows the script of the function.

Sub ReBind

Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 'DataSetCommand

 SQL = "select * from tr_header h, stock_detail s, stock_master m"

 SQL = SQL + " where h.doc_no = s.doc_no"

 SQL = SQL + " AND s.code_value = m.code_value"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'populate inventory account(add mode) selection drop down list

 SQL = "Select * from stock_master"

 ds = t.Populate(ConnStr, SQL)

 acode_value.DataSource=ds.Tables("vTable").DefaultView

 acode_value.DataBind()

 addshow.visible = true

End Sub

In this function, I call the web service method Populate twice, each time passing to it
as parameters the connection string and the SQL query. A DataSet containing the result
set is returned from the function, which I use to bind the DataGrid and the DropDownList,
respectively.

The Add Mode
When the addshow button is clicked, the add_show Sub is fired. This Sub simply sets
the visible property of the panel AddPanel to true. This, in turn, makes all the
controls residing on this panel visible.

Sub add_show

Sub add_show(Source As Object, E As EventArgs)

 AddPanel.visible = true

End Sub

The input controls for the Insert mode have been marked in the web form within the
HTML comment blocks Insert Logic Starts and Insert Logic Ends. Each
control has an associated id property, which will be used to refer to the control. There is
a RequiredFieldValidator attached to the Date and ref fields. The stored
procedure p_stock_trans will also check for the uniqueness of the ref field. If it is
not unique, the procedure will return an error condition. The add_click button is fired
when the user clicks on the SubmitDetailsBtn button. This method builds a SQL
execute query and passes it on to the RunSql function, which in turn executes it. The
script for the add_click method is as follows:

Sub add_click

Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 sql = "Execute p_stock_trans @date = '"

 sql = sql+ adate.text+"',@ref= '"+aref.text+"', @qty_in ="

 sql = sql+ aqty_in.text+",@qty_out = "+aqty_out.text+" ,"

 sql = sql+ "@id = 'RPT', @doc_no = NULL"+", @narr= '"

 sql = sql+ anarr.text+"', @code_value = "+acode_value.SelectedItem.value

 RunSql(sql)

 rebind()

 hidePanel()

End Sub

The hidePanel function simply hides the panel (by setting its visible property to
False) and sets the value property of all the TextBox controls to spaces.

The Update Mode
The DataGrid operates in the Edit mode when the edit link is clicked. The user makes
the appropriate changes and clicks on the Ok link. This fires off the Grid1_Update
function. The value property for all the TextBox controls is extracted, and a SQL
procedure call string is built. This string is passed onto the RunSQL function, which
makes the actual procedure call.

Sub Grid1_Update

Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim vdate As String

 Dim ref As String

 Dim code_value As String

 Dim qty_in As String

 Dim qty_out As String

 Dim id As String

 Dim narr As String

 Dim myTextBox As TextBox

 'This is the key value:

 'Retrieved from the DataKey, since it's a read only field

 Dim doc_no As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_date")

 vdate = mytextbox.text

 myTextBox = E.Item.FindControl("edit_ref")

 ref = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_qty_in")

 qty_in = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_qty_out")

 qty_out = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_narr")

 narr = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_code_value")

 code_value = trim(mytextbox.text)

 'Now execute stored procedure

 sql = "Execute p_stock_trans @date = '"

 sql = sql + vdate + "' ,@ref= '" + ref + "', @qty_in ="

 sql = sql + qty_in + ",@qty_out = "+ qty_out +" , "

 sql = sql + "@id = 'STK', @doc_no = "+doc_no+", @narr= '"+narr+ "',"

 sql = sql + "@code_value=" + code_value

 'response.write(sql)

 RunSql(sql)

 rebind()

End Sub

Function RunSql
This is a generic function, which executes a SQL Action query against the database. The
SQL query is passed to this function as a parameter. The Grid1_update Sub, the
Add_click Sub, and the Grid1_delete Sub call this function to update, add, or
delete a record. This function in turn calls the RunSql function of the web service and
passes to it as parameters the connection string as well as the SQL action
query/procedure call. If the procedure/query was executed successfully, the string
"Success" is returned from the function. Otherwise, the appropriate error string is
returned, which is displayed in the browser.

Sub RunSQL

Sub RunSql(vsql as string)

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 Rebind

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

End Sub

The Delete Mode
I have created a ButtonColumn having a CommandName of Delete as follows:

<asp:ButtonColumn Text = "Delete" CommandName = "Delete" HeaderText =
"Delete"/>.
The OnDeleteCommand of the DataGrid fires the Grid1_delete function whenever
the user clicks on the delete hyperlink. The Grid1_delete function sends a SQL delete
query to the RunSql function, which deletes all tr_header and transactions
records having a document number equal to the clicked doc_no.

Grid1_delete

Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim doc_no As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = " Delete from stock_detail where doc_no = " + cstr(doc_no)

 sql = sql + " Delete from tr_header where doc_no = " + cstr(doc_no)

 RunSql(sql)

 rebind()

End Sub

Here is the complete code listing of StockTrans.aspx
StockTrans.aspx

<%@Page Language="VB" Inherits="BaseClass" Src="StockTrans.vb" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

<html>

 <script language="VB" runat="server">

 Sub Grid1_Update(sender As Object, e As DataGridCommandEventArgs)

 Dim sql As string

 Dim vdate As String

 Dim ref As String

 Dim code_value As String

 Dim qty_in As String

 Dim qty_out As String

 Dim id As String

 Dim narr As String

 Dim myTextBox As TextBox

 'This is the key value:

 'Retrieved from the DataKey, since it's a read only field

 Dim doc_no As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 myTextBox = E.Item.FindControl("edit_date")

 vdate = mytextbox.text

 myTextBox = E.Item.FindControl("edit_ref")

 ref = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_qty_in")

 qty_in = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_qty_out")

 qty_out = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_narr")

 narr = trim(mytextbox.text)

 myTextBox = E.Item.FindControl("edit_code_value")

 code_value = trim(mytextbox.text)

 'Now execute stored procedure

 sql = "Execute p_stock_trans @date = '"

 sql = sql + vdate + "' ,@ref= '" + ref + "', @qty_in ="

 sql = sql + qty_in + ",@qty_out = "+ qty_out +" , "

 sql = sql + "@id = 'STK', @doc_no = "+doc_no+", @narr= '"+narr+ "',"

 sql = sql + "@code_value=" + code_value

 'response.write(sql)

 RunSql(sql)

 rebind()

 End Sub

 Sub add_click(Source As Object, E As EventArgs)

 Dim sql As string

 sql = "Execute p_stock_trans @date = '"

 sql = sql+ adate.text+"',@ref= '"+aref.text+"', @qty_in ="

 sql = sql+ aqty_in.text+",@qty_out = "+aqty_out.text+" ,"

 sql = sql+ "@id = 'RPT', @doc_no = NULL"+", @narr= '"

 sql = sql+ anarr.text+"', @code_value = "+acode_value.SelectedItem.value

 RunSql(sql)

 rebind()

 hidePanel()

 End Sub

 Sub add_show(Source As Object, E As EventArgs)

 AddPanel.visible = true

 End Sub

 Sub Grid1_delete(sender As Object, e As DataGridCommandEventArgs)

 Dim doc_no As string = Grid1.DataKeys.Item(E.Item.ItemIndex).ToString

 Dim sql As string

 sql = " Delete from stock_detail where doc_no = " + cstr(doc_no)

 sql = sql + " Delete from tr_header where doc_no = " + cstr(doc_no)

 RunSql(sql)

 rebind()

 End Sub

 </script>

 <head>

 <style>

 a { color:black;

 text-decoration:none;}

 a:hover {color:red;

 text-decoration:underline;}

 </style>

 </head>

 <body style="font: 10pt verdana; background-color:ivory">

 <form runat="server">

 <asp:ValidationSummary runat=server

 headertext="There were errors on the page:" />

 <!------ Navigation Start------------>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7 />

 <!------ Navigation Ends------------>

 <h3> Inventory Movements

 <asp:Label id="title" runat="server"/> </h3>

 <table width="95%">

 <tr><td>

 <asp:Button id="Addshow" visible = "false" text="New Tranaction"

 onclick="add_show" runat="server" />

 </td></tr>

 <hr>

 <tr>

 <td valign="top">

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="doc_no">

 <Columns>

 <asp:EditCommandColumn

 EditText="Edit"

 CancelText="Cancel"

 UpdateText="OK"

 ItemStyle-Wrap="false"

 HeaderText="Edit"

 HeaderStyle-Wrap="false"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete"

 HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Doc #" ReadOnly="true"

 DataField="doc_no"/>

 <asp:TemplateColumn HeaderText="Ref" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("ref") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_ref" Text='<%# Container.DataItem("ref") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Date" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("date") %>'

 runat="server" />

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_date" BorderStyle="None" Readonly="True"

 Text='<%# Container.DataItem("date") %>'

 runat="server" />

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Inventory Account" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("code_display") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_code_value"

 Text='<%# Container.DataItem("code_value") %>'

 runat="server" ReadOnly="true" BorderStyle="None" />

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Narration" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("narr") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_narr"

 Text='<%# Container.DataItem("narr") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Quantity In" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("qty_in") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_qty_in"

 Text='<%# Container.DataItem("qty_in") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Quantity Out" >

 <ItemTemplate>

 <asp:Label Text='<%# Container.DataItem("qty_out") %>'

 runat="server"/>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="edit_qty_out"

 Text='<%# Container.DataItem("qty_out") %>'

 runat="server"/>

 </EditItemTemplate>

 </asp:TemplateColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed"

 ForeColor="White" Font-Bold="true"/>

 <ItemStyle ForeColor="DarkSlateBlue"/>

 <AlternatingItemStyle BackColor="Beige"/>

 </asp:DataGrid>

 </td>

 <td valign="top">

 <!--- insert row logic------------>

 <asp:Panel id="AddPanel" runat="server" Visible="false">

 <table style="font: 8pt verdana">

 <tr>

 <td colspan="2" bgcolor="#aaaadd" style="font:10pt verdana">

 Add a New Transaction:</td>

 </tr>

 <tr>

 <td nowrap>Date (Required): </td>

 <td><asp:TextBox id="adate" runat="server" value = "" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=adate

 errormessage="Date is required.">*

 </asp:RequiredFieldValidator></td>

 </tr>

 <tr>

 <td nowrap>Reference (Required/ must be unique): </td>

 <td><asp:TextBox id="aref" value = "" runat="server" /></td>

 <td> <asp:RequiredFieldValidator runat=server

 controltovalidate=aref

 errormessage="A unique reference # is required.">*

 </asp:RequiredFieldValidator></td>

 </tr>

 <tr>

 <td nowrap>Account Posted To: </td>

 <td><asp:DropDownList DataTextField = "code_display"

 DataValueField = "code_value" id="acode_value"

 runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Narration: </td>

 <td><asp:TextBox id="anarr" value = "" runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Quantity In: </td>

 <td><asp:TextBox id="aqty_in" value = 0 runat="server" /></td>

 </tr>

 <tr>

 <td nowrap>Quantity Out: </td>

 <td><asp:TextBox id="aqty_out" value = 0 runat="server" /></td>

 </tr>

 <tr>

 <td style="padding-top:15">

 <asp:Button id="SubmitDetailsBtn" text="Submit"

 onclick="add_Click" runat="server" />

 </td>

 </tr>

 </table>

 </asp:Panel>

 <!--------Insert Logic ends ----->

 </td>

 </tr>

 </table>

 <hr>

 <asp:Label id="Message" runat="server"/>

 </form>

 </body>

</html>

Here is the listing of the Code Behind file StockTrans.vb.
StockTrans.vb

Option Strict Off

Imports System

Imports System.Collections

Imports System.Text

Imports System.Data

Imports System.Data.OleDb

Imports System.Web.UI

Imports System.Web.UI.WebControls

Public Class BaseClass

 Inherits System.Web.UI.Page

 Protected Grid1 as DataGrid

 Protected Message as label, title as label

 Protected acode_value as dropdownlist, selection as dropdownlist

 Protected AddPanel as Panel

 Protected adate as TextBox, aref as TextBox, aqty_in as TextBox

 Protected aqty_out as TextBox , anarr as TextBox

 Protected addshow as button

 Dim ds As New DataSet

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 rebind

 End if

 End Sub

 Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 'DataSetCommand

 SQL = "select * from tr_header h, stock_detail s, stock_master m"

 SQL = SQL + " where h.doc_no = s.doc_no"

 SQL = SQL + " AND s.code_value = m.code_value"

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 'populate inventory account(add mode) selection drop down list

 SQL = "Select * from stock_master"

 ds = t.Populate(ConnStr, SQL)

 acode_value.DataSource=ds.Tables("vTable").DefaultView

 acode_value.DataBind()

 addshow.visible = true

 End Sub

 Sub Grid1_Edit(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = E.Item.ItemIndex

 ReBind()

 End Sub

 Sub Grid1_Cancel(Sender As Object, E As DataGridCommandEventArgs)

 Grid1.EditItemIndex = -1

 ReBind()

 End Sub

 Sub RunSql(vsql as string)

 Dim t As New NameSpaceHersh.SQLService

 Dim s As string

 s = t.RunSQL(ConnStr,vSQL)

 Grid1.EditItemIndex = -1

 Rebind

 if s <> "Success" then

 Message.Text = s

 Message.Style("color") = "red"

 End if

 End Sub

 Sub hidePanel()

 if AddPanel.visible = true then

 AddPanel.visible = false

 'reset values

 adate.text = ""

 aref.text = ""

 aqty_in.text = ""

 aqty_out.text = ""

 anarr.text = ""

 End if

 End Sub

Chapter 26: The Inventory Balances Report

Overview

The inventory balances report displays the closing balance of all inventory items. This is
the main report of an inventory management system and forms the basis for getting a
valuation of the stock.
Figure 26.1 shows what it looks like.

Figure 26.1: The inventory balances report.

The ReBind function calls the populate function of the SQLService web service by
passing it a SQL Query and connection string. A DataSet containing all the rows from the
stock_master table is returned.

The ReBind Function

Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds as DataSet

 'DataSetCommand

 sql = "SELECT * from stock_master "

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

End Sub

The DataGrid columns property is set to display the required columns. Various
templates are applied to refine the look of the DataGrid. StockBalances.aspx is the
complete listing of this report.

StockBalances.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Register TagPrefix="Hersh" TagName="nav" Src="nav.ascx" %>

<html>

 <script language="VB" runat="server">

 Dim ConnStr As String

 Dim SQL As String

 Sub Page_Load(Source As Object, E As EventArgs)

 ConnStr = "Provider=SQLOLEDB; Data Source=(local); "

 ConnStr = ConnStr+" Initial Catalog=ASPNET;User ID=sa;"

 if NOT (isPostBack)

 rebind

 end if

 End Sub

 Sub ReBind()

 Dim t As New NameSpaceHersh.SQLService

 Dim ds As DataSet

 'DataSetCommand

 sql = "SELECT * from stock_master "

 ds = t.Populate(ConnStr, SQL)

 Grid1.DataSource=ds.Tables("vTable").DefaultView

 Grid1.DataBind()

 End Sub

 </script>

 <head>

 <style>

 a { color:black;

 text-decoration:none;}

 a:hover { color:red;

 text-decoration:underline;}

 </style>

 </head>

 <body style="font: 10pt verdana; background-color:ivory">

 <!—— Navigation Start———————>

 <Hersh:nav id="menu" runat = server

 vGridlines = Both

 vBorderColor = "Black"

 vCellPadding = 7 />

 <!—— Navigation Ends———————>

 <h3>Inventory Balances </h3>

 <asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt">

 <Columns>

 <asp:BoundColumn HeaderText="Account" DataField="code_display" >

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Units" DataField="uom">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Opening Balance" DataField="opening">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Period Closing Balance" DataField="closing">

 <HeaderStyle Width="150px"/>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="teal" ForeColor="white" Font-Bold="true"/>

 <ItemStyle ForeColor="DarkSlateBlue"/>

 <AlternatingItemStyle BackColor="Beige"/>

 </asp:DataGrid>

 </body>

</html>

Project 3 Summary
My goal in the projects described in Projects 2 and 3 was to demonstrate practically how
traditional client/server products could be revamped for the Web using SOAP, web
services, and the tools provided by ASP.NET. The two "hubs" of a Management
Information System are the Financial Accounting System and the Inventory Management
System. I developed a Web-enabled Personal Financial System in Project 1 and a Web-
enabled Inventory Management System in this project. The Database web service
developed in Project 2 sits between both these modules and the database. In other
words, both these modules talk to the database via the Database web service.

The various modules in a Management Information System can be built using any of the
.NET-compliant languages. The Personal Finance Manager could be written in Visual
Basic.NET and the Inventory module in C#. Both these languages provide a rich
Graphical User Interface, which users have come to accept and demand. However,
beneath the hood they are both Web-enabled through the Database web service. The
Database web service abstracts calls and interactions to the database. Database
operations like selects, inserts, and updates are implemented as simple function calls. It
is relatively simple to add more modules because we are only required to write the GUI;
the database functionality is already encapsulated in the Database web service.

Project 4: The GenEditAdd Control

Chapter List
§ Chapter 27: Using the GenEditAdd Control
§ Chapter 28: Extending the GenEditAdd Contrtol

Project 4 Overview
The GenEditAdd control can be used to insert or update database records. The
ASP.NET DataGrid does not have the capability to insert records, although it does have
editing capabilities. The Edit mode of the DataGrid is quite cumbersome, because you
need to code a number of events in the DataGrid for the process to work. The
GenEditAdd control was developed to enhance the usefulness of the DataGrid because
it can be hooked up to a DataGrid to provide both editing and insertion capabilities in a
consistent manner. This control works by setting various properties, and the code
generation is automated. This project is actually a sequel to the GenEditAdd control
developed in Chapter 7 and that chapter is therefore essential reading before starting
this project. The control developed in Chapter 7 was kept simple so that I could explain it
better. I had explained there that you could set eight properties to customize the control.

These were:
1. Display: This property controls the fields that get displayed.
2. SQL: This is the SQL query for the control.

3. Where: This is the where clause. If the where clause does not exist, the
control presents a new entry form; otherwise, an Edit form is displayed
which is pre-filled with existing data.

4. ConnStr: The database connection string.
5. KeyField: The field name of the primary field.
6. KeyValue: The value of the primary field.
7. Procedure: The stored procedure for the Insert and Update modes.
8. ExitPage: A link back to the calling page.

This project refines and enhances the control and also adds a number of features to it.
These features are:

1. DropDownLists: This is a very nifty feature. You can have a field
appear as a drop-down list for a user to pick values from. You can build
the drop-down list from a database table (or tables) and specify
display and code fields. The display field is what is displayed to the
user and the code field is what gets stored in the database. For
example, you could display an employee name (a char field) to the user
and store an employee id (a numeric field) based on the user selection.
The best part is that it maintains state. When a record is selected for
editing, the drop-down list shows the value that was actually stored in
that field. The ASP.NET DropDownList cannot do that and you have to
do some programming to make that happen.

2. Required Fields: GenEditAdd makes use of the ASP.NET
RequiredField validation control to enforce input in required fields.
Further it makes use of the validation summary control to give summary
error information.

3. Editable Fields: You can tell GenEditAdd which fields are editable
fields. Editable fields display textboxes to accept user input while non-
editable fields display labels that cannot be edited.

4. Field Names: You can set the field name to display against the input
fields. If no name is specified, the raw field name from the database is
used.

5. InsertProcedure: This is the database-stored procedure that is called
in the Insert mode.

6. UpdateProcedure: This is the database-stored procedure that gets
called in the Update mode.

The InsertProcedure and the UpdateProcedure properties replace the single
Procedure property in the Chapter 7 implementation of GenEditAdd. This was done
because I realized that you might want to use separate procedures for inserts and
updates even though I personally use a single procedure for both.

Chapter 27: Using the GenEditAdd Control
This chapter gets you started with using the GenEditAdd control. I will not deal with any
theory here; I leave that for subsequent chapters. I will provide instructions to enable you
to use this control in your projects. The complete source code for this control can be
found on the Project 4 samples folder on the book’s Web site at
www.premierpressbooks.com/downloads.asp .

Compiling the Control
I have provided a .bat file, which will compile the GenEditAdd control to a DLL. Place this
bat file along with the script file of the control (GenEditAdd.vb) in an application folder
and execute it. Make sure that the bat file points to your bin folder; if not, modify the
outdir variable in the bat file. Successful execution should place the GenEditAdd.dll in
the bin folder of your application.

The Config File
The Config file is the link between the DataGrid and the GenEditAdd control. Here you
set all the properties of the control except the property KeyValue (which is passed to it
from the DataGrid) and the Where property (which is built dynamically based on the
KeyValue property). Here is a sample config file:

config_master.aspx

<%@ Register TagPrefix="Hersh" Namespace="Generic" Assembly="GenEditAdd"%>

<html>

 <script language="VB" runat="server">

 Sub page_load(sender As Object, e As EventArgs)

 if NOT (isPostBack)

 Dim s As string

 Dim sql As string

 Dim ls_CodeValue As string

 ls_CodeValue = Request.QueryString("code_value")

 '— these properties discussed in chapter 7

 SQL = "Select * from masters"

 Gen.sql = SQL

 if cint(ls_codeValue) = 0 then

 Gen.Where = ""

 else

 Gen.where= " Where code_value =" + ls_CodeValue

 end if

 Gen.display = "111110"

 Gen.KeyField = "code_value"

 Gen.KeyValue = ls_codeValue

 Gen.ExitPage = "masters.aspx"

 '—New properties developed in project 3

 Gen.Insertprocedure = "p_masters"

 Gen.Updateprocedure = "p_masters"

 Gen.RequiredFields = "0100000"

 Gen.editable = "1110100"

 s= "code_category;code_value;code_display;Select * from groups;"

 Gen.DropDown = s

 Gen.FieldNames ="id;Account Name; Group;Type; Closing Bal;Opening Bal;"

 end if

 End Sub

 </script>

 <body>

 <form runat = "server" >

 <Hersh:GenEditAdd id = "Gen" runat=server

 ConnStr = "Provider=SQLOLEDB; Data Source=(local);

 Initial Catalog=ASPNET;User ID=sa;" />

 </form>

 </body>

</html>

Note that the code_value variable (which is actually the KeyValue property) is passed
to this page from the calling page that hosts the DataGrid. The DataGrid will pass a valid
primary key or a value of zero to the config page. A valid primary key tells GenEditAdd
that the Edit mode is expected and the Where property is dynamically built. A primary
key value of zero tells GenEditAdd that the user wants to add a new record and the
Where property of the control is set to a blank string.

Hooking GenEditAdd to a DataGrid
The DataGrid requires two hyperlink columns, one for the Add mode and the other for
the Edit mode. These hyperlinks navigate to the config file and pass on a code_value
of 0 in case of the Add mode or a valid primary key in case of the Edit mode. This is
shown in the following extract from the web form masters.aspx (I will deal with this form
later in this chapter):

The GenEditAdd hyperlinks in masters.aspx

<property name="Columns">

 <asp:HyperLinkColumn Text="Edit" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value={0}"/>

 <asp:HyperLinkColumn Text="Add" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value=0"/>

 ..

 ..

</property>

And that’s all you need to do to get the GenEditAdd control up and running.
Table 27.1 provides a quick reference guide to the GenEditAdd control.
Table 27.1: GenEditAdd Quick Reference

Property Description
SQL The SQL query (without the where clause).

Example: Gen.SQL = "Select * from Masters"
Where The where clause. This is also the toggle between the

Edit and Add modes; if a where clause exists,
GenEditAdd displays the Edit mode, else it displays the
Add mode.

Example:
ls_CodeValue =
Request.QueryString("code_value")
If cint(ls_codeValue) = 0 Then
Gen.Where = ""
Else
Gen.where= " Where code_value =" +
ls_CodeValue
End If

Display This is a string of 0s and 1s. A 0 means don’t show a field
and a 1 means show it. For example, the setting 011 will
hide the first field and display the next two fields.

KeyField The primary key field name.
KeyValue The primary key value.
Exit Page The URL of the web form to exit (return) to from the config

web form. Typically this web form will be the web form on
which the DataGrid resides. When you click on the Add or
Edit links on the web form that hosts the DataGrid, you
are directed to the config web form, on which the
GenEditAdd control resides. After finishing adding or
modifying a record, you would want to return back to the
DataGrid web form. The ExitPage property builds a
hyperlink on the top of the config web form. Clicking on
that allows you to navigate back to the calling web form.

ConnStr The connection string. For example:
ConnStr = "Provider=SQLOLEDB; Data
Source=(local);
Initial _
Catalog=ASPNET;User ID=sa;"

DropDown Builds any number of DropDown list columns. Each

Table 27.1: GenEditAdd Quick Reference

Property Description

DropDown requires you to specify four properties. Each
property is specified as a string, and a semicolon
separates each property. Thus if you want to create two
DropDowns, you would have eight properties (four for each
DropDown), each property separated by a semicolon. The
four properties are as follows (the order is important):

1. The name of the field that should have a
DropDown.

2. The code field: This is the field of the
DropDown that gets stored in the database;
for example, a numeric employee code.

3. The display field: This is the DropDown list
field that is displayed to the user; for example,
a descriptive employee name.

4. The SQL statement. This is the SQL clause
that populates the DropDown list. It should
include a display and a code column (that
is, it should fetch at least two columns unless
the display and code columns are the
same).

Example:
Dim s As string
'This is dropdown 1
s=
"code_category;code_value;code_display;Sele
ct * _
from groups;"
'This is dropdown 2
s=s +
"code_display;code_display;code_display;Sel
ect * _
from masters;"
Gen.DropDown = s

This will create two DropDown lists as follows:
DropDown List 1: is attached to the code_category field.
The code field is the code_value field of the groups’
table and the display field is the code_display field of
the groups’ table. The SQL statement is Select *
from groups. I am displaying a DropDown list to help
users select groups. The user sees the descriptive group
name (code_display from groups table) but the
numeric code (code_value) is stored in the
code_category field.
DropDown List 2: This list is attached to the
code_display column. I want to display what I want to
save. In other words the display and code fields are same.
This DropDown list displays all records from the masters
table.

Required Field This is a string of zeros and ones. A zero implies that a
field is not a required field, whereas a one means that it is.
The user must make an entry in a required field. If this field
is left blank, an error message is displayed. The errors will
also be displayed in a ValidationSummary control. The
record will not be saved unless all required fields are filled.

Table 27.1: GenEditAdd Quick Reference

Property Description

Example:
Gen.RequiredFields = "0100000"

The second field is a required field in the above example.
Editable Field This is also a string of zeros and ones. A one means that

the field can be edited, and a zero means that a field can
only be displayed and cannot be edited by the user.

Example:
Gen.editable = "1110100"

The first, second, third, and fi fth fields can be edited by the
user in this example.

Field Names This is a string that specifies the field names to be
displayed against columns of the form. Semicolons
separate the field names. If this property is not specified,
the raw database column names are used as the column
labels. For example:
Gen.FieldNames ="id;Account Name;
Group;Type; Closing
Bal;Opening Bal;"

InsertProcedure The database-stored procedure that is called in the
Insert mode.

UpdateProcedure The database-stored procedure that is called in the
Update mode.

An Example
I will hook up the GenEditAdd control to a DataGrid and use it to insert and update
records to the masters table. The config file (config_masters.aspx) was listed earlier in
this chapter .The code extract required to set up the DataGrid in the calling web form
(masters.aspx) is as follows:

Extract from Masters.aspx hooking a DataGrid to GenEditAdd

<asp:DataGrid id="Grid1" runat="server"

 AutoGenerateColumns="false"

 BackColor="White"

 BorderWidth="1px" BorderStyle="Solid" BorderColor="Tan"

 CellPadding="2" CellSpacing="0"

 Font-Name="Verdana" Font-Size="8pt"

 OnDeleteCommand = "Grid1_delete"

 DataKeyField="code_value">

 <Columns>

 <asp:HyperLinkColumn Text="Edit" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value={0}"/>

 <asp:HyperLinkColumn Text="Add" DataNavigateUrlField="code_value"

 DataNavigateUrlFormatString="config_masters.aspx?code_value=0"/>

 <asp:ButtonColumn Text="Delete" CommandName="Delete" HeaderText="Delete"/>

 <asp:BoundColumn HeaderText="Account" DataField="code_display">

 <HeaderStyle Width="150px"></HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Group" DataField="category">

 <HeaderStyle Width="150px"></HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Type" DataField="type">

 <HeaderStyle Width="150px"></HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Opening" DataField="opening">

 <HeaderStyle Width="150px"></HeaderStyle>

 </asp:BoundColumn>

 <asp:BoundColumn HeaderText="Closing" DataField="closing">

 <HeaderStyle Width="50px"></HeaderStyle>

 </asp:BoundColumn>

 </Columns>

 <HeaderStyle BackColor="DarkRed" ForeColor="White" Font-Bold="true" >

 </HeaderStyle>

 <ItemStyle ForeColor="DarkSlateBlue">

 </ItemStyle>

 <AlternatingItemstyle BackColor="Beige">

 </AlternatingItemstyle>

</asp:DataGrid>

Figure 27.1 shows what the masters.aspx looks like.

Figure 27.1: Masters.aspx with edit, add, and delete links.

When you click on the Edit link, the GenEditAdd displays in the Edit mode, as shown in
Figure 27.2.

Figure 27.2: GenEditAdd in the Edit mode allows modification of records.

Note that GenEditAdd populates itself with the record details from the database. The
DropDown list is populated from the groups table and scrolls down to the correct group
associated with the record. Clicking on the Back URL will take you back to the calling
page.
When you click on the Add link on the DataGrid, GenEditAdd is activated in the Insert
mode, enabling you to add new records. (See Figure 27.3.)

Figure 27.3: The Add mode of GenEditAdd allows insertion of new records.

Chapter 28: Extending the GenEditAdd Control
The foundation of the GenEditAdd control was laid in Chapter 7, "Custom Controls." This
project develops the control further and incorporates functionality like drop-down lists,
required field validation, specifying read-only fields, and providing descriptive field names
to input columns. Chapter 7 should be read before starting this project.

Drop-down List Columns

The GenEditAdd control has the capability of rendering any column as a drop-down list
column. The control must know four things for each drop-down list column that it must
render:
§ The DDLColumn. This is the name of the database field that has to be

rendered as a drop-down list column on the form.
§ The CodeField.This is the field whose value will be stored in the database.
§ The DisplayField. This is the field that the user will see.
§ The DDLSQL. This is the SQL query that will select the records for the drop-

down list.

I will call these four properties "sub-properties" of the main property DropDown. The
property DropDown is specified by the user as a string, with each of the above sub-
properties separated by a semicolon. The syntax for the property DropDown is:
DropDown = DDLColumn; CodeField; DisplayField; DDLSQL. These sub-properties
should be specified in exactly this order.

If you want to create two drop-downs, you would have eight sub-properties (four for
each), separated by a semicolon. For example:

Dim s As string

'First drop-down list

s= "code_category;code_value;code_display;Select * from groups;"

'second drop-down list

s=s + "code_display;code_display;code_display;Select * from masters;"

Gen.DropDown = s
Table 28.1 lists the four sub-properties of each drop-down list column passed to the
GenEditControl's property DropDown in the above example.

Table 28.1: The Four Drop-Down List Sub-properties

Index DDLColumn Code Field Display
Field

DDLSQL

0 code_category code_value code_display Select *
from
groups

1 code_display code_display code_display Select *
from
masters

In the above example above, the two drop-down lists are used on a data input form for
the masters table. The first list is used to fill in the masters code_category field (the user
is shown the names of groups from the groups table and its code_value is stored upon
user selection) and the second to select the descriptive name of a master record.
This code would reside in a config file as explained in Chapter 27. Gen is the id given to
the GenEditAdd control in that file.

What we pass to the control is a really long string that contains the property values
separated by semicolons. The ParseDropDown method (which gets called in the
CreateChildControls method) parses the string and stores the values in four arrays:
DDLColumn, CodeField, DisplayField, and DDLSQL. All the values pertaining to the
same drop-down list column will be stored with the same index number. For example,
property values for the first drop-down list column will be stored as:

DDLColumn(0) = "code_category"

CodeField(0) ="code_value"

DisplayField(0) = "code_display"

DDLSQL(0) = "Select * from groups"

Similarly property values for the second drop-down list column will be stored as follows:

DDLColumn(1) = "code_display"

CodeField(1) ="code_display"

DisplayField(1) = "code_display"

DDLSQL(1) = "Select * from masters"

A function called GetDDLIndex returns the index associated with a drop-down list
column. This function accepts the drop-down list column name as an input parameter
and returns the index assigned to it as follows:

Function GetDDLIndex(vDDLColumn as string) as integer

 'Pass in the column where a drop-down list must appear

 ' this function returns the index where its details are

 ' stored in the array

 Dim i As integer, vKey As integer

 For i= 0 to UBound(DDlColumn)

 If DDlColumn(i) = vDDLColumn

 vKey = i

 End If

 Next

 Return vKey

End Function

When we know this index, we can extract the other three sub-properties associated with
the drop-down list column. I have used the following code in many places within the
GenEditAdd control to extract the sub-properties using the assigned index value.

Dim idx As integer

Dim vDisplayField As string

Dim vCodeField As string

Dim vDDLSql As string

Dim VFieldName As string

If isDropDown(c.ToString) Then

 'get the index & other parameters

 idx = GetDDLindex((c.ToString))

 vDisplayField =DisplayField(idx)

 vCodeField =CodeField(idx)

 vDDLSql =DDLSql(idx)

End If

The isDropDown function is used to determine whether a given column is a drop-down
list column or not. This function simply loops the DDLColumn array and checks if the
column name passed to it as a parameter is included in this array. If it is, it means that
the column is a drop-down list column and the Boolean true is returned.

Function isDropDown(vDDLColumn as string) as boolean

 Dim i As integer, vflag As integer

 vFlag = -1

 For i= 0 to UBound(DDlColumn)

 If DDlColumn(i) = vDDLColumn

 vflag = 1

 End if

 Next

 If vFlag = 1 Then

 Return True

 Else

 Return False

 End If

End Function
The function ParseDropDown() is responsible for parsing the GenEditAdd property
DropDown and storing it into the four sub-property arrays DDLColumn, CodeField,
DisplayField, and DDLSql. It makes use of the Visual Basic split function. The split
function takes two arguments—the string to parse and a delimiter. The delimiter in this
case is the semicolon. I want to extract each word separated by a semicolon and the
split function does just that. It puts the parts of the split string in the object (array)
strChar. It is now a simple task to loop this object. In the inner loop, I have a counter
variable called count that gets incremented on each pass. In this inner loop, I will loop
the object strChar four times to get to the four sub-properties. On the first pass the count
variable equals one and the first element of the strChar object is identified as the
DDLColumn sub-property, similarly the second element is identified as the CodeField
sub-property, the third as the DisplayField sub-property, and forth as the DDLSQL sub-
property. On count number four, I reset the count variable to zero, so that I can start
processing the next drop-down list column (remember each drop-down list column has
four sub-properties, and thus after a count of four, I must start over). All four sub-

properties are stored in their respective arrays with the same index (idx) number. Thus
the four arrays are related to each other by their index numbers. I now increment the idx
number by one and the outer loop starts to work on the next set of four sub- properties.

Function ParseDropDown()

 Dim strChar As Object

 Dim s As String

 Dim j As Integer

 Dim count As Integer

 Dim idx As integer

 count = 1

 idx = 0

 strChar = Split(DropDown, ";")

 For j = 0 To UBound(strChar)

 If Len(strChar(j)) = 0 Then

 Else

 s = CStr(strChar(j))

 If count = 1 Then

 DDLColumn(idx) = s

 Elseif count = 2 Then

 CodeField(idx) = s

 Elseif count = 3 Then

 DisplayField(idx) = s

 Elseif count = 4 Then

 DDLSql(idx) = s

 count = 0

 idx = idx + 1

 End If

 count = count + 1

 End If

 Next

End Function

To help you understand these functions, I have created a web form
DropDown_explain.aspx. This file is not part of the GenEditAdd control. Its sole purpose
is to explain the code used to parse the DropDown property and show how the property
values are loaded into arrays. The GenEditAdd control has quite a bit of code. This
listing would help in understanding the code for building the drop-down lists as it isolates
the drop-down list functions from the rest of the code.

DropDown_explain.aspx

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<%@ Import Namespace="System.Web" %>

<%@ Import Namespace="System.Web.UI" %>

<%@ Import Namespace="System.Web.UI.WebControls" %>

<html>

 <script language="VB" runat="server">

 Public DDLColumn(10) As string

 Public CodeField(10) As string

 Public DisplayField(10) As string

 Public DDLSql(10) As string

 Public s As String

 Sub page_load(sender As Object, e As EventArgs)

 ParseDropDown

 End Sub

 Sub set1_Click(Sender As Object, E As EventArgs)

 Dim i As integer

 i = GetDDLindex("1")

 s= "DDLColumn = " + DDLColumn(i)

 s = s + " CodeField=" +CodeField(i)

 s = s + " DisplayField=" +DisplayField(i)

 s = s + " DDLSQL=" +DDLSQL(i)

 response.write(s)

 End Sub

 Sub set2_Click(Sender As Object, E As EventArgs)

 Dim i As integer

 i = GetDDLindex("a")

 s= "DDLColumn = " +DDLColumn(i)

 s = s + " CodeField=" +CodeField(i)

 s = s + " DisplayField=" +DisplayField(i)

 s = s + " DDLSQL=" +DDLSQL(i)

 response.write(s)

 End Sub

 Sub set3_Click(Sender As Object, E As EventArgs)

 Dim i As integer

 i = GetDDLindex("p")

 s= "DDLColumn = " +DDLColumn(i)

 s = s + " CodeField=" +CodeField(i)

 s = s + " DisplayField=" +DisplayField(i)

 s = s + " DDLSQL=" +DDLSQL(i)

 response.write(s)

 End Sub

 Function GetDDLIndex(vDDLColumn as string) as integer

 'Pass in the column where a drop down list must apper

 ' this function returns the row where its details are

 ' stored in the array

 Dim i As integer, vKey As integer

 For i= 0 to UBound(DDlColumn)

 If DDlColumn(i) = vDDLColumn

 vKey = i

 End if

 Next

 Return vKey

 End Function

 Function ParseDropDown()

 Dim strChar As Object

 Dim s As String

 Dim j As Integer

 Dim count As Integer

 Dim idx As integer

 count = 1

 idx = 0

 strChar = Split("1;2;3;4;a;b;c;d;p;q;r;s;", ";")

 For j = 0 To UBound(strChar)

 If Len(strChar(j)) = 0 Then

 Else

 s = CStr(strChar(j))

 If count = 1 then

 DDLColumn(idx) = s

 Elseif count = 2 then

 CodeField(idx) = s

 Elseif count = 3 then

 DisplayField(idx) = s

 Elseif count = 4 then

 DDLSql(idx) = s

 count = 0

 idx = idx + 1

 End if

 count = count + 1

 End If

 Next

 End Function

 </script>

 <body>

 <form runat = "server" >

 <asp:button text="Set1(1;2;3;4)" Onclick="set1_Click" runat=server/>

 <asp:button text="Set2(a;b;c;d)" Onclick="set2_Click" runat=server/>

 <asp:button text="Set3(p;q;r;s)" Onclick="set3_Click" runat=server/>

 </form>

 </body>

</html>

The ParseDropDown function parses the string 1;2;3;4;a;b;c;d;p;q;r;s; and splits it into
three sets. Each set has four properties. Thus, set #1 = 1,2,3,4; set #2 = a,b,c,d; and set
#3 = p,q,r,s. The four sub-properties in each set are the DDLColumn, the CodeField, the
DisplayField, and the DDLSQL. There are three buttons (having captions of Set1, Set2,
and Set3) on the form, which display the member properties of each set when clicked.

Now let's go back to the GenEditAdd control and look at code for the drop-down list
columns. I will first discuss the rendering of drop-down list columns in the Update mode
of GenEditAdd. The Update mode is when the GenEditAdd controls allow modification of
an existing record. In the source file (GenEditAdd.vb) this section is marked as the
"UPDATE MODE" and is part of the function CreateChildControls.

Drop-down List Columns in the Update Mode of GenEditadd

'*************************************

 'UPDATE MODE

'*************************************

'--------Drop Down List--------

For Each r in t.Rows

 For Each c in t.Columns

 'Get the field name

 vFieldName = FieldNamesArray(FieldsCount)

 if len(vFieldName) < 1 Then

 vFieldName = c.ToString

 End If

 If isDropDown(c.ToString) Then

 'get the index & other parameters

 idx = GetDDLindex((c.ToString))

 vDisplayField =DisplayField(idx)

 vCodeField =CodeField(idx)

 vDDLSql =DDLSql(idx)

 me.Controls.Add(new LiteralControl("<td>"))

 Dim DDL As New DropDownList

 DDL.ID = c.ToString

 DDL.DataTextField = vDisplayField

 DDL.DataValueField = vCodeField

 me.Controls.Add(DDL)

 '------Populate the drop down------

 Dim mSql As String

 msql = vDDLSQL

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(mSql, myConnection)

 myCommand.Fill(ds, c.ToString)

 DDL.DataSource = ds.Tables(c.ToString).DefaultView

 DDL.DataBind

 'set the display field

 Dim dv2 As dataview

 dv2 = new DataView(ds.Tables(c.ToString))

 If c.DataType.ToString = "System.String" Then

 msql = vCodeField + " = '" + r(c).ToString +"'"

 Else

 msql = vCodeField + " = " + r(c).ToString

 End If

 dv2.RowFilter = msql

 DDL.Selecteditem.text = dv2(0)(vDisplayField).ToString

 DDL.Selecteditem.value = dv2(0)(vCodeField).ToString

 me.Controls.Add(new LiteralControl("</td>"))

 Else

 '--------Text Boxes--------

 End If

 FieldsCount = FieldsCount + 1

 Next c

Next r

The code loops through the columns collection of the DataTable. For each column, it
checks if the column is a drop-down list column by calling the function isDropDown. If it
is, then it calls the function GetDDLIndex to get the index associated with that column.
Equipped with this index, it extracts the other three sub-properties associated with this
drop-down list column list and stores them in the variables vDisplayField, vCodeField,
and vDDLSql respectively. It then adds an ASP.NET DropDownList control and sets its
DataTextField property equal to the value stored in the variable vDisplayField and its
DataValueField property equal to the value stored in the variable vCodeField . It uses the
SQL query stored in the variable vDDLSql to populate an OleDbDataAdapter, which in
turn populates a DataSet. The default view of this DataSet is used to bind the
DropDownList control.

The DropDownList control scrolls to the correct display field in the drop-down list. The
ASP.NET DropDownList control does not have built-in support for this type of
functionality. The GenEditAdd control achieves this functionality by applying a filter to
locate the current value of the field in the list and setting the SelectedItem.Text and the
SelectedItem.Value of the ASP.NET DropDownList control to the filtered values as
follows:

'set the display field

Dim dv2 As dataview

dv2 = new DataView(ds.Tables(c.ToString))

If c.DataType.ToString = "System.String" Then

 msql = vCodeField + " = '" + r(c).ToString +"'"

Else

 msql = vCodeField + " = " + r(c).ToString

End If

dv2.RowFilter = msql

DDL.Selecteditem.text = dv2(0)(vDisplayField).ToString

DDL.Selecteditem.value = dv2(0)(vCodeField).ToString

The code for the drop-down list column functionality in the Insert mode is similar to the
Update mode except that in this mode the ASP.NET DropDownList control does not
have to maintain the state; hence, the state maintenance logic is not required.

When the user is finished adding or modifying the form, he clicks on the button called
AddButton. This fires the function AddBtn_Click. This function makes a call to the
isDropDown function. If this function returns true then the user input is extracted using
the SelectedItem.value property of the ASP.NET DropDownList control. Otherwise the
user input is extracted by using the text property of the ASP.NET TextBox control. The
logic for extracting user input is same in both the insert and update modes, and is as
follows:

If isDropDown(c.ToString) Then

 Dim vdropdown As DropDownList

 vdropdown = me.FindControl(c.ToString)

 column = c.ToString

 value = vdropdown.SelectedItem.value

Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

End If

Required Field

A required field is a field that must be filled in by the user. If left unfilled, the record will
not save and an error message will be displayed dynamically when the user tabs out of
the required field. In addition, all the error messages will be consolidated and shown as a
summary.

The required field functionality is implemented using the ASP.NET
RequiredFieldValidator control and the ASP.NET ValidationSummary controls. A
property called RequiredFields acts as the interface between the user and GenEditAdd.
The user provides a string of zeros and ones to this property as follows:

Gen.RequiredFields = "0100000"

A 1 implies that the field represented by the position of the 1 is a required field. In the
above example, the second field is a required field.

The RequiredFields property has a set and a get function as usual:

Public Property RequiredFields as string

 Get

 Return State("ls_RequiredFields")

 End Get

 Set

 State("ls_RequiredFields") = value

 End Set

End Property

The property value is padded with a number of zeros (just in case the user forgets to set
this property) and assigned to a string variable as follows:

vRequired = RequiredFields + "00"

In both the Update and Insert modes of CreateChildControls, the following code snippet
creates and associates an ASP.NET RequiredFieldValidator with the field:

'------Required field ------

If vRequired.chars(FieldsCount) = "1"

 Dim vReq As New RequiredFieldValidator

 vReq.controltovalidate = c.ToString

 vReq.errormessage= "Please enter " + c.ToString

 me.Controls.Add(vReq)

End If

FieldsCount is a variable that is incremented within the loop. This is the serial number of
the field; that is, the cardinal position of the field in the field's collection. The chars
method of the String class returns the value of a string at a certain position. This method
is used in the code snippet vRequired.chars(fieldcount) to check if the field with the serial
number represented by the FieldsCount variable has a value of 1. If it has, it means that
the field is a required field and an ASP.NET RequiredFieldValidator control must be
attached to it. The name of the database field which must be validated is provided by the
c.ToString variable.

An ASP.NET ValidationSummary control is also added as follows:

'------------Validation Summary

 me.Controls.Add(new LiteralControl("

"))

 Dim vSummary As New ValidationSummary

 vSummary.headertext="There were errors on the page:"

 me.Controls.Add(vSummary)

That is all the code required for the Required Field functionality.

Editable Fields

You can tell GenEditAdd which fields are editable and which are not. Editable fields
display ASP.NET TextBox controls to allow user input whereas non-editable fields just
display the field value as labels and a user cannot change the displayed value.

This interface to this functionality is via the property Editable as follows:

Public Property editable as string

 Get

 Return State("ls_editable")

 End Get

 Set

 State("ls_editable") = value

 End Set

End Property

The user sets this property to a string of zeros and ones—a zero means that the field
represented by the position of the zero is non-editable and a one means that it is
editable. For example, the property setting Gen.editable = "1110100" implies that the first
three and the fifth fields are editable (and the rest are not).

In the Update mode of the CreateChildControls method, the following script checks for
this property:

'--------Read only field hence label

If veditable.chars(FieldsCount) = "0"

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(r(c).ToString))

 me.Controls.Add(new LiteralControl("</td>"))

 '------Editable Fields------

Else

 'DropDown Field or Text Box

End If

The veditable variable is the Editable property padded with zeros, as follows:

veditable = editable + "00"

The method chars(FieldsCount) extracts the value from the string stored in the veditable
variable at the cardinal position specified by the variable FieldsCount. As explained
earlier, the FieldsCount variable is incremented in the loop and can be thought of as the
serial number of the field. If the value so extracted equals zero, then the field is non-
editable and a label is displayed which shows the stored value of the field. Otherwise,
the field is editable and an ASP.NET TextBox control or an ASP.NET DropDownList
control is created. The drop-down list column creation was discussed earlier in this
chapter.

In the Insert mode of CreateChildControls, a non-editable field should never be
displayed; thus, it is lumped together with the non-displayable columns and the key-field
column. These three types of fields should never be displayed and the following code
achieves this:

'Don't show this field

If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField _ or

veditable.chars(FieldsCount) = "0" Then

Else

 'Editable fields

End If

This logic is replicated in the event handler AddBtn_Click. This event handler gets called
when the AddButton is clicked. The code here loops through all the TextBox controls in
the input form, extracts their value property, and builds a stored procedure call string. It
does not need to deal with three types of columns (that is, the display-only, the non-
editable, and the key-field columns) because the user cannot change their values. The
logic above excludes these fields from the procedure call string.

Field Names

The FieldNames property enables you to provide custom captions for the various
TextBox controls residing on the input form. If this property is not set, the raw database
field names are used as caption for the TextBox controls. Here is an example of setting
this property:

Gen.FieldNames ="id;Account Name; Group;Type; Closing Bal;Opening Bal;"

As you can note, this property contains the custom captions, separated by semicolons.
In the preceding example, the first TextBox control will be captioned id, the second
Account Name, and so on. In a manner similar to the ParseDropDown function (which I
discussed in relation to building the drop-down list columns), the ParseFieldNames
function parses the FieldName property and stores the constituent field names in an
array called FieldNamesArray using the Visual Basic Split function.

Function ParseFieldNames()

 'This function parses the FieldNames property

 Dim strChar As Object

 Dim s As String

 Dim j As Integer

 Dim count As Integer

 If len(FieldNames) <1 Then

 Exit function

 End If

 strChar = Split(FieldNames, ";")

 For j = 0 To UBound(strChar)

 If Len(strChar(j)) = 0 Then

 Else

 s = CStr(strChar(j))

 FieldNamesArray(j) = s

 End If

 Next

End Function

Once this is done, it is a simple matter to extract this name in the main loop of the
CreateChildControls function as follows:

For Each r in t.Rows

 For Each c in t.Columns

 'Get the field name

 vFieldName = FieldNamesArray(FieldsCount)

 If len(vFieldName) < 1 Then

 vFieldName = c.ToString

 End If

 FieldsCount = FieldsCount + 1

 Next c

Next r

The code retrieves the field name from the FieldNamesArray based on the Fields- Count
variable, which is the serial number of the field. If the length of the name is greater than
one (that is, a name exists), the user-defined name is used; else, the raw database field
name is used as the TextBox control caption.

Stored Procedure Names

GenEditAdd enables you to specify the stored procedures to use in the Insert and the
Update modes. This is done through two property settings: the InsertProcedure and the
UpdateProcedure, as follows:

Public Property InsertProcedure as string

 Get

 Return State("ls_Insertprocedure")

 End Get

 Set

 State("ls_Insertprocedure") = value

 End Set

End Property

Public Property UpdateProcedure as string

 Get

 Return State("ls_Insertprocedure")

 End Get

 Set

 State("ls_Insertprocedure") = value

 End Set

End Property

In the config file, you would set these properties as follows:

Gen.Insertprocedure = "p_Insertmasters"

Gen.Updateprocedure = "p_Updatemasters"

The event handler AddBtn_Click when building the stored procedure call string uses this
property setting as follows:

If mode = "update" Then

 s = "Execute " + Updateprocedure + ""

 s = s + etc etc...

Else

 s = "Execute " + Insertprocedure + ""

 s = s + etc etc...

End If

The Complete Code Listing

The following is the complete code listing of the GenEditAdd control:
GenEditAdd.vb

Option Strict Off

Imports System

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Data

Imports System.Data.OleDb

Imports Microsoft.VisualBasic

Imports System.Collections

Namespace Generic

 Public Class GenEditAdd : Inherits Control : Implements INamingContainer

 Private ls_display as string

 Private ls_where as string

 Private ls_sql as string

 Private ls_ConnStr as string

 Private ls_keyField as string

 Private ls_keyValue as string

 Private ls_Insertprocedure as string

 Private ls_Updateprocedure as string

 Private ls_exitpage as string

 Private lt_datatable as datatable

 Private ls_mode as string

 Private ls_RequiredFields as string

 Private ls_editable as string

 Private ls_DropDown as string

 Private ls_fieldNames as string

 Protected mytbl as table

 Protected DDLColumn(10) as string

 Protected CodeField(10) as string

 Protected DisplayField(10) as string

 Protected DDLSql(10) as string

 Protected FieldNamesArray(15) as string

 Public Property FieldNames as string

 Get

 Return Cstr(ViewState("ls_FieldNames"))

 End Get

 Set

 ViewState("ls_FieldNames") = value

 End Set

 End Property

 Public Property InsertProcedure as string

 Get

 Return Cstr(ViewState("ls_Insertprocedure"))

 End Get

 Set

 ViewState("ls_Insertprocedure") = value

 End Set

 End Property

 Public Property UpdateProcedure as string

 Get

 Return Cstr(ViewState("ls_Insertprocedure"))

 End Get

 Set

 ViewState("ls_Insertprocedure") = value

 End Set

 End Property

 Public Property DropDown as string

 Get

 Return Cstr(ViewState("ls_DropDown"))

 End Get

 Set

 ViewState("ls_DropDown") = value

 End Set

 End Property

 Public Property editable as string

 Get

 Return Cstr(ViewState("ls_editable"))

 End Get

 Set

 ViewState("ls_editable") = value

 End Set

 End Property

 Public Property RequiredFields as string

 Get

 Return Cstr(ViewState("ls_RequiredFields"))

 End Get

 Set

 ViewState("ls_RequiredFields") = value

 End Set

 End Property

 Public Property Mode as string

 Get

 Return Cstr(ViewState("ls_mode"))

 End Get

 Set

 ViewState("ls_mode") = value

 End Set

 End Property

 Public Property ExitPage as string

 Get

 Return Cstr(ViewState("ls_exitpage"))

 End Get

 Set

 ViewState("ls_exitpage") = value

 End Set

 End Property

 Public Property t as datatable

 Get

 Return lt_datatable

 End Get

 Set

 lt_datatable = value

 End Set

 End Property

 Public Property KeyField as string

 Get

 Return Cstr(ViewState("ls_keyfield"))

 End Get

 Set

 ViewState("ls_keyfield") = value

 End Set

 End Property

 Public Property KeyValue as string

 Get

 Return Cstr(ViewState("ls_keyvalue"))

 End Get

 Set

 ViewState("ls_keyvalue") = value

 End Set

 End Property

 Public Property display as string

 Get

 Return Cstr(ViewState("ls_display"))

 End Get

 Set

 ViewState("ls_display") = value

 End Set

 End Property

 Public Property Where as string

 Get

 Return Cstr(ViewState("ls_where"))

 End Get

 Set

 ViewState("ls_where") = value

 End Set

 End Property

 Public Property SQL as string

 Get

 Return Cstr(ViewState("ls_sql"))

 End Get

 Set

 ViewState("ls_sql") = value

 End Set

 End Property

 Public Property ConnStr as string

 Get

 Return Cstr(ViewState("ls_ConnStr"))

 End Get

 Set

 ViewState("ls_ConnStr") = value

 End Set

 End Property

 Protected Overrides Sub CreateChildControls()

 '------Parse the DropDown property

 ParseDropDown

 '—-Parse FieldNames

 ParseFieldNames

 '----------Input Form----------

 Dim dv As DataView

 Dim myConnection As OleDbConnection

 Dim myCommand As OleDbDataAdapter

 Dim ds As New DataSet

 Dim vSql As string

 If len(Where) < 1 then

 vSql = SQL

 mode = "insert"

 Else

 vSql = SQL + Where

 mode = "update"

 End If

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(vSql, myConnection)

 myCommand.Fill(ds, "vtable")

 dv = new DataView(ds.Tables("vtable"))

 Dim Fields As Integer

 t = dv.Table

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 Dim Fieldscount As integer

 Dim s As string

 Dim vdisplay As string

 Dim vRequired As string

 Dim veditable As string

 Dim idx As integer

 Dim vDisplayField As string

 Dim vCodeField As string

 Dim vDDLSql As string

 Dim VFieldName As string

 vDisplay = Display + "00"

 vRequired = RequiredFields+"00"

 veditable = editable + "00"

 FieldsCount = 0

 s = "Back"

 me.Controls.Add(new LiteralControl(s))

 s= "<table bgcolor ='antiquewhite' style='font: 8pt verdana'>"

 me.Controls.Add(new LiteralControl(s))

 me.Controls.Add(new LiteralControl("<tr>"))

 If mode = "insert" then

 s="<td colspan='2' bgcolor='#aaaadd'"

 s= s + " style='font:10pt verdana'>Add a New Record:</td>"

 me.Controls.Add(new LiteralControl(s))

 Else

 s="<td colspan='2' bgcolor='#aaaadd' "

 s= s + " style='font:10pt verdana'>Edit Record:</td> "

 me.Controls.Add(new LiteralControl(s))

 End If

 me.Controls.Add(new LiteralControl("</tr>"))

 '**************************************

 'UPDATE MODE

 '*************************************

 If mode = "update" then

 For Each r in t.Rows

 For Each c in t.Columns

 'Get the field name

 vFieldName = FieldNamesArray(FieldsCount)

 If len(vFieldName) < 1 then

 vFieldName = c.ToString

 End If

 'Don't show this field

 If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField then

 Else

 me.Controls.Add(new LiteralControl("<tr>"))

 'label

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(vFieldName))

 me.Controls.Add(new LiteralControl("</td>"))

 'value

 '------Read only field hence label

 If veditable.chars(FieldsCount) = "0"

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(r(c).ToString))

 me.Controls.Add(new LiteralControl("</td>"))

 '------Editable Fields------

 Else

 '------Drop Down List------

 If isDropDown(c.ToString) then

 'get the index & other parameters

 idx = GetDDLindex((c.ToString))

 vDisplayField =DisplayField(idx)

 vCodeField =CodeField(idx)

 vDDLSql =DDLSql(idx)

 me.Controls.Add(new LiteralControl("<td>"))

 Dim DDL As New DropDownList

 DDL.ID = c.ToString

 DDL.DataTextField = vDisplayField

 DDL.DataValueField = vCodeField

 me.Controls.Add(DDL)

 '---Populate the drop down---

 Dim mSql As String

 msql = vDDLSQL

 myConnection = New OleDbConnection(ConnStr)

 myCommand = New OleDbDataAdapter(mSql, myConnection)

 myCommand.Fill(ds, c.ToString)

 DDL.DataSource = ds.Tables(c.ToString).DefaultView

 DDL.DataBind

 'set the display field

 Dim dv2 As dataview

 dv2 = new DataView(ds.Tables(c.ToString))

 If c.DataType.ToString = "System.String" Then

 msql = vCodeField + " = '" + r(c).ToString +"'"

 Else

 msql = vCodeField + " = " + r(c).ToString

 End If

 dv2.RowFilter = msql

 DDL.Selecteditem.text = dv2(0)(vDisplayField).ToString

 DDL.Selecteditem.value = dv2(0)(vCodeField).ToString

 me.Controls.Add(new LiteralControl("</td>"))

 Else

 '--------Text Boxes--------

 me.Controls.Add(new LiteralControl("<td>"))

 Dim Box As New TextBox

 Box.Text = r(c).ToString

 Box.ID = c.ToString

 me.Controls.Add(box)

 me.Controls.Add(new LiteralCont rol("</td>"))

 End If

 '------Required field ------

 If vRequired.chars(FieldsCount) = "1"

 Dim vReq As New RequiredFieldValidator

 vReq.controltovalidate = c.ToString

 vReq.errormessage= "Please enter " + c.ToString

 me.Controls.Add(vReq)

 End If

 End If

 End If

 FieldsCount = FieldsCount + 1

 Next c

 Next r

 '**************************************

 'INSERT MODE

 '*************************************

 Else

 For Each c in t.Columns

 'Get the field name

 vFieldName = FieldNamesArray(FieldsCount)

 If len(vFieldName) < 1 then

 vFieldName = c.ToString

 End If

 'Don't show this field

 If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField _

 or veditable.chars(FieldsCount) = "0" then

 Else

 me.Controls.Add(new LiteralControl("<tr>"))

 'label

 me.Controls.Add(new LiteralControl("<td>"))

 me.Controls.Add(new LiteralControl(vFieldName))

 me.Controls.Add(new LiteralControl("</td>"))

 If isDropDown(c.ToString) then

 'get the index & other parameters

 idx = GetDDLindex((c.ToString))

 vDisplayField =DisplayField(idx)

 vCodeField =CodeField(idx)

 vDDLSql =DDLSql(idx)

 me.Controls.Add(new LiteralControl("<td>"))

 Dim DDL As New DropDownList

 DDL.ID = c.ToString

 DDL.DataTextField = vDisplayField

 DDL.DataValueField = vCodeField

 me.Controls.Add(DDL)

 '---Populate the drop down---

 Dim mSql As String

 msql = vDDLSQL

 myCommand = New OleDbDataAdapter(mSql, myConnection)

 myCommand.Fill(ds, c.ToString)

 DDL.DataSource = ds.Tables(c.ToString).DefaultView

 DDL.DataBind

 me.Controls.Add(new LiteralControl("</td>"))

 Else

 'value

 me.Controls.Add(new LiteralControl("<td>"))

 Dim Box As New TextBox

 Box.ID = c.ToString

 me.Controls.Add(box)

 me.Controls.Add(new LiteralControl("</td>"))

 End If

 '------Required field ------

 If vRequired.chars(FieldsCount) = "1"

 Dim vReq As New RequiredFieldValidator

 vReq.controltovalidate = c.ToString

 vReq.errormessage= "Please enter " + c.ToString

 me.Controls.Add(vReq)

 End If

 End If

 FieldsCount = FieldsCount + 1

 Next c

 End If

 me.Controls.Add(new LiteralControl("</tr>"))

 me.Controls.Add(new LiteralControl("</Table>"))

 '--------add button

 Dim AddButton As New Button

 If mode = "insert" then

 AddButton.Text = "Add"

 Else

 AddButton.Text = "Update"

 End If

 AddHandler AddButton.Click, AddressOf AddBtn_Click

 Me.Controls.Add(AddButton)

 '------------Validation Summary

 me.Controls.Add(new LiteralControl("

"))

 Dim vSummary As New ValidationSummary

 vSummary.headertext="There were errors on the page:"

 me.Controls.Add(vSummary)

 End Sub

 Private Sub AddBtn_Click(Sender As Object, E As EventArgs)

 'Build the procedure call

 Dim s As String

 Dim r As DataRow

 Dim c As DataColumn

 Dim cell As TableCell

 Dim row As DataRow

 Dim column As string

 Dim Value As string

 Dim Fieldscount As integer

 Dim vdisplay As string

 Dim veditable As string

 veditable = editable + "00"

 vDisplay = Display + "000000000000000000000000000000000000000"

 FieldsCount = 0

 If mode = "update" then

 s = "Execute " + Updateprocedure + ""

 For Each r in t.Rows

 For Each c in t.Columns

 If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField _

 or veditable.chars(FieldsCount) = "0" then

 Else

 If isDropDown(c.ToString) then

 Dim vdropdown As DropDownList

 vdropdown = me.FindControl(c.ToString)

 column = c.ToString

 value = vdropdown.SelectedItem.value

 Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

 End If

 If Value = "" then

 Value = "NULL"

 End If

 If c.DataType.ToString = "System.String" Then

 If Value = "NULL" then

 s = s + " @" + column + "=" + value + ", "

 Else

 s = s + " @" + column + "='" + value + "', "

 End If

 Else

 s = s + " @" + column + "=" + value + ", "

 End If

 End If

 FieldsCount = FieldsCount + 1

 Next c

 Next r

 s = s + "@" + KeyField + "=" + KeyValue

 me.Controls.Add(new LiteralControl(s))

 RunSql(s)

 Else

 s = "Execute " + Insertprocedure + ""

 'Insert mode

 For Each c in t.Columns

 If vdisplay.chars(FieldsCount) = "0" or c.ToString = KeyField _

 or veditable.chars(FieldsCount) = "0"then

 Else

 If isDropDown(c.ToString) then

 Dim vdropdown As DropDownList

 vdropdown = me.FindControl(c.ToString)

 column = c.ToString

 value = vdropdown.SelectedItem.value

 Else

 Dim tb As TextBox

 tb = me.FindControl(c.ToString)

 column = c.ToString

 Value = tb.text

 End If

 If Value = "" then

 Value = "NULL"

 End If

 If c.DataType.ToString = "System.String" Then

 If Value = "NULL" then

 s = s + " @" + column + "=" + value + ", "

 Else

 s = s + " @" + column + "='" + value + "', "

 End If

 Else

 s = s + " @" + column + "=" + value + ", "

 End If

 End If

 FieldsCount = FieldsCount + 1

 Next c

 s = s + "@" + KeyField + "=NULL"

 me.Controls.Add(new LiteralControl(s))

 RunSql(s)

 End If

 End Sub

 Sub RunSql(vSql as string)

 try

 Dim s As string

 Dim myConnection As OleDbConnection

 myConnection = New OleDbConnection(ConnStr)

 Dim mycommand As New OleDbCommand(vsql,myConnection)

 myconnection.Open()

 myCommand.ExecuteNonQuery()

 myconnection.Close()

 Catch ex As OleDbException

 ' SQL error

 Dim errItem As OleDbError

 Dim errString As String

 Dim s As string

 For Each errItem In ex.Errors

 errString += ex.Message + "
"

 Next

 s = "

SQL Error.Details follow:
" & errString

 me.Controls.Add(new LiteralControl(s))

 Catch myException as Exception

 me.Controls.Add(new LiteralControl("Exception: " +

myException.ToString()))

 End try

 End Sub

 '---------These Functions associated with DropDown Property---------

 Function ParseDropDown()

 Dim strChar As Object

 Dim s As String

 Dim j As Integer

 Dim count As Integer

 Dim idx As integer

 count = 1

 idx = 0

 strChar = Split(DropDown, ";")

 For j = 0 To UBound(strChar)

 If Len(strChar(j)) = 0 Then

 Else

 s = CStr(strChar(j))

 If count = 1 then

 DDLColumn(idx) = s

 Elseif count = 2 then

 CodeField(idx) = s

 Elseif count = 3 then

 DisplayField(idx) = s

 Elseif count = 4 then

 DDLSql(idx) = s

 count = 0

 idx = idx + 1

 End If

 count = count + 1

 End If

 Next

 End Function

 Function GetDDLIndex(vDDLColumn as string) as integer

 'Pass in the column where a drop-down list must appear

 ' this function returns the row where its details are

 ' stored in the array

 Dim i As integer, vKey As integer

 For i= 0 to UBound(DDlColumn)

 If DDlColumn(i) = vDDLColumn

 vKey = i

 End if

 Next

 Return vKey

 End Function

 Function IsDropDown(vDDLColumn as string) as boolean

 Dim i As integer, vflag As integer

 vFlag = -1

 For i= 0 to UBound(DDlColumn)

 If DDlColumn(i) = vDDLColumn

 vflag = 1

 End if

 Next

 If vFlag = 1 then

 Return True

 Else

 Return False

 End If

 End Function

 '--------Drop Down Functions end--------

 Function ParseFieldNames()

 'This function parses the FieldNames property

 Dim strChar As Object

 Dim s As String

 Dim j As Integer

 Dim count As Integer

 If len(FieldNames) <1 then

 Exit function

 End If

 strChar = Split(FieldNames, ";")

 For j = 0 To UBound(strChar)

 If Len(strChar(j)) = 0 Then

 Else

 s = CStr(strChar(j))

 FieldNamesArray(j) = s

 End If

 Next

 End Function

 End Class

End Namespace

Project 4 Summary

The GenEditAdd is a very useful control that you can hook up to a DataGrid control and
use to edit and insert records. You can replace the built-in editing functionality of a
DataGrid with this control. To use the editing functionality of the DataGrid, you need to
code a number of events. This is not required in the GenEditAdd control. You set a
number of properties of the GenEditAdd control and it carries out inserts and updates in
an automatic manner. The insert mode is not available in the DataGrid and the insert
functionality has to be handled outside of the DataGrid. Not so in the GenEditAdd
control; the edit and insert modes work off the same control in a consistent and similar
fashion. This is not all; you can specify drop-down list columns, read-only columns,
required-entry columns, and add user-defined column names. The drop-down lists
created by the control can access any database table to populate themselves. Further,
unlike the ASP.NET DropDownList control, this control maintains state and scrolls down
the correct record that matches the value of the field it is attached to. When the user is
finished with the insert or update, GenEditAdd calls the appropriate stored procedure to
effect the insert or update.

Project 5: Visual Studio.NET

Chapter List
§ Chapter 29: Displaying Database Data Using a Strongly-Typed DataSet
§ Chapter 30: Writing CRUD Applications with Visual Studio.NET
§ Chapter 31: Creating a Web Service Using Visual Studio.NET

Project 5 Overview

Visual Studio brings a set of development tools that enables developers to rapidly build
Web- and Windows-based applications in a consistent manner. It is an integrated
development environment which enables you to develop applications using a variety of
languages, such as Visual Basic, C#, ASP.NET, and so on. Regardless of the chosen
language, there is only one environment to understand and use. Visual Studio enhances
and extends the functionality originally found in Visual InterDev and applications can be
built rapidly using drag-and-drop features. The IDE provides powerful debugging
features that work across languages, processes, and stored procedures.
In this part, which comprises three chapters, I discuss the important features of Visual
Studio. In Chapter 29, you will begin with an overview of the important features of Visual
Studio.NET, focusing on the various wizards, tools, and components available. Then you
will build a database web form using a Typed DataSet and utilizing the drag-and-drop
features of Visual Studio.NET. In Chapter 30, you will implement CRUD (create-read-
update-delete) functionality in the web form. At the end of Project 5, you will develop and
consume web services with Visual Studio.NET.

Chapter 29: Displaying Database Data Using a
Strongly-Typed DataSet

Overview

In this chapter, I show you how to bind a DataGrid to a Strongly-Typed DataSet and in
the process introduce you to various tools, wizards, and components provided by Visual
Studio.NET for database interaction.

A strongly-typed DataSet is a DataSet that is created by Visual Studio.NET. The
developer does not write any code for the DataSet and just drags and drops a DataSet
object from the Visual Studio.NET ToolBox. A DataSet created in this way binds more
closely to the .NET framework than a DataSet scripted manually. The typed DataSet
benefits from the syntax completion features of Visual Studio.NET, which can lead to
more productive development. A typed DataSet is sub-classed from the base DataSet
class and has a schema file (an .XSD file) that describes the structures of the tables the
DataSet contains. This schema contains the table and column names, the data types,
and information about the constraints on the data. An untyped DataSet, on the other
hand, does not have a corresponding schema. Visual Studio.NET automatically
generates this schema.
The sample walk-through that follows is a Web Application, written in C#, which displays
the data from the authors table of the PUBS database in a DataGrid.

Creating the C# Web Application
Visual Studio.Net organizes application development using the concept of Solutions
and Projects. A Solution can have one or more Projects and a Project is a folder that
holds together all the objects that make up an application. In this step, I will create a C#
ASP.NET Web project. Here are the steps to do it:
§ Create a new Web application by either clicking on the New Project button

on the Start Page or by selecting File/New/Project.
§ Select Visual C# Projects on the left pane and ASP.NET Web

Application on the right as shown in Figure 29.1. You can call this
project "VSOverView."

Figure 29.1: Creating a new ASP.NET Web Application.

Exploring the Application Folder
VS will create an application folder called VSOverView in the wwwroot folder. It will also
create an IIS virtual directory. You can see this by going to the Control Panel,
selecting Administrative Tools, and then Personal Web Manager. Click on the
Advanced button of the Personal Web Manager and you will see a new virtual directory
called VSOverView as shown in Figure 29.2.

Figure 29.2: VS will create a Virtual Directory in IIS.

Exploring the Generated Files
Now take a look at the ASP.NET Web Application created by VS (Visual Studio). Your
screen will look like the screen shot displayed in Figure 29.3.

Figure 29.3: The blank project created by VS.

On the right-top side of the screen, you will see the Solution Explorer. You will note
that VS has created a Global.asax file, a Web.Config file, and a default web form called
WebForm1.aspx. The Global.asax file handles "application level" logic through
application events like Application_Start, Application_End, Session_Start,
and Session_End, to name a few. This file was discussed in Chapter 10, "ASP.NET
Applications." The web.config file is the file that stores configuration data for the
application. Located in the root of an application folder and applicable to all the
subfolders in the application folder, this file contains the error, security, compilation,
debugging, session, and globalization information. This file was also discussed in
Chapter 10. The web form WebForm1.aspx is provided as a template that we can use to
create a new web form. Note that at the bottom of the work area of the screen (the white

area), there are two tabs called Design and HTML. You are initially in the Design view.
The Design view allows you to drag and drop controls from the Toolbar onto the form. It
also allows you to visually position the controls with your mouse.

Web pages generated by VS make use of Code Behind files. If you browse to the
VSOverView application folder in wwwroot, you will be able to see the Code Behind file
WebForm1.aspx.cs.

To view the Code Behind file in VS, you can adopt either of the following approaches:
§ From the Project menu, select Show All Files. Then in the Solution

Explorer, you will see a plus sign against the web form WebForm1.aspx.
If you click on the plus sign, you will see the Code Behind file.

§ In the Solution Explorer, right at the top there is a set of icons. Locate
the icon that displays the tool-tip Show All Files and click on it.

§ Right -click on the web form WebForm1.aspx and select View Code.

Within the Code Behind please note that various namespaces are already imported.
During development, you might create a number of web forms. To view a web form in the
browser, right-click on the form name and select View in the Browser. To set a web
form as the default form that opens in the browser each time you build and run the
application, right -click on the web form in the Solution Explorer and select Set as
Start Page.

Exploring the Project Properties
Right -click on the project name in the Solution Explorer. The Property Pages
window for the application displays as shown in Figure 29.4.

Figure 29.4: The Project Properties.

You can specify the namespace of your project in the Default Namespace box. This,
by default, is your application name. If you change the namespace here, the namespace
change will not be automatically applied to already created forms. You must manually
make the namespace change to all the pre-created web forms, else you will get
compilation errors. Any new web form will be created in the specified namespace.
At this stage give a meaningful name to the WebForm1.aspx. Call it TypedDataSet.aspx
by right-clicking it in the Solution Explorer and selecting Rename. At this stage if
you open the Code Behind file and note the class name and the constructor name, you
will see that even though you changed the name of the form to TypedDataSet, the Code
Behind file still refers to WebForm1. If you do not fix this, you will get build errors later on
when you add components to the form. To fix this, in the Code Behind file, change the
class name and the constructor name to be TypedDataSet and you should be ready to

go. You can do a find and replace or now that I have made my point, just delete and re-
create the web form with the new name.

A constructor is a method that has the same name as the class name. This is the first
method that gets fired when a class is initiated (a web form is a class). A default
constructor, which has no parameters is associated by default with a class. You can,
however, provide additional constructors that accept parameters.

Database Interaction
In this section, I will show you how to connect to a database, populate a DataAdapter,
and use it to fill a DataSet. I will use the authors table of the PUBS database for the
demonstration. I will show you two alternative methods of connecting to the database
and populating the DataAdapter.
All the components that interact with the database are to be found in the Data section of
the toolbox. To use any component, all you have to do is to drag and drop them onto a
web form. Figure 29.5 shows the components that are available for database interaction.

Figure 29.5: The Data section of the toolbox.

Creating a Connection and a DataAdapter

I will use the SQL Managed Provider to interact with the database. As you might
remember, the SQLConnection is used to connect with the database. A SQL Select
Query is applied against this connection to fill the SqlDataAdapter with database data.
As I promised, I will show you two methods to achieve this.

Creating a SQLConnection and a SqlDataAdapter - Method
#1

This method of creating a SQLConnection and a SqlDataAdapter involves dragging and
dropping a SqlDataAdapter from the Data tab of the toolbox onto the web form and
completing a number of wizards. This is how to do it:

1. From the Data tab of the toolbox, drag and drop a SqlDataAdapter
onto the web form. The DataAdapter Configuration wizard
starts which you will use to create the connection and command.
Click on next and you will see the Choose your Data
Connection window. Click on the New Connection button and
you will see the Data Link Properties window.

2. The window should be filled out as shown in Figure 29.6.
Set the server name, username, and password in this pane. If you left
the pubs database at its default setting, the username/password would be

sa/blank. Check the option box Allow saving of password. Finally
select the pubs database in the Select database on server box and hit
on the Test Connection button to test the connection.

Figure 29.6: The DataLink properties pane.

3. In the step, the wizard presents you with three options for selecting
the query type; Use SQL statements, Create new stored
procedures, and Use existing stored procedures. This is
shown in Figure 29.7. As I will discuss shortly, an insert, update,
delete, and select command can be associated with a DataAdapter.
The Use SQL statement will create four SQL statements, one
each to select, insert, update, and delete rows from the database.
Similarly, the Create new stored procedure option will create
four new stored procedures and the Use existing procedure
option will enable you to supply the names of four pre-existing
stored procedures. For the purpose of this demonstration, choose
the Use SQL statements option.

Figure 29.7: The Choose a query window.

4. A new window appears which is called Generate the SQL
Statement. This window allows you to type in a Select query. You
can type in the query Select * from authors as shown in
Figure 29.8.

Figure 29.8: Typing in a SQL query in the Generate the SQL Statement
window.
§ You can also use this window to graphically build a SQL query. To do

this, click on the button captioned Query Builder. This will display a
query builder tool as shown in Figure 29.9. This is a Microsoft Access
type query builder tool that you can use to select and join multiple
tables and then drag and drop column names to build the query. I leave
it up to you to explore it in detail.

Figure 29.9: The Query builder allows you to graphically build queries.

§ Finally hit Next and then Finish after you are satisfied with your
Select query.

§ A SqlDataAdapter and a SqlConnection will appear at the bottom of the
web form as shown in Figure 29.10. These will be called
SqlDataAdapter1 and SqlConnection1.

Figure 29.10: The SqlDataAdapter and SqlConnection created in VS.

This is the outcome that we sought in this first method of creating a SqlDataAdapter and
SqlConnection with Visual Studio. Now we examine method #2.

Creating a SqlConnection and a SqlDataAdapter - Method
#2
I am now going to show you another method of creating a SqlConnection and
SqlDataAdapter that is much quicker than method #1. You need to start with a clean
slate, so add a new web form to the project and call it TypedDataSet2.aspx. Since you
will need to vi ew this form in the browser, set this form as the start-up page by right-
clicking the form in the Solution Explorer and selecting Set as Start Page.

The Server Explorer
The Server Explorer is a database explorer that shows the various database objects
like tables, triggers, and stored procedures. It is accessed from the View/Server
Explorer menu option or the shortcut Ctrl-Alt-S. The Server Explorer is shown
in Figure 29.11. You can use it to manipulate database tables. I leave it to you to explore
it in detail.

Figure 29.11: The Server Explorer allows you to explore and manipulate database objects.

Now all that you have to do to create the SqlConnection and the SqlDataAdapter is to
drag and drop the authors table from the Server Explorer onto the form (you can
refer to Figure 29.11 to locate the table in the Server Explorer). The resultant form
looks the same as in Figure 29.10 and has both a SqlConnection and a SqlDataAdapter
called SqlConnection1 and SqlDataAdapter1 respectively.

Exploring the Code Generated for the SqlConnection and SqlDataAdapter
If you right-click on the SqlConnection1 and select Properties, the property page
for this object displays as shown in Figure 29.12. Note that the Name and the
ConnectionString can be modified in this window and this tool enables you to modify
property settings through property pages like Visual Basic 6.

Figure 29.12: The Properties page for the SqlConnection.

Similarly you can view the property pages for the SqlDataAdapter as shown in Figure
29.13.

Figure 29.13: TheProperty Page for the SqlDataAdapter.

Now let’s take a look at the code that was generated. Bring up the Code Behind file in
VS and expand all nodes (click on the plus sign before various methods and the sign will
become minus. You will now be able to see all the code of that method). Note the
#region and the #endregion tags. Code enclosed within these tags allows you to
specify a block of code that you can expand or collapse. You can also browse to the
application folder and open the Code Behind file TypedDataSet.aspx.cs in a text editor to
view the generated code.

Various namespaces are imported in the Code Behind file as follows:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

 using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;
A class called TypedDataSet, which inherits from System.Web.UI.Page is created in
the VSOverView namespace as follows:

namespace VSOverView

{

 public class TypedDataSet : System.Web.UI.Page

 {

 //A lot of code here

 }

}

Four Command objects are declared as follows:

[code]

protected System.Data.SqlClient.SqlCommand sqlSelectCommand1;

protected System.Data.SqlClient.SqlCommand sqlInsertCommand1;

protected System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

protected System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

A SqlConnection is declared as follows:

protected System.Data.SqlClient.SqlConnection sqlConnection1;

A SqlDataAdapter is declared as follows:

protected System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;
An instance of all these objects in creating using the new keyword in the
InitializeComponent method as follows:

this.sqlSelectCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlInsertCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlUpdateCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlDeleteCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlConnection1 = new System.Data.SqlClient.SqlConnection();

this.sqlDataAdapter1 = new System.Data.SqlClient.SqlDataAdapter();

In the same method, the SqlConnection is set as follows:

// sqlConnection1

this.sqlConnection1.ConnectionString = "data source=BHASIN\\NETSDK;

initial catalog=pubs;integrated security=SSPI;persist " +

"security info=True;workstation id=BHASIN;packet size=4096";

The DataAdapter is associated with a select, insert, update, and delete Command object
as follows:

this.sqlDataAdapter1.DeleteCommand = this.sqlDeleteCommand1;

this.sqlDataAdapter1.InsertCommand = this.sqlInsertCommand1;

this.sqlDataAdapter1.SelectCommand = this.sqlSelectCommand1;

this.sqlDataAdapter1.UpdateCommand = this.sqlUpdateCommand1;

Now for each of these Command objects, the following properties are set:
§ The CommandText property
§ The Connection property and
§ The Parameters collection

Though there is a lot of code, it is basically very simple. Most of the code involves setting
the parameters collection. Each field of the database table is added as a parameter to
the parameters collection of the Command object and an insert, update, or delete query
is built which includes all of these fields. I have explained this technique in relation to
calling a stored procedure with a Command object in Chapter 3 (Using ADO.NET in the
.NET Framework) which you might like to refer to now.

It might be proper to talk about the relevance of these four commands here and also
bring the DataSet into picture. In ADO 2.x, if you needed to perform a select, insert,
update, or delete all in one method, four ADODB command objects would be required. In
ADO.NET there are still four commands but all are linked to a single DataAdapter object.
The DataAdapter uses any of these four command objects as appropriate.
I will incorporate the DataSet in the next section but this is an appropriate juncture to
discuss it. As you may recall a DataAdapter sits between the DataSet and the database.
The DataSet in turn may be bound to a list control like a DataGrid. The user interacts
with the DataGrid and may change database data. Since the DataSet is bound to the
DataGrid, any changes to the DataGrid are also made to the DataSet. You could provide
a save button on the DataGrid that the user could click if he wanted to save changes to
the database. These changes could be inserts, updates, or deletes to database rows.
This button would call the update() method of the DataAdapter. The update()
method checks the DataSet for all inserts, updates, and deletes and calls the appropriate
update, delete, or insert command as appropriate. Note that the update() method of
the DataAdapter performs the entire insert, update, and delete activities, in one go (and
not just the update activity, as its name seems to indicate).
Finally the TableMapping property provides friendly names to refer to the database
column names. Here the name and the friendly names are the same. For example the
TableMapping for the au_id field is as follows:

new System.Data.Common.DataColumnMapping("au_id", "au_id").

This property links the names of the database columns in the DataSet with the database.
Thus, if you have a very long database column name, you can refer to it with a short
alias in the DataTable.

DataSet

In this step, I will create a Strongly Typed DataSet using the drag-and-drop features of
Visual Studio.Net. I will add some code to populate the DataAdapter and the DataSet
and then bind a DataGrid to the DataSet. Here are the steps to do it.

1. Select the Generate Dataset menu option from the Data menu.
2. The Generate DataSet dialog box appears as shown in Figure

29.14. Call the DataSet dsAuthors and ensure that the box that says
Add this DataSet to the designer is checked.

Figure 29.14: The Generate DataSet dialog box.

3. An instance of the DataSet called dsAuthors1 appears at the bottom
of the form and the object dsAuthors.xsd displays in the Solution
Explorer. This is shown in Figure 29.15.

Figure 29.15: An instance of the DataSet is created. by VS.

If you note the code generated in the Code Behind file at this stage, you will
observe the following:
A protected variable dsAuthors1 of type dsAuthors is declared as follows:

protected VSOverView.dsAuthors dsAuthors1;
An instance of dsAuthors called dsAuthors1 is created using the new
keyword as follows:

this.dsAuthors1 = new VSOverView.dsAuthors();
The DataSetName, Locale, and Namespace properties for dsAuthors1
is set as follows:

// dsAuthors1

this.dsAuthors1.DataSetName = "dsAuthors";

this.dsAuthors1.Locale = new System.Globalization.CultureInfo("en-US");

this.dsAuthors1.Namespace = "http://www.tempuri.org/dsAuthors.xsd";
4. Now drag and drop a DataGrid from the Web Forms Toolbox onto the

web form. In the next step, I will bind this DataGrid to the DataSet.
5. In this step, create the Bind() method which will populate the

DataSet using the Fill method of the DataAdapter and bind the
DataGrid to the DataSet as follows:

6. public void Bind()

7. {

8. sqlDataAdapter1.Fill(dsAuthors1);

9. DataGrid1.DataSource=dsAuthors1;

 }
Finally call the Bind method in the Page_Load event as follows:

private void Page_Load(object sender, System.EventArgs e)

 {

 if (! IsPostBack)

 {

 Bind();

 }

}
Visual Studio.NET has wizards to build methods and properties, which I leave
to you to explore. Typing Ctrl+Shift+C or selecting View/Class View
will bring up the Class View window. This view lets you explore the
methods, properties, and fields of the class. If you right-click on the class
name and select Add, you will be able to access wizards that help you create
a method, property, indexer, or field.

10. Build and run the form by pressing F5.
Figure 29.16 is the screenshot of the resulting output.

Figure 29.16: The final output.

You will appreciate that Visual Studio.NET allowed us to present database data in a
DataGrid with only a few lines of code. As a RAD tool, Visual Studio.NET handles well.
The code it generates is elegant and concise and using it could cut down your
development time quite a bit.

Chapter 30: Writing CRUD Applications with Visual
Studio.NET
CRUD is the acronym for Create-Read-Update-Delete, which are the four basic functions
of database interaction. Visual Studio.NET goes beyond building pretty screens and nifty
graphical user interfaces. As you will see in this chapter, you can use Visual Studio.NET
to build a powerful database application that has functionality to select, insert, update,
and delete database data.
In this chapter, I will build a web form which will display records from the stock_master
table. This form, which will be built using Visual Studio.NET will provide functionality for
the addition, modification, and deletion of database data.

Create a New C# ASP.NET Web Application

As always, you need to create a new ASP.NET Web application. I have chosen C# as
my scripting language. Here are the steps to create the new application.

1. Create a new Web application by either clicking on the New Project
button on the StartPage or by selecting File/New/Project.

2. Select Visual C# Projects on the left pane and ASP.NET Web
Application on the right. I have called this project Chapter30. Delete
the WebForm1.aspx that is created. Add a new web form and call it
StockMaster.aspx.

3. Select a BackGround color for StockMaster.aspx by right -clicking on a
blank portion of the web form and selecting a Background color from the
Color and Margins tab of the Document Property Page as
shown in Figure 30.1. I have selected the color #99cc99.

Figure 30.1: Setting the BackGround color of the web form.
4. Add the SqlClient namespace to the Code Behind file. Visual

Studio.Net automatically adds all the required namespaces except for the
Sql Managed provider. Add this namespace as follows:

5. using System.Data.SqlClient;

The namespace section will now look like this:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

The Data Components

Now, add a SqlConnection, a SqlDataAdapter, and a DataSet as follows.
1. Create the SqlConnection and the SqlDataAdapter by dragging and

dropping the stock_master table of the ASPNET sample database
(installation instructions can be found in Appendix A) from the Server
Explorer onto the form. The Server Explorer will show the
stock_master table as shown in Figure 30.2.

Figure 30.2: The stock_detail table in the Server Explorer.
The resultant form has a SqlConnection and a SqlDataAdapter called
SqlConnection1 and SqlDataAdapter1 respectively as shown in Figure
30.3.

Figure 30.3. The SqlConnection and SqlDataAdapter generated by Visual
Studio.
2. Select the Generate Dataset menu option from the Data menu (you

have to be in the design mode to see this option) or Select Generate
DataSet from the property page of the SqlDataAdapter.

The Generate DataSet dialog box appears as shown in Figure 30.4. Call
the DataSet dsStock and ensure that the box that says Add this
DataSet to the designer is checked.

Figure 30.4: Generating the DataSet.

§ An instance of the DataSet called dsStock1 appears at the bottom of the
form and the object dsStock.xsd displays in the Solution Explorer.

The DataGrid
Add a DataGrid to the web form, which will act as the main user interface. To do this,
drag and drop a DataGrid from the Web Forms Toolbox onto the web form.
You must now set a number of properties (attributes) for the DataGrid. To do this, right-
click on the DataGrid and select Properties. The property page for the DataGrid will
appear as shown in Figure 30.5.
Beautify the DataGrid by clicking on the AutoFormat hyperlink at the bottom of the
property page and selecting Classic2. Now set the DataGrid properties as detailed
below:
§ DataSource= dsStock1
§ DataMember = stock_master
§ DataKeyField = code_value

These selections are shown in Figure 30.5 and are circled in red.

Figure 30.5: Setting the Properties of the DataGrid.

Now switch to HTML view and note that the DataSource, DataMembers, and
DataKeyField attributes are added to the DataGrid element tag as follows:

<asp:datagrid id="DataGrid1"

DataSource="<%# dsStock %>"

DataMember="stock_master"

DataKeyField="code_value">

Selecting DataGrid Columns
If you do not already have the property page open, do so by right clicking (in the Design
View) on the DataGrid and selecting Properties. Click on the hyperlink called
Property Builder (this appears at the bottom of the Property page). Click on
Columns. Select all the columns by clicking on All Fields in the Available
Columns list box and then clicking the forward arrow (>). This is shown in Figure 30.6.

Figure 30.6: Selecting the columns of the DataGrid.

If you view the form in the HTML view, you will note that the <Columns> element tag is
generated as follows:

<Columns>

 <asp:EditCommandColumn ButtonType="LinkButton"

 UpdateText="Update" CancelText="Cancel" EditText="Edit">

 </asp:EditCommandColumn>

 <asp:BoundColumn DataField="code_value" HeaderText="code_value">

 </asp:BoundColumn>

 <asp:BoundColumn DataField="code_display" HeaderText="code_display">

 </asp:BoundColumn>

 <asp:BoundColumn DataField="rate" HeaderText="rate">

 </asp:BoundColumn>

 <asp:BoundColumn DataField="uom" HeaderText="uom">

 </asp:BoundColumn>

 <asp:BoundColumn DataField="closing" HeaderText="closing">

 </asp:BoundColumn>

 <asp:BoundColumn DataField="opening" HeaderText="opening">

 </asp:BoundColumn>

</Columns>
Make the closing column read-only, as this column is updated automatically by a
trigger on the stock_detail table. Also make the code_value column read-only, as
this is the primary key column. To do this, in the HTML view, start typing, and Visual
Studio.NET will try to auto-complete the tag by providing tag selections in a drop-down
list. The closing and the code_value columns should look like this:

<asp:BoundColumn DataField="closing" HeaderText="closing" ReadOnly=True>

</asp:BoundColumn>

<asp:BoundColumn DataField="code_value" ReadOnly="True"

HeaderText="code_value">

</asp:BoundColumn>

Adding the Add, Edit, and Delete Hyperlinks
Now create the Edit, Update, and Cancel Button Columns (the Update and Cancel
hyperlinks appear in the Update mode of the DataGrid). To do this, scroll down in the
Available Columns box till you see Button Columns. Expand this list and you will
see the option Edit, Update, Cancel as shown in Figure 30.7.

Figure 30.7: Selecting the Edit,Update,Cancel buttons.

Click the Add Button (the forward arrow). This will create an Edit hyperlink. If you view
the web form in HTML view, you will note that the EditCommandColumn tags have
been created with the UpdateText, the CancelText, and the EditText attribut es. If
you remember, these are the hyperlink captions that display with the appropriate update,
cancel, or edit hyperlink. The Edit hyperlink displays initially in the DataGrid. When you
click on it, the DataGrid displays in the Edit mode and the Update and Cancel
hyperlinks display at this stage.

<asp:EditCommandColumn ButtonType="LinkButton"

 UpdateText="Update"

 CancelText="Cancel"

 EditText="Edit">

</asp:EditCommandColumn>
Add a Delete Button in the same way as you added the Edit, Update, and Cancel
Button Column. This Button Column selection will appear below the Edit, Update, and
Cancel Button Column in the Available Column list. This is how the Delete
ButtonColumn will look like in the HTML view:

<asp:ButtonColumn Text="Delete" CommandName="Delete">

</asp:ButtonColumn>
Now you have two hyperlinks in the DataGrid called Edit and Delete. If they are not
beside each other, you can move them around using the up and down arrow, or remove
them from the list by using the cross.
Drag and drop a LinkButton control from the ToolBox onto the web form. Place it over
the DataGrid and under the page title. Right -click on it and select Properties. Set the
following properties:

§ ID = Add
§ Text = Add a new record
§ ToolTip = Add a new inventory master

Now, double-click on the LinkButton control. A blank method skeleton in the Code
Behind file is created which is called Add_Click. We will code this method later. The
skeleton created is as follows:

private void Add_Click(object sender, System.EventArgs e)

{

}

Convert Columns to Template Columns
Though the DataGrid is workable at this stage, it is better to convert the columns into
Template columns. The most important advantage of doing this is that we can associate
IDs with the EditItemTemplates that we can use to access the column values in the
update mode. In the Grid1_Update method, we are required to extract the column
values in order to build an update SQL query. In the absence of the IDs, we have to
refer to the control using its index value as shown below:

TextBox t;

t = (TextBox)e.Item.Cells[2].Controls[0];

String code_display = " code_display = '" + t.Text.Trim() + "'," ;
For some reason, this does not always work as expected whereas using the ID of the
control works reliably. As will be explained later, we can use the FindControl method
of a control to locate a control of a specified ID within the DataGrid. This can be cast to a
TextBox and its Text property extracted as shown below:

t = (TextBox) e.Item.FindControl("editCode_Display");

String code_display = " code_display = '" + t.Text.Trim() + "'," ;
To convert these columns to Template columns go back to the Property Builder
and select Columns. Select code_display, rate, uom, and opening columns
(each one separately) in the Selected Columns list box and click on the hyperlink that
appears at the bottom which says Convert this column into a Template
Column. Now, go to the HTML view and give unique IDs to the EditItemTemplates.
As soon as you start typing, you will note that Visual Studio.NET will try to auto-complete
the selection for you.
You will note that each Template column has an ItemTemplate and an associated
EditItemTemplate. This EditItemTemplate can be any type of ASP.NET control (for
example, a TextBox or a DropDownList control), whereas the ItemTemplate is a Label
control. The ItemTemplate is the control that displays initially in the DataGrid. When you
click on the Edit hyperlink in the DataGrid, the Edit- ItemTemplate displays. As this is
an editable control like a TextBox, you can edit the displayed values.

Add the following IDs under the EditItemTemplate tag:
§ The code_display column, the id will be editCode_display.
§ The rate column, the id will be editRate.
§ The uom column, the id will be editUom.
§ The opening column, the id will be editOpening.

The <Columns> element tags should look like this in the HTML view:

<Columns>

<asp:EditCommandColumn ButtonType="LinkButton"

 UpdateText="Update"

 CancelText="Cancel"

 EditText="Edit">

</asp:EditCommandColumn>

<asp:BoundColumn DataField="code_value"

 SortExpression="code_value" ReadOnly="True"

 HeaderText="code_value">

</asp:BoundColumn>

 <asp:TemplateColumn HeaderText="code_display">

 <ItemTemplate>

 <asp:Label runat="server" Text='<%# DataBinder.Eval

 (Container, "DataItem.code_display") %>'></asp:Label>

 </ItemTemplate>

<EditItemTemplate>

 <asp:TextBox ID="editCode_Display" runat="server"

 Text='<%# DataBinder.Eval(Container, "DataItem.code_display")
%>'></asp:TextBox>

 </EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText="rate">

 <ItemTemplate>

<asp:Label runat="server" Text='<%# DataBinder.Eval

 (Container, "DataItem.rate") %>'></asp:Label>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="editRate" runat="server"

 Text='<%# DataBinder.Eval(Container, "DataItem.rate") %>'></asp:TextBox>

 </EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText="uom">

 <ItemTemplate>

 <asp:Label runat="server" Text='<%# DataBinder.Eval

 (Container, "DataItem.uom") %>'></asp:Label>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox id="editUom" runat="server"

 Text='<%# DataBinder.Eval(Container, "DataItem.uom") %>'></asp:TextBox>

 </EditItemTemplate>

</asp:TemplateColumn>

<asp:BoundColumn DataField="closing"

 ReadOnly="True" HeaderText="closing">

</asp:BoundColumn>

<asp:TemplateColumn HeaderText="opening">

 <ItemTemplate>

 <asp:Label runat="server" Text='<%# DataBinder.Eval

 (Container, "DataItem.opening") %>'></asp:Label>

 </ItemTemplate>

 <EditItemTemplate>

 <asp:TextBox ID="editOpening" runat="server"

 Text='<%# DataBinder.Eval(Container, "DataItem.opening") %>'>

 </asp:TextBox>

 </EditItemTemplate>

</asp:TemplateColumn>

</Columns>
If you run the web form at this time, you will note that each column appears twice in the
DataGrid. This is because the DataGrid is auto-generating columns, in addition to the
Template columns we have created. You can do this either by setting the
AutoGenerateColumns property of the DataGrid to False or by unchecking the
Create columns automatically at run time check box in the Property Builder
as shown in Figure 30.8.

Figure 30.8: Setting the AutoGenerateColumn attribute to False.

If you look at the generated HTML in the HTML view, you will note that the attribute
AutoGenerateColumns="False" has been inserted within the DataGrid element tag
as follows:

<asp:datagrid id="DataGrid1"

AutoGenerateColumns="False">

The Add Panel
The functionality to insert new rows to the stock_master table is provided by a number
of TextBox controls and Label controls residing on a Panel control. The reason why we
have these controls on a Panel control is that we can show or hide all the TextBox
controls and Label controls just by setting the Visible property of the Panel to True or
False.
Drag and drop a Panel control from the ToolBox onto the web form. Right-click on the
Panel control and select Properties. Give it an ID of AddPanel and set the Visible
property to False.

Now, drag and drop four Label controls and four TextBox controls on the Panel. These
should line up one under the other. To line them within the Panel, drag and drop the first
TextBox and Label. Then right-click and copy the label and paste it one line below.
Stretch the second label with your mouse until it lines up with the Label on the top. Now
copy and paste the TextBox so that it sits next to the label on the second line. Repeat
this process for all the Label and TextBox controls you need on the Panel. You need to

follow this process in order to line up the components. The TextBox controls will be of
similar size, however the Label sizes can vary, depending on the caption you want to
display, hence you need to stretch the Label controls so that they line up under each
other. You can use your mouse or CRTL -arrows to move the controls and SHIFT-arrows
to size them.
Give the four TextBox controls IDs of AddCode_Display, AddRate, AddUom, and
AddOpening respectively. You can do this by right clicking on each of them and
selecting Properties and then ID.
Add a Button Control onto the Panel. Give it the ID of SaveNew. Double-click on it to
create a method skeleton, which will look like this:

private void SaveNew_Click(object sender, System.EventArgs e)

{

}

We will code this method later. I have also added a blank label before the Button Control
in order to position it in the center of the form.

Specifying the DataGrid Command Methods
Specify the OnEditCommand, OnCancelCommand, OnUpdateCommand, and the
OnDeleteCommand within the DataGrid element tag. These attributes of the DataGrid
specify the method that will fire when the user clicks on the Edit, Cancel, Update, or
Delete hyperlinks in the DataGrid. You will have to open the form in HTML view and
manually add these attributes within the DataGrid element tag as follows:

<asp:datagrid id="DataGrid1"

 OnEditCommand="Grid1_Edit"

 OnCancelCommand="Grid1_Cancel"

 OnUpdateCommand="Grid1_Update"

 OnDeleteCommand="Grid1_Delete" >

Methods

In this step, you will code some methods for the web form. Open the Code Behind file
(StockMaster.aspx.cs) and add the following methods.
The Bind() method will populate the DataSet using the Fill method of the
DataAdapter. It will also bind the DataGrid to the DataSet as follows:

The Bind Method

public void Bind()

{

sqlDataAdapter1.Fill(dsStock1);

DataGrid1.DataSource=dsStock1;

DataGrid1.DataBind();

if (AddPanel.Visible==true)

{AddPanel.Visible=false;}

}
The Bind method is called in the Page_Load event as follows:

private void Page_Load(object sender, System.EventArgs e)

{

 if (! IsPostBack)

 {

 Bind();

 }

}

If you build and run the web form (by pressing CTRL-F5), you will see the form displayed
in the browser as shown in Figure 30.9.

Figure 30.9: The Stock Master form displaying data.

The Grid1_Edit method fires when the user clicks on the Edit LinkButton. It sets the
EditItemIndex of the DataGrid to the clicked row and calls the Bind method as
follows:

Grid1_Edit

public void Grid1_Edit(Object sender, DataGridCommandEventArgs e)

{

 DataGrid1.EditItemIndex = e.Item.ItemIndex;

 Bind();

}

The Grid1_Cancel event fires when the user clicks on the Cancel LinkButton in the
Edit mode of the DataGrid. This method simply sets the EditItemIndex to –1, which
in effect tells the DataGrid that no row is now selected and that it should close the update
mode. The Bind method is then called to refresh the DataGrid.

Grid1_Cancel

public void Grid1_Cancel(Object sender, DataGridCommandEventArgs e)

{

 DataGrid1.EditItemIndex = -1;

 Bind();

 }

The Grid1_Delete event fires when the user clicks on the Delete LinkButton in the
DataGrid. This event extracts the primary key of the clicked row and builds a SQL Delete
query, which it hands over to the method RunSql for execution. Finally it sets the
EditItemIndex to –1 and refreshes the DataGrid by calling the Bind method.

Grid1_Delete

public void Grid1_Delete(Object sender, DataGridCommandEventArgs e)

{

 int Key=(int)DataGrid1.DataKeys[(int)e.Item.ItemIndex];

 String code_value = Key.ToString() ;

 String s = "Delete from stock_master";

 s +=" where code_value = " + code_value;

 RunSql(s);

 DataGrid1.EditItemIndex = -1;

 Bind();

}

The Grid1_Update method is fired when the user is satisfied with the changes he has
made to a record in the Update mode and clicks on the Update LinkButton. The method

extracts the primary key by looking at the DataKey property of the clicked row. Then it
uses the FindControl method of a control to locate its ID within the DataGrid. The
returned object is cast to a TextBox and its Text property extracted as shown below. A
SQL update query is built using the extracted Text properties of the TextBox controls,
which is then handed over to the RunSql method for the actual execution. Finally the
EditItemIndex is set to –1 and the Bind method called to refresh the DataGrid.

Grid1_Update

public void Grid1_Update(Object sender, DataGridCommandEventArgs e)

{

 TextBox t;

 //This is the primary key

 int Key=(int)DataGrid1.DataKeys[(int)e.Item.ItemIndex];

 String code_value = " code_value =" + Key.ToString() ;

 t = (TextBox) e.Item.FindControl("editCode_Display");

 String code_display = " code_display = '" + t.Text.Trim() + "'," ;

 t = (TextBox) e.Item.FindControl("editRate");

 String rate = " rate = " + t.Text.Trim() + "," ;

 t = (TextBox) e.Item.FindControl("editUom");

 String uom = " uom ='" + t.Text.Trim() + "'," ;

 t = (TextBox) e.Item.FindControl("editOpening");

 String opening = " opening = " + t.Text.Trim() ;

 String s = " Update stock_master Set";

 s += code_display +rate +uom ;

 s += opening ;

 s += " Where " + code_value;

 RunSql(s);

 DataGrid1.EditItemIndex = -1;

 Bind();

}

This method will be used to execute SQL insert, update, and delete commands.
RunSql

public String RunSql(string vsql)

{

 try

 {

 SqlCommand mycommand = new SqlCommand(vsql,sqlConnection1);

 sqlConnection1.Open();

 mycommand.ExecuteNonQuery();

 sqlConnection1.Close();

 }

 catch(Exception e)

 {

 string ret = "Exception: " + e.ToString() ;

 messages.Text=ret;

 }

 return("OK");

}

The Add_Click event fires when the user clicks on the Add LinkButton. This event
initializes the TextBox controls with default values and displays them by setting the
Visible property of the AddPanel to True.

Add_Click

private void Add_Click(object sender, System.EventArgs e)

{

 AddPanel.Visible=true;

 AddCode_Display.Text= "";

 AddRate.Text= "0";

 AddUom.Text= "";

 AddClosing.Text= "0";

}

The SaveNew_Click event fires when the user clicks on the SaveNew button that
resides on the AddPanel. This event first sets a default value to any TextBox control not
filled in by the user. It then builds a SQL Execute query call to the stored procedure
p_stock_master and passes it the required parameters by extracting the Text
properties of the various TextBox controls. This procedure was discussed in Chapter 24
(Inventory Masters) and if you remember, to insert a new record, you pass it a NULL
code_value. This Execute query is handed over to the RunSql method that handles
the actual execution. Finally the EditItemIndex is set to –1 and the Bind method is
called to refresh the DataGrid.

SaveNew_Click

private void SaveNew_Click(object sender, System.EventArgs e)

{

 if (AddCode_Display.Text.Length == 0)

 { messages.Text="Sorry - Account Name cannot be blank";

 return ;

 }

 if (AddRate.Text.Length == 0)

 {AddRate.Text= "0";}

 if (AddUom.Text.Length == 0)

 {AddUom.Text= "";}

 if (AddClosing.Text.Length == 0)

 {AddClosing.Text= "0";}

 String s = "Execute p_stock_master ";

 s += " @code_value=NULL," ;

 s += " @code_display = '" + AddCode_Display.Text + "',";

 s += " @rate = " + AddRate.Text + ",";

 s += " @uom = '" + AddUom.Text + "',";

 s += " @closing = " + AddClosing.Text ;

 messages.Text= "";

 RunSql(s);

 DataGrid1.EditItemIndex = -1;

 Bind();

}

This concludes our discussion on using Visual Studio.NET to build CRUD applications.
No doubt you might have noticed the significant advantages of scripting using this tool. I
must admit that I am quite impressed with the auto-completion features of Visual
Studio.NET that work with the element tags in HTML view. I no longer need to remember
the various attributes associated with a tag as I can see them displayed as soon as I
start typing. The ability to move (and place) the controls around with my mouse is
another feature that I like.

Chapter 31: Creating a Web Service Using Visual
Studio.NET
In this chapter, I show you how to develop and consume a web service using Visual
Studio.NET. You will first build a generic database service in C#. The web service will
have a method called Populate, which will accept a SQL SELECT query. Based on this
SELECT query, the web service will return a DataSet to the calling object that will
contain the result set of the SELECT query. This web service will have another method
called RunSQL, which will be used to apply an action query (that is, an insert, an update,
or a delete query) to the database.
You will then build another Web project that will consume this service. This project will
call the Populate function of the web service with appropriate parameters and receive
the DataSet that contains the result set. A DataGrid will then be bound to this DataSet to
display the rows returned from the database. You will also test out the RunSQL method
by inserting and deleting a few rows.

Building the Generic Database Web Service

Here is how you will build the database web service:

1. Start Visual Studio.NET.
2. Select File/New/Project.
3. Select Visual C# Projects from the left pane and ASP.NET web services

from the right pane. Figure 31.1 shows VS.NET at this stage. (In the
Release Candidate version of Visual Studio.NET one can append the
project name—CsharpdbService at Location. i.e.
http://localhost/CSharpdbService . The Name field is disabled and will
automatically display the project name one typed in.)

Figure 31.1: Creating a new C# ASP.NET web service.
4. Type in CSharpdbService for the name.
5. Visual Studio.NET generates a new solution, which creates a reference

folder and four files. The Web.config is an XML file, which contains
various configuration options (for example, session timeout interval), and
which controls the web service at runtime. The file
CSharpdbService.vsdisco is an XML file used for dynamic discovery of
web services by clients. This means that when you want to use this
service in another project, you navigate to this file and VS.NET adds a
reference to the service for you. The file Global.asax is where project-
wide event handlers (such as ApplicationStart and
ApplicationEnd) reside.

6. Right -click on Service1.asmx and select Open With and then Source
Code(Text) Editor (or navigate to the application directory and open
the file in Notepad). You will note that this file makes a callout to code
that resides in another file (Service1.asmx.cs) as follows:

7. <%@ WebService Language="c#"

Codebehind="Service1.asmx.cs" Class="CSharpdbService.Service1" %>

At this stage, you have all the pieces of the web service in place and you just need to
code the web services (asmx) file.

Scripting the Web Service
In this section, I will create the web service called dbService. This web service will have
two methods, Populate and RunSql, as described in the following steps.

1. Delete the default Service1.asmx file and add a new web service file by
right-clicking the project name and choosing Add/Add web service. You
can call this web service dbService.asmx.

2. A web service template form is created which includes several
namespaces. The following namespaces are included in
dbService.asmx.cs:

3. using System;

4. using System.Collections;

5. using System.ComponentModel;

6. using System.Data;

7. using System.Diagnostics;

8. using System.Web;

using System.Web.Services;
Because you need to interact with databases, you will import the namespaces
for either the SQL or OleDb Managed Provider. I have chosen to work with
the OleDb Managed Provider because I want to keep the dbService web
service as generic as possible. Using SQL Managed Provider would limit its
use to Microsoft SQL Server databases. You will need to import the OleDb
Managed Provider namespace as follows:

using System.Data.OleDb;

The web service is created in the namespace CSharpdbService as shown:

namespace CSharpdbService

{

 //all the code goes here

}
The class is called dbService and it inherits from
System.Web.Services.WebService. The inheritance is indicated by the
use of the colon (:) before the base class, as shown in the following line:

public class dbService : System.Web.Services.WebService
dbService has a field called connStr, which you must declare with a
private scope as follows:

private String connStr;
The dbService class has a constructor that has no parameters. A
constructor is a method that has the same name as the class. Each class has
a default constructor, which does not accept any parameters. A class is free
to add more constructors that may accept parameters. In the constructor, the
connection string is set to the private field connStr as follows:

public dbService()

{

 InitializeComponent();

 connStr = "Provider=SQLOLEDB; Data Source=(local); ";

 connStr = connStr+" Initial Catalog=PUBS;User ID=sa;Password=";

}
9. Two Web Methods need to be created within the body of the dbService

class. A Web Method is created like a normal C# method; however, it is
preceded by the attribute [WebMethod].

The first method is called Populate and it is used to send a SELECT SQL
query to the database and receive the results back in a DataSet. This DataSet
can then be used to bind a bound control like the DataGrid. Here is the listing
of this method:

[WebMethod]

public DataSet Populate(string SQL)

{

 //for queries that return data

 //and for binding controls

 OleDbConnection myConnection = new OleDbConnection(connStr);

 OleDbDataAdapter myCommand = new OleDbDataAdapter(SQL,
myConnection);

 DataSet ds = new DataSet();

 myCommand.Fill(ds, "vTable");

 return ds;

}
§ The second method is called RunSQL, which is used to apply an

action query to the database. An action query, as you know, is a
SQL query, such as insert, delete, or update, which performs an
action against a database and does not return any data. This
method accepts a valid SQL insert, delete, or update query and
applies it to the database. Here is the code for this method:

§ [WebMethod]

§ public String RunSQL(string vsql)

§ {

§ try

§ {

§ OleDbConnection myConnection = new
OleDbConnection(connStr);

§ OleDbCommand mycommand = new
OleDbCommand(vsql,myConnection);

§ myConnection.Open();

§ mycommand.ExecuteNonQuery();

§ myConnection.Close();

§ return("OK");

§

§ }

§ catch(Exception e)

§ {

§ string ret = "Exception: " + e.ToString() ;

§ return ret;

§ }

}
Your web service is now ready. You can test it by right-clicking the web service asmx file
(dbService.asmx) in the Solution Explorer and selecting Set As Start Page. Now
press F5 to build and display the web service test page as shown in Figure 31.2.

Figure 31.2: The test page for the web service.

Now, click on the method Populate. In the page that appears provide the parameter
value:

Select * from authors
When you click on the invoke button, all the records from the authors table are
displayed in XML format as shown in Figure 31.3.

Figure 31.3: The Populate method returns database rows as XML.

Here is the complete code listing of the web service:
dbService.asmx

using System;

using System.Collections;

using System.ComponentModel;

 using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Data.OleDb;

namespace CSharpdbService

{

 /// <summary>

 /// Summary description for dbService.

 /// </summary>

 public class dbService : System.Web.Services.WebService

 {

 public dbService()

 {

 //CODEGEN: This call is required by the ASP.NET Web Servi ces Designer

 InitializeComponent();

 connStr = "Provider=SQLOLEDB; Data Source=(local); ";

 connStr = connStr+" Initial Catalog=PUBS;User ID=sa;";

 }

 private String connStr;

 #region Component Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 }

 #endregion

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 }

 [WebMethod]

 public DataSet Populate(string SQL)

 {

 //for queries that return data

 //and for binding controls

 OleDbConnection myConnection = new OleDbConnection(connStr);

 OleDbDataAdapter myCommand = new OleDbDataAdapter(SQL, myConnection);

 DataSet ds = new DataSet();

 myCommand.Fill(ds, "vTable");

 return ds;

 }

 [WebMethod]

 public String RunSQL(string vsql)

 {

 try

 {

 OleDbConnection myConnection = new OleDbConnection(connStr);

 OleDbCommand mycommand = new OleDbCommand(vsql, myConnection);

 myConnection.Open();

 mycommand.ExecuteNonQuery();

 myConnection.Close();

 return("OK");

 }

 catch(Exception e)

 {

 string ret ="Exception: " + e.ToString() ;

 return ret;

 }

 }

 }

 }

Calling the Web Service from a Web Form

In this section, I will build a client application, which will use the web service developed in
the preceding section. This application is a C# ASP.NET Web Application and is created
as explained in the following steps.

1. Start Visual Studio.NET. and open the CSharpdbService Solution
created earlier (this Solution needs to be open because you will add the
new project to it).

2. Select File/New/Project.
3. Select Visual C# Projects from the left pane and ASP.NET Web

Application from the right pane. Select the option button that says Add to
Solution, as shown in Figure 31.4. Doing so will add this new project to
the current solution and you can work with both the projects from within
the same solution. Type in TheClient for the project name. In the
Release Candidate version of Visual Studio.NET one can append the
project name—TheClient at Location. i.e. http://localhost/TheClient.
The Name field is disabled and will automatically display the project
name one typed in.

Figure 31.4: Creating a new C# ASP.NET Web Application.

You will see both the projects in the Solution Explorer, as shown in
Figure 31.5.

Figure 31.5: The two projects displayed in the Solution Explorer.
4. Right -click on the aspx form called WebForm1.aspx, which was created

by default, and mark it as the startup page by selecting Set as Start
Page. You also need to mark the project TheClient as the startup project.
To do this right-click on the project name in the Solution Explorer
and select Set as StartUp Project.

5. Right -click on an empty portion of the form and select Properties. Make
sure that the Page Layout property is GridLayout. With
GridLayout, you are able to drag the controls and position them
visually on the form. Drag one DropDownList control, two Label controls,
one DataGrid control, and two Button controls onto the form. Right-click
on each of the buttons to bring up their Properties page and give them
IDs of Populate and RunSql. The first label control is used to give a
descriptive title to the form. The second label is given an ID of
messages. Bring up the property pages for the DropDownList control
(right-click on it and select Properties). Locate the items property and
click on the three dots (ellipsis) beside it to bring up the ListItem
Collection Editor. Click on the Add button located at the bottom of this
panel. You need to add a few SELECT SQL queries in the Value input
box. For example, you can enter the following queries:

6. Select * from authors

7. Select * from titles

8. Select * from publishers

Select * from pub_info where pub_id = "9999"
The user will select one of these SELECT query statements from the drop-
down list, which will be passed to the Populate method of the web service.
The web service will return a DataSet, which will be used to bind the
DataGrid.
I have beautified the Web page by right -clicking on an empty portion of the
form and selecting Properties. This brings up the Document Property Pages
window, from where I selected the Color and Margins tab. I clicked on the
three dots (ellipsis) appearing next to the BackGround color box and visually
selected a background color for the form. This was the color #ffcc99.

Next I worked on beautifying the DataGrid. I right-clicked on the DataGrid to
bring up its property page. I clicked on the hyperlink AutoFormat located at
the bottom of the property page. I selected the Classic2 color scheme from
the presented list of styles.
This web form now looked like the one displayed in Figure 31.6.

Figure 31.6: Design of the client web form.
9. You need to add a reference to the CSharpdbService to use it in this

application. To do this, select Project/Add Web Reference from the main
menu or right-click on the project name in the Solution window and select
Add Web Reference.

A new window called Add Web Reference appears. On the left side of the
window click on the hyperlink Web Reference on Local Web Server. This
should show you all the discovery files (*.disco or *.vsdisco) from which you
should click on the link CSharpdbService.vsdisco. Visual Studio.NET will
discover the web service and display results, as shown in Figure 31.7. You
can also type in the fully qualified (localhost) address of the web service,
suffixed by a ?wsdl in the Address box. For example on my machine, the
web service resides at
http://localhost/CSharpdbService/dbService.asmx?wsdl.

Figure 31.7: Web service discovery.
Now click on the Add Reference button at the bottom right of the window. A
reference to the web service is added in the Solutions Explorer as
shown in Figure 31.8.

Figure 31.8: Reference to web service in the Solutions Explorer.
10. Now add a few lines of code to make it all work. First declare and

instantiate the web service as follows:

private localhost.dbService mydbService = new localhost.dbService();
§ Now code the click event of Button1. Please note that the click events of the

two buttons must appear after the InitializeComponent() method as
the delegates for the click events for these buttons are created in this
method. If you place these events before the InitializeComponent()
method, they will not fire.

§ private void Populate_Click(object sender, System.EventArgs e)

§ {

§ DataSet ds = new DataSet();

§ String s = DropDownList1.SelectedItem.ToString();

§ ds = mydbService.Populate(s);

§ DataGrid1.DataSource=ds;

§ DataGrid1.DataBind();

}
§ This tests the Populate method. The user-selected SELECT query is sent to

the Populate method of the web service. A DataSet is returned which is
used to bind the DataGrid.

§ The web form after you press F5 and test the Populate method should look
like the screenshot in Figure 31.9.

§ To Test the RunSQL method of the web service, add the following code behind
the click event of the RunSql button.

§ private void RunSql_Click(object sender, System.EventArgs e)

§ {

§

§ string s;

§ String ret;

§ s = "Delete from pub_info where pub_id = '9999'";

§ ret=mydbService.RunSQL(s);

§ messages.Text= ret;

§

§ //insert a random number

§ Random r = new Random();

§

§ s = " insert into pub_info(pub_id,pr_info) values(";

§ s = s + " '9999','" + r.Next(1000).ToString() + "')";

§ ret = mydbService.RunSQL(s);

§ messages.Text= ret;

§

§ //Refresh the DataGrid to show changes

§ DataSet ds = new DataSet();

§ s = "Select * from pub_info where pub_id = '9999'";

§ ds = mydbService.Populate(s);

§ DataGrid1.DataSource=ds;

§ DataGrid1.DataBind();

§

§ }

Figure 31.9: Selection of a SELECT query displays the results in a DataGrid.
§ This method uses the RunSql web service method to first delete rows from

the pub_info table having the pub_id of 9999. It then uses the Random
class to generate a number between 1 and 1000. Note that the Next
method of the Random class does this, based on a parameter passed to it.
This parameter specifies the upper limit of the random number, which I have
specified to be 1000. This number is inserted into the pr_info column of
the pub_info table, for the pub_id of 9999. Finally, the Populate
method is called to return the changed rows. The DataGrid is again bound
to the returned DataSet, thus showing the most current values.

§ You can test this method by clicking on the Test RunSql button. Each time you
perform this action, you will see a new number in the pr_info column, as
shown in Figure 31.10.

Figure 31.10: The Test RunSql button inserts a random number in the table.

Here is the complete listing for the Code Behind file WebForm1.aspx.cs.
WebForm1.aspx.cs

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace TheClient

{

 /// <summary>

 /// Summary description for WebForm1.

 /// </summary>

 public class WebForm1 : System.Web.UI.Page

 {

 protected System.Web.UI.WebControls.DataGrid DataGrid1;

 protected System.Web.UI.WebControls.Label Label1;

 protected System.Web.UI.WebControls.DropDownList DropDownList1;

 protected System.Web.UI.WebControls.Button RunSql;

 protected System.Web.UI.WebControls.Button Populate;

 private localhost.dbService mydbService = new localhost.dbService();

 public WebForm1()

 {

 Page.Init += new System.EventHandler(Page_Init);

 }

 private void Page_Load(object sender, System.EventArgs e)

 {

 // Put user code to initialize the page here

 }

 private void Page_Init(object sender, EventArgs e)

 {

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

 #region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.Populate.Click += new System.EventHandler(this.Populate_Click);

 this.RunSql.Click += new System.EventHandler(this.RunSql_Click);

 this.Load += new System.EventHandler(this.Page_Load);

 }

 #endregion

 private void Populate_Click(object sender, System.EventArgs e)

 {

 DataSet ds = new DataSet();

 String s = DropDownList1.SelectedItem.ToString();

 ds = mydbService.Populate(s);

 DataGrid1.DataSource=ds;

 DataGrid1.DataBind();

 }

 private void RunSql_Click(object sender, System.EventArgs e)

 {

 string s;

 String ret;

 s = "Delete from pub_info where pub_id = '9999'";

 ret=mydbService.RunSQL(s);

 messages.Text = ret;

 //insert a random number

 Random r = new Random();

 s = " insert into pub_info(pub_id,pr_info) values(";

 s = s + " '9999','" + r.Next(1000).ToString() + "')";

 ret=mydbService.RunSQL(s);

 messages.Text = ret;

 //Refresh the DataGrid to show changes

 DataSet ds = new DataSet();

 s = "Select * from pub_info where pub_id = '9999'";

 ds = mydbService.Populate(s);

 DataGrid1.DataSource=ds;

 DataGrid1.DataBind();

 }

 }

}

Creating web services with Visual Studio.NET is quite simple. The provided tools and
wizards make the task of laying out components on a web form a breeze. The automatic
code generated by the tool is compact and concise and I really like this aspect. A major
problem with earlier Microsoft tools like Visual InterDev was that they generated tons of
code in supplementary files. This is not so with Visual Studio.NET. You can still open the
generated files in a text editor and continue working.

Project 5 Summary

In this part, you saw the Rapid Application Development (RAD) capabilities of Visual
Studio.NET. You experimented with the various tools, designers, and components of this
environment and also developed a database and a Web services application using this
tool.

As a RAD tool, Visual Studio.NET handles well. Its integrated development environment
enables you to work with multiple languages and comes with an excellent debugger.
Visual Studio.NET draws its graphical user interface from earlier Microsoft tools like
Visual InterDev and Visual Basic 6x. A major problem with ASP development using
Visual InterDev was that it generated quite a bit of code behind the scenes. Experienced
programmers shied away from using it and preferred to use a text editor instead. You will
be pleased to note that this is not the case with Visual Studio.NET. The code it
generates is elegant and concise and in most cases quite similar to what you would code
by hand. You can use the same tool to script in languages like C#, VB.NET, and
ASP.NET, hence you have a low learning curve. All in all, I think that this is a well-
designed tool which can lead to enhanced developer productivity.

Part III: Appendixes

Appendix List
Appendix A: Installing the Sample Database
Appendix B: HailStorm

Appendix A: Installing the Sample Database
The samples in this book require you to have an MS SQL Server database called
ASPNET. Please complete the following steps to create the required database objects.

1. Open MS SQL Query Analyzer (isql). Do not change the default database
(the master database).

2. In isql select File/open. Browse to the ..samples\database folder and select
the file called Create.sql.

3. Execute this file by clicking the green arrow or pressing F5.
Figure A.1 shows create.sql loaded in the isql utility.

Figure A.1: create.sql is shown loaded in the isql utility.

List of Database Objects Created

After running Create.sql, various database objects are created. The list of the tables,
stored procedures, and triggers created are given below.

Database Objects Required for Financial Accounting
These objects are used by almost all of the examples developed in this book. Project 1
(A Personal Finance Manager) in particular uses all of these objects.

Tables

Here is a list of the tables used for financial accounting.
§ groups
§ masters
§ tr_header
§ transactions
§ tblSelection

Triggers

The transactions table has an update, delete, and insert trigger. These triggers update
the closing balance field of the masters table as and when a financial transaction is
created, deleted, or updated.

§ delete_mstr: Delete trigger on transactions
§ insert_mstr: Insert trigger on transactions
§ update_mstr: Update trigger on transactions

Stored Procedures

Two stored procedures are used by the financial system. p_masters is used to insert or
modify a masters record and p_transactions to insert or update a transaction.

§ p_masters
§ p_transactions

Figure A.2 shows the database schema for the Financial Accounting System.

Figure A.2: The database schema for Financial Accounting.

Database Objects Required for Inventory Accounting
The following is a list of objects created that are used by the Inventory Management
System developed in Project 3 of this book.

Tables

This is a list of tables used by the Inventory Management System. Please note that both
the Financial and the Inventory management systems use the tr_header table.

§ stock_master
§ stock_detail
§ tr_header

Triggers

This is a list of the triggers on the stock_detail table.
§ update_stk: Update trigger on stock_detail
§ insert_stk: Insert trigger on stock_detail
§ delete_stk: Delete trigger on stock_detail

Stored Procedures

The Inventory Management System makes use of two stored procedures. The stored
procedure p_stock_masters is used to insert or modify an inventory master record and
the stored procedure p_stock_trans is used to modify or insert an inventory movement
record.

§ p_stock_masters
§ p_stock_trans

Figure A.3 shows the database schema for the Inventory Management System.

Figure A.3: The database schema for the Inventory Management System.

Appendix B: HailStorm
Passport Authentication is a centralized authentication service provided by Microsoft
offering a single sign-in and core profile services for member sites. A typical Web user
will have a number of different usernames and passwords scattered over a number of
Web sites. It is quite a nuisance to have to remember all these passwords. Users who
shop online have to type in their address, phone numbers, credit card information, and
what have you, over and over again. It is quite common for shoppers to abandon their
shopping cart when they see the long online forms that they have to fill in. Microsoft
Passport addresses these problems.

At the time of this writing, Microsoft had just released information and a White Paper on
HailStorm. This product is a major technology component of Microsoft’s .NET vision and
will include Web versions of Hotmail, MSN Messenger, and the Passport user

authentication product. The gist is that Passport will be like an Internet passport. Your
critical personal information will be stored at a central location and you will have full
control over it. Hence you will use the same password and username over all partner
sites. Your personal information will not have to be re-keyed in at these sites. The same
would apply to your address book and your bookmarks. These would be accessible from
any computer over the Web, and would be created only once.

Passport authentication will be a paid service for sites that make use of the Passport
authentication services. At the date of writing, the following companies have decided to
use HailStorm and Passport:
§ American Express
§ Click Commerce
§ eBay
§ Expedia.com
§ Groove Networks

These companies quote receiving the following benefits in using this technology:

American Express

“With Microsoft HailStorm services, American Express can provide their customers
greater flexibility and security of purchasing on the Internet and a higher level of
customer service. Using their Blue card and special private card reader, American
Express can truly validate a customer’s identity for purchases on the Internet. The
Passport authentication system helps with the validation process. Customers can also
reach alerts and notifications via instant messages for bill payment and possible
fraudulent activity. They can review the suspected charges and request contact from
American Express customer service. Instead of having to wait on hold, the customers
receive instant messages to their PC, pager, or cell phone when a customer service
representative is available.”

Click Commerce

“Through Microsoft HailStorm services, Click Commerce is able to provide
manufacturers that use their tools a closer relationship with their partners and customers.
The manufacturers can seamlessly update inventory and add new products to the Click
Commerce run site. The customers can receive real-time notifications of new products or
increased inventory via instant messages to their PC, pager, or cell phone, saving
valuable time when searching for products. The manufacturers receive instant
notification if their products are back ordered or out of stock on the Click Commerce site.
These tools make customer relationships easier to manage for the manufacturers.”

eBay

“By utilizing Microsoft HailStorm services, eBay is able to provide their customers real-
time tracking of the auctions in which they are participating without requiring them to be
logged into eBay’s Web site. Through instant messaging, customers can see the latest
bids for all of the auctions in which they are participating. They can receive notifications
when they have been outbid to their PC, pager, or cell phone, making it easier for them
to make a new bid and increase their chances of buying the item. The seller of the item
can receive more bids on their item, which increases its selling price. Also, eBay’s
auction information can be queried through other applications and services to provide
customers with the ability to query while not on eBay’s site. They can update and add
items to auctions through these rich client wizards. With HailStorm services, eBay can
keep their customers more directly involved without requiring them to be watching the
Web site.”

Expedia.com

“Within their prototype, Expedia uses Microsoft’s “HailStorm” services such as Passport
authentication, Messenger notification, programmatic access to the buddy list, and
calendar integration to continue to improve the traveler experience. For example,
Expedia utilizes the messenger client for a special tab in which dynamic travel
information and offers are displayed. The HailStorm services also help Expedia
transform itineraries into communication centers—allowing travelers to pick distinct
notification settings for different members of their integrated buddy list. Never again will
travelers have to worry about the person picking them up at the airport not knowing their
flight status. For trip planning and coordination, Expedia also provides the ability to add
itineraries to other buddy list members’ calendars.”

Groove Networks

“We find HailStorm to be a perfect example of rich, XML Web services that can
complement the capabilities of emerging edge-based, peer computing applications such
as Groove. In a world where electronic communication is such an important part of our
lives, it’s critical that people know how to reach us, no matter which communication tools
we are using. We believe that HailStorm services will fundamentally improve the user
experience for our customers, and as such, we plan later this year to release
enhancements to Groove that support the single sign-on and notification infrastructure
available to us in Windows XP.”

Summary

The instant notification feature is an advantage cited by these companies. You might
have used MSN Messenger or Yahoo Messenger. As soon as your friend comes online,
you get a beep and a notification from your computer to that effect. HailStorm will use
these features of MSN Messenger to flash important notifications to your computer,
mobile, and handheld devices. Thus, American Express can flash an instant warning to
you when it detects a seemingly fraudulent use of your credit card, and eBay can provide
you notifications when you have been outbid in an auction in which you are participating.
These messages will be flashed to any HailStorm-connected device and urgent
messages do not have to wait until the next time you use a custom device. The next
version of Windows—Windows XP—will automatically connect you in Passport when you
log in to a computer. Hence, in effect, you will always be ready to receive notifications
through HailStorm.

HailStorm will be based on SOAP and XML and will expose a number of functions
(services) that developers can consume. Thus, if American Express wants to flash a
notification to a user’s screen, it will call the appropriate function exposed by HailStorm.

Initially the following functions will be exposed by HailStorm:
§ myAddress: electronic and geographic address for an identity
§ myProfile: name, nickname, special dates, picture
§ myContacts: electronic relationships/address book
§ myLocation: electronic and geographical location and rendezvous
§ myNotifications: notification subscription, management, and routing
§ myInbox: inbox items like e-mail and voice mail, including existing mail

systems
§ myCalendar: time and task management
§ myDocuments: raw document storage
§ myApplicationSettings: application settings
§ myFavoriteWebSites: favorite URLs and other Web identifiers
§ myWallet: receipts, payment instruments, coupons, and other transaction

records
§ myDevices: device settings, capabilities
§ myServices: services provided for an identity

§ myUsage: usage report for above services

Web software developers will be offered a kit with which to build XML-based services
while Web operators like American Express and eBay will be able to license .NET
services for their sites. Passport will be free for users; however, other HailStorm services
like notifications will come at a price.

Whereas on one hand companies like American Express have welcomed and adopted
HailStorm, Microsoft critics feel that Microsoft Passport is an attempt to make the world’s
largest and richest consumer database, which Microsoft can “harvest” to its benefit.
Intrusion of personal privacy is another fear; information can be shared between member
sites, to the detriment of a user. For example, a person who buys books on bankruptcy
from Barnes & Noble would not like American Express to have that information when
applying for a credit card.

List of Figures
Chapter 2: Introducing ASP.NET Web Forms and Controls

Figure 2.1: Page Events.
Figure 2.2: HTML Controls.
Figure 2.3: Web Controls.
Figure 2.4: Panel.
Figure 2.5: AdRotator.
Figure 2.6: Calendar.

Chapter 3: Using ADO.NET in the .NET Framework
Figure 3.1: Interacting with Data.
Figure 3.2: Action Queries.
Figure 3.3: Filtering a DataView.
Figure 3.4: Reading rows and columns collection of a DataTable.
Figure 3.5: DataReader.

Chapter 4: Data Binding
Figure 4.1: Binding "selection" controls.
Figure 4.2: The DataRepeater.
Figure 4.3: Master1 DataGrid.
Figure 4.4: Masters2 DataGrid.
Figure 4.5: Masters2 DataGrid in Edit Mode.
Figure 4.6: The DataList.
Figure 4.7: DataList in Edit Mode.
Figure 4.8: Binding to XML Data.
Figure 4.9: Master Child Relationship.

Chapter 5: Input Validation
Figure 5.1: Validation controls.

Chapter 6: User Controls
Figure 6.1: Simple user control.
Figure 6.2: Exposing properties in user controls.
Figure 6.3: Navigation Menu.

Chapter 7: Custom Controls
Figure 7.1: The Lister.
Figure 7.2: The GenEditAdd control in the Edit mode.
Figure 7.3: The GenEditAdd control in the Add mode.
Figure 7.4: The GenEditAdd component in the Edit mode.
Figure 7.5: The Add Mode.

Chapter 8: Business Objects
Figure 8.1: Simple Business Object.
Figure 8.2: Testing the database class.

Chapter 9: Working with ASP.NET Web Services
Figure 9.1: Testing the service.
Figure 9.2: A call to the web service using the HTTP Get protocol.
Figure 9.3: A call to the web service using the HTTP Post protocol.
Figure 9.4: Compiling the proxy.
Figure 9.5: Testing using the SOAP protocol.
Figure 9.6: New project.
Figure 9.7: New Web Service.
Figure 9.8: Web Access Failed dialog box.
Figure 9.9: The Solution pane displaying the four default files.
Figure 9.10: Creating the web service.
Figure 9.11: Building the solution.
Figure 9.12: Testing the functions.
Figure 9.13: Setting a breakpoint.
Figure 9.14: Using the debugger.
Figure 9.15: New Project pane.
Figure 9.16: Design of the web form.
Figure 9.17: Adding a Web reference.
Figure 9.18: Web service discovery.
Figure 9.19: Reference to web servi ce in Solution Explorer.
Figure 9.20: Testing the Add function.
Figure 9.21: Calling the Populate function using Behavior.
Figure 9.22: Enabling the Access data sources across domains option of IE.

Chapter 10: ASP.NET Applications
Figure 10.1: New virtual directory in IIS.
Figure 10.2: Create button.
Figure 10.3: Remove button.
Figure 10.4: New virtual directory in Personal Web Server.
Figure 10.5: Initial request.
Figure 10.6: Page refresh.
Figure 10.7: Session abandoned.
Figure 10.8: Application state.
Figure 10.9: Starting ASPState service.
Figure 10.10: State maintained in SQL Server.

Chapter 12: Tracing
Figure 12.1: Page-level tracing.
Figure 12.2: Using Trace.axd to see the trace output.

Chapter 13: Security
Figure 13.1: The login page.
Figure 13.2: A successful login.
Figure 13.3: Enabling Basic security.
Figure 13.4: Setting permissions in Windows NT.
Figure 13.5: Windows-based login.

Chapter 14: The Design of the Personal Finance Manager
Figure 14.1: The database schema for the Personal Finance Manager application.

Chapter 15: Chart of Accounts
Figure 15.1: The Masters web form.
Figure 15.2: The Masters web form in the add mode allows creation of new records.
Figure 15.3: The Masters web form in the edit mode allows you to modify existing
records.

Chapter 16: Transactions
Figure 16.1: The Selection form allows you to select a bank or cash account.
Figure 16.2: The Transactions form.
Figure 16.3: The Transactions form in Add mode.

Chapter 17: The Trial Balance Report
Figure 17.1: The Trial Balance.

Chapter 18: Creating a Generic Database Web Service
Figure 18.1: Interacting with the web service.

Chapter 19: Designing a Navigation System
Figure 19.1: Navigation links.

Chapter 23: The Design of the Inventory Management
System

Figure 23.1: The database schema for the Inventory Management System.

Chapter 24: Inventory Masters
Figure 24.1: The Inventory Masters web form.
Figure 24.2: The Inventory Masters web form in the Add mode.
Figure 24.3: The Inventory Masters web form in the Edit mode.

Chapter 25: Inventory Movements
Figure 25.1: The Inventory Transactions form.
Figure 25.2: The Inventory Transactions form in Add mode.
Figure 25.3: The Inventory Transactions form in Edit mode.

Chapter 26: The Inventory Balances Report
Figure 26.1: The inventory balances report.

Chapter 27: Using the GenEditAdd Control
Figure 27.1: Masters.aspx with edit, add, and delete links.
Figure 27.2: GenEditAdd in the Edit mode allows modification of records.
Figure 27.3: The Add mode of GenEditAdd allows insertion of new records.

Chapter 29: Displaying Database Data Using a Strongly-
Typed DataSet

Figure 29.1: Creating a new ASP.NET Web Application.
Figure 29.2: VS will create a Virtual Directory in IIS.
Figure 29.3: The blank project created by VS.
Figure 29.4: The Project Properties.
Figure 29.5: The Data section of the toolbox.
Figure 29.6: The DataLink properties pane.
Figure 29.7: The Choose a query window.
Figure 29.8: Typing in a SQL query in the Generate the SQL Statement window.
Figure 29.9: The Query builder allows you to graphically build queries.
Figure 29.10: The SqlDataAdapter and SqlConnection created in VS.
Figure 29.11: The Server Explorer allows you to explore and manipulate database
objects.
Figure 29.12: The Properties page for the SqlConnection.
Figure 29.13: TheProperty Page for the SqlDataAdapter.
Figure 29.14: The Generate DataSet dialog box.
Figure 29.15: An instance of the DataSet is created. by VS.
Figure 29.16: The final output.

Chapter 30: Writing CRUD Applications with Visual
Studio.NET

Figure 30.1: Setting the BackGround color of the web form.
Figure 30.2: The stock_detail table in the Server Explorer.
Figure 30.3. The SqlConnection and SqlDataAdapter generated by Visual Studio.
Figure 30.4: Generating the DataSet.
Figure 30.5: Setting the Properties of the DataGrid.
Figure 30.6: Selecting the columns of the DataGrid.
Figure 30.7: Selecting the Edit,Update,Cancel buttons.
Figure 30.8: Setting the AutoGenerateColumn attribute to False.
Figure 30.9: The Stock Master form displaying data.

Chapter 31: Creating a Web Service Using Visual Studio.NET
Figure 31.1: Creating a new C# ASP.NET web service.
Figure 31.2: The test page for the web service.
Figure 31.3: The Populate method returns database rows as XML.
Figure 31.4: Creating a new C# ASP.NET Web Application.

Figure 31.5: The two projects displayed in the Solution Explorer.
Figure 31.6: Design of the client web form.
Figure 31.7: Web service discovery.
Figure 31.8: Reference to web service in the Solutions Explorer.
Figure 31.9: Selection of a SELECT query displays the results in a DataGrid.
Figure 31.10: The Test RunSql button inserts a random number in the table.

Appendix A: Installing the Sample Database
Figure A.1: create.sql is shown loaded in the isql utility.
Figure A.2: The database schema for Financial Accounting.
Figure A.3: The database schema for the Inventory Management System.

List of Tables
Chapter 14: The Design of the Personal Finance Manager

Table 14.1: Relationship between Types and Groups
Table 14.2: The Groups Table Definition
Table 14.3: The Predefined Groups
Table 14.4: The Masters Table
Table 14.5: The tr_header Table
Table 14.6: The Transactions Table
Table 14.7: The tblSelection Table

Chapter 16: Transactions
Table 16.1: Rules for Deposits and Withdrawals
Table 16.2: Closing Balance Calculations

Chapter 23: The Design of the Inventory Management
System

Table 23.1: The stock_master Table
Table 23.2: The tr_header Table
Table 23.3: The stock_detail Table

Chapter 25: Inventory Movements
Table 25.1: Closing Balance Calculations

Chapter 27: Using the GenEditAdd Control
Table 27.1: GenEditAdd Quick Reference

Chapter 28: Extending the GenEditAdd Control
Table 28.1: The Four Drop-Down List Sub-properties

List of Examples
Chapter 2: Introducing ASP.NET Web Forms and Controls

State.asp
State.aspx
Events.aspx
events_cb.aspx
Events_cb.vb
htmlControls.aspx
Web_intrinsic.aspx
panel.aspx
adrotator.aspx
Calendar.aspx

Chapter 3: Using ADO.NET in the .NET Framework
MastersGrid.aspx
OpenExplicit.aspx
ActionQueries.aspx
p_authors

Parameters.aspx
Execute.aspx
DataView.aspx
Collection.aspx
DataReader.aspx
DataRelation.aspx

Chapter 4: Data Binding
DataBind.aspx
Repeater.aspx
Masters1.aspx
Masters1.vb
Masters2.aspx
Masters2.vb
PagingSorting.aspx
PagingSorting.vb
GroupsDlist.aspx
GroupsDlist.vb
navXML.aspx
MasterChild.aspx
MasterChild. vb

Chapter 5: Input Validation
validate.aspx

Chapter 6: User Controls
simpleUC1.aspx
simpleUC2.aspx
simpleUC2.ascx
nav.XML
Navigation.aspx
nav.ascx

Chapter 7: Custom Controls
hello.vb
makeVb.bat
hellovb.aspx
helloC.cs
makec.bat
HelloC.aspx
The Config_Masters.aspx form
Step1.aspx
Step2.aspx
GenTestStep3.aspx
Step3.vb
GenEditAdd.vb
Masters.aspx

Chapter 8: Business Objects
BasicObj.aspx
BasicObjC.cs
BasicObjC.aspx
SQLClass.vb
TestVbClass.aspx
SQLClassC.cs
SQLClassC.bat
TestcClass.aspx

Chapter 9: Working with ASP.NET Web Services
BasicService.asmx
WSDL extract for HTTP Get
basicHTTPGet.html
WSDL extract for HTTP Post
basicHTTPPost.html

mbasicService.bat
basicSoap.aspx
Behavior.asmx
Populate.html
AddFunction.html

Chapter 10: ASP.NET Applications
Global.asax
GlobalTest.aspx
Global.asax
ApplicationState.aspx
Session.aspx
AppSettingVb.aspx
AppSettingC.aspx
web.config for Custom Errors
HandleError.aspx
ErrorTest.aspx
handler.vb
make.bat

Chapter 11: Caching
MastersGrid.aspx
querystring.aspx
nav.xml
nav.ascx
Navigation.aspx

Chapter 12: Tracing
Visual Basic.NET
C#
Trace_page.aspx

Chapter 13: Security
web.config
encrypt.aspx
Login.aspx
default.aspx
login.aspx (database version)

Chapter 15: Chart of Accounts
Stored Procedure p_masters
Grid1_Update
Insert Logic Is the Form
The add_click Sub
Sub Grid1_delete
Sub RunSql
Masters3.aspx
Masters3.vb (Code Behind)

Chapter 16: Transactions
Stored Procedure p_trans
insert_mstr
update_mstr
delete_mstr
Selection.aspx
Transactions.aspx Page_Load Event
Sub UpdateSelection
Sub ReBind
Sub add_show
Sub add_click
Sub Grid1_Update
The Delete Sub
transactions.aspx
Transactions.vb (Code Behind)

Chapter 17: The Trial Balance Report
TrialBalance.aspx

Chapter 18: Creating a Generic Database Web Service
SQLService.asmx
msqlProxy.bat
SQLService.aspx

Chapter 19: Designing a Navigation System
Nav.xml
nav.ascx

Chapter 20: Incorporating Web Services in the Chart of
Accounts Form

The Original ReBind Method
The Mmodified ReBind Method that Uses the Web Services
The Original RunSql Method
Modified Version of the RunSql Method
Masters3.vb

Chapter 21: Incorporating Web Services in the Transactions
Form

The Original ReBind Method
The Modified ReBind Method
The Original RunSql Function
Modified Version of the RunSql Function
Transactions.vb

Chapter 22: Incorporating Web Services in the Trial Balance
The Original ReBind Function
The Modified ReBind() Function
The Modified TrialBalance.aspx

Chapter 23: The Design of the Inventory Management
System

Nav.xml

Chapter 24: Inventory Masters
Stored Procedure p_stock_masters
The ReBind Function
Grid1_update
Insert Logic in the Form
The add_click Sub
Sub Grid1_delete
Sub RunSql
StockMaster.aspx
StockMasters.vb

Chapter 25: Inventory Movements
Stored Procedure p_stock_trans
Insert_stk
Update_stk
delete_stk
Sub ReBind
Sub add_show
Sub add_click
Sub Grid1_Update
Sub RunSQL
Grid1_delete
StockTrans.aspx
StockTrans.vb

Chapter 26: The Inventory Balances Report
The ReBind Function
StockBalances.aspx

Chapter 27: Using the GenEditAdd Control
config_master.aspx
The GenEditAdd hyperlinks in masters.aspx
Extract from Masters.aspx hooking a DataGrid to GenEditAdd

Chapter 28: Extending the GenEditAdd Control
DropDown_explain.aspx
Drop-down List Columns in the Update Mode of GenEditadd
GenEditAdd.vb

Chapter 30: Writing CRUD Applications with Visual
Studio.NET

The Bind Method
Grid1_Edit
Grid1_Cancel
Grid1_Delet e
Grid1_Update
RunSql
Add_Click
SaveNew_Click

Chapter 31: Creating a Web Service Using Visual Studio.NET
dbService.asmx
WebForm1.aspx.cs

